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ABSTRACT 

 

A Conceptual Model to Estimate the Nitrogen Requirement  

of Corn (Zea mays L.). (December 2005) 

Catalino Jorge López Collado, B.S., Universidad Autóma Chapingo, Chapingo Estado 

de México, México; 

M.S., Colegio de Postgraduados, Montecillo Estado de México, México 

Co-Chairs of Advisory Committee: Dr. Frank M. Hons 
 Dr. Lloyd R. Hossner 

 

The objectives of this work were to evaluate the vegetative parameters used to estimate 

crop N demand and to estimate the accuracy and precision of the conceptual model of 

fertilization using an error propagation method. Corn plants were collected throughout 

the entire crop life cycle to determine the fresh and dry weight of the aboveground 

biomass and roots, root index, plant height, and corn grain yield.   

 

Three experiments were conducted, two under field conditions and one under 

greenhouse conditions. In the first field experiment in 2002, three sites were selected. 

The first site was the Texas A&M University (TAMU) Agricultural Experiment Station 

Research Farm in which a Ships clay soil was used. The second site was a cooperative 

farmer’s land on a Weswood silt loam soil in Burleson County. These first two sites used 

Pioneer 32R25 as the corn hybrid. The third site was also a Ships soil in the TAMU 

Farm, but Dekalb 687 was the corn variety. In 2003, the second experiment was on a 

Ships soil in the field of TAMU Farm, and the third experiment was conducted in a 

greenhouse using Ships and Weswood soil.  

 

No differences in the root index and harvest index were observed, even when the Dekalb 

687 hybrid was included. Variations in plant N concentration, moisture content, and 

yield were noted, but followed predictable patterns with time over the season. These 
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parameters were consistent throughout the entire life cycle of the crop. The linear 

relationship between the fresh weight of aboveground biomass and fresh weight of roots 

was R2 = 0.92, the moisture content of corn plants over time was fit to a second grade 

polynomial with R2 = 0.98, and plant N content had a close linear relationship (R2=0.90) 

with the total plant dry weight, including roots, at harvest. The accuracy of the 

conceptual model was low under field conditions (55%), but high under greenhouse 

conditions (90%). Precision of the conceptual model was low both in the field (194%) 

and the greenhouse (115%) conditions. 
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1. INTRODUCTION 
 
 

Since ancient times, people that grew fruit trees, grasses, and annual crops have had a 

major concern: how to determine the optimal amounts of nutrients to add to soil in order 

to obtain the highest yield of the highest quality crops. There are several ways to 

determine the optimal application rate of a nutrient. Mathematical models, binary 

relationships, statistical analysis of experimental rate studies, chemical analysis of the 

soil and plants, computer programs and conceptual models have all been used. 

 

Conceptual models of fertilization are based on theory, and have all been created within 

the last 30 years. One tenet of many conceptual models of fertilization is that the rate of 

fertilization should equal crop nutrient demand minus the quantity of available nutrient 

in the soil. This term is then divided by the efficiency factor of fertilizer uptake by the 

crop. 

 

Although models have been used to predict the requirements of nutrients, behavior of 

nutrients in soils and plants, and soil-plant-water-environment relations, have not been 

tested for accuracy and precision under different conditions. Both characteristics are 

important to decide the use of a model. 

 

The balance sheet model was proposed by George Stanford in 1966, and has been a 

matter of study since then. Today, different algorithms have been proposed and used to 

estimate the nutrient demand by crops, nutrient supply by soil, and fertilizer use 

efficiency.  

   

 

 

_________________________ 

This dissertation follows the style of the Soil Science Society of America Journal. 
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2. LITERATURE REVIEW 

 

Estimating crop fertilization requirement may appear simple, but this usually is not the 

case. Since Justus Von Liebig showed in 1850 the necessity to add nutrients to crops, 

many research studies have been conducted to determine crop nutrient requirements and 

soil and plant nutrient deficiencies. The most widely used method to estimate the 

requirement for fertilizer is to conduct experiments where rates of nutrients are applied 

and plant growth responses are measured. Although this way to estimate the fertilizer 

requirement is relatively easy to carry out, a disadvantage is that the results are often 

difficult to extrapolate to other areas due to differences in soil properties, climate, and 

fertilizer requirements of each crop. These differences vary from site to site and from 

year to year because of variations in soil, seasonal growing conditions, agricultural 

practices, etc. (Colwell, 1994). These types of experiments use the soil as a “black box”, 

where fertilizers are introduced as an input, and yield is the only output. One 

disadvantage of this approach is that improved knowledge about interaction of the soil-

crop-environment is reduced (Cooke, 1982). 

 

Fertilizer rate studies have been important in generalizing crop nutrient requirements but 

have not been useful at the soil process level. Conceptual models have been used to 

explain what happens to soil-plant-environment relationships when fertilizers are added. 

Previous models theorized that crop nutrient requirements must be equal to the nutrients 

removed from soil. This is a basic logical first step. Some recent work has included 

transformations that occur in soils, in plants, and even included soil energy balances, but 

their use has been restricted to biological purposes and hasn’t introduced crop yield, a 

principal factor for agricultural use (Müller, 2000). 
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Laws in agriculture 

 

There are few laws in agriculture. One is the Law of the Minimum of Liebig (van de 

Ploeg et al., 1999), Stoke’s Law (Gee and Bauder, 1986), Darcy’s Law, and the 

Increases-Decreases Law, which came from economic theory. The first law explains that 

higher yield is restricted by the most deficient nutrient. The second one is about the 

sedimentation of soil particles in liquid media. The particles settle proportionally to their 

diameter and inversely proportional to the fluid viscosity. Darcy's Law is a generalized 

relationship for flow in porous media. It shows that volumetric flow rate is a function of 

the flow area, elevation, fluid pressure and a proportionality constant. It may be stated in 

several different forms depending on the flow conditions. Since its discovery, it has been 

found valid for any Newtonian fluid. Likewise, while it was established under saturated 

flow conditions, it may be adjusted to account for unsaturated and multiphase flow. This 

law is important for several fields of study including ground-water hydrology, soil 

physics, and petroleum engineering (Brown, 2003).The fourth law explains that 

increases in yield eventually decrease in relation to increased fertilizer application. 

 

Models 

 

Models are theoretical representations that show how systems function. They are useful 

for predicting changes. Models should be precise and exact, and have a high probability 

that a phenomenon that occurs in a theoretical model will also occur in real life (Peitgen 

et al., 1992). For non-biological phenomenon, models are more precise and exact than 

for biological phenomenon, and those in turn are more feasible than social, economic 

and psychological models. At higher levels of relationship and structure, consequences 

are often more difficult to predict, and adequate models are more difficult to develop. 

This is because small changes in a process may result in large changes in intermediate or 

final responses (Peitgen et al., 1992). 
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The first system science or modeling work in soil science was that of Hans Jenny (Jenny, 

1930). This work related soil nitrogen and organic matter functions with different 

environments and factors: 

 

Nitrogen = f(climate>vegetation>topography(relief)>parent material>age) 

 

Agriculture has developed with the knowledge of the essentiality of nutrients to plants 

(Mengel and Kirby, 1978; Marschner, 1995), as well as the development of the chemical 

analysis of soil-water-plants-atmosphere, and organic and inorganic compounds (Parnes, 

1986). It has also been improved with methods to produce synthetic fertilizers (The 

British Sulfur Corporation Limited and Arab Federation of Chemical Fertilizer Producer, 

1982), pesticides, herbicides, and improved management of crops, along with the use of 

mechanical traction, and knowledge about soil-water-crop-atmosphere-biota relationship 

(Stevenson and Cole, 1999). In this last case, the culture, education, psychology, 

economy, and political relationships of farmers are important factors to consider. 

 

Agriculture, more specifically crop yield, depends on a variety of factors, both 

controllable and uncontrollable. In Mexico and other countries of the world, chemical, 

physical and biological factors control crop production, but the determination of what 

and how much to produce are the economic and political factors. 

 

Models in agriculture 

 

Agriculture has developed models to explain a broad variety of processes, for example, 

derivation of soil properties through a land inference model (Zhu et al., 1997), and 

modeling of nutrient uptake by plant roots growing in soil. This objective mechanistic 

model accurately describes equations for the nutrient-uptake process and plant growth. A 

mechanistic model differs from a regression model, in which coefficients are obtained 

statistically for unknown processes occurring between “black boxes”. The first ones 
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were called deterministic models; the second ones were called probabilistic or stochastic 

models (Barber, 1984; Barber, 1995). Once a model has been developed and verified, it 

may be useful for predicting the consequences of changing characteristics of soil and 

plant parameters with respect to nutrient uptake by plants (Barber and Cushman, 1981). 

However, one question to answer for future generations is what might occur if a 

deterministic model were evaluated with probabilistic procedures (Vogel, 1999). 

 

In relation to root nutrient absorption, some experiments have been developed to validate 

simulation models (Reginato et al., 2002) for the growth and P (phosphorus) uptake of 

rape (Brassica napus) in soils at a range of P concentrations (Grant and Heaney, 1997). 

This kind of work has been carried out to evaluate the possibility of predicting solute 

uptake and plant growth response from independently measured soils and plant 

characteristics (Barber and Cushman, 1981). A mechanistic model was used to predict P 

and K (potassium) uptake in corn (Zea mays L.) (Chen and Barber, 1990), and soybean 

(Glycine max) (Silberbush and Barber, 1983; Silberbush and Barber, 1984), and how soil 

bulk density and P addition affect K uptake in soybeans (Silberbush et al., 1983). 

Actually, models have been used to help explain processes in soils, and soil-plant-

atmosphere relationships and are referred to as soil-environment models. 

 

Most models have been developed over the last 30 years. Some of them explain C/N 

(carbon/nitrogen) transformations, e.g. ROTHC, CENTURY, DAYSI, VVN, DNDC, 

HURLEY PASTURE MODEL and ECOSYS (Powlson et al., 1996). ROTHC is a 

carbon turnover model developed at Rothamsted Experimental Station (Coleman and 

Jenkinson, 1996). CENTURY is a turnover model developed for predicting long-term 

changes of carbon and nitrogen (Porton, 1996). DAYSI is a C/N turnover model 

(Mueller et al., 1996). VVN is a C/N turnover model developed in the early 1980’s 

(Gunnewiek, 1996). DNDC is a C/N turnover model with the emphasis of predicting 

gaseous N emission developed by Li and colleagues (Li, 1996). HURLEY PASTURE 

MODEL is an ecosystem model with a soil and litter submodel (Thornley, 1998). 
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ECOSYS is an ecosystem model which includes a submodel dealing with C and N 

transformations (Grant et al., 1993).    

 

MODEL MAKER is a computer program where soil-atmosphere processes are shown as 

conceptual ideas and they are transformed into a mathematical model (Müller, 2000). 

This is a new tool for understanding the soil-biosphere relationship. But, it doesn’t 

explain specific effects on crops and yields, nor does it include nutrient interaction 

effects. 

 

CRoPMan is a production-risk management model designed to help agricultural 

practitioners optimize crop management, maximize production and profit, identify 

limitations to crop yield, assist growers with replant decisions, and identify best 

management practices that minimize the impact of agriculture on soil erosion and water 

quality. It is a Windows™-based application of EPIC (Environmental Policy Integrated 

Climate model) originally developed by the USDA-ARS that simulates the interaction of 

natural resources (soil, water, climate) and crop management practices to estimate 

impacts on products harvested. 

 

CRoPS is the Crop Rotation Planning System for Whole-farm Planning. CRoPS is a 

computer program that selects crop rotations for fields on individual farms, ensuring that 

the combined crop rotations, i.e. the whole-farm plan, meet the production and financial 

needs of farmers, while implementing sound environmental practices (Stone et al., 

1999). 

 

CropSyst is a crop simulation model like CERES and EPIC, but with higher process 

detail (Stockle et al., 1994, Stockle, 2003). The CERES approach (Jones and Kiniry, 

1986) calculates crop water uptake as the minimum of attainable crop water uptake, and 

could predict the corn yield and nitrogen uptake under semiarid conditions (Pang et al., 

1997).  
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EPIC is the abbreviation of Erosion Productivity Impact Calculator or Environmental 

Policy Integrated Climate (current). It is used to assess effects of soil erosion on crop 

productivity, and predicts effects of management decisions on soil, water, nutrient, and 

pesticide movement and their combined impact on soil loss, water quality, and crop 

yields for areas with homogeneous soils and management. The model components are 

weather, surface runoff, return flow, percolation, evapotranspiration (ET), lateral 

subsurface flow and snow melt, water erosion, wind erosion, N and P loss in runoff, N 

leaching; organic N and P transport by sediment, N and P mineralization, immobilization 

and uptake, denitrification; mineral P cycling, N fixation, pesticide fate and transport, 

soil temperature, crop growth and yield for over 80 crops, crop rotation, tillage, plant 

environment, drainage, irrigation, fertilization, furrow diking, liming, economic 

accounting, and waste management from feed yards dairies with or without lagoons 

(Williams and Meinardus, 2004). 

 

APEX is the abbreviation for Agricultural Policy or Environmental eXtender. The 

objective of this software is to provide a tool for managing whole farms or small 

watersheds to obtain maximum production efficiency while maintaining environmental 

quality. APEX uses a component of the EPIC program. The components of the model 

focus on hydrology, soil erosion produced by water and wind, N and P cycling, pesticide 

fate, soil temperature, plant growth, tillage-plant-environmental controls, and economics, 

and also overland flow, subsurface flow, channels, and flood plains, water, sediment, 

nutrients, and pesticides (Williams and Meinardus, 2004). 

 

NutMan is a program that helps nutrient management planners develops crop nutrient 

management plans. Nutrient management involves the allocation of nutrients to crop 

fields and pastures so that plants receive adequate nutrient levels at appropriate times, 

manure is allocated efficiently, and both costs and environmental risks are minimized 

(Stone et al., 2003). 
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PLMS is the Pasture Land Management System, a practical and portable computer 

decision aid supporting private land-use decisions related to pasture land management. 

The program helps livestock farmers compare different strategies for managing their 

land and livestock. The basic idea is to bring the balance of forage produced on the farm 

and forage demanded by the livestock into a seasonal balance. Using PLMS, a farmer 

can explore intensive grazing, manipulating stocking rates, and modifying forage species 

to improve productivity and profit, while also benefiting the environment. PLMS 

provides nearly instant feedback on how user-generated alternative grazing systems 

affect critical variables like farm profit, milk production, and pounds of beef to market. 

It also estimates the environmental consequences of alternative plans, from effects on 

soil erosion to influences on greenhouse gases (Stone et al., 2005). 

 

NuMaSS is the Nutrient Management Support System. It is a computer program to  

diagnose soil constraints and selects the appropriate management practices, based on 

agronomic, economic and environmental criteria, for location-specific conditions. It is 

focused on soil acidity and N and P applications. Its central algorithm for nutrient 

requirement is based on the balance sheet model (Smyth et al., 2004). 

 

Ways to estimate the nutrient requirement of crops 

 

There are different ways to estimate crop nutrient requirements, e.g. binary relationships, 

diagnostic recommendation integrated systems (Beaufils, 1971; Beaufils, 1973), plant 

chemical or biochemical analysis (Martin-Prevel, 1974), analysis of photosynthates, 

ranges of sufficiency, Kenworthy indices (Kenworthy, 1961), soil analysis, visual 

analysis (Davidescu and Davidescu, 1982), factorial experiments with increasing rates of 

fertilizer, or mathematical and statistical models (Buwalda and Smith, 1988). The last 

one includes multiple regression and factorial designs.  
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Rational, conceptual, and mechanistic model 

 

Rational or conceptual models are models which come from studying the processes, 

transformations, and relationships of the entire system (Pickett, 2000). In agriculture, the 

system includes the crop-soil-environment (Rodriguez, 1990). Mechanistic models are 

models that primarily explain phenomena by reference to physical or biological causes 

(Barber, 1995). 

 

Conceptual model of fertilization 

 

A conceptual model is a mental conceptualization where processes are explained using 

diagrams, flow charts and theories. These models are important because they clarify 

ideas of how, where, what, and why processes work (Tanji et al., 1979). These ways of 

describing the world were created parallel to the development of systems theory, which 

explains how to study the process and systems. In agriculture and agroecosystems terms 

such as input, output, transformations, feedback, adiabatic, open and closed systems, 

resilience, independence, equality, sustainability, stability, autonomy, and productivity 

are used (Prasad and Power, 1997; Gliessman, 1998). 

 

Agriculture and the specific case of fertilizer recommendations should consider ideas 

from chaos theory to help explain the randomness of processes, how many are random 

and how many contribute to randomness to make fertilizer recommendations 

unpredictable. In this case, use of non-linear models, elaboration of computer programs, 

use of conceptual ideas, and statistical deterministic models could help to explain 

relationships within the soil and environment. This environment is constituted by 

meteorological conditions (rain, temperature, and radiation), crops and vegetation 

(savanna, forest, tropical forest, desert, grassland, and swamps), landscape (slopes), soil 

conditions, and biological activities (pest and diseases).  
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The balance method, or balance-sheet method (Stanford, 1966; Black, 1993), is a 

conceptual model of fertilization which states that the rate of fertilization should be 

equal to the plant demand for nutrients minus the source of nutrients by soil. This result 

is then divided by the efficiency of fertilizer uptake, either using organic or inorganic 

compounds (Stanford, 1966; Stanford, 1973). Mathematically the model is as follows: 

 

Requirement of nutrient = 
uptake fertilizer of Efficiency

 soil by thenutrient  ofSupply  - crop  theof demandNutrient 

………………………………………………………………………………………......(1) 

 

 Nutrient demand of the corn crop. A simplistic formula has been developed to 

help estimate crop nutrient demand. The development of this formula goes from 

partitioning particular vegetative parts of the crop to general vegetative parameters using 

mathematic algorithms. The demand of nutrients by any crop comes from the sum of 

each one of the requirements of its parts. It can be mathematically expressed as: 

 

N.D. = RB x IRNur x (1-%Hr) + SB x IRNusx (1-%Hs) + LB x IRNul x (1-%Hl)  

+ YB x IRNuy x (1%Hy). ….…………………………………………………………...(2) 

 

Where:  

 
N.D. = Nutrient demand (kg ha-1) 
 
RB = Root biomass (kg) 
 
IRNu = Internal requirement of nutrients for each plant component: r : roots, s : stem, l : 
leaves, y : yield (%) 
 
(1-%H) = Algorithm to change from wet-biomass basis to dry-biomass basis, where %H 
is the moisture content of the plant tissue (%) 
 
SB = Stem biomass (kg) 
 
LB = Leaf biomass (kg) 
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YB = Yield biomass (kg ha-1). 
 
In this formula, the moisture content (1-%H) and the IRNu could be established as a 

common factor, but it requires that %H to be a weighted average. 

 

So, the formula is simplified as follow: 

 

N.D.=IRNu x (RB + SB + LB + YB) x (1-%H) .............................................................(3) 

 

SB, LB, and YB are considered to be the total aboveground biomass (TAGB). If we 

multiply equation 3 by the term ⎟
⎠
⎞

⎜
⎝
⎛

TAGB
TAGB , or 1, the formula becomes as follows: 

 

N.D. = IRNu x ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

1
TAGB

1
RB

 x ⎟
⎠
⎞

⎜
⎝
⎛

TAGB
TAGB  x (1-%H) ..........................................(4) 

 
The root biomass (RB) can be changed to root index (R.I.), which is more constant and 

can be obtained for each crop and variety. 

 

The root index (R.I.) is the proportion between the weight of roots and the total weight 

of aboveground biomass (Aung, 1974). Some authors consider total aboveground 

biomass as the biomass of leaves (usually petioles are included in leaves), stems, 

branches, and yield biomass (Aung, 1974; Etchevers and Galvis, 1995, Sinclair, 1998, 

Bindi et al., 1999, Hebert et al., 2001). Others consider biomass as leaves, stems, and 

branches only, without including yield biomass (Hay, 1995). In our case, the yield 

biomass will be included. 

 

R.I. = 
biomass ground above total

biomassroot  = 
TAGB

RB          
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N.D. = IRNu x ⎟⎟
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⎝
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TAGB x 

1
TAGB   

1
TAGB x 

TAGB
RB  x (1-%H)  .........(5) 

 

 

Following mathematic substitution, the equation can be simplified as follows: 

 

N.D. = IRNu x ((R.I. x TAGB) + TAGB) x (1-%H) ......................................................(6) 

 

N.D. = IRNu x (R.I. + 1) x TAGB x (1-%H) .................................................................. (7) 

 

 If we add the parameter ⎟
⎠
⎞

⎜
⎝
⎛

Yield
Yield  to equation 6, it changes to: 

 

N.D. = IRNu x (R.I. + 1) x TAGB x (1-%H) x ⎟
⎠
⎞

⎜
⎝
⎛

Yield
Yield ................................................ (8) 

 

 But  ⎟
⎠
⎞

⎜
⎝
⎛

Yield
TAGB  = ⎟

⎠
⎞

⎜
⎝
⎛

H.I.
1  , where H.I. is the Harvest Index, so the formula 

changes to: 

 

N.D.=
H.I.

Yield x %H)-(1 x 1)  (R.I.IRNu x +  ………….....................................................(9) 

 

This equation implies the use of constants for each crop and variety. During the last 50 

years, scientific studies have established the values for H.I., R.I., %H, and IRNu for 

some crops. In those cases, only yield needs to be estimated to calculate the crop nutrient 

demand. Crop yield can be estimated using multiple regression techniques (Runge and 

Benci, 1971), farmers’ census data, agroecological zonification methods, which include 
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the use of meteorological and soils conditions, direct interviews with farmers, or using 

experimental data from experimental stations. 

 

Estimating crop nutrient requirements doesn’t guarantee the estimated yield, because 

yield depends on other uncontrolled conditions such as rainfall amount and distribution, 

temperature, radiation, disease, pests, and management (Wallace and Bressman, 1979). 

This model could calculate the requirement of nutrients necessary to attain the most 

probable potential yield under the most probable environmental conditions. After years 

of research, it becomes reasonable that crop nutrient demand can be established as:  

 

N.D. = 
H.I.

Y x %H)-(1 x 1)  R.I. (IRNu x +   ……………………………………………(10) 

 

Where: 

 
N.D. =  Nutrient demand (kg/ha). 
 
IRNu =  Internal requirement of nutrients, with its unit being in percentage form, e.g. a 

nitrogen concentration of 1.5% means 0.015 in the formula. The I.R.Nu. refers 
to nutrient concentrations inside the whole plant. It could be considered as a 
constant, taking into account the optimal or maximum yield under an optimal 
nutrient concentration and under different environments (Loué, 1987). Its 
interval ranges from >0 to <1. For N, the interval could range from >0.00% to 
4.00% considering the total N in the entire plant on a dry-weight basis. In 
decimal expression, it ranges from >0.000 to 0.0400. 

 
R.I. =   Root index. The units are grams of roots over grams of aboveground biomass 

or could be expressed as percentage, e.g. 15% means 0.15 in the formula. At 
present, it is well known that there is a close relationship between the weight of 
the aboveground plant and the weight of the roots. This relationship can be 
written as follows: 

 

  R.I. = 
biomass dabovegroun ofweight 

roots ofweight  ……………………………………(11) 
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  This relationship is constant for specific conditions. The weight of 
aboveground biomass is the total amount of dry matter that a plant or crop 
produces above the soil surface. The interval of root index ranges from >0 to 
<1. 

 
1 =  The number one in the expression (R.I. + 1) comes from the formula derivation 

and expresses the total aboveground biomass. 
 
1 =   The number one in the expression (1 - %H) is a factor of conversion. It is used 

to convert fresh weight to dry weight (1 meaning 100%). It is used together 
with %H. 

 
%H =   Percentage moisture content of plants. This percentage is expressed in decimal 

form, e.g. 95% means 0.95 in the formula. The expression (1-%H) changes the 
values from moisture-based weight to dry-based weight. Its interval ranges 
from >0 to <1. 

 
Y =   Yield in kg ha-1 or ton ha-1 on a physiological or commercial basis. This is the 

yield that it is estimated for the following year; this yield is called the expected 
yield of grain or target yield or goal yield (Black, 1993). This yield can be 
estimated based on experimental yields obtained in similar areas with similar 
soil conditions, or with potential yield studies considering climatologic and soil 
conditions. Its interval could range from >0 to <300,000 kg ha-1. For corn a 
range from >0 to 12,000 kg ha-1 is possible. 

 
H.I. =   Harvest index in percentage, e.g. 45% must be changed to 0.45 in the formula. 

The harvest index is the relationship between the whole weight of the plant and 
the weight of the commercial product. It could be fruits, grains, forages, 
legumes, or grass. This term could be considered as a constant. Its interval 
ranges from >0 to <1. 

 

 

 Internal requirement of nitrogen. On average, the N concentration of whole corn 

plants under optimum conditions is 1.25% (Larson and Hanway, 1977; Loué, 1987). 

Stanford (1966) estimated that the N content of the above-ground portions of the mature 

corn plant should contain from 1.2 to 1.3% N. A 10,000 kg ha-1 corn crop will contain at 

least 200 kg of N in the grain and stover. Only the most fertile soils will supply this N, 

unless corn follows a legume meadow in the cropping system or N has been applied as 

manure or inorganic fertilizer (Larson and Hanway, 1977). 
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 Root index. Root index is the relationship between the roots and the aboveground 

biomass, expressed as the root:aboveground biomass ratio. In some literature, it is 

referred to as the shoot:root ratio. Some authors mention that the shoot:root ratio is not 

constant for corn. However, their studies were carried out only at early phases of corn 

development (Aung, 1974). It is necessary that researchers define what root index 

means, how they are using the concept, and the physical and biological limits of shoot, 

root, and aboveground biomass. 

 

Costa et al. (2000, 2002) found a close relationship between root fresh weight and root 

length for corn (Zea mays L.) genotypes of leafy reduced stature (LRS), leafy normal 

stature (LNS), and conventional commercial hybrid Pioneer 3905 (P3905). Because root 

mass is easier to measure than root length or surface area, root mass could be used to 

estimate root length. The leafy type had the highest proportion of very fine roots. In 

another experiment, it was found that at 80 days after emergence (silking stage), the 

root:shoot ratio for maize was 0.135, 0.170 and 0.095 for 0, 127 and 255 kg N ha-1, 

respectively. The root dry mass was higher for treatments receiving 127 kg N ha-1 

compared to 0 and 255 kg N ha-1. Total root length was linearly and positively correlated 

to the total root dry mass for pooled data of the three genotypes. However the specific 

relationship varied among genotypes (Murphy and Smucker, 1995, Costa et al., 2002). 

Their findings indicate that one could obtain reasonable estimates of total length by 

simply measuring root weight (Costa et al., 2002). 

 

One study found that the mean corn root diameter is greater in the absence of N 

application than at rates of 127 or 255 kg N ha-1 (Costa et al., 2002). This contradicts the 

general observation that finer-diameter roots are formed under low N regimes (Fitter, 

1996). In another greenhouse experiment, water stress reduced the number of order 5 

corn roots (roots finer than 0.5 mm diameter) and increased the number of these roots 

under N stress (Lopez Collado, 1992, unpublished data). 
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A measure of the shoot:root (S:R) ratio may provide an index for the performance of 

each organ in a certain growth environment. For example, if the situation favors shoot 

growth at the expense of root growth, the plant will exhibit a relatively high S:R value. 

Conversely, if root growth is favored over shoot growth, the plant will have a lower S:R 

value. The S:R ratios may be used to ascertain how environmental and chemical factors 

affect and modify the growth of the shoot and root. The S:R ratios of plant species differ, 

and for a particular species the S:R value may vary with chronological age and stage of 

morphological development. It may also be dependent on environmental conditions 

(Aung, 1974). 

 

In wheat (Triticum aestivum L.) and peas (Pisum sativum L.) during the first 3 days of 

growth, the radicle grew faster than the plumule, which was reflected by a low S:R ratio 

(Aung, 1974). Subsequently, the radicle grew slower than the plumule, and there was a 

corresponding increase in the S:R ratio. This work was carried out in nutrient culture for 

15 days. The growth of the root is synchronized with the morphological stage of the 

shoot. In the vegetative phase, shoot and root growth proceed concurrently in linear 

relations, but with the shoot growing at a faster rate. With the advent of flowering and 

fruiting, however, root growth slows or ceases abruptly due to a shortage of 

photosynthates from the shoot. The productive shoot diverts and monopolizes the 

available assimilates at the expense of the root (Foth, 1962). A sharp decline in root 

development has been found with the time of fruit development (Aung, 1974). Also, 

during maturation of modified storage structures, such as the onion bulb, a marked 

decrease was found in both root weight and number as bulbing proceeded. 

Consequently, S:R ratios were higher at the postbulbing stage than at the prebulbing 

stage (Copper, 1955). 

 

Both physical and chemical factors can alter the S:R ratios of plants. Soil type influences 

the growth of shoots and roots of crops. Plant growth on a sandy soil had a lower S:R 

ratio than similar plants grown on a loamy soil. While the physical structure of the soil 
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can affect S:R ratios of these plants, the chemical fertility factor was not clearly 

delineated. Changes in S:R ratios have been observed in wheat, rice (Oryza sativa L.) 

and bean (Phaseolus vulgaris L.) plants by exposing them to different oxygen 

concentrations. The S:R ratio of wheat decreased as O2 concentrations dropped from 

21% to 1.5%, whereas rice showed higher S:R ratios with decreasing O2 concentrations 

(Aung, 1974). 

 

Temperature can change the S:R ratio. In tomato plants, the S:R ratio was lower for 

plants growing at 17ºC than at 27ºC, and also at 15ºC compared with 25ºC. The 

reduction of shoot growth at lower temperature was not due to a deficiency of mineral 

nutrients or water supply, but rather to endogenous mechanisms, which was hormonal 

(Aung, 1974). 

 

Much of the variability of crop response is related to soil properties that affect water 

availability. Effective soil rooting depth is one such property. It has been reported that a 

higher correlation exists between corn grain yield and soil depth during years of low 

rainfall than years with greater rainfall, in which plant rooting depth is limited by a 

fragipan or duripan. This response indicates a contribution of soil water-holding capacity 

and availability. Other properties that also influence yield as topsoil depth decreases are 

soil bulk density and chemical properties (Frye et al., 1983; Gantzer and McCarty, 1987; 

Swan et al., 1987; Boyer et al., 1990; Thompson et al., 1991). 

 

Pruning, soil moisture content, and light modify the S:R ratio. Heavy pruning of fruit 

trees increased the S:R ratio due to a reduction in root development. In corn, the S:R 

ratio was increased from 2.47 to 3.40 by increasing the soil moisture content from 7.5-

15.5% to 21% respectively. In radishes (Raphanus sativus), the S:R ratio decreased with 

long photoperiods due to development of the taproot over the shoot. In corn hybrids and 

barley (Hordeum vulgare L.), the S:R ratio is higher with increasing applications of N 

and P. This behavior was attributed to greater carbohydrate utilization by shoots at the 
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expense of roots. In lettuce (Lactuca sativa L.), the S:R ratio was increased with 

increasing amounts of Ca(NO3)2. In sweet potato, the S:R ratio was increased with N 

applications (Aung, 1974). 

 

 Moisture content. The plant corn moisture content at maturity harvest is variable 

(Ritchie et al., 1997; Osborne et al., 2002). However, the standard moisture content of 

shelled corn at harvest is around of 15.5% or 155 g of water per kg-1 of dry matter, on a 

wet basis. This means that each kilogram of shelled corn will actually consist of 845 g of 

dry matter and 155 g of water (Buffington, 2003). The water content in corn is important 

in cost production and equitable price for corn silage (Lauer, 2005). For corn silage, the 

term grain equivalent per ton of silage is used (kg of grain per ton of corn silage). It 

could be used to estimate the corn grain weight per ton of corn silage at 15.5% of 

moisture content. However, it is not always reliable. The relationship using the grain 

yield equivalent to estimate the grain weight at 15.5% of moisture content ranged from 

R2 = 0.40 to R2= 0.78 from 1997 to 2004 experiments (Lauer, 2005). 

 

Remote sensing is becoming a valuable tool that has the potential to assess corn crop 

chlorophyll and relative water content due to N and water stress over a large area in a 

short amount of time (Osborne et al., 2002). Schlemmer et al. (2005) found in a 

greenhouse experiment that chlorophyll had a stronger correlation than relative water 

content (RWC). This physiological parameter had a low correlation with various regions 

of the spectral reflectance curves, in the range from 400 to 1000 nanometer of 

wavelength. A short-duration acute water stress had little or no effect on the leaf 

chlorophyll content. However, on estimate of the water content of corn crop could be 

more through the visible and near infrared reflectance of the whole canopy level. In this 

study, there were no significant differences between treatments with N fertilizer over the 

relative water content; however, the supply of water presented a clear difference. It 

ranged from a high of approximately 90% for well watered treatments to a low of 65% 

for low-water treatments, averaged across all N rates (56, 112 and 168 kg N ha-1). In this 
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experiment, the corn plants were harvested at the V6 and V7 growth stages, (Ritchie et 

al., 1997). In a similar experiment, but in the field, the use of hyperspectral remote 

sensing could not detect significant differences in water stress in irrigated corn, however, 

the presence of water stress influenced the wavelength used to estimating plant N 

content. The hyperspectral imagery predicted chlorophyll meter readings with an R2 

greater than 0.82, and estimated the N content, biomass, and grain yield (Osborne et al., 

2002). 

 

A field study showed that the water stress in corn is variable over short distances even 

lower than 10 meters, and it is related with the soil water content; although this variance 

in the field couldn’t be explained (Sadler et al., 2000). This corn water stress was 

measured using the difference between the temperature of canopy and air using an 

infrared thermometer (Sadler et al., 2000). On the other hand, there were no significant 

differences in corn grain yield, grain N uptake, and grain water use efficiency, using 

strip-tillage, chisel plow, and no-tillage in a two field years experiment (Licht and Al-

Kaisi, 2005). The moisture content of corn grain showed in most of the cases no 

significant differences between densities of population (59000, 69000, 79000 and 89000 

plants ha-1), six kinds of hybrids (Novartis seeds: MAX23, 4242Bt, MAX21, 4640Bt, 

MAX454, and 6800Bt), using two row spacing (38 and 76 cm) during a three year field 

experiment. The ranges for corn grain moisture content were from 161 to 196 g kg-1 for 

hybrids x row spacing, and from 159 to 162 g kg-1 for plant density x row spacing 

(Farnham, 2001). 

 

 Corn yield. The grain yield for hybrid Pioneer 32R25 under different conditions 

ranged from 5.1 to 13.4 Mg ha-1 (Table 1); (Mislevy, 2001; Wright et al., 2002; A. 

Nelson, personal communication, 2002; J. Betran, personal communication, 2003).  
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Table 1. Corn Pioneer 32R25 yields under different conditions. 
Yield 
t ha-1  

Place Conditions and observations 

11.2 College Station, Experiment Station. Under irrigation, summer 2002. †  
12.6 College Station, Experiment Station. Dryland, 2002. ‡ 
11.4 College Station, Experiment Station. Dryland, 2002. ‡ 
7.7  College Station, Experiment Station. It yield was calculated with base in a Yield Calculator. ‡  
5.1 College Station, Experiment Station. Dryland, 2002.§ 
8.2  Farmer Dryland ‡ 
11.4  Farmer Dryland ‡ 
6.6 Weslaco. Under irrigation, summer 2002. † 
8.6 Bardwell (blacklands) Dryland (rainfed), summer 2002. † 
12.8 Dumas (highplains) Under irrigation, summer 2002. † 
11.9 Ona, Florida. The University of Georgia. 

2001 Corn Performance Test. 
Yield was calculated at 15.5% moisture. Planted: march 22, 
harvested July 9, 2001. Plant population: 28000 plants/acre. 
50 lb N, 80 lb P2O5, and 160 lb K2O/acre as preplant; 200 lb 
N/acre as sidedress. Irrigated 20 inches. ¶ 

9.8 North Florida Research and Education 
Center (NFREC). University of Florida. 

# 

6.7 Edisto Research and education Center, 
Blackville, SC. 

Means adjusted by Lattice Procedure. Corn Hybrid 
performance, irrigated trial, Coastal Plain. 2002 data. ¶ 

9.6   Pee Dee Research and Education Center, 
Florence, SC. 

Irrigated trial-coastal plain. Harvest moisture 14.1%, husk 
coverage 3.2%. Days to mid-silk (days) 78. 

8.6 Pee Dee Research and Education Center, 
Florence, SC. 

Irrigated trial-Coastal plain; Mean adjusted by Lattice 
Procedure. 2002 data. ¶ 

7.6 Blackville and Florence, SC. Irrigated trials-2 location averages. Harvest moisture 15.0%,   
Husk coverage 2.3%, test weight (lb/bu) 60. 2002 data. ¶ 

12.7 Calhoun Field Laboratory, Clemson, SC. Corn Hybrid performance. Dryland-Piedmont bottomland. 
Harvest moisture 15.7%, husk coverage 2.7%.¶ 

11.7  Calhoun Field Laboratory, Clemson, SC. Dryland-Piedmont bottomland; Harvest moisture 16.5%, 
husk coverage 2.7%, test weight (lb/bu) 60. 2002 data. ¶ 

11.9  Calhoun Field Laboratory, Clemson, SC. Dryland-Piedmont bottomland. ¶ 
12.1 Jasper, Florida. Farmer Debra E. Adams. 1st. Place 2002 corn yield contest state

winners. A no till/Strip till Non-irrigated class. ¶ 
13.2 Oklahoma Farmer Brenda Schulz. 2nd. Place 2002 corn yield contest 

state winners. A no till/Strip till Non-irrigated class. ¶ 
7.8 Lodge, South Carolina Farmer Marion Rizer. 2nd. Place. 2002. Corn yield contest 

state winners. A no till/Strip till Non-irrigated class. ¶ 
10.4  Columbia, Alabama Farmer John & Joy Pitchford. 3rd. Place. No till/strip till 

irrigated class. ¶ 
13.4  Winnsboro, Louisiana. Farmer Wesley Moroni. 1st place.¶ 

† The yield of Pioneer 32R25 is variable, but under optimum conditions it can reach higher than 12 t ha-1 
(Dr. Javier Betran, Texas A&M University. Soil and Crops Department. College Station. Personal 
communication). 
‡ Pioneer ™. 2005. Corn Yield Calculator. Use this corn yield calculator to determine what the potential 
yield might be for the corn hybrids planted on your farming operation. (available on November 22, 2005). 
http://www.pioneer.com/growingpoint/decision_tools/corn_yield.jsp 
§ M.Sc. Alfred Nelson. 2002. Personal communication. 
¶ Mislevy P., A. E. Coy, J. LaDon-Day and P. A. Rose (Ed.). 2001. Corn Performance Tests. The Georgia 
Agricultural Experiment Station. University of Georgia. Research Report Number 675. November 2001. 
Department of Crop and Soil Sciences, Coastal Plain Experiment Station, Tifton, GA. 
http://www.ces.uga.edu/ES-pubs/RR675-silage-Ona.htm and http://www.ces.uga.edu/ES-pubs/RR675-
contents.htm (available on November 22, 2005). 
# D. L. Wright, B. Kidd, P. J. Wiatrak, J. J. Marois. 2002. North Florida Research and Education Center, 
Quincy FL. Florida Cooperative Extension Service, University of Florida, Gainesville. 
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Different methodologies can be used to predict corn grain yield. Some of them use the 

water available for the crop (Timlin et al., 2001), annual precipitation and other 

parameters using multiple regressions (Runge and Benci, 1971), soil fertility levels, 

temperature, precipitation and evapotranspiration using regression models and agro-

ecological zones methods (Kassam, 1977; Derby et al, 2004), soil physical 

characteristics and crop radiance (Chang et al, 2003), root zone water quality and 

weather conditions using simulation models like RZWQ and CERES (Anapalli et al., 

2005). 

 

One method to estimate corn yield is that proposed by Timlin (Timlin et al., 2001). This 

method uses the following formulas to estimate yield or relative yield: 

 

Y = YP - (A)(SS) ………………………………………………………………………(12) 

 

In order to be able to represent results from different sites on a more general basis, 

equation 2 will become a relative yield equation by dividing equation 1 by potential 

yield (YP ). The result is: 

 

YR = 1 - (AR)(SS) ……………………………………………………………………...(13) 

 

 Solving equation 2, the result is: 

 

YR = 1 - (0.027)(SS) …………………………………………………………………..(14) 

 

This formula was found to estimate the relative corn yield trend with reasonable 

accuracy. 
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Where: 

 

Y : yield of corn grain (kg ha-1). 

YP : the potential yield when water is not limiting. 

YR : the relative yield. It is YR = Y/YP. 

AR : the relative water stress response coefficient. It is estimated as AR = A/YP. Its value 

was 0.027. 

A : the change in corn grain yield in kg ha-1 per unit of seasonal water stress.  

SS : seasonal water stress index. It is defined by: 

 

SS =  …………………………………………………………………… (15) ∑
=

n

i 1
(Sdi)(Wi)

 

Where: 

 

Sdi: The daily stress index for Day i, calculated as Sdi = 1 – Ta / Tp, where Ta is the 

actual transpiration and Tp is the potential transpiration 

n : the number of days from planting to harvest 

Wi : weighting factor that accounts for the sensitivity of grain yield to water stress on 

that day. The value for Wi varies with  respect to the growth stage. 

 

The potential yield (YP) and relative water stress response coefficient (AR) were 

calculated using Ontario Corn Heat Units (OCHU), mean irrigated yield, and regressing 

yield measured over a range in soil depth on calculated seasonal stress indices (Timlin et 

al., 2001). 

 

Harvest index. Yield is assumed to be a set fraction of the crop’s aboveground 

biomass. For corn, the harvest index (H.I.) has been calculated as 0.5. As the biomass 

varies spatially, so does the yield. Timing of weather events, particularly precipitation, 
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temperature, and varying soil conditions, can have a great effect on the H.I. (Norman, 

2003). The H.I. has been taken as a measure of success in partitioning assimilated 

photosynthate into harvestable product. The dramatic increases in corn grain yield in the 

past 50 years have resulted from a number of factors, but increased H.I. is commonly 

considered one of the most important. According to Donald and Hamblin (1976), Beaven 

in 1914 was the first to consider the ratio of grain weight to total plant weight and called 

this ratio the “migration coefficient”. The “migration coefficient” concept was largely 

ignored until relatively recent times. In 1962, Donald suggested the term “harvest index” 

and recommended it as an important reference to assess progress in germplasm 

development toward improved yield potential. The implication was that increased H.I. 

indicated progress in partitioning crop photosynthate to the harvestable component 

(Sinclair, 1998). H.I. did not become an important feature of crop assessment until after 

the publication of a review on H.I. by Donald and Hamblin in 1976 (Hay, 1995). 

 

Comparing the years of release of wheat cultivars, it was shown that H.I. increased with 

time, ranging from 0.35 to 0.50 from 1908 to modern advanced breeding lines, even 

when grown in sites with low and high fertility (Austin et al., 1980). In Australia, H.I. of 

wheat cultivars increased from 0.30 for old varieties to 0.37 for recent varieties (Perry 

and D’Antuono, 1989). Similar increases in H.I. have been found for barley in the 

United Kingdom where most of the grain yield increase for cultivars grown in 1880 

compared to cultivars released in 1980 was associated  with an H.I. increase from 0.36 to 

0.48 (Riggs et al., 1981). In rice, the dwarfing genes increased H.I. from 0.30 to 0.50. On 

the other hand, increases in the H.I. of maize have been modest, from 0.45 in the 1930’s 

to 0.50 in the 1980’s, and much of the maize yield increase resulted from an increases in 

total crop mass (Russell, 1985). 

 

The H.I. can be defined as the ratio of seed mass or yield to total aboveground plant 

mass (Sinclair, 1998, Bindi et al., 1999). Total plant mass consists of the total weight of 

aboveground biomass, including stems, leaves, and grain. Instead of the seed growth rate 
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(SGR), the change in harvest index with respect to time is considered the best parameter 

to use to characterize seed growth. Changes of H.I. are linear and stable over a range of 

growth conditions, including variations in sowing date, irrigation treatment, and N 

levels. This behavior is well documented for wheat, pea (Pisum sativum L.), sunflower 

(Helianthus annuus L.), and soybean (Glycine max (L.) Merr.) (Bindi et al., 1999). 

Although the H.I. of Avalon wheat changed during reproductive growth, at least during 

the last 10 days before harvest, the H.I. was constant before the crop reached its 

maximum growth (Bindi et al., 1999). 

 

In a peanut experiment, H.I. was expressed as the pod harvest index (P.H.I.), which was 

defined as the ratio of pod to total dry weight, including the roots. Seed harvest index 

(S.H.I.) is the ratio of seed to total dry weight. In the Craufurd et al. experiment (2002), 

they used a factor of 2.33 to describe the high energy cost of synthesis of kernels with 

high oil and protein contents. Weights of roots, leaves, stems, pegs, pods, and seed per 

plant were recorded after oven-drying these components to a constant weight for 3 days 

at 80ºC. The high temperature tolerant varieties of peanut had the same H.I. 90 days after 

planting. However, temperature susceptible genotypes had reduced H.I. at 30ºC 

compared to 25ºC. The relationship between the days after planting and S.H.I. was linear 

from 41 to 90 days after planting (R2>0.94). 

 

In an experiment with 15 maize cultivars, significant relationships were found between 

H.I., grain yield (G.Y.), and stem biomass (S.B.). A strong positive relationship was 

detected between H.I. and grain yield under drought. High H.I. under drought was 

associated with rapid early ear growth and suggested that an increase in partitioning to 

ears was responsible for increases in H.I. under all water regimes (Edmeades et al., 

1999). Stem biomass varied inversely with HI across all entries, as well as among entries 

comprising a selection series. Selection reduced S.B. under drought (Edmeades et al., 

1999). In the same experiment, H.I. under drought was 0.167 with a standard deviation 

(std. dev.) of 0.0618 and a coefficient of variation (CV) of 36.8; under irrigation H.I. was 
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0.393 with a std. dev. of 0.0212 and a CV of 5.3. The gain in H.I. for corn under dry 

conditions was 0.025 and under irrigation was 0.005 (Edmeades et al., 1999). 

 

Yang et al. (2004) found that in a 3-year field experiment using 33A14 and 33P67 

Pioneer® maize hybrids, there were no significant differences in the H.I. through 

different years (1999, 2000, and 2001) using three different population densities (7.2, 9.6 

and 11.2 plant m-2). The overall mean H.I. was 0.51. 

 

The H.I. has a defined behavior, starting with a lag phase followed by a linear increase, 

then a cessation of the linear increase (Bange et al., 1998). This behavior is shown in 

Fig. 1 (Chapman et al., 1993, Bange et al., 1998) and is also similar for taro (Colocasia 

esculenta L.) (Lu et al., 2001), wheat (2 cultivars), sunflowers (3 cultivars), peas (4 

cultivars), soybean (3 cultivars) (Bange et al., 1998; Bindi et al., 1999), and maize 

(Muchow, 1990). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. A three phase linear function fitted to measurements taken from sunflower 
genotype 8640, showing the linear increase in harvest index, lag phase, and the time 
when the linear harvest index increase ceases. The graph also shows (dotted line) how 
Chapman et al. (1993) defined the lag phase (a) and cessation of linear harvest index 
increase (b). H.I., harvest index; A, first anthesis; P.M., physiological maturity. 
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One term related with H.I. is the nitrogen harvest index (NHI); this term is closely 

related with H.I. and more specifically with the N content of grain. The NHI is defined 

as the ratio between grain N content (GNC) and stover N content (SNC) (Sinclair, 1998). 

 

 Comment about the harvest index. It is necessary that researchers and authors of 

papers clarify the exact meaning of H.I. as used in their experiments. It is necessary to 

explain what they consider as the commercial product or the amount assigned in the 

numerator of the mathematic relation, and explains what constitutes the denominator. 

The denominator always contains an estimate of total biomass. Total biomass should be 

explained, given that the expression could be on a fresh or dry weight basis. Sometimes, 

the grains or roots weight are considered in the aboveground biomass or the generic term 

of shoot is described ambiguously. Shoot is a young stem, but it doesn’t necessary imply 

that one should consider the leaves, tassel, or another part of the plant. On the other 

hand, it is important to mention at what physiological time period samples were taken. 

The term maturity can be ambiguous given that there are commercial and physiological 

maturities, even the number of days to maturity or days after planting is different for the 

same hybrid, depending on environment conditions. An option could be to mention the 

usual number of days to complete the physiological or commercial maturity of the crop 

under given environmental conditions, or the parameters used to establish that phase. An 

example of ambiguity of information is found in a paper that stated that “90 days after 

planting the ICGV 86015 genotype of peanuts was harvested and the harvest index was 

measured”. Questions are: Is 90 days enough to complete physiological maturity or to 

complete filling pods under that environment and is it enough for that genotype?. The 

moisture content or percentage of oil might be a better parameter to measure the 

maturity of the crop, in conjunction with the number of days after planting. 
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Soil nitrogen supply. After decades of searching for a rapid method to estimate the N 

mineralization capacity of soil, there is still no consistent recommendation. For this 

reason, it is legitimate to examine the causes for the often conflicting results in literature. 

Gross N mineralization and consumption during waterlogged and aerobic incubation 

were estimated in a wide range of soils (Wang et al., 2001). It was found that 17 to 90 

and 23 to 59% of the mineralized N was consumed during waterlogged and aerobic 

incubations, respectively. As net N production rate represents the balance between N-

producing and N-consuming processes, it appears difficult to find a simple method that 

could be used to predict the net effect of several concurrent processes. Total organic N, 

water soluble organic N, alkali-hydrolyzable N, acid-hydrolyzable N, hot salt-

hydrolyzable N and N in the light organic matter fraction were assessed against this 

reference criterion. All indices except light fraction N were significantly related to gross 

N mineralization. Water-soluble organic N had the highest correlation of all the indices 

tested. None of the chemically hydrolyzed N fractions consistently showed closer 

relationships with N mineralization than total organic N, suggesting that these chemical 

methods are ineffective in extracting a biologically labile fraction of soil organic N 

(Wang et al., 2001). 

 

The procedure to estimate the supply of nutrients from soils is different for each type of 

nutrient, and different methods may be used to estimate the nutrient concentration. One 

method was proposed by Etchevers and Galvis-Spinola (1995) to estimate N supply 

using different kinds of soils with variations in organic matter content. They found a 

regression equation using the soil organic matter concentration in a series of soils. The 

overall formula was as follows: 

 

Nitrogen supply = (NO3-N) initial + organic N reserve ………………………………...(16) 

 

The organic N reserve = 25.9 + 17.9 (soil organic matter percentage) ……………….(17) 
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On the other hand, the nitrogen supply from soil may also be estimated by the total N 

content in the tops and roots of the crop without N fertilization (Østergaard et al., 1985, 

Smyth et al., 2004). In natural conditions without fertilizer, the supply of nutrients is the 

same as plant demand. Other procedures to estimate soil N supply can be used, provided 

that supply is expressed as actual kilograms of N absorbed per hectare. In natural 

conditions, without fertilizer and for some conditions of population density, the supply 

of nutrients is assumed to be the same that the plant demands (Smyth et al., 2004), but it 

is not always the case that plant demand equals the supply of nutrient by the soil. The 

maximum supply of nutrient from the soil limits the maximum content of nutrient in the 

plant. This is the maximum amount of nutrient demanded by the crop under that soil 

condition. But this statement does not imply that under better or worse soil or 

environmental conditions the demand of nutrient by the crop could be either higher or 

lower for the same type and variety of crop. 

 

An experiment with corn was carried out to compare N supply from soils differing in N-

fertilizer responsiveness (Mulvaney et al., 2001). Hydrolysis with 6 M HCl was 

performed on composite soil samples. The concentrations of amino sugar-N were 33 to 

1000% greater (p<0.001) for 11 nonresponsive than for seven responsive soils. No 

consistent differences were observed in their contents of total hydrolyzable N, 

hydrolyzable NH4-N, or amino acid-N. Upon aerobic incubation for 3 months with 

biweekly leaching, production of (NH4 + NO3 + NO2)-N averaged 260% greater for 

three nonresponsive soils than for two responsive soils and was accompanied by a net 

decrease in amino sugar-N but not amino acid-N. Soil concentrations of amino sugar-N 

were highly correlated with check-plot yield (r=0.79***) and fertilizer-N response  

(r=-0.82***). On the basis of amino sugar-N, all 18 soils were classified correctly as 

responsive (<200 mg kg-1) or nonresponsive (>250 mg kg-1) to N fertilization (Mulvaney 

et al., 2001). 
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Better estimates of soil mineralizable N are needed to determine crop needs for N 

fertilizer. An experiment was carried out to estimate net soil N mineralization in soil 

maintained in continuous corn, corn-soybean, and corn-soybean-wheat/alfalfa 

(Medicago sativa L.)-alfalfa rotations (Carpenter-Boggs et al., 2000). Cumulative net N 

mineralized in a 189-d field temperature incubation averaged 133±6 kg ha-1 in 

continuous corn, 142±5 kg ha-1 in corn-soybean, and 189±5 kg ha-1 in corn-soybean-

wheat-alfalfa. Across rotations, average net N mineralized was 166±9 kg ha-1 in 0 N 

plots, 147±10 kg ha-1 in low N plots, and 152±10 kg ha-1 in high N plots. Inclusion of a 

legume, particularly alfalfa, in the rotation increased net N mineralized. Generally, more 

soil N was mineralized from plots receiving no fertilizer N than from soil with a history 

of N fertilization. Variable temperature incubation produced realistic time-series data 

with low sample variability. 

 

The need to estimate mineralization has long been recognized in making N fertilizer 

recommendations, but little progress has generally been made in identifying a specific 

fraction of soil organic N that affects crop responsiveness to N fertilization (Mulvaney et 

al., 2001). 

 

Efficiency of added fertilizer. The growth of all organisms can be limited by the 

amount of available nutrients. Plants are no exception. In natural conditions, climax 

vegetation that is established depends on soil fertility. Plants are in dynamic equilibrium 

with their environment. Nutrients are recycled in leaf and litter fall, and the supplies are 

slowly augmented by natural processes, notably the biological fixation of N and the 

weathering of soil minerals to release other nutrients. When farmers intervene and 

substitute their crops for natural vegetation, some of the nutrients are removed in the 

yields, thus diminishing soil fertility. Fertilizers allow one to raise soil fertility so that 

the yield of crops no longer need be limited by the amount of plant nutrients that the 

natural system can supply, and factors other than nutrition then set the limit to 
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productivity. Fertilizers are, therefore, essential to the future of our modern world where 

the population is increasing so rapidly (Cooke, 1982). 

 

The principle of using simple chemical salts to supply the inorganic ions that are plant 

nutrients is straightforward, but the efficient use of fertilizer is a complicated subject. It 

involves first the correct choice of type and amount of fertilizer and then correct 

decisions on times and methods of application. These decisions must be made against 

the economic background of cost of fertilizers and the value of the extra yield to be 

produced. However, the weather, as a random factor, sometimes is what determines crop 

production (Cooke, 1982). It is clear that the efficiency of fertilizer depends on 

placement, timing, source of nutrient, kind of crop, soil water content, and 

environmental conditions. 

 

Broadcast fertilization leads to stratification of soil P and K in the ridge-till system, 

which may reduce fertilizer use efficiency. In an experiment with corn, broadcast and 

deep-band (15- to 20 cm depth) placements were used to measure nutrient availability. 

No yield differences were observed between broadcasting and deep-band placement for 

P and K. Deep-banded K increased yield over broadcast K in four sites of fifteen, and 

deep-banded P increased yield over broadcast P in one of fifteen sites used (Borges and 

Mallarino, 2001). The source of nutrient can also affect the efficiency of fertilizer 

(Sharpley and Sisak, 1997). Fertilizer can be either chemical or organic compounds, and 

can include chemical fertilizers, manures, compost, foliar fertilizers, waste waters, green 

manure covers, and mulch. Their chemical composition and decomposition rate of 

organic material will affect their efficiency (Zhang and Mackenzie, 1997). Uptake 

depends of the ability of the crop root system to get nutrients from the soil (Delgado et 

al., 2000). The crop family, genera, species, and variety are related to the efficiency of 

fertilization. The management of the crop; no-tillage, conventional tillage, soil 

conservation structures, population density, insect and disease control, use of biological, 
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physical, or chemical agents, pesticides, fungicides, bactericides, and herbicides, all may 

impact crop field and nutrient demand (Sillanpää, 1982; Foth and Ellis, 1997). 

 

The efficiency of nitrogen applied could be estimated as follow: 

 

Efficiency = immobilization coefficient x denitrification coefficient x leaching 

coefficient ……………………………………………………………………………..(18) 

 

However, when using this methodology, it is necessary to work with N-15 (Rodriguez, 

1990; Jackson, 2000). N-15 have been used to estimate the efficiency and balance of N 

using others algorithms (Norman at al., 1997; Schindler and Knighton, 1999) 

 

Alternative ways to determine the efficiency of added nutrients can be used. For 

example, previous experiments with fertilizers, where the rate, yield, and the relationship 

with a control have been recorded may be useful. Fertilizer efficiency can be measured 

comparing the increment of yield when one unit of fertilizer is add in relation with the 

same soil where no fertilizer was used. 

 

Nitrogen efficiency can be measured using the following formulas. Each, however, is 

different and the researcher should be clear about the kind of efficiency that needs to be 

measured: 

 

N use efficiency (NUE; kg kg-1) as the ratio of grain yield to N supply, where N supply 

is the sum of soil -N at sowing, mineralized N and N fertilizer. ………………..(19) -
3NO

 

N uptake efficiency (NUpE; kg kg-1) as the ratio of total plant N uptake to N supply. (20) 

 

N utilization efficiency (NUtE; kg kg-1) as the ratio of grain yield to total plant uptake. 

………………………………………………………………………………………...(21) 
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N harvest index (NHI; %) as the ratio of N in grain to total plant N uptake. ………...(22) 

 

N physiological efficiency (NPE; kg kg-1) as the ratio of (yield at Nx – yield at N0)  

to (N uptake at Nx – N uptake at N0), Nx and N0 are treatments with and without N 

application, respectively. ………...…….……………………………………………...(23) 

 

N agronomic efficiency (NAE; kg kg-1) as the ratio of (yield at Nx – yield at N0)  

to applied N at Nx, Nx and N0 are treatments with and without N application,  

respectively. …………………………………………………………………………..(24) 

 

N apparent recovery fraction (NRF; %) as the ratio of (N uptake at Nx – N uptake at N0) 

to applied N at Nx, Nx and N0 are treatments with and without N application,  

respectively. ………………………………………………………………………….(25) 

 

Others terms used are AEN, agronomic efficiency of applied N (kg grain yield increase 

kg-1 N applied), and REN, apparent recovery efficiency of applied N (kg N taken up kg-1 

N applied):  

 

AEN = (GY+N - GY0N)/N ..............................................................................................(26) 

 

and  

 

REN = (UN+N - UN0N)/N ……………………………………………………………..(27) 

 

Where: 

 

GY is the grain yield (kg ha-1),  

UN is the plant N accumulation in aboveground biomass (kg ha-1) 
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N is the amount of fertilizer, or manure/biosolids-N applied (kg ha-1) 

+N and 0N refer to treatments with and without N application, respectively. 

 

When manure/biosolids treatments are used, both the organic-N and NH4-N contained in 

the materials must be determined. 

 

The following formula may be used to estimate the proportion of yield increase by N-

Fertilizer. 

 

PYINx = (GY+N - GY0N ………………………………………………………………(28)

 

PYINx is the proportion of the yield increase by N fertilizer at x rate 

GY is the grain yield (kg ha-1),  

N is the amount of fertilizer or manure/biosolids-N applied (kg ha-1). 

+N and 0N refer to treatments with and without N application, respectively. 

 

In an experiment using N15 two equations were used to estimate the efficiency of 

fertilizer (Karim et al., 1972): 

 

N-Fx = FNupx / TNupx …………………………………………………………………(29) 

 

Where: 

 

N-Fx  = Percent N in plants derived from fertilized at x time (%) 

FNupx  = Fertilizer N uptake at x time (mg/plot) 

TNupx  = Total N uptake at x time (mg/plot) 

 

and 
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N-Fx = FNupx / (TNupx - TNupxC) ……………………………………………………..(30) 

 

Where: 

 

FNU  = Fertilizer N utilization (%) 

N-Fx  = Percent N in plants derived from fertilizer at x time (%) 

FNupx  = Fertilizer N uptake at x time (mg/plot) 

TNupx  = Total N uptake at x time (mg/plot) 

TNupxC  = Total N uptake at x time (mg/plot) by the N-control. The N control does not 

  receive N fertilizer, but could be fertilized with P and K. Absolute control 

  (AC) indicates no N, P and K fertilization. 

 

All the above nitrogen efficiency terminology follows from Karim et al. (1972), Moll et 

al. (1982), Pierce and Rice (1988), Dev and Bhardwaj (1991), Huggins and Pan (1993), 

Sowers et al. (1994), Delogu et al. (1998), López-Bellido and López-Bellido (2001), and 

Binder et al. (2002). 

 

The percentage of applied fertilizer N taken into plants is often estimated by measuring 

the difference in plant N uptake between N-treated and check plots. This method has 

often overestimated plant fertilizer N uptake; however, other studies have shown the 

opposite. An experiment carried out by Schindler and Knighton (1999) found that corn 

uptake of fertilizer N as estimated by the isotopic and difference methods was 45% and 

39% in 1993 and 40% and 22% in 1994, respectively. Nearly 42% and 36% of the 

applied labeled N was estimated be in the soil at the end of 1993 and 1994, respectively. 

They mentioned that the difference method did not overestimate plant N uptake because 

of high soil N availability, and that climatic difference had less effect on the results 

generated by the isotopic compared with the difference method. In other experiments 

with corn, N uptake was 40% of manure-N and 15% of compost-N in the first year and 
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was 18% for manure and 8% for compost in the second year after application (Eghball 

and Power, 1999). 

 

Two experiments were carried out to estimate the use efficiency of N from anaerobically 

digested sewage sludge rates and N fertilizer in irrigated corn and rainfed sorghum 

(Sorghum bicolor L.) during 4-year field experiments at two sites on a silty clay loam 

soil (Binder et al., 2002). The maximum yields were achieved during the first year 

following application. Maximum biomass yields were 62 Mg ha-1 with application of 

441 kg of organic N ha-1 on irrigated maize and 36 Mg ha-1 with 257 kg organic N ha-1 

on rainfed sorghum. At those rates, the increase in relative yield (RY) was 33% in the 

year of application, 21% in the second year, 14% in the third year, and 9% in the fourth 

year. Approximately 40, 20, 10, and 5% of the total biosolids-N was recovered by the 

crops in the first, second, third, and fourth year, respectively. For irrigated maize, 

agronomic efficiency of biosolids-N decreased with increasing biosolids rate, but was 

similar to that of fertilizer-N. In rainfed sorghum, use efficiency of biosolids-N was 

lower than that of fertilizer-N. The efficiency in corn was from 29 to 13% with a high 

coefficient of variation of from 68 to 41% using mineral fertilizer N. Little NO3 

accumulated in soil when biosolids were applied at the recommended rate, but 

application in excess of that required for maximum yield increased NO3 accumulation in 

soil. Recommendations for biosolids use should be based on total N input, cumulative 

plant recovery, and leaching potential across the 4-year period. Nitrogen use efficiencies 

were estimated using differences between N-fertilized treatments and unfertilized 

controls (Binder et al., 2002).  

 

A 3-year field study found that wheat monoculture had poorer utilization of N compared 

with wheat-sunflower, wheat-chickpea (Cicer arietinum L.), wheat-faba bean (Vicia 

faba L.), and wheat-fallow rotations. Conventional tillage had greater N use efficiency 

and N uptake efficiency compared with no-tillage (López-Bellido and López-Bellido, 

2001). 
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The efficiency of N uptake and N recovery by wheat and corn crops was increased with 

the addition of sugar cane trash compared with mustard straw, both at the rate of 5 t ha-1. 

In the corn crop, the maximum recovery of N was 74%, and the N use efficiency was 36 

(kg grain kg-1 N) with sugarcane trash plus 120 kg N ha-1. The efficiency was lower 

when mustard straw plus 120 kg N ha-1 was used. The efficiency of applied N was 

computed using the formula given by Novoa and Loomis (1981). 

 

The fractional efficiency of N, or percent recovery of added N has been found to range 

between 0.30 and 0.70 (Stanford, 1966), and will probably be near 0.5 when N is applied 

as a sidedressing on soils that are aerobic and where leaching is not excessive. 

 

 

Variations of the conceptual model of fertilization 

 

Østergaard et al. (1985) used the Stanford (1966) approach to estimate the requirement 

of barley following cereals for fertilizer N in Denmark. Their equation was: 

  

Nf opt = 
rf

sc

N
NN −

 ……………………………………………………………………..(31) 

 

Where: 

 

Nf opt  = economically optimum quantity of fertilizer N 

Nc  = total amount of N absorbed by the crop (top + roots) when Nf opt is applied 

Ns  = N absorbed from the soil supply (estimated by the N in the tops and roots of the 

crop without N fertilization) 

Nrf  = fractional recovery of fertilizer N  

 

Nf opt, Nc, and Ns are expressed in units of kilograms per hectare. 
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The value of Nc was estimated by the equation  

 

Nc = 19x + 16 …………………………………………………………………………(32) 

 

where x = grain yield at 16% water content in megagrams per hectare.  

 

The value for Ns was found by the equation 

 

Ns = 0.80Nm + 20  ……………………………………………………………………(33) 

 

where Nm = mineral N in the soil in March to the depth to which rooting is expected to 

occur.  

 

Nrf was estimated by the equation 

 

Nrf = (0.75) (1 – e-0.015(Nc-Ns)) + 0.08 ………………………………………………….(34) 

 

In France, Meynard et al. (1982) used the following equation to estimate the N 

requirement of wheat: 

 

Nf = by + Nmh – (Nm + Nms + Nmr) ……………………………………………………(35) 

 

Where: 

 

Nf  = fertilizer nitrogen required 

b  = total nitrogen per unit mass of grain 

y  = expected yield of grain with applications of Nf  

Nmh  = mineral nitrogen in the soil at harvest, at the same depth used for Nm

 



 38

Nm  = mineral nitrogen in the soil at the end of the winter to the depth to which 

rooting is expected 

Nms  = nitrogen mineralized from the residues of the previous crop 

Nmr  = nitrogen mineralized residual. 

Using this formula for predicting Nf, Nm would be measured directly, and b, Nmh, Nms, 

and Nmr would have to be obtained from other experiments. 

 

Smyth et al. (2004) created the computer program NuMaSS that uses the following 

algorithm: 

 

Nfert = (Yr*Ncr) - [(Nsoil) + (Nresidue*Cr)  + (Nmanure*Cm)] /Ef  …………………………(36) 

 

This algorithm is a modification to the balance sheet model of George Stanford (Smyth 

et al., 2004).  

 

Where: 

 

 Nfert = N fertilizer needed 

 Yr = Target dry matter yield  

 Ncr = N concentration (%N)    

 Nsoil = Nitrogen absorbed by the crop that is derived from soil organic matter and 

  previous crop residue mineralization, and from atmospheric deposition during 

  the growing season. 

 Nresidue = Nitrogen mineralized from green manures or residues, such as stover or  

  compost that are added to the field. 

 Cr = Proportion of N mineralized from green manures or residues that are  

  absorbed by the plant. 

 Nmanure = Nitrogen mineralized from manure 

 

 



 39

 Cm = Proportion of N mineralized from manure that the crop absorbs  

 Ef  = Fertilizer efficiency.  

 

Determining Crop N demand using NuMaSS (Smyth et al., 2004). The first step is to 

determine the total crop N need.  The equation for this determination is:  

 

Total Crop N Needs = (Yr * Ncr ) = Yg * %Ng + Ys * %Ns …………………………...(37) 
 

Where: 

  

Yr = Total dry matter  

Ncr = Nitrogen concentration in the total plant  

Yg = Reproductive yield   

%Ng = Nitrogen concentration in the reproductive portion of the crop  

Ys = Vegetative yield 

%Ns = Nitrogen concentration in the vegetative portion of the plant. 

  

Determining Crop Available N using NuMaSS (Smyth et al., 2004). Once the amount of 

N is calculated for the target yield, the Nitrogen module calculates the amount of N 

available to the crop from the soil (NSoil), manure (NManure), organic amendments 

(NResidue), and green manure crops (NResidue). The equation used to calculate crop 

available N is: 

 

Crop available N =  NCrop(available_to) = NSoil + NManure + NResidue …………(38) 

 

Determining Soil N accord with NuMaSS (Smyth et al., 2004). There are four different 

methods to determine the amount of N supplied by the soil (NSoil). 
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Soil N is determinate in the following hierarchy: 

 

1.  The amount of N contained in an unfertilized crop gives an indication of the N 

 supplying capacity of the soil.  If the previous crop and the current crop are the same 

 and the previous crop was not fertilized, then soil N supply can be calculated.  

 

2.  If soil N value is known, enter this value in the “Prediction/Fertilizer Application” of 

 the model.  

 

3.  If the soil N value is unknown, use the default N value that is derived from the 

 default table. 

 

4.  The least precise method for determining soil N supply is by calculating N 

 mineralization either from soil organic matter, C or N content. The default rate of 

 mineralization is 2% of the organic matter per year multiplied by the proportion of 

 months the crop is grown. 

 

This program has been divided into six parts: I. Program Integration, II. Data Base 

Development, III. Acidity Module, IV. Nitrogen Module, V. Phosphorus Module, and 

VI. Economics Section, unfortunately, NuMaSS doesn’t mention how to estimate the 

efficiency of fertilizer uptake (Smyth et al., 2004).  

 

Advantages and disadvantages of the conceptual model of fertilization 

 

An advantage of a conceptual model is that it goes from the particular to the general, and 

can be analyzed both deterministically and stochastically.  The data required to use it 

also goes from the particular to the general. Theoretically, the more data available the 

more accurate and precise will be the estimate of crop nutrient requirement. This model 

can be applied in both developing and developed countries, and under different 

 



 41

environment conditions. This model can also use the information actually available. It is 

theoretically based and tries to establish constant relationships. 

 

A possible disadvantage of this model is that it doesn’t consider interactions between 

nutrients. However, interactions are usually not present when optimum nutrients levels 

are applied or present in the soils (Colville, 1967; Koch and Mengel, 1974; Miller, 1974; 

Classen and Barber, 1977; Cralle, 1986; Faría et al., 1999, Khalifa and Zidan, 1999, 

Buah et al., 2000). The most general form of this model is apparently a linear 

relationship, but it actually is in an exploratory space. If all possible relationships are 

plotted, the graph shows a nomograph in a third dimension.  
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3. OBJECTIVES AND HYPOTHESES 

 

Objectives 

 

General objective 

 

The overall objective of this research is to determine the validity, accuracy and precision 

of an algorithm which will calculate the N requirement for corn. 

 

 Specific objectives. Determine changes in the relationships of corn vegetative 

parameters over time. Estimate the N demand of corn, the supply of N by the soil, and 

the efficiency of N uptake under field and greenhouse conditions, and compare the 

vegetative parameters in both cases. Determine the accuracy and precision of a 

conceptual model to estimate the N requirement of corn under greenhouse and field 

conditions. 

 

Hypotheses 

 

General hypothesis 

 

The conceptual model can estimate the nitrogen requirement with an accuracy and 

precision higher than 90%. 

 

 Specific hypotheses. Vegetative parameter relationships used in the model to 

calculate the N requirement of corn follow non-linear models. The existing theoretical 

base of knowledge is sufficient to establish a conceptual model to estimate the N 

requirement of corn under controlled and field conditions with an accuracy and precision 

higher than 90%. 
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4. MATERIALS AND METHODS 

 

Estimate the nitrogen fertilizer requirement of corn 

 

To estimate the amount of nitrogen fertilizer required by corn, it is necessary to 

determine the value of the parameters used in the following formula: 

 

Requirement of nitrogen = 
fertilizernitrogen  of Efficiency

soilby nitrogen  ofSupply  - crop  theof demandNitrogen (39) 

 

 

Three experiments were carried out; two in the field and one in the greenhouse. The first 

experiment in 2002 included three locations in the field. They were used to evaluate corn 

root index, plant moisture content, harvest index, and the relationships between dry and 

fresh weights of roots, aboveground biomass, and yield. In one location these vegetative 

parameters were measure through the whole life of the corn crop to determinate their 

behavior. The second experiment in 2003 in the greenhouse was carried out to estimate 

the root index, plant moisture content, and harvest index without and with 179 kg N ha-1. 

This experiment was used to estimate the N demand of corn using the algorithm 

proposed, the N uptake efficiency (apparent recovery efficiency of applied N) using the 

difference method, and the soil N supply using a laboratory incubation to estimate soil N 

mineralization. A third experiment was carried out in 2003 in the field to confirm 

parameters estimated in the second experiment. The N concentrations and N demand of 

corn plants, the soil N supply, and the efficiency of N fertilizer uptake were measured at 

corn crop maturity in the three experiments. Pioneer hybrid 32R25 (P32R25) was used, 

except in one location of the 2002 experiment in which Dekalb 687 corn variety was 

used. Accuracy and precision were measured using the error propagation method which 

will be described in a later section. 
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2002 field experiment 

 

Information was collected in the 2002 experiment from three different locations to 

compare the results of vegetative parameters (Fig. 2; sites A, B and C).  

 

The first location was at the Texas A&M University Agricultural Experiment Station 

Farm near College Station (Fig. 2, site A), on a Ships clay soil (very fine, mixed, active, 

thermic Chromic Hapluderts; USDA-NRCS, 2002), using P32R25 corn. The density of 

population was 48,000 plants ha-1 under dryland conditions. The row spacing was 1.04 

m, and the spacing between plants was 0.20 m. The area planted with corn was 

approximately of 8 ha, but only the central part of this area was selected, avoiding the 

first 10 rows to reduce the border effect. Planting date for this experiment was 21 

February 2002. The sampling area was approximately 4 ha and 179 kg N ha-1 as 32-0-0 

solution was sidedressed 30 days after planting. Corn plant samples were taken every 

seven days, from 46 days after planting (dap) to corn maturity (154 dap). The number of 

plant samples varied accord with the time required to take the root system, and ranged 

from 6 to 16 plants, but in general, the number of corn plant samples was 12. The 

harvest dates to evaluate fresh and dry weight of corn grains were July 13 and July 24, 

2003, 143 and 154 days after planting, respectively. These two samples were used to 

evaluate the changes in root index, harvest index, moisture content, yield, N content and 

N demand in the last 11 days before harvest.  

 

The selection of the corn plants sampled in all the three location for the 2002 field 

experiments followed a zig-zag pattern. The statistical analysis and elaboration of 

figures were similar in the three locations. Analysis of variance and Tukey test were 

used at α=0.05 using the Statistical Analysis System (SAS) for Windows version 8.1. 

The graphics and fit of models used Excel from Microsoft Office XP, and they were 

validated with SAS using the command Proc REG. The analysis of variance was 
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calculated using Proc GLM of SAS. Figures 23 and 49 were prepared with SigmaPlot 

Version 9.0.  

 
   

 
 
Fig. 2. Arrows point out the locations of the Texas A&M University Agricultural 
Experiment Station Farm (points A, C, and D correspond to Ships soil series), and the 
cooperating farmer’s land (point B corresponds to a Weswood soil series). Points A, B 
and C were locations of the 2002 field experiment while point D was the location where 
the 2003 field experiment was established. The experiment at point C was established 
with Dekalb 687 corn variety. 
 
 

The second location was with a cooperating farmer using this same corn hybrid grown in 

a Weswood silty clay loam soil (fine-silty, mixed, superactive, thermic, Aquic 

Haplustepts; USDA-NRCS, 2002) under dryland conditions (Fig. 2, site B). This 

location was divided into two sampling locations: East and West, given that the farmer 

was aware of soil variability. The area selected for sampling was approximately 2 ha for 
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each location. The density of population was 55,500 plants ha-1, the row spacing was 

0.90 m, and the spacing between plants was 0.20 m. The fertilization rate was 180 kg N 

ha-1, and the planting date was February 19, 2002. The numbers of plant samples 

harvested were 12 for the east side and 12 for west; they were sampled on July 20 and 

July 21, respectively at maturity. These dates correspond to 152 and 153 days after 

planting. 

 

The third location used Dekalb 687 variety grown in Ships clay soil under dryland 

conditions and no fertilization (Fig. 2 site C). This site has been a long term no-tillage 

experiment. This study was planted on February 21, 2002, and was harvested on August 

3, 2002 (163 days to harvest). The population density was 44181 plants ha-1. The row 

spacing was 1.06 m, and the spacing between plants was 0.21 m. 

 

2003 greenhouse experiment 

 

In the 2003 greenhouse experiment, P32R25 corn was grown in two groups of 20 pots, 

growing one corn plant in each pot. The pots were 20 liters in capacity and they were 

filled with soil. The spacing between pots was 60 cm. The soil water content was 

adjusted taking care of not to produce leaching. A completely randomized design (CRD) 

with a factorial arrangement was used, with 2 soils having 2 fertilizer levels and 10 

repetitions per treatment. The factors were 2 kinds of soil, clay (Ships series from Texas 

A&M University Agricultural Experiment Station Farm, site A in Fig. 2) and silty loam 

soils (Weswood series from a cooperative Farmer’s land located in site B in Fig. 2), and 

the 2 levels were fertilized and non-fertilized with N. The amount of N was 3.3788 g 

NH4NO3 per pot placed at 10-cm depth. This computes to 179 kg N ha-1 or 2.53 g N per 

pot, calculated on an area basis. The formula used was 33-00-00. Only N was added as 

fertilizer to corn plants. The fertilizer was added sidedress at 10 cm depth at 40 days 

after planting. One group of the pots were of one kind of soil classified agronomically as 

“good” (Ships series) and another was classified as “poor” (Weswood series) according 
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to their potential to grow grain and seed crops (USDA-NRCS, 2002). Both soils are 

contrasting (USDA-NRCS, 2002). Soil Taxonomy Classification was used for a better 

description (Soil Survey Staff, 1999) using previous work in that area (USDA-NRCS, 

2002). The plants were in the greenhouse until maturity. The planting date was 

December 20, 2002, and the harvest date was May 31, 2003 (162 days to maturity). The 

Statistical Analysis System (SAS) for Windows version 8.1 was used to calculate the 

analysis of variance, and Tukey’s test and to validate the fit of models with Excel from 

Microsoft Office XP. The graphics and fit of models was using Excel. The models were 

validated with SAS using the command Proc REG. The analysis of variance was 

calculated using the Proc GLM of SAS.  

 

2003 field experiment 

 

A field experiment was established in 2003 at the Texas A&M University Experiment 

Station Farm near College Station with corn under dryland conditions on a Ships soil 

(Site D in Fig. 2). This experiment used a randomized complete block design (RCBD) 

having two treatments and four blocks (Fig. 3). The experimental units had an area 9 

meters x 4.16 m (4 rows) excluding the border rows. The treatments were fertilized and 

non-fertilized with nitrogen 30 days after planting. The fertilizer was a liquid mixture of 

35% urea, 45% NH4NO3, 19.9% water, and 0.1% ammonium hydroxide. The formula 

was 33-0-0, with a rate of 179 kg N ha-1. The fertilizer was placed sidedress at 10 cm of 

depth 30 days after planting. The equipment was calibrated for a plant population 

density of 59,000 plants per ha, however, with the time the plant population changed due 

to environmental factors. The planting date was April 22, 2002, and the harvest date was 

August 16, 2003 (116 days to maturity). The row spacing was 1.04 m, and the spacing 

between plants was variable according to the block. The number of plants with and 

without an ear measured by experimental unit, except in the first block where the 

number of corn plants without an ear was not measured due to technical difficulties. A 

total of 1214 corn ears were harvested by hand. 
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Fig. 3. Field experiment in 2003 showing treatments and plot measurements. F means 
fertilized, and N-F not fertilized. The figure is out of scale. The numbers inside of each 
experimental unit represent the plant number identification used at the sampling. 
 
 
A gradient was observed in the number and size of corn plants along the rows (Fig. 3). 

From west to east there were more to fewer plants in the rows and the size of the plants 

was from bigger to smaller. To avoid this source of variation in the experiment a 

randomized complete block design was chosen. The source of variation came from 

differences in the soil properties given that the soil slope was less than 2% and the 

climate was the same for the entire plot. Differences are probably due to the relative 
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amount and type of clay and/or organic matter content. The average distance between 

rows was 103.47 cm (the number of data “n” were 15, and the std. dev. was 3.81), the 

number of plants in ten meters in the block I was 29 (std. dev. 0.577, 3 replications) and 

in the block IV was 59 (std. dev. 1.52, 3 replications). On average, the experiment had 

43,533 plants ha-1 in treatments with N fertilizer and 37,400 plants ha-1 without N 

fertilizer. 

 

Accuracy and precision of the formula to estimate the nitrogen requirement of corn 

 

To determine the accuracy and precision of the conceptual model to calculate the N 

fertilizer requirement of corn, two experiments were carried out. One of them under 

greenhouse and another under field conditions, both during 2003. Each one used 

treatments without and with N fertilization. The experimental conditions were explained 

previously in the sections named “2003 greenhouse experiment” and “2003 field 

experiment”. 

  

The precision of the formula used to calculate the rate of fertilizer needed was measured 

according to the error propagation method (Harris, 2002; Garland et al., 2003, Table 2). 

The error propagation in each parameter (corn plant N demand, soil N supply, and 

efficiency of N fertilizer) of the formula was measured using the equations for addition, 

subtraction, multiplication and division shown in Table 2. The formulas to calculate the 

error propagation in exponentiation, logarithmic and antilogarithmic calculations were 

not used, however, it is important to mention them.  
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Table 2. Error propagation in arithmetic calculations. 

 

Type of calculation Example† Standard deviation of y 

Addition or subtraction Y=a+b-c Sy=(Sa
2 +Sb

2 +Sc
2)1/2

Multiplication or division Y=a*b/c Sy/y={(Sa/a)2+(Sb/b)2+(Sc/c)2}1/2

Exponentiation Y=ax Sy/y=x (Sa/a) 

Logarithm Y=log10a Sy=0.434 (Sa/a) 

Antilogarithm Y=antilog10a Sy/y=2.303 Sa 

† a, b, and c are experimental variables whose standard deviations are Sa, Sb, and Sc, 
respectively. 
 

  

Accuracy was measured using the difference between the actual N fertilizer application 

(2.53 g N pot-1 in the greenhouse and 179 kg N ha-1 for field experiment) and the 

estimated of N requirement using the algorithms and methodologies used in the 

conceptual model of fertilization. 

 

Accuracy in % = 100 -  100 x 
 valueReal

 valueEstimated -  valueReal
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛  …………………..….(40)   

 

 

Calculation of the nitrogen demand of corn 

 

Two field experiments and one greenhouse experiment were carried out to estimate each 

one of the parameters in the nutrient demand formula. The general conditions of these 

experiments were previously explained under the sections called “2002 field 

experiment”, “2003 greenhouse experiment”, and “2003 field experiment”. In the 2002 

field experiment, plant samples were randomly taken during various growth stages from 

three different locations. The root weight, aboveground biomass, moisture content, dry 

weight, and N concentration of corn plants were measured. At corn crop maturity of the 
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three experiments, 53 and 40 samples were taken from the field and greenhouse, 

respectively, to measure the grain yield for each plant, along with the same parameters 

mentioned previously. 

 

Plant samples were dried in an oven at 65ºC for 72 hours and ground in a Thomas Wiley 

mill to pass a 40 mesh screen. In the case of corn grain, they were ground in a Glen mill 

type C11-1. The corn plant samples were digested using H2SO4 in heated digestion tubes 

for 3 hours, following pre-digestion during the previous night (Bremmer, 1996), and 

analyzed colorimetrically with a Technicon autoanalyzer (Technicon Industrial Systems, 

1977a). Some ground grain samples were infested with Indianmeal moth (Plodia 

interpunctella). These samples were manually cleaned before analysis. 

 

It’s important to note that the units of nutrient demand can be of different magnitude. 

The units could be for only one plant or for all plants in a given area. In the case of the 

field experiment, the units used to estimate the nitrogen demand of a corn crop were 

kilograms of nitrogen per hectare of surface. In the case of the greenhouse experiment, 

the units used were grams of nitrogen per plant in a pot. To calculate the nitrogen 

demand, the following formula was used: 

 

 

N.D. = 
H.I.

Y x H)-(1 x 1)  (R.I. x  I.R.Nu. +   …………………………………………….(41) 

 

Where: 

 

N.D.    =Nutrient demand (kg ha-1) 

I.R.Nu.  =Internal requirement of nutrient (g N g-1 dry matter) 

R.I.  =Root index (g roots g-1 agb). This relationship can be written as follows: 
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R.I. = 
biomass dabovegroun ofWeight 

roots ofWeight  ……………………………..(42) 

 

1  =The number one located in the expression (R.I. + 1) comes from the formula 

  derivation and expresses the total aboveground biomass 

1  =The number one located in the expression (1 - H) is a factor of conversion. It is 

  used to convert fresh-weight to dry-weight 

H  =Moisture content of plants (g water g-1 total biomass)  

Y  =Yield in kg ha-1 or ton ha-1 on a physiological or commercial basis  

H.I.  =Harvest index (g commercial product g-1 total biomass) 

Agb =Aboveground biomass. 

 

Soil nitrogen supply 

 

The supply of N to corn plants was measured using the inorganic nitrogen (NO -N and 

NH -N) production during aerobic incubation (Anderson, 1982, Bundy and Meisinger, 

1994, Franzluebbers et al., 2000). The method used the following relationship: 

+
3

+
4

 

Nitrogen available in the soil = (  + ) -
3NO +

4NH initial + (  + ) -
3NO +

4NH mineralized ……..(43) 

 

The supply of N from the soil was estimated by soil N mineralization in the laboratory 

following incubation. Soil samples came from field and greenhouse experiment. The 

samples were analyzed for nitrate (NO -N) and ammonium (NH -N). In the case of the 

field and greenhouse experiment, the samples came from the same place and pots, 

respectively, as was used to evaluate the demand of nutrients. Dried soil samples were 

brought to approximately 50% of field capacity with distilled water. After that, soil 

samples were incubated at 25ºC in 1-L glass jars with an alkali trap containing 10 mL of 

1 M KOH to absorb CO

+
3

+
4

2 and a container with 10 mL water to maintain humidity. Traps 

were changed at 1, 3, 11, 21, and 30 d after incubation begun and titrated with 1 M HCl 
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(Anderson, 1982). Nitrogen mineralization was determined by subtracting the initial 

inorganic N concentration (NO -N and NH -N) of nonincubated soil samples from soil 

N extracted after 30 d of incubation. Inorganic N was extracted from 7-g soil subsamples 

using 28 mL of 2 M KCl. Samples were shaken for 30 min on a reciprocal shaker, 

filtered, and the extracts analyzed for NH -N and NO -N plus NO -N concentrations 

by colorimetric analysis using an autoanalyzer (Technicon Industrial Systems, 1977a, 

1977b). The sum of the above N forms was designated as inorganic N. 

+
3

+
4

+
4

−
2

+
3

 

Efficiency of nitrogen fertilizer use 

 

The efficiency of fertilizer use was measured using the difference method. This is a 

comparison of experiments in which N was added and non-fertilized controls were used. 

In this case, N absorption was the parameter used to estimate the N uptake efficiency. 

The efficiency was measured in the 2003 field experiment and in the 2003 greenhouse 

experiment using hybrid P32R25. The following formula was used: 

 

REN = (UN+N - UN0N)/N  …………………………………………………………….(44) 

 

Where: 

 

REN =The apparent recovery efficiency of applied N (kg N taken up kg-1 N  

  applied) 

UN  =The plant N accumulation in aboveground biomass (kg N ha-1) 

N  =The amount of fertilizer N applied (kg N ha-1) 

+N and 0N =Refer to treatments with and without N application, respectively. 
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5. RESULTS AND DISCUSSION 

 

Field experiment 2002 

   

Variation of vegetative parameters 

 

Changes in the coefficient of variation (C.V.) of the moisture content in aboveground 

biomass (agb) and roots were minimal compared to the rest of the variables (Sadler et al, 

2000; Licht and Al-Kaisi, 2005; Farnham, 2001). Variations in C.V. of root index were 

moderate compared to other variables. The variation of the difference between the fresh 

and dry weight of agb and roots was low. This difference is called the moisture content. 

This means that the moisture content (H) in the formula of the conceptual model shows a 

small variation (Fig. 4) along the entire life cycle of the corn plant. 
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Fig. 4. Coefficients of variation for each variable, and their changes through time. Field 
experiment in 2002 on a Ships soil series (a.g.b.= aboveground biomass). 
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Changes in the C.V. of root index over time were higher than that of the moisture 

content of agb and roots but lower than that for plant height, depth of roots, and fresh 

and dry weight of agb and roots (Fig. 4). 

 

The C.V. for plant height decreased with time. This means that the plant height became 

more stable as corn matured. 
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Fig. 5. Means of seasonal coefficients of variation (C.V.) for vegetative parameters of 
corn Pioneer hybrid 32R25. Field experiment in 2002 on a Ships soil series. f.w.a.g.b.: 
fresh weight aboveground biomass, f.w.r.: fresh weight of roots, d.w.a.g.b.: dry weight 
of aboveground biomass, d.w.r.: dry weight of roots, m.c.a.g.b.: moisture content of 
aboveground biomass, m.c.r.: moisture content in roots, h: plant height, r.d.: root depth, 
r.i.: root index. 
 
 
Data in Fig. 5 show that C.V. depended on what variable was analyzed. The C.V. of the 

parameters used in the conceptual model should be small and changes over time should 

be stable and constant. That is, the C.V. of the moisture content of aboveground biomass 
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(m.c.a.g.b.), moisture content of roots (m.c.r.), and root index (r.i.) should preferably be 

small and their changes through time stable and constant. On average, the C.V. of 

m.c.a.g.b. and m.c.r. was small, while that for r.i. was higher. The C.V. of f.w.a.g.b., 

f.w.r., d.w.a.g.b., and d.w.r. were high; however, the differences of these parameters 

used to estimate m.c.a.g.b. and m.c.r. were low.  

 

Root index 

 

It was clear at the beginning of the growing season that there were significant changes in 

the relationship between the fresh weight of aboveground biomass and the fresh weight 

of roots, but 87 days after planting this relationship became more stable and constant 

(Fig. 6). This behavior was because plants preferentially develop root systems before the 

aerial portion, and then, during the reproductive phase, photosynthates went to the aerial 

part instead of roots, so the roots decreased their proportion of growth. In this case, the 

reproductive phase for P32R25 started around 67 days after planting. 
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Fig. 6. Changes in root index after planting. Field experiment in 2002 on a Ships soil 
series. Means followed by the same letter are not different statistically at α = 0.05 
(a.g.b.= aboveground biomass). 
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The root index of corn hybrid P32R25 appeared to be good parameter for use in the 

conceptual model. The root index was essentially constant and stable from 80 to 154 

days after planting (Fig. 6), although the average C.V. was 18% (Fig 5). The root:shoot 

ratio or root index in dry weight basis ranged from 0.09 to 0.17 using different N 

applications (Costa et al., 2002), and across genotypes the dry eight of roots maintained 

a logarithmic relationship with the dry weight of shoots (Hebert et al., 2001).   

 

 

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140 160 180

Time (days after planting)

Fr
es

h 
w

ei
gh

t o
f a

bo
ve

gr
ou

nd
 b

io
m

as
s 

or
 ro

ot
s 

(g
 p

la
nt

-1
)

fresh weight a.g.b. fresh weight roots

46

60

67

74

80

87

94

101 108
115

129

136

143
154

122

53

108

 
 
Fig. 7. Changes in fresh weight of aboveground biomass and roots after planting. Field 
experiment in 2002 on a Ships soil series. 
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y = -0.0011x3 + 0.28x2 - 18.85x + 348
R2 = 0.96
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y = -0.0013X3 + 0.36X2 - 26.66X + 587
R2 = 0.99

if one eliminates data points from 87 and 94 days 
after planting (sampling # 7 and 8), the equation is:

 
 
Fig. 8. Changes in the dry weight of aboveground biomass after planting. Field 
experiment in 2002 on a Ships soil series. 
 

 

At approximately 108 days after planting, the fresh weight of aboveground biomass and 

roots began to decrease (Fig. 7). Plants on a relative basis were losing more water than 

dry organic matter of corn (Figs. 7, 8, 9 and 10). Changes in fresh weight were higher in 

the aboveground biomass than roots. The lack of a good set of dry samples for sampling 

numbers 7 (87 d.a.p.) and 8 (94 d.a.p.) produced a lower R2 when these results were 

included in a polynomial model (Fig. 8). Eliminating these samplings, the R2 increased 

from 0.96 to 0.99, the P>F for both models were < 0.0001. In Fig. 8, the last two data 

points showed a lower a.g.b. dry weight than the four previous points, probably because 

the corn plants were dried longer or material was lost in the transport from the field to 

the laboratory. Another possible reason is that these two sample sets were separated into 

all their components (leaves, stems, tassels, husks, grain, and cobs) and they may have 

lost more water than the others. This assumption would imply that the previous samples 
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were not completely dried. It could also be due to natural increase in maturity and drying 

in the field over time. 

 

Data for sampling numbers 7 and 8 were fitted using interpolation. The result was the 

following polynomial: 

 

y = -0.0013x3 + 0.37x2 - 27.87x + 625 

R2 = 0.98, n = 16, p = 0.0001. 
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Fig. 9. Changes in plant height and rooting depth after planting. Field experiment in 
2002 on a Ships soil series. 
 
 

Although corn plants lost water and possibly organic material after 108 days after 

planting (Figs. 7 and 8), plant height was stable from 87 days after planting until harvest 
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(Fig. 9), and the depth of the root system was relatively stable, reaching its maximum at 

115 days after planting and then decreasing slightly (Fig. 9). Plant height was measured 

from the base of aerial roots to the highest leaves where they began to bifurcate. 

Although the depth of roots was not the maximum depth of roots, this measurement 

comprised more than 95% percent of the root system on a fresh-weight basis. 
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Fig. 10. Fresh and dry weight of roots over time. Field experiment in 2002 on a Ships 
soil series. 
 
 

Root growth was fitted to a fourth degree polynomial (P>F for both models was 

<0.0001). This was accomplished for both fresh and dry weights of roots (Fig. 10). 

About 108 days after planting, the fresh and dry weight of roots decreased. This was 

because the roots started to get older, lose moisture, and decay. Fresh weight of roots 

changed more drastically with time than dry root weight. Using a polynomial third 

degree equation for fresh weight of roots, the strength of association between time and 
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fresh weight of roots was reduced from a R2 of 0.91 (P>F was <0.0001) when using 

fresh weight to 0.88 (P>F was <0.0001) when using dry weight. The equations were:  

y = -0.0004x3 + 0.066x2 + 1.36x – 190, R2 = 0.91 for fresh weight of roots, and  

y = -4E-05x3 + 0.0026x2 + 1.07x – 57, R2 = 0.88, for dry weight of roots, where n = 16. 
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Fig. 11. Relationship between the fresh weight of aboveground biomass and fresh weight 
of roots. Field experiment in 2002 on a Ships soil series.  
 
 
The overall data (Fig. 11) showed that the relationship between the mean fresh weight of 

aboveground biomass and mean fresh weight of roots was linear (R2= 0.962, P>F was 

<0.0001)), although a second degree polynomial fit slightly better: y = -2E-05x2 + 0.22x 

- 9.67, R2 = 0.963, P>F was <0.0001. This relationship was developed over time in the 

field, from 24 days after planting to harvest. The aboveground biomass and root biomass 

of the corn plants increased and decreased proportionally. 
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The relationship between root biomass and aboveground biomass is called root index, or 

root:shoot ratio. This relationship means that if the fresh weight of aboveground biomass 

increases so does the fresh weight of the root biomass. Sometimes this relationship is 

reversed and called shoot:root ratio. 

 

Data in Fig. 12 shows that the individual aboveground biomass and root data fit a linear 

model (R2 = 0.871, p<0.0001)), but a second grade polynomial fits lightly better (R2 = 

0.873, p<0.0001). When 7 biased data points were eliminated, the data fit better (Fig. 13) 

to a second degree polynomial (R2 = 0.92, p<0.0001) than a linear model: y = 0.20x - 

13.39, R2 = 0.91, and p<0.0001.  
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Fig. 12. Relationship between the fresh weight of aboveground biomass and fresh weight 
of roots, using all original data. Field experiment in 2002 on a Ships soil series.  
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y = 4E-05x2 + 0.160x - 3.6
R2 = 0.92
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Fig. 13. Relationship between the fresh weight of aboveground biomass and fresh weight 
of roots, eliminating 7 biased data. Field experiment in 2002 on a Ships soil series. 
 
 

Eliminating the 7 data points resulted in the elimination of 3.5% of the data. The reason 

for eliminating these data is based on a visual analysis. One plant grew over a rock, with 

a higher aboveground biomass (agb) compared to roots. Three corn plants showed a 

lower growth of aboveground biomass compared to the roots. This effect was more 

noticeable on roots growing in soil with a hard sublayer, in which loose soil was no 

deeper than 10 cm. Two plants showed serious insect damage on the foliage. One outlier 

resulted from one plant being drier than the rest of the population. Data presented in Fig. 

11, 12, and 13 indicated that all relationships between the fresh weight of aboveground 

biomass and root biomass were very similar. These results indicated that larger 

aboveground biomass resulted in more root mass. In Fig. 13, the relationship fit better to 

a second degree polynomial model, but a linear model also worked well. The differences 

between R2 values were small. When the data indicated with arrows in Fig. 12 were 
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eliminated in this analysis, the R2 values increased to 0.92 and 0.91 for the polynomial 

and linear models, respectively; both models had a p<0.0001. The linear model was: 

y=0.207x – 13.39.  

  

Relationships between the dry weight of aboveground biomass and dry weight of roots 

were also polynomial (Figs. 14, 15, 16 and 17). The original data in Fig. 14 had a lower 

R2 (R2= 0.69 and p<0.0001). The linear equation for Fig 14 is y = 0.098x + 5.96 with a 

R2 = 0.65 (p<0.0001). Figure 15 shows the adjusted data accord with estimated moisture 

content set for sampling number 7 and 8. The linear equation for Fig. 15 was  

y = 0.093x + 8.10, R2 = 0.57 and p<0.0001.  Adjusting the data didn’t increase the R2 

(R2=0.66 and p<0.0001). The data in Fig. 15 shows the original dry weight of 

aboveground biomass in axis “x” which were recalculate accord to the following 

procedure: the linear equation in Fig. 14 (page 43) was used to estimate the moisture 

content for sampling number 7 and 8. This average moisture content obtained by 

interpolation was used to estimate each one of the dry weight of aboveground biomass 

for the same samplings. This calculation was possible given that the fresh weight of 

aboveground biomass was recorded. Those corrected data were used in Figs. 17 and 19. 

This is the reason why in Fig. 19 the sampling numbers 7 and 8 didn’t present a variation 

in the moisture content of aboveground biomass.  

 

Regression using the means showed a clearer tendency (Figs. 16 and 17). Although a 

cubic polynomial fits better (p<0.0001), so does a quadratic polynomial. The quadratic 

polynomial for Fig. 16 is y = -0.0004x2 + 0.25x - 0.16, R2 = 0.95 and p<0.0001. The 

quadratic polynomial for Fig. 17 is y = -0.0005x2 + 0.28x - 0.52, R2 = 0.92 and 

p<0.0001. Both Figs. 16 and 17 show a line which joins the points according with the 

sequence when they were sampled. This form to analyze the data showed the error in the 

moisture content of the dry weight of aboveground biomass. Data set samplings 7 (87 

dap) and 8 (94 dap) show an error in calculation of dry weight. 
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y = -0.0002x2 + 0.17x + 1.82
R2 = 0.69
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Fig. 14. Relationship between the dry weight of aboveground biomass and dry weight of 
roots. Original data. Field experiment in 2002 on a Ships soil series. 
 
 
 

y = -0.0003x2 + 0.21x + 1.47
R2 = 0.66
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Fig. 15. Relationship between the dry weight of aboveground biomass and dry weight of 
roots. Data set from sampling number 7 and 8 were adjusted by interpolation. Field 
experiment in 2002 on a Ships soil series. 

 



 66

y = 1E-06x3 - 0.001x2 + 0.37x - 1.9
R2 = 0.96
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Fig. 16. Relationship between the means of dry weight of aboveground biomass and dry 
weight of roots at each sampling date. Original data are represented by individual points. 
Solid line represents the equation. Dashed line joins points in chronological sequence. 
Field experiment in 2002 on a Ships soil series. 
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Fig. 17. Relationship between the means of dry weight of aboveground biomass and dry 
weight of roots. Data set from sampling number 7 and 8 were adjusted by interpolation. 
Original data are represented by individual points. Solid line represents the equation. 
Dashed line joins points in chronological sequence. Field experiment in 2002 on a Ships 
soil series.  
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Moisture content 

 

The plant moisture content is needed for the conceptual model, but it must be stable and 

constant. The conceptual model could theoretically be used at any time, but given that 

the moisture content changed with time, it is necessary to consider these changes 

through time. The moisture content in roots was more stable than the moisture in the 

aboveground biomass, but was less predictable (Fig. 18). It was less predictable because 

there wasn’t as much change over time so small variations in results had greater effects. 
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Fig. 18. Change in moisture content of corn aboveground biomass and roots over time in 
a field experiment in 2002 on a Ships soil series. 
  
 

 Although the moisture content of roots was more linear (p<0.0002), the 

coefficient of determination (R2) was low compared with the polynomial model of the 

moisture content of aboveground biomass (m.c.a.g.b.) in which the R2 was high 

(p<0.0001). The R2 of the m.c.a.g.b. should be higher but there were some problems 
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with drying the samples from sampling numbers 7 and 8 at 87 and 94 days after planting, 

respectively. Eliminating these two sample sets and then adjusting to a polynomial 

model resulted in: 

 

y = -0.057x2 + 6.3x + 716  ….………………………………………………………  (1) 

R2 = 0.99 

n = 14, p<0.0001 

 

Adjusting (interpolating) these two samples sets resulted in: 

 

y = -0.057x2 + 6.27x + 718  ...………………………………………………………  (2) 

R2 = 0.99 

n = 16, p<0.0001 

  

The R2 of m.c.a.g.b. increased after eliminating or interpolating these two data points. 

The problem with these two data sets was that there was not enough space in the ovens 

to dry the corn samples and not enough time was allowed to permit the samples to dry 

completely. In future analysis, data of dry weight of aboveground biomass will be 

presented as original and adjusted using the moisture content interpolated data from the 

equation (2). 
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y = -0.057x2 + 6.54x + 704
R2 = 0.98
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Fig. 19. The behavior of the moisture content of aboveground biomass after planting. All 
original data, except samplings 87 and 94 days after planting which were estimated 
using the following equation: y = -0.057x2 + 6.2x + 718. R2 = 0.99, p<0.0001. Field 
experiment in 2002 on a Ships soil series. 
 
 

Using all the data to establish the behavior of the moisture content of aboveground 

biomass gave a polynomial model with a high coefficient of determination  

(R2 = 0.98, p<0.0001) (Fig. 19). The data from 87 and 94 days after planting (dap) were 

interpoled. The variation in moisture content was higher at 154 dap compared with 40 

dap (Fig. 19). The moisture content of the plant decreased throughout its growth cycle. 

This is a natural physiological mechanism, which is influenced by environmental 

conditions, principally precipitation, moisture content of the atmosphere, solar radiation, 

and wind.   
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Although the relationship between the fresh and dry weights of aboveground biomass 

was not close and apparently didn’t follow a regular pattern (Fig. 20), the moisture 

content of aboveground biomass was predictable over time (Figs. 18 and 19). 
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Fig. 20. Relationship between fresh and dry weights of aboveground biomass. Original 
data are represented by individual points. P value was <0.0001. Field experiment in 2002 
on a Ships soil series. 
 
  
Data in Fig. 20, 21, 22 and 23 show the relationship between the fresh and the dry 

weights of aboveground biomass. Figure 20 shows the original data, Figure 21 shows the 

fitted data by interpolation of sampling numbers 7 and 8, and Fig. 22 shows mean data. 

Figure 23 includes a “z” axis: the time after planting. In this case, time is important 

because fresh and dry weights of a.g.b. were changing with time (Fig. 23). In Figs. 22 

and 23, the dashed line represents an expected tendency. Corn plants were expected to 

lose moisture content, but not corn dry matter. In Figs. 22 and 23, the last two data 

 



 71

points showed a lower a.g.b. dry weight than the four previous points. It was probably 

because the corn plants were too dry or material was lost in transport from the field to 

the laboratory. Another possible reason is that these two samples sets were separated 

into all their components (leaves, stems, tassels, husks, grain, and cobs) and they may 

have lost more water than previous samples that were not separated into components. 

This assumption would imply that previous samples were not dried as much.  
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Fig. 21. Relationship between fresh and dry weight of aboveground biomass. The data 
from sampling numbers 7 and 8 were adjusted by interpolation. Field experiment in 
2002 on a Ships soil series. 
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Fig. 22. Relationship between mean fresh and dry weights of aboveground biomass. 
Sampling numbers 7 and 8 were adjusted using interpolation. The dashed line represents 
the expected tendency. The solid line represents the time sequence in which the data 
were taken. Field experiment in 2002 on a Ships soil series. 
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Fig. 23. Relationship between mean fresh and dry weights of aboveground biomass 
(agb)  relative to time. Sampling numbers 7 and 8 were adjusted using interpolation. The 
dashed line represents the expected tendency. Field experiment in 2002 on a Ships soil 
series. 
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 A close relationship between the fresh and dry weights of corn vegetative parts is 

important in order to use the weighted average of the moisture content in the model (the 

H factor). This relationship was closer for roots compared to above ground biomass 

which showed a higher variability in moisture content (Ritchie et al., 1997; Osborne et 

al., 2002). This was because roots were more protected in the soil than the aboveground 

biomass, so roots lost less water over time. Changes in root water content were lower 

than changes in moisture content of aboveground biomass. 

 

Data in Fig. 24 show that the relationship between the fresh and dry weight of roots was 

adequately described by linear regression (p<0.0001). This relationship included all data 

collected in the field for the entire life cycle of the corn crop. This relationship also 

indicates that the higher the fresh weight of roots, the higher the dry weight of roots. On 

the other hand, the slope is the average of the root dry matter content, and the inverse of 

the slope is the root moisture content. The average moisture content was around 80 %., 

which is accord with figure 18 (pag. 47), where the maximum moisture content was 

about 90 % and the minimum was 70 %. 
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Fig. 24. Relationship between the fresh weight and dry weight of roots along the entire 
growth cycle of corn. Field experiment in 2002 on a Ships soil series.  
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Data in Fig. 25 show the linear relationship between the fresh and dry weight of corn 

grains for data from July 13, 2002 (Table 3). All the data showed linear relationships 

(Table 3). Fig. 25 shows an example of the association of the data of fresh and dry 

weight of corn grains. This distribution was similar for all samplings. In Table 3 and 

subsequent Tables the identification is as follow: the places Ships 143 dap and Ships 154 

dap means the sampling taken in the Texas A&M University Experiment Station in a 

Ships soil series (clayed soil) at 143 and 154 days after planting (dap) the corn. All the 

samplings were taken in the field in 2002. Weswood East and West means that the 

samples came from a private field with a Weswood soil series (silt loam soil) divided in 

East and West because of soil variability. Ships Dekalb 687 identified the samples which 

came from a field at the Texas A&M University Experiment Station in a Ships soil series 

which had Dekalb 687 corn variety. All the rest experiments were established with 

Pioneer 32R25 corn variety. 
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Fig. 25. Relationship between fresh weight and dry weight of grain. Field experiment in 
2002 on a Ships soil series. 
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The data from the Table 3 suggest that the relationship between the fresh and dry weight 

of corn grain is high. This indicates that a weighted average is possible to estimate the 

dry weight using the moisture content in the expression (1-H), where H is the weighted 

average of moisture content.  

 

Table 3. Relationship between fresh and dry weights of corn grain in 2002 at different 
sampling times and locations. 
 
Soil Cultivar dap† Date of 

sampling 
Regression P>F R2 n‡ 

Ships  P32R25 143 July 13 y = 0.84x + 0.30 <0.0001 0.98 12 
Weswood 
East 

P32R25 152 July 20 y = 0.87x - 1.26 <0.0001 0.99 12 

Weswood 
West 

P32R25 153 July 21 y = 0.86x - 0.69 <0.0001 0.99 12 

Ships  P32R25 154 July 24 y = 0.54x + 67.36 <0.0001 0.81 13 
Ships  Dekalb 

687 
163 August 3 y = 0.90x + 0.22 <0.0001 0.99 14 

† days after planting 
‡ number of samples. 
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Fig. 26. Relationship between fresh weight and dry weight of cob taken July 13, 2002 at 
the Texas A&M University Agricultural Experiment Station Farm on a Ships soil series. 
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Table 4. Relationship between fresh and dry weights of corn cobs in 2002 at different 
sampling times and locations. 
 
Soil Cultivar dap† Date of 

sampling 
Regression P>F R2 n‡ 

Ships P32R25 143 July 13 y = 0.35x + 8.75   0.0003 0.74 12 
Weswood 
East 

P32R25 152 July 20 y = 0.49x + 3.36 <0.0001 0.96 12 

Weswood 
West 

P32R25 153 July 21 y = 0.53x + 2.33 <0.0001 0.92 12 

Ships P32R25 154 July 24 y = 0.27x + 
16.11 

  0.0218 0.39 13 

Ships Dekalb 
687 

163 August 3 y = 0.84x + 1.39 <0.0001 0.97 14 

† days after planting 
‡ number of samples. 
 
 

Linear relationships between the fresh and dry weights of corn cobs were also observed 

(Table 4). The lower R2 from data for July 13 (Fig. 26) and July 24 probably resulted 

because some corn plants had two ears, however some of them didn’t have grain. In 

these cases, only cobs were developed but they were drier than usual (the secondary ear). 

Linear relationships between the fresh and dry weights of husk were developed (Table 5 

and Fig. 27). In general, the fresh and dry weights of roots, corn grains, cob, and husks 

maintained linear relationships. The relationship between the aboveground biomass and 

corn grain yield was higher on a dry-weight than on a fresh-weight basis. The fresh and 

dry weights of aboveground biomass did not result in a linear relationship (Fig. 23). 
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Fig. 27. Relationship between the fresh and dry weights of corn husks 143 days after 
planting at the Texas A&M University Agricultural Experiment Station Farm on a Ships 
soil series in 2002. 
 
 
 
Table 5. Relationship between the fresh and dry weights of corn husks in 2002 at 
different sampling times and locations. 
 
Soil Cultivar dap† Date of 

sampling 
Regression P>F R2 n‡ 

Ships P32R25 143 July 13 y = 0.35x + 7.83 <0.0001 0.88 12 
Weswood 
East 

P32R25 152 July 20 y = 0.77x + 1.00   0.0002 0.76 12 

Weswood 
West 

P32R25 153 July 21 y = 0.66x + 2.30 <0.0001 0.86 12 

Ships P32R25 154 July 24 y = 0.61x + 4.64   0.0002 0.73 13 
Ships Dekalb 

687 
163 August 3 y = 0.62x + 3.70 <0.0001 0.90 14 

† days after planting 
‡ number of samples. 
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Harvest index 
 

The result of the relationship between the dry weight of total aboveground biomass and 

dry weight of corn grain is called the harvest index (H.I.). The H.I. reported for corn 

ranges from 0.30 to 0.50 on a dry-weight basis (Austin et al., 1980; Riggs et al., 1981). 

 

y = 0.135x + 108
R2 = 0.29

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800

Fresh weight of total aboveground biomass (g plant-1)

Fr
es

h 
w

ei
gh

t o
f c

or
n 

gr
ai

ns
 (g

 p
la

nt
-1

)

 
Fig. 28. Relationship between the fresh weight of total aboveground biomass and the 
fresh weight of corn grain. Samples were taken on 13 July 2002 at Texas A&M 
University Agricultural Experiment Station Farm on a Ships soil 143 days after planting. 
 
 
Relationships between total aboveground biomass and corn yield were stronger on a dry 

compared with a fresh-weight basis (Table 6). For the samplings shown in Table 6, the 

relationships were linear (Fig. 28). The lower R2 values for data taken on July 13, 2002 

was probably because grain was not yet mature and was still gaining weight. Eleven 

days later (July 24, 2002) at the same experimental location the data showed an increase 

in the R2.  
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Table 6. Relationships between the fresh and dry weights in 2002 of total aboveground 
biomass (x) and fresh and dry weights of corn grain (y). Units are in g plant-1. 
 
Soil Cultivar dap† Date of 

sampling 
Regression P>F R2 n‡ 

 Fresh weight basis 
Ships P32R25 143 July 13 Y = 0.13x + 108   0.0679 0.29 12 
Weswood 
East 

P32R25 152 July 20 Y = 0.38x – 16 <0.0001 0.92 12 

Weswood 
West 

P32R25 153 July 21 Y = 0.31x + 6 <0.0001 0.91 12 

Ships P32R25 154 July 24 Y = 0.34x + 18   0.0024 0.58 13 
Ships Dekalb 687 163 August 3 Y = 0.21x + 62 <0.0001 0.74 14 
 Dry weight basis 
Ships P32R25 143 July 13 Y = 0.31x + 53   0.0069 0.53 12 
Weswood 
East 

P32R25 152 July 20 Y = 0.56x – 19 <0.0001 0.97 12 

Weswood 
West 

P32R25 153 July 21 Y = 0.48x – 3 <0.0001 0.95 12 

Ships P32R25 154 July 24 Y = 0.54x – 12 <0.0001 0.82 13 
Ships Dekalb 687 163 August 3 Y = 0.39x + 22 <0.0001 0.90 14 
† days after planting 
‡ number of samples. 
 
 
   
  
 
Yield 

 

The maximum yield for corn Pioneer 32R25™ during 2002 under field conditions was 

311 grams of grain per plant in a fresh weight basis (Table 7). This yield was attained by 

a plant growing in Ships soil at the Texas A&M University Research Farm, and was 

harvested 154 days after planting. The largest difference in grain yield between plants 

occurred on the west side of the farmer cooperator’s field on a Weswood soil. This range 

difference was 166 grams of grain on a fresh weight basis and represented 64% of the 

maximum yield for that sampling at that location. The corn yields in table 7 are in accord 

with data reported under different conditions under dryland (Mislevy et al., 2001; Wright 

et al., 2002)    
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Table 7. Means and ranges of corn grain yield using fresh and dry weights in 2002 at 
different sampling times and locations.  
 
Soil Cultivar dap† Mean S.D.‡ C.V.§ Minimum Maximum Difference 
 Fresh weight basis 

sampling variety days ----- g plant-1 --- % ------------- g plant-1 ---------- 
Ships P32R25 143   193 20 10    173 228 55 
Ships P32R25 152   213 42 19    168 311 143 
Weswood 
East 

P32R25 153   129 38 30      71 208 137 

Weswood 
West 

P32R25 154   180 43 24      93 259 166 

Ships Dekalb 
687 

163   141 19 14    112 184 72 

 Dry weight basis 

Ships P32R25 143   163 17 10    139 192 53 
Ships P32R25 152   183 25 13    151 248 97 
Weswood 
East 

P32R25 153   111 34 30      62 181 119 

Weswood 
West 

P32R25 154   154 37 24      78 221 143 

Ships Dekalb 
687 

163   127 17 14    101 168 67 

† days after planting 
‡ standard deviation 
§ coefficient of variation 
 
 
 
Greater variation in yield for corn growing on Weswood soil was probably due to higher 

variation in soil conditions. In fact, soil variation was the reason to divide the parcel into 

two parts, east and west. According to the farmer cooperator, the soil characteristics 

were different on both sides of the field, in spite of the surface soil color being similar. 
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Components of corn plants  

 

Data in Table 8 show that grains represented the highest percentage of the corn plant on 

a dry weight basis. Corn grain represented about 42 % of the total dry weight of corn 

plants. This represents a H.I. of 42 on a dry-weight basis for this sampling date (136 

dap). Each component of corn plants had a different variation. Tassel showed the 

greatest variation of all components. This is because the weights of tassels were low, and 

small changes in weight produced high variation. Tassels had the highest variation, cob 

had the lowest, and grain had the third lowest variation. All components were selected 

for comparison at 136 dap because after that date some vegetative parts like silks, 

tassels, and small parts of leaves began to fall from plants. 

 
Table 8. Relative proportions of the different components of corn plants on a dry weight 
basis. Samples were taken from the field experiment on the Texas A&M University 
Agricultural Research Farm in 2002 on a Ships soil 136 days after planting. 
 
 tassel husk cob roots leaves stems grains 
    %    
Mean (%) 0.3 4.4 6.9 9.9 16.8 19.3 42.4 
S.D. 0.1 0.9 0.6 2.5 1.8 2.9 5.2 
C.V. (%) 32 19 9 25 10 15 12 

   
 
 

Greenhouse experiment 2003 
 
 
Root index 
  
The relationship between the fresh weight of aboveground biomass and roots was low 

(R2 = 0.28, p = 0.0004) compared with field experiment data, even when four data points 

that showed a deviation from the tendency were eliminated. The four plants representing 

these data points were re-planted at the beginning of the experiment due to a pest 

problem. Eliminating these four data points resulted in: y = 0.30x – 0.57, R2 = 0.54, 

p<0.0001 (Fig. 29). The four circled points in Fig. 29 showed atypical behavior 

compared to the rest of data. Three of the plants showed lower roots weight relative to 
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aboveground biomass, while one showed apparently higher root weight. Given that the 

root system was considered to include brace roots on the stem, roots of the plant with 

higher relative root dry weight (Figs. 29 and 30, circle A) included more brace roots. For 

data circled B and C, root fresh weight apparently was smaller compared with the 

corresponding aboveground biomass; however, when dry weights were considered (Fig. 

30 circles B and C) they followed a normal tendency. Roots associated with point D 

showed relatively lower weight compared with the weight of aboveground biomass. This 

root system was possible smaller because of manual compaction of the soil just after 

replanting, however, the replanted corn plants produced higher aboveground biomass 

(Fig. 30). Eliminating points A and D in Fig. 30, the relationship became: y = 0.06x + 

2.6, R2 = 0.53, p<0.0001. 
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Fig. 29. Relationship between the fresh weight of corn aboveground biomass and fresh 
weight of roots in the greenhouse study. Both Ships and Weswood soil were included 
with and without N fertilizer.  
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Fig. 30. Relationship between the dry weight of corn aboveground biomass and dry 
weight of roots in the greenhouse study. Both Ships and Weswood soils were included 
with and without N fertilizer. 
 
 

This weak relationship between the fresh weight of aboveground biomass and roots may 

be due to changes in the root morphology observed in the greenhouse (Figs. 31, 32, 33, 

and 34). Roots growing in pots in the greenhouse were relatively heavier on a fresh-

weight basis and the roots hairs were more numerous and longer than those growing in 

the field. The R.I. in the field was around 0.22 and 0.09 on fresh-weight and dry-weight 

bases, respectively, while in the greenhouse they were 0.30 and 0.06 on fresh-weight and 

dry-weight bases, respectively (Tables 11, 12, and 13). The R.I., expressed on a fresh-

weight basis for plants growing in the greenhouse, was higher than in the field due to a 

greater relative growth of roots in relation with the aboveground biomass. This increased 

root growth may be due to a wall effect, by a hydraulic gradient which produced a down 

movement of nutrients and water into a deeper depth, or by a higher absorption or 

retention of water after washing roots. Retention of water by greenhouse roots was 
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observed after washing because of the fibrous morphology that acted like a sponge (Figs. 

33 and 34). 

 

One reason for high variation between the roots and aboveground biomass was because 

the roots started to deteriorate by harvest. It was observed that small fragments of roots 

were separated from the root system.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 31. Corn roots from a plant grown in Ships clay in a field experiment receiving 179 
kg N ha-1. The depth of the roots was approximately 25 cm, which contained more than 
98% of the root biomass.      
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Fig. 32. Corn roots from a plant grown in Weswood silt loam soil in a field experiment 
receiving 179 kg N ha-1. The depth of roots was around 35 cm which contained more 
than 98% of the root biomass.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 33. Corn roots from a plant grown in Ships clay soil in a greenhouse experiment 
receiving 179 kg N ha-1.  
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Fig. 34. Corn roots from a plant grown in a Weswood silt loam soil in a greenhouse 
experiment receiving 179 kg N ha-1.  
     
 

 
Moisture content 

 

Data in Figs. 35, 36, and 37 show that the relationships between the fresh and dry 

weights of roots, aboveground biomass, and grain were different, not only the equations, 

but also the R2’s. It is possibly because the roots were washed (with water) before 
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drying, and they had to be removed from the soil, on the other hand, the moisture content 

of the aboveground biomass was attained to evapotranspirations process due to 

environment conditions, and the grains, which presented the higher relationship, was 

because the protection of the husk to avoid lost of water. A more constant relationship 

was observed for grain. According to these data, the mean moisture content at harvest 

for roots was 84%, aboveground biomass was 36%, and corn grain was 18%.  
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Fig. 35. Relationship between the fresh and dry weight of corn roots in the greenhouse 
study. Both Ships and Weswood soil were included, with and without N fertilizer. 
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Fig. 36. Relationship between the fresh and dry weight of corn aboveground biomass in 
the greenhouse study. Both Ships and Weswood soils were included with and without N 
fertilizer. 
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Fig. 37. Relationship between the fresh and dry weight of corn grain in the greenhouse 
study. Both Ships and Weswood soils were included with and without N fertilizer. 
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Harvest index 

 

Data in Fig. 38 show the overall relationship between the fresh weight of aboveground 

biomass and fresh weight of corn grain yield in the greenhouse study. The R2 of 0.80 

indicated a close relationship between both parameters and that the higher the plant 

biomass, the higher the yield, irregardless of soil and fertilization. The H.I. was around 

30% or 0.30 grams of corn grain per gram of aboveground biomass (0.30 g grain g-1 

agb). This H.I. was generally lower than that obtained from the field in 2002 and 2003. 

In the field, the H.I. on a fresh-weight basis ranged from 0.31 to 0.48 (Tables 11, 12 and 

13, in pag. 76-77). 
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Fig. 38. Relationship between the fresh weights of aboveground biomass and corn grain 
in the greenhouse study. Both Ships and Weswood soil were included, with and without 
N fertilizer. 
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Yield 

 

Data in Fig. 39 depicts the dispersion of corn yield from lowest to highest yield by plant 

and by treatment. The dispersion of grain yield with fertilizer added was greater than 

without fertilizer (Fig. 39, Table 9). This result might indicate that separate corn plants 

have different capacities to absorb N even though the soil, fertilization, and corn genetics 

were as homogeneous as possible in the greenhouse. 

  

Plants grown in Ships soil had a higher grain yield than in Weswood soil. This 

difference could be due to a residual effect of fertilization, a higher nutrient content in 

Ships soil, or better soil physical, biological or chemical conditions which improved 

yield. This trend was similar for treatments without or with N fertilizer.    
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Fig. 39. Dispersion of corn yield data from lower to higher yield by plan
treatment on a fresh-weight basis in the 2003 greenhouse study. 
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Table 9. Range of corn grain yield in the greenhouse on fresh-weight and dry-weight 
bases.  
 

Treatments Mean S.D.† C.V.‡ Minimum Maximum Difference 
Soil Fertilizer  

  Fresh-weight basis 
 kg N ha-1 ------- g plant-1 ---

-- 
% --------------- g plant-1 ----------------- 

Ships  179 149 62 41 30 227 197 
Ships      0 59 13 23 39  80  41 
Weswood  179 103 40 39 18 152 134 
Weswood      0 29 5 18 20  37  17 
 Dry-weight basis  
Ships  179 120 45 55 21 183 162 
Ships      0 49 12 24 34  68  34 
Weswood  179 83 33 40 15 125 110 
Weswood      0 25 4 18 18  33  15 
† Standard deviation 
‡ Coefficient of variation. 
 

 
 

Field experiment 2003 
 
Root index 

 

The relationship between the fresh weight of aboveground biomass and the fresh weight 

of roots for the field experiment in 2003 was linear with a R2 of 0.83 (Fig. 40). This ratio 

was calculated on a fresh-weight basis to be used in the conceptual model. The circled 

points in Fig. 40 were a normal-sized plant with small root systems, and probably was 

because the plants were growing in very dense soil. During the dry season, in some areas 

of the field experiment, the soils acquired a hard consistence. Some soil was so hard that 

it was necessary to use a pickax instead of the regular shovel. 
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Fig.  40. Relationship between the fresh weight of above ground biomass and the fresh 
weight of roots for the field experiment located at the Texas A&M University 
Agricultural Experiment Station Farm on a Ships soil in 2003. 
 
  
 
 
 
Moisture content 

 

Data in Fig. 41 show the relationship between plant total fresh and dry weights in 2003 

for individual replicates of two treatments (without N and 179 kg N ha-1). At harvest, the 

overall corn plant moisture content was around 33%. The term “total fresh or dry weight 

of plants” means that the weight includes roots and aboveground biomass. The 

aboveground biomass includes all the sampled parts: leaves, stems, husks, grain, cobs, 

silks, and tassels. The close relationship between the total fresh and dry weights of plants 

(Fig. 41) indicated stable moisture content irregardless of plant size. Plant moisture did 

not depend on the size of the plant nor N fertilization.  
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Fig. 41. Relationship between the total fresh and dry weights of corn plants for the field 
experiment on a Ships soil in 2003 located at the Texas A&M University Agricultural 
Experiment Station Farm. 
 
 

Because of its consistency, plant moisture content may be a good vegetative parameter 

to be used in the conceptual model to estimate the N demand of corn.  
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y = 0.904x + 0.001
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Fig. 42. Relationship between the fresh and dry weights of corn grain from the field 
study in 2003 located on a Ships soil at the Texas A&M University Agricultural 
Experiment Station Farm. 
 
 
 

 

 

The relationship between fresh and dry weights of corn grains in 2003 for individual 

replicates of the two treatments (without N and with 179 kg N ha-1) is shown in Fig. 43. 

Results were from plants growing in Ships soil. Based on the slope, the moisture content 

of corn grain at harvest was around 10 %. Grain yield ranged from 30 g to 282 g per 

plant (Fig. 42, Table 6). The moisture contents of each component (roots, stems, leaves, 

husks, grain, and cobs) were different. On average, the overall plant moisture content 

was 33% while that for grain was 10%. 
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Harvest index 

 

The harvest index is the ratio between the dry weight of corn grain and the total dry 

weight of the aboveground biomass. This ratio on a fresh-weight basis is used in the 

formula of the conceptual model. The relationship in Fig. 43 between both parameters 

was linear for the individual replicates of the field experiment in 2003, for the two 

treatments (without N and with 179 kg N ha-1). The R2 is increased slightly when two 

plants that had obvious pollinization problems were eliminated from the analysis. The 

linear relationship without these two points was: y = 0.464x + 5.4, R2 = 0.93 and 

p<0.0001. The relationship was that heavier plants produced higher yield (Fig. 43).    
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Fig. 43. Relationship between the fresh weights of aboveground biomass and corn grain 
for the field study in 2003 located on a Ships soil at the Texas A&M University 
Agricultural Experiment Station Farm. Plants from the circled data had pollinization 
problems.  
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Yield 

  

Data on corn yield and plant population of the field experiment in 2003 are presented in 

Table 10. Although there were no statistically significant differences, the number of 

plants without ears increased in the blocks with lower yields, and with fertilizer addition 

in blocks number 2 and 3. Plants without ears were small plants with pollinization 

problems. The negative effect of N fertilization was probably due to the increased 

survival of corn plants with applied N and this difference of corn plant population (Table 

20-24 Appendixes) produced increased competition for water and nutrients. 

 

The relatively small number of plants without ears within an experimental unit resulted 

in a great difference in the population when it was extrapolated to a plants per hectare 

basis. In block 4 with N fertilizer added for example, a 6 plant difference in 37.5 m2 

resulted in 1600 plants per hectare without ears. 
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Table 10. Number of corn plants and grain yield for the 2003 field experiment. The 
sampled area was 37.5 m2 (9 meter x 4.16 meter area) per replicate located on a Ships 
soil at the Texas A&M University Agricultural Experiment Station Farm. 
 

Parameter Block 1 
 

Block 2 
 

Block 3 
 

Block 4 
 

 
No N 

fertilizer 
179 kg 
N ha-1

No N 
fertilizer 

179 kg 
N ha-1

No N 
fertilizer 

179 kg 
N ha-1

No N 
fertilizer 

179 kg 
N ha-1

         
Total number of 
plants by plot n.d.† n.d. 119 162 179 206 184 228 
Number of plants 
with ear 111 100 107 140 166 191 177 222 
Number of plants 
without ear n.d. n.d. 12 22 13 15 7 6 
Total corn plants per 
hectare n.d. n.d. 31733 43200 47733 54933 49066 60800 
Corn plants per 
hectare with a ear 29600 26666 28533 37333 44266 50933 47200 59200 
         
Total grain yield per 
plot (g) 10939 12571 15820 19548 21636 24545 22834 29989 
Average corn grain 
yield (g plant-1)  98 125 147 139 130 128 129 135 
Standard deviation 51 59 63 63 56 51 59 39 
Corn grain yield (kg 
ha-1) 2919 3352 4218 5212 5769 6545 6089 7997 
Maximum yield (g 
plant-1) 231 322 314 337 298 262 369 212 
Minimum yield (g 
plant-1) 4 12 5 2 3 0 3 4 

† n.d. = not determined. 
 
 

 

A block effect was observed for plant population. Block 1 contained the lowest plant 

population, while Block 4 had the highest plant population. Increasing plant population 

with increasing block number was likely due to better soil conditions for corn. Field 

observations indicated that in Block 1 flooded during rain, probably due to a higher clay 

content and lower elevation. The soil in Block 1 also appeared drier and harder during 

dry periods, which possibly reduced plant emergence and growth. 
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Data presented in Figs. 44 and 45 show the average grain corn yield per plant and per 

plot and the total yield by plot for the field study in 2003. The average grain corn yield 

per plant did not indicate a nitrogen application effect nor a block effect. This was 

because in some blocks there were plants with low yield in the non-nitrogen fertilizer 

treatments, in contrast with N-fertilizer treatments which produced a lower number of 

corn plants but higher yield (Appendix Tables 20-24). The changes in corn yield 

produced by N fertilization in each block are clearer when consider the total yield by 

plot area (37.5 m2 in each experimental unit). The yield by plot and the number of plants 

with an ear were considerer in the analysis of data. The plants without an ear were not 

considered in the calculation of N fertilizer requirement. 
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Fig. 44. Average corn grain yield for each block in the field experiment in 2003 located 
on a Ships soil at the Texas A&M University Agricultural Experiment Station Farm. 
Fertilized plots received 179 kg N ha-1.  
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Fig. 45. Average total corn grain yield per plot in each block in the field experiment in 
2003 located on a Ships soil at the Texas A&M University Agricultural Experiment 
Station Farm. Fertilized plots received 179 kg N ha-1. 

 

 
Summary of 2002 field and 2003 field and greenhouse experiments 

 

Data in Tables 11, 12, and 13 provide summaries of the relationship obtained from the 

corn plant component parameters from the field and greenhouse experiments. 

Considering the field and greenhouse experiments, the moisture content ranged from 37 

to 57%. On average, the moisture content of plants growing in the greenhouse was 

higher than those growing in the field. Corn plants in the greenhouse were watered at 

least once a week whereas those in the field only received precipitation. 

 

The number of days to harvest was also different. Plants growing in the field required 

fewer days to reach physiological and commercial maturity. Plants in the greenhouse 
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needed 162 days, while those in the field averaged 116 dap in 2003 and 154 days in 

2002. Differences were likely related day length, solar irradiation, and growing degree 

units. In the greenhouse the number of days to harvest was higher because corn was 

planted in winter (December) when day length was shorter than in spring (Fig. 46, 

Appendix Tables 33-44; National Weather Service, 2005; The Weather Channel 

Interactive, 2005). 

 

Statistically there was no difference in R.I. on a dry-weight basis in all experiments 

regardless of location (field or greenhouse), fertilizer, or soil (Weswood or Ships). The 

R.I. ranged from 0.05 to 0.10 in all cases on the same dry-weight basis. On the other 

hand, the R.I. on a fresh-weight basis was different only in the greenhouse experiment 

using Ships soil with 179 kg N ha-1 (Table 12). Statistically, this R.I. (R.I.=0.19) is lower 

than the others. It could be due to replanting which reduced the corn root growth. The 

soil was compacted during replanting, and this compaction produced smaller roots (Figs. 

29 and 30). 

 

Data in Table 11 show two samplings collected at 143 and 154 days after planting. 

Comparing those two samplings, moisture content decreased from 50 to 42% in 11 days. 

The R.I. was statistically similar for those two samplings; however, H.I. was statistically 

different between dates on both a fresh and dry-weight basis. This likely indicated that 

grain was still in the filling process at the earlier sampling (Fig. 1). 

 

The H.I. in the field ranged from 0.47 to 0.53 on a dry-weight basis (Tables 11 and 13), 

while in the greenhouse H.I. ranged from 0.26 to 0.32 (Table 12). Lower yield in the 

greenhouse was attributed to decreased pollinization due to lack of wind and high 

temperatures. 

 

In the three experiments (field 2002, greenhouse, and field 2003), H.I. on a dry-weight 

basis was similar, even for the variety Dekalb 687 which was produced in a Ships soil 
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under a long-term management of no-tillage. Two exceptions were the samples collected 

from Ships soil at 143 dap in the field (Table 11), which were taken 11 days before 

commercial maturity, and samples from the Weswood soil in the greenhouse with no N 

applied, which had pollinization problems (Table 12). 

 

Corn plant N concentration of the entire plant ranged from 6.4 to 10.9 g kg plant-1 when 

compared across all data (Tables 11, 12, and 13). The N concentration was higher in 

corn with N fertilization than without in the greenhouse. This last classification includes 

the long-term experiment with no-tillage for Dekalb 687 corn variety (Table 11).  

 

According to data in Fig. 47 in page 78, the physiologically optimum plant N 

concentration ranged from 7.0 to 12.0 g N kg plant-1, although there was not a clearly 

defined limit. In Fig. 48 in page 78, the limit was somewhat clearer and the 

physiologically optimum concentration ranged from 10.0 to 12.5 g N kg plant-1, at least 

where total plant N content was concerned. Total plant N content in plants was closely 

related to corn grain yield (Fig. 51).   
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Fig. 46. Sunset and sunrise for College Station during the periods of field and 
greenhouse trials. The amount of daylight changed with season, but was practically 
constant every year (less than one minute per day corrected every four years). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 



 

Table 11. Moisture content, root index, harvest index, corn grain yield, and nitrogen concentration calculated on fresh-weight and dry-
weight bases for the 2002 field study located on a Ship soil at the Texas A&M University Agricultural Experiment Station Farm. 
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  Treatments Moisture Root Index Harvest Index Grain yield N  
 Content  Fresh     Dry  Fresh   Dry  Fresh        Dry concentration†

 % g roots g-1 agb‡ g grains g-1 agb  ------ g plant-1 ----- --- g kg-1 --- 
Ships 143 dap§ 50 a¶ 0.23a 0.095a 0.31b 0.46 b  193 a   163 a   10.8 a 
Ships 154 dap 42  b 0.22a 0.087a 0.38a 0.50a  213 a   183 a   10.8 a 
Weswood east 45 ab 0.20a 0.080a 0.33b 0.47ab  129 c   111 c   10.3 ab 
Weswood west 46 ab 0.21a 0.092a 0.32b 0.47ab  180 ab   154 ab   10.3 ab 
Ships Dekalb 687 35 c 0.25a 0.099a 0.38a 0.47ab  141 bc   127 bc     8.1   c 
† N concentration of whole the plant including the roots. 
‡ agb = aboveground biomass. 
§ dap = days after planting. 
¶ Means in each column with the same letter indicate no significant difference, Tukey HSD at 0.05 level. 
 
 
Table 12. Moisture content, root index, harvest index, corn grain yield, and nitrogen concentration calculated on fresh-weight and dry-
weight bases with and without nitrogen fertilizer at harvest time (162 days after planting) for the 2003 greenhouse study. 
 

Treatments  Moisture Root Index Harvest Index Grain yield N  
 Content Fresh dry Fresh Dry Fresh Dry concentration†

Soil kg N ha-1 % g roots g-1 agb‡ g grains g-1 agb ----- g plant-1 ----- --- g kg-1 --- 
Ships    179    48 ab§  0.19b 0.061a  0.38ab 0.32 a  149 a 115 a     10.3  a  
Ships        0 57 a  0.32ab 0.083a  0.26c 0.28 ab  59 b   49 bc       6.4  b 
Weswood    179   45   b  0.32ab 0.048a  0.44a 0.29 ab  121 a   83 ab     10.2  a  
Weswood       0  56 ab  0.36a 0.065a  0.32bc 0.26   b  29 b   25 bc       7.1  b 
† N concentration of whole the plant including the roots. 
‡ agb = aboveground biomass. 
§ Means in each column with the same letter indicate no significant difference, Tukey HSD at 0.05 level.

 



 

Table 13. Moisture content, root index, harvest index, corn grain yield, and nitrogen concentration calculated on fresh and dry-weight 
bases with and without nitrogen fertilizer at harvest time (116 days after planting) in the 2003 field study located on a Ship soil at the 
Texas A&M University Agricultural Experiment Station Farm. 
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  Treatments Moisture Root Index Harvest Index Grain yield N  Grain yield
 Content Fresh Dry Fresh Dry Fresh Dry concentration† fresh 

Soil kg N ha-1 % g roots g-1 agb‡ g grains g-1 agb ------ g plant-1 ----- g kg-1 kg ha-1

Ships    179 39 a§  0.17 a 0.09a  0.48 a 0.53a 135 a 122 a 10.9 a 5776 a 
Ships        0 37 a  0.20 a 0.10a  0.47 a 0.48a 142 a 135 a 10.0 a 4748 b 
† N concentration of whole the plant including the roots. 
‡ agb = aboveground biomass. 
§ Means in each column with the same letter indicate no significant difference, Tukey HSD at 0.05 level. 
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Fig. 47. Relationship between the weighted nitrogen concentration of corn plants, 
including roots and corn grain yield. Data are from the 2002 and 2003 field experiments 
and the 2003 greenhouse experiment. The dashed line approximates maximum limits.    
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Fig. 48. Relationship between the weighted nitrogen concentration of corn plants and the 
total nitrogen content of plants including roots. Data are from the 2002 and 2003 field 
experiments and the 2003 greenhouse experiment. The dashed line approximates  
maximum limits. 
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Nitrogen demand by corn 

 

Plant total dry weight in the 2002 field study on Ships soil increased 11 grams in eleven 

days (from 143 to 154 dap), and the N content increased by 0.13 grams N in the same 

period of time. The N concentration however didn’t change over this time. Corn 

achieved commercial maturity for the Station environmental conditions in 2002 by 154 

dap. The corn plants increased dry organic matter and N content in the last eleven days 

of maturity, while N concentration stayed similar. 

 
Table 14. Total dry weights of corn plants (sum of roots, aboveground biomass, and corn 
grain), weighted nitrogen concentration, and total plant nitrogen contents for the 2002 
field experiment. 
                                          
ID Total plant dry 

weight 
Weighted 
nitrogen 
concentration 

Total plant 
nitrogen 
content 

Nitrogen 
demand 

  g plant-1 g N kg-1 g N plant-1  kg N ha-1

Ships 143 dap† 383 a‡ 10.8 a 4.16 a 198 a 
Ships 154 dap 394 a 10.8 a 4.29 a 205 a 
Weswood east  249 b 10.3 a 2.59 b 147 b 
Weswood west 356 ab 10.3 a 3.73 a 210 a 
Ships Dekalb 687 296 b   8.1 b 2.43 b 107 b 
† dap = days after planting. 
‡ Means in each column with the same letter indicate no significant difference, Tukey 
HSD at 0.05 level. 
 
 
Corn hybrid Pioneer 32R25™ had the higher total plant dry weight, N concentration and 

N content in Ships compared with the Weswood soil (Table 14). The variety Dekalb 687 

without N application had lowest total dry weight, N concentration and N content. This 

reduction may have been due to lower soil N availability, the effect of no-tillage, or to 

characteristics of this variety. However, these conditions didn’t reduce the average yield 

by plant (Table 7).      
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On average, the total dry weights corn plants were lower in the greenhouse in 2003 

compared the field in 2002 (Tables 14 and 15), this occurred even though plants in 

greenhouse had the same fertilization as the Ships and Weswood soils used the same 

corn variety, and received water on a regular basis. Yield reduction occurred not only for 

total plant dry weight but also for total plant N content (Table 14 and 15). 

 

 
Table 15. Total dry weight of corn (roots, aboveground biomass, and grain), weighted 
nitrogen concentration, and plant total nitrogen at harvest (162 days after planting for the 
greenhouse experiment in 2003). 
 

Treatments Total dry 
weight 
by plant 

Weighted 
nitrogen 
concentration  

Total plant 
nitrogen 
content 

Nitrogen 
demand 

 kg N ha-1 g plant-1 g kg-1 ---------- g N plant-1 -------- 
Ships                 179  242 a† 10.3 a 2.49 a 2.52 a 
Ships                     0   132 b   6.4 b 0.84 bc 0.85 b 
Weswood          179 162 b 10.2 a 1.65 ab 2.42 a 
Weswood              0    50 c   7.1 b 0.35 c 0.38 c 
† Means in each column with the same letter indicate no significant difference by 
Tukey’s HSD at 0.05 level. 
 
 
 

Table 15 shows that the N demand of Pioneer hybrid 32R25™ was higher with N 

fertilization than without. Given that the data came from a greenhouse experiment, they 

couldn’t be extrapolated to field N demand. Plant N content was lower in the greenhouse 

than in the field (Tables 14, 15, and 16). In Table 15, the total plant N content was 

estimated by multiplying the original data of the total dry weight by the weighted N 

concentration. In this specific case, this procedure theoretically gives a more exact value 

than calculation of “N demand” using the proposed algorithm. The proposed algorithm 

requires optimal N concentration, R.I., moisture content, H.I., and yield.     
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Table 16. Total dry weight of corn (roots, aboveground biomass, and grain), weighted 
nitrogen concentration, and plant total nitrogen with and without nitrogen fertilizer at 
harvest (116 days after planting for the field experiment 2003). 
 
Treatments Total dry 

weight 
by plant 

Weighted 
nitrogen 
concentration  

Total plant 
nitrogen 
content 

Nitrogen 
demand 

  kg N ha-1 g plant-1        g kg-1 g plant-1  kg ha-1

Ships  179 217 a†       10.9 a 2.36 a 93 a 
Ships        0 247 a       10.0 a 2.47 a 75 b 
† Means in each column with the same letter indicate no significant difference by 
Tukey’s HSD at 0.05 level. 
 
 
 The N demand by Pioneer corn hybrid 32R25™ was 93 and 75 kg N ha-1 for 
treatments with 179 kg N ha-1 and without N fertilization. 
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Fig. 49. Overall relationship between the total dry weight of corn plants including roots 
at harvest and the concentration and content of N. Data are from the 2002 and 2003 field 
experiments and the 2003 greenhouse experiment. 
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This hybrid exhibited an average N concentration of 1 % (Fig. 49). This value is lower 

than the 1.25% reported by Larson and Hanway (1977), Loué (1987), and Stanford 

(1966). The lower value of 1% is likely because this weighted nitrogen concentration 

included the N concentration of roots, which had lower N concentration than 

aboveground biomass. Corn plant N concentration wasn’t related to plant size. However, 

plant N content (g N plant-1) was highly related with plant size (Fig. 49). The greater the 

plant size, the greater the plant N content. In the same way, the N content of corn plants 

was closely related with the dry weight of corn grain (Fig. 51). This means that larger 

plants resulted in greater N content, and higher dry weight of grain. This relationship 

fitted slightly better to a second grade polynomial model (y = -4.8x2 + 61.4x + 2.1, 

R2=0.80) than a linear model (y = 36.7x + 24.6, R2 = 0.77). The association was reduced 

because some plants had pollination problems. 

 

The total biomass of corn plants was also linearly related with the nitrogen content (Fig. 

49), and with the dry weight of corn grain (Fig. 50). The N content had a close and 

polynomial relationship with the dry weight of corn grain (Fig. 51). Reduced pollination 

was likely more related with reduced N supply than was the biomass of corn plants, 

according to the analyses shown in Figs. 49, 50 and 51. 
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Fig. 50. Total dry weight of corn plants in relation to the dry weight of corn grain. Data 
are from the 2002 and 2003 field experiments and the 2003 greenhouse experiment. 
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Fig. 51. Total nitrogen content of corn plants and its relationship with the dry weight of 
corn grain. Data are from the 2002 and 2003 field experiments and the 2003 greenhouse 
experiment.  
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Soil nitrogen supply 

 

No differences in inorganic soil N concentrations or mineralized N by block were 

observed in the field study (Fig. 52). However, a tendency was seen for concentration of 

initial and mineralized N to increase with block number. This tendency was likely due to 

the presence of a small slope from the west to east in the experimental units (Fig. 3). 

This slope likely produced over time an accumulation of organic matter and clay in the 

lowest part of the field (Block I). Nitrogen fertilization tended to increase mineralized 

soil N probably due to increased microbial activity (Fig. 53).  
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Fig. 52. Initial inorganic and mineralized nitrogen in soil of the 2003 field experiment. 
Replicates with the same letter are not statistically different (Tukey, α = 0.05). 
 
 

Data in Fig. 54 shows the initial inorganic and mineralized N concentrations of soils 

from the greenhouse study. The initial inorganic N concentration was similar for both 
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kinds of soils and N treatments (with 179 kg N ha-1 and without N fertilization). The 

Ships clay soil had higher mineralized N than Weswood soil of no N controls, while the 

application of 179 kg N ha-1 increased the soil N mineralization in both soils to similar 

levels. 

 

There was no difference in soil N mineralization between the treatment with 179 kg N 

ha-1 and without fertilizer in Ships soil (Figs. 52 and 53), while for the Weswood soil 

there was a significant difference between the treatment with and without fertilizer (Fig. 

54). The 179 kg N ha-1 added to Weswood soil increased mineralized N eight-fold (from 

4 to 33 mg N kg soil-1) likely due to a priming effect (Fountaine et al., 2004).    
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Fig. 53. Initial inorganic and mineralized nitrogen concentrations in soils of the 2003 
field experiment. Treatments with same letter were not statistically different (Tukey, α = 
0.05). 
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Fig. 54. Initial inorganic and mineralized nitrogen concentrations in soils of the 2003 
greenhouse experiment. Treatments with same letter were not statistically different 
(Tukey, α = 0.05). 
 
 
 
Table 17. Soil nitrogen supply from the field and greenhouse experiments in 2003. 
 

Treatments N supply S.D. C.V. 
Soil N Rate  
  Greenhouse 
 kg N ha-1 ------------ g N pot-1 ------------- % 
Ships  179† 1.04 1.02 98 
Ships    0 0.79 0.99 126 
    
Weswood  179 0.63 0.95 151 
Weswood     0 0.08 0.63 756 
  Field 
 kg N ha-1 ------------- kg N ha-1 ------------- % 
Ships  179 105 28 27 
Ships     0 67 35 52 
† 2.53 g N per pot were added in the N fertilizer treatments in the greenhouse 
experiment, this computes to 179 kg N ha-1, calculated on an area basis. 
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Efficiency of added nitrogen fertilizer 

 
The N fertilizer use efficiency (NUE) was calculated. The units are given as grams of N 

absorbed by corn plants divided by the grams of N fertilizer applied. Nitrogen use 

efficiency was estimated using in the numerator the differences between N-fertilized 

treatments and the unfertilized control (Binder et al., 2002). The error propagation 

method was used in the calculation of NUE to include the error produced. The formulas 

to estimate the error are given in Table 18 (Garland et al., 2003).  

 

Table 18. Error propagation in arithmetic calculations. 
 
Type of calculation Example† Standard deviation of y 
Addition or subtraction Y=a+b-c Sy=(Sa

2 +Sb
2 +Sc

2)1/2

Multiplication or division Y=a*b/c Sy/y={(Sa/a)2+(Sb/b)2+(Sc/c)2}1/2

† a, b, and c are experimental variables whose standard deviations are Sa, Sb, and Sc, 
respectively. 
 

Apparent recovery efficiency of applied N 

 

The formula to estimate the REN, or apparent recovery efficiency of applied N (kg N 

taken up kg-1 N applied), is as follows. A modification to this formula was used. In the 

estimation of “UN or plant N accumulation”, not only the aboveground biomass but also 

the roots was also considered. 

 

REN = (UN+N - UN0N)/N 

 

Where: 

 

UN is the plant N accumulation in aboveground biomass and roots (kg N ha-1) 

N is the amount of fertilizer-N applied (kg N ha-1) 

+N and 0N refer to treatments with and without N application, respectively 
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Error propagation calculation for the efficiency of fertilization using differential 

method 

 

 Field experiment with Ships soil, 2003. The formula to estimate the REN, or 

apparent recovery efficiency of applied N (kg N taken up kg-1 N applied), is as follows, 

with the addition of the standard deviation which follows the error propagation 

procedure to estimate the error of this formula. The standard deviation for the treatments 

with and without fertilizer came from the four blocks used in the experiment. This 

standard deviation is called random error. The standard deviation of the fertilizer added 

came from the specification provided by the manufacturer of the fertilizer machine; this 

parameter is named systematic error. 

 

E.F. = 
dev.) (std. hectareper  applied N kg

dev.) (std. fertilizer nt withoutin treatme uptake N -  dev.) (std. fertilizernt with in treatme uptake N  

 

Where: 

 

E.F. is efficiency of fertilizer uptake 

 

Efficiency of fertilizer = 100 x 
179(0.025)

.05)1175(12.58)93(
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ±−±   

 

In this example, the N uptake in treatments with and without fertilizer was the average of 

the four blocks used in the field experiment and its standard deviation, extrapolated to 

one hectare. The error propagation is calculated using the standard deviation (S) of the 

variables “N uptake in treatments with and without fertilizer” and formulas presented in 

Table 18. Efficiency of fertilizer uptake follows the procedures to estimate the error 

propagation using subtraction, addition, division and multiplication. 
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Sy = 22 )05.11()58.12( + = 16.10 

 

Efficiency of fertilizer = 100 x 
)025.0(179

)10.16(18
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±
±  

 

Sy = 
22

179
025.0

18
10.16

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛  = 0.895 

 

Sy = 0.1005 x 0.895 = 0.09 

 

Sy = 0.10 ± 0.09 

 

Efficiency of fertilizer = (0.10 ± 0.09) x 100 

 

Efficiency of fertilizer = 10% ± 9% 

  

C.V. = 90% 

 

 Greenhouse experiment with Ships soil, 2003. In this example, the N uptake in 

treatments with and without fertilizer is the average of ten plants which grew in the 

greenhouse.  

  

Efficiency of fertilizer = 100 x 
)01.0(53.2

)57.0(854.0)74.1(52.2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±

±−±  

 

Sy = 22 )57.0()74.1( + = 1.64 
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Efficiency of fertilizer = 100 x 
)01.0(53.2
)64.1(66.1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±
±  

 

Sy = 
22

53.2
01.0

66.1
64.1

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛  = 0.98 

 

Sy = 0.6561 x 0.98 = 0.643 

 

Sy = 0.6561 ± 0.643 

 

Efficiency of fertilizer = (0.65 ± 0.64) x 100 

 

Efficiency of fertilizer = 65% ± 64 

 

C.V. = 98 % 

 

 

 Greenhouse experiment with Weswood soil, 2003. In this example, the N 

uptake in treatments with and without fertilizer is the average of ten plants which grew 

in the greenhouse. 

 

 

Efficiency of fertilizer = 100 x 
)01.0(53.2

)184.0(388.0)19.1(42.2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±

±−±  

 

Sy = 22 )184.0()19.1( + = 1.175 
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Efficiency of fertilizer = 100 x 
)01.0(53.2

)175.1(032.2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±
±  

 

 

Sy = 
22

53.2
01.0

032.2
175.1

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛  = 0.5782 

 

 

Sy = 0.803 x 0.5782 = 0.464 

 

 

Sy = 0.803 ± 0.464 

 

 

Efficiency of fertilizer = (0.80 ± 0.46) x 100 

 

Efficiency of fertilizer = 80% ± 46% 

 

C.V. = 57% 

 

 

 

 

 

 

 

 

 

 

 



 119

Accuracy and precision of the conceptual model 

 

Requirement of fertilizer: an overall estimation in the 2003 greenhouse and field 

experiments 

 

 

R.F. = 
uptake fertilizernitrogen  of Efficiency

soilby nitrogen  ofSupply  - cropby  demandNitrogen  

 

Where: 

 

R.F. = Requirement of fertilizer. 

 

R.F. = 
)09.0( 0.10

)35( 67 - )28( 93
±

±±  

Standard deviations of crop demand, nitrogen supply, and efficiency of uptake were ±28, 

±35, and ±0.09, respectively, which is sometimes called the error. The standard 

deviation statistically is the deviation in relation to the mean (dispersion of data). In 

probability and statistics, the standard deviation is the most commonly used measure of 

statistical dispersion. Standard deviation is defined as the square root of the variance. It 

is defined this way in order to give a measure of dispersion that is (1) a non-negative 

number, and (2) has the same units as the data. There is a standard deviation σ (sigma) of 

a whole population or of a random variable, and the standard deviation s of a subset-

population sample. The term standard deviation was introduced by Pearson in 1894 

(Wales, 2005). 

Simply put, the standard deviation tells us how far a typical member of the population 

(or sample) is from the mean value of that population (or sample). A large standard 

 

http://www.onelang.com/encyclopedia/index.php/Probability
http://www.onelang.com/encyclopedia/index.php/Statistics
http://www.onelang.com/encyclopedia/index.php/Statistical_dispersion
http://www.onelang.com/encyclopedia/index.php/Square_root
http://www.onelang.com/encyclopedia/index.php/Variance
http://www.onelang.com/encyclopedia/index.php/Sigma
http://www.onelang.com/encyclopedia/index.php/Statistical_population
http://www.onelang.com/encyclopedia/index.php/Random_variable
http://www.onelang.com/encyclopedia/index.php/Statistical_sample
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deviation suggests that a typical member is far away from the mean. A small standard 

deviation suggests that members are clustered closely around the mean.  

For example, the sets {0, 5, 9, 14} and {5, 6, 8, 9} each have a mean of 7, but the second 

set has a much smaller standard deviation. Standard deviation is often thought of as a 

measure of uncertainty. In physical science for example, when making repeated 

measurements, the standard deviation of the set of measurements is the precision or error 

of those measurements. When deciding whether measurements agree with a prediction, 

the standard deviation of those measurements is of crucial importance: if the mean of the 

measurements is too far away from the prediction (with the distance measured in 

standard deviations), then the measurement is considered as contradicting the prediction. 

This makes sense since the values fall outside the range of values that could reasonably 

be expected to occur if the prediction were correct. 

 

Sy = 22 )35()28( + = 44.82 

 

y = 93 – 67 = 26 

 

R.F. = ( )
( )09.0 0.10

82.44 26
±

±  

 

Sy / y = 
22

0.10
0.09

26
82.44

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛  =  1.94 

 

y = 
 0.10

 26  = 260,  R.F. = y = variable. 

 

Sy = 260 x 1.94 = 505.49 

 

 

http://www.onelang.com/encyclopedia/index.php/Measurement
http://www.onelang.com/encyclopedia/index.php/Accuracy_and_precision
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R.F. = 260 ± 505 

 

The actual nitrogen application per ha was 179 ± 5 kg N 

 

Table 19. Requirement of nitrogen calculated with a conceptual model, using the 
nitrogen demand by crop, the nitrogen supply by soil, and the efficiency of fertilizer 
uptake, under field conditions in 2003 on a Ships soil series. 
 
 Nitrogen 

demand by 
corn 
 

Nitrogen 
supply by 
soil   

Efficiency of 
fertilizer 
uptake 
 

Nitrogen 
requirement 
estimated 
with the 
model  

Actual 
nitrogen 
application 
 

 
--------- kg N ha-1 --------- 

kg N uptake  
kg N applied-1 ----------- kg N ha-1 --------- 

Avg.  
S.D. 
C.V. (%) 

  93  
  28 
  30 

  67 
  35 
  52 

  0.10 
  0.09 
 90 

  260 a† 
  505 
  194 

  179 a 
      5 
      3 

† Same letter between nitrogen requirements estimated with the model and actual 
application indicate not statistically different, Tukey α = 0.05. 
 

 

 

Nitrogen requirement =  
0.09)( 0.10

35)( 67 - 28)( 93
±

±±  = 260 (± 505) 

 

Precision (±505) was calculated using the error propagation method described 

previously. 
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Table 20. Requirement of nitrogen calculated with a conceptual model, using the 
nitrogen demand by crop, the nitrogen supply by soil, and the efficiency of fertilizer 
uptake, under greenhouse conditions, 2003. 
 
 Nitrogen 

demand by 
corn 
 

Nitrogen 
supply by soil  

Efficiency of 
fertilizer 
 

Nitrogen 
requirement 
estimated with 
the model  

Real 
application 
 

 
g N plant-1 g N pot-1

g N uptake /  
g N applied-1 ---------- g N pot-1 ---------- 

 Ships soil series 
Avg.  
S.D. 
C.V. (%) 

  2.52 
1.7 
67 

  0.79 
0.9 
126 

  0.65 
0.6 
98 

  2.66 
3.9 
150 

2.53 
0.01 
0.4 

 Weswood soil series 
Avg.  
S.D. 
C.V. (%) 

  2.42 
1.1 
49 

  0.08 
0.6 
756 

  0.80 
0.4 
58 

  2.92 
2.3 
79 

2.53 
0.01 
0.4 

 
 
 
Tables 19 and 20 showed that the N requirement for Pioneer 32R25 was overestimated 

by 81 kg N ha-1 in the field and 0.13 and 0.39 g N pot-1 in the greenhouse, using the 

conceptual model of fertilization. The coefficient of variation (C.V.) in the field for the 

variables corn N demand, soil N supply, and efficiency of fertilizer uptake were 30, 52 

and 90, respectively. The C.V. of these parameters was higher in the greenhouse than in 

the field. On the other hand, the corn N demand always had the lowest C.V. in both the 

field and greenhouse. 

 

From the three parameters used in the conceptual model, corn N demand showed the 

lowest variation (Tables 19 and 20). This result was possibly due to the hybrid Pioneer 

32R25™ having homogeneity in its genetic characteristics. Soil showed more variation 

in the supply of N compared with N uptake by plants. In the field (Table 19) there was 

not a clear response in the soil mineralization produced by the N application (Fig. 53).        

  

 

 

 



 123

To estimate accuracy, the following formula was used: 

 

Accuracy, % = 100 -  100 x 
 valueActual

 valueEstimated -  valueActual
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛    

 

 

The accuracy of the model for the 2003 field experiment was: 

 

Accuracy, % = 100 - ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ 100 x 
179

260 - 179  = 54.74 % 

 

 

The accuracy of the conceptual model to estimate the requirement of N in the field was 

around 55%. This accuracy was low primarily because of the low response of corn to N 

fertilization. The low N response by corn was probably due to excess residual and 

mineralizable N (Fig. 53). 

 

Table 21. Accuracy and precision of the conceptual model under field and greenhouse 
conditions in 2003. 
 
Place Soil Accuracy Precision 
  % 
Field Ships 55 194 
    
Greenhouse Ships 95 150 
Greenhouse Weswood 85   80 
 
 
The accuracy of the conceptual model was higher in the greenhouse than in the field 

(Table 21). Precision, measured as the dispersion of the data around the mean value, was 

better in the greenhouse than in the field, and, inside the greenhouse, was more precise 

in the Weswood soil than in Ships. Data presented in Fig. 39 showed that for treatments 

without N fertilizer the dispersion of the yield was lower than in fertilized treatments. 
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This could mean that the higher the availability of nitrogen, the higher the probability of 

finding a wider range of corn N uptake nitrogen as a consequence of a wider range of 

corn yield.  
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6. CONCLUSIONS 

 

Nitrogen concentration, root index, moisture content, harvest index, and the yield of corn 

in the field and greenhouse varied, but followed predictable behavior. 

 

The error propagation method estimated that the algorithm to calculate the errors for 

nitrogen demand in the field was 30%, to estimate the supply of nitrogen by the soil was 

52%, and to estimate the precision of the efficiency of fertilizer uptake was 90%. In the 

greenhouse experiment, using Ships and Weswood soils, the precision of nitrogen 

demand was greater than the efficiency of fertilizer uptake, which was greater than 

nitrogen supply by soil.  

 

The accuracy of the conceptual model was low under field conditions (55%) but high 

under greenhouse conditions (90%). The precision was low both in the field (194%) and 

the greenhouse (115%). 

 

This research determined the range of variation of parameters used in the conceptual 

model, and measured the error of this model to estimate the corn plant requirement of N. 

The model overestimated the N requirement of corn not only in field, but also in 

greenhouse experiments. Overestimating the required N could produce groundwater 

contamination with NO3, atmospheric contamination with NO and N2O, and lost profit 

from applying more N fertilizer than required by corn crop. 
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Table A1. Plant characteristics from the 2002 field experiment with corn hybrid Pioneer 32R25, 46 days after planting (DAP). 
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      1† Fresh weight Fresh weight Dry weight Dry weight Moisture Moisture Height Depth Root

46‡  a.g.b.§ of roots a.g.b. of roots content a.g.b. content of roots of plant¶ of roots# Index 
Plant number††  

1 11.4 2.8        
          
          
          
          
          

          
          

          

1.05 0.25 90.79 91.07 18 22.5 24.5
2 11.8 3.5 1.11 0.35 90.59 90.00 17 23.0 29.6
3 14.4 3.4 1.45 0.26 89.93 92.35 18 20.5 23.6
4 15.8 4.3 1.67 0.65 89.43 84.88 18 17.0 27.2
5 21.3 5.0 2.27 0.57 89.34 88.60 22 21.0 23.4
6 20.5 6.2 2.03 0.77 90.10 87.58 19 17.0 30.2
Mean 15.8 4.2 1.60 0.48 90.03 89.08 18 20.1 26.4
SD 4.23 1.24 0.49 0.22 0.59 2.67 1.75 2.62 3.03
CV (%) 26.7 29.6 30.73 46.04 0.66 3.00 9.38 12.99 11.45

g m % % c

† First sampling in 2002 field experiment. 
‡ Days after planting. 
§ Aboveground biomass. 
¶ Plant height measured from the root beginning to the base of leaf bifurcation or to the base of the tassel when present. 
# Depth of roots is the soil depth containing >95 % of roots on fresh-weight basis. 
†† The number of plants varies with the sampling date due to the time and effort used to collected, measure and prepare the samples in 
the same day. 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 
Table A2. Plant characteristics from the 2002 field experiment with corn hybrid Pioneer 32R25, 53 days after planting. 
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      2† Fresh weight Fresh weight Dry weight Dry weight Moisture Moisture Height Depth Root
53‡  a.g.b. § of roots a.g.b. of roots content a.g.b. content of roots of plant¶ of roots# index 

Plant number  

1     
     
     
     
     
     
     
     
     

     
     
     
     
     
     

      
          

          

25.60 6.00 2.80 0.72 89.06 88.00 24.0 18.5 23.44
2 42.80 6.90 4.83 0.82 88.71 88.12 28.0 26.0 16.12
3 48.30 6.40 5.59 0.83 88.43 87.03 30.0 18.0 13.25
4 68.90 8.70 7.30 1.23 89.40 85.86 34.0 22.0 12.63
5 31.60 4.30 3.63 0.60 88.51 86.05 27.0 32.0 13.61
6 56.70 8.99 6.38 1.21 88.75 86.54 34.0 23.0 15.86
7 36.40 8.60 4.22 1.30 88.41 84.88 27.5 19.0 23.63
8 69.20 9.25 7.80 1.33 88.73 85.62 37.0 20.0 13.37
9 36.60 4.95 4.15 0.64 88.66 87.07 28.0 22.0 13.52
10 64.45 10.50 7.11 1.46 88.97 86.10 33.0 22.0 16.29
11 48.65 7.60 5.88 1.20 87.91 84.21 30.0 19.0 15.62
12 39.80 5.10 4.54 0.85 88.59 83.33 30.5 20.0 12.81
13 58.10 7.00 6.84 1.25 88.23 82.14 33.0 19.0 12.05
14 31.25 8.70 3.93 0.93 87.42 89.31 25.0 18.0 27.84
15 64.40 14.40 7.73 1.65 88.00 88.54 35.0 23.0 22.36
Mean 48.18 7.83 5.52 1.07 88.52 86.19 30.4 21.4 16.83
SD 14.67 2.55 1.62 0.32 0.49 1.97 3.84 3.71 4.98
CV (%) 30.45 32.57 29.43 29.82 0.56 2.29 12.62 17.30 29.61

g % cm % 

† Second sampling in 2002 field experiment. 
‡ Days after planting. 
§ Aboveground biomass. 
¶ Plant height measured from the root base to the base of leaf bifurcation or to the base of the tassel when present. 
# Depth of roots is the soil depth containing >95 % of roots on fresh-weight basis. 
 
 
 
 
 
 

 



 

 
Table A3. Plant characteristics from the 2002 field experiment with corn hybrid Pioneer 32R25, 60 days after planting. 
 

142

      3† Fresh weight Fresh weight Dry weight Dry weight Moisture Moisture Height Depth Root
60‡  a.g.b. § of roots a.g.b. of roots content a.g.b. content of roots of plant¶ of roots# index 

Plant number  

1         
         
         
         
          
         
          
     
         

          
         
         
         
          
          

         
          

          

88.71 10.72 10.36 1.89 88.32 82.37 40.5 20 12.08
2 205.61 27.45 23.94 4.34 88.36 84.19 52.0 30 13.35
3 172.99 20.70 20.80 3.65 87.98 82.37 58.0 25 11.97
4 172.92 24.89 21.96 4.11 87.30 83.49 54.0 20 14.39
5 109.31 8.83 12.21 1.52 88.83 82.79 44.0 17 8.08
6 162.98 18.69 19.61 3.19 87.97 82.93 49.0 21 11.47
7 166.66 15.77 20.10 2.65 87.94 83.20 48.0 23 9.46
8 91.99 11.51 9.80 1.77 89.35 84.62 37.0 22 12.51
9 200.80 21.13 24.35 3.33 87.87 84.24 54.0 28 10.52
10 141.23 11.83 17.09 2.09 87.90 82.33 48.0 17 8.38
11 132.60 17.85 16.90 3.27 87.25 81.68 48.0 29 13.46
12 198.69 21.10 23.67 3.68 88.09 82.56 56.0 27 10.62
13 88.11 10.98 11.41 1.95 87.05 82.24 40.0 26 12.46
14 71.83 4.34 8.11 0.79 88.71 81.80 37.0 16 6.04
15 139.07 8.65 16.66 1.51 88.02 82.54 49.0 25 6.22
Mean 142.90 15.63 17.13 2.65 88.06 82.89 47.6 23 10.73
SD 44.73 6.68 5.55 1.08 0.61 0.89 6.71 4.53 2.60
CV (%) 31.30 42.76 32.39 40.83 0.69 1.08 14.09 19.63 24.19

g % cm % 

† Third sampling in 2002 field experiment. 
‡ Days after planting. 
§ Aboveground biomass. 
¶ Plant height measured from the root base to the base of leaf bifurcation or to the base of the tassel when present. 
# Depth of roots is the soil depth containing >95 % of roots on fresh-weight basis. 
 
 
 
 
 
 

 



 

 
Table A4. Plant characteristics from the 2002 field experiment with corn hybrid Pioneer 32R25, 67 days after planting. 
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      4† Fresh weight Fresh weight Dry weight Dry weight Moisture Moisture Height Depth Root
67‡  a.g.b. § of roots a.g.b. of roots content a.g.b. content of roots of plant¶ of roots# index 

Plant number  

1         
          
          
         
          
          
          
          
          

          
          

          
          

260.00 32.0 33.55 5.00 87.10 84.38 68 32 12.31
2 373.40 36.8 41.45 5.79 88.90 84.27 77 33 9.86
3 316.05 28.0 34.88 4.80 88.96 82.86 80 28 8.86
4 216.48 22.5 23.00 3.69 89.38 83.60 74 35 10.39
5 331.02 28.2 35.40 4.55 89.31 83.87 87 40 8.52
6 191.50 14.6 23.40 2.80 87.78 80.82 60 39 7.62
7 322.83 29.9 36.80 5.07 88.60 83.04 75 35 9.26
8 128.55 8.9 16.45 2.00 87.20 77.53 58 33 6.92
9 266.22 23.8 32.70 4.50 87.72 81.09 73 33 8.94
10 198.00 16.8 25.60 3.17 87.07 81.13 63 34 8.48
Mean 260.41 24.1 30.32 4.14 88.20 82.26 71 34.2 9.12
SD 76.55 8.61 7.78 1.18 0.93 2.13 9.20 3.43 1.50
CV (%) 29.40 35.64 25.66 28.58 1.05 2.59 12.87 10.02 16.46

g % cm % 

† Fourth sampling in 2002 field experiment. 
‡ Days after planting. 
§ Aboveground biomass. 
¶ Plant height measured from the root base to the base of leaf bifurcation or to the base of the tassel when present. 
# Depth of roots is the soil depth containing >95 % of roots on fresh-weight basis. 
 
 
 
 
 
 
 
 
 
 
 

 



 

 
Table A5. Plant characteristics from the 2002 field experiment with corn hybrid Pioneer 32R25, 74 days after planting. 
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      5† Fresh weight Fresh weight Dry weight Dry weight Moisture Moisture Height Depth Root
74‡  a.g.b. § of roots a.g.b. of roots content a.g.b. content of roots of plant¶ of roots# index 

Plant number  

1       
        
       
       
       
          
          
          
          

          
       
          
          
          
       

          
          

          

561 85 68.0 14.5 87.88 82.94 118.11 31.00 15.15
2 362 31 41.5 5.5 88.54 82.26 114.30 21.59 8.56
3 539 55 65.0 9.5 87.94 82.73 137.16 41.91 10.20
4 629 73 77.0 14.0 87.76 80.82 147.32 27.94 11.61
5 673 84 83.0 14.9 87.67 82.26 152.40 22.86 12.48
6 731 122 89.0 21.5 87.82 82.38 142.24 27.94 16.69
7 684 100 74.0 16.1 89.18 83.90 121.92 26.67 14.62
8 732 119 87.0 22.0 88.11 81.51 127.00 17.78 16.26
9 799 168 93.0 27.3 88.36 83.75 119.38 30.48 21.03
10 692 142 80.0 21.6 88.44 84.79 132.08 29.21 20.52
11 480 56 59.0 10.5 87.71 81.25 119.38 31.75 11.67
12 807 149 92.0 25.6 88.60 82.82 129.54 36.83 18.46
13 793 145 92.0 22.5 88.40 84.48 129.54 33.02 18.28
14 788 145 94.0 23.5 88.07 83.79 139.70 34.29 18.40
15 590 63 69.0 10.1 88.31 83.97 129.54 26.67 10.68
Mean 657.3 102.4 77.5 17.2 88.19 82.91 130.64 29.33 14.97
SD 130.49 42.17 15.03 6.64 0.42 1.19 11.29 6.07 3.94
CV (%) 19.85 41.15 19.37 38.42 0.47 1.44 8.64 20.70 26.34

g % cm % 

† Sampling number. 
‡ Days after planting. 
§ Aboveground biomass. 
¶ Plant height measured from the root base to the base of leaf bifurcation or to the base of the tassel when present. 
# Depth of roots is the soil depth containing >95 % of roots on fresh-weight basis. 
 
 
 
 
 
 

 



 

 
Table A6. Plant characteristics from the 2002 field experiment with corn hybrid Pioneer 32R25, 80 days after planting. 
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      6† Fresh weight Fresh weight Dry weight Dry weight Moisture Moisture Height Depth Root
80‡  a.g.b. § of roots a.g.b. of roots content a.g.b. content of roots of plant¶ of roots# index 

Plant number  

1          
          
          
       
        
          
          
          
          

          
          
       
          
          
          
          

       
          

          

1174 243 175 58.0 85.09 76.13 163.83 36.83 20.70
2 1045 194 137 42.8 86.89 77.94 193.04 36.83 18.56
3 932 176 130 40.4 86.05 77.05 168.91 35.56 18.88
4 571 99 82 22.0 85.64 77.78 154.94 30.48 17.34
5 329 24 41 4.9 87.54 79.58 140.97 27.31 7.29
6 818 110 115 26.9 85.94 75.55 119.38 33.02 13.45
7 1041 198 148 48.0 85.78 75.76 184.15 42.55 19.02
8 778 153 119 33.3 84.70 78.24 175.26 25.40 19.67
9 751 136 106 28.1 85.89 79.34 180.34 40.64 18.11
10 885 149 127 34.0 85.65 77.18 187.96 24.13 16.84
11 712 120 119 23.5 83.29 80.42 176.53 24.13 16.85
12 704 81 108 17.8 84.66 78.02 170.18 27.94 11.51
13 684 121 99 24.5 85.53 79.75 179.07 33.02 17.69
14 810 173 134 37.8 83.46 78.15 176.53 27.94 21.36
15 850 197 123 43.0 85.53 78.17 162.56 27.94 23.18
16 979 196 169 42.3 82.74 78.42 170.18 35.56 20.02
Mean 816.4 148.1 120.7 32.9 85.27 77.97 168.99 31.83 17.53
SD 203.45 54.86 31.98 13.11 1.27 1.41 18.38 5.78 3.93
CV (%) 24.92 37.04 26.48 39.77 1.49 1.80 10.87 18.15 22.41

g % cm % 

† Sampling number. 
‡ Days after planting. 
§ Aboveground biomass. 
¶ Plant height measured from the root base to the base of leaf bifurcation or to the base of the tassel when present. 
# Depth of roots is the soil depth containing >95 % of roots on fresh-weight basis. 
 
 
 
 
 

 



 

 
Table A7. Plant characteristics from the 2002 field experiment with corn hybrid Pioneer 32R25, 87 days after planting. 
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      7† Fresh weight Fresh weight Dry weight Dry weight Moisture Moisture Height Depth Root
87‡  a.g.b. § of roots a.g.b. of roots content a.g.b. content of roots of plant¶ of roots# index 

Plant number  

1        
        
        
        
        
        
        
        
        

        
        
        

          
          

        
          

          

1152 240 321.0 47.9 72.14 80.04 205.0 29 20.83
2 1157 238 266.4 47.1 76.97 80.21 175.0 29 20.57
3 1300 424 403.2 90.4 68.98 78.68 184.0 43 32.62
4 1400 323 398.2 56.2 71.56 82.60 191.0 39 23.07
5 871 199 244.1 37.5 71.97 81.16 208.5 36 22.85
6 891 253 265.8 49.8 70.17 80.32 179.0 37 28.40
7 1021 212 311.1 41.8 69.53 80.28 195.0 38 20.76
8 763 117 199.0 22.2 73.92 81.03 207.5 44 15.33
9 704 93 227.0 18.8 67.76 79.78 203.0 44 13.21
10 538 59 137.5 11.8 74.44 80.00 199.5 36 10.97
11 774 146 180.8 24.9 76.64 82.95 206.0 39 18.86
12 968 180 348.4 37.5 64.01 79.17 162.0 32 18.60
13 715                     †† 171.1  76.07  170.0   
14 561 156.0 72.19 197.0
15 760 229.6 69.79 205.0
Mean 905 207 257.2 40.4 71.74 80.52 192.5 37.1 20.51
SD 258.04 101.02 84.39 20.92 3.56 1.25 15.03 5.20 6.02
CV (%) 28.51 48.80 32.80 51.66 4.96 1.56 7.81 14.00 29.35

g % cm % 

† Sampling number. 
‡ Days after planting. 
§ Aboveground biomass. 
¶ Plant height measured from the root base to the base of leaf bifurcation or to the base of the tassel when present. 
# Depth of roots is the soil depth containing >95 % of roots on fresh-weight basis. 
†† Blank cells means there are no data, only aboveground biomass was taken. A threat of strong thunderstorm was coming.   
 
 
 
 
 

 



 

 
Table A8. Plant characteristics from the 2002 field experiment with corn hybrid Pioneer 32R25, 94 days after planting. 
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      8† Fresh weight Fresh weight Dry weight Dry weight Moisture Moisture Height Depth Root
94‡  a.g.b. § of roots a.g.b. of roots content a.g.b. content of roots of plant¶ of roots# index 

Plant number  

1        
        
        
        
        
        
        
        
        

        
        
        

        
          

          

1080.0 206.1 249.2 39.9 76.93 80.64 204.0 36 19.08
2 1275.8 281.7 279.6 51.1 78.08 81.86 185.0 32 22.08
3 1195.2 223.0 326.1 39.1 72.72 82.47 204.0 38 18.66
4 1317.6 267.5 285.2 44.0 78.35 83.55 180.0 38 20.30
5 1308.2 296.1 331.6 57.0 74.65 80.75 195.0 51 22.63
6 544.2 80.2 134.5 14.2 75.28 82.29 200.0 38 14.74
7 967.9 170.0 312.6 32.0 67.70 81.18 207.0 35 17.56
8 991.0 181.1 283.9 32.0 71.35 82.33 225.0 38 18.27
9 1125.8 236.8 315.8 46.5 71.95 80.36 157.0 45 21.03
10 774.9 124.1 193.0 24.1 75.09 80.58 180.2 37 16.01
11 574.0 85.2 166.8 16.1 70.94 81.10 184.0 27 14.84
12 1091.9 168.0 312.8 28.3 71.35 83.15 208.1 34 15.39
Mean 1020.5 193.3 265.9 35.3 73.70 81.69 194.1 37.4 18.38
SD 265.71 72.25 66.32 13.37 3.24 1.07 17.84 6.14 2.77
CV (%) 26.04 37.37 24.94 37.82 4.39 1.31 9.19 16.39 15.04

g % cm % 

† Sampling number. 
‡ Days after planting. 
§ Aboveground biomass. 
¶ Plant height measured from the root base to the base of leaf bifurcation or to the base of the tassel when present. 
# Depth of roots is the soil depth containing >95 % of roots on fresh-weight basis. 
 
 
 
 
 
 
 
 
 

 



 

 
Table A9. Plant characteristics from the 2002 field experiment with corn hybrid Pioneer 32R25, 101 days after planting. 
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      9† Fresh weight Fresh weight Dry weight Dry weight Moisture Moisture Height Depth Root
10‡1  a.g.b. § of roots a.g.b. of roots content a.g.b. content of roots of plant¶ of roots# index 

Plant number  

1     
     
     
     
     
     
     
     
     

     
     
     
     

        
          

          

1159 187 235 33 79.72 82.35 168 36.0 16.13
2 954 190 201 40 78.93 78.95 203 34.5 19.92
3 1425 334 308 41 78.39 87.72 194 45.0 23.44
4 1061 182 247 31 76.72 82.97 172 43.5 17.15
5 929 175 210 32 77.40 81.71 200 36.5 18.84
6 934 151 198 23 78.80 84.77 201 52.0 16.17
7 1296 258 264 43 79.63 83.33 210 34.0 19.91
8 1278 238 273 46 78.64 80.67 200 42.0 18.62
9 1302 257 289 44 77.80 82.88 192 42.0 19.74
10 1409 302 295 54 79.06 82.12 187 40.0 21.43
11 1301 258 275 42 78.86 83.72 186 39.5 19.83
12 989 201 215 31 78.26 84.58 183 35.0 20.32
13 1098 204 238 30 78.32 85.29 190 38.0 18.58
Mean 1164.2 225.9 249.8 37.7 78.50 83.16 191.2 39.8 19.24
SD 181.25 53.76 37.16 8.45 0.84 2.20 12.15 5.10 2.03
CV (%) 15.57 23.80 14.87 22.42 1.07 2.65 6.36 12.81 10.56

g % cm % 

† Sampling number. 
‡ Days after planting. 
§ Aboveground biomass. 
¶ Plant height measured from the root base to the base of leaf bifurcation or to the base of the tassel when present. 
# Depth of roots is the soil depth containing >95 % of roots on fresh-weight basis. 
 
 
 
 
 
 
 
 

 



 

 
Table A10. Plant characteristics from the 2002 field experiment with corn hybrid Pioneer 32R25, 108 days after planting. 
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      10† Fresh weight Fresh weight Dry weight Dry weight Moisture Moisture Height Depth Root
108‡  a.g.b. § of roots a.g.b. of roots content a.g.b. content of roots of plant¶ of roots# index 

Plant number  

1     
     
     
     
     
     
     
     
     

     
     
     

        
          

          

1203 185 308 34.5 74.40 81.35 205 53 15.38
2 1265 213 266 42.6 78.97 80.00 177 47 16.84
3 1509 327 358 78.1 76.28 76.12 190 44 21.67
4 1224 299 302 62.0 75.33 79.26 182 53 24.43
5 1177 287 294 52.1 75.02 81.85 182 49 24.38
6 885 143 246 23.5 72.20 83.57 186 36 16.16
7 1039 205 291 28.5 71.99 86.10 179 30 19.73
8 1169 204 299 35.0 74.42 82.84 200 26 17.45
9 1205 368 324 89.5 73.11 75.68 183 33 30.54
10 1340 280 303 48.1 77.39 82.82 196 41 20.90
11 1436 182 343 38.5 76.11 78.85 205 41 12.67
12 778 150 207 23.9 73.39 84.07 201 45 19.28
Mean 1185.8 236.9 295.0 46.3 74.88 81.04 190.5 41.5 19.95
SD 208.44 72.79 40.92 20.98 2.09 3.17 10.39 8.76 4.86
CV (%) 17.58 30.72 13.87 45.25 2.79 3.91 5.45 21.12 24.38

g % cm % 

† Sampling number. 
‡ Days after planting. 
§ Aboveground biomass. 
¶ Plant height measured from the root base to the base of leaf bifurcation or to the base of the tassel when present. 
# Depth of roots is the soil depth containing >95 % of roots on fresh-weight basis. 
 
 
 
 
 
 
 
 
 

 



 

 
Table A11. Plant characteristics from the 2002 field experiment with corn hybrid Pioneer 32R25, 115 days after planting. 
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      11† Fresh weight Fresh weight Dry weight Dry weight Moisture Moisture Height Depth Root
115‡  a.g.b. § of roots a.g.b. of roots content a.g.b. content of roots of plant¶ of roots# index 

Plant number  

1         
         
         
         
         
         
         
         
         

         
         
         

        
          

          

1029 121 311.5 26.1 69.73 78.43 169 29 11.76
2 1012 201 347.8 38.0 65.63 81.09 199 39 19.86
3 809 136 275.1 31.0 66.00 77.21 201 39 16.81
4 1213 204 370.5 33.2 69.46 83.73 176 44 16.82
5 1074 169 327.0 30.4 69.55 82.01 194 47 15.74
6 1047 238 362.5 44.0 65.38 81.51 187 39 22.73
7 1238 233 413.5 41.2 66.60 82.32 198 38 18.82
8 1183 236 423.0 84.0 64.24 64.41 195 42 19.95
9 956 196 280.8 35.5 70.63 81.89 175 46 20.50
10 1578 369 534.5 68.0 66.13 81.57 192 39 23.38
11 1029 160 327.5 28.5 68.17 82.19 203 50 15.55
12 1058 146 329.1 25.5 68.89 82.53 207 47 13.80
Mean 1102.1 200.7 358.5 40.4 67.53 79.91 191.3 41.6 17.98
SD 189.65 66.22 71.64 17.87 2.10 5.20 12.13 5.66 3.52
CV (%) 17.21 32.98 19.98 44.19 3.12 6.51 6.34 13.62 19.57

g % cm % 

† Sampling number. 
‡ Days after planting. 
§ Aboveground biomass. 
¶ Plant height measured from the root base to the base of leaf bifurcation or to the base of the tassel when present. 
# Depth of roots is the soil depth containing >95 % of roots on fresh-weight basis. 
 
 
 
 
 
 
 
 
 

 



 

 
Table A12. Plant characteristics from the 2002 field experiment with corn hybrid Pioneer 32R25, 122 days after planting. 
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      12† Fresh weight Fresh weight Dry weight Dry weight Moisture Moisture Height Depth Root
122‡  a.g.b. § of roots a.g.b. of roots content a.g.b. content of roots of plant¶ of roots# index 

Plant number  

1         
         
         
         
         
         
         
         
         

         
         
         
         

        
          

          

706.5 117.0 207.0
g % cm % 

21.8 70.70 81.37 185 34.0 16.56
2 793.0 176.0 274.5 33.5 65.38 80.97 192 36.5 22.19
3 1263.0 230.5 389.8 34.9 69.14 84.86 195 37.5 18.25
4 1297.5 269.0 435.2 52.1 66.46 80.63 187 30.0 20.73
5 1098.0 201.0 412.9 42.5 62.40 78.86 199 31.0 18.31
6 1231.2 268.5 417.4 49.0 66.10 81.75 200 42.0 21.81
7 †† 200 39.0
8 968.5 168.0 371.2 36.0 61.67 78.57 218 33.0 17.35
9 1142.0 236.0 386.2 37.1 66.18 84.28 178 31.0 20.67
10 833.0 155.5 340.5 31.5 59.12 79.74 212 49.0 18.67
11 1154.0 221.0 456.1 40.8 60.48 81.54 208 38.0 19.15
12 1032.0 243.0 402.8 50.8 60.97 79.09 197 32.0 23.55
13 1267.0 261.5 486.0 50.8 61.64 80.57 206 38.0 20.64
Mean 1065.5 212.2 381.6 40.1 64.19 81.02 198.2 36.2 19.82
SD 200.76 49.01 77.39 9.36 3.65 1.97 11.20 5.31 2.11
CV (%) 18.84 23.09 20.28 23.36 5.69 2.43 5.65 14.67 10.64

† Sampling number. 
‡ Days after planting. 
§ Aboveground biomass. 
¶ Plant height measured from the root base to the base of leaf bifurcation or to the base of the tassel when present. 
# Depth of roots is the soil depth containing >95 % of roots on fresh-weight basis. 
†† Blank cells means there are no data. Plant 6 shows the average between plant number 6 and 7. The roots of both plants were 
strongly interlaced. 
 
 
 
 
 
 

 



 

 
Table A13. Plant characteristics from the 2002 field experiment with corn hybrid Pioneer 32R25, 129 days after planting. 
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      13† Fresh weight Fresh weight Dry weight Dry weight Moisture Moisture Height Depth Root
129‡  a.g.b. § of roots a.g.b. of roots content a.g.b. content of roots of plant¶ of roots# index 

Plant number  

1     
     
     
     
     
     
     
     
     

        
          
         

1039 183 421 34 59.48 81.42 201 32 17.61
2 972 185 388 33 60.08 82.16 202 31 19.03
3 1171 203 427 38 63.54 81.28 188 34 17.34
4 1171 264 456 56 61.06 78.79 199 42 22.54
5 1143 180 424 34 62.90 81.11 204 37 15.75
6 769 159 331 25 56.96 84.28 180 40 20.68
7 1128 214 435 35 61.44 83.64 201 39 18.97
8 1115 245 427 43 61.70 82.45 196 49 21.97
9 1235 222 466 38 62.27 82.88 187 43 17.98
Mean 1082.5 206.1 419.4 37.3 61.05 82.00 195.3 38.5 19.10
SD 140.58 33.67 39.83 8.51 1.99 1.61 8.34 5.77 2.25
CV (%) 12.99 16.34 9.50 22.81 3.27 1.97 4.27 14.96 11.77

g % cm % 

† Sampling number. 
‡ Days after planting. 
§ Aboveground biomass. 
¶ Plant height measured from the root base to the base of leaf bifurcation or to the base of the tassel when present. 
# Depth of roots is the soil depth containing >95 % of roots on fresh-weight basis. 
 
 
 
 
 
 
 
 
 
 
 

 



 

 
Table A14. Plant characteristics from the 2002 field experiment with corn hybrid Pioneer 32R25, 136 days after planting. 
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      14† Fresh weight Fresh weight Dry weight Dry weight Moisture Moisture Height Depth Root
136‡  a.g.b. § of roots a.g.b. of roots content a.g.b. content of roots of plant¶ of roots# index 

Plant number  

1     
     
     
     
     
     
     
     
     

     
     
     

        
          

          

827 134 387 30 53.20 77.61 209 42 16.20
2 794 120 346 26 56.42 78.33 209 33 15.11
3 774 150 362 34 53.23 77.33 207 32 19.38
4 934 186 432 42 53.75 77.42 206 32 19.91
5 786 135 386 31 50.89 77.04 217 41 17.18
6 791 147 409 33 48.29 77.55 203 44 18.58
7 816 206 394 48 51.72 76.70 197 33 25.25
8 739 175 384 38 48.04 78.29 196 36 23.68
9 1099 234 542 47 50.68 79.91 180 53 21.29
10 937 240 452 54 51.76 77.50 179 52 25.61
11 1084 307 495 64 54.34 79.15 189 41 28.32
12 819 298 419 70 48.84 76.51 191 49 36.39
Mean 866.7 194.3 417.3 43.1 51.76 77.78 198.6 40.7 22.24
SD 120.42 63.65 56.22 13.95 2.57 0.99 12.02 7.70 6.03
CV (%) 13.89 32.76 13.47 32.38 4.97 1.28 6.05 18.94 27.12

g % cm % 

† Sampling number. 
‡ Days after planting. 
§ Aboveground biomass. 
¶ Plant height measured from the root base to the base of leaf bifurcation or to the base of the tassel when present. 
# Depth of roots is the soil depth containing >95 % of roots on fresh-weight basis. 
 
 
 
 
 
 
 
 
 

 



 

 
Table A15. Plant characteristics from the 2002 field experiment with corn hybrid Pioneer 32R25, 143 days after planting. 
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       15† Fresh weight Fresh weight Dry weight Dry weight Moisture Moisture Height Depth Root Nitrogen
143‡  a.g.b. § of roots a.g.b. of roots content a.g.b. content of roots of plant¶ of roots# index content†† 

Plant number  

1           
           
           
           
           
           
           
           
           

           
           
           

         
           

           

498.0 114 280.0 24.0 43.78 78.95 192 35.0 0.23 3.07
2 626.0 127 348.5 31.0 44.33 75.59 220 37.5 0.20 4.19
3 586.5 125 328.5 26.5 43.99 78.80 203 33.4 0.21 3.53
4 738.0 167 381.5 38.0 48.31 77.25 206 39.0 0.23 3.77
5 615.0 130 361.5 29.5 41.22 77.31 185 41.5 0.21 3.99
6 613.0 144 355.5 36.0 42.01 75.00 200 36.4 0.23 4.29
7 670.0 173 357.0 38.5 46.72 77.75 204 34.0 0.26 4.88
8 485.0 81 279.5 24.5 42.37 69.75 203 42.0 0.17 3.24
9 597.0 161 340.5 35.0 42.96 78.26 200 41.6 0.27 4.66
10 694.0 176 369.0 40.0 46.83 77.27 201 31.0 0.25 4.64
11 657.5 17 370.0 38.0 43.73 78.41 197 34.5 0.27 4.77
12 752.5 176 428.0 39.0 43.12 77.84 210 51.3 0.23 4.79

Mean 627.7 145.8 349.9‡‡ 33.3‡‡ 44.11 76.85 201.7 38.1 0.23 4.15
SD 82.58 30.76 40.98 5.94 2.14 2.53 8.70 5.47 0.03 0.63
CV (%) 13.16 21.09 11.71 17.83 4.84 3.29 4.31 14.36 12.90 15.21

† Sampling number. 
‡ Days after planting. 
§ Aboveground biomass. 
¶ Plant height measured from the root base to the base of leaf bifurcation or to the base of the tassel when present. 
# Depth of roots is the soil depth containing >95 % of roots on fresh-weight basis. 
†† The nitrogen content is the total nitrogen content in whole the corn plant. 
‡‡ The dry weight of agb and roots at 143 dap is lower than at 136 dap probably due to the following reasons: lost of plant material 
due to management from the field to the laboratory, natural lost of dry matter including incorporation of roots organic matter to the 
soil and lost of tassel, corn hair, and small pieces of leaves. This last reason was evident at 143 dap given that the material was too dry 
and fragile.    
 
 
 
 

g % cm g roots g  agb g N plant-1 -1

 



 

 
Table A16. Plant characteristics from the 2002 field experiment with corn hybrid Pioneer 32R25, 154 days after planting. 
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       16† Fresh weight Fresh weight Dry weight Dry weight Moisture Moisture Height Depth Root Nitrogen
154‡ a.g.b. § of roots a.g.b. of roots content a.g.b. content of roots of plant¶ of roots# index content†† 

Plant number  

1           
           
           
           
           
           
           
           
           

           
           
           
           

           
           
            

600 105 358 34 40.33 67.62 206.0 32.0 0.18 4.01
2 639 100 436 30 31.77 70.00 214.0 39.5 0.16 4.39
3 580 105 351 28 39.48 73.33 200.0 46.5 0.18 4.21
4 659 223 415 31 37.03 72.20 180.0 38.0 0.34 5.23
5 451 138 311 35 31.04 74.64 202.0 28.0 0.31 3.68
6 451 106 289 28 35.92 73.58 195.0 30.0 0.24 2.92
7 512 82 340 24 33.59 70.73 189.0 31.0 0.16 3.68
8 562 118 362 31 35.59 73.73 181.0 37.0 0.21 4.45
9 595 171 382 43 35.80 74.85 202.5 39.0 0.29 5.15
10 554 140 358 37 35.38 73.57 191.0 37.0 0.25 4.73
11 751 142 398 37 47.00 73.94 218.0 35.1 0.19 5.01
12 411 59 307 19 25.30 67.80 204.5 37.0 0.14 3.88
13 540 128 376 32 30.37 75.00 189.0 55.0 0.24 4.41
Mean 561.9 124.4 360.2 31.5 35.28 72.38 197.8 37.3 0.22 4.29
SD 93.28 41.28 42.55 6.13 5.33 2.55 11.67 7.18 0.06 0.66
CV (%) 16.60 33.19 11.81 19.49 15.12 3.53 5.90 19.24 27.90 15.41

† Sampling number. 
‡ Days after planting. 
§ Aboveground biomass. 
¶ Plant height measured from the root base to the base of leaf bifurcation or to the base of the tassel when present. 
# Depth of roots is the soil depth containing >95 % of roots on fresh-weight basis. 
†† The nitrogen content is the total nitrogen content in whole the corn plant. 
 
 
 
 
 
 
 

g % cm g roots g-1 agb  g N plant-1

 



 

 
Table A17. Plant characteristics from the 2002 field with corn hybrid Pioneer 32R25, at east part farmer field. Ships soil series. 
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       1† Fresh weight Fresh weight Dry weight Dry weight Moisture Moisture Height Depth Root nitrogen
152‡  a.g.b. § of roots a.g.b. of roots content a.g.b. content of roots of plant of roots¶ index# content†† 

Plant number  

1           
           
           
           
           
           
           
           
           

           
           
           

           
           

           

206 26 135 5 34.47 80.77 225 30.0 0.13 1.38
2 454 98 290 25 36.12 74.49 226 43.7 0.22 2.89
3 360 70 224 18 37.78 74.29 222 37.1 0.19 2.60
4 327 78 190 18 41.90 76.92 206 34.5 0.24 2.10
5 307 102 179 23 41.69 77.45 199 36.0 0.33 2.40
6 568 156 349 39 38.56 75.00 197 40.5 0.27 4.51
7 371 68 232 16 37.47 76.47 215 34.6 0.18 2.50
8 439 109 258 25 41.23 77.06 209 45.0 0.25 2.85
9 277 39 172 11 37.91 71.79 219 40.3 0.14 1.66
10 393 84 226 17 42.49 79.76 211 31.5 0.21 2.45
11 405 67 230 14 43.21 79.10 226 32.0 0.17 2.65
12 483 83 284 17 41.20 79.52 206 47.4 0.17 3.11
Mean 382.5 81.7 230.7 19.0 39.50 76.89 213.4 37.7 0.21 2.59
SD 97.76 33.62 58.85 8.49 2.80 2.66 10.32 5.65 0.06 0.78
CV (%) 25.56 41.16 25.51 44.66 7.10 3.46 4.83 14.98 28.02 30.21

g % cm g roots g-1 agb g N plant-1

† Sampling number. 
‡ Days after planting. 
§ Aboveground biomass. 
¶ Plant height measured from the root base to the base of leaf bifurcation or to the base of the tassel when present. 
# Depth of roots is the soil depth containing >95 % of roots on fresh-weight basis. 
†† The nitrogen content is the total nitrogen content in whole the corn plant. 
 
 
 
 
 
 
 
 

 



 

 
Table A18. Plant characteristics from the 2002 field with corn hybrid Pioneer 32R25, at west part farmer field. Ships soil series. 
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       1† Fresh weight Fresh weight Dry weight Dry weight Moisture Moisture Height Depth Root nitrogen
153‡  a.g.b. § of roots a.g.b. of roots content a.g.b. content of roots of plant of roots¶ index# content†† 

Plant number  

1           
           
           
           
           
           
           
           
           

           
           
           

           
           

           

322 60 214 15 33.54 75.00 198 48.5 0.19 1.96
2 525 116 314 29 40.19 75.00 183 53.0 0.22 3.57
3 573 93 329 26 42.58 72.04 187 46.0 0.16 3.55
4 667 143 395 35 40.78 75.52 189 44.0 0.21 4.63
5 586 149 342 35 41.64 76.51 184 43.7 0.25 4.21
6 781 182 455 43 41.74 76.37 193 49.6 0.23 5.77
7 306 70 177 16 42.16 77.14 149 45.5 0.23 2.06
8 623 178 382 43 38.68 75.84 197 35.1 0.29 4.11
9 504 107 280 26 44.44 75.70 180 36.5 0.21 3.39
10 555 121 336 31 39.46 74.38 190 41.4 0.22 3.44
11 571 122 333 34 41.68 72.13 181 32.1 0.21 4.09
12 599 121 359 32 40.07 73.55 194 56.0 0.20 3.94
Mean 551.0 121.8 326.3 30.4 40.58 74.93 185.4 44.3 0.22 3.73
SD 131.88 37.61 75.71 8.85 2.70 1.64 12.94 7.17 0.03 1.03
CV (%) 23.93 30.87 23.20 29.09 6.64 2.19 6.98 16.20 14.19 27.62

g % cm g roots g-1 agb g N plant-1

† Sampling number. 
‡ Days after planting. 
§ Aboveground biomass. 
¶ Height of plant measured from the root base to the base of leaf bifurcation or to the base of the tassel when present. 
# Depth of roots is the soil depth containing >95 % of roots on fresh-weight basis. 
†† The nitrogen content is the total nitrogen content in whole the corn plant. 
 
 
 
 
 
 
 
 

 



 

 
Table A19. Plant characteristics from the 2002 field experiment with corn variety Dekalb 637, at the Texas A&M University 
Agricultural Experiment Station Farm. 
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       1 † Fresh weight Fresh weight Dry weight Dry weight Moisture Moisture Height Depth Root Nitrogen
163 ‡  a.g.b. § of roots a.g.b. of roots content a.g.b. content of roots of plant¶ of roots# index content†† 

Plant number  

1           
           
           
           
           
           
           
           
           

           
           
           
           
           

           
           
            

327 67 257 15 21.41 77.61 185 37 0.20 1.96
2 396 111 271 34 31.57 69.37 175 27 0.28 2.43
3 320 114 239 28 25.31 75.44 176 33 0.36 1.69
4 361 70 257 21 28.81 70.00 189 40 0.19 2.37
5 365 65 250 17 31.51 73.85 180 32 0.18 2.29
6 268 38 204 17 23.88 55.26 164 32 0.14 1.63
7 500 110 324 24 35.20 78.18 195 31 0.22 3.36
8 520 159 364 43 30.00 72.96 190 43 0.31 4.12
9 366 93 281 28 23.22 69.89 188 29 0.25 2.14
10 284 46 240 19 15.49 58.70 181 32 0.16 2.65
11 371 89 261 25 29.65 71.91 190 40 0.24 2.08
12 434 180 308 57 29.03 68.33 198 38 0.41 2.34
13 268 57 211 13 21.27 77.19 195 34 0.21 1.52
14 465 156 297 44 36.13 71.79 187 34 0.34 3.45
Mean 374.6 96.8 268.9 27.5 27.32 70.75 185.2 34.4 0.25 2.43
SD 81.13 44.10 43.45 12.85 5.80 6.66 9.24 4.57 0.08 0.75
CV (%) 21.66 45.56 16.16 46.72 21.22 9.42 4.99 13.27 31.77 30.70

g % cm g roots g-1 agb g N plant-1

† Sampling number. 
‡ Days after planting. 
§ Aboveground biomass. 
¶ Height of plant measured from the root base to the base of leaf bifurcation or to the base of the tassel when present. 
# Depth of roots is the soil depth containing >95 % of roots on fresh-weight basis. 
†† The nitrogen content is the total nitrogen content in whole the corn plant. 
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Table A20. Corn grain yield, ordered according to yield per plant, from lowest to highest yield, 
harvested in a 9 x 4.16 m area at the Agricultural Experiment Station Farm of Texas A&M 
University, August 2003. Block number 1. 
 

Grain yield 
                            Fertilized  (179 kg N ha-1)                                                Non-fertilized 

     g grain plant-1

 12 107 198  4 81 153  
 16 113 199  5 84 154  
 17 115 201  6 86.5 154  
 20 116 205  8 87 157  
 27 123 205  14 87 158  
 41 129 210  15 89 160  
 43 134 215  16 91 167  
 43 134 216  18 93 169  
 45 135 220  23 94 171  
 47 135 322  30 95 172  
 47 135 Mean:125.7  34 95 173  
 48 137 SD: 59  35 97 173  
 48 140 CV: 47  36 98 175  
 57 144 n: 100  37 98 175  
 57 148   37 99 176  
 64 149   38 100 178  
 65 152   38 103 182  
 65 157   43 103 196  
 68 158   44 105 201  
 70 158   48 106 205  
 71 160   50 112 231  
 73 162   51 112 Mean:98.5  
 74 162   52 115 SD: 51  
 76 165   54 115 CV: 52  
 79 167   55 115 n: 111  
 81 167   56 117   
 82 169   56 117   
 82 170   57 117   
 85 172   57 118   
 86 174   57 119   
 88 175   61 120   
 89 178   64 121   
 90 181   65 129   
 92 182   67 132   
 94 186   67 134   
 98 186   68 135   
 99 189   70 136   
 100 189   71 141   
 102 190   73 141   
 103 192   75 143   
 105 194   76 143   
 105 194   76 146   
 106 194   77 146   
 106 194   78 150   
  106 197     79 152     
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Table A21. Corn grain yield, ordered according to yield per plant, from lowest to highest yield, 
harvested in a 9 x 4.16 m area at the Agricultural Experiment Station Farm of Texas A&M 
University, August 2003. Block number 2. 
 

Grain yield 
                 Fertilized ( 179 kg N ha-1)                                                            Non-fertilized 

     g grain plant-1

2 114 166 223  5 144 204  
3 115 169 271  20 147 205  
3 118 172 282  30 148 209  

12 120 175 303  36 150 210  
24 120 176 337  38 151 210  
25 120 176 mean:139.6  39 155 217  
30 121 179 SD: 63  41 156 217  
32 121 180 CV: 45  45 157 218  
34 125 183 n: 140  47 157 223  
36 125 183   47 158 226  
37 127 183   49 159 227  
38 130 184   50 160 235  
48 130 185   56 162 262  
48 134 186   58 163 262  
51 135 187   58 163 272  
51 136 187   61 165 302  
56 139 190   61 166 314  
59 139 190   63 167 mean:147.9  
59 140 191   68 167 SD: 63  
59 141 191   75 171 CV: 42  
61 143 194   79 172 n: 107  
65 144 194   93 172   
68 144 195   96 179   
72 145 195   96 180   
73 145 196   101 180   
75 145 201   109 181   
76 146 202   109 182   
79 146 205   110 183   
80 148 205   114 184   
80 149 206   114 185   
84 149 206   120 185   
84 151 206   120 187   
87 153 207   120 187   
99 155 209   123 189   

100 155 209   125 193   
102 155 209   127 194   
103 156 210   130 196   
103 156 210   130 197   
105 162 211   133 197   
105 163 212   135 197   
107 164 212   135 198   
107 164 213   137 199   
107 164 213   137 199   
111 165 221   139 200   
113 166 222     143 203     
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Table A22. Corn grain yield, ordered according to yield per plant, from lowest to highest yield, 
harvested in a 9 x 4.16 m area at the Agricultural Experiment Station Farm of Texas A&M 
University, August 2003. Block number 3. 
 

Grain yield 
                         Fertilized ( 179 kg N ha-1)                                                         Non-fertilized 

        g grain plant-1

0 93 132 163 201 3 92 149 184 
4 93 133 163 202 11 93 150 185 

11 95 135 164 203 12 94 151 185 
19 96 136 164 203 13 96 151 185 
20 97 136 164 205 23 97 151 185 
23 98 136 166 208 29 99 151 185 
24 98 136 167 209 30 101 153 186 
29 98 137 167 209 33 104 156 187 
30 100 137 168 210 38 106 156 189 
31 101 138 168 213 39 106 156 190 
32 101 138 169 262 40 106 158 191 
36 102 138 170 mean128.5 40 108 160 192 
41 102 139 171 SD: 51 40 108 160 192 
41 103 141 171 CV: 39 41 108 160 194 
41 103 141 173 n: 191 41 112 161 195 
41 105 142 174  45 112 162 198 
42 107 144 174  47 112 163 198 
47 107 144 174  48 115 164 199 
50 109 146 175  49 116 164 201 
51 109 146 176  51 117 166 202.5 
52 110 147 176  54 121 166 203 
52 110 148 179  54 122 166 203.5 
55 110 148 179  54 123 166 203.7 
55 110 150 180  57 123 167 207 
67 111 151 180  57 125 167 208 
71 112 151 181  62 126 167 210 
71 113 151 183  66 126 167 211 
73 114 153 184  67 127 168 220 
73 115 153 186  67 127 168 222 
73 115 153 186  68 128 169 223 
75 116 154 187  72 130 170 298 
76 116 154 187  74 130 172 mean:130.3 
77 118 155 187  74 135 172 SD: 56 
78 118 155 189  75 135 173 CV: 43 
78 118 156 189  77 136 176 n: 166 
79 119 156 193  79 137 176  
85 120 158 193  81 138 177  
86 122 159 194  81 139 179  
86 122 159 195  82 140 179  
87 122 160 196  83 142 180  
87 123 161 196  84 143 181  
88 126 162 196  86 143 181  
89 127 162 197  87 143 182  
90 132 162 197  90 143 183  
91 132 163 198   91 147 183   
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Table A23. Corn grain yield, ordered according to yield per plant, from lowest to highest yield, 
harvested in a 9 x 4.16 m area at the Agricultural Experiment Station Farm of Texas A&M 
University, August 2003. Block number 4. 

Grain yield 
                       Fertilized ( 179 kg N ha-1)                                                                    Non-fertilized 

                    g grain plant-1

4 103 134 155 170 3 93.5 135 171.2 
24 104 134 155 170 5.5 94 136 171.5 
31 105 137 155 170 6 96.5 137 173 
34 107 137 155 170 15 97 140 173 
35 108 137 155 171 15 100 141 175 
36 108 138 156 171 18.5 101 141.8 177 
46 108 139 157 171 20.5 101 142 178 
46 109.5 139 157 172 25 101.5 142 179 
51 110 139 157 172 27 103 144 181 
52 112 140 158 172 27 103 144 181.5 
56 112 140 158 172 28 103 146 184 
58 113 141 158 172 31.2 104 147 184 
62 114 141 158 173 32.4 106 148 185 
63 114 141 158 173 34 106 148 186.8 
65 115 142 158 173 34.8 107 148.2 187 
68 116 142 158 175 36.5 108.7 148.6 187.2 
69 116 142 159 175 38 109 149 188 
70 118 142 159 175 38.5 109.5 149.9 188 
71 119 142 159 176 38.6 110 150 189 
74 119 143 160 176 42.2 110 152 191 
74 119 145 161 176 43 112 156 191 
74 120 145 162 177 43.2 113 156 192 
76 120 146 162 179 46.2 114 156.5 194 
78 121 146 162 180 50 114.8 157 195 
78 122 147 164 183 50.5 116 157 196 
78 122 147 164 183 54 116.5 158 196 
78 123 147 164 184 58 116.5 158 198 
81 123 148 165 185 58.5 118.5 159 199 
82 123 148 165 185 59 120.2 160 200 
84 124 148 166 185 71 121 161 201 
87 124 148 166 186 77 121 161 202 
87 124 149 166 186 77 121 162 202 
87 125 149 167 187 80.2 121.5 162 203 
88 127 149 167 187 82 122 163 204 
88 127 149 168 189 83 122 163 208 
91 128 150 168 190 83.2 122 164.5 210 
93 128 150 168 190 84 124 165 219 
96 128 150.5 168 191 85 128 166 224.2 
96 129 151 169 192 85 128.2 166 233 
97 130 152 169 195 87 130 167 277.5 
99 130 152 169 200 90 130.8 167.5 280 

102 131 153 169 212 90 132 169 369 
102 132 153 170 mean:135.1 90.2 132 169 mean:129.0 
103 133 154 170 SD:39 91 133 171 SD:59 
103 133 154 170  CV:28,n:222 93 134 171  CV:45,n:177 
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Table A24. Bulk density of Ships clay and Weswood silt loam soil from the greenhouse 
experiment in 2003. 
 

 Ships clay Weswood silt loam 
 g cm-3 g cm-3

Pot Num. Fertilized with 179 kg N ha-1

1  1.31 
5   
8 1.08 1.30 
9   

11   
13 1.06 1.33 
15 1.06 1.21 
17 1.12  
18   
19  1.32 

Mean 1.08 1.30 
SD 0.02 0.04 
CV (%) 2.6 3.7 

 Without fertilized 
2  1.32 
3  1.25 
4  1.30 
6 1.00 1.36 
7 1.00 1.42 

10  1.22 
12  1.29 
14  1.21 
16  1.23 
20  1.24 

Mean 1.05 1.29 
SD 0.04 0.06 
CV (%) 4.2 4.84 
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Table A25. Meteorological data for January through March 2002 for College Station, Texas. 
      Temperature       Temperature     Temperature 

Date Max Min Avg Pptn.†   Date Max Min Avg Pptn.   Date Max Min Avg Pptn. 
   mm  February         ºC       mm  March             ºC   mm January         ºC    

1 7.8 -0.6 3.9 0.00  1 9.4 2.8 6.1 0.00  1 15.6 8.9 12.2 0.03 
2 6.7 -2.8 2.2 0.00  2 11.7 -0.6 5.6 0.00  2 14.4 -1.7 6.7 0.03 
3 6.7 -7.2 0.0 0.00  3 13.9 5.0 9.4 0.00  3 6.1 -6.1 0.0 0.00 
4 11.7 -4.4 3.9 0.00  4 12.8 7.2 10.0 0.18  4 14.4 -8.3 3.3 0.00 
5 11.7 5.0 8.3 2.62  5 7.2 3.9 5.6 2.90  5 18.3 -3.9 7.2 0.00 
6 16.1 2.8 9.4 0.00  6 5.6 -1.1 2.2 0.00  6 25.6 9.4 17.8 0.00 
7 13.9 -2.2 6.1 0.00  7 13.9 -2.2 6.1 0.00  7 26.7 15.6 21.1 0.00 
8 19.4 -1.1 9.4 0.00  8 16.7 -1.1 7.8 0.00  8 23.9 17.2 20.6 0.00 
9 23.9 5.0 14.4 0.00  9 22.2 5.0 13.9 0.00  9 21.7 7.2 14.4 0.00 

10 22.8 13.3 18.3 0.00  10 11.1 3.3 7.2 0.00  10 16.1 3.9 10.0 0.00 
11 15.0 8.9 12.2 0.00  11 12.8 -1.1 6.1 0.00  11 16.1 10.0 13.3 0.20 
12 18.9 1.7 10.6 0.00  12 17.8 -1.7 8.3 0.00  12 21.7 9.4 15.6 0.00 
13 20.0 -1.7 9.4 0.00  13 20.0 1.1 10.6 0.00  13 27.8 6.1 17.2 0.00 
14 20.0 2.2 11.1 0.00  14 19.4 3.9 11.7 0.00  14 30.0 15.6 22.8 0.00 
15 19.4 -1.7 8.9 0.00  15 21.7 6.1 13.9 0.00  15 28.3 13.3 21.1 0.00 
16 22.2 3.3 12.8 0.00  16 17.2 0.0 8.9 0.00  16 18.9 11.7 15.6 0.00 
17 17.2 10.6 13.9 0.00  17 20.6 -1.7 9.4 0.00  17 22.8 16.1 19.4 0.48 
18 11.7 9.4 10.6 0.13  18 23.9 7.8 16.1 0.00  18 28.3 18.3 23.3 0.00 
19 13.3 2.8 8.3 0.53  19 23.3 9.4 16.7 1.07  19 26.7 16.1 21.7 0.79 
20 15.0 -0.6 7.2 0.00  20 22.8 7.2 15.0 0.00  20 17.2 10.0 13.9 0.30 
21 22.8 4.4 13.9 0.00  21 25.6 6.1 16.1 0.00  21 22.2 7.2 15.0 0.00 
22 23.9 8.3 16.1 0.00  22 18.3 1.7 10.0 0.00  22 13.9 1.7 7.8 0.00 
23 23.3 20.6 22.2 0.00  23 22.2 -0.6 11.1 0.00  23 21.7 1.7 11.7 0.00 
24 22.2 6.1 14.4 0.13  24 25.0 5.0 15.0 0.00  24 25.6 13.9 20.0 0.00 
25 15.6 0.6 8.3 0.00  25 22.2 6.1 14.4 0.00  25 21.7 7.8 15.0 0.05 
26 15.6 -1.1 7.2 0.00  26 7.2 -2.8 2.2 0.00  26 17.2 5.0 11.1 0.00 
27 22.2 2.2 12.2 0.00  27 9.4 -8.3 0.6 0.00  27 23.3 5.0 14.4 0.00 
28 26.1 11.1 18.9 0.00  28 13.9 -1.7 6.1 0.00  28 27.8 8.9 18.3 0.00 
29 27.2 18.9 23.3 0.00  29 -17.8 -17.8 -17.8 0.00  29 26.7 20.6 23.9 0.00 
30 26.1 18.9 22.8 0.00        30 29.4 16.7 23.3 0.28 
31 21.7 6.1 13.9 0.66               31 22.8 10.0 16.7 0.00 

†Pptn = precipitation (mm) 
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Table A26. Meteorological data for April through June 2002 for College Station, Texas. 
      Temperature       Temperature     Temperature 

Date Max Min Avg Pptn. †   Date Max Min Avg Pptn.   Date Max Min Avg Pptn. 

mm  May         ºC       mm  June             ºC   mm April         ºC       

1 25.6 8.9 17.2 0.00  1 33.9 22.8 28.3 0.00  1 33.3 18.9 26.1 0.00 
2 26.7 15.6 21.1 0.00  2 32.2 21.1 26.7 0.00  2 33.9 18.9 26.7 0.00 
3 18.3 13.9 16.1 0.00  3 26.1 17.2 21.7 0.00  3 33.9 21.7 27.8 0.00 
4 20.6 12.2 16.7 0.00  4 32.2 20.6 26.7 0.00  4 35.0 22.8 28.9 0.00 
5 23.3 13.3 18.3 0.00  5 33.3 22.8 28.3 0.00  5 34.4 21.7 28.3 0.00 
6 17.8 12.2 15.0 0.89  6 33.3 23.3 28.3 0.00  6 35.0 21.7 28.3 0.00 
7 24.4 12.2 18.3 1.47  7 33.3 23.3 28.3 0.00  7 35.6 22.8 29.4 1.93 
8 25.6 15.0 20.6 1.14  8 32.8 23.3 28.3 0.00  8 35.0 22.8 28.9 0.00 
9 23.3 13.9 18.9 0.00  9 33.3 22.8 28.3 0.00  9 35.0 25.0 30.0 0.03 

10 26.1 15.0 20.6 0.00  10 34.4 22.2 28.3 0.00  10 35.6 24.4 30.0 0.00 
11 27.8 13.9 21.1 0.00  11 33.3 23.3 28.3 0.00  11 36.1 23.3 30.0 0.00 
12 28.3 17.2 22.8 0.00  12 33.3 23.9 28.9 0.00  12 35.6 23.3 29.4 0.00 
13 27.8 15.6 21.7 0.00  13 26.1 13.9 20.0 0.18  13 35.6 22.2 28.9 0.00 
14 27.8 16.7 22.2 0.00  14 28.3 13.3 21.1 0.00  14 35.0 22.8 28.9 0.00 
15 28.9 20.0 24.4 0.00  15 31.1 10.6 21.1 0.00  15 33.3 22.2 27.8 0.00 
16 27.8 21.1 24.4 0.03  16 33.3 20.6 27.2 0.00  16 29.4 19.4 24.4 2.57 
17 30.6 21.1 26.1 0.00  17 26.1 17.8 22.2 0.03  17 32.2 18.9 25.6 0.00 
18 30.6 20.6 25.6 0.00  18 25.0 14.4 20.0 0.00  18 33.3 20.0 26.7 0.00 
19 30.0 21.1 25.6 0.00  19 25.6 10.0 17.8 0.00  19 35.0 20.0 27.8 0.00 
20 30.6 21.1 26.1 0.00  20 27.2 12.2 20.0 0.00  20 35.0 22.8 28.9 0.33 
21 30.0 21.7 26.1 0.00  21 29.4 10.0 20.0 0.00  21 34.4 22.2 28.3 0.00 
22 28.9 21.7 25.6 0.00  22 30.6 14.4 22.8 0.00  22 34.4 21.1 27.8 0.00 
23 30.0 20.6 25.6 0.00  23 31.7 18.3 25.0 0.00  23 32.8 18.3 25.6 0.00 
24 31.7 21.7 26.7 0.00  24 30.0 18.9 24.4 0.00  24 31.7 20.6 26.1 0.28 
25 25.6 18.9 22.2 0.10  25 33.3 17.8 25.6 0.00  25 33.3 20.0 26.7 0.05 
26 29.4 17.8 23.9 0.00  26 33.9 19.4 26.7 0.03  26 33.9 22.8 28.3 0.41 
27 31.1 22.2 26.7 0.00  27 33.3 20.0 26.7 0.05  27 33.3 22.2 27.8 0.00 
28 32.8 22.8 27.8 0.00  28 31.7 17.8 25.0 0.48  28 32.2 23.3 27.8 0.00 
29 33.9 22.2 28.3 0.00  29 27.8 17.8 22.8 1.50  29 28.3 22.2 25.6 1.63 
30 33.3 21.1 27.2 0.00  30 32.2 17.2 25.0 0.00  30 32.2 22.2 27.2 0.51 

            31 31.1 20.0 25.6 0.00             
†Pptn = precipitation (mm) 
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Table A27. Meteorological data for July through September 2002 for College Station, Texas. 
      Temperature       Temperature     Temperature 

Date Max Min Avg Pptn. †   Date Max Min Avg Pptn.   Date Max Min Avg Pptn. 

mm  August         ºC       mm  Sept.             ºC   mm July         ºC       

1 30.0 21.1 25.6 1.88  1 35.6 22.2 28.9 0.00  1 35.6 22.2 27.8 0.00 
2 31.1 22.8 27.2 0.46  2 35.6 22.2 28.9 0.00  2 35.0 22.2 28.9 0.08 
3 33.3 22.8 28.3 0.00  3 38.3 22.2 30.6 0.05  3 33.9 22.8 27.8 0.00 
4 32.8 23.9 28.3 0.15  4 35.6 21.7 28.9 0.03  4 32.8 22.8 27.8 0.00 
5 33.3 23.3 28.3 0.00  5 35.6 21.7 28.9 0.00  5 35.0 22.8 28.9 0.00 
6 34.4 21.7 28.3 0.00  6 36.7 22.2 29.4 0.00  6 33.9 22.8 27.8 0.00 
7 35.6 22.8 29.4 0.00  7 37.8 24.4 31.1 0.00  7 30.6 22.8 26.7 0.71 
8 35.6 23.3 29.4 0.00  8 33.3 25.6 29.4 0.00  8 30.6 22.8 25.6 0.46 
9 34.4 22.8 28.9 0.48  9 35.6 23.9 30.0 0.00  9 32.8 22.8 27.8 0.05 

10 33.9 22.2 28.3 0.00  10 34.4 22.2 28.3 0.00  10 32.2 22.8 23.3 0.00 
11 36.1 21.7 28.9 0.00  11 35.0 21.7 28.3 0.00  11 33.9 26.7 30.6 0.00 
12 36.1 22.8 29.4 0.00  12 35.6 23.3 29.4 0.15  12 33.9 21.7 27.8 0.00 
13 34.4 21.7 28.3 0.25  13 34.4 23.9 29.4 0.03  13 33.9 21.7 27.8 0.00 
14 25.0 20.6 22.8 8.08  14 32.8 23.9 28.3 0.10  14 33.9 20.6 27.2 0.00 
15 27.8 21.7 25.0 0.76  15 24.4 20.6 22.8 8.81  15 26.7 21.7 24.4 0.00 
16 26.7 22.8 25.0 2.24  16 33.3 21.1 27.2 0.00  16 26.1 22.2 24.4 0.30 
17 32.2 22.8 27.8 0.08  17 35.0 24.4 30.0 0.00  17 31.7 22.8 26.7 0.13 
18 33.3 22.8 28.3 0.00  18 35.0 23.9 29.4 0.00  18 32.8 25.0 28.9 0.03 
19 33.9 23.9 28.9 0.00  19 34.4 23.9 29.4 0.00  19 30.0 21.7 25.6 0.20 
20 33.3 22.2 27.8 0.00  20 35.0 23.9 29.4 0.00  20 30.6 16.1 23.3 0.00 
21 33.9 23.9 28.9 0.00  21 35.0 24.4 30.0 0.00  21 32.8 12.8 22.2 0.00 
22 34.4 22.8 28.9 0.00  22 35.0 23.9 29.4 0.00  22 32.8 17.8 25.0 0.00 
23 35.0 23.3 29.4 0.00  23 35.0 23.3 29.4 0.00  23 31.7 17.8 24.4 0.00 
24 35.6 23.3 29.4 0.00  24 34.4 23.3 28.9 0.00  24 31.7 16.7 23.3 0.00 
25 35.0 23.3 29.4 0.00  25 35.6 23.3 29.4 0.00  25 31.7 18.9 25.0 0.00 
26 34.4 23.9 29.4 0.00  26 35.6 23.9 30.0 0.00  26 32.8 18.9 25.6 0.00 
27 35.0 23.9 29.4 0.00  27 33.3 23.9 28.9 0.00  27 35.0 16.1 25.6 0.00 
28 35.6 24.4 30.0 0.00  28 35.0 22.8 28.9 0.00  28 32.8 17.8 25.6 0.00 
29 35.0 25.6 30.6 0.00  29 34.4 21.1 27.8 0.00  29 31.7 18.9 25.0 0.00 
30 35.6 24.4 30.0 0.00  30 34.4 20.6 27.8 0.00  30 31.7 17.8 25.6 0.00 
31 35.6 23.3 29.4 0.00   31 35.6 21.7 28.9 0.03             

†Pptn = precipitation (mm) 
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Table A28. Meteorological data for October through December 2002 for College Station, Texas. 
      Temperature       Temperature     Temperature 

Date Max Min Avg Pptn. †   Date Max Min Avg Pptn.   Date Max Min Avg Pptn. 

mm  Nov.         ºC       mm  Dec.             ºC   mm Oct.         ºC       

1 33.9 21.7 27.2 1.98  1 18.9 11.1 15.6 0.03  1 15.0 5.0 10.0 0.00 
2 32.8 22.8 27.8 0.00  2 13.9 10.6 12.2 0.89  2 22.2 6.1 14.4 0.00 
3 33.9 22.2 27.8 0.03  3 15.0 11.7 13.3 0.58  3 21.1 16.7 18.9 0.46 
4 33.9 22.2 27.8 0.00  4 11.7 10.6 11.1 11.58  4 20.6 3.9 12.2 5.97 
5 32.8 21.7 27.2 0.00  5 21.1 8.9 15.0 0.03  5 8.9 2.2 5.6 0.00 
6 33.9 22.8 27.8 0.00  6 18.9 6.7 12.8 0.00  6 11.1 0.0 5.6 0.00 
7 30.0 21.1 24.4 6.07  7 20.0 5.0 12.2 0.00  7 13.9 2.2 7.8 0.00 
8 23.9 21.7 22.8 0.18  8 23.9 7.8 15.6 0.00  8 16.1 10.0 13.3 0.41 
9 25.0 17.8 22.2 1.02  9 27.8 16.7 22.2 0.00  9 8.9 6.7 7.8 2.49 

10 22.8 16.7 20.0 0.00  10 30.0 17.2 23.9 0.03  10 10.6 6.7 8.9 0.03 
11 26.7 17.2 21.7 0.00  11 22.8 12.8 17.8 0.00  11 12.8 2.8 7.8 0.00 
12 27.8 15.0 21.1 0.00  12 18.9 7.8 13.3 0.00  12 12.2 8.9 11.1 2.67 
13 21.1 13.9 17.8 0.08  13 18.9 5.6 12.2 0.00  13 13.9 3.9 8.9 0.00 
14 15.6 11.7 13.9 0.15  14 23.9 7.8 15.6 0.00  14 17.2 1.1 8.9 0.00 
15 22.2 8.9 15.6 0.03  15 17.8 8.9 13.3 0.00  15 22.2 6.1 14.4 0.00 
16 22.8 8.9 15.6 0.00  16 15.6 5.0 10.6 0.00  16 22.2 15.0 18.9 0.00 
17 26.1 8.9 17.2 0.00  17 20.6 3.9 12.2 0.00  17 23.9 15.6 20.0 0.00 
18 26.1 15.6 20.6 0.00  18 23.9 8.9 16.7 0.00  18 23.9 18.9 21.1 0.00 
19 22.8 17.2 20.0 4.78  19 22.2 7.8 15.0 0.00  19 17.8 8.9 13.9 1.37 
20 23.9 16.1 19.4 0.00  20 22.8 6.7 14.4 0.00  20 17.8 2.2 10.0 0.00 
21 20.6 15.6 17.8 2.39  21 22.8 7.8 15.6 0.00  21 21.7 5.6 13.3 0.00 
22 21.1 17.2 18.9 1.98  22 18.9 7.2 13.3 0.00  22 18.9 5.6 12.2 0.00 
23 22.8 17.8 20.0 0.03  23 21.1 6.1 13.3 0.00  23 23.9 7.2 15.6 3.45 
24 20.0 17.8 18.9 2.95  24 23.9 10.0 16.7 0.00  24 7.2 1.7 5.0 0.00 
25 18.9 13.9 16.7 0.43  25 13.9 7.8 11.1 0.18  25 7.8 -2.2 2.8 0.00 
26 17.2 13.9 15.6 1.37  26 7.8 5.0 6.7 1.96  26 10.6 2.8 6.7 0.00 
27 20.6 17.2 18.3 0.00  27 8.9 3.9 6.7 0.00  27 17.2 2.2 10.0 0.00 
28 21.1 16.7 18.9 1.47  28 13.9 1.1 7.8 0.00  28 18.9 2.8 11.1 0.00 
29 22.8 13.9 18.3 0.03  29 16.7 1.7 8.9 0.00  29 22.2 8.9 15.6 0.00 
30 26.1 12.2 18.9 0.00  30 20.6 7.8 14.4 0.00  30 21.1 12.8 17.8 2.36 
31 18.9 12.8 15.6 0.00               31 15.6 5.6 11.7 0.05 

†Pptn = precipitation (mm) 
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Table A29. Meteorological data for January through March 2003 for College Station, Texas. 

†Pptn = precipitation (mm) 

  Temperature       Temperature       Temperature   
Date Max Min Avg Pptn. †   Date Max Min Avg Pptn.   Date Max Min Avg Pptn. 

January         ºC       mm  February         ºC       mm  March             ºC   mm 
1 20.6 2.2 11.1 0.00  1 20.6 3.9 12.2 0.00  1 12.2 7.8 10.0 0.08 
2 11.7 2.8 7.2 0.00  2 22.8 11.7 17.2 0.00  2 15.6 10.0 12.8 0.00 
3 16.1 0.6 8.3 0.00  3 22.8 7.8 15.6 0.00  3 12.8 7.8 10.0 1.32 
4 18.9 2.8 11.1 0.00  4 13.9 1.1 7.8 0.00  4 13.9 8.9 11.1 0.00 
5 20.0 5.0 12.2 0.00  5 10.6 7.8 10.0 0.00  5 13.9 5.0 9.4 0.05 
6 18.9 7.2 13.3 0.00  6 7.8 5.0 6.7 2.01  6 17.2 2.2 10.0 0.00 
7 11.1 1.7 6.7 0.00  7 5.6 2.2 3.9 0.00  7 23.9 3.9 13.9 0.00 
8 21.7 2.8 12.2 0.00  8 5.6 1.7 3.3 0.05  8 17.8 10.0 13.9 0.00 
9 25.6 10.0 17.8 0.00  9 17.2 3.9 10.6 0.13  9 22.8 11.1 16.7 0.00 

10 12.8 5.6 8.9 0.00  10 15.6 6.1 11.1 0.00  10 22.8 8.9 15.6 0.00 
11 7.2 2.8 5.6 0.51  11 20.0 5.6 12.8 0.00  11 22.8 13.9 18.3 0.00 
12 3.9 1.7 2.8 1.42  12 22.2 11.7 16.7 0.03  12 25.6 17.8 21.7 0.00 
13 7.8 1.7 4.4 0.00  13 20.0 16.1 17.8 0.13  13 27.8 17.2 22.8 0.00 
14 12.8 3.9 8.3 0.00  14 22.2 17.8 20.0 0.08  14 26.1 12.2 18.9 0.03 
15 11.7 2.8 7.2 0.00  15 20.0 7.8 13.9 0.00  15 25.0 12.8 18.9 0.00 
16 11.1 0.6 6.1 0.00  16 6.7 -1.1 3.3 0.00  16 25.0 16.1 20.6 0.00 
17 7.2 -2.2 2.2 0.00  17 16.1 -2.2 6.7 0.00  17 25.0 12.8 18.9 0.03 
18 12.8 -3.3 4.4 0.00  18 20.0 6.1 13.3 0.00  18 18.9 12.2 15.6 1.02 
19 16.7 -1.1 7.8 0.00  19 21.7 11.1 16.7 0.61  19 25.0 11.7 18.3 0.00 
20 22.2 12.8 17.8 0.00  20 13.9 10.0 12.2 10.82  20 17.2 11.1 14.4 0.00 
21 26.7 8.9 18.9 0.00  21 13.9 10.0 12.2 2.69  21 18.9 7.2 13.3 0.00 
22 12.8 5.6 9.4 0.00  22 18.9 10.0 14.4 0.28  22 16.1 7.8 12.2 0.30 
23 3.9 -2.2 1.1 0.00  23 23.9 5.0 15.6 0.00  23 22.2 6.1 14.4 0.00 
24 7.8 -3.3 2.2 0.00  24 6.1 0.0 3.3 0.15  24 23.9 10.6 17.2 0.03 
25 7.8 3.9 5.6 0.03  25 0.6 -2.2 -1.1 0.13  25 22.8 13.9 18.3 1.35 
26 6.7 1.7 4.4 0.74  26 2.8 -1.1 1.1 0.00  26 17.8 11.7 14.4 0.15 
27 11.7 3.9 7.8 0.00  27 8.9 1.7 5.6 0.00  27 25.0 10.6 17.8 0.03 
28 21.1 8.9 15.0 0.05  28 10.6 5.6 7.8 0.00  28 17.2 8.9 13.3 0.00 
29 17.2 8.9 13.3 0.00  29 -17.8 -17.8 -17.8 0.00  29 13.9 3.9 8.9 0.00 
30 10.6 7.8 8.9 0.00        30 17.8 0.6 8.9 0.00 
31 17.8 8.9 13.3 0.00               31 22.2 6.1 14.4 0.00 
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Table A30. Meteorological data for April through June 2003 for College Station, Texas. 
      Temperature       Temperature     Temperature 

Date Max Min Avg Pptn. †   Date Max Min Avg Pptn.   Date Max Min Avg Pptn. 
   mm  May         ºC       mm  June             ºC   mm April         ºC    

1 23.9 10.0 16.7 0.00  1 31.1 17.8 24.4 0.05  1 35.0 21.1 27.8 0.00 
2 23.9 12.8 18.3 0.00  2 30.6 17.2 23.3 0.00  2 33.9 22.8 28.3 0.13 
3 23.9 15.6 20.0 0.00  3 27.8 22.8 25.6 0.00  3 35.6 22.2 27.8 0.00 
4 27.2 18.9 23.3 0.00  4 30.0 22.8 26.7 0.00  4 28.9 20.6 24.4 0.33 
5 28.9 18.9 23.9 0.00  5 30.6 22.8 26.7 0.00  5 26.1 18.9 22.2 2.16 
6 25.6 18.9 22.2 0.08  6 30.6 23.9 27.2 0.05  6 28.9 20.0 24.4 0.00 
7 28.9 17.8 23.3 0.03  7 32.8 23.9 28.3 0.00  7 31.7 17.8 24.4 0.00 
8 17.8 7.8 13.9 0.00  8 32.8 25.0 28.9 0.00  8 30.0 20.0 25.0 0.03 
9 18.9 2.8 11.1 0.00  9 32.8 22.8 27.8 0.00  9 33.9 20.0 26.7 0.00 

10 22.8 2.2 12.8 0.00  10 32.2 22.8 27.2 0.00  10 32.8 25.0 28.9 0.00 
11 25.0 10.6 17.8 0.00  11 28.9 17.8 23.3 0.03  11 36.1 25.6 30.6 0.00 
12 27.8 11.1 18.9 0.00  12 25.0 18.9 22.2 0.15  12 33.9 20.0 26.7 1.91 
13 27.8 12.2 20.0 0.00  13 32.8 17.8 25.6 0.00  13 32.8 20.0 25.6 5.08 
14 27.8 15.0 21.7 0.00  14 32.8 22.2 27.8 0.00  14 31.7 18.9 25.6 0.53 
15 27.8 17.8 22.2 0.00  15 32.8 22.8 27.8 0.00  15 27.8 17.8 22.8 2.62 
16 30.0 17.8 23.9 0.00  16 35.0 20.6 27.8 1.09  16 31.1 21.7 26.7 0.08 
17 28.9 17.2 22.2 0.00  17 30.6 17.8 23.3 0.03  17 30.6 20.6 25.6 0.00 
18 28.9 18.9 23.3 0.00  18 32.2 16.7 24.4 0.00  18 31.7 21.1 26.7 0.00 
19 23.9 20.0 22.2 0.03  19 33.9 21.1 27.8 0.00  19 32.8 22.2 27.8 0.00 
20 23.9 17.2 20.0 0.00  20 32.2 17.2 23.9 0.00  20 30.6 22.8 24.4 0.00 
21 27.2 17.2 22.2 0.00  21 26.7 17.2 22.2 0.08  21 32.8 23.9 28.3 0.00 
22 22.8 13.9 17.8 0.33  22 28.9 17.8 23.3 0.00  22 33.9 23.9 28.9 0.00 
23 26.7 17.8 21.7 0.00  23 31.1 17.8 24.4 0.00  23 35.0 25.6 30.0 0.00 
24 32.8 21.7 27.2 0.00  24 32.2 20.6 26.1 0.00  24 33.9 23.9 28.9 0.00 
25 27.8 16.1 22.8 0.00  25 30.6 18.9 24.4 0.00  25 35.0 23.9 29.4 0.00 
26 28.9 13.9 21.1 0.00  26 31.1 21.7 26.1 0.00  26 32.8 22.8 27.8 3.71 
27 30.6 15.6 22.8 0.00  27 28.9 20.6 24.4 0.00  27 32.2 22.8 26.7 0.00 
28 27.8 16.7 22.2 0.00  28 30.0 15.6 23.3 0.00  28 32.8 22.2 27.8 0.00 
29 27.8 17.2 22.2 0.00  29 33.9 16.1 25.0 0.00  29 32.8 22.8 27.8 0.00 
30 28.9 18.9 23.9 0.00  30 37.2 20.6 31.7 0.00  30 32.8 22.8 27.8 0.00 

            31 36.1 21.7 28.9 0.00             
†Pptn = precipitation (mm) 
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Table A31. Meteorological data for July through September 2003 for College Station, Texas. 
      Temperature       Temperature     Temperature 

Date Max Min Avg Pptn. †   Date Max Min Avg Pptn.   Date Max Min Avg Pptn. 
   mm  August         ºC       mm  Sept.             ºC   mm July         ºC    

1 33.9 23.9 28.9 0.00  1 35.6 23.9 29.4 0.00  1 30.0 23.9 26.7 0.00 
2 33.9 22.2 27.8 0.00  2 35.6 23.9 30.0 0.00  2 30.0 22.8 26.7 0.56 
3 32.8 22.8 27.8 0.84  3 35.0 25.0 29.4 0.00  3 30.0 22.8 25.6 7.11 
4 30.0 22.2 25.6 2.72  4 36.7 22.8 29.4 0.00  4 32.8 22.8 27.8 0.03 
5 31.1 22.8 26.7 0.05  5 36.1 23.9 30.0 0.00  5 31.7 22.8 27.2 0.00 
6 32.8 23.9 28.3 0.51  6 36.7 23.9 30.0 0.00  6 31.1 17.8 24.4 0.00 
7 32.2 22.8 27.2 0.30  7 38.9 23.9 31.1 0.00  7 30.6 16.1 23.3 0.00 
8 32.2 22.8 27.2 0.33  8 38.9 25.6 32.2 0.00  8 30.0 17.8 23.9 0.00 
9 32.2 22.8 26.7 0.48  9 33.9 23.9 28.9 0.00  9 32.2 18.9 25.6 0.00 

10 32.8 22.8 27.8 0.03  10 36.7 23.9 30.0 0.00  10 32.8 22.8 27.8 0.28 
11 32.8 21.1 27.2 3.61  11 33.9 20.6 27.2 1.55  11 32.8 20.0 25.6 4.93 
12 32.8 22.2 27.8 0.03  12 30.0 20.6 25.6 0.25  12 27.8 20.0 23.3 1.40 
13 33.9 23.9 28.3 0.00  13 31.7 20.0 25.6 0.00  13 32.2 18.9 25.6 0.00 
14 33.9 23.9 28.9 0.00  14 32.2 22.8 27.2 0.08  14 28.9 20.6 24.4 0.00 
15 28.9 23.9 26.7 0.20  15 35.6 22.8 28.9 0.00  15 30.6 17.8 23.9 0.00 
16 31.7 23.9 27.8 0.84  16 36.7 25.0 30.6 0.00  16 31.7 20.6 26.7 0.00 
17 33.9 22.8 27.8 0.00  17 36.1 23.9 30.0 0.00  17 31.1 18.9 24.4 0.03 
18 33.9 22.8 27.8 0.00  18 36.7 25.0 30.0 0.00  18 26.7 21.1 24.4 0.25 
19 32.8 23.9 28.3 0.00  19 36.1 23.9 30.0 0.00  19 28.9 20.6 24.4 0.00 
20 33.9 22.8 28.3 0.00  20 36.1 23.9 30.0 0.00  20 27.8 20.0 23.9 0.00 
21 35.6 23.9 30.0 0.00  21 36.7 22.2 28.9 5.38  21 22.8 20.0 21.7 1.32 
22 35.6 23.9 29.4 0.00  22 32.2 22.2 26.7 0.00  22 28.9 18.9 23.9 0.00 
23 30.6 21.7 26.1 0.41  23 33.9 22.8 28.9 0.00  23 30.6 17.2 23.9 0.03 
24 32.8 23.9 27.8 0.00  24 35.6 22.8 28.9 0.00  24 27.8 20.0 24.4 0.00 
25 33.9 22.8 28.3 0.00  25 35.6 23.9 30.0 0.00  25 30.6 20.0 25.0 0.00 
26 35.0 22.8 28.3 0.00  26 35.0 23.9 29.4 0.00  26 23.9 20.0 22.2 0.00 
27 33.9 22.8 28.3 0.00  27 35.6 23.9 29.4 0.00  27 31.7 18.9 25.0 0.00 
28 35.0 22.8 28.3 0.00  28 35.6 25.0 30.0 0.00  28 28.9 17.8 23.9 0.00 
29 35.6 22.8 28.9 0.00  29 35.0 23.9 29.4 0.00  29 26.7 15.0 21.1 0.00 
30 35.6 23.9 29.4 0.00  30 33.9 23.9 28.9 0.00  30 26.1 12.8 20.0 0.00 
31 35.6 23.9 29.4 0.00   31 26.1 22.8 24.4 3.76             

†Pptn = precipitation (mm) 
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Table A32. Meteorological data for October through December 2003 for College Station, Texas. 
      Temperature       Temperature     Temperature 

Date Max Min Avg Pptn. †   Date Max Min Avg Pptn.   Date Max Min Avg Pptn. 
   mm  Nov.         ºC       mm  Dec.             ºC   mm Oct.         ºC    

1 27.2 13.9 20.6 0.00  1 27.2 18.9 23.3 0.00  1 22.8 12.8 17.8 0.00 
2 25.0 16.1 20.0 0.00  2 27.8 20.0 23.9 0.00  2 20.6 9.4 15.0 0.00 
3 26.7 12.8 19.4 0.00  3 26.7 20.0 23.3 0.00  3 23.9 10.0 17.2 0.00 
4 28.9 12.8 21.1 0.00  4 26.7 20.0 23.3 0.00  4 18.3 6.1 12.2 0.00 
5 30.0 18.9 23.9 5.99  5 27.8 18.9 23.3 0.00  5 13.9 3.3 8.9 0.00 
6 27.2 18.9 22.2 2.06  6 20.0 11.7 16.1 0.00  6 11.1 -1.7 5.0 0.00 
7 27.8 18.9 23.3 0.00  7 12.2 10.6 11.7 0.00  7 17.8 1.1 9.4 0.00 
8 28.9 21.7 24.4 0.00  8 13.9 10.0 12.2 0.08  8 23.9 8.9 16.7 0.00 
9 23.9 20.6 22.2 7.65  9 15.6 11.1 13.3 0.15  9 22.2 7.8 15.0 0.23 

10 25.6 18.9 22.2 0.03  10 26.1 10.0 18.3 0.00  10 13.9 1.1 7.8 0.00 
11 27.8 17.8 23.3 0.00  11 27.8 20.6 24.4 0.69  11 15.6 0.0 7.8 0.00 
12 27.8 20.6 23.3 0.00  12 28.9 20.6 25.0 0.00  12 15.0 9.4 12.2 1.91 
13 28.9 21.7 24.4 0.00  13 22.2 13.9 18.3 0.08  13 9.4 1.1 5.6 0.00 
14 25.6 12.8 20.0 0.03  14 22.2 9.4 16.1 0.00  14 16.1 -2.2 7.2 0.00 
15 25.0 11.7 18.3 0.00  15 27.2 15.6 21.7 0.10  15 22.8 7.8 15.6 0.00 
16 28.9 13.9 21.1 0.00  16 27.8 18.3 23.3 5.31  16 17.2 2.8 10.0 0.00 
17 27.8 15.6 22.2 0.00  17 23.3 20.0 21.7 3.35  17 17.2 -2.2 7.8 0.00 
18 25.6 12.8 18.9 0.00  18 22.2 10.6 16.7 0.13  18 18.3 0.6 9.4 0.00 
19 26.7 12.8 20.0 0.00  19 22.2 6.7 14.4 0.00  19 17.8 0.6 9.4 0.00 
20 27.8 12.8 20.0 0.00  20 23.9 7.2 15.6 0.00  20 17.8 0.0 8.9 0.00 
21 28.9 13.9 21.1 0.00  21 25.0 11.1 18.3 0.00  21 22.2 7.8 15.0 0.00 
22 31.7 12.8 22.8 0.00  22 26.7 16.1 21.7 0.00  22 23.9 11.1 17.8 0.15 
23 32.2 15.0 22.8 0.00  23 22.2 4.4 13.3 0.08  23 16.1 3.3 10.0 0.03 
24 28.9 16.7 22.8 0.00  24 11.1 0.6 6.1 0.00  24 16.1 -1.1 7.8 0.00 
25 27.8 15.0 22.2 1.30  25 17.8 0.6 9.4 0.00  25 16.7 5.0 11.1 0.00 
26 15.6 11.7 13.3 0.25  26 22.8 13.9 18.3 0.00  26 21.1 11.1 16.1 0.00 
27 21.7 10.0 15.6 0.00  27 22.8 8.9 16.1 0.00  27 25.0 16.7 21.1 0.00 
28 26.7 8.9 17.8 0.00  28 16.1 2.8 9.4 0.00  28 18.9 6.7 12.8 0.79 
29 26.7 12.2 19.4 0.00  29 17.2 -0.6 8.3 0.00  29 14.4 1.1 7.8 0.00 
30 28.9 16.7 22.8 0.00  30 22.2 5.6 13.9 0.00  30 16.1 -0.6 7.8 0.00 
31 28.9 21.7 25.6 0.03               31 20.0 5.0 12.8 0.00 

†Pptn = precipitation (mm) 
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                        Table A33. Long-term meteorological data for January for College Station, Texas. 
Temperature       

   Avg. Avg.               Record Date of Record Date of 
Date Sunrise Sunset High Low Mean High Record Low Record 

      ºC Year °C Year Jan. A.M. P.M.
1 7:23 17:36 15 4 9 27 1952 -8 1979 
2 7:23 17:36 15 4 9 26 1982 -11 1979 
3 7:23 17:37 15 4 9 27 1971 -7 1979 
4 7:23 17:38 14 4 9 26 1957 -9 1959 
5 7:24 17:39 14 4 9 24 1956 -7 1972 
6 7:24 17:39 14 4 9 28 1989 -6 1970 
7 7:24 17:40 14 4 9 28 1978 -9 1970 
8 7:24 17:41 14 3 9 27 1957 -9 1976 
9 7:24 17:42 14 3 9 27 1957 -7 1962 

10 7:24 17:43 14 3 9 27 1963 -10 1962 
11 7:24 17:43 14 3 9 27 1971 -13 1982 
12 7:24 17:44 14 3 9 25 1952 -14 1973 
13 7:24 17:45 14 3 9 26 1952 -8 1982 
14 7:24 17:46 14 3 9 26 1971 -12 1982 
15 7:23 17:47 14 3 9 26 1952 -5 1963 
16 7:23 17:48 14 3 9 26 1952 -6 1982 
17 7:23 17:49 14 3 9 26 1952 -9 1982 
18 7:23 17:49 14 3 9 26 1952 -6 1957 
19 7:23 17:50 14 3 9 26 1952 -8 1984 
20 7:22 17:51 14 3 9 27 1954 -7 1963 
21 7:22 17:52 14 3 9 26 1982 -9 1985 
22 7:22 17:53 14 3 9 27 1969 -8 1954 
23 7:21 17:54 14 3 9 30 1972 -7 1963 
24 7:21 17:55 14 3 9 27 1971 -9 1963 
25 7:20 17:55 15 4 9 29 1971 -4 1963 
26 7:20 17:56 15 4 9 27 1952 -2 1988 
27 7:20 17:57 15 4 9 28 1972 -6 1963 
28 7:19 17:58 15 4 9 26 1982 -4 1979 
29 7:19 17:59 15 4 9 27 1975 -6 1966 
30 7:18 18:00 15 4 10 29 1971 -8 1966 
31 7:17 18:01 15 4 10 27 1975 -7 1985 
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                      Table A34. Long-term meteorological data for February for College Station, Texas. 
      Temperature 
   Avg. Avg.                Record Date of Record Date of 

Date Sunrise Sunset High Low Mean High Record Low Record 
        °C Year °C Year Feb. A.M. P.M. 

1 7:17 18:02 15 4 10 28 1963 -7 1985 
2 7:16 18:02 16 4 10 27 1974 -10 1985 
3 7:16 18:03 16 4 10 25 1976 -6 1985 
4 7:15 18:04 16 4 10 28 1957 -9 1996 
5 7:14 18:05 16 4 10 27 1957 -6 1989 
6 7:13 18:06 16 4 11 27 1969 -7 1989 
7 7:13 18:07 16 4 11 26 1957 -6 1967 
8 7:12 18:07 16 4 11 28 1994 -6 1971 
9 7:11 18:08 16 4 11 30 1960 -6 1979 

10 7:10 18:09 16 4 11 30 1954 -5 1973 
11 7:09 18:10 16 5 11 27 1976 -8 1981 
12 7:09 18:11 17 5 11 27 1962 -7 1988 
13 7:08 18:12 17 5 11 27 1962 -6 1958 
14 7:07 18:12 17 5 11 28 1956 -2 1963 
15 7:06 18:13 17 5 11 28 1957 0 1958 
16 7:05 18:14 17 6 12 29 1982 -3 1958 
17 7:04 18:15 17 6 12 32 1982 -4 1980 
18 7:03 18:16 17 6 12 32 1986 -3 1978 
19 7:02 18:16 18 6 12 32 1986 -6 1978 
20 7:01 18:17 18 6 12 35 1986 0 1955 
21 7:00 18:18 18 6 12 37 1996 -2 1978 
22 6:59 18:19 18 6 12 36 1996 -3 1978 
23 6:58 18:19 18 6 13 32 1996 -2 1967 
24 6:57 18:20 18 7 13 29 1977 -5 1965 
25 6:56 18:21 18 7 13 29 1954 -6 1974 
26 6:55 18:22 19 7 13 31 1954 -4 1960 
27 6:54 18:22 19 7 13 27 1996 -1 1977 
28 6:53 18:23 19 7 13 29 1978 -2 1962 
29 6:52 18:24 19 7 13 28 1988 -3 1984 

 
 



 

 

174

                      Table A35. Long-term meteorological data for March for College Station, Texas. 
      Temperature 
   Avg. Avg.  Record Date of Record Date of 

Date Sunrise Sunset High Low Mean High Record Low Record 
        °C Year °C Year March A.M. P.M. 

1 6:52 18:24 19 7 14 28 1953 -4 1980 
2 6:50 18:24 19 8 14 30 1956 -7 1980 
3 6:49 18:25 19 8 14 28 1976 -5 1980 
4 6:48 18:26 20 8 14 28 1976 -4 1965 
5 6:47 18:27 20 8 14 32 1991 -4 1989 
6 6:46 18:27 20 8 14 32 1991 -4 1989 
7 6:45 18:28 21 8 14 29 1974 -4 1989 
8 6:44 18:29 21 8 15 30 1974 -2 1996 
9 6:42 18:29 21 9 15 28 1974 -3 1996 

10 6:41 18:30 21 9 15 31 1954 -5 1996 
11 6:40 18:31 21 9 15 32 1955 1 1969 
12 6:39 18:31 21 9 16 31 1967 1 1983 
13 6:38 18:32 21 9 16 31 1971 -1 1968 
14 6:36 18:33 22 9 16 32 1967 -3 1993 
15 6:35 18:33 22 10 16 29 1977 -1 1999 
16 6:34 18:34 22 10 16 28 1971 1 1962 
17 6:33 18:35 22 10 16 31 1972 2 1959 
18 6:31 18:35 22 10 16 31 1982 1 1960 
19 6:30 18:36 22 11 17 32 1974 -2 1965 
20 6:29 18:37 22 11 17 32 1982 -4 1965 
21 6:28 18:37 22 11 17 28 1953 -1 1996 
22 6:26 18:38 23 11 17 34 1971 -1 1970 
23 6:25 18:38 23 11 17 33 1995 -1 1968 
24 6:24 18:39 23 11 17 29 1954 -1 1952 
25 6:23 18:40 23 11 17 29 1955 1 1955 
26 6:22 18:40 23 12 18 28 1956 -4 1955 
27 6:20 18:41 23 12 18 31 1984 -1 1955 
28 6:19 18:42 23 12 18 33 1971 -1 1955 
29 6:18 18:42 23 12 18 31 1960 2 1975 
30 6:17 18:43 24 12 18 32 1996 1 1975 
31 6:15 18:44 24 12 18 33 1982 -2 1987 
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                      Table A36. Long-term meteorological data for April for College Station, Texas. 
      Temperature 
   Avg. Avg.  Record Date of Record  

Date Sunrise Sunset High Low Mean High Record Low Date 
        °C Year °C Year April A.M. P.M. 

1 6:14 18:44 24 12 18 31 1974 3 1961 
2 6:13 18:45 24 13 18 31 1982 4 1970 
3 6:12 18:45 24 13 19 31 1988 -1 1987 
4 6:11 18:46 24 13 19 32 1958 3 1987 
5 6:09 18:47 24 13 19 32 1955 3 1973 
6 6:08 18:47 24 13 19 33 1960 3 1970 
7 6:07 18:48 24 13 19 32 1960 2 1996 
8 7:06 19:49 25 13 19 32 1989 5 1973 
9 7:05 19:50 25 13 19 34 1963 1 1973 

10 7:04 19:50 25 14 19 33 1963 -2 1973 
11 7:03 19:51 25 14 20 31 1987 3 1989 
12 7:01 19:51 25 14 20 31 1966 6 1957 
13 7:00 19:52 26 14 20 33 1996 3 1959 
14 6:59 19:53 26 14 20 32 1996 1 1980 
15 6:58 19:53 26 14 20 31 1954 4 1983 
16 6:57 19:54 26 14 21 32 1987 2 1961 
17 6:56 19:55 26 14 21 33 1987 2 1999 
18 6:55 19:55 26 15 21 34 1996 6 1999 
19 6:53 19:56 26 15 21 33 1987 4 1953 
20 6:52 19:56 26 15 21 33 1987 4 1953 
21 6:51 19:57 26 15 21 32 1996 8 1953 
22 6:50 19:58 26 15 21 31 1955 6 1959 
23 6:49 19:58 27 16 21 33 1958 7 1959 
24 6:48 19:59 27 16 21 32 1955 7 1968 
25 6:47 20:00 27 16 22 33 1996 8 1968 
26 6:46 20:00 27 16 22 33 1988 8 1952 
27 6:45 20:01 27 16 22 33 1987 8 1952 
28 6:44 20:02 27 16 22 34 1987 8 1973 
29 6:43 20:02 27 16 22 32 1959 8 1965 
30 6:42 20:03 27 16 22 32 1955 7 1996 
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           Table A37. Long-term meteorological data for May for College Station, Texas. 
      Temperature 
   Avg. Avg.  Record Date of Record Date of 

Date Sunrise Sunset High Low Mean High Record Low Record 
.         °C Year °C Year May A M. P.M. 

1 6:41 20:04 27 17 22 32 1955 9 1994 
2 6:40 20:04 27 17 22 35 1964 9 1967 
3 6:40 20:05 27 17 22 32 1971 7 1954 
4 6:39 20:06 28 17 23 35 1984 6 1954 
5 6:38 20:06 28 17 23 34 1984 8 1953 
6 6:37 20:07 28 17 23 36 1984 10 1957 
7 6:36 20:07 28 17 23 34 1984 9 1992 
8 6:35 20:08 28 17 23 33 1956 9 1982 
9 6:35 20:09 28 17 23 33 1952 8 1984 

10 6:34 20:09 28 18 23 33 1963 9 1961 
11 6:33 20:10 28 18 23 34 1967 7 1981 
12 6:32 20:11 28 18 23 34 1978 8 1960 
13 6:32 20:11 28 18 23 34 1984 9 1960 
14 6:31 20:12 29 18 24 34 1955 9 1971 
15 6:30 20:13 29 18 24 34 1978 11 1973 
16 6:30 20:13 29 18 24 34 1996 10 1967 
17 6:29 20:14 29 18 24 35 1996 11 1967 
18 6:29 20:15 29 18 24 34 1978 13 1976 
19 6:28 20:15 29 19 24 34 1960 12 1976 
20 6:28 20:16 29 19 24 35 1996 12 1981 
21 6:27 20:17 29 19 24 36 1996 12 1960 
22 6:27 20:17 29 19 24 36 1996 14 1967 
23 6:26 20:18 29 19 25 36 1996 13 1967 
24 6:26 20:18 30 19 25 36 1955 16 1967 
25 6:25 20:19 30 19 25 36 1996 15 1979 
26 6:25 20:20 30 19 25 36 1996 16 1979 
27 6:24 20:20 30 19 25 37 1958 13 1961 
28 6:24 20:21 31 20 26 37 1958 12 1961 
29 6:24 20:21 31 20 26 38 1996 14 1984 
30 6:24 20:22 31 20 26 35 1956 12 1984 
31 6:23 20:22 31 20 26 36 1958 13 1984 
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                      Table A38. Long-term meteorological data for June for College Station, Texas. 
      Temperature 
   Avg. Avg.  Record Date of Record Date of 

Date Sunrise Sunset High Low Mean High Record Low Record 
.         °C Year °C Year June A M. P.M. 

1 6:23 20:23 31 20 26 36 1958 13 1964 
2 6:23 20:24 31 21 26 36 1960 14 1964 
3 6:23 20:24 31 21 26 38 1960 12 1970 
4 6:22 20:25 31 21 26 38 1960 14 1970 
5 6:22 20:25 31 21 26 37 1960 13 1970 
6 6:22 20:26 31 21 26 38 1958 15 1970 
7 6:22 20:26 32 21 27 36 1958 17 1970 
8 6:22 20:26 32 21 27 37 1985 16 1983 
9 6:22 20:27 32 21 27 37 1958 14 1996 

10 6:22 20:27 32 21 27 37 1958 13 1955 
11 6:22 20:28 32 21 27 38 1953 14 1955 
12 6:22 20:28 32 21 27 38 1958 15 1955 
13 6:22 20:28 32 21 27 38 1996 16 1979 
14 6:22 20:29 32 22 27 38 1996 17 1979 
15 6:22 20:29 32 22 27 39 1960 16 1989 
16 6:22 20:29 32 22 27 38 1996 14 1989 
17 6:22 20:30 32 22 27 38 1996 16 1989 
18 6:22 20:30 32 22 27 39 1996 19 1988 
19 6:23 20:30 33 22 27 39 1996 19 1955 
20 6:23 20:31 33 22 28 39 1996 17 1976 
21 6:23 20:31 33 22 28 38 1960 16 1976 
22 6:23 20:31 33 22 28 38 1953 18 1961 
23 6:23 20:31 33 22 28 39 1953 18 1955 
24 6:24 20:31 33 22 28 38 1980 19 1974 
25 6:24 20:31 33 22 28 38 1958 15 1974 
26 6:24 20:32 33 22 28 39 1953 16 1974 
27 6:25 20:32 33 22 28 40 1980 16 1974 
28 6:25 20:32 33 22 28 38 1980 17 1974 
29 6:25 20:32 33 22 28 38 1980 17 1985 
30 6:26 20:32 33 22 28 38 1980 16 1985 
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                      Table A39. Long-term meteorological data for July for College Station, Texas. 
      Temperature 
   Avg. Avg.  Record Date of Record Date of 

Date Sunrise Sunset High Low Mean High Record Low Record 
.          °C Year °C Year July A M. P.M. 

1 6:26 20:32 33 22 28 39 1980 20 1985 
2 6:26 20:32 33 22 28 39 1980 21 1964 
3 6:27 20:32 33 22 28 38 1990 21 1961 
4 6:27 20:32 33 22 28 38 1952 21 1968 
5 6:28 20:31 33 23 28 39 1957 18 1968 
6 6:28 20:31 34 23 28 39 1956 18 1968 
7 6:29 20:31 34 23 28 39 1971 18 1968 
8 6:29 20:31 34 23 28 39 1956 19 1983 
9 6:30 20:31 34 23 28 38 1956 21 1968 

10 6:30 20:31 34 23 28 38 1954 21 1968 
11 6:31 20:30 34 23 28 40 1954 21 1972 
12 6:31 20:30 34 23 29 43 1954 21 1959 
13 6:32 20:30 34 23 29 38 1954 21 1953 
14 6:32 20:29 34 23 29 39 1980 17 1990 
15 6:33 20:29 34 23 29 39 1969 16 1967 
16 6:33 20:29 34 23 29 39 1978 14 1967 
17 6:34 20:28 34 23 29 39 1980 19 1990 
18 6:34 20:28 34 23 29 39 1980 19 1967 
19 6:35 20:27 34 23 29 39 1996 21 1974 
20 6:36 20:27 34 23 29 39 1996 20 1989 
21 6:36 20:26 34 23 29 39 1996 18 1989 
22 6:37 20:26 34 23 29 39 1996 18 1988 
23 6:37 20:25 34 23 29 41 1996 18 1988 
24 6:38 20:25 34 23 29 41 1954 21 1970 
25 6:39 20:24 34 23 29 39 1954 21 1989 
26 6:39 20:24 34 23 29 41 1954 21 1959 
27 6:40 20:23 34 23 29 40 1954 22 1975 
28 6:41 20:22 34 23 29 41 1995 18 1994 
29 6:41 20:22 35 23 29 39 1960 18 1994 
30 6:42 20:21 35 23 29 39 1957 21 1954 
31 6:42 20:20 35 23 29 39 1958 20 1971 
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                      Table A40. Long-term meteorological data for August for College Station, Texas. 
      Temperature 
   Avg. Avg.  Record Date of Record Date of 

Date Sunrise Sunset High Low Mean High Record Low Record 
            °C Year °C Year August A.M. P.M. 

1 6:43 20:19 35 23 29 39 1958 19 1971 
2 6:44 20:19 35 23 29 39 1958 20 1994 
3 6:44 20:18 35 23 29 40 1951 20 1973 
4 6:45 20:17 35 23 29 42 1951 19 1976 
5 6:46 20:16 35 23 29 41 1951 19 1973 
6 6:46 20:15 35 23 29 41 1951 21 1957 
7 6:47 20:15 35 23 29 41 1988 19 1961 
8 6:47 20:14 35 23 29 41 1988 20 1990 
9 6:48 20:13 35 23 29 42 1962 17 1989 

10 6:49 20:12 35 23 29 42 1962 16 1989 
11 6:49 20:11 35 23 29 41 1969 19 1989 
12 6:50 20:10 35 23 29 40 1951 18 1967 
13 6:50 20:09 34 23 29 41 1951 16 1967 
14 6:51 20:08 34 23 29 41 1951 16 1967 
15 6:52 20:07 34 23 29 41 1951 19 1967 
16 6:52 20:06 34 23 29 42 1951 18 1992 
17 6:53 20:05 34 23 29 42 1951 17 1992 
18 6:54 20:04 34 22 29 39 1978 16 1992 
19 6:54 20:03 34 22 29 40 1999 21 1976 
20 6:55 20:02 34 22 28 42 1999 18 1953 
21 6:55 20:01 34 22 28 39 1995 19 1961 
22 6:56 20:00 34 22 28 41 1980 18 1956 
23 6:57 19:59 34 22 28 41 1980 17 1961 
24 6:57 19:58 34 22 28 40 1980 17 1966 
25 6:58 19:57 34 22 28 39 1952 17 1961 
26 6:58 19:55 34 22 28 39 1999 18 1958 
27 6:59 19:54 33 22 28 40 1990 18 1970 
28 6:59 19:53 33 22 28 39 1995 16 1992 
29 7:00 19:52 33 22 28 39 1999 16 1992 
30 7:01 19:51 33 22 28 42 1954 17 1986 
31 7:01 19:50 33 22 28 41 1954 19 1986 
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                     Table A41. Long-term meteorological data for September for College Station, Texas. 
      Temperature 
   Avg. Avg.  Record Date of Record Date of 

Date Sunrise Sunset High Low Mean High Record Low Record 
              °C Year °C Year Sept. A.M. P.M. 

1 7:02 19:48 33 22 28 41 1985 19 1968 
2 7:02 19:47 33 22 27 40 1951 19 1955 
3 7:03 19:46 33 22 27 41 1951 16 1974 
4 7:04 19:45 33 21 27 39 1995 14 1974 
5 7:04 19:44 32 21 27 38 1963 13 1974 
6 7:05 19:42 32 21 27 38 1963 13 1974 
7 7:05 19:41 32 21 27 39 1963 17 1953 
8 7:06 19:40 32 21 27 37 1955 15 1957 
9 7:06 19:39 32 21 27 37 1985 15 1957 

10 7:07 19:37 32 21 27 38 1963 16 1957 
11 7:07 19:36 32 21 26 37 1963 16 1959 
12 7:08 19:35 31 21 26 37 1982 14 1959 
13 7:09 19:34 31 21 26 37 1965 13 1954 
14 7:09 19:32 31 20 26 37 1965 15 1960 
15 7:10 19:31 31 20 26 37 1954 12 1989 
16 7:10 19:30 31 20 26 37 1954 12 1989 
17 7:11 19:29 31 19 26 39 1995 13 1981 
18 7:11 19:27 31 19 26 37 1956 11 1981 
19 7:12 19:26 31 19 25 38 1956 10 1981 
20 7:13 19:25 30 19 25 38 1999 13 1981 
21 7:13 19:23 30 19 25 37 1957 12 1983 
22 7:14 19:22 30 19 24 36 1993 9 1983 
23 7:14 19:21 30 19 24 36 1993 8 1994 
24 7:15 19:20 29 18 24 36 1993 11 1975 
25 7:15 19:18 29 18 24 36 1954 7 1989 
26 7:16 19:17 29 18 24 37 1954 11 1975 
27 7:17 19:16 29 18 24 38 1953 12 1952 
28 7:17 19:14 29 18 24 38 1953 9 1967 
29 7:18 19:13 29 17 23 36 1953 8 1967 
30 7:18 19:12 29 17 23 37 1953 9 1984 
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                    Table A42. Long-term meteorological data for October for College Station, Texas. 
      Temperature 
   Avg. Avg.  Record Date of Record Date of 

Date Sunrise Sunset High Low Mean High Record Low Record 
               °C Year °C Year Oct. A.M. P.M. 

1 7:19 19:11 28 17 23 36 1953 6 1984 
2 7:20 19:09 28 17 23 36 1952 8 1984 
3 7:20 19:08 28 17 23 35 1954 8 1961 
4 7:21 19:07 28 17 23 37 1956 8 1975 
5 7:21 19:06 28 16 22 35 1955 8 1975 
6 7:22 19:05 28 16 22 36 1989 8 1953 
7 7:23 19:03 28 16 22 34 1990 8 1999 
8 7:23 19:02 28 16 22 35 1999 2 1952 
9 7:24 19:01 27 16 22 33 1954 4 1952 

10 7:25 19:00 27 16 22 34 1953 6 1990 
11 7:25 18:59 27 15 21 34 1991 7 1990 
12 7:26 18:57 27 15 21 36 1991 8 1977 
13 7:27 18:56 27 14 21 35 1954 4 1977 
14 7:27 18:55 27 14 21 33 1985 7 1969 
15 7:28 18:54 26 14 21 33 1962 7 1978 
16 7:29 18:53 26 14 21 34 1989 6 1954 
17 7:29 18:52 26 14 20 33 1993 6 1954 
18 7:30 18:51 26 14 20 33 1972 7 1976 
19 7:31 18:50 26 13 20 32 1958 3 1989 
20 7:31 18:49 26 13 20 32 1979 1 1989 
21 7:32 18:48 26 13 19 33 1979 2 1976 
22 7:33 18:46 25 13 19 33 1951 4 1952 
23 7:33 18:45 25 13 19 33 1988 4 1990 
24 7:34 18:44 25 13 19 32 1975 3 1952 
25 7:35 18:44 24 13 19 33 1992 3 1980 
26 7:36 18:43 24 12 19 33 1987 3 1957 
27 7:36 18:42 24 12 18 33 1995 1 1957 
28 7:37 18:41 24 12 18 31 1963 0 1957 
29 7:38 18:40 24 12 18 31 1991 4 1954 
30 7:39 18:39 24 12 18 32 1996 0 1993 
31 7:39 18:38 23 12 18 32 1977 -2 1993 
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                    Table A43. Long-term meteorological data for November for College Station, Texas. 
      Temperature 
   Avg. Avg.  Record Date of Record Date of 

Date Sunrise Sunset High Low Mean High Record Low Record 
                 °C Year °C Year Nov. A.M. P.M. 

1 6:40 17:38 23 12 18 31 1955 1 1991 
2 6:41 17:37 23 11 17 32 1955 -1 1951 
3 6:41 17:36 23 11 17 30 1987 -3 1951 
4 6:42 17:35 23 11 17 31 1987 -3 1991 
5 6:43 17:35 23 11 17 31 1963 -1 1991 
6 6:44 17:34 22 11 17 31 1989 -1 1959 
7 6:45 17:33 22 11 17 31 1988 -2 1993 
8 6:45 17:32 22 11 17 32 1989 -1 1959 
9 6:46 17:32 22 10 16 31 1988 -2 1991 

10 6:47 17:31 22 10 16 30 1995 1 1953 
11 6:48 17:31 22 10 16 30 1962 -1 1952 
12 6:49 17:30 21 9 16 30 1955 -1 1968 
13 6:50 17:29 21 9 16 31 1955 -1 1986 
14 6:51 17:29 21 9 16 31 1988 -2 1969 
15 6:51 17:28 21 9 16 31 1952 -3 1969 
16 6:52 17:28 21 9 15 30 1957 -3 1970 
17 6:53 17:27 21 9 15 28 1964 -2 1959 
18 6:54 17:27 20 9 15 29 1986 -4 1959 
19 6:55 17:27 20 9 14 30 1970 -2 1959 
20 6:56 17:26 20 8 14 29 1977 -3 1969 
21 6:57 17:26 20 8 14 28 1996 0 1975 
22 6:57 17:26 19 8 14 30 1955 0 1975 
23 6:58 17:25 19 8 14 28 1973 -5 1975 
24 6:59 17:25 19 8 14 29 1965 -3 1970 
25 7:00 17:25 19 8 14 30 1981 -2 1999 
26 7:01 17:25 19 8 13 30 1965 -3 1993 
27 7:02 17:24 19 7 13 28 1994 -7 1993 
28 7:02 17:24 18 7 13 28 1975 -4 1976 
29 7:03 17:24 18 7 13 27 1975 -7 1976 
30 7:04 17:24 18 7 13 26 1970 -6 1976 
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                    Table A44. Long-term meteorological data for December for College Station, Texas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      Temperature 
   Avg. Avg.  Record Date of Record Date of 

Date Sunrise Sunset High Low Mean High Record Low Record 
Dec. A.M. P.M.                  °C Year °C Year 

1 7:05 17:24 18 7 13 27 1954 -4 1979 
2 7:06 17:24 18 7 13 28 1995 -16 1971 
3 7:07 17:24 18 7 12 30 1995 -2 1974 
4 7:07 17:24 18 6 12 28 1954 -2 1989 
5 7:08 17:24 18 6 12 29 1995 -3 1990 
6 7:09 17:24 17 6 12 28 1951 -3 1999 
7 7:10 17:24 17 6 12 28 1933 -3 1984 
8 7:10 17:24 17 6 12 28 1994 -4 1990 
9 7:11 17:25 17 6 12 26 1985 -4 1978 

10 7:12 17:25 17 6 12 27 1983 -7 1978 
11 7:13 17:25 17 6 11 28 1987 -5 1957 
12 7:13 17:25 17 5 11 27 1956 -7 1957 
13 7:14 17:26 16 5 11 27 1995 -7 1989 
14 7:15 17:26 16 5 11 27 1995 -7 1985 
15 7:15 17:26 16 4 11 26 1995 -7 1989 
16 7:16 17:27 16 4 11 26 1957 -11 1989 
17 7:16 17:27 16 4 11 26 1990 -6 1972 
18 7:17 17:27 16 4 10 26 1980 -4 1979 
19 7:18 17:28 16 4 10 26 1957 -4 1975 
20 7:18 17:28 15 4 10 27 1951 -4 1973 
21 7:19 17:29 15 4 10 26 1970 -6 1973 
22 7:19 17:29 15 4 9 27 1981 -13 1989 
23 7:20 17:30 15 3 9 27 1955 -17 1989 
24 7:20 17:30 14 3 9 28 1955 -12 1989 
25 7:21 17:31 14 3 9 29 1955 -12 1983 
26 7:21 17:31 14 3 9 27 1988 -11 1983 
27 7:21 17:32 14 3 9 26 1971 -3 1983 
28 7:22 17:33 14 3 9 27 1984 -3 1983 
29 7:22 17:33 14 3 8 27 1984 -8 1983 
30 7:22 17:34 14 2 8 27 1951 -11 1983 
31 7:23 17:35 14 2 8 28 1951 -7 1976 
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Table A45. Localization of sites for the 2002 and 2003 field experiments. The 
coordinates for the four point of each site were established using a GPS Trimble 
Pathfinder Pro XRS with satellite differential corrections (DGPS). The accuracy is about 
1m. 
 

2002 Field Experiment 
TAMU† Experiment Station Farm 

  30º 33’ 09.421 N‡ 96º 25’ 23.575 W 
30º 33’ 08.872 N 96º 25’ 25.649 W 
30º 33’ 06.725 N 96º 25’ 24.961 W 
30º 33’ 07.353 N 96º 25’ 23.021 W 

  
TAMU Experiment Station Farm with Dekalb 687 

30º 32’ 07.147 N 96º 25’ 13.523 W 
30º 32’ 08.952 N 96º 25’ 11.518 W 
30º 32’ 09.922 N 96º 25’ 13.025 W 
30º 32’ 09.881 N 96º 25’ 13.013 W 

  
Field Experiment at Farmer’s Field 

30º 32’ 24.404 N 96º 28’ 49.625 W 
30º 32’ 25.830 N 96º 28’ 51.214 W 
30º 32’ 24.615 N 96º 28’ 52.615 W 
30º 32’ 23.198 N 96º 28’ 51.048 W 

  
2003 Field Experiment 

TAMU Experiment Station Farm 
30º 32’ 56.693 N 96º 25’ 55.887 W 
30º 32’ 55.361 N 96º 25’ 57.486 W 
30º 32’ 54.426 N 96º 25’ 56.461 W 
30º 32’ 55.881 N 96º 25’ 54.857 W 

† Texas A&M University. 
‡ Data are in grade, minutes and seconds, latitude north (N) and longitude west (W). 
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