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ABSTRACT 

 

Genotypic and Phenotypic Characterization of Maize Test Cross Hybrids Under Stressed 

and Non Stressed Conditions. (December 2005) 

Rosan Paterson Ganunga, B.Sc., University of Malawi; M.Sc., University of Zambia 

Chair of Advisory Committee: Dr. Javier Betrán 

 

Drought and low soil nitrogen are major factors limiting maize production in Sub-

Saharan Africa. Genotypic and phenotypic characterization of maize testcross hybrids 

developed from four biparental populations: CML441 x CML444, CML440 x COMPE, 

CML444 x K64R and CML312 x NAW was conducted. The objectives were (a) to 

evaluate the performance of F2:3 line testcrosses across stressed and non-stress 

conditions, (b) to estimate heritabilities for grain yield and secondary traits, (c) to assess 

the relationship between testing environments, (d) to estimate genetic correlations 

among relevant traits, (e) to estimate direct and indirect genetic gain from selection, and 

(e) to have a preliminary assessment of the efficiency of marker-assisted selection.  

Studies were conducted under no nitrogen fertilization, low nitrogen, drought, well- 

watered and high nitrogen in Malawi and Zimbabwe. About 100 entries from each 

population were tested using an alpha lattice design with two replications at all locations. 

Traits measured were grain yield, plant height, anthesis date, anthesis-silking interval, 

ears per plant, grain moisture at harvest and leaf senescence. 

 

Highest grain yield across environments was obtained from population CML444 x K64R 

(3.82 Mg ha-1) and the lowest from CML440 x COMPE (3.64 Mg ha-1).   Testcrosses 

from CML441 x CML444 and CML444 x K64R had higher heritability estimates  

compared to CML440 x COMPE and CML312 x NAW.  Drought and high nitrogen 

environments had higher heritability estimates than low nitrogen and well-watered 

conditions. Drought and well-watered environments discriminated testcrosses in a 

similar manner as well as high and low nitrogen environments. All populations had 

  



   iv

negative correlations between grain yield and anthesis silking interval, while positive 

correlations were observed between grain yield and ears per plant. No consistent 

differences were observed between overall means of best and worst marker based 

selected line testcrosses across populations and environments. Highest direct expected 

genetic gains were observed from high nitrogen environments. Direct selection under 

specific environments (e.g. drought ) was estimated to be more beneficial than indirect 

selection in other environments. 
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CHAPTER I 

INTRODUCTION 

 

Maize (Zea mays, L.) is the first world’s staple cereal food crop. It is Africa’s second 

most important food crop behind cassava. Per capita consumption of maize in Africa is 

highest in Eastern and Southern Africa. Maize consumption in Kenya, Tanzania, 

Malawi, Zambia, Zimbabwe and Swaziland averages over 100 kg per year (CIMMYT, 

1990), giving maize a similar position in terms of dietary importance in those countries 

to rice in Asia. Uses of maize are multiple: animal feeding, sweet corn (syrup), food uses 

including fresh (green maize boiled), as a thick porridge using maize flour, tortillas, 

making syrup and soft drinks (Nhlane, 1990; Smale, et al., 1994). Maize is grown almost 

everywhere in the world because it is adapted to a wide range of environmental 

conditions.  

 

Maize production is limited by several factors including low soil fertility, little or no use 

of inorganic fertilizers especially nitrogen, drought, use of unimproved traditional 

varieties, pests and diseases. Maize production can be variable, for example, in Eastern 

and Southern Africa, annual maize production averaged 16.2 million tons over the past 

twenty years, barely resulting in food self-sufficiency. During the same period, 

production levels fluctuated between 7.3 and 22.4 million tons in the same region 

indicating how variable and uncertain maize production can be (Banziger et al., 2000).  

In the Southern Africa Development Community (SADC) region, over one hundred 

million people live in the rural areas, in large households that farm 0.5 to 3.0 hectares. 

The average yield for maize grown in this region is 1.1 tons per hectare, but in drought-

affected years or on widespread, infertile areas farmers obtain less.  

 

__________ 

This dissertation follows the format and style of Crop Science. 
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Farmers are trapped in low-input, low risk, but low productivity systems because they 

are trying to deal with an unstable climate, declining soil fertility, rising population 

pressure, high input cost and poor credit systems (Banziger et al., 2000).  

Drought is one of the key factors that limit the productivity of maize in most parts of the 

world with Sub-Saharan Africa being the region that suffers from the greatest impact of 

drought in the world. On average, drought reduces maize yield by 36% in the lowland 

areas and 21% in subtropical areas, and affects about 23% of the total land area 

(CIMMYT, 1988). Drought affects maize grain yield to some degree at almost all the 

stages of crop growth. However, three stages i.e. early growth stage (when plant stand 

are established), flowering and mid-to late grain filling stage are considered critically 

sensitive stages for maize plant to drought. Among these stages, flowering is the most 

susceptible (Claassen and Shaw, 1970). Extreme sensitivity seems to be confined to the 

period minus two to twenty days after silking with a peak at seven days and almost 

complete barrenness can occur if the maize is stressed in the interval from just before 

tassel emergence to the beginning of grain fill (Grant et al., 1989).  Maize is more 

susceptible to drought at flowering than other rain fed crops because its female florets 

develop virtually at the same time and are usually borne on a single ear on a stem. 

Unlike other cereals, the male and female flowers in maize are separated by as much as 

one meter, and pollen and fragile stigmatic tissue are exposed to a dry and hostile 

atmosphere during pollination which limits pollination under drought. Drought at 

flowering is known to reduce the capacity of developing kernels to use available 

assimilates because the functioning of a key enzyme, acid invertase, is impaired 

(Westgate, 1997). Drought also affects the rate of photosynthesis, resulting in reduced 

supply of current assimilates. Since the developing silk is a weak sink, growth is delayed 

leading to an increase in the anthesis-silking interval, and kernel and ear abortion 

(Bolanos and Edmeades, 1996).  However, once the kernels are in the linear phase of 

biomass accumulation about two to three weeks after pollination, they develop the 

capacity to access reserve assimilate in different plant parts and they normally grow at 
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least 30% of the weight of the kernels on unstressed plants, even though drought may 

become more severe (Bolanos and Edmeades, 1996). 

 

Drought induced yield losses can be substantial, and researchers have been attempting to 

improve the tolerance of crops to limiting supplies of water for decades. Physiologists, 

breeders, biochemists, agronomists, and molecular biologists have all used specific tools 

from their disciplines to unravel the complexities of  drought response. Their efforts 

have resulted in increased knowledge of drought tolerance and genetic improvement for 

stress tolerance. For the past decade, the International Maize and Wheat Improvement 

Centre (CIMMYT) has conducted extensive research on screening and developing maize 

genotypes for drought tolerance using conventional methods. This has been 

accomplished by improving the locally adapted, elite germplasm for drought and low 

nitrogen tolerance, improving non-adapted but drought and/or low nitrogen tolerant 

populations for local adaptation, and formation of new breeding germplasm through 

introgression (Banziger, et al., 2000). This work has been conducted at CIMMYT-

Mexico, CIMMYT-Zimbabwe and CIMMYT-Kenya. Some success has been achieved,  

for example,  CIMMYT-Zimbabwe recently released ZM421, ZM521 and ZM621 open 

pollinated varieties (OPVs) which are tolerant to drought  and are grown in Malawi, 

South Africa, Tanzania and other countries in the SADC region (Banziger, 2002). 

  

In addition to drought, low soil fertility, especially nitrogen, is another factor limiting 

maize production in the tropics. Tropical soils themselves vary greatly, giving rise to 

differences in moisture and nitrogen at a single site within the same year. In contrast to 

drought, low nitrogen tolerance is a more predictable stress, since often one has prior 

knowledge of the soil nitrogen status. Nitrogen status levels too can be more easily 

adjusted through controlled fertilizer applications (Vasal et al., 1997). However, most 

farmers in the Sub-Saharan Africa region  use very little or no fertilizers at all because of 

high price. 
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The development of drought and low nitrogen tolerant varieties requires appropriate 

strategies. These range from the establishment of an appropriate selection environment, 

like the establishment of off-season nurseries, ability to control water and fertility levels, 

well trained personnel, and adequate equipment to evaluate parameters related to stress 

tolerance (Edmeades et al., 1999).  Although success has been accomplished using 

phenotypic breeding for drought and low nitrogen tolerance, the approach is faced with 

many challenges. Firstly, it is time consuming, laborious and expensive to screen and 

develop germplasm. Due to the polygenic nature of genes associated with drought 

tolerance, it is also difficult to introgress favorable genes for drought tolerance into one 

line or cultivar.  

 

Correlation measures the degree of association among traits and helps to ascertain the 

degree to which these are associated with economic productivity. This correlation has 

also implications in the magnitude of direct and indirect response to selection. The 

causes of correlations can be genetic and/or environmental (Hallauer and Miranda, 

1988). If genetic correlation exists, selection for one trait will cause changes in other 

traits. This is called correlated response. Correlations between characters have three 

main causes: pleiotrophy, genetic linkage and environment. Pleiotropic effects occur 

when the same gene or genes condition the expression of correlated traits. The genetic 

correlations arising from pleiotropy expresses the extent to which two characters are 

expressed by the same genes. This type of correlation is common in populations which 

have been randomly mated for a long time (Falconer, 1989). In contrast, linkage causes 

transient correlations which have can be broken by recombination. Environmental 

correlations reflect a similarity or dissimilarity in the response of a trait to a common 

environment (Falconer, 1989). This exists because measurements of several traits are 

taken from the same individual or from the same family. For example, a positive 

environmental correlation is expected to occur between plant height and ear height in the 

same plants because a microenvironment that favors plant height also favors ear height, 

and vice versa (Hallauer and Miranda, 1988). Genetic correlation is also determined by 
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genetic linkage. Linkage in coupling causes positive correlation, while repulsion causes 

negative correlation. The knowledge of the sign and magnitude of the correlation are 

both important for the understanding of the relationship between a quantitative character 

and the fitness in natural populations and for prediction of correlated responses to 

selection in breeding programs (Falconer, 1989).   Characters like grain yield have such 

complex inheritance and are associated with several secondary traits (Stuber and Moll, 

1996).   For example, selection for grain yield under drought and low nitrogen has been 

unsuccessful because of low heritability for this trait under these conditions and 

recommended the use of secondary traits which are correlated with grain yield (Bolaños 

and Edmeades, 1996). This means that the selection for one trait may cause an indirect 

response in another trait. Genetic correlations are reported to be more useful if indirect 

selection gives greater response than direct selection for the same trait (Hallauer and 

Miranda, 1988).  Phenotypic correlations between two traits are due to genetic and 

environmental effects. If the heritability of the traits are low, the phenotypic correlation 

is due to environmental effects. 

 

The effectiveness of selection also depends on the relative importance of genetic and non 

genetic factors in the expression of phenotypic differences in a population which is 

called heritability (Fehr, 1993). The heritability of a trait affects the method chosen for 

population improvement. For example, traits with high heritabilities can be easily 

improved with single plant selection and less evaluation, while those with low 

heritabilities require family selection and wider testing (Hallauer and Miranda, 1988).  

This shows that heritability estimates also determine the extent to which replicated 

testing is required for selection to be effective. However, heritability estimates are not 

always a constant value. Because they are affected by so many factors, they can be 

controlled by the breeder in order to maximize genetic improvement with the available 

resources.  So, any precautions a breeder takes to control the experimental error, will 

improve the heritability of a character (Fehr, 1993). These factors include the 

environment where the population was tested, reference population used, sample of 
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genotypes evaluated, use of random samples, method of calculation be it on plot or 

family basis, and the generation or progenies used because different progenies exploit 

different proportions of additive and dominance variance components. For example, 

heritability estimates for the same trait decrease depending on the family used in the 

following order S2 > S1 > half-sib > full-sib (Hallauer and Miranda, 1988).  

 

The development of molecular markers has contributed extensively to the understanding 

of the genetic diversity of the maize genome, and facilitated the study of past selection 

history, genetic drift, recombination, heritability, estimation of genetic relationships 

between inbreds and the extent of haplotype sharing within diverse groups of maize 

inbreds. The identification of quantitative trait loci (QTLs) uses both phenotypic and 

genotypic data. Unfortunately, large numbers of genes will fall within the same 

chromosomal segments where QTLs are located. The identification of key genes 

responsible for drought tolerance would facilitate the potential of marker assisted 

selection. Molecular tools can assist in selection in the following ways: (a) allow 

selection outside the target environment, (b) reduce linkage drag during backcrossing, 

(c) select transgressive segments, and (d) transfer genomic regions associated with a 

quantitative trait to elite backgrounds.  For the past decade, the International Maize and 

Wheat Improvement Center (CIMMYT) has conducted mapping of QTLs for drought 

tolerance in several populations. These mapping studies have allowed the identification 

of QTLs consistent across mapping populations and environments (Ribaut et al., 2004). 

Hence, it is possible to select genotypes based on the marker allele composition at these 

QTLs. This constitutes the foundation of this dissertation. 

 

Rationale and objectives 

Drought, low nitrogen, pests and diseases, weeds (Striga) and low pH are common 

problems that limit maize production in Africa. In an effort to solve these problems, 

scientists in Africa established sites where they are screening and selecting against 
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different stresses (Fig.1). In this scenario, there are several issues that affect maize 

improvement for stress tolerance: 

 

 Genetic gain in plant breeding depends on the heritability of the target trait(s) 

under the target environment. 

 Little is known about heritability and correlations between grain yield and other 

traits under drought and low N stress conditions. 

 Estimating the relationship between optimal and stress environments will 

facilitate breeding for tolerance and broad adaptation. 

 Marker assisted selection (MAS) can assist breeders in selecting for stress 

tolerance. 

 

It is therefore important that African farmers should have varieties which are tolerant to 

drought and low nitrogen because these are the conditions prevailing within their 

farming environment. An enhanced knowledge about the issues listed above will 

facilitate the development of these varieties. The objectives of this study were:  

 

(a) To evaluate the performance of F2:3 test crosses across stressed and optimal 

conditions. 

(b) To estimate heritabilities for grain yield and secondary traits. 

(c) To assess the relationship between testing environments. 

(d) To estimate genetic correlations among relevant traits. 

(e) To estimate direct and indirect response to selection.  

(f) Have a preliminary assessment of the efficiency of MAS.  
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Source: Vivek, et al., 2004. 
 

CHAPTER II 
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Fig. 1. Managed stress testing sites for drought, low N, low pH,  stem borers and Striga in Africa.
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CHAPTER II 

REVIEW OF LITERATURE 

Maize in Africa 

 

Maize was introduced in Africa by the Portuguese explorers in the beginning of the 16th 

century (Reader, 1997). It has since become Africa’s second largest important crop after 

cassava. Maize is grown over a wide range of environmental and geographical regions 

ranging from lowland (Niger’s northern Sahel), mid-altitude and Ethiopia’s sub-tropical 

highland environments to converted forest lands of Sierra Leone (Zaidi, 2004). The 

popularity of maize as a food crop developed because of low labor requirement and ease 

of processing compared to sorghum and millet which were common crops. In Southern 

Africa, palatability is considered to be the major factor that contributed to the increase in 

maize production. 

 

 Maize production in Africa is mostly done by poor resource smallholder farmers who 

are characterized by fragmented small land holdings (3 ha or less) and low input 

agriculture. In Eastern and Southern Africa alone (South Africa, Lesotho, Botswana, 

Swaziland, Mauritius, Democratic Republic of Congo, Seycheles, Mocambique, Zambia, 

Malawi, Tanzania, Angola,  Kenya, Ethiopia, Rwanda, Uganda and Burundi) more than 

250 million people derive their food and income from maize with an average yield of 1.1 

metric tons per hectare (CIMMYT-Zimbabwe, 2000). In this region, rate of growth for 

maize production has reduced from the 1980s to the 1990s (Table 1). This is probably 

because  Southern Africa is one of the most variable in terms of production  as it faces a 

lot of variability  due to environmental conditions and limited resource use.  From table 

1, the general decline of maize production in Southern Africa from the 1980s to the 

1990s is due to increased number of production constraints, including low soil fertility 

and drought, little or no use of inorganic fertilizers, resurgence of new pests and 

diseases. As a result, yield stability across seasons has not been achieved despite it being 

a goal for most governments. 
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Table 1. Rate of growth (%) of maize production in Africa per region. 
 
Region 1970-1979 1980-1989 1990-1997 
West Africa -2.2 15.4 2.3 
East Africa 5.9 0.0 -1.6 
Southern Africa 4.1 7.2 3.9 
Africa 2.4 7.3 0.5 
Source: FAO (1998). 

 
 

Maize is consumed in multiple forms in different parts of the world. In Africa, maize 

(mainly white grained) is the staple food crop for most of the countries. This means that 

stable and sustainable yields must be maintained in order to achieve food self 

sufficiency. However, this has not been achieved because population growth rate 

exceeds food production, resulting in net food deficit. In most Southern African 

countries, maize is mainly consumed as a thick porridge produced from maize flour 

which is produced by hand pounding (usually preceded by soaking) or grinding in a 

hammer mill, followed by boiling.  It is also eaten fresh as a snack (boiled green maize). 

This form of consumption fetches more income per unit area of maize compared to dried 

grain. Despite this attraction, farmers mostly sell green maize grown from off season 

production after they have harvested the dried grain from the main season. Dried maize 

grain is either hand pounded or milled and used to prepare a soft porridge eaten for 

breakfast, or a thick porridge eaten at lunch and diner. In countries like Malawi, Zambia, 

Mozambique, Kenya, Tanzania, Zimbabwe and South Africa, maize is mostly hand 

pounded in a mortar,  soaked for at least three days, dried and milled to produce fine and 

white maize flour which is used to prepare a thick porridge called nsima, mshima, nsima, 

ugali, ugali, sadza and papa, respectively (same thing with different names). This is 

eaten with relish (beans, vegetables, meat or fish).  In Uganda the thick porridge is 

wrapped in banana leaves and heated again before it is eaten. Where hand pounding is 

common, households prefer those harder, flint-type varieties whose endosperm and 

embryo can be milled together. In contrast, households and commercial grain milling 

companies that mill their grain generally prefer dent varieties because flour extraction is 

higher. Dry maize grain is also roasted and eaten as a snack or as pop corn. 
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In West Africa, dry maize is processed to produce soft flour used to make porridge 

which is mixed with milk and sugar. The flour is also mixed with water and steamed at 

least three times to produce cous-cous which is eaten with sauce (beef, vegetables or 

beans). Alternatively, the flour is boiled with water to produce a very thick porridge and 

eaten with sauce (Karim Triori, personal communication).  

 

In North Africa, e.g., Egypt, a maize flat bread called aish merahra is widely consumed. 

This is made from a soft dough spiced by 5% fenugreek seeds, aimed to increase the 

protein content and digestibility and increase the shelf life of the bread. Aish merahra 

can easily keep fresh for seven to ten days. In almost all parts of Africa, maize is also 

used for production of different types of beer, which are produced by germinating the 

seed for several days followed by exposing the grain to the sun to stop the germination 

process, then milling the germinated grain. In Malawi for example, the malt is cooked 

and the extract is strained off, cooled and allowed to stand for three days for 

fermentation to take place, after which the product is ready for consumption as beer 

(FAO, 1989).       

 

Problems with maize production in Africa 

 

Most farmers in Africa produce higher maize yields per unit area than sorghum and 

millet, possibly because maize is mostly grown in well-watered areas than the other 

crops. However, Edmeades et al. (1992), reported that maize suffers more yield loss due 

to moisture and nutrient stress than either sorghum or millet, resulting in maize a loss of 

approximately 1.8 million tons per year in Eastern and Southern Africa alone. 

CIMMYT, (1988) produced a list of potential constraints to maize production in Africa 

that are outlined in Table 2. 
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Table 2. Principal maize production constraints across agro-ecologies in Africa. 
 
Contraint %Lowland tropical %Sub-tropical     % Highland       %Area 
Drought    36   21  0  23 
Striga   30   20  1  21 
E.turcicum  21   35  100  40 
H. maydis  56   1  0  28 
P.sprghi   2   42  58  28 
P.polysora  26   3  0  23 
Maize streak virus 73   37  7  60 
Buseola fusca  7   69  76  37 
Weevils   20   41  38  20 
Termites   12   15  0  19 
Source: CIMMYT, 1988.  
 

 

This list shows that maize streak virus is the most widespread maize disease in Africa, 

affecting 60% of the continent’s maize growing areas and some Indian Ocean Islands. 

This could be because viruses which spread easily cause this disease. Severe epidemics 

of maize streak virus occur irregularly both in space and time, but it is common to find 

infection scattered in most parts of the maize fields resulting in significant grain yield 

losses (CIMMYT-Zimbabwe, 2000). The second problematic disease is the turcicum 

leaf blight (produced by  Helminthosporium turcicum) a fungal infection that affects 

40% of the maize grown in Africa and affects almost all the maize grown in highland 

areas. Yield losses of 40, 52 and 82% have been reported in Ethiopia, Uganda and 

Kenya, respectively. Stem borers, especially Buseola fusca are more problematic in the 

sub-tropical and highland areas and affect 37% of all the maize grown (CIMMYT, 

1998).  Southern Africa has also suffered from another outbreak of grey leaf spot 

(Cercospora zea-maydis) since the mid 1990s. This disease has been reported to cause 

major crop losses in Zimbabwe, Malawi, South Africa, Zambia, Swaziland and 

Botswana. It is common in warm and humid regions. In susceptible varieties, severity 

reaches 60 to 100% of plant to leaf coverage resulting in maize grain yield loss of up to 

20 to 100%. Severe blighting also causes weakening of stems leading to lodging 

(CIMMYT-Zimbabwe, 2000). Downey mildew has been reported to be a major disease 

of maize in West Africa, Democratic Republic of Congo and Mozambique, while 
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weevils and large grain borer remain the most devastating post harvest pests affecting 

maize in storage (CIMMYT, 1990). 

 

Maize breeding research in Sub-Saharan Africa 

 

Most of the research on maize breeding in Sub-Saharan Africa is conducted or 

coordinated by National Agricultural Research Systems (NARS) of the Ministry of 

Agriculture. Collaboration by international research organizations like CIMMYT or 

IITA with the national programs is also common. Research is mostly done on white 

grained maize, although some small pockets of yellow maize are also grown. 

 

During the early days of maize research, development of improved open pollinated 

maize varieties was common using recurrent selection methods as described by 

(Shull,1908; Hallauer and Miranda,1988). Such varieties were preferred because farmers 

would select seed from their field for the next cropping season. However, the yield 

potential of these varieties was not high enough to justify the use of inorganic fertilizers 

and create a profitable agricultural business and sustainable yields. These varieties were 

also more susceptible to storage pests than the traditional maize varieties. Open 

pollinated varieties also suffered from low uptake by the private sector for seed 

production distribution because farmers would not buy the seed every year (Heisey et al., 

1998). Due to shortage of seed for these improved open pollinated varieties, most 

farmers continued to grow their undeveloped local varieties.  

 

Later, maize research focused on production of hybrid maize varieties to exploit 

heterosis.  Two types of hybrids have been developed depending on the processing needs 

of the consumers. Both farmers who mill their maize and milling companies prefer dent 

grained varieties, while farmers who use a hammer mill or pound in a mortar prefer 

harder flint-grained maize varieties, because the extraction rates of the final products are 

higher for each variety and processing technique. For example, breeders in Zimbabwe 
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released a single cross hybrid called SR52 which yielded 46% more than local varieties 

(Weinmann, 1975). This hybrid was widely adopted by most commercial and 

smallholder farmers. In Malawi, the two flint grained three way hybrids (MH17 and 

MH18) that were released in 1990 to meet the processing needs of the farmers (hand 

pounding) received wider adoption than the dent hybrids that were released previously 

(Zambezi, 1997). Despite that hybrids are high yielding and widely promoted by the 

private companies, the uptake and land grown to hybrid maize is below 20%, even after 

sixty years hybrids were first introduced (Morris, 1998). The same author indicated that 

about 63% of the maize grown in Africa is still unimproved or landrace. The low uptake 

of hybrids is due to the high cost of hybrid seed and the need to buy the seed every year, 

which most smallholder farmers cannot afford. In addition, hybrid production requires 

use of high rates of inorganic fertilizers. However, due to the removal of subsidies on 

fertilizer prices, most farmers are unable to purchase or use   inorganic fertilizers. 

 

Success stories about the wide adoption in Ghana of quality protein maize (QPM), which 

is high in lysine and triptophan has resulted in work initiated to promote this type of 

maize. CIMMYT-Zimbabwe through the Southern Africa Drought and Low Soil 

Fertility Project (SADLF) in collaboration with national agricultural research systems 

(NARS), non governmental organizations, local farmers, high school agricultural 

teachers and agricultural extension agents are introducing these high protein maize 

varieties (mostly OPVs) to the farming community. These high protein maize varieties 

are aimed at helping to improve the nutritional levels of the local communities, which 

are characterized by high rates of malnutrition through Mother/Baby Approach. In this 

approach, experiments are set up within the farming communities, and farmers grow a 

sub-set of the tested varieties so that they make better and educated choices when 

deciding which varieties to buy from the market. The strength of this approach is that it 

also helps breeders to understand the criteria farmers use in selecting varieties.     Other 

common areas of research related to maize in Southern Africa are striga tolerance by 

IITA, CIMMYT-Kenya and NARS (Malawi); stem borers (CIMMYT-Kenya); diseases 
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(CIMMYT-Zimbabwe in collaboration with NARS), and drought and low nitrogen 

tolerance (coordinated by CIMMYT-Zimbabwe through the SADLF Project and 

collaborated with NARS). National Agricultural Research Systems of each country also 

have programs that meet specific needs of the people in their respective countries. For 

example, earliness, flint grain texture, maize streak virus and grey leaf spot tolerance are 

some specific breeding goals for Malawi’s Maize Breeding Research Program.     

 

Abiotic stresses  

 

Drought-- the problem 

 

Most parts of the world are subject to drought, but the duration and intensity vary greatly 

from one climatic zone to another. Losses incurred from drought include reduction in 

yield, poor quality product and loss of economic value amounting from few to hundreds 

of millions of dollars (Quizenberry, 1982). Indirect losses are more difficult to evaluate 

but include losses from crops not planted, abandonment of land, and land use changes 

following the drought. The effects of drought can only be alleviated with precipitation or 

irrigation. If irrigation is not available, then cultural practices that help accelerate the use 

of the available moisture would help reduce the effects of the drought. 

 

In some parts of the world, especially semi-arid regions, where most poor people live 

drought is endemic. Even well-watered places experience occasional drought during 

some periods of the growing season (Bennetzen, 2000). Because irrigation is not always 

a possibility for most of the poor resource farmers, development of varieties with 

improved tolerance to drought is a major focus of most plant breeding programs. 

However, drought tolerance is a complex issue because it is associated with polygenic 

genes. 

 

  



   16

CIMMYT, (1988) estimated that about 23% of the total land in Africa suffers from 

drought effects and that Southern Africa is at the highest risk of drought. In Sub-Saharan 

Africa, drought is one of the key factors that limit cereal production, and it is the region 

which receives the greatest drought impact in the world (Ribaut et al., 2002). The FAO 

estimates that Southern Africa suffers an annual maize grain yield loss of 44% due to 

drought effects alone. This makes drought the most important abiotic stress constraint to 

maize production (Heisey and Edmeades, 1999). 

 

Biological immunity against drought is not a possibility to reduce the effects of drought, 

as a result productivity under drought is normally less than under optimal moisture. 

However, through plant breeding you can develop some degree of tolerance to reduce 

the effects of drought, in a manner analogous to disease and pest resistance. Thus, the 

term “drought tolerance” means the ability of a maize genotype to produce grain with a 

given amount of soil moisture stress (Quizenberry, 1982). Both conventional and 

molecular approaches are currently available to improve drought tolerance.  

 
Effects of drought on maize 
 

Maize is one of the crops that is highly susceptible to drought. In general, drought 

reduces maize production by decreasing plant stand during the seedling stage, by 

decreasing leaf area development and photosynthetic rate during the pre-flowering 

period, by decreasing ear and kernel set during the two weeks bracketing flowering, and 

by inducing early leaf senescence during grain filling. At the cellular level, drought 

results in the accumulation of abscisic acid (ABA) mainly in the roots where it 

stimulates growth. When passed to the leaves, it causes leaf rolling, stomatal closure and 

accelerates leaf senescence. Although ABA helps the plant to survive under drought, it 

does not contribute to productivity (Zhang et al., 1987). Cell division is inhibited under 

severe drought stress which results in lack of full cell expansion even if the stress is 

removed. Conversion of sucrose to starch in the grain decreases under drought because 

the activity of acid invertase, a key enzyme that converts sucrose to hexose sugars, is 

  



   17

diminished (Westgate, 1997). Drought is also reported to reduce cell expansion and 

photo-oxidation of chlorophyll and loss of photosynthetic capacity (Banziger et al., 

2000). 

 

The low nitrogen problem 

 

Most of the maize in developing countries is produced under low nitrogen conditions 

because of continuous cropping and monocropping which have resulted in a decline in 

soil fertility. There is also little or no use of inorganic fertilizer due to increased price 

following the removal of subsidies on fertilizer and other inputs by most governments.  

As a result, nitrogen will continue to be a major nutrient limiting maize production in 

most farmers’ fields (CIMMYT, 1992). Population pressure has also exacerbated this 

problem by reducing fallow periods, leading to reduced soil fertility. Increased 

production of crops which have a higher monetory value leaves maize to be grown in 

less fertile areas. These changes imply that more maize will be grown in the marginal 

areas in the future. Poor weed control and leaching due to heavy rain in some seasons 

increases the incidence of nitrogen stress in many cases.  In addition to reduced yield, N 

stress has been observed to reduce ear biomass at flowering and under drought 

conditions (Edmeades, et al., 1992).   

 

One approach to reducing the impact of nitrogen deficiency is to select cultivars that are 

superior in the utilization of available nitrogen, due either to enhanced uptake capacity 

or more efficient use of absorbed nitrogen for grain production (Lafitte and Edmeades, 

1994). Blum (1988) suggested that selection for grain yield in the target environment (in 

this case low nitrogen environments) should be more efficient than selection for yield 

potential alone. However, such environments are not favored by maize breeders because 

increased environmental variability is exposed as soil fertility declines, resulting in a 

decline in heritability for grain yield. 
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Breeding for drought and low nitrogen stress tolerance has been an ongoing program at 

CIMMYT since 1986. It has been established that successful strategies to develop 

drought and low nitrogen tolerant maize requires knowledge of the plant, environment 

and the magnitude of the interaction of the two (Edmeades et al., 1992).  One such 

approach is the development of stress tolerant maize under carefully managed drought 

and low nitrogen stress sites. The advantage of using managed stress sites is that it 

displays genetic variation for drought or low nitrogen adaptive traits to best advantage 

even if the stress is more severe than that encountered in the target environment.   

 

Another approach to increasing the efficiency of selection in low nitrogen environments 

is the use of correlated secondary traits (Blum, 1988). These are improved N uptake by 

seedlings, high plant nitrate uptake and increasing nitrate reductase activity . Feil et al. 

(1993) reported positive correlations between between nitrate reductase activity 

measured in growing plants in a growth cabinet and total N uptake and grain yield 

observed in the field. Other traits which are also positively correlated with grain yield 

under limited nitrogen environments are large leaf area, high specific leaf N, an 

increased leaf chlorophyll per unit area, total biomass and N at anthesis, plant height at 

anthesis and length of the duration of grain filling (Lafitte and Edmeades, 1988). 

 

Other options for breeding for low nitrogen tolerance are breeding under high nitrogen 

environment, hoping that there is a positive correlation between a low nitrogen 

environment and selection for low nitrogen tolerance  using marker assisted selection. 
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How farmers deal with drought and low nitrogen problems  

 

Farmers’ fields are rarely characterized by one abiotic stress alone, because drought also 

occurs where nitrogen stress is also common. In a season when rainfall is plentiful, 

maize crops are often sevely nitrogen deficient due to leaching. When drought comes 

early in the season, farmers have the option to either plant another short season  or apply 

artificial water through irrigation which is not possible with smallholder farmers. Some 

farmers just abandon their farms and migrate to other areas where the rainfall pattern is 

better. In areas where the probability of drought stress is high, farmers often respond by 

reducing the application of nitrogen fertilizer (McCown et al., 1992). Under low nitrogen 

conditions, farmers can improve such soils by applying organic or inorganic fertilizers. 

However, most smallholder farmers in Africa apply little or no fertilizer at all because of 

high price. Where land is not a big problem, farmers can practice fallowing using multi-

purpose tree species, but some farmers just abandon poor soil. 

 

Breeding for tolerance to drought and low N 

 

There are several options to select for drought and low nitrogen tolerance: 

Selection approaches for drought tolerance: 

1. Select best genotypes under well- watered conditions assuming that the selected 

genotypes will also perform also well under drought (Indirect selection). 

2. Select under rain fed  conditions in target  environments (random stress). 

3. Select under managed drought stress environments. 

4. Select using molecular markers. 

Selection approaches for low nitrogen tolerance:  

1. Select under optimal fertilization assuming positive correlation between low 

nitrogen and high nitrogen. 

2. Select under low nitrogen environments. 

3. Select using molecular markers.  
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Conventional breeding approaches for drought tolerance  

 

Conventional breeding for drought tolerance is a great challenge and complex. However, 

tolerance to drought can be developed through selection for genetic variation for stress 

tolerance traits that can be identified and exploited through evaluation and selection 

(Bernardo, 2002). The most common approach that has been used for breeding drought 

tolerance is to select for drought tolerance components. Bolanos and Edmeades (1996) 

reported that selection for drought tolerance based on grain yield under drought may 

result in limited progress due to low genetic variation and low heritability for that trait. 

Also, heritability of maize grain yield reduces under drought, which reduces the yield 

potential. As drought intensity increases, genetic variance for grain yield is decreased, 

which weakens the selection intensity of the tested genotypes. Alternatively, use of 

secondary traits of adaptive value, and genetic variation increases under drought, can 

increase the selection efficiency. The most efficient are those whose variance is largest 

when drought stress is induced during the flowering stage, heritability is high and have a 

high relationship with grain yield. These are anthesis-silking interval (ASI), ears per 

plant, leaf senescence, tassel size and grain yield (Fischer et al., 1983). However, other 

secondary traits like leaf and stem elongation rate, canopy temperature, leaf photo-

oxidation, leaf chlorophyll concentration and seedling survival under drought are not 

good indicators of drought tolerance (Banziger et al., 2000).  Consistent selection for 

drought tolerance using anthesis silking interval during flowering should be done with 

great care to avoid increasing the frequency of male-sterile genotypes, because delayed 

anther extrusion could be easily confused with a short anthesis silking interval. 

 

There are a number of approaches with regards to the best selection environment to  use 

in order to obtain higher yields in drought stressed environments (Quizenberry, 1982). 

The first is to develop varieties that are highly adapted to a moisture stress environment. 

It is based on the principle that varieties selected for high yield under optimal moisture 

conditions will not necessarily have high yield when they are grown under moisture 
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stress conditions (Hurd, 1976; Falconer, 1989). This approach is mostly effective where 

the plants must complete their life cycle on soil moisture stored during the previous 

season. However, the use of this approach suffers from the problem of uneven 

precipitation from year to year especially in most semiarid regions. In such a case, a 

variety developed through this approach may not be able to respond in years of above 

normal precipitation or below normal precipitation. The second approach is to develop 

varieties that are adapted to a broad range of environmental conditions. This approach 

would be most effective when plants receive precipitation during the growing season or 

in a more optimal growing climate where periodic droughts may occur. Deday et al. 

(1973) suggested that selection for drought tolerance should be done under favorable 

environments because of greater genetic variance and high heritability. Another 

approach was suggested by Oppenheimer (1961) and Banziger et al., (2000) called the 

physiogenetic approach which combines the use of moisture stress environments and 

optimal moisture conditions. This assumes that yield and drought tolerance are different 

traits that are controlled by different genes or systems. Thus, screening germplasm 

should be done under both moisture stresse and under optimal moisture conditions. Only 

the best germplasm (i.e. genotypes with drought tolerance that have good yields under 

optimal moisture conditions) should be advanced to the next testing phase. Testing of the 

selected genotypes should be done under managed drought stress conditions, random 

drought conditions (representing farmers’ growing conditions) and under optimal 

moisture conditions. This means that there is duplication of work especially during the 

early years of screening, which makes the approach expensive, time consuming and 

laborious.  

 

The approach described by Banziger et al. (2000) has been used by CIMMYT scientists 

for the past three decades in order to develop drought tolerant genotypes with emphasis 

on the period before and during flowering and selection of genotypes with a short 

anthesis-silking interval. Selection was done on early generation lines, inbreds, hybrids, 

testcrosses and OPV’s which were later evaluated in replicated trials at one or two 
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drought stress levels during a rain-free period using irrigation. Drought was applied 

during flowering and grain filling such that average grain yield in these trials was 

reduced to 30% (severe stress level, grain-filling stress) or 15-30% (intermediate stress 

level, combined flowering and grain-filling stress), respectively, of unstressed yields. 

The same progenies were also grown under well-watered conditions during the main 

season. Selection was for an index that seeks to maintain time from sowing to anthesis, 

maintain or increase grain yield under well-watered conditions, increase grain yield 

under drought, and decrease anthesis-silking interval (ASI), barrenness, the rate of leaf 

senescence, and leaf rolling under drought (Bolaños and Edmeades 1993; Bolaños et al. 

1993; Banziger et al. 1999; Edmeades et al. 1999). Other breeding goals, such as yield 

potential, disease resistance, and grain quality, were also considered, based on 

observations made with the same progenies in trials grown during the main cropping 

season. However, despite some significant progress, the approach is slow, time 

consuming with uncertain potential for further progress.  After so many years of 

research, CIMMYT researchers recommended that managed stress environments are 

more effective and cost effective for screening and selecting maize germplasm for 

drought tolerance. In addition, rapid and short term improvement for yield under non 

moisture stressed conditions can be made in elite maize germplasm through recurrent 

selection. 

 

Drought tolerance can also be improved through the identification of genetic regions 

whose expression controls the plant’s tolerance to drought and evaluation for yield 

potential under field conditions. Ribaut et al., (1997) indicated that a combination of 

marker assisted selection strategy based on best quantitative trait loci (QTLs) for 

different traits  directly or indirectly related to yield would be the best way to breed for 

drought tolerance, in contrast to traditional breeding where breeders have relied on 

secondary traits like anthesis-silking interval. 
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Heritability of traits under drought and low N 

 

Lafitte and Edmeades (1988) reported that realized heritabilities were generally larger 

for yield under high nitrogen than under low nitrogen both at C0 and C2 cycles. Values of 

h2 for grain yield across nitrogen levels, chlorophyll concentration and senescence rate 

tended to be smaller than those of grain yield. 

 

Bolaños and Edmeades (1996) reported on the importance of anthesis-silking interval in 

breeding for drought tolerance in tropical maize. They observed that in all cases and for 

all the traits, S2:3 progenies had larger heritabilities (by around 0.10 to 0.15) than S1 

progenies across all the yield levels. They also observed that heritability estimates 

tended to decrease with increase in moisture stress from around 0.60 under well watered 

environments to 0.40 with increasing stress. However, the heritability for days to 

anthesis remained fairly constant across all moisture regimes. Largest heritability 

estimates were generally for morphological and phenological traits like days to anthesis 

(0.80), leaf angle score (0.78), tassel branch number (0.79) and plant height (0.70). 

  

Banziger et al. (2000) evaluated selection for grain yields under drought conditions. 

They reported that by using grain yield alone limited progress is achieved because of the 

low genetic variability for this trait under drought and because heritability for grain yield 

reduces under drought. Lafitte and Edmeades (1994) reported that realized heritabilities 

for different cycles of half sib recurrent selection under high and low nitrogen were 

larger for grain yield under low nitrogen than under high nitrogen. They also found that 

all the traits evaluated had higher heritabilities under cycle 0 compared to recurrent 

selection.  
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Correlation among traits, indirect selection and selection indices 

 

A review of many publications on genetic correlation by Finne et al. (2000) showed that 

although correlation estimates are helpful in determining the components of a complex 

trait such as yield in white clover, they do not provide an exact picture  of the relative 

importance of the component characters.  In maize, correlations between grain yield and 

secondary traits like ears per plant, anthesis-silking interval and plant height have been 

reported by several writers (Bolanos and Edmeades, 1996; Banziger et al., 2000; Badu-

Apraku et al., 2004) when selection was done for drought tolerance. Banziger and Lafitte 

(1997) reported that the use of secondary traits for grain yield was 20% more efficient 

than selection for yield alone. However, Badu-Apraku et al. (2004) indicated that cutting 

off irrigation two weeks before flowering appears to be too severe to properly elicit true 

differences among families because it resulted in negative variances which made it 

impossible to calculate genetic correlations in some instances.  

 

Fisher et al. (1983) reported that genetic correlations between yield in unstressed and 

stressed environments remain positive but tend to be non significant where stress 

reduces yield by 50%. Reduced plant height was also reported by the same authors to be 

associated with reduced anthesis-silking interval and increased tolerance to drought.  

Banziger and Lafitte (1997) reported that genetic correlations between grain yield and 

anthesis-silking and ears per plant interval under stress were -0.6 and 0.9, respectively, 

suggesting that these traits are good surrogates for grain yield under severely stressed 

environments.  Betran et al. (2003) reported that genetic correlations were positive  and 

significant for ears per plant and grain yield in hybrids and inbreds  under stressed and 

non stressed conditions.   

 

Lafitte and Edmeades (1988) reported on the improvement of tolerance to low soil 

nitrogen in tropical maize. They found significant phenotypic correlations between grain 

yields and other secondary traits. Ear leaf chlorophyll concentration per unit area,  plant 
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height, ear leaf area, kernels per ear, ears per plant, and number of green leaves below 

the ear under low nitrogen were positively correlated with  grain yield, while anthesis-

silking interval was negatively correlated with grain yield. Weak correlations were 

observed between grain yield and mass per kernel. Genetic and phenotypic correlations 

observed also generally agreed in sign and magnitude, but they also observed some 

differences between the two. While genetic and phenotypic correlations are useful in 

describing expected changes in secondary traits with selection, may be misleading in 

cases where field variability for the level of the limiting factor is large. 

 

Bolaños and Edmeades (1996) reported on correlations between traits used in selection 

and grain yield. They observed that there were no consistent differences between the 

genetic correlations of most traits and grain yield between S1 and S2:3 progenies. Genetic 

correlations between grain yield and kernels per plant, ears per plant and were 

consistently high (0.7 to 0.8). However, these showed no significant trends as water 

availability changed. Both days to anthesis and anthesis-silking interval correlated more 

strongly and more negative with grain yield as moisture stress intensified. 

 

Badu-Apraku et. al.  (2004) evaluated methodologies for screening for drought tolerance 

in maize. They reported large and positive genetic correlations between yield and 

moisture content, plant and ear height. However, in another study, they unexpectedly 

found positive genetic correlations between grain yield and anthesis-silking interval. But 

generally, correlation coefficients were higher in the non-stressed than the stressed 

environments. However, traits which had negative genetic variances could not calculate 

genetic correlations. Negative variances are attributed to sampling error in the 

production of progenies for evaluation, field design, data collection and the statistical 

analysis to estimate the variance components (Hallauer and Miranda, 1988). Negative 

variance component estimates could also be due to experimental problems or failure of 

the data to fulfill the assumption of genetic or statistical methods (Gousnard and Gallais, 

1992).  
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The use of direct vs. indirect selection has produced contradictory realized gains from 

selection. Byrne et al., (1995) working with maize found little or no gain under drought 

when these crops were selected under irrigated conditions. Contrary to this, Johnson and 

Geadelmann (1989) measured similar gains for drought-stressed conditions when maize 

was selected either under irrigated or drought stressed conditions. 

 

Atlin and Frey (1990) compared predicted responses of grain yield to indirect and direct 

selection to asses the value of high yielding or well-watered selection for improving 

grain yields in low yielding or drought stresses environments. Although heritabilities for 

grain yield were low under stress conditions, they concluded that direct selection was 

often superior to indirect selection in targeting stress environments. 

      

Banziger et al. (1997) indicated that selection under high nitrogen for performance under 

low nitrogen was significant and more efficient than selecting under low nitrogen when 

yield was reduced by 40% under nitrogen stress. The same authors also suggested that 

when negative genetic correlations exist between yield in unstressed and stressed 

environments, this would mean that the two should be bred for separately. In addition, 

the same study suggested that the superiority of selection under either stress or non stress 

conditions may depend on the stress intensity in the target environment. Thus, as genetic 

correlations between grain yields under low and high N decreased with relative decrease 

in yield reduction under low N, indirect selection under high N became less efficient. 

Similar results were observed by Banziger et al., (1999) where they reported that 

correlated responses from selection under optimal conditions may be expected to 

decrease as N stress increases. 

 

Marker- assisted selection (MAS)  

 

Marker-assisted selection has been a useful tool in plant breeding through the 

identification of important agronomic traits such as resistance to nematodes, insects, 
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pathogens, tolerance to abiotic stresses, quality plant aspects and quantitative traits 

(Mohan et al., 1997). This type of selection is dependent on the availability of a large 

number of genetic markers which are known to have a strong genetic linkage with the 

component that is to be selected. Marker assisted selection has also proved to be most 

effect in early generation selection of breeding materials. 

 

The international Maize and Wheat Improvement centre (CIMMYT), has developed a 

program using marker assisted selection for drought tolerance and insect resistance in 

maize and wheat. The Centre for Tropical Agriculture (CIAT) in Colombia is currently 

transferring drought tolerance from tepary to Phaseolus beans using molecular markers. 

Additionally, The International Crops Research institute for the Semi-Arid Tropics 

(ICRISAT) has developed genomic maps for sorghum using maize markers and has also 

mapped for drought tolerance in sorghum and millet (Visser, 1994).    

 

Achievemnets with marker- assisted selection 

 

There has been a lot of work done using marker assisted selection (MAS) as a plant 

breeding tool over the past twenty years. A review by Young (1999) indicated that 

despite the large number of articles (over 400) visited; very few of them led to the 

release of cultivars or germplasm. Most of them have concentrated on mapping loci 

which are known to be of agricultural interest.  

 

Ragot et al. (1995) indicated that the efficiency of MAS is highest when the expression 

of a trait is controlled by a single gene or a gene responsible for a high percentage of the 

phenotypic variance of a trait. As such when you transfer a single genomic region from 

the donor parent to the recipient plant, you can achieve a large genetic improvement for 

that trait. In addition, for line conversion to be successful, the number of target genes 

and the expected level of conversion must be established long before the MAS is started  

because they will determine the size of population to be used, the number, position and 
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nature of molecular markers and the number of genotypes to be selected (Ribaut et al., 

2002). Ribaut et al. (1999), also indicated that for MAS experiments to be successful, 

they should not be based only on the QTL involved in the yield components because 

only a few QTLs are stable across environments but should consider QTLs involved in 

the expression of secondary traits  that are correlated with grain yield under drought. 

These QTLs should also account for a large percentage of the phenotypic variance and 

be stable across environments. 

 

Cregan et al. (1999) found that selection for one or two single sequence repeat markers 

linked to the rhg1 locus was highly effective in screening for resistance to cyst 

nematodes in soybeans. In pearl millet, marker assisted backcrossing has been 

successfully done in improving drought tolerance for the elite inbred pollinator H77/833-

2 using donor PRLT 2/89-33 and elite inbred maintainer line 841B using donor 863B 

(Hash et al., 1999). In potato, molecular markers were successfully used to map genetic 

regions for disease resistance (R7) gene (Leister et al. 1996). MAS was also successful 

in selecting for increased grain protein in wheat which led to an average increase of 15g 

kg-1 and was successful in 75% of the materials tested (Chee et al. 2001). Other studies 

by Edwards and Johnson ((1994) showed that MAS was successful as a selection index 

for a lot of traits. In rice, root depth was successfully selected for using MAS in 50% of 

the genotypes through introgression (Shen et al., 2001). Sebolt et al., (2000) used MAS 

to introgress QTLs for higher protein concentration for wild species into cultivated 

species. 

 

Research conducted by CIMMYT on the cost- effectiveness of using SSRs in MAS 

experiments showed that with a small sample size and few markers, the cost is high but 

the cost goes down when screening several hundreds of genotypes and a large number of 

molecular markers are used (Dreher et al., 2000).  
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Mertz et al. (1964) screened a large number of genotypes from a segregating population 

of maize in order to select for a high protein maize genotype (opaque 2) which is found 

on the short arm of chromosome seven of the maize genome. The opaque-2 locus has 

been cloned (Schmidt et al., 1990) and three SSRs were detected within the sequence of 

the gene itself (phi057, phi112 and umc1066) which CIMMYT has for years  used this 

information to screen thousands of genotypes in different segregating populations to 

select genotypes which have one copy of the mutant allele (Ribaut et al., 2002).   

  

MAS in maize breeding for drought tolerance 

 

Maize breeders dealing with MAS are in a privileged situation because maize has a 

diploid genome, high level of polymorphism, large number of DNA markers publicly 

available, a lot of maize QTL studies published and a large number of genes already 

characterized. Thus various MAS approaches are available to improve maize. Genes that 

have been cloned and sequenced can be amplified or hybridized using DNA markers can 

be used in MAS. Maize improvement (for example drought tolerance) can also be 

achieved through QTL introgression which requires that a target genome be between two 

DNA markers that define the QTL (Ribaut et al., 1999).  

 

In maize, Stuber (1994) reported results of introgression of genomic regions from Tx303 

into B73 and from Oh73 into Mo17 through marker assisted backcross. The results 

showed that the crosses derived from converted versions of B73 and Mo17 averaged 

higher yields than the hybrids from the normal B73 x Mo17 hybrid. These results 

showed a successful manipulation of polygenic traits using MAS-BC.  

 

Studies conducted at CIMMYT on marker-assisted selection were successful in the 

improvement of the elite maize line (CML 247) for drought tolerance. This line was 

improved through marker-assisted backcrossing (BC-MAS) using P1 as a donor line. 

Data from, the cross, an F2 population and from the F3 family evaluations were used to 
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identify five genomic regions responsible for drought tolerance which were transferred 

to the recipient line (Ribaut et al., 1999).  The same author also reported about 

population improvement through changes in allelic frequency for drought tolerance in 

maize using MAS. In this study, 120 genotypes were screened of cycle 0, 4 and 8 using 

40 RFLP probes with alleles increasing with each cycle of selection being favorable for 

drought tolerance. DNA markers were then used to validate the presence of the alleles 

which were associated with the improvement in drought tolerance. In addition, 

CIMMYT has been mapping and evaluating a number of populations across 

environments and years followed by selection based on genetic and phenotypic data 

since 1994 (Ribaut et al. 1996; 1997). The same, populations were also selected for 

drought tolerance using conventional methods.  

 

Marker assisted selection also help to save breeding time if the heritability of the trait is  

high and field evaluation is very costly or simply cannot be done at your location, 

environmental effects are significant and the classical selection is expensive or slow, or 

if the conditions for selection are only present occasionally (for example selection for 

drought tolerance in the rainy season) and if you want to backcross a known gene into an 

inbred line as rapidly as possible (Banziger et al., 2000 and Ribaut et al., 2002).  In 

addition, molecular markers can contribute to maize improvement through identifying 

heterotic groups, assigning inbreds to heterotic groups, establishing relationships among 

cultivars, predicting hybrid performance, choosing parents in a hybrid program, 

evaluating hybrid performance, assessing genetic change over time, analyzing genomic 

regions of pedigree-related genotypes, protecting Intellectual Property Rights, increasing 

intensity of selection while maintaining variability, increasing parental control by 

selecting before pollination, allowing selection to be conducted when phenotypic 

evaluation is difficult and reducing the number of seasons by selecting outside the 

selection environments (Betran at al., 2003; Lee, 1995).  In order to maximize the 

efficiency of marker assisted selection as a tool for selection for drought tolerance, 

selection should be done for few loci with large phenotypic effects. The genotypes 
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identified must be evaluated in the field under managed drought conditions to quantify 

the efficiency of the selection technique.  

 

CIMMYT has been mapping genomic regions associated with drought tolerance from a 

number of populations across seasons and across environments both in Mexico and 

Africa. These mapping studies have allowed the identification of QTLs consistent across 

mapping populations and environments (Ribaut, et al., 2004). Hence, it is possible to 

select genotypes based on genotypes at these QTLs and compare their performance with 

conventionally selected genotypes.  
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CHAPTER III  

MATERIALS AND METHODS 

Germplasm 

 

Early generation F2:3 lines were developed from four biparental populations, CML440 x 

COMPE, CML312 x NAW, CML 441 x CML444 and CML444 x K64R by CIMMYT. 

These populations have been used to map QTLs for grain yield and associated traits 

under stress and non stress environments. Two polymorphic markers were used for each 

target region. Over the past ten years, about 4000 drought QTLs have been identified. 

The stable regions were identified using an output of a combined QTL analysis 

conducted on each cross. Almost 30% of the combined QTLs identified were included in 

the selected regions considered for MAS. With the information obtained during the 

mapping studies, marker assisted selection on these populations was conducted at 

CIMMYT-Mexico by Dr. Jean-Marcel Ribaut. Markers located at the most relevant and 

consistent QTLs previously identified were used to select 50 F2:3 lines with desirable 

combination of favorable alleles and 50 F2:3 lines with unfavorable combination of 

alleles. The relative value of alleles at these marker loci was determined during the 

mapping study using information of performance under drought. The resulting F2:3  lines 

per population were crossed to one single cross tester from the opposite heterotic group. 

Lines from populations CML440 x COMPE and CML312 x NAW were crossed with 

tester CML444 x CML395. Lines from populations CML441 x CML444 and CML444 x 

K64R were crossed with tester CML442 x CML312 (Fig. 2). The 400 testcrosses were 

evaluated under stress and non stress environments.   
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 Schematic diagram showing how the test crosses were developed from each population 

(e.g., CML441 x CML444). 

 

 

 

 

 

                                                F1 

 F2

              CML 441       x  CML 444 

 

 

 

 

 

 F2:3 ( 100 families)  x   Tester A (CML442/CML312)
 (Testcrosses evaluated under well-watered, low N, high N, and  

                            drought in Zimbabwe and Malawi)  

Fig. 2. Production of testcrosses for evaluation. 

 

Environments and stress management 

 

The testcrosses were evaluated in Malawi and Zimbabwe underfour different 

environments as shown in Table 3a: 

 

Table 3a. Environments and locations of experiments. 

Country Location Environment  Water supply  

Malawi Chitedze No nitrogen   Rain fed 

Malawi Chitedze High nitrogen  Rain fed 

Malawi Chitala  Well-watered   Irrigated 

Malawi Chitala  Drought  Irrigated 
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Table 3a. continued  

Country Location Environment  Water supply  

Zimbabwe Harare  Low nitrogen   Rain fed 

Zimbabwe Harare  High nitrogen  Rain fed 

Zimbabwe Chiredzi Well-watered   Irrigated 

Zimbabwe Chiredzi Drought  Irrigated   

 

An alpha lattice (incomplete block) design (Patterson and Williams, 1976) with two 

replicates was used for each experiment. Each experimental unit consisted of one row 

plot. Description of all trials, locations, plot characteristics and management is presented 

in Table 3b.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

Table 3b. Summary of trials conducted, altitude, latitude, location, type of management and plot sizes. 
 
Trial  Location  # of  Plot size  # of  Magt  Altitude  Latitude 
Code                                        Entries   (m)  Reps    (masl)    
CML44141 Chitedze  100 5.1 x 0.90 2 No fert.     1300  13.58E, 33.38S  
CML44142 Chitedze  100 5.1 x 0.90 2 High N      1300  13.58E, 33.38S  
CML44143 Harare  100 4.5 x 0.75 2 High N      1503  31.02E, 17.43S   
CML44144 Harare  100 2.1 x 0.75 2 High L      1503  31.02E, 17.43S   
CML44145 Chiredzi  100 3.0 x 0.75 2 WW         392  31.57E, 21.03S  
CML44146 Chitala  100 5.1 x 0.90 2 WW          606  34.40E, 10.40S   
CML44147 Chitala  100 5.1 x 0.90 2 Drought        606  34.40E, 10.40S   
CML44148 Chiredzi  100 3.0 x 0.75 2 Drought       392  31.57E, 21.03S   
COMPE4401 Chitedze  102 5.1 x 0.90 2 High N     1300  13.58E, 33.38S   
COMPE4402 Chitedze  102 5.1 x 0.90 2 No fert.      1300  13.58E, 33.38S   
COMPE4403 Harare  102 4.5 x 0.75 2 High N      1503  31.02E, 17.43S   
COMPE4404 Harare  102 2.1 x 0.75 2 Low N      1503  31.02E, 17.43S   
COMPE4405 Chiredzi  102 3.0 x 0.75 2 WW         392  31.57E, 21.03S   
COMPE4406 Chiredzi  102 3.0 x 0.75 2 Drought        392  31.57E, 21.03S   
COMPE4407 Chitala  102 5.1 x 0.90 2 Drought        606  34.40E, 10.40S   
COMPE4408 Chitala  102 5.1 x 0.90 2 WW          606  34.40E, 10.40S   
K64R4441 Chitedze  98 5.1 x 0.90 2 No fert.      1300  13.58E, 33.38S   
K64R4442 Chitedze  98 5.1 x 0.90 2 High N     1300  13.58E, 33.38S   
K64R4443 Harare  98 4.5 x 0.75 2 High N     1503  31.02E, 17.43S   
K64R4444 Harare  98 2.1 x 0.75 2 Low N      1503  31.02E, 17.43S  
K64R4445 Chiredzi  98 3.0 x 0.75 2 WW          392  31.57E, 21.03S   
K64R4446 Chiredzi  98 3.0 x 0.75 2 Drought        392  31.57E, 21.03S   
K64R4447 Chitala  98 5.1 x 0.90 2 Drought        606  34.40E, 10.40S   
K64R4448 Chitala  98 5.1 x 0.90 2 WW          606  34.40E, 10.40S   
NAW3121 Chitedze  102 5.1 x 0.90 2 No fert.      1300  13.58E, 33.38S   
NAW3122 Chitedze  102 5.1 x 0.90 2 High N      1300  13.58E, 33.38S 
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Table 3b. continued 
__________________________________________________________________________________________________________________________ 
Trial  Location # of  Plot size  # of  Magt  Altitude  Latitude 
Code                                          Entries   (m)  Reps    (masl)  (Degrees) 
NAW3123 Harare  102 4.5 x 0.90 2 High N      1503  31.02E, 17.43S   
NAW3124 Harare  102 2.1 x 0.75 2 Low N      1503  31.02E, 17.43S   
NAW3125 Chiredzi  102 3.0 x 0.75 2 WW     392  31.57E, 21.03S 
NAW3126 Chiredzi  102 3.0 x 0.75 2 Drought   392  31.57E, 21.03S   
NAW3127 Chitala  102 5.1 x 0.90 2 Drought   606  34.40E, 10.40S   
NAW3128 Chitala  102 5.1 x 0.90 2 WW     606  34.40E, 10.40S 
Magt, management; masl, meters above sea level; #, number; M, meter; WW, well-watered; No fert., no nitrogen fertilization.  
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Management of drought and low N sites 

 

Depleting the soil of excess nitrogen by growing continuous maize without fertilizers 

and removing stover after every season for three years developed low nitrogen sites. No 

nitrogen was applied to these trials. The drought trials were irrigated to field capacity 

from planting until three weeks before flowering in order to induce drought stress at 

flowering while the well-watered trials were irrigated up to physiological maturity. 

 

Field measurements  

 

Data were collected on plot basis on the following agronomic traits: emergence count, 

days to pollen shed (days from planting to 50% pollen shed), days to silking (days from 

planting to 50% silking), plant height (distance in cm from the ground to where the 

tassel starts to branch), leaf senescence was determined by visual estimation of the 

proportion of dead leaves across plants of the whole plot (rating scale from 1 to 10 with 

1 being 10% of leaves dead and 10 being 100% of leaves dead), ear height (distance 

from the base of the plant to where the ear is borne),  harvest plant number (all the plants 

in the plot but excluding those at both sides of the plot), ear number (all the ears that 

were harvested from the plot), ear and grain weight (weight of all the ears harvested and 

grains shelled from a plot), grain texture (based on grain hardness of flintnes), root 

lodging (all plants that were not standing on their roots), percent moisture content 

(estimated with a Dickey’s Grain Moisture Tester) and 100 kernel weight (weight of 100 

grains from each plot weighed using a scale).  

 

 
 
 
 
 
 
 

 



   38

Statistical analyses 

 

Analysis of variance per and across environments 

 

Analysis of variance per locations was conducted using Remltool, where testcrosses, 

replications and blocks were considered as random effects. Across locations analysis 

was done using Proc Mixed in SAS (SAS, 1997).  Heritabilities and genotypic and 

phenotypic correlations per environment were analyzed using Proc Mixed and Proc IML 

in SAS where both the genotypes and the replications were considered as random 

effects. Contrasts for the testcross groups were conducted using Proc GLM in SAS 

(SAS, 1997). Combined analysis of variance across locations was computed using 

PROC GLM in SAS (SAS, 1997). 

 

Relationships among environments 

 

Additive Main Effects and Multiplicative Interaction (AMMI) analysis of grain yield of 

testcrosses was carried out to assess the relationship among environments. Single value 

decomposition biplots were generated with testcross means per location using Excel add-

in software Biplot v1.1 (Smith, Virginia Tech; 

http://www.stat.vt.edu/facstaff/epsmith.html). Biplots visualize the relationship between 

environments as well as the relative performance of genotypes on environments. Vectors 

in the AMMI biplots represent environments. Environments that discriminate genotypes 

in a similar manner have close vectors in the same direction. Environments that 

discriminate genotypes in a different manner, which creates GxE interaction, have 

vectors further apart facing opposite directions. 

 

 
 
 

 

http://www.stat.vt.edu/facstaff/epsmith.html
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Broad sense heritability (H) per and across environments
 

Broad sense heritability for the different traits per environment and across environments 

was estimated using the PROC MIXED procedure in SAS® 8.0 (Holland et al., 2002; 

http://www4.ncsu.edu/~jholland/homepage.htm). Heritabilities and its respective 

standard errors were estimated on genotypic mean basis. As was the case in adjusted 

means calculations, comparisons between GLM and MIXED heritability estimates were 

performed to establish if any differences existed between them, and the extent of such 

differences. Heritability for the different traits by individual environment was estimated 

as follows: 
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Phenotypic and genotypic correlation 
 
Phenotypic and genotypic correlation coefficients and their standard errors were 

estimated using a multivariate restricted maximum likelihood estimation (Holland, et al., 

2002). The estimation was done using the PROC MIXED procedure in SAS® 8.0 

(http://www4.ncsu.edu/~jholland/homepage.htm). The program provides variances and 

covariances, genotypic correlation coefficient (rG), phenotypic correlation (rP) and their 

respective standard errors. Genotypic correlation rG was calculated as follows: 

22
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 the biplot represent traits. Traits with close vectors are positively correlated and traits 

xpected direct and indirect genetic gain to selection 
 

 to selection for each environment and across environments 

was estim ing  Falconer and Mackay (1996):   

where,  

  2  target trait, and   h2  is its heritability. 

where, 

CovG is the genotypic covariance between traits x and y. 2
GXσ  is the genotypic 

variance of trait x, and 2
GYσ is the genotypic variance of trait y. 

In addition to the genotypic and phenotypic correlations, single value decom

biplots were generated to vi

environment and across environments using Excel add-in software Biplot v1.1. Vectors

in

with vectors in opposite directions are negatively correlated.  
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Expected indirect genetic gain or correlated response between environments was 

estimated for grain yield (Falconer and Mackay, 1996) as follows:  

 

 

where:  

nment where selection is done, 
2 ent, and 

reliminary assessment of MAS efficiency in testcrosses 

.  Comparing the overall mean of the best 50 and worst 50 marker based line 

of 

r based testcrosses among the top yielding  

Drough ch genotypes reduce their performance 

nder drought as compared to their performance in well-watered conditions.  

The calculation was done as follows: 

 

 

 

CR y= 1.75*√h2*√σ2
g* σxy

 

h2  is the heritability for target trait in the enviro

σ g is the genotypic variance of that same trait in the response environm

σxy is the correlation coefficient between the two environments. 

 

P
 

ficiency of marker assisted selection was assessed in three ways: The relative ef

 1

     testcrosses.  
 

2. Comparing the overall drought and low N tolerance indices of these two groups 
    genotypes.  
 

3. Ranking the testcrosses for grain yield at each environment and compare the relative.  
 

4. Number of the best and worst marke
    testcrosses.  
 

t tolerance index (DTI) measures how mu

u

DTI = ((GYG ww – GYGdrt)/GYGww)* 100 
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where, 

GYGww = Grain yield under well-watered conditions; 

 

Likewi s:   

 

NTI = ((GYG hn – GYGln)/GYGhn)* 100 

where, 

GYGhn = Grain yield under high nitrogen conditions; 

     GYGln  = Grain yield under low nitrogen; 

GYGdrt = Grain yield under drought; 

se, the nitrogen tolerance index (NTI) was calculated a
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

Average grain yield was variable across environments and testcross populations (Table 

4). Drought stress environments were the lowest yielding environments and high N the 

highest yielding environments. Following is presented the results for each of the 

testcross populations at each environment. 

 

 
Table 4. Mean, minimum and maximum grain yields per trial for all environments 

and population of testcrosses evaluated in Malawi and Zimbabwe in 2003 and 
2004. 

_____________________________________________________________________________________ 
Trial  Location  Magt  Mean  Minimum Maximum 
      Mg ha-1  Mg ha-1  Mg ha-1

_____________________________________________________________________________________ 
CML44141 Chitedze  No Fert.  5.64  0.42  7.95     
CML44142 Chitedze  High N      2.10  0.17  3.72 
CML44143 Harare  High N      4.53  0.14  7.49  
CML44144 Harare  High N      9.09  1.70  12.51  
CML44145 Chiredzi  WW       3.85  0.76  6.74
CML44146 Chitala  WW        4.76  2.04  7.02 
CML44147 Chitala  Drought      2.09  0.36  3.58 
CML44148 Chiredzi  Drought     0.32  0.00  1.29 
COMPE4401 Chitedze  High N     5.56  3.58  7.34  
COMPE4402 Chitedze  No Fert.  3.85  2.05  6.74  
COMPE4403 Harare  High N      8.02  5.73  9.77  
COMPE4404 Harare  Low N      1.81  0.39  3.40  
COMPE4405 Chiredzi  WW       4.77  3.51  6.09  
COMPE4406 Chiredzi  Drought      1.81  0.10  3.70  
COMPE4407 Chitala  Drought      2.56  0.92  4.27  
COMPE4408 Chitala  WW        3.80  1.80  6.09  
K64R4441 Chitedze  No Fert.  5.32  0.01  7.36      
K64R4442 Chitedze  High N     5.17  0.70  7.54  
K64R4443 Harare  High N     9.64  4.75  12.91  
K64R4444 Harare  Low N      0.87  0.16  1.74  
K64R4445 Chiredzi  WW        5.15  2.84  6.68  
K64R4446 Chiredzi  Drought      0.20  0.00  0.10  
K64R4447 Chitala  Drought      1.84  0.62  3.26  
K64R4448 Chitala  WW        4.66  2.89  6.56  
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Table 4. continued 
_____________________________________________________________________________________ 
Trial  Location  Magt  Mean  Minimum Maximum 
      Mg ha-1  Mg ha-1  Mg ha-1

_____________________________________________________________________________________ 
NAW3121 Chitedze  No Fert.  5.47  2.98  9.37      
NAW3122 Chitedze  High N      4.54  1.97  7.13 
NAW3123 Harare  High N      8.74  5.30  11.20  
NAW3124 Harare  Low N      1.75  0.47  3.24  
 NAW3125 Chiredzi  WW    6.06  4.23  7.65  
NAW3126 Chiredzi  Drought   0.20  0.00  0.93  
NAW3127 Chitala  Drought   1.29  0.57  2.19  
NAW3128 Chitala  WW     3.90  1.28  6.03  
Magt, management; No fert., no nitrogen fertilization; WW, well-watered; N., nitrogen. 
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Population CML441/CML444 

 

Results per environment 

 

Chitedze no nitrogen fertilization 

 

This experiment was conducted under no nitrogen fertilization and rain fed conditions at 

Chitedze Research Station (Malawi) during the 2003 and 2004 season. The purpose was 

to induce low N stress, however, the nitrogen content in the soil was higher than 

expected and no stress was apparent. Grain yield average was 5.43 Mg ha-1 (range from 

0.45 to 8.03 Mg ha-1) (Table 5). There were significant differences for grain yield, 

anthesis date, ears per plant, grain moisture content and 100-kernel weight but not for 

anthesis-silking interval and plant height (Table 5). Heritabilities were 0.47, 0.51, 0.17, 

0.22, 0.29, 0.30 and 0.42 for grain yield, anthesis date, anthesis-silking interval, plant 

height, ears per plant, moisture content and 100 grain weight, respectively. Average 

grain yield for the first 50 testcrosses was significantly greater than the average for the 

last 50 testcrosses (Table 5). 

 

Genotypic and phenotypic correlations were estimated only among traits that showed 

significance differences.  Grain yield was negatively correlated with anthesis date, and 

positively correlated with plant height, ears per plant, 100 kernel weight, ears per plant 

and grain texture (Table 6, Fig. 3).  The magnitudes of genotypic correlations were 

greater than those of phenotypic correlations. Genotypic correlations ranged from -0.59 

to 0.99, while the phenotypic correlations ranged from -0.43 to 0.15. High genotypic 

correlations were observed between grain yield and plant height and grain texture. Grain 

yield components such as ears per plant and 100 kernel weight had also a strong 

correlation with grain yield (Fig. 3). Other strong genotypic correlations were observed 

between plant height and 100 kernel weight and grain moisture.  
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Table 5. Statistics, genotypic variance, heritability and their standard errors for 
traits in testcrosses from population CML441 x CML444 evaluated under no 
nitrogen fertilization at Chitedze, Malawi in 2003 and 2004 season.  

 
Statistics GYG AD ASI PH EPP MOI TEX GWT 

 Mg ha-1 d d cm # % 1-5 g 
Mean 5.43 69.8 1.2 225.8 0.70 13.1 3.00 36.6 
Significance *** *** NS NS *** NS *** * 
Minimum 0.45 66.5 -0.2 189.1 0.30 11.5 1.00 19.3 
Maximum 8.03 78.5 3.1 275.8 1.00 15.1 4.00 49.8 
LSD (5%) 2.15 3.4 1.5 28.2 0.10 2.3 0.50 9.4 
CV (%) 24.50 2.6 66.1 6.6 6.50 5.56 12.3 12.2 
MSE 1.77 3.15 0.61 225.3 0.02 0.53 0.10 20.1 
Mean (Ent. 1-50)   5.77 69.9 1.1 226.7 0.71 13.1 3.09 37.1 
Mean (Ent. 51-100) 5.09 69.5 1.2 225.1 0.66 12.9 2.92 36.2 
σ2

e 1.77 3.15 0.61 221.31 0.02 0.53 0.08 20.0 
σ2

G 0.78 1.67 0.06 31.8 0.01 0.11 0.14 7.4 
h2 (family basis) 0.47 0.51 0.17 0.22 0.29 0.30 0.78 0.42 
Standard Error h2 0.11 0.10 0.17 0.16 0.15 0.14 0.05 0.12 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
MOI, grain moisture content; TEX, grain texture;  GWT, 100 kernel  weight.  
 

 
 
Table 6. Genotypic (above diagonal) and phenotypic (below diagonal)  

correlations among traits and their standard errors (SE) for population 
CML441 x CML444 evaluated under no nitrogen fertilization at Chitedze, 
Malawi in 2003 and 2004 season. 

  
  GYG AD ASI PH EPP TEX GWT MOI 

GYG  
-0.25 
(0.26) 

0.04 
(0.41) 

0.99 
(0.05) 

0.51 
(0.19) 

0.51 
(0.19) 

0.94 
(0.35) 

0.14 
(0.44) 

AD 
-0.42 
(0.07)  

-0.18 
(0.36) 

-0.54 
(0.10) 

-0.59 
(0.31) 

-0.44 
(0.18) 

-0.23 
(0.27) 

0.59 
(0.37) 

ASI 
-0.07 
(0.08) 

-0.10 
(0.07)  

0.29 
(38.38) 

0.41 
(0.67) 

-0.04 
(0.25) 

0.19 
(0.23) 

0.44 
(0.54) 

PH 
0.18 

(0.00) 
-0.10 
(0.01) 

0.05 
(0.92)  - 

0.40 
(0.42) 

0.99 
(1.80) 

0.68 
(3.40) 

EPP 
0.27 

(0.08) 
-0.43 
(0.06) 

0.21 
(0.08) 

0.11 
(5.04)  

0.69 
(0.38) 

0.62 
(0.55) 

-0.07 
(4.16) 

TEX 
0.16 

(0.08) 
-0.08 
(0.07) 

-0.00 
(0.08) 

0.08 
(0.08) 

0.13 
(0.08)  

0.51 
(0.19) 

0.10 
(0.27) 

GWT 
-0.10 
(0.08) 

-0.16 
(0.07) 

0.05 
(0.01) 

0.15 
(0.07) 

0.00 
(0.08) 

0.27 
(0.08)  

0.21 
(0.37) 

MOI 
0.07 

(0.04) 
0.13 

(0.08) 
-0.02 
(0.08) 

0.07 
(0.42) 

-0.14 
(0.25) 

-0.14 
(0.08) 

0.20 
(0.07) - 

 GYG, grain yield; AD, anthesis date; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
TEX, grain texture; GWT, 100 kernel weight; MOI, moisture content. 
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alue decomposition biplot of standardized traits showing their correlations for 

population CML441 x CML444 evaluated under no nitrogen fertilization at Chitedze, Malawi in 
2003 and 2004 season. (GYG, grain yield; AD, anthesis date; ASI, anthesis-silking interval; PH, 

ure 

 

 

Harare low nitrogen 

plant height; EPP, ears per plant; TEX, grain texture; GWT, 100 grain  weight; MOI, moist
content). 

 

 

This experiment was conducted under low nitro cond s in re ( abwe) 

under rain fed conditions du the 2 004 on. rial not r e any 

n ertilization but just 60 kg ha-1
2O5. Significant differences were observed 

f cept grain  (Tab . Mean values of the best 50 genotypes and 

50 worst genotypes were also not significantly different. Anthesis date, plant height and 

l had relative h eritab s of  0.64 0.62, respectively, while 

gen ition  Hara Zimb

ring 003/2  seas The t  did eceiv

itrogen f  of P

or all the traits ex yield le 7)

eaf senescence igh h ilitie 0.53,  and 
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anthesis-silking interval and ears per plant had moderate heritabilities of 0.44 and 0.28, 

spectively.  re

 

Table 7. Statistics, genotypic variance, heritability and their standard errors for 
traits in testcrosses from population CML441 x CML444 evaluated under low 
nitrogen at Harare, Zimbabwe in 2003 and 2004 season.  
 

Statistics GYG AD ASI PH EPP SEN 
 Mg ha-1 d d cm # % 
Mean 2.10 77.3 2.50 186 0.90 54.2 
Significance NS *** *** *** *** *** 
Minimum 0.17 71.2 -4.5 107 0.10 47.0 
Maximum 3.72 89.9 6.90 222 1.20 75.7 
LSD (5%) 1.69 4.50 3.00 26.0 0.30 0.70 
CV (%) 40.49 3.20 59.3 7.0 21.2 7.79 
MSE 0.72 6.20 2.20 173 0.02 0.10 
Mean (Ent. 1-50)   2.21 77.4 2.40 188 0.90 54.1 
Mean (Ent. 51-100) 2.01 77.2 2.60 185 0.90 54.3 
σ2

e 0.62 6.13 2.12 172.1 0.03 0.13 
σ2

G 0.00 3.48 0.85 155 0.01 0.10 
h2 (family basis) 0.00 0.53 0.44 0.64 0.28 0.62 
Standard Error h2 0.00 0.10 0.11 0.07 0.15 0.08 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
, ears per plant; 

 

 

Anthesis date had a negative ic co tion with anthesis-silking interval (-0.63), 

p height (-0 5) and pla (Tab re is-silking 

interval had positive correlations with plant height  ea t (0.29).  

P typic s  -0  and cor om -0.92 

 

 
 
 
 
 

GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP
SEN, leaf senescence.  

 genotyp rrela

lant .2  ears per nt (-0.67) le 8, Figu 4). Anthes

(0.28) and rs per plan

heno correlation ranged from .44 to 0.29  genotypic relat ns frio

to 0.95.  

 
 
 
 

 



   49

Table 8. Genotypic (above diagonal) and phenotypic (below diagonal) 
correlations and their standard errors (SE) for population CML441 x CML444 
conducted under low nitrogen conditions in Harare, Zimbabwe during 2003 and 
2004 season. 
 

  AD ASI PH EPP SEN 
AD  -0.63 (0.19) -0.25 (0.03) -0.67 (0.39) 0.41 (0.21) 
ASI -0.44 (0.06)  0.28 (0.22) 0.29 (0.22) -0.92 (0.27) 
PH -0.25 (0.01) 0.24 (0.07)  0.95 (30.4) -0.46 (0.19) 
EPP -0.23 (0.07) 0.24 (0.07) 0.29 (1.23)  -0.54 (0.28) 
SEN 0.14 (0.08) -0.19 (0.08) -0.13 (0.08) -0.33 (0.07)  

AD, anthesis date; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; SEN, leaf 
senescence. 

 
 
 
 
 

GYG
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0.6
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Fig. 4. Single value decomposition biplot of standardized traits showing their correlations for 

population CML441 x CML444 evaluated under low nitrogen fertilization  in Harare, 
Zimbabwe in 2003 and 2004 season. (GYG, grain yield; AD, anthesis date; ASI, anthesis-silking 
interval; PH, plant height; EPP, ears per plant; SEN, leaf  senescence). 
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Chitedze high nitrogen  

 

This experiment was conducted at Chitedze Research Station during the 2003/2004 

season under rain fed conditions. This trial was fertilized with 120 kg N ha-1 and 60 kg 

ha-1 P O . Significant differences among testcrosses were obtained for grain yield, 

anthesis date, a
2 5

nthesis-silking interval, plant height, root lodging, grain moisture content 

nd grain texture (Table 9). No significance differences were observed for number of 

th no fertilization at the same location.  

rain yield was positively correlated with plant height and grain texture, and negatively 

orrelated with anthesis date and root lodging (Table 10, Fig. 5). Genotipic correlation 

etween grain yield and plant height (0.69) and plant height and texture (0.77) were 

igh. Moderate phenotypic correlations were observed between grain yield and plant 

eight (0.38), grain texture and plant height (0.33), and between grain yield and grain 

 

Anthesis-silking interval had negative genotypic correlations with plant height, grain 

yield, grain texture and grain t re a 22, -  and  

phenotypic correlations were also observed betw ant silking int  and grain 

yield (-0.11). 

 
 
 
 
 
 
 
 

a

ears per plant. Heritabilities for grain yield and anthesis-silking interval were low, 

moderate for grain moisture and grain texture, and relatively high for anthesis date and 

plant height. Average grain yield was 4.53 Mg ha-1, which was lower than the 

experiment wi

 

G

c

b

h

h

texture (0.38). 

e uxt t .-0 0.26  0.32, respectively. Negative-

een hesis- erval
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Table 9. Statistics, genotypic variance, heritability and their standard errors for 
traits in testcrosses from population CML441 x CML444 evaluated under high 
nitrogen fertilization at Chitedze, Malawi in 2003 and 2004 season. 
  

OI TEX Statistics GYG AD ASI PH RL EPP M
 Mg ha-1 d d cm  # % 1-5 
Mean 4.53 77.0 0.60 198 8.20 1.00 12.7 3.30 
Sig
M
M 7.49 80.4 3.30 224 57.3 1.90 15.1 4.50 

D (5%)  2.30 27.0 19.8 6.29 0.80 
 (%)  6. .5 1 12.2 

0  18 41.4  0.17 
E 0)   8  19 5.48  3.00 
E 100) 4.2 19 10.7 3.00 

0  19 41.4  0.16 
2 0. 0 18 11.03  0.09 

am ) 5  0. 0.35  0.51 
ar h2 8  .17 0. 13  0.10 

nificance * NS *** *** *** NS *** *** 
inimum 0.14 72.2 -2.30 108 0.00 0.50 6.40 1.50 
aximum 

LS
CV

 2.88
.7

4.70 
7 

0.50 
3 32

2.2
4.8

3.0
5.60

.0

204.1 
1.50 

80 
1 

78 17.
0.03

0

30.3 
0.64 MSE 

Mean ( nt. 1-5
nt. 51-

77
77.0 
5.60

0.50 
0.70 

9 
7 

1.
1.0 

3

14.9 
1.3 Mean (

σ2
e 2.2

0.19 
1

1.47 
0.14 
0.16 

2.3 
7.8 

0.0
 0.03

6

0.66 
0.21 σ G 0

0h2 (f ily bas
d Error 

is 0.
0.1

0.0
0.00

66 
07 0.

0.1
0.17

0.39 
0.14 Stand 0

* ,*  at 1, 0.05 tively,  = no icant. 
G r ; AD thes , anthesis-silking in rval; PH, pl ht; RL odging; 
E r nt; M n mo ontent  grain . 
 
 
 

s (SE) for population CML441 x CML444 
conducted under high nitrogen conditions at Chitedze, Malawi during 2003 and 

  

**,**  Signif
ain yield

a

icant  P < 0.
, 50% an

i

00 0.01 an
is; ASI

 c

d , respec

,

 and NS n signi
ant heig

f
YG, g
PP, ea

te , root l
s per pl OI, gra isture ; TEX  texture

Table 10. Genotypic (above diagonal) and phenotypic (below diagonal) 
correlations and their standard error

2004 season. 
 

GYG ASI PH EPP TEX RL MOI 

GYG  
-0.22 
(1.05) 

 0.69 
(0.02) 

 0.56 
(0.59) 

 1.28 
(0.96) 

-1.86 
(1.96) 

 1.06 
(1.25) 

ASI (0.07)  
-0.26 
(0.02) 

 0.61 
(1.02) 

-0.32 
(0.49) 

-0.50 
(0.39) 

 0.09 
(0.56) 

 0.38 -0.04 
1)  

 1.26 
(0.63) 

 0.77 
(0.16) 

-0.66 
(0.25) 

 0.20 
(22.3) 

EPP (0.04) 
6 

(0.07) 
 0.36 
(0.07)  

 0.84 
(0.54) 

-0.75 
(0.44) 

 0.17 
(0.26) 

 0.32 -0.06  0.33  0.26 -0.73  0.20 

-0.11 

PH (0.04) (0.0
 0.70 -0.0

TEX (0.07) (0.08) (0.07) (0.07)  (0.34) (0.27) 

RL 
-0.17 
(0.07) 

 0.12 
(0.01) 

-0.19 
(0.08) 

-0.03 
(0.01) 

-0.11 
(0.08)  

-0.93 
(0.22) 

MOI 
 0.07 
(0.08) 

-0.06 
(0.08) 

 0.08 
(2.38) 

 0.03 
(0.04) 

 0.06 
(0.01) 

-0.10 
(0.10)  

GYG, grain yield; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; TEX, grain 
texture.; RL, root lodging,  MOI, moisture content. 
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andardized traits showing their  correlations for 

population CML441 x CML444 conducted under high nitrogen conditions at Chitedze, Malawi 
during 2003 and 2004 season. (GYG, grain yield; AD, 50% antheis; ASI, anthesis-silking 
interval; PH, plant height; EPP, ears per plant; TEX, grain texture.; RL, root lodging,  MOI, 

0.4

0.2

-0.6

-0.4

-0.2

0 P

EP

-0.8 - -0.4 -0.2 .4 .6

-0.8

ig. 5. Single value decomposition biplot of stF

moisture content). 
 
 

Harare high nitrogen  

 

This experiment was conducted in Harare (Zimbabwe) under rain fed conditions during 

e 2003/2004 season. The trial was fertilized with 120 kg N ha-1 and 60 kg ha-1 P2O5. 

ignificant differences among testcrosses were observed for grain yield, anthesis date, 

lant height, ears per plant, grain texture and grain moisture, and non significant for 

nthesis-silking interval (Table 11). Grain yield was high with an average of 9.09 Mg ha-

range of heritability estimates from 0.33 to 

th

S

p

a
1. All traits with significant differences had a 
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0.69. Heritability estimates were relatively high for grain yield and grain texture, 

inte

mo

 
 
Table 11. Statistics, genotypic va it  t rd 

ait os po ulation CM d val er 
gh fer t mbabw  20 4 se

 

rmediate for anthesis date and plant height, and low for ears per plant and grain 

isture.  

riance, her ability and heir standa errors for 
tr s in testcr ses from p L441 an CML444 e uated und
hi  nitrogen tilization a Harare, Zi e in 03 and 200 ason.  

Statistics GYG AD ASI PH EPP TEX MOI 
 Mg ha-1 d d cm # % 1-5 
Mean 9.09 72.2 1.10 258 1.00 1.10 16.6 
Significance *** *** NS *** * *** *** 
Minimum 1.70 69.2 -1.3 180 0.70 2.70 12.2 
Maximum 12.51 78.1 2.80 308 1.30 4.10 19.9 
LSD (5%) 2.54 10.3 2.10 26.0 0.25 0.50 3.50 
CV (%) 15.3 2.10 96.0 6.14 66.3 7.70 10.6 
MSE 1.94 2.30 1.10 250.8 0.44 0.10 3.20 
Mean (Ent. 1-50)   9.34 73.2 0.90 260.0 1.05 3.50 16.5 
Mean (Ent. 51-100) 8.88 72.2 1.30 257.0 1.05 3.50 16.5 
σ2

e 1.90 2.10 1.10 250.4 0.48 0.10 3.20 
σ2

G 2.15 1.40 0.00 104.8 0.14 0.06 0.81 
h2 (family basis) 0.69 0.57 0.00 0.46 0.37 0.60 0.33 
Standard Error h2 0.06 0.09 0.00 0.11 0.08 0.08 0.13 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
TEX, grain texture; MOI, grain moisture content.  
 

 

Grain yield had high genotypic correlation with ears per plant and plant height (Table 

12, Fig. 6). Generally, phenotypic correlations were lower than genotypic correlations 

but showed similar trends.  There was negative genotypic correlation between grain 

moisture and plant height. 
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Table 12. Genotypic (above diagonal)  and phenotypic (below diagonal) 
correlations and their standard errors (SE) for population CML441 x CML444 
conducted under high nitrogen conditions in Harare, Zimbabwe during 2003 
and 2004 season.  
 

  GYG AD PH EPP TEX MOI 
GYG   0.08 (0.17)  1.06 (0.19) 0.75 (62.09) -0.22 (0.18)  0.28 (0.25) 
AD 0.08 (0.08)   0.33 (0.23) 0.41 (0.30)  0.06 (0.20)  0.11 (0.28) 
PH 0.35 (0.07)  0.05 (0.08)  0.41 (0.38) -0.38 (0.38) -0.44 (0.36) 
EPP 0.41 (5.41)  0.12 (0.08)  0.07 (0.08)   0.08 (0.24)  0.56 (1.09) 
TEX 0.04 (0.08)  0.02 (0.08)  0.03 (0.08) 0.09 (0.08)  -0.02 (0.29) 
MOI 0.06 (0.08) -0.04 (0.08) -0.02 (0.08) 0.02 (0.08) -0.02 (0.08)   

GYG, grain yield; AD, 50% anthesis; PH, plant height; EPP, ears per plant; TEX, grain texture; MOI, 
moistu
 

re content. 
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CML444 conducted under high nitrogen conditions  in Harare, 

Zimbabwe during 2003 and 2004 season. (GYG, grain yield; AD, 50% anthesis; PH, plant 
height; EPP, ears per plant; TEX, grain texture; MOI, moisture content). 
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Fig. 6. Single value decomposition biplot of standardized traits showing their correlations for

population CML441 x 

 



   55

C ih redzi well-watered 

Thi

uri ent to 

eld capacity from planting up to physiological maturity. The trial was fertilized with 

.  Average grain yield was 6.43 Mg ha-1, however, no 

ignificant differences were observed for any trait. This was surprising as no apparent 

abwe in 2004.  

  I   

 

s experiment was conducted under well-watered conditions at Chiredzi, Zimbabwe 

ng the dry season under irrigation in 2004. Water was applied to the experimd

fi

120 kg N ha-1 and 60 kg ha-1 P2O5

s

reason was observed that could increase the error or reduce genotypic variance (Table 

13).  

 

Genotypic and phenotypic correlations were not estimated because all the traits were not 

significant. Nevertheless, single value decomposition of standardized traits indicated 

high correlation between grain yield, plant height and ears per plant (Fig. 7). 

 
 
 
Table 13. Statistics, genotypic variance, heritability and their standard errors for 

traits in testcrosses from population CML441 and CML444 evaluated 
under well-watered conditions at Chiredzi, Zimb
 

Statistics GYG AD AS PH EPP MOI 
 Mg ha-1 d   

 6 2 .6  
d cm # % 

Mean 6.43 92.7 2.0 226 0.96 8.  81
Significance NS    

 6 .7  
 .2 7 .7  
 7 9  

4 9  
 8 1 .8  
 7 .3  
 7 .2  
 0 1 .8  
 0 0   
 0 0   

NS NS NS NS NS 
Minimum 
Maximum 

3.19
9.18

86.4 
100

-2.5
5.9

135
271

0.56
1.83

7.63 
10.2 

LSD (5%
CV (%) 

) 3.03
23.2 

6.2
3.3

3.9
97.8

61.4 
13.3 

0.37
20.8

1.61 
8.64 

MSE 
Mean (Ent. 1-50)   

2.22
6.38

9.5
92.6 

3.9
1.9

906
223

0.04
0.97

0.58 
8.74 

M
σ2

e

ean (Ent. 51-100) 6.50
2.23

92.8 
9.6

2.0
3.9

230
906

0.95
0.04

8.88 
0.58 

σ2
G 0.00

0.00
0.0
0.0

0.0
0.0

0.00
0.00

0.00
0.00

0.00 
0.00 h2 (family basis) 

Standard Error h2 0.00 0 0   0.0 0.0 0.00 0.00 0.00 
***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 

OI, grain moisture content.  M
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Fig.7. Single value decomposition biplot of standardized traits showing their correlations for  

population CML441 x CML444 conducted under well-watered conditions at Chiredzi, 
Zimbabwe in 2004. (GYG, grain yield, AD, 50% anthesis; PH, plant height; EPP, ears per 
plant; ASI, antheis-silking interval; MOI, moisture content). 

 
 

Chitala well-watered experiment 

PH

0

-0.4

 

 

This experiment was conducted under irrigation conditions at Chitala (Malawi) during 

the dry season in 2004. Water was applied to the experiment to field capacity from 

planting up to physiological maturity. The trial was fertilized with 120 kg N ha-1 and 60 

kg ha-1 P2O5.  Significant differences were observed for grain yield, anthesis date, plant 

height and ears per plant (Table 14). Heritabilities were moderate to high for grain yield 

(0.45), anthesis date (0.62), plant height (0.57) but low for ears per plant (0.29). 
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Tab

441 x CML444 evaluated under well-
watered conditions at Chitala, Malawi in 2004.  

G AD ASI PH EPP MOI 

le 14. Statistics, genotypic variance, heritability and their standard errors for 
traits in testcrosses from population CML

 
Statistics GY
 Mg ha-1 d d cm # % 
Mean 4.76 78 2.80 185 0.90 12.6 
Significance *** *** NS *** *** NS 
Minimum 2.04 74.3 -0.90 121 0.70 10.1 
Maximum 7.02 83.4 5.70 206 1.10 16.4 
LSD (5%) 1.69 2.90 2.70 20.0 0.30 2.70 
CV (%) 17.1 1.90 47.9 6.80 15.7 10.6 
MSE 0.66 2.10 1.80 121 0.02 1.80 
Mean (Ent. 1-50)   5.00 78.0 2.60 187 0.90 12.8 
Mean (Ent. 51-100) 4.80 77.0 2.80 184 0.90 12.7 
σ2

e 0.64 2.10 1.90 121 0.02 1.69 
σ2

G 0.26 1.66 0.09 79.5 0.00 0.19 
h2 (family basis) 0.45 0.62 0.09 0.57 0.29 0.18 
Standard Error h2 0.12 0.08 0.19 0.09 0.15 0.18 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
MOI, grain moisture content.  
 
 
 
There were positive genotypic and phenotypic correlations between grain yield and plant 

betwee lant height and 50% anthesis 

ate 5 and Fig. 8). 

 

Table 15. Genotypic (above diagonal)  phe pic ( w diagonal) 
c ns and their standard errors (SE pop on C 41 x
C onducted und ll-w d co ions ital alaw 004. 

 
G AD P  

height and between grain yield and ears per plant. Negative correlations were observed 

n grain yield and 50% anthesis date and between p

d (Table 1

 and noty belo
orrelatio ) for ulati ML4   
ML444 c er we atere ndit at Ch a, M i in 2

 GY H EPP
GYG  -0.07 0 4 .73 0.4
AD -0
PH 0.

.16  -
42 -0.20  1 

EPP 0.45 -0.04 0

0.36 0.14 
0.4

.17  
GYG, grain yield; AD, 50% esis; lant h  EPP er pl

 
 an th PH, p eight; , ears p ant 
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Fig. 8. tion biplot of standardized traits showing their correlations for  
population CML441 x CML444 conducted under well-watered conditions at Chitala, Malawi in 
2 4.  (GYG, g eld, AD,  anthesis; nthesis-silk terval; PH t height; 
E rs per plan  MOI, m ent

 
 
 

00 rain yi 50% ASI, a ing in , plan
PP, ea t; oisture cont ).        

Chitala drought experiment 

 

The experiment was conducted during the dry season at Chitala Experimental Station 

alawi) during 2004. Water was applied to the experiment up to field capacity from 

planting until three weeks before flowering, when irrigation was withdrawn. The 

inte  were 

sign

ontent but not for ears per plant and between the mean of the best 50 and worst 

enotypes (Table 16). Heritabilities were 0.15, 0.70, 0.24, 0.63, 0.15 and 0.15 for grain 

(M

ntion was to induce drought stress during the flowering period. There

ificant different for grain yield, anthesis date, an thesis-silking interval and moisture 

c

g

 



   59

yield, anthesis date, anthesis-silking interval, plant height, ears per plant and moisture 

content, respectively.  

 
 
Table 16. Statistics, genotypic variance, heritability and their standard errors for 

traits in testcrosses from population CML441 x CML444 evaluated under 
drought conditions at Chitala, Malawi in 2004.  

 
Statistics GYG AD ASI PH EPP MOI 
 Mg ha-1 d d cm # % 
Mean 2.09 78.0 4.1.0 165 0.60 15.2 
Significance * *** 
Minimum 0.36 71.4 

*** *** NS *** 
-0.10 104 0.30 11.2 

Maximum 3.58 83.0 7.90 196 0.90 19.2 
LSD (5%) 1.32 3.80 3.40 17.0 0.40 3.00 
CV (%) 30.6 2.63 47.0 6.20 28.8 10.1 
MSE 0.41 4.16 3.71 111.6 0.03 2.40 

.1 0.002 1.06 
h2 (f s) 0.15 70 24 63 0.15 0.50 
Stan h2 0.19 06 .17 08 18 0.11 

Mean (Ent. 1-50)   2.08 78.3 3.90 166 0.60 15.3 
Mean (Ent. 51-100) 2.09 77.5 4.30 164 0.60 15.1 

2.6 0.03 2.17 σ2
e 0.41 4.16 3.71 11

σ2
G 0.04 4.78 0.59 96

amily basi
dard Error 

0. 0.
0

0.
0.0. 0.

       ***,* ficant at P < 0.001, 0. 5, r tively = ignificant. 
        GYG, 50% anthesis; ASI, anthesis g in  PH, p height; EPP, ears per 
      plant; oisture content.  
 

 

Grain yield had positive genotypic correlations with plant height (0.70) and moisture 

content (0.36), and negative correlations with anthesis date (-0.40) and anthesis-silking 

interval 18) (Table 17, Fig. 9). otyp rrelations were positive between plant  

height  and grain yield (0.46) and moisture content (0.40) and between grain yield and 

 

*,* Signi
grain yi

01 and 0.0 e c
-silkin
spe , 

terval;
and NS non s

eld; AD, 
MOI, grain m

lant 

(- .0 Phen ic co

moisture content (0.61). The rest were negative. 
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Table 17. Genotypic (above diagonal) and phenotypic (below diagonal) 
correlations and their standard errors (SE) for population CML441 x 
CML444 conducted under drought conditions at Chitala, Malawi during 2003 
and 2004 season. 

 
  GYG AD ASI PH MOI 
GYG  -0.40 (0.39) -0.18 (0.64)  0.70 (4.80)  0.36 (0.68) 
AD -0.25 (0.07)  -0.43 (0.27) -0.13 (0.16) -0.20 (0.33) 
ASI -0.14 (0.07) -0.28 (0.07)  -0.28 (0.26) -0.83 (0.73) 
PH 0.46 (0.23) -0.25 (0.08) -0.13 (0.08)   0.67 (0.35) 
MOI 0.61 (0.05) -0.22 (0.07) -0.17 (0.07)  0.40 (0.06)   

      GYG, grain yield, AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; MOI, grain 
       moisture. 
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Fig. 9. Single value decomposition biplot of standardized traits showing their correlations for 
population CML441 x CML444 conducted under drought conditions at Chitala, Malawi 
during 2004. (GYG, grain yield, AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant 
height; EPP, ears per plant; SL, stem lodging; MOI, grain moisture). 
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Chiredzi drought experiment 

 

The experiment was conducted during the 2004 dry season at Chiredzi Experimental 

Station (Zimbabwe). Water was applied to the experiment up to field capacity from 

planting until three weeks before flowering when irrigation was withdrawn to induce 

drought stress during the flowering period. Despite that nitrogen fertilizer was applied, 

the general performance of the experiment was poor because of inherent low fertility of 

e experimental site. Grain yields were very low with a mean of 0.32 Mg ha-1 (range 

om 0.00 to 1.29 Mg ha-1) (Table 18). Heritabilities were low ranging from 0.18 for 

 

T ble 18. Statistic nce, herit ity an their dard rors f   
its in testcro rom at M  C 44 ate er

 conditi t Chiredzi, Zimbabw 200
 

Statistics GYG A

th

fr

grain yield to 0.23 for anthesis-silking interval. 

 
 

a s, genotypic varia abil d  stan  er or
tra sses f  popul ion C L441 x ML4  evalu d und  
drought ons a e in 4.  

 D ASI PH 
 Mg h

0.32 98 1
a  -1 d d 

0
cm 

Mean  .0 .3 143 
Significance * N N

.9 13.5 
.45 12.9 344 

Mean (Ent. 1-50)   0.30 98.1 10.6 141 
Mean (Ent. 51-100) 0.30 98.8 9.90 145 
σ2 0.08 7.45 12.9 333 

S S NS 
Minimum 0.00 93.6 0.86 101 
Maximum 1.29 105.2 18.8 173 
LSD (5%) 0.55 13.7 10.9 40.0 

.60 34CV (%) 82.6 6
MSE 0.07 7

e
σ2

G 0.01 0.90 1.96 0.00 
h2 (family basis) 0.18 0.19 0.23 0.00 
Standard Error h2 0.18 0.19 0.45 0.00 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significan
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking; PH, plant height.  

t. 

 

 

Genotypic and phenotypic correlations could not be estimated for this experiment 

because most of the traits expect grain yield were not significant. Single value 
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decomposi iplot s grai ld pos ely corr d with  per nd 

vely rrelated w h 50% an  date 0).  

 

tion b show n yie itiv elate  ears plant a

negati co it thesis (Fig. 1
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ts showing their correlations for 

population CML441 x CML444 conducted under drought conditions at Chiredzi, Zimbabwe 
during 2004 season. (GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking; PH, plant 
height).  

esults across environments 

cross sites significant for grain yield 
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P
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ignificant differences for grain yield in this population. These were no nitrogen 

 

 analysis across environments was conducted for those environments that had 
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f tion (Chitedze) h nitr (H a ted ell d ( ), 

drought (Chitala and Chiredzi). 

 

Significant differences were observed am ll the traits except ears per plant in the 

a ll env ents w ign t d nce grain  (Ta 9). 

 

xture (0.85), plant height (0.52), and 100 

ernel weight (0.52). Heritability for grain yield was moderate (0.50) and low for 

0%anthesis date (0.10), anthesis-silking interval (0.14) and grain moisture content 

i and Zimbabwe in 2003 and 2004. 

Statistics GYG AD ASI PH EPP TEX MOI GWT 

ertiliza , hig ogen arare nd Chi ze), w watere Chitala

ong a

nalysis across a ironm ith s ifican iffere s for  yield ble 1

Average grain yield was 4.63 Mg ha-1. Heritability estimates ranged from 0.10 to 0.85.

Heritabilities were relatively high for grain te

k

5

(0.21).  

 
 
 
Table 19. Statistics, averages, variance components, heriability and its standard 

error for experiment CML441 x CML444 across all environments with 
significant differences for grain yield Malaw

 

 Mg ha-1 d d cm # 1-5 % g 
Mean 4.63 81.24 2.43 203.65 0.70 3.26 13.64 37.75 
Significance *** * ** *** NS *** *** *** 
CV 27.01 4.33 69.22 9.93 25.45 0.13 9.31 17.33 
 σ2

e 1.48 11.02 3.07 355.5 0.0003 0.11 1.51 35.42 
σ2

g 0.18 0.14 0.05 35.78 0.0003 0.07 0.05 3.94 
σ2

GxE 0.32 2.00 0.09 18.87 0.002 0.02 0.33 4.33 
h2 (family basis) 0.50 0.10 0.14 0.52 0.09 0.85 0.21 0.52 
Standard Error h2 0.08 0.15 0.15 0.08 0.15 0.03 0.15 0.11 

***,**,* Significant at P < 0.001, 0.01, and 0.05, respectively, NS = non-significant 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
MO, grain moisture; TEX, grain texture; GWT, 100 kernel weight. 
MSE, mean square error; h2, broad sense repeatability. 
 

 

Grain yield had positive genotypic and phenotypic correlations with plant height, 100 

kernel weight, grain texture and moisture content. Anthesis-silking interval and 50% an 

thesis date were both negatively correlated with grain yield (Table 20). 
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Table 20. Genotypic (above) and phenotypic (below) correlations and their 
sta nvironments 
sign

 GYG ASI  TEX M T 

ndard errors (SE) for experiment CML441 x CML444 across all e
ificant for grain yield evaluated in Malawi and Zimbabwe in 2003 and 2004. 

 
AD PH OI GW

G  
(  

 
2) 

59
(0.11

0.
(0.  2) 

YG - -0.10 
0.32)

0.94
(0.3

0.  
) 

44 
35)

0.82 
(0.2

AD -0.11 
(0.03) 

0.5
.2

0.
(0

ASI -0.09 
(0.03) 

7 
0) 

P
 

.54
.1

0.
(0

 

5 0.23 

0.05 
.03) 

-0.01 
(0.04) 

 0.09 
(0.32) 

WT 0.11 
(0.04) 

-0.03 
(0.04) 

0.10 
(0.04) 

0.10 
(0.04) 

0.15( 
0.05) 

0.08 
(0.04) 

 

 -0.51 
(0.70) 

- - 8 
(0 3) 

44 
.41) 

-0.11 
(0.33) 

-0.28 
(0.03) 

 -0.1
(0.3

- --- -0.73 
(2.97) 

H 0.31 
(0.03) 

-0.06 
(0.03) 

-0.03 
(0.03)

 0  
(0 2) 

54 
.34) 

0.80
(0.22) 

TEX 0.21 -0.12 -0.03 0.18  0.1
(0.05) (0.04) (0.04) (0.05) (0.27) (0.19) 

MOI 0.04 0.18 -0.02 
(0.33) (0.03) (0.03) (0

G

GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; TEX, grain texture; 

nts

MOI, moisture content; GWT, 100 kernel weight. 
 

 

Across high N environme  

 observed for grain yield (0.55) and plant 

eight (0.57). Heritabilities for other traits were low. 

 

 
 

 

Significant differences were observed for grain yield, plant height, ears per plant and 

moisture content in analysis across optimal nitrogen fertilization under rain fed 

conditions in Malawi and Zimbabwe during the 2003/2004 season (Table 21 and 

Appendix B).  Moderate heritabilities were

h
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Table 21. Statistics, averages, variance components, heriability and its standard 
error for experiment CML441 x CML444 across high nitrogen conditions in 
Malawi and Zimbabwe in 2003 and 2004. 

 
Statistics GYG AD ASI PH EPP MOI GWT 
 Mg ha-1 d d cm # % g 
Mean 6.82 74.70 0.84 228.02 0.84 15.81 39.53 
Significance *** NS NS *** ** *** NS 
CV 21.23 2.83 136.67 6.77 19.00 9.03 15.26 
 σ2

e 6.98 5.40 1.44 824.5 0.04 3.41 33.36 
σ2

g 1.24 0.07 0.00 146.09 0.003 0.19 0.74 
σ2

GxE 0.00 0.38 0.06 0.00 0.00 0.30 1.33 
h2 (family basis) 0.55 0.03 0.00 0.57 0.21 0.14 0.05 
Standard Error h2 0.06 0.11 0.00 0.06 0.08 0.10 0.18 

***,**,* Significant at P < 0.001, 0.01, and 0.05, respectively, NS = non-significant 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
MOI, grain moisture; TEX, grain texture; GWT, 100 kernel weight. 
MSE, mean square error; h2, broad sense repeatability. 
 

 

Across drought environments 

 

No significant differences were observed for any trait except grain moisture and 100 

kernel weight in analysis across environments with drought stress (Table 22 and 

Appendix C). Average grain yield was very low (1.15 Mg ha-1). In addition, heritabilities 

were very low and ranged from 0.00 to 0.37. 
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Table 22. Statistics, averages, variance components, heritability and its standard  

 
Statistics 

error for experiment CML441 x CML444 across drought stressed  
environments in Malawi and Zimbabwe in 2003 and 2004. 

GYG AD ASI PH EPP MOI GWT 
 Mg ha-1 d d cm # % g 
Mean 1.15 87.85 5.70 156.78 0.44 14.62 36.33 
Significance NS NS NS 
CV 52.51 5.82 41.79 

NS NS * * 
11.93 45.11 10.48 22.81 

σ2
e  0.40 33.73 8.94 399.05 0.04 4.30 106.4 

2σ g 0.003 0.00 0.00 4.26 0.001 0.00 20.10 
σ2

GxE 0.02 5.33 1.65 12.94 0.001 0.93 0.18 
h2 (family basis) 0.02 0.00 0.00 0.03 0.05 0.00 0.37 
Standard Error h2 0.11 0.00 0.00 0.11 0.11 0.00 0.13 

***,**,* Significant at P < 0.001, 0.01, and 0.05, respectively, NS = non-significant 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
MOI, grain moisture;  GW
MSE, mean square error; 

T, 100 kernel weight. 
h2, broad sense repeatability. 

 

 

Correlations among traits across environments and stresses 

 

Across all environments 

 

There were positive phenotypic correlations between grain yield and ears per plant, 100 

kernel weight and plant height across all environments including stressed and non 

stressed environments (Fig. 11). Flowering time (50 % anthesis date) and grain moisture 

were also closely correlated. 
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Fig. lot for different traits for experiment CML441 x CML444 
across all environments in Malawi and Zimbabwe in 2003 and 2004. (GYG, grain yield; AD, 
50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; MOI, grain 

TEX, gra r , 1 w
 

 

Correlations across high N environments
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P notypic c ions were observed among grain yield, plant height and e

per plant (Fig. 12). Grain yield was negatively correlated with anthesis-silking inter

and anthesis date.  
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Fig. 13. Single value decomposition biplot for different traits across drought environments for 

experiment CML441 x CML444 across drought conditions in Malawi and Zimbabwe in 2003 
and 2004. GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; 
EPP, ears per plant; MOI, grain moisture; TEX, grain texture; GWT, 100 kernel weight. 

 
 

Relationships among environments for grain yield  
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Fig. 14. AMMI biplot for grain yield showing the relationship among environments for experiment 
CML441 x CML444 across all environments in Malawi and Zimbabwe in 2003 and 2004. (Low 
N, low nitrogen; WW MLW, well-watered Malawi; WW ZM, well-watered Zimbabwe, NO 

ERT, no nitrogen fertilization; DRT MLW, drought Malawi; DRT ZM, drought ZimbabF
HN MLW  ZM,  nitrogen Zimbabw
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Table 23. Genotypic (above diagonal) and phenotypic (below diagonal) 
correlations among environments and their standard errors (SE) for 
experiment CML441 x CML444 across all environments in Malawi and 
Zimbabwe in 2003 and 2004. 

 
Environment NOFR

T 
HNZM HNMLW HNZM WWMLW WWZ

M 
DRTMW DRTZM 

Chitedze no 
fertilization 

 -§ 1.77 
(1.13) 

0.82 
(0.16) 

0.27 (0.42) - -0
(0

(NOFRT) 

.04 
.69) 

-0.39 
(0.42) 

Harare low N 
(HNZM) 

0.03 
(0.07) 

 - - - - - - 

Chitedze high N 
(HNMLW) 

0.18 
0.07) 

-  2.07 
(1.21) 

-0.06 
(0.80) 

- -2.22 
(3.93) 

0.48 
(0.86) 

Harare high N 
(HNZM) 

0.32 
(0.07) 

- 0.37 
(0.06) 

 -0.03 
(0.31) 

- -0.41 
(0.81) 

-0.64 
(0.37) 

-0.71 -1.56 

Ch
wa
(WWZM) 
Ch rought
(DRTMW) 

 -0.03 
 

 -  -0.05 
(1.13) 

Chiredzi droug
(DRTZM) 

3 
7) 

-0.06 
(0.07) 

- 0.04 
(0.07) 

 

Chitala well-watered 
(WWMLW) 

0.03 
(0.07) 

0.05 
(0.07) 

0.11 
(0.07) 

0.08 
(0.07) 

 - 
(0.75) (2.51) 

iredzi well-
tered 

- - - - -  - - 

itala d  0.01
(0.07) (0.07)

 - 

0.09 -0.04 
7) 

-0.01
(0.07) 0.07) (0.0

ht -0.02
(0.07) 

-0.04 -0.1
(0.07) (0.0

§No estimable be wo traits w  at any environment 
 

 

Expected gene

 

Estimates of h eti e used to compute genetic gain for 

oth direct (selection in one environment or stress to improve performance in that 

nvironment or stress) and indirect (selection in one environment or stress to improve 

 
 

cause one or the t ere non significant

tic gain  

eritabilities and gen c variances wer

b

e

performance in another environment and stress). Genetic gain estimates for direct 

selection were variable across environments and stresses as consequence of variable 

heritabilities and genetic variance displayed (Tables 23 and  24). Greater genetic gains 

were for environments Harare high nitrogen and Chitedze no fertilization. Low and 

drought stressed environments had low values for expected genetic gain.  
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Table 24. Expected genetic gain for grain yield (Mg ha-1) per environment for  

population CML 441 x CML 444 evaluated in Malawi and Zimbabwe in  
2003 and 2004 assuming selection of the best 10%. 
  

Environment Mean Error 
Gen. 

variance h2  
Genetic 
Gain (R) 

Chitedze no fertilization 5.43 1.78 0.78 0.47 1.06 
Harare low 0.62 0. 0.00 0.00 
Chitedze hi 20 0. 15 0.30 
Harare N 1.90 0.69 2.13 
Chired ll-watered 2.23 0.00 0.00 0.00 
Chitala well-watered 4.76 0.64 0.26 0.45 0.60 
Chitala drought 2.09 0.41 0.04 0.15 0.14 
Chiredzi drought 0.32 0.08 0.01 0.18 0.07 

Average across environments 4.32 1.28 0.14 0.26 0.54 

 N 
gh N 

2.10 
4.53 2.

00 
19 0.

high 9.09  2.15 
zi we 6.43 

  Gen., genetic;  h2, broad sense repeatability. 

oss all environments was 0.54 Mg ha-1 (Table 25). The highest 

enetic gain corresponded to environments across high nitrogen  (1.45 Mg haha-1).  

able 25. Expected genetic gain for grain yield (Mg ha-1) across environments and 

 

Expected genetic gain acr

g

 
 
T

stresses for population CML 441 x CML 444 evaluated in Malawi and 
Zimbabwe in 2003 and 2004 assuming selection of the best 10%.  
 

Environment Mean Error 
Gen. 

variance 
GxE 

variance h2  
Genetic 
Gain (R) 

Across all environments 4.32 1.28 0.14 0.00 0.26 0.54 
Across high N 6.82 6.98 1.24 0.00 0.55 1.45 
Across well-watered 5.63 2.47 0.08 0.00 0.10 0.16 
Across drought 1.15 0.40 0.003 0.02 0.02 0.01 

  Gen., genetic;  h2, broad sense repeatability. 

 

Estimates of correlated response for indirect selection were also variable depending on 

the genetic correlation between selection and target environments as well as their 

heritabilities (Table 26). The highest correlated response was for selection under high 

nitrogen environments to improve environment with no nitrogen fertilization (0.39 Mg 
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ha-1). This response could be misleading as the no nitrogen fertilized environment did 

not have nitrogen stress, which means selecting under high nitrogen for another high 

nitrogen environment. A positive correlated response was estimated for selection under 

drought to improve yield at high nitrogen environments (0.23 Mg ha-1). Negative 

correlated response was estimated when selection was done under well-watered 

conditions for drought and no nitrogen fertilization (-0.18 and -0.02 Mg ha-1, 

respectively) and very low response when selection was done under well-watered 

conditions to improve yield under no nitrogen fertilization (0.02 Mg ha-1). These results 

suggest that for this population, direct selection is more effective than indirect selection.   

 

 
Table 26. Correlated response estimates for indirect selection for different 

environments and stresses for experiment CML441 x CML444 in Malawi and 
Zimbabwe in 2003 and 2004.  
  

Selection under Response in  Correlated Response (Mg ha -1) 
Well-watered Drought -0.18 
Well-watered  high nitrogen 0.12 
Well-watered no fertilization -0.02 
High nitrogen no fertilization 0.39 
Drought high nitrogen 0.23 
Drought no fertilization -0.02 

 

 

Preliminary assessment of MAS efficiency in testcrosses 

 

In order to assess the efficiency of marker-assisted selection in selecting drought tolerant 

genotypes, a contrast was conducted between the means of the first 50 testcrosses 

selected for favorable alleles at consistent QTL and the mean of the last 50 testcrosses 

selected for unfavorable alleles at the same QTL. There were significant differences 

between the two groups in few environments (under no nitrogen fertilization, under low 

nitrogen, and well-watered conditions at Chitala (Malawi) (Table 27). No significant 
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differences between the two groups were observed in other environments or across 

env

 

Table 27. Grain yield means for the  first and  e , t dif nc  
nces at sin  env me ts xp ent 

41 x CML4 nd  in awi and Zimbabwe 03  2

ent 50
in y g h

Mea t. 51
Gra  (M ) 

re Sig nce 

ironments. 

 

last 50 ntries heir fere es and
significa gle iron nts and across environmen f eor erim
CML4 44 co itions Mal  in 20  and 004.  
  

Environm Mean (Ent. 1- ) 
Gra ield (M a-1) 

n (En -100) 
in yield g ha-1

Diffe nce nifica

Chitedze no fertilization  09 695.77 5. 0.  * 
Harare low N 2.21 01 20

tedze high N  20 .68
are high N  .88 .46

ered  .50 .1
 .80 .20

NS 

0.24 NS 

2. 0.  * 
Chi 4.88 4. 0  * 
Har 9.34 8 0  NS 
Chiredzi well-wat 6.38 6 -0 2 NS 
Chitala well-watered 5.00 4 0  * 
Chitala drought 2.08 2.09 -0.01 
Chiredzi drought 0.30 0.30 0 NS 
Average across locations 4.44 4.20 
Average High N 7.06 6.58 0.48 NS 
Average Well-watered 5.67 5.63 0.04 NS 
Average Drought 1.15 1.15 0 NS 

 

 

Selection of the best five entries for each environment was conducted based on the 

hig

con

testcrosses from both groups across all the environments. It was surprising to note that 

under drought conditions at Chiredzi and Chitala the highest yielding testcrosses came 

from the worst group (entries 53 and 85 respectively). However, some testcrosses 

showed some consistency in being among the best high yielding testcrosses. These were 

entry 27 under well-watered conditions, entry 16 under high nitrogen, and entry 30 under 

drought. All these entries came from the best group of testcrosses (Table 28).  

 
 
 
 
 
 

hest yielding testcrosses to assess which group of testcrosses (best or worst) 

tributed most to the 5 highest yielding testcrosses.  There were a mixed group of 
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Table 28. Top 5 entries for grain yield at single environment and across 
environments for experiments CML441 x CML444 conditions in Malawi and 
Zimbabwe in 2003 and 2004.  
 

Environment Best 5 entries for grain yield 
Chitedze no fertilization 25, 79, 96, 5, 3 
Harare low N 68 , 36, 16 
Chitedze high N 1, 12, 16, 33, 69 
Harare high N 98, 76, 78, 75, 16 
Chiredzi well-watered 53, 27, 30, 74, 60 
Chitala well-watered 26, 27, 11, 36, 57 
Chitala drought 85, 30, 73, 35, 67 
Chiredzi drought 53, 27, 30, 74, 61 
Average across locations 51, 50, 97, 24, 63 

, 6 75

Average High N 16
Average Well-watered 24

, 1, 76, 79, 69 
, 94, 10, 14, 65 

Average Drought 13, 11, 92, 9, 81 
 

 

Dro e estimated in order to identify 

s that reduce less nces under stre

unstressed conditions at the same locations. Testcrosses that maintain a good 

p  under stress are g d sourc or drought tolerance genes. The average DTI 

for the first and last 50 entries was 56.0 and 55.3 in Malawi and 94.7 and 94.9 in 

Z , respectively (App  M). aver d last 50 entries 

was 76.4  and 76.8, respectively (Zim e). T stcro  with the best DTU and 

N from both g s (Ta ).  

  

 
ices at two 

babwe in 2003 
and 2004 season.  
 

ught (DTI) and nitrogen (NTI) tolerance indices wer

testcrosse their performa ssed conditions relative to 

erformance oo es f

imbabwe endix  The age NTI for the first an

babw he te sses

TI indices came roup ble 29

Table 29. Best testcrosses based on drought and nitrogen tolerance ind
locations for CML441 x CML444 evaluated in Malawi and Zim

Parameter Zimbabwe Malawi 

DTI 29, 50, 42, 87, 68 85, 42, 51, 35, 24 

NTI 97, 68, 14, 6, 77 - 
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Population CML440/COMPE 

 

Results per environment 

 

Chitedze no nitrogen fertilization 

 

This experiment was conducted under no nitrogen fertilization and rain fed conditions at 

Chitedze Research Stati i)  2003/2004 season. The purpose was to 

i e low o ni ent in the soil was higher than expected 

ge was 3.85 Mg ha-1 (range 2.05 to 6.74 

g ha-1) (Table 30). There were no significant differences for all the traits except for 

00 kernel weight . Heritabilities were 0.09 and 0.30 for moisture content and 100 grain 

weight while the other traits had zeros. Average grain yield for the first 50 testcrosses 

was not significantly greater than the average for the last 50 testcrosses (Table 30). 

 

Genotypic correlations were not estimated because of the non significance of the traits. 

Phenotypic correlations were estimated using single value decomposition of the 

standardized traits. Grain yield was positively correlated with plant height, root lodging 

and surprisingly with anthesis-silking interval but was negatively correlated with 

anthesis date (Fig. 15). 

on (Malaw  during the

nduc  N stress, h wever, the trogen cont

and no stress was apparent. Grain yield avera

M

1
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Table  30. Statistics, genotypic variance, heritability and their standard errors for  
traits in testcrosses from population CML440 x COMPE evaluated under no 
nitrogen fertilization at Chitedze, Malawi in 2003 and 2004.  

 
Statistics GYG AD ASI PH EPP MOI TEX GWT 
 Mg ha-1 d d cm # % 1-5 g 
Mean 3.85 67.9 1.0 218.0 0.90 15.0 2.9 39.00 
Significance 
Minim m 

NS NS NS NS NS NS NS *** 
u 2.05 65.0 -0.5 192.0 0.70 13.4 2.00 20.8 

Maximum 6.74 71.7 3.9 271.0 1.40 16.6 4.00 49.1 
LSD (5%) 2.02 4.4 2.2 34.0 0.30 2.00 0.90 11.6 

M
M 0 2.90 5.01 
σ2

e 0.95 24.10 
2 0.00 0.00 0. 0 0.05 0.00

 basis) 0.00 0. 0. 0 0.09 0.00
rd Error h2 0.00 0.00 0. 0.20 0.00 

CV (%) 22.8 2.96 105.3 7.40 4.60 3.20 33.6 5.01 
MSE 0.77 4.03 1.1 262.0 0.01 0.23 0.95 24.11 

ean (Ent. 1-50)   3.84 67.8 1.0 215.0 1.00 14.90 2.90 39.1 
ean (Ent. 51-100) 3.85 68.0 1.0 220.0 0.90 15.1

0.77 4.03 1.08 245.5 0.01 0.23 
σ g 0.00 00 

0
.00 
.0

 5.09 
 0.30 h

S
2 (family 0.00 

0.00 
00 0 

00 0.
0 

tanda 00 0.17 
* cant at P < 0. .01 a 5, respectively S = ign . 
GYG, grain yield; AD, 50% is; AS es g i  PH t he PP, e r plant; 
M oisture content ain re;   10   w  
 
 
 
 
 

**,**,* Signifi 0 001, nd 0.0 ,  Nand  non s if tican
anthes I, anth is-silkin

GW ,
nterval; , plan ight; E ars pe

OI, grain m ; TEX, gr  textu T 0 kernel eight. 
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MOI
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Fig. 15. Single value decomposition biplot of standardized traits showing their 

correlations for population CML440 x COMPE evaluated under no nitrogen fertilization at 
Chitedze, Malawi in 2003 and 2004 season. (AD; 50% anthesis; ASI, anthesis-silking interval; 
GYG, grain yield; PH, plant height; EPP, ears per  plant; EPO, ear position; RL, root lodging; 
SL, stem lodging, MOI, moisture content and TEX, grain texture).  

0.4
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Harare low nitrogen experiment 
 

his experiment was conducted under low nitrogen conditions in Harare (Zimbabwe) 

having the highest heritability of 

able 31. Statistics, genotypic variance, heritability and their standard errors for 
traits in testcrosses from population CML440 x COMPE evaluated under low 
nitrogen at Harare, Zimbabwe in 2003 and 2004.  

Statistics GYG AD ASI PH 

T

under rainfed conditions during the 2003/2004 season. The trial did not receive any 

nitrogen fertilization but only 60 kg ha-1 P2O5. Significant differences were observed for 

all the traits except anthesis silking interval (Table 31). Mean values of the best 50 

genotypes and 50 worst genotypes were not significantly different.  Heritabilities  

estimates were generally moderate  with grain yield 

0.35, followed by plant height (0.28), 0.25 for 50% anthesis date and the lowest was 

from anthesis-silking interval (0.07).   

 
 
T

 

 Mg ha-1 d d cm 
Mean 1.81 81.0 -0.20 204 
Significance * ** NS * 
Minimum 0.39 73.4 -5.20 147 
Maximum 3.40 84.4 2.40 216 
LSD (5%) 1.55 4.10 3.20 27.0 
CV (%) 48.95 2.40 76.8 6.10 
MSE 0.58 3.90 2.40 157 
Mean (Ent. 1-50)   1.80 78.20 -0.30 198 
Mean (Ent. 51-100) 1.90 78.3 -0.10 197 
σ2

e 0.58 4.16 2.69 160.4 
σ2

g 0.15 69.0 0.10 31.6 
h2 (family basis) 0.35 0.25 0.07 0.28 
Standard Error h2 0.15 0.17 0.19 0.10 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height.  
 
 

Anthesis date had a positive genotypic correlation with plant height (0.63) while grain 

yield had negative genotypic correlations with plant height (-0.18) and anthesis date (-

but

0.11). Phenotypic correlations were positive between grain yield and plant height (0.19) 

 negative between grain yield and 50% anthesis date (-0.25) and between plant height 
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and anthesis date (-0.17) (Table 32 and Fig.16). Genotypic correlations ranged from -

0.1

 
 
T enotypic (a  diag ) a en ic (b  diagonal) correlations 
a andard err ) for population CML440 MPE conducted under 
l en condition ara imbabwe during 2003 and 2004.   
 

GYG D 

1 to 0.63 while phenotypic correlations were from -0.17 to 0.12. 

 

able 32. G
st

b eov onal n hd p otyp elow
nd their ors (SE x CO
ow nitrog s in H re, Z

  A PH 
GYG  (0.56 .18  -0.11 ) -0  (0.51)
AD -0.25 (0.07) 63  

8) (0.01
  0. (0.23)

PH  0.19 (0.0 -0.17 )  
G , grain yield; AD, 50% is; PH t he
 
 
 

YG anthes , plan ight 

 

PH

AD

-0.6

-0.4

-0.2

0

0.2

0.4

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
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ig. 16. Single value decomposition biplot of standardized traits showing their correlations  

for population CML440 x COMPE evaluated under low nitrogen fertilization in Harare, 
Zimbabwe in 2003 and 2004 . (AD; 50% anthesis; GYG, grain yield; ASI, anthesis-silking 
interval; PH, plant height).  

F
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Chitedze high nitrogen  fertilization 
 

his e n (Malawi) during the 

2 4 season under  ed co ions  expe ent was fertilized with 120 kg 

N 2O5 ha rain  av  wa  Mg  (range 3.58 to 7.34 

M ble 33).  

 
 
Table 33. Statistics, geno  var , heritability and their standard errors for 

rosses f popu n CML440 x COMPE evaluated under high 
ization hited ala  20  20

 
G AD ASI PH EPP EX T 

T xperiment was conducted at Chitedze Research Statio

003/200 rain f ndit . The rim

 ha-1 and 60 kg P -1.  G  yield erage s 5.56  ha-1

g ha ) (T-1 a

typic iance
traits in testc rom latio
nitrogen fertil  at C ze, M wi in 03 and 04.  

Statistics YG T GW
 Mg d cm # 5 g 

.70 
 ha  -1 d  1-

Mean 5.56 73.0 0.4 218.0 0.80 3.20 43
Significance NS NS NS ** NS NS NS 
Minimum 3.58 69.6 -2.80 181.0 0.30 2.40 38.1 
Maximum 7.34 75.8 4.40 249.0 1.10 4.10 51.1 
LSD (5%) 2.48 4.5 3.20 26.0 0.30 0.80 7.30 
CV (%) 23.20 3.5 38.7 7.10 18.8 6.30 8.20 
MSE 1.67 6.5 2.40 245.0 0.02 0.20 12.9 
Mean (Ent. 1-50)   5.70 72.5 0.50 217.0 0.80 3.10 43.5 
Mean (Ent. 51-100) 5.42 72.8 0.40 219.0 0.70 3.20 43.8 
σ2

e 1.47 4.40 2.37 205.5 0.03 0.15 12.57 
σ2

G 0.00 0.00 0.00 12.0 0.00 0.001 0.00 
h2 (family basis) 0.00 0.00 0.00 0.11 0.00 0.02 0.00 
Standard Error h2 0.00 0.00 0.00 0.20 0.00 0.20 0.00 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
MOI,  moisture content; TEX, grain texture;  GWT, 100 kernel  weight.  
 

 

The mean of the first 50 testcrosses was significantly higher than the mean of the last 50 

s. All the traits were not significantly different except for plant height. 

 not 

esti

i  the standardized traits. These showed that 

ere was a positive correlation between grain texture and 100 grain weight, and between 

rain yield and ears per plant. There was a negative phenotypic correlation between 

testcrosse

Surprisingly, even the heritabilities were also very low. Genotypic correlations were

mated because of the non significance of the traits. Phenotypic correlations were 

mated using single value decomposition ofest

th

g
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anthesis date and anthesis-silking interval and between anthesis-silking interval and 

rain yieldt (Fig. 17 ). g

GYG

AD

ASI

PH

EPP

GWT

TEX

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

 
Fig. 17. Single value decomposition biplot of standardized traits showing their correlations for  

population CML440 x COMPE conducted under high nitrogen conditions at Chitedze, Malawi 
in 2003 and 2004. (AD; 50%anthesis date; ASI, anthesis-silking interval; GYG, grain yield; PH, 
plant height; EPP, ears per plant; MOI, moisture content ; TEX, grain texture).       
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Harare high nitrogen  fertilization 

 

This experiment was conducted under rain fed conditions in Harare (Zimbabwe) during 

the 2003/2004 season. It was fertilized with 120 kg N ha-1 and 60 kg P2O5 ha-1. Average 

grain yield was 8.02 Mg ha-1 (range 5.73 to 9.77 Mg ha-1).  Significant differences were 

observed for grain yield only but not for the other traits. Heritability   for grain yield was 

0.33, and very low or 0 for the other traits (Table 34). 

 
Using single decomposition biplots of standardized traits (Fig.18), phenotypic 

correlations were estimated.  This showed that there were weak phenotypic correlations 

amongst all the traits, which is explained by the non significant differences for the traits. 

 

 

 

GYG
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PH
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0.8
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ig. 18. Single value decomposition biplot of standardized traits showing their correlations for  

population CML440 x COMPE conducted under high nitrogen conditions in Harare, Zimbabwe 
during 2003 and 2004. (AD; 50% anthesis; ASI, anthesis-silking interval; GYG, grain yield; PH, 
plant height; MOI, moisture content).   

F
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Table 34. Statistics, genotypic variance, heritability and their standard errors for  
traits in testcrosses from population CML440 x COMPE evaluated under high 
nitrogen fertilization in Harare, Zimbabwe in 2003 and 2004. 

ASI PH M
 

Statistics GYG AD OI 
 Mg ha-1 d d cm # 

2 12
 

Mean 8.02 69.5 1.20 41 .6 
Significance * NS NS NS NS 

- 2 8.
4 2 15
2 26 3.

1 5. 13
1 1 2.

2 12
2 12

1 1 2.
0 20 0.
0 0. 0.
0 0. 0.

Minimum 5.73 66.0 1.60 18 10 
Maximum 9.77 72.8 .60 67 .2 
LSD (5%) 2.12 3.20 .50 .0 20 
CV (%) 13.02 2.30 05.9 30 .2 
MSE 1.09 2.60 .60 64 76 
Mean (Ent. 1-50)   8.09 69.6 1.10 41 .5 
Mean (Ent. 51-100) 7.96 68.4 1.20 41 .7 
σ2

e 1.10 2.42 .54 61.6 76 
σ2

g 0.27 0.11 .00 .4 33 
h2 (family basis) 0.33 0.08 .00 20 19 
Standard Error h2 0.14 0.19 .00 17 17 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height;  
 MOI, grain moisture content.  
 
 

 
Chitala well-watered experiment  
 
This experiment was conducted under well-watered conditions at Chitala (Malawi) 

during the dry season under irrigation in 2004. Water was applied to the experiment to 

field capacity from planting up to physiological maturity. The trial was fertilized with 

120 kg N ha-1 and 60 kg ha-1 P2O5.  Significant differences were observed for 50% 

anthesis date and plant height only and not for the other traits. However, there were no 

significant differences between the mean of the first 50 and last 50 testcrosses. 

Heritabilities were moderate for 50% anthesis date (0.46) and plant height (0.42) but low 

for moisture content (0.26) and 0.01 for grain yield (Table 35). 
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Table 35. Statistics, genotypic variance, heritability and their standard errors for 
traits in testcrosses from population CML440 x COMPE evaluated under 
well-watered conditions at Chitala, Malawi in 2004.  

 
Statistics GYG AD ASI PH EPP MOI 
 Mg ha-1 d d cm # % 
Mean 3.80 73.7 2.70 166.0 0.70 12.6 
Significance NS *** NS *** NS NS 
Minimum 1.80 69.9 -1.80 123.0 0.30 10.6 
Maximum 6.09 79.3 8.60 188.8 1.00 15.1 
LSD (5%) 1.98 4.24 3.90 21.3 0.04 23.1 
CV (%) 23.4 2.80 73.1 12.0 28.4 10.3 
MSE 0.79 4.28 3.90 113.8 0.04 1.70 
Mean (Ent. 1-50)   3.87 73.7 2.60 166.0 0.70 12.6 
Mean (Ent. 51-100) 
σ2

3.74 73.6 2.90 166.0 0.70 12.7 
e 0.84 3.81 3.62 113.7 0.03 1.69 

σ2g 0.01 1.62 0.00 40.6 0.00 0.26 
h2 (family basis) 0.01 0.46 0.00 0.42 0.00 0.26 
Standard Error h2 0.23 0.12 0.00 0.14 0.00 0.16 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GY
MO

 

Genotypic correlation was conducted for 50% anthesis date and plant height because 

they were the only traits that were significantly different.  Positive genotypic (1.04) and 

phenotypic correlations (0.01), were observed between the two traits although the 

phenotypic correlation was weak. Grain yield was positively correlated with eras per 

plant but these were negatively correlated with anthesis-silking interval and 50% 

anthesis date (Fig.19). 

 

 

G, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
I, moisture content.  
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Fig. 19. Single value decomposition biplot of standardized traits showing their correlations for  

population CML440 x COMPE conducted under well-watered conditions at Chitala, Malawi in 
2004. (AD; 50% anthesis; ASI, anthesis-silking interval; GYG, grain yield; PH, plant height; 
EPP, ears per plant; MOI, moisture content). 
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Chiredzi well-watered experiment  
 
This experiment was conducted under well-watered conditions at Chiredzi (Zimbabwe) 

during the dry season under irrigation in 2004. Water was applied to the experiment to 

field capacity from planting up to physiological maturity. The trial was fertilized with 

120 kg N ha-1 and 60 kg ha-1 P2O5.  Mean grain yield was 4.77 Mg ha-1 (ranged from 

3.51 to 6.09 Mg ha-1). There were no significant differences for all the traits except 

moisture content. The mean of the first 50 testcrosses was also not significantly different 

from the mean of the other 50 testcrosses. Heritabilities were very low, they ranged from 

zero to to 0.11 for grain yield (Table 36). This scenario was also observed in the other 

populations when evaluated at the same environment.  

 
 
Lack of significant differences for all but one trait resulted in genotypic correlations  not 

being estimated. However, phenotypic correlations were estimated using single value 

decomposition biplot of standardized traits. There were positive phenotypic correlations 

between grain yield and ears per plant and surprisingly between grain yield and anthesis-

silking interval, which are normally negative. Negative correlations were observed 

between grain yield and 50% anthesis date and between 50% anthesis date and anthesis-

silking interval (Fig. 20). 
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Table 36. Statistics, genotypic variance, heritability and their standard errors for 
traits in testcrosses from population CML440 x COMPE evaluated under well-
watered conditions at Chiredzi, Zimbabwe in 2004.  

 
Statistics GYG AD ASI PH EPP MOI SEN 
 Mg ha-1 d d cm # % % 
Mean 4.77 99.5 -0.81 183.0 1.00 10.5 67.9 
Significance NS NS NS NS NS ** NS 
Minimum 3.51 96.9 -3.33 189.0 0.80 7.80 55.3 
Maximum 6.09 101.9 2.76 272.0 1.20 13.4 83.5 
LSD (5%) 1.30 3.36 2.89 30.0 0.20 15.6 15.6 
CV (%) 30.7 1.70 183.5 47.9 9.2 15.2 10.5 
MSE 0.40 3.33 2.21 503.4 0.01 1.70 51.0 
Mean (Ent. 1-50)   4.75 99.2 -0.50 183.0 1.00 10.6 67.1 
Mean (Ent. 51-100) 4.79 98.7 -0.80 185.0 1.00 10.5 68.6 
σ2

e 0.38 3.10 2.21 242.2 0.01 1.82 51.0 
σ2

G 0.02 0.00 0.12 0.00 0.00 0.00 0.00 
h2 (family basis) 0.11 0.00 0.09 0.00 0.00 0.00 0.00 
Standard Error h2 0.19 0.00 0.18 0.00 0.00 0.00 0.00 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
MOI, grain moisture content; GWT, 100 kernel weight; SEN, leaf senescence.  
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Fig. 20. Single value decomposition biplot of standardized traits showing their correlations for 
population CML440 x COMPE conducted under well-watered conditions at Chiredzi, Zimbabwe in 
2004. (AD; 50% anthesis; ASI, anthesis-silking interval; GYG, grain yield; PH, plant height; EPP, 
ears per plant; MOI, moisture content; SEN, leaf senescence). 
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Chitala drought experiment 
 
The experiment was conducted during the dry season of 2004 at Chitala Experimental 

Station (Malawi). Water was applied to the experiment up to field capacity from planting 

until three weeks before flowering. The intention was to induce drought stress during the 

flowering period. There were significant differences for grain yield, anthesis date, plant 

height and ears per plant but not for anthesis-silking interval and between the mean of 

the best 50 and worst testcrosses (Table 37). Heritabilities were 0.26, 0.10, 0.03, 0.25 

and 0.41 for grain yield, anthesis date, anthesis silking interval, plant height and ears per 

plant, respectively.  

 

 
Table 37. Statistics, genotypic variance, heritability and their standard errors for 

traits in testcrosses for population CML440 x COMPE evaluated under drought 
conditions at Chitala, Malawi in 2004.  

 
Statistics GYG AD ASI PH EPP 
 Mg ha-1 d d cm # 
Mean 2.56 75.6 3.50 171.0 0.70 
Significance ** *** NS ** *** 
Minimum 0.92 70.2 -0.90 155.0 0.40 
Maximum 4.27 83.5 8.30 192.0 1.30 
LSD (5%) 1.45 5.80 4.30 21.0 0.30 
CV (%) 16.7 3.83 57.1 6.70 31.9 
MSE 0.43 8.30 4.00 130.6 0.05 
Mean (Ent. 1-50)   2.60 75.6 3.40 172.0 0.70 
Mean (Ent. 51-100) 2.50 75.6 3.40 171.0 0.70 
σ2

e 0.46 8.25 4.03 130.6 0.03 
σ2

G 0.08 0.48 0.07 21.98 0.01 
h2 (family basis) 0.26 0.10 0.03 0.25 0.41 
Standard Error h2 0.17 0.21 0.21 0.17 0.14 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant. 
 
 

Positive genotypic correlations were observed between grain yield and plant height 

(0.43) and ears per plant (0.65) and between 50% anthesis date and plant height (1.05) 

and between plant height and ears per plant (0.51) but was negative between grain yield 

and 50% anthesis date (-0.78).  Positive phenotypic correlations were observed between 

grain yield and  ears per plant (0.54) and plant height (0.25), and between plant height 
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and ears per plant (0.30). The rest were negative (Table 38). Genotypic correlations 

ranged from -1.17 to 1.05 while phenotypic correlations were from -0.27 to 0.54 (Table 

38 and Fig. 20). 

 
 
 
Table 38. Genotypic (above diagonal) and phenotypic (below diagonal ) correlations 

and their standard errors (SE) for population CML440 x COMPE 
conducted under drought conditions at Chitala, Malawi  during 2003 and 
2004. 

 
  GYG AD PH EPP 
GYG  -0.78 (0.88) 0.43 (2.42)  0.65 (0.27) 
AD -0.27 (0.07)  1.05 (1.60) -1.19 (1.22) 
PH  0.25 (0.22) -0.19 (0.07)   0.51 (0.41) 
EPP  0.54 (0.06) -0.10 (0.08) 0.30 (0.07)  

GYG, grain yield, AD, 50% anthesis; PH, plant height; EPP, ears pr plant. 
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Fig. 21. Single value decomposition biplot of standardized traits showing their correlations for 

population CML440 x COMPE conducted under drought conditions at Chitala, Malawi in 2004. 
(AD; 50% anthesis; ASI, anthesis-silking interval; GYG, grain yield; PH, plant height; EPP, 
ears per plant). 

 
 
Chiredzi drought experiment 
 
The experiment was conducted during the dry season of 2004 at Chiredzi Experimental 

Station (Zimbabwe). Water was applied to the experiment up to field capacity from 

planting until three weeks before flowering. The intention was to induce drought stress 

during the flowering period. Despite that nitrogen fertilizers were applied to this 

experiment, the general performance was poor because of inherent low fertility of the 

experimental site. Grain yields were very low. Mean yield was 1.81 Mg ha-1 with a range 

from 0.07 to 3.67 Mg ha-1 (Table 39). Heritabilities were low ranging from 0.02 to 0.30 

for grain yield and ears per plant. Estimates of genotypic and phenotypic correlations, 

showed that there were strong and  positive genotypic and phenotypic correlations 

between grain yield and ears per plant (1.84 and 0.51 respectively)   but were negative 

between grain yield and grain texture (-0.15) and moisture content (-0.06). Moisture 

content and grain texture had also strong genotypic correlations (0.88). Most traits had 
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negative phenotypic correlations except between grain moisture and texture which was 

positive (0.05) Table 40 and Fig.21).   

 

 
Table 39. Statistics, genotypic variance, heritability and their standard errors for  

traits in testcrosses from population CML440 x COMPE evaluated under 
drought conditions at Chiredzi, Zimbabwe in 2004.  

 
Statistics GYG AD ASI PH EPP TEX MOI 
 Mg ha-1 d d cm # 1-5 % 
Mean 1.81 98.0 2.30 184.0 0.70 3.10 9.90 
Significance ** NS NS NS *** *** *** 
Minimum 0.07 94.6 -0.90 143 0.20 2.60 8.10 
Maximum 3.67 100.8 7.0 211 1.10 3.60 12.2 
LSD (5%) 1.40 13.7 4.30 32.0 0.30 0.50 1.60 
CV (%) 39.8 1.72 87.1 7.90 10.2 304.2 6.55 
MSE 0.52 2.86 4.01 209 0.03 0.10 0.42 
Mean (Ent. 1-50)   1.88 97.4 2.35 186.2 0.70 3.10 9.97 
Mean (Ent. 51-100) 1.73 97.8 2.15 181.8 0.64 3.13 9.79 
σ2

e 0.52 2.86 4.01 205.6 0.03 0.07 0.42 
σ2

G 0.01 0.36 0.00 36.7 0.10 0.06 0.06 
h2 (family basis) 0.02 0.20 0.00 0.26 0.30 0.16 0.22 
Standard Error h2 0.24 0.17 0.00 0.16 0.17 0.17 0.25 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking; PH, plant height; EPP, ears per plant; TEX, 
grain texture; MOI, moisture content.  
 
 
 
Table 40. Genotypic (above diagonal) and phenotypic (below diagonal) correlations 
      and their standard errors (SE) for population CML440 x COMPE conducted 
      under drought conditions at Chiredzi, Zimbabwe in 2004. 
 
 
 GYG EPP TEX MOI 
GYG   1.84 (7.26) -4.73 (22.65) -10.97 (76.78) 
EPP  0.51 (0.06)  -1.20 (1.60)  0.71 (0.40) 
TEX -0.15 (0.08) -0.07 (0.08)   0.88 (2.34) 
MOI -0.06 (0.09) -0.07 (0.12)  0.05 (0.10)  
GYG, grain; EPP, ears per plants; TEX, grain texture; MOI, moisture content 
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Fig. 22. Single value decomposition biplot of standardized traits showing their correlations for 
 population CML440 x COMPE conducted under drought conditions at Chiredzi, Zimbabwe in 
2004. (GYG, grain yield; EPP, ears per; plant; MOI, moisture content; TEX, grain texture). 
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Results across environments  

 

Across all environments significant for grain yield 

 

The analysis across environments was conducted for those environments that had 

significant differences for grain yield in this population. These were low nitrogen 

(Harare), high nitrogen (Harare) and  drought (Chitala and Chiredzi). 

 

Significant differences were observed only for grain yield and 50% anthesis date but not 

for the other traits. Average grain yield was 3.64 Mg ha-1. Heritability estimates were 

generally low ranging from 0.00 to 0.37. Heritabilty was 0.19 for grain yield, 0.20 for 

50% anthesis date, 0.29 for anthesis-silking interval, 0.37 for plant height, 0.21 for 

moisture content, 0.19 for 100 kernel weight and 0.00 for ears per plant (Table 41). 

 
 
 
Table 41. Statistics, averages, variance components, heritability and its standard  

error for experiment CML440 x COMPE across all environments with 
significant differences for grain yield in Malawi and Zimbabwe in 2003 and 
2004. 

 
Statistics GYG AD ASI PH EPP MOI GWT 
 Mg ha-1 d d cm # % g 
Mean 3.64 79.18 1.99 199.02 0.82 12.04 30.62 
Significance *** *** NS NS NS NS NS 
CV 28.41 2.74 92.24 8.83 23.99 13.72 9.18 
σ2

e 0.64 0.34 2.84 176.49 0.03 2.25 6.39 
σ2

G 0.03 0.14 0.15 13.21 0.00 0.08 0.17 
σ2

GxE 0.13 0.56 0.00 3.52 0.002 0.11 0.00 
h2 (family basis) 0.19 0.20 0.29 0.37 0.00 0.21 0.19 
Standard Error h2 0.15 0.14 0.11 0.12 0.00 0.14 0.37 

***,**,* Significant at P < 0.001, 0.01, and 0.05, respectively. 
GYG, grain yield; PH, plant height; AD, 50% anthesis; GWT, 100gwt, grain weight; EPP, ears per plant; 
ASI, anthesis-silking interval; MOI, moisture content. 
MSE, mean square error; h2, broad sense repeatability. 
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Across high N environments 

 

No significant differences were observed for any trait except for plant height in the 

analysis across high nitrogen fertilization in Malawi and Zimbabwe during 2003/2004 

season. (Table 42 and Appendix E). Similarly all the traits had zero heritabilities except 

plant height which had a low heritability estimate of 0.24. The non significance of the 

traits at the Chitedze Research Station environment might have contributed to the non 

significance for the traits across high nitrogen sites.  

 
 
 
Table 42. Statistics, averages, variance components, heritability and its standard 

error for experiment CML440 x COMPE across high nitrogen conditions in 
Malawi and Zimbabwe in 2003 and 2004. 

 
Statistics GYG AD ASI PH EPP MOI GWT 
 Mg ha-1 d d cm # % g 
Mean 6.79 71.06 0.80 229.5 0.75 13,1 42.3 
Significance NS NS NS * NS NS NS 
CV 17.8 3.00 183.9 6.49 24.3 11.6 9.28 
σ2

e 1.27 3.46 1.95 164.1 0.03 1.68 10.7 
σ2

e 0.00 0.00 0.00 25.7 0.00 0.00 0.00 
σ2

GxE 0.15 0.00 0.00 0.00 0.00 0.18 0.00 
h2 (family basis) 0.00 0.00 0.00 0.24 0.00 0.00 0.00 
Standard Error h2 0.00 0.00 0.00 0.08 0.00 0.00 0.00 

***,**,* Significant at P < 0.001, 0.01, and 0.05, respectively. 
GYG, grain yield; PH, plant height; AD, 50% anthesis; GWT, 100gwt, grain weight; EPP, ears per plant; 
ASI, anthesis-silking interval; MOI, moisture content. 
MSE, mean square error; h2, broad sense repeatability. 
  

 

Across drought environments 

 

Significant differences were observed for anthesis date only across drought stress 

environments (Table 43 and Appendix F). Heritability estimates ranged from 0 to 0.10.  
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Table 43. Statistics, averages, variance components, heritability and its standard 
error for experiment CML440 x COMPE across drought stressed environments 
conducted in Malawi and Zimbabwe in 2003 and 2004. 

 
Statistics GYG AD ASI PH EPP MOI 
 Mg ha-1 d d cm # % 
Mean 2.19 85.7 2.47 174.9 0.96 15.6 
Significance NS ** NS NS NS NS 
CV % 49.5 2.62 86.8 11.4 10.9 18.5 
σ2

e 0.48 3.35 3.62 194.6 0.02 1.84 
σ2

g 0.00 0.00 0.21 0.00 0.0005 0.00 
σ2

GxE 0.05 0.99 0.00 3.81 0 0.05 
h2 (family basis) 0.00 0.00 0.10 0.00 0.05 0.00 
Standard Error h2 0.00 0.00 0.08 0.00 0.09 0.00 

***,**,* Significant at P < 0.001, 0.01, and 0.05, respectively. 
GYG, grain yield; PH, plant height; AD, 50% anthesis; EPP, ears per plant; ASI, anthesis-silking interval; 
MOI, moisture content. 
MSE, mean square error; h2, broad sense repeatability. 
 
 
 
 
Correlations among traits across environments and stresses 
 

Across all environments 
 
Positive correlations were observed between grain yield and ears per plant while 

negative correlations were observed between grain yield and 50% anthesis date (Fig 23). 
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Fig. 23. Single value decomposition biplot of standardized traits showing their correlations for 

population CML440 x COMPE evaluated across all environments in Malawi and  Zimbabwe in 
2003 and 2004. (GYG, grain yield; AD, 50% anthesis; EPP, ears per; plant; PH, plant height;  
MOI, moisture content; TEX, grain texture). 
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Across high N environments 

 

There was a strong and positive correlation between grain yield and ears per plant but 

the two were negatively correlated with moisture content and anthesis-silking interval. 

Strong negative correlations were observed between anthesis-silking interval and 50% 

anthesis date and between grain yield and moisture content (Fig 24). 
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Fig. 24. Single value decomposition biplot of standardized traits showing their correlations for 

population CML440 x COMPE evaluated across high nitrogen environments in Malawi and 
Zimbabwe in 2003 and 2004. (GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking 
interval; EPP, ears per; plant; PH, plant height; MOI, moisture content). 
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Across drought environments 

 

Positive correlations were observed between grain yield and plant height and moisture 

content. Negative correlations were observed between 50% anthesis date and anthesis-

silking interval and between grain yield and anthesis-silking interval (Fig.25). 
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Fig. 25. Single value decomposition biplot of standardized traits showing their  correlations for  

population CML440 x COMPE evaluated across drought environments in Malawi and 
Zimbabwe in 2003 and 2004. (GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking 
interval; EPP, ears per; plant; PH, plant height; MOI, moisture content). 
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Relationships among environments for grain yield  

 

In the AMMI biplot well-watered in Malawi, high nitrogen Zimbabwe and drought 

environments in Zimbabwe discriminated the testcrosses in a similar manner. No 

nitrogen fertilization in Malawi and drought conditions in Malawi, and high nitrogen in 

Malawi and well-watered in Zimbabwe also classified the testcrosses similarly (Fig. 26). 
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Fig. 26. AMMI biplot for grain yield showing the relationship among environments for population 

CML440 x COMPE conducted in Malawi and Zmbabwe in 2003 and 2004. (Low N, low 
nitrogen; WW MLW, well-watered Malawi; WW ZM, well-watered Zimbabwe, NO FERT, no 
nitrogen fertilization; DRT MLW, drought Malawi; DRT ZM, drought Zimbabwe; HN MLW, 
high nitrogen Malawi; HN ZM, high nitrogen Zimbabwe). 
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Expected genetic gain  

 

Expected genetic gain from direct selection was estimated using heritabilities, genetic 

variance and their standard errors by selecting from the individual environment (direct). 

An attempt was also made to estimate expected amount of gain one gets by selecting in 

one environment and the expected response in another environment (indirect selection). 

These estimates were not conducted because most correlation coefficients could not be 

estimated from the across site analysis. The results from this study indicate that genetic 

gains were variable across locations and environments. High genetic gains were 

observed from Harare high nitrogen environment (0.52 Mg ha-1) and Harare low 

nitrogen (0.40 Mg ha-1) and the lowest were under Chitedze high nitrogen and no 

nitrogen fertilization (0.00) (Table 44). 

 

Table 44 . Expected genetic gain for grain yield (Mg ha-1) per environment for 
CML440 x COMPE evaluated in Malawi and Zimbabwe in 2003 and 2004 
assuming selection of the best 10%. 

 
 

Environment Mean Error 
Genotypic 
variance h2  

Genetic Gain 
(R) 

Chitedze no fertilization 
 

3.85 
 

0.77 
 

0.00 
 

0.00 0.00 
Harare low N 1.81 0.58 0.15 0.35 0.40 
Chitedze high N 5.56 1.47 0.00 0.00 0.00 
Harare high N 8.02 1.10 0.27 0.33 0.52 
Chitala well-watered 3.80 0.84 0.01 0.01 0.02 
Chiredzi well-watered 4.77 0.38 0.02 0.11 0.08 
Chitala drought 2.56 0.46 0.08 0.26 0.25 
Chiredzi drought 1.81 0.52 0.01 0.02 0.02 
Average across 
locations 4.06 0.78 0.01 0.10 0.06 

h2, broad sense repeatability. 
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Expected genetic gain across environments and stresses was very low (Table 45). 

 
 
 
Table 45. Expected genetic gain for grain yield (Mg ha-1) across  environments for 

experiment CML 440 x COMPE evaluated in Malawi and Zimbabwe in 2003 
and 2004 assuming selection of the best 10%. 

 

Environment Mean Error 
Gen. 

variance h2  
Genetic 
Gain (R) 

Genetic Gain 
(R) 

Across all 
environments 

 
4.06 

 
0.78 

 
0.01 

 
0.01 0.02 0.00 

Across high N 6.79 1.27 0.00 0.00 0.00 0.00 

Across well-watered 4.29 
 

0.62 
 

0.005 0.00 0.00 0.00 
Across drought 2.19 0.48 0.00 0.00 0.00 0.00 

Gen.,genetic; h2, broad sense repeatability. 
 

 

Preliminary assessment of MAS efficiency in testcrosses 

 

The efficiency of marker assisted selection in selecting drought tolerant testcrosses, was 

assessed by conducting a contrast between the means of the best 50 testcrosses selected 

for favorable alleles at consistent QTL and the mean of the worst 50 testcrosses selected 

for unfavorable alleles at the sam QTL. Significant differences between the two groups 

were observed under high nitrogen fertilization at Chitedze (Malawi) and under drought 

conditions at Chiredzi (Zimbabwe) but not at the other environments and across 

environments (Table 46). 
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Table 46. Mean grain yields, for the first and last 50 entries, their significances at 
single and across environments for population CML440 x COMPE conducted 
in Malawi and Zimbabwe in 2003 and 2004. 

 
Environment Mean (ent. 1-50) 

(Mg  ha-1) 
Mean (Ent. 51-100) 
(Mg  ha-1) 

Difference Significance 

Chitedze no fertilization 3.84 3.85 -0.01 NS 
Harare low N 1.80 1.90 -0.10 NS 
Chitedze high N 5.70 5.42  0.28 * 
Harare high N 8.09 7.96  0.13 NS 
Chitala well-watered 3.87 3.74  0.13 NS 
Chiredzi well-watered 4.75 4.79  0 NS 
Chitala drought 2.60 2.50  0.10 NS 
Chiredzi drought 1.88 1.73  0.18 * 
Average across locations 4.09 4.04  0.05 NS 
Average High N 6.90 6.69  0.21 NS 
Average Well-watered 4.31 4.27  0.04 NS 
Average Drought 2.17 2.22  0.05 NS 

* Significant at P = 0.05; NS, not significant. 
 

 

 

Top five entries for grain yield were selected for each environment by ranking the 

testcrosses from the highest to the lowest yielding. The aim was to assess which group of 

testcrosses (best or worst) contributed most to the 5 highest yielding testcrosses. The 

results showed that both groups of testcrosses contributed almost equally to the list of 

five most high yielding testcrosses although there were variations amongst environments 

(Table 47). However some consistency was observed for some testcrosses. For example 

entries 97 and 36 were consistently among the top 5 high yielding testcrosses under all 

the high nitrogen and the drought sites, respectively. Entry 83 was among the top five 

average across all locations, well-watered and drought conditions (Table 47). 
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Table 47. Top 5 entries for grain yield at single environment and across 

environments for population CML440 x COMPE evaluated in Malawi and 
Zimbabwe in 2003 and 2004.  

 
Environment Best 5 entries  for grain yield 
Chitedze no fertilization 88, 55 , 101, 47, 27 
Harare low N 59, 89, 29, 102 18 
Chitedze high N 97, 18, 88, 39, 64 
Harare high N 97, 73, 59, 84, 24 
Chitala well-watered 46, 93, 83, 49, 86 
Chiredzi well-watered 33, 84, 66, 64, 15 
Chitala drought 20, 67, 38, 22, 36 
Chiredzi drought 35, 27, 28, 39, 36 
Average across locations 88, 73, 83, 30, 18 
Average High N 97, 84, 73, 30, 19 
Average Well-watered 83, 17, 7, 68, 71 
Average Drought 83, 14, 53, 34, 28 

 

 

 

Drought tolerance index (DIT) and nitrogen tolerance index (NTI) were estimated in 

order to identify testcrosses that reduce their performances under stressed conditions 

relative to unstressed conditions at the same locations. Testcrosses that maintain good 

performance under stress are good sources of drought tolerant genes. The average DTI 

of the first and last 50 entries were 29.7% and 28.2% (Malawi) and 59.7% and 63.65% 

(Zimbabwe), respectively (Appendix N). The average NTI for the first and last 50 entries 

were 78.13% and 75.99%, respectively (Zimbabwe). The testcrosses with the best DTI 

and NTI indices came from both groups (Table 48). 

 

 
Table 48. Best 5 testcrosses for drought tolerance index (DTI) and nitrogen 

tolerance index (NTI) for population CML440 x COMPE evaluated in Malawi 
and Zimbabwe in 2003 and 2004.  

 
Parameter Zimbabwe Malawi 

DTI (%) 35, 21, 67, 19, 27 64, 68, 74, 67, 23 

NTI (%) 64, 82, 62, 10, 53 - 
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Population CML444 x K64R 
 

Results per environment 

 

Chitedze no nitrogen fertilization 

 

This experiment was conducted under no nitrogen fertilization and rain fed conditions at 

Chitedze Research Station (Malawi) during the 2003/2004 season. The purpose was to 

induce low N stress, however, the nitrogen content in the soil was higher than expected 

and no stress was apparent. Grain yield average was 5.32 Mg ha-1 (range 0.01 to 7.36 

Mg ha-1) (Table 49). Significant differences were observed for grain yield, anthesis date, 

grain texture, moisture content and 100 kernel grain weight (Table 49). Heritabilities 

were 0.37, 0.34, 0.05 0.11, 0.27, 0.49, 0.54 and 0.31 for grain weight, anthesis date, 

anthesis-silking interval, plant height, ears per plant, grain texture, moisture content and 

100 kernel grain weight, respectively. Average grain yield for the first 50 testcrosses was  

not significantly greater than the average for the last 50 testcrosses (Table 49). 

 

Genotypic correlations were estimated for only those traits which were significantly 

different. Positive genotypic correlations were observed between grain yield and grain 

texture (0.65) and between grain yield and 100 kernel  weight (0.46) but was negative 

with anthesis date (-0.34) and moisture content (-0.54). Phenotypic correlations were 

positive between 100 kernel  weight and grain yield (0.48). The rest of the phenotypic 

correlations were negative (Table 50 and Fig. 27). 
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Table 49. Statistics, genotypic variance, heritability and their standard errors for 
traits in testcrosses from population CML444 x K64R evaluated under no 
nitrogen fertilization at Chitedze, Malawi in 2003 and 2004.  

 
Statistics GYG AD ASI PH EPP MOI TEX GWT 
 Mg ha-1 d d cm # % 1-5 g 
Mean 5.32 71.4 0.79 214.4 1.10 14.3 3.49 38.7 
Significance *** * NS NS NS *** *** *** 
Minimum 0.01 67.8 -2.60 119.0 0.90 11.8 2.00 29.0 
Maximum 7.36 75.6 2.30 239.0 1.40 16.9 4.50 47.0 
LSD (5%) 1.84 3.10 1.72 38.2 0.29 1.73 1.01 7.99 
CV (%) 20.9 2.20 109.6 8.79 13.1 5.60 14.5 11.7 
MSE 1.17 2.39 0.77 354.9 0.02 0.65 0.26 20.0 
Mean (Ent. 1-50)   5.42 71.4 0.80 215.0 1.10 14.5 3.60 39.7 
Mean (Ent. 51-100) 5.22 71.4 0.70 214.0 1.10 14.2 3.30 37.9 
σ2

e 1.17 2.33 0.77 354.8 0.02 0.63 0.25 20.0 
σ2

G 0.34 0.61 0.02 21.9 0.003 0.37 0.11 4.45 
h2 (family basis) 0.37 0.34 0.05 0.11 0.27 0.54 0.49 0.31 
Standard Error h2 0.14 0.14 0.19 0.20 0.15 0.10 0.11 0.16 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
MOI, grain moisture content; TEX, grain texture;  GWT, 100 kernel  weight.  
 

 
 
Table 50. Genotypic (above diagonal) and phenotypic (below diagonal) correlations  

and their standard errors (SE) from population CML444 x K64R evaluated 
under no nitrogen fertilization at Chitedze, Malawi in 2003 and 2004. 
 

 GYG AD TEX MOI GWT 
GYG  -0..34 (0.44)  0.65 (0.35) -0.54 (0.27)  0.46 (0.35) 
AD -0.25 (0.07)  -0.10 (0.38)  0.04 (0.35) -0.60 (0.52) 
TEX  0.28 (0.07) -0.04 (0.09)  -0.54 (0.29)  0.51 (0.35) 
MOI -0.37 (0.07) -0.01 (0.09) -0.07 (0.08)  -0.37 (0.30) 
GWT  0.48 (0.06) -0.07 (0.08)  0.17 (0.08) -0.32 (0.07)  

GYG, grain yield; AD, 50% anthesis;  MOI, grain moisture content; TEX, grain texture;  GWT, 100 kernel 
weight. 
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Fig. 27. Single value decomposition biplot of standardized traits showing their 

correlations for population CML444 x K64R evaluated under no nitrogen fertilization at 
Chitedze, Malawi in 2003 and 2004. (AD; 50%anthesis date; GYG, grain yield; MOI, moisture 
content; GWT, 100 kernel weight; TEX, grain texture). 
 
 
 

 
Harare low nitrogen experiment 

 
This experiment was conducted under low nitrogen conditions in Harare (Zimbabwe) 

under rainfed conditions during the 2003/2004 season. No nitrogen fertilizer was applied 

but only 60 kg ha-1 P2O5. There were significant differences for grain yield, anthesis date 

and ears per plant (Table 51). Mean maize yield was 0.87 Mg ha-1 (range was 0.16 to 

1.74 Mg ha-1). The average of the best 50 genotypes and 50 worst genotypes were not 

significantly different.  Heritabilities were generally low to moderate  with 0.41 for plant 

height, 0.31 for ears per plant, 0.28 for 50% anthesis date, 0.15 for grain yield, 0.04 for  

anthesis-silking interval  and 0.00 for moisture content.   
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Table 51. Statistics, genotypic variance, heritability and their standard errors for 
traits in testcrosses from population CML444 x K64R evaluated under low 
nitrogen at Harare, Zimbabwe in 2003 and 2004.  

 
Statistics GYG AD ASI PH EPP MOI 
 Mg ha-1 d d cm # % 
Mean 0.87 77.4 3.10 199.0 0.80 10.7 
Significance ** * NS NS * NS 
Minimum 0.16 73.1 -0.10 128.0 0.20 8.60 
Maximum 1.74 85.8 7.00 230.0 0.11 14.9 
LSD (5%) 0.72 5.04 3.80 273.0 0.40 3.24 
CV (%) 41.4 3.10 60.9 68.8 12.2 12.2 
MSE 0.13 5.79 3.57 207.7 0.03 1.79 
Mean (Ent. 1-50)   0.82 77.1 3.20 210.0 0.79 10.7 
Mean (Ent. 51-100) 0.92 77.6 2.90 199.0 0.79 10.7 
σ2

e 0.13 5.79 3.57 246.5 0.04 1.62 
σ2

G 0.01 1.12 0.07 86.2 0.01 0.00 
h2 (family basis) 0.16 0.28 0.04 0.41 0.31 0.00 
Standard Error h2 0.18 0.15 0.12 0.14 0.14 0.00 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height, EPP, ears per plant. 
MOI, grain moisture.  
 
 

 

Grain yield had positive genotypic and phenotypic correlations with ears per plant but 

negative genotypic and phenotypic correlation with 50% anthesis date (Table 52 and Fig. 

28). 

 
 
 
Table 52. Genotypic (above diagonal) and phenotypic (below diagonal)  

correlations and their standard errors (SE) from population CML444 x K64R 
conducted under low nitrogen at Harare, Zimbabwe in 2003 and 2004. 

 
  GYG AD EPP 
GYG  -0.124 (2.46) 2.23 (4.84) 
AD -0.23 (0.07)  -0.46 (0.55) 
EPP  0.54 (0.06) -0.23 (0.07)  

GYG, grain yield; AD, 50% anthesis; EPP, ears per plant. 
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Fig. 28. Single value decomposition biplot of standardized traits showing their correlations  

for population CML444 x K64R evaluated under low nitrogen fertilization in Harare, 
Zimbabwe in 2003 and 2004. (AD; 50% anthesis; GYG, grain yield; EPP, ears per plant).  
 
 

 
Chitedze high nitrogen  fertilization 
 

This experiment was conducted at Chitedze Research Station (Malawi) during the 

2003/2004 season under rain fed conditions. The experiment was fertilized with 120 kg 

N ha-1 and 60 kg P2O5 ha-1.  Grain yield average was 5.17 Mg ha-1 (range 0.70 to 7.54 

Mg ha-1) (Table 53).  
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Table 53. Statistics, genotypic variance, heritability and their standard errors for 
traits in testcrosses for population CML444 x K64R evaluated under high 
nitrogen fertilization at Chitedze, Malawi in 2003 and 2004.  

 
Statistics GYG AD ASI PH EPP TEX MOI GWT 
 Mg ha-1 d d cm # 1-5 % g 
Mean 5.17 76.9 0.50 208.0 0.90 3.60 14.3 43.3 
Significance *** *** NS *** NS *** NS *** 
Minimum 0.70 71.5 -2.50 166.0 0.50 2.50 12.7 28.5 
Maximum 7.54 82.8 2.50 231.0 2.90 4.60 16.0 54.8 
LSD (5%) 2.32 4.20 2.40 18.0 0,70 0.80 1.60 10.3 
CV (%) 25.78 2.80 228.2 4.29 37.1 10.4 5.70 12.1 
MSE 1.78 4.50 1.30 79.5 0.10 0.10 0.70 27.3 
Mean (Ent. 1-50)   5.12 76.7 0.47 209.0 0.90 3.70 14.4 44.1 
Mean (Ent. 51-100) 5.22 77.2 0.51 207.0 0.90 3.53 14.3 44.2 
σ2

e 1.73 4.82 1.41 79.5 0.11 0.14 0.64 26.1 
σ2

g 0.25 1.53 0.06 62.3 0.00 0.08 0.00 8.60 
h2 (family basis) O.22 0.39 0.08 0.61 0.00 0.54 0.00 0.40 
Standard Error h2 0.17 0.14 0.19 0.08 0.00 0.10 0.00 0.13 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
MOI, grain moisture content; TEX, grain texture;  GWT, 100 kernel  weight.  
 

 

No significant differences were observed between the mean of the first 50 testcrosses 

and the mean of the last 50 testcrosses. There were significant differences between grain 

yield, 50% anthesis date, plant height, grain texture and 100 kernel weight. Heritabilities 

were 0.22, 0.39, 0.08, 0.61, 0.54, and 0.40 for grain yield, 50% anthesis date, anthesis-

silking interval, plant height, grain texture and 100 kernel weight, respectively (Table 

53).  

 

Positive genotypic correlations were observed between grain yield and 50% anthesis 

date (0.66), plant height (2.05), grain texture (0.36) and 100 kernel weight (0.24). 

Phenotypic correlations ranged from -0.21 to 0.12 while genotypic correlations ranged 

from -0.15 to 2.05. Positive phenotypic correlations were observed between grain yield 

and plant height and between grain yield and texture (Table 54 and Fig. 29). Negative 

correlation were between grain yield and 50% anthesis date. 
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Table 54. Genotypic (above diagonal) and phenotypic (below diagonal)  
correlations and their standard errors (SE) for population CML444 x K64R 
conducted under high nitrogen conditions at Chitedze, Malawi in 2003 and 
2004. 

 
 GYG AD PH TEX GWT 
GYG   0.66 (0.82)  2.05 (1.87) 0.36 (1.87) 0.24 (0.49) 
AD -0.21 (0.08)  -0.05 (0.08) 0.25 (0.29) 0.34 (0.27) 
PH  0.41 (0.07) -0.05 (0.03)  0.17 (0.22) 0.32 (0.22) 
TEX  0.20 (0.08) -0.01 (0.8)  0.04 (0.08)  0.23 (0.27) 
GWT  0.11 (0.08)  0.12 (0.08)  0.08 (0.08) 0.002 (0.08)  
GYG, grain yield; AD, 50% anthesis;  PH, plant height; TEX, grain texture;  GWT, 100 kernel weight 
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Fig. 29. Single value decomposition biplot of standardized traits showing their correlations 

forpopulation CML444 x K64R conducted under high nitrogen conditions at Chitedze, Malawi 
during 2003 and 2004. (AD; 50% anthesis; GYG, grain yield; PH, plant height; GWT, 100 
kernel weight; TEX, grain texture). 
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Harare high nitrogen  fertilization 

 

This experiment was conducted under rain fed conditions in Harare (Zimbabwe) during 

the 2003/2004 season. The experiment was fertilized with 120 kg N ha-1 and 60 kg P2O5 

ha-1. Average grain yield was 9.64 Mg ha-1 (range 4.75 to 12.85 Mg ha-1) (Table 55).  

Significant differences were observed for grain yield, 50% anthesis date and moisture 

content. Heritabilities  were moderate  for grain yield (0.49),  0.60 for 50% anthesis date, 

0.16 for anthesis-silking interval, 0.23 for  plant height and 0.29 for moisture content 

(Table 55). 

 
 
 
Table 55. Statistics, genotypic variance, heritability and their standard errors for  

traits in testcrosses from population CML444 x K64R evaluated under high 
nitrogen fertilization in Harare (Zimbabwe) in 2003 and 2004.  

 
Statistics GYG AD ASI PH MOI 
 Mg ha-1 d d cm % 
Mean 9.64 72.8 0.71 270.7 14.7 
Significance *** *** NS NS *** 
Minimum 4.75 68.7 -2.80 232.0 13.3 
Maximum 12.91 75.2 2.50 299.5 16.6 
LSD (5%) 2.52 2.48 2.43 33.3 1.85 
CV (%) 12.85 1.70 169.0 5.92 6.38 
MSE 1.54 1.54 1.40 256.4 0.90 
Mean (Ent. 1-50)   9.70 72.5 0.81 273.1 14.6 
Mean (Ent. 51-100) 9.60 73.0 0.62 268.3 14.8 
σ2

e 1.70 1.57 1.54 256.4 0.88 
σ2

g 0.81 1.17 0.15 38.6 0.18 
h2 (family basis) 0.49 0.60 0.16 0.23 0.29 
Standard Error h2 0.10 0.09 0.17 0.17 0.14 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height;  
 MOI, grain moisture content.  
 
 

 

Genotypic correlations were positive but weak between grain yield and 50% anthesis 

date and moisture content (Table 56 and Fig. 30). Correlation between 50% anthesis date 
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and moisture content was negative. Phenotypic correlations between the traits were also 

weak ranging from 0.01 to 0.03.  

 
 
 
Table 56. Genotypic (above diagonal) and phenotypic (below diagonal) 

correlations and their standard errors (SE) from population CML444 x K64R 
conducted under high nitrogen conditions in Harare, Zimbabwe in 2003 and 
2004. 

 
 GYG AD MOI 
GYG  0.11 (0.21)  0.11 (0.31) 
AD 0.01 (0.08)  -0.15 (0.28) 
MOI 0.03 (0.08) 0.01 (0.08)  
GYG, grain yield; AD, 50% anthesis;  MOI, grain moisture content. 
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Fig. 30. Single value decomposition biplot of standardized traits showing their correlations for 

population CML444 x K64R evaluated under high nitrogen conditions in Harare, Zimbabwe 
during 2003 and 2004. (AD; 50% anthesis; GYG, grain yield; MOI, moisture content).  
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Chitala well-watered experiment  
 
This experiment was conducted under well-watered conditions at Chitala (Malawi) 

during the dry season under irrigation in 2004. Water was applied to the experiment 

using sprinkler irrigation to field capacity from planting up to physiological maturity. 

The trial was fertilized with 120 kg N ha-1 and 60 kg ha-1 P2O5.  There were no 

significant differences for all the traits. Mean grain yield was 4.66 Mg ha-1 and ranged 

from 2.89 to 6.56 Mg ha-1. Heritabilities ranged from 0.00 to 0.08 (Table 57). 

 
 
 
Table 57. Statistics, genotypic variance, heritability and their standard errors for  

traits in testcrosses from population CML444 x K64R evaluated under well-
watered conditions at Chitala, Malawi in 2004.  

 
Statistics GYG AD ASI PH EPP TEX MOI 
 Mg ha-1 d d cm # 1-5 % 
Mean 4.66 79.1 2.80 186.5 0.90 3.40 12.3 
Significance NS NS NS NS NS NS NS 
Minimum 2.89 76.6 -0.50 161.2 0.60 2.50 10.8 
Maximum 6.56 82.4 40.1 211.0 1.20 4.60 14.9 
LSD (5%) 1.94 3.63 11.5 22.2 0.26 1.16 2.30 
CV (%) 19.3 2.15 207.0 6.49 15.7 16.1 10.2 
MSE 0.81 2.89 33.8 146.3 0.02 0.33 1.56 
Mean (Ent. 1-50)   4.68 79.0 2.30 187.0 0.86 3.50 12.3 
Mean (Ent. 51-100) 4.64 79.1 3.20 187.0 0.88 3.40 12.3 
σ2

e 0.81 2.89 31.5 146.3 0.02 0.31 1.56 
σ2

g 0.00 0.00 0.00 4.50 0.001 0.00 0.00 
h2 (family basis) 0.00 0.00 0.00 0.06 0.08 0.00 0.00 
Standard Error h2 0.00 0.00 0.00 0.23 0.21 0.00 0.00 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
TEX, grain texture; MOI, grain moisture content.  
 
 

 

Genotypic correlations were not estimated because the non significance differences of 

the traits. Phenotypic correlations were estimated using single value decomposition 

biplot of standardized traits. Positive correlations were observed between grain yield and 

ears per plant while negative correlation was between grain yield and anthesis date (Fig. 

31). 

 



   115

GYG

AD

ASI

PH

EPP

MOI

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

 
 Fig. 31. Single value decomposition biplot of standardized traits showing  correlations for 

population CML444 x K64R evaluated under well-watered conditions at Chitala, Malawi in 
2004. (AD; 50% anthesis; ASI, anthesis-silking interval; GYG, grain yield; PH, plant height; 
EPP, ears per plant; MOI, moisture content).  
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Chiredzi well-watered experiment  
 
This experiment was conducted under well-watered conditions at Chiredzi (Zimbabwe) 

during the dry season under irrigation in 2004. Water was applied to the experiment to 

field capacity from planting up to physiological maturity. The trial was fertilized with 

120 kg N ha-1 and 60 kg ha-1 P2O5.  Grain yields ranged from 2.84 to 6.68 Mg ha-1  with 

a mean of 5.15 Mg ha-1. No significant differences were observed for any trait. 

Similarly, the mean of the first 50 testcrosses was so not significantly different from the 

mean of the other 50 testcrosses. Most of the traits had 0.00 heritability estimates except 

for anthesis date (0.09) and moisture content (0.03) (Table 58).  

 
Genotypic correlations were not estimated due to the non significance differences of any 

trait. However, phenotypic correlations were estimated using single value decomposition 

biplot of standardized traits. Positive correlations were between grain yield, plant height 

and ears per plant but these had a negative correlation with anthesis-silking interval, 

50% anthesis date, moisture content and leaf senescence (Fig 32). 

 

 
Table 58. Statistics, genotypic variance, heritability and their standard errors for 

traits in testcrosses from population CML444 x K64R evaluated under well-
watered conditions at Chiredzi, Zimbabwe in 2004.  

 
Statistics GYG AD ASI PH EPP MOI SEN 
 Mg ha-1 d d cm # % % 
Mean 5.15 102.3 0.66 240.0 1.10 9.00 72.5 
Significance NS NS NS NS NS NS NS 
Minimum 2.84 97.3 -1.83 182.0 0.60 8.00 61.0 
Maximum 6.68 103.3 4.12 295.0 1.30 11.0 85.3 
LSD (5%) 1.76 14.3 3.08 52.2 0.30 1.35 11.1 
CV (%) 19.4 2.06 63.4 9.64 89.1 7.80 7.66 
MSE 0.99 4.43 2.61 535.3 0.01 0.47 30.9 
Mean (Ent. 1-50)   5.10 71.2 1.10 250.0 0.94 8.90 72.1 
Mean (Ent. 51-100) 5.20 70.9 1.10 249.0 0.96 8.90 72.8 
σ2

e 0.90 4.43 2.44 535.3 0.02 0.47 30.9 
σ2

G 0.00 0.21 0.00 0.00 0.00 0.01 0.00 
h2 (family basis) 0.00 0.09 0.00 0.00 0.00 0.03 0.00 
Standard Error h2 0.00 0.20 0.00 0.00 0.00 0.21 0.00 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
MOI, grain moisture content; SEN, leaf senescence.  
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Fig. 32. Single value decomposition biplot of standardized traits showing their correlations for 
population CML444 x K64R conducted under well-watered conditions at Chiredzi, Zimbabwe 
in 2004. (GYG, grain yield; AD; 50% anthesis; ASI, anthesis-silking interval; GYG, grain yield; 
PH, plant height; EPP, ears per plant; MOI, moisture content; SEN, leaf senescence). 
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Chitala drought experiment 
 
The experiment was conducted during the dry season of 2004 at Chitala Experimental 

Station (Malawi). Sprinkler irrigation was applied to the experiment up to field capacity 

from planting until three weeks before flowering. The intention was to induce drought 

stress during the flowering period. Average grain yield was 1.84 Mg ha-1 and range was 

from 0.62 to 3.26 Mg ha-1. Significant differences were observed for grain yield only but 

not for any other trait (Table 59). Estimates of heritabilities were low or zero (Table 59). 

Heritability for grain yield was 0.28.  

   

 
 
Table 59. Statistics, genotypic variance, heritability and their standard errors for  

traits in testcrosses from population CML444 x K64R evaluated under drought 
conditions at Chitala, Malawi in 2004.  

 
Statistics GYG AD ASI PH EPP TEX MOI 
 Mg ha-1 d d cm # 1-5 % 
Mean 1.84 80.2 4.40 165.5 0.60 3.60 16.7 
Significance * NS NS NS NS NS NS 
Minimum 0.62 47.0 -1.80 132.3 0.20 2.90 9.40 
Maximum 3.26 96.7 14.9 193.8 0.90 4.20 21.0 
LSD (5%) 1.21 16.6 7.15 29.9 0.45 1.15 5.64 
CV (%) 35.6 11.6 70.4 10.4 28.9 15.2 14.4 
MSE 0.43 86.8 9.60 297.7 0.03 0.30 5.80 
Mean (Ent. 1-50)   1.90 79.8 4.70 165.0 0.60 3.60 16.3 
Mean (Ent. 51-100) 1.80 80.6 3.60 167.0 0.56 3.60 17.3 
σ2

e 0.39 84.6 9.60 277.1 0.03 0.28 5.39 
σ2

G 0.08 0.00 0.00 36.0 0.01 0.00 0.00 
h2 (family basis) 0.28 0.00 0.00 0.21 0.03 0.00 0.00 
Standard Error h2 0.16 0.00 0.00 0.19 0.21 0.00 0.00 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
TEX, grain texture; MOI, grain moisture content.  
 
 

 

Grain yield had a positive phenotypic correlation with plant height and grain texture, and 

negative correlations were between grain yield and anthesis-silking interval and between 

grain yield and 50% anthesis date (Fig. 33). 
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 Fig. 33. Single value decomposition biplot of standardized traits showing their correlations for 

population CML444 x K64R evaluated under drought conditions at Chitala, Malawi in 2004. 
(GYG, grain yield; AD; 50%anthesis date; ASI, anthesis-silking interval; PH, plant height; EPP, 
ears per plant; TEX, grain texture; MOI, moisture content). 
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Chiredzi drought experiment 
 
The experiment was conducted during the dry season of 2004 at Chiredzi Experimental 

Station (Zimbabwe). Water was applied to the experiment up to field capacity from 

planting until three weeks before flowering. Despite that nitrogen fertilizers were applied 

to this experiment, the general performance was poor because of inherent low fertility of 

the experimental site. Grain yield average was 0.20 Mg ha-1 with a range from 0.00 to 

1.04 Mg ha-1 (Table 60). Heritabilities were moderately high ranging from 0.13 to 0.63 

(Table 60). Heritability for grain yield was 0.52, 0.63 for anthesis date, 0.52 for anthesis-

silking interval, 0.48 for plant height, 0.50 for ears per plant, and 0.13 for leaf 

senescence.  

 

 
Table 60. Statistics, genotypic variance, heritability and their standard errors for  

traits in testcrosses from population CML444 x K64R evaluated under drought 
conditions at Chiredzi, Zimbabwe in 2004.  

 
Statistics GYG AD ASI PH EPP SEN 
 Mg ha-1 d d cm # % 
Mean 0.20 104.3 8.80 156.0 0.20 63.3 
Significance *** *** *** *** *** NS 
Minimum 0.00 98.0 0.30 80.0 0.00 51.2 
Maximum 1.04 111.0 22.5 179.0 0.60 82.0 
LSD (5%) 0.32 4.20 7.40 26.0 0.25 15.4 
CV (%) 99.3 2.06 17.6 8.43 70.7 6.20 
MSE 0.03 4.60 2.40 140.8 0.02 52.7 
Mean (Ent. 1-50)   0.20 104.0 9.20 159.0 62.8 52.7 
Mean (Ent. 51-100) 0.20 104.0 8.40 154.0 63.7 62.9 
σ2

e 0.03 4.42 2.44 141.1 0.02 53.3 
σ2

G 0.02 3.90 8.95 65.3 0.01 4.04 
h2 (family basis) 0.52 0.63 0.52 0.48 0.50 0.13 
Standard Error h2 0.11 0.08 0.36 0.12 0.11 0.20 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking; PH, plant height; EPP, ears per plant; SEN, 
leaf senescence.  
 
 

 

 

 

 



   121

Positive genotypic and phenotypic correlations were observed between grain yield and 

ears per plant (0.96 and 0.84 respectively) (Table 61 and Fig. 34). Grain yield was both 

negatively correlated with 50% anthesis date and anthesis-silking interval. Phenotypic 

correlations were generally smaller than genotypic correlations but they both agreed on 

sign.  

 
 
 
Table 61. Genotypic (above diagonal) and phenotypic (below diagonal) 

correlations and their standard errors (SE) from population CML444 x K64R 
conducted under drought conditions at Chiredzi, Zimbabwe in 2004. 

 
 GYG AD ASI PH EPP 
GYG  -0.96 (0.16) -2.06 (7.85)  0.23 (0.23)   0.96 (0.06) 
AD -0.39 (0.07)   0.07 (0.43) -0.62 (0.18) -0.95 (0.17) 
ASI -0.45 (0.10) -0.21 (0.17)  -0.11 (0.37)  0.32 (0.14) 
PH  0.27 (0.08) -0.31 (0.07)  0.09 (0.20)   0.34 (0.14) 
EPP  0.84 (0.02) -0.36 (0.07)  0.28 (29.59)  0.28 (29.59)  
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH; plant height; EPP, ears per plant. 
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Fig. 34. Single value decomposition biplot of standardized traits showing their correlations for 

population CML444 x K64R evaluated under drought conditions at Chiredzi, Zimbabwe in 
2004. (AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; GYG, grain yield; 
EPP, ears per plant).  
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Results across environments  

 

Across all environments significant for grain yield 

 

The analysis across environments was conducted for those environments that had 

significant differences for grain yield in this population. These were no nitrogen 

fertilization (Chitedze), low nitrogen (Harare), high nitrogen (Chitedze and Harare) and 

drought (Chitala and Chiredzi). 

 

Significant differences were observed for grain yield, 50% anthesis date, anthesis-silking 

interval and ears per plant but not for plant  height, grain moisture and 100 kernel 

weight. Average grain yield was 3.82 Mg ha-1. Grain yield, 50% anthesis date, ears per 

plant, and 100 kernel weight had moderate to high heritability estimates (0.46, 0.36, 0.48 

and 0.51, respectively) (Table 62). 

 
 
 
Table 62. Statistics, averages, variance components, heritability and its standard 

error for experiment CML444 x K64R across all environments with significant 
differences for grain yield in Malawi and Zimbabwe in 2003 and 2004. 

 
Statistics GYG AD ASI PH EPP TEX MOI GWT 
 Mg ha-1 d d cm # 1-5 % g 
Mean 3.82 80.46 2.30 204.38 0.66 3.57 14.26 37.58 
Significance *** *** *** NS *** *** NS NS 
CV % 27.42 5.42 89.24 29.12 35.91 13.63 9.01 18.90 
σ2

e 0.87 17.32 4.58 3302.45 0.04 0.22 1.81 32.87 
σ2

g 0.09 0.83 0.17 57.66 0.003 0.02 0.00 3.44 
σ2

GxE 0.18 0.47 0.04 0.00 0.00 0.04 1.16 2.04 
h2 (family basis) 0.46 0.36 0.30 0.17 0.48 0.38 0.00 0.51 
Standard Error h2 0.09 0.11 0.12 0.14 0.09 0.19 0.00 0.11 

***,**,* Significant at P < 0.001, 0.01, and 0.05, respectively. 
GYG, grain yield; PH, plant height; AD, 50% anthesis; GWT, 100gwt, grain weight; EPP, ears per plant; 
ASI, anthesis-silking interval; MOI, grain moisture. 
MSE, mean square error; h2, broad sense repeatability. 
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Positive genotypic and phenotypic correlations were observed between grain yield and 

ears per plant but grain yield was negatively correlated with anthesis-silking interval and  

50% anthesis date. Phenotypic correlations for the other traits were negative and weak 

(Table 63). 

 
 
 
Table 63. Genotypic (above diagonal) and phenotypic (below diagonal)  

correlations and their standard errors (SE) from population CML444 x K64R 
across environments  significant for grain yield in Malawi and  Zimbabwe in 
2003 and 2004. 

 
 GYG AD ASI EPP TEX 

GYG  -0.21 (0.28)  -0.31 (0.30)  0.55 (0.25)  0.73 (0.54) 
AD -0.12 (0.03)  -0.05 (0.25) -0.74 (0.17) -2.65 (2.36) 
ASI -0.13 (0.03) -0.08 (0.03)  -0.47 (0.29)  0.87 (0.77) 
EPP  0.44 (0.03) -0.31 (0.03) -0.18 (0.03)   0.83 (0.58) 
TEX  0.19 (0.04) -0.03 (0.03) -0.07 (0.04)  0.12 (0.04)  
GYG, grain yield; AD, anthesis date; ASI, anthesis-silking interval;  EPP, ears per plant; TEX, grain 
texture. 
 

 

Across high N environments 

 

Experiments which were conducted under high nitrogen fertilization environments in 

Malawi and Zimbabwe during 2003/2004 season were used in this analysis. Significant 

differences were observed for grain yield, 50% anthesis date, plant height and moisture 

content. Average grain yield was 7.42 Mg ha-1 (Table 64 and Appendix H). Heritability 

estimates were generally moderate or low.  Heritability for grain yield was 0.32, 0.18 for 

anthesis date, 0.39 for plant height, 0.17 for moisture content, and 0.35 for 100 kernel 

weight.  

 
 
 
 
 
 
 

 



   125

Table 64. Statistics, averages, variance components, heritability and its standard 
error for experiment CML444 x K64R across high N conditions in Malawi and 
Zimbabwe in 2003 and 2004. 

 
Statistics GYG AD ASI PH EPP MOI GWT 
 Mg ha-1 d d cm # % g 
Mean 7.42 74.8 0.60 239.4 0.91 14.5 42.1 
Significance *** *** NS *** NS * NS 
CV % 17.89 2.60 205.7 5.88 37.1 6.07 13.6 
σ2

e 0.77 3.20 1.48 167.0 0.11 0.77 21.3 
σ2

g 0.44 0.44 0.00 52.5 0.00 0.08 5.78 
σ2

GxE 0.10 0.91 0.10 0.00 0.00 0.00 0.19 
h2 (family basis) 0.32 0.18 0.00 0.39 0.00 0.17 0.35 
Standard Error h2 0.08 0.11 0.00 0.07 0.00 0.08 0.14 

***,**,* Significant at P < 0.001, 0.01, and 0.05, respectively. 
GYG, grain yield; PH, plant height; AD, 50% anthesis; GWT, 100 kenrel weight; EPP, ears per plant; 
ASI, anthesis-silking interval; MOI, grain moisture; MSE, mean square error; h2, broad sense repeatability. 
 

  

 

Across drought environments 

 

No significant differences across drought stressed environments were observed for all 

the traits except for anthesis-silking interval (Table 65 and Appendix I). Heritability 

estimates ranged from 0.00 to 0.19. Mean grain yield was 1.00 Mg ha-1. 
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Table 65. Statistics, averages, variance components, heritability and its standard 
error for experiment CML444 x K64R across drought environments in Malawi 
and Zimbabwe in 2003 and 2004. 

 
Statistics GYG AD ASI PH EPP MOI 
 Mg ha-1 d d cm # % 
Mean 1.00 92.2 5.44 161.5 0.37 16.7 
Significance NS NS * NS NS NS 
CV 82.5 7.60 65.1 16.5 63.4 14.4 
σ2

e 0.19 44.5 12.0 205.7 0.02 7.05 
σ2

g 0.00 0.00 1.44 0.00 0.001 0.00 
σ2

GxE 0.06 1.93 0.00 54.1 0.004 0.00 
h2 (family basis) 0.00 0.00 0.19 0.00 0.04 0.00 
Standard Error h2 0.00 0.00 0.13 0.00 0.14 0.00 

***,**,* Significant at P < 0.001, 0.01, and 0.05, respectively. 
GYG, grain yield; PH, plant height; AD, 50% anthesis; EPP, ears per plant; ASI, anthesis-silking interval; 
MOI, grain moisture; MSE, mean square error; h2, broad sense repeatability. 
 
 
 
 
Correlations among traits across environments and stresses 
 

Across all environments 

 

Positive correlations were observed between grain yield and plant height and ears per 

plant. Negative correlations were observed between anthesis-silking interval and ears per 

plant and between 50% anthesis date and grain yield (Fig. 35). 
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Fig. 35. Single value decomposition biplot of standardized traits showing their correlations for 

population CML444 x K64R evaluated across all environments in Malawi and Zimbabwe in 
2003 and 2004. (GYG, grain yield; AD, 50% anthesis date; ASI, anthesis-silking interval; 
plant;PH, plant height;  EPP, ears per plant; MOI, moisture content; TEX, grain texture; 
GWT, 100 kernel weight). 

 
 

Across high N environments 
 
There were positive correlations between grain yield and plant height and between 50% 

anthesis date and 100 kernel weight but these were negatively correlated with anthesis-

silking interval (Fig. 36). 
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Fig. 36. Single value decomposition biplot of standardized traits showing their correlations for 

population CML444 x K64R evaluated across high nitrogen environments in Malawi and 
Zimbabwe in 2003 and 2004. (GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking 
interval; EPP, ears per; plant; PH, plant height; MOI, moisture content; GWT, 100 kernel 
weight; TEX, grain texture). 

 
 

Across drought environments 

 
Grain yield was positively correlated with ears per plant and plant height. Negative 

correlations were observed between 50% anthesis date and 100 kernel weight, between 

grain yield and anthesis-silking interval and between plant height and anthesis-silking 

interval (Fig. 37). 
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Fig. 37. Single value decomposition biplot of standardized traits showing their correlations from 

for population CML444 x K64R evaluated across drought environments in Malawi and 
Zimbabwe in 2003 and 2004. (GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking 
interval; EPP, ears per; plant; PH, plant height; GWT, 100 kernel weight).  
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Relationships among environments for grain yield  

 

The AMMI biplot for grain yield showed that both in Malawi and Zimbabwe drought 

conditions discriminated the testcrosses equally. High nitrogen environments in Malawi 

and Zimbabwe and the no nitrogen fertilization in Malawi were another group of similar 

environments while low nitrogen and well-watered environments in Zimbabwe also 

discriminated testcrosses in similar manner (Fig. 38). The biplot also showed that the 

high nitrogen environments were completely different from the drought environments. 
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Fig. 38. AMMI biplot for grain yield showing the relationship among environments for experiment 

CML444 x K64R evaluated across all environments in Malawi and Zimbabwe in 2003 and 2004. 
(LN, low nitrogen; WW MLW, well-watered Malawi; WW ZM, well-watered Zimbabwe, NF, 
no nitrogen fertilization; DRT MLW, drought Malawi; DRT ZM, drought Zimbabwe; HN 
MLW, high nitrogen Malawi; HN ZM, high nitrogen Zimbabwe). 
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Expected genetic gain 

 

Expected genetic gain from direct selection was estimated using heritabilities and 

genetic variance for individual environments (Table 66). Gains for indirect selection 

were not estimated because most correlation coefficients between environments were not 

estimable. The results from this study indicate that genetic gains were variable across 

locations and environments. The highest genetic gains were observed for Harare high 

nitrogen (1.10 Mg ha-1) and Chitedze no nitrogen fertilization (0.62 Mg ha-1) 

environments and the lowest genetic gains were for well-watered conditions (0.00) 

(Table 66). 

 

 
Table 66. Expected genetic gain for grain yield (Mg ha-1) per environment for 

experiment CML444 x K64R conducted in Malawi and Zimbabwe in 2003 and 
2004 assuming selection of the best 10%. 

 

Environment Mean Error 
Gen. 

variance h2 
Genetic Gain 

(R) 
Chitedze no fertilization 5.32 1.17 0.34 0.37 0.62 
Harare low N 0.87 0.13 0.01 0.16 0.07 
Chitedze high N 5.17 1.73 0.25 0.22 0.41 
Harare high N 9.64 1.7 0.81 0.49 1.10 
Chiredzi well-watered 4.66 0.81 0.00 0.00 0.00 
Chitala well-watered 5.15 0.9 0.00 0.00 0.00 
Chitala drought 1.84 0.39 0.08 0.28 0.26 
Chiredzi drought 0.2 0.03 0.02 0.52 0.18 
Average across locations 4.09 0.88 0.06 0.45 0.29 

h2, broad sense repeatability. 
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Expected genetic gain across environments was 0.29 Mg ha-1 while the high nitrogen 

environment resulted in the highest genetic gain of 0.66 Mg ha-1 (Table 67). 

 

Table 67. Expected genetic gain for grain yield (Mg ha-1) across environments for 
experiment CML444 x K64R conducted in Malawi and Zimbabwe in 2003 and 
2004 assuming selection of the best 10%. 

 

Environment Mean Error 
Gen. 

variance 
GxE 

variance h2 
Genetic 
Gain (R) 

Across all environments 4.09 0.88 0.06 0.26 0.45 0.29 
Across high N 7.42 0.77 0.44 0.00 0.32 0.66 
Across well-watered 4.9 0.85 0.00 0.00 0.00 0.00 
Across drought 1.00 0.19 0.00 0.02 0.00 0.00 

h2, broad sense repeatability. 
 

Preliminary assessment of MAS efficiency in testcrosses 

 

There were no significant differences for the means of the best 50 testcrosses selected 

for favorable alleles at consistent QTL and the mean of the worst 50 testcrosses selected 

for unfavorable alleles at the same QTL either within  environments or across 

environments (Table 68). 

 

Table 68. Mean grain yield, for the first and last 50 entries, their significances at 
single and across environments for population experiment CML444 x K64R 
conducted in Malawi and Zimbabwe in 2003 and 2004. 

 
Environment Mean (ent. 1-50) 

(Mg ha-1) 
Mean (Ent. 51-100) 
(Mg ha-1) 

Difference Significance 

Chitedze no fertilization 5.42 5.22  0.20 NS 
Harare low N 0.82 0.92 -0.10 NS 
Chitedze high N 5.12 5.22 -0.10 NS 
Harare high N 9.70 9.60  0.10 NS 
Chitala well-watered 4.68 4.64  0.04 NS 
Chiredzi well- watered 5.10 5.20 -0.10 NS 
Chitala drought 1.90 1.80  0.10 NS 
Chiredzi drought 0.20 0.20 0 NS 
Average across locations 4.11 4.06  0.05 NS 
Average High N 7.47 7.38  0.09 NS 
Average Well-watered 4.88 4.92 -0.04 NS 
Average Drought 1.01 0.99  0.02 NS 
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Top five entries for grain yield were selected for each environment by ranking the 

testcrosses from the highest to the lowest yielding genotype. The results showed that 

both groups of testcrosses contributed to the list of five most high yielding testcrosses 

although more testcrosses came from the group that was selected for less favorable 

alleles (Table 69). Some consistent performance was observed for some testcrosses. For 

example entries 46, 29 and 96 were among the top 5 high yielding testcrosses under all 

the two well-watered environments.  

 

 
Table 69. Top yielding 5 entries for grain yield at single environment and across 

environments for population CML444 x K64R evaluated in Malawi and 
Zimbabwe in 2003 and 2004.  

 . 
Environment Best 5 entries  
Chitedze no fertilization 6, 7, 61, 23, 85 
Harare low N 88, 30, 84, 51, 56 
Chitedze high N 68, 20, 66, 94, 64 
Harare high N 98, 12, 47, 93, 17 
Chitala well-watered 96, 46, 90, 53, 29 
Chiredzi well-watered 75, 46, 96, 29, 42 
Chitala drought 2, 98, 62, 1, 60 
Chiredzi drought 97, 65, 21, 43, 68 
Average across locations 96, 98, 30, 12, 53 
Average High N 98, 94, 13, 68, 93 
Average Well-watered 96, 26, 90, 57, 46 
Average Drought 97, 43, 67, 2, 60 

 

 

In order to identify testcrosses that reduce their performances less under stressed 

conditions relative to unstressed conditions at the same locations, drought tolerance 

index (DIT) and nitrogen tolerance index (NTI) were estimated. Testcrosses that 

maintain good performance under stress are good sources of drought and low nitrogen 

tolerant genes. The testcrosses with the best DTI and NTI indices came from both groups 

(Table 70). The average DTI of the first and last 50 entries were 50.7% and 60.6% in 

Malawi, and 95.5% and 96.2% in Zimbabwe, respectively (Appendix O). The average 

NTI for the first and last 50 entries was 91.4% and 90.3%, respectively in Zimbabwe.  
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Table 70. Best 5 testcrosses for drought tolerance index (DTI) and nitrogen 
tolerance index (NTI) for population CML444 x K64R evaluated in Malawi and 
Zimbabwe in 2003 and 2004.  

 
Parameter Zimbabwe Malawi 

DTI (%) 97, 21, 9, 43, 65 2, 76, 44, 67, 17 

NTI (%) 56, 19, 30, 51, 88 - 
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Population CML312/NAW 

 

Results per environment 

 

Chitedze no nitrogen fertilization 

 

This experiment was conducted under no nitrogen fertilization and rain fed conditions at 

Chitedze Research Station (Malawi) during the 2003 and 2004 season. The purpose was 

to induce low N stress, however, the nitrogen content in the soil was higher than 

expected and no stress was apparent. Grain yield average was 5.47 Mg ha-1 (range 2.98 

to 9.38 Mg ha-1) (Table 71). Significant differences were observed for grain yield, 

anthesis date, ears per plant and moisture content but not for anthesis-silking interval, 

grain texture and plant height (Table 71). Heritability estimates were 0.18, 0.17, 0.21, 

0.06, 0.15, 0.16 and 0.24 for grain yield, anthesis date, anthesis-silking interval, plant 

height, ears per plant, gain texture and moisture content, respectively. Average grain 

yield for the first 50 testcrosses was not significantly greater than the average for the last 

50 testcrosses (Table 71). 

 

Grain yield had a positive genotypic correlation with ears per plant while moisture 

content was positively correlated with 50% anthesis date (Table 72). Phenotypic 

correlations were positive between grain yield and 50% anthesis date. Moisture content 

had also positive correlations with 50% anthesis date (Table 72 and Fig. 39).  
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Table 71. Statistics, genotypic variance, heritability and their standard errors for 
traits in testcrosses from population CML312 x NAW evaluated under no 
nitrogen fertilization at Chitedze, Malawi in 2003 and 2004.  

 
Statistics GYG§ AD ASI PH EPP TEX MOI 
 Mg ha-1 d d cm # 1-5 % 
Mean 5.47 72.4  1.00 252.0 0.90 2.90 14.5 
Significance ** * NS NS * NS * 
Minimum 2.98 64.3 -0.50 135.0 0.70 2.00 7.00 
Maximum 9.38 77.2  3.50 273.0 1.30 4.00 16.7 
LSD (5%) 2.63 10.2  1.72 43.0 0.23 0.90 2.48 
CV (%) 24.8 7.10  87.5 8.32 1.28 15.3 8.14 
MSE 1.86 26.4  0.77 439.1 0.01 0.19 1.39 
Mean (Ent. 1-50)   5.55 72.2  1.00 252.0 0.97 2.90 14.5 
Mean (Ent. 51-100) 5.38 72.5  1.00 251.0 0.95 3.00 14.4 
σ2

e 1.87 26.4  0.70 440.2 0.02 0.22 1.95 
σ2

G 0.20 2.75  0.09 13.2 0.002 0.02 0.30 
h2 (family basis) 0.18 0.17  0.21 0.06 0.15 0.16 0.24 
Standard Error h2 0.18 0.17 0.16 0.21 0.18 0.17 0.17 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
MOI, grain moisture content; TEX, grain texture.  
 
 
 
Table 72. Genotypic (above diagonal) and phenotypic (below diagonal)  

correlations and their standard errors (SE) for population CML312 x NAW 
evaluated under no nitrogen fertilization at Chitedze, Malawi in 2003 and 2004. 

  
  GYG AD EPP MOI 
GYG  -0.11 (4.93)  0.40 (3.20) -0.66 (2.34) 
AD 1.48 (0.08)  -3.27 (6.20)  0.60 (0.35) 
EPP 0.35 (6.73) -0.64 (0.01)   0.54 (0.80) 
MOI 0.18 (0.07)  0.66 (0.04)  0.48 (0.10)  
GYG, grain yield; AD, 50% anthesis; EPP, ears per plant; MOI, moisture content. 
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Fig. 39. Single value decomposition biplot of standardized traits showing their 

correlations for population CML312 x NAW evaluated under no nitrogen fertilization at 
Chitedze, Malawi in 2003 and 2004. (GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking 
interval; PH, plant height; EPP, ears per plant; TEX, grain texture; GWT, 100 kernel weight; 
MOI, moisture content). 

 

 

Harare low nitrogen  

 

This experiment was conducted under low nitrogen conditions in Harare (Zimbabwe) 

under rainfed conditions during the 2003/2004 season. The trial did not receive any 

nitrogen fertilization, just 60 kg ha-1 of P2O5. There were significant differences for all 

the traits except ears per plant and moisture content (Table 73). Mean values of the best 

50 genotypes were significantly higher than the mean of the 50 worst genotypes. Grain 

yield, and plant height had moderate heritabilities of 0.38 and 0.49, respectively, while  

anthesis date was low (0.22) and the other traits were 0.00.  
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Table 73. Statistics, genotypic variance, heritability and their standard errors for 

traits in testcrosses from population CML312 x NAW evaluated under low 
nitrogen at Harare, Zimbabwe in 2003 and 2004.  
 

Statistics GYG AD ASI PH EPP MOI 
 Mg ha-1 d d cm # % 
Mean 1.75 79.4  1.73 232.1 0.91 9.46 
Significance ** **  * ** NS NS 
Minimum 0.47 74.2 -1.63 199.2 0.43 7.44 
Maximum 3.24 85.4  5.23 295.8 1.60 11.1 
LSD (5%) 1.27 4.52  3.00 32.6 1.70 2.45 
CV (%) 87.5 2.90  91.1 7.00 92.9 11.0 
MSE 0.44 5.63  2.43 169.18 0.74 0.98 
Mean (Ent. 1-50)   1.84 79.4  1.60 264.0 1.00 9.50 
Mean (Ent. 51-100) 1.64 79.4  1.90 262.0 0.80 9.40 
σ2

e 0.44 5.34  2.27 154.8 0.73 0.87 
σ2

G 0.13 0.75  0.00 52.1 0.00 0.00 
h2 (family basis) 0.38 0.22  0.00 0.40 0.00 0.00 
Standard Error h2 0.13 0.17  0.00 0.13 0.00 0.00 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
MOI, moisture content.  
 

 

Plant height had positive genotypic correlations with grain yield while grain yield was 

also positively correlated with moisture content (Table 74 and Fig. 40). Negative 

phenotypic correlations were observed between grain yield and anthesis date and 

between plant height and anthesis-silking interval. Grain yield and plant height were 

positively correlated.  

 
 
 
Table 74. Genotypic (above diagonal) and phenotypic (below diagonal) 

correlations and their standard errors (SE) for population CML312 x NAW 
conducted under low nitrogen conditions in Harare, Zimbabwe during 2003 and 
2004. 

 
  GYG AD PH 
GYG  0.28 (0.54) 0.69 (1.85) 
AD -0.27 (0.07)  0.87 (0.78) 
PH 0.36 (0.22) -0.11 (0.08)  

GYG, grain yield; AD, 50% anthesis; PH, plant height. 
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Fig. 40. Single value decomposition biplot of standardized traits showing their correlations for 

population CML312 x NAW evaluated under low nitrogen fertilization in Harare, Zimbabwe in 
2003 and 2004. (GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant 
height; EPP, ears per plant; MOI, moisture content).  

 
 

 

Chitedze high nitrogen  

 

This experiment was conducted at Chitedze Research Station during the 2003/2004 

season under rainfed conditions. This trial was fertilized with 120 kg N ha-1 and 60 kg 

ha-1 P2O5. The testcrosses were significantly different for grain yield and grain texture 

only but not for the other traits (Table 75). No significance differences were observed 

between the means of the first 50 testcrosses and the mean of the second 50 testcrosses. 

Grain texture had the highest heritability estimate of 0.82, 0.31 for grain yield, 0.19 for 
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plant height, 0.14 for 50% anthesis date while the other traits had 0.00 heritability 

estimates. Grain yield averaged 4.54 Mg ha-1 and had a range of 1.97 to 7.33 Mg ha-1. 

 
 
 
Table 75. Statistics, genotypic variance, heritability and their standard errors for 

traits in testcrosses from population CML312 and NAW evaluated under high 
nitrogen fertilization at Chitedze, Malawi in 2003 and 2004.  
 

Statistics GYG AD ASI PH EPP TEX MOI 
 Mg ha-1 d d cm # 1-5 % 
Mean 4.54 79.7 0.69 223.4 1.03 3.06 14.8 
Significance * NS NS NS NS *** NS 
Minimum 1.97 77.1 -3.51 188.9 0.90 2.06 13.3 
Maximum 7.13 83.9 2.96 252.5 1.51 4.19 16.1 
LSD (5%) 2.33 3.55 2.83 32.1 0.27 0.45 1.72 
CV (%) 24.8 2.24 204.4 7.08 14.1 6.50 5.57 
MSE 1.27 3.21 1.99 250.5 0.02 0.04 0.68 
Mean (Ent. 1-50)   4.45 79.7 0.80 223.0 0.89 2.90 14.8 
Mean (Ent. 51-100) 4.62 79.8 0.55 224.0 0.85 3.10 14.8 
σ2

e 1.27 3.21 1.99 250.5 0.03 0.05 0.68 
σ2

G 0.29 0.26 0.00 28.6 0.00 0.11 0.00 
h2 (family basis) 0.31 0.14 0.00 0.19 0.00 0.82 0.00 
Standard Error h2 0.15 0.20 0.00 0.17 0.00 0.04 0.00 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; RL, root lodging; 
EPP, ears per plant; MOI, grain moisture content; TEX, grain texture. 
 
 

 

Only weak negative genotypic and positive phenotypic correlations were observed 

between grain yield and grain texture (-0.04 and 0.04, respectively) (Fig. 41). 
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Fig. 41. Single value decomposition biplot of standardized traits showing their correlations for 

population CML312 x NAW evaluated under high nitrogen conditions at Chitedze, Malawi 
during 2003 and 2004. (GYG, grain yield AD, 50% anthesis; ASI, anthesis-silking interval; PH, 
plant height; EPP, ears per  plant; TEX, grain texture; GWT, 100 kernel weight). 
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Harare high nitrogen  

 

This experiment was conducted in Harare (Zimbabwe) under rainfed conditions during 

the 2003/2004 season. The trial was fertilized with 120 kg N ha-1 and 60 kg ha-1 P2O5. 

Differences among testcrosses were significant for 50% anthesis date, anthesis-silking 

interval and plant height (Table 76). Grain yield average was 8.74 Mg ha-1 with a range 

of 5.30 to 11.20 Mg ha-1.  All traits with significant differences had a range of 

heritability estimates from 0.33 to 0.69. Heritability estimates were 0.51 for 50% 

anthesis date, 0.22 for anthesis-silking interval, 0.20 for grain yield and 0.05 for plant 

height. Moisture content had 0.00 heritability estimates (Table 76). 

 

 
Table 76. Statistics, genotypic variance, heritability and their standard errors for  

traits in testcrosses from population CML312 x NAW evaluated under high 
nitrogen fertilization at Harare, Zimbabwe in 2003 and 2004.  

 
Statistics GYG AD ASI PH MOI 
 Mg ha-1 d d cm % 
Mean 8.74 71.4 1.26 275.6 14.0 
Significance NS *** * * NS 
Minimum 5.30 68.2 -1.52 244.1 11.1 
Maximum 11.2 74.6 3.66 295.3 15.5 
LSD (5%) 2.92 3.03 2.00 24.3 2.30 
CV (%) 17.6 2.21 73.8 5.20 7.70 
MSE 2.36 2.50 0.86 204.0 1.15 
Mean (Ent. 1-50)   8.50 71.2 1.20 275.0 13.9 
Mean (Ent. 51-100) 8.90 71.5 1.30 277.0 13.9 
σ2

e 2.26 2.17 0.98 175.1 1.29 
σ2

G 0.29 1.12 0.14 5.06 0.00 
h2 (family basis) 0.20 0.51 0.22 0.05 0.00 
Standard Error h2 0.16 0.10 0.18 0.20 0.00 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; MOI,  
grain moisture content.  
 
 

 

Negative phenotypic correlations were observed between 50% anthesis date and 

anthesis-silking interval and between 50% anthesis date and plant height (Table 77). 
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Positive correlation was observed between grain yield and  plant height. (Table 77 and 

Fig. 42). 

 

 
Table 77. Genotypic (above diagonal) and phenotypic (below diagonal) 

correlations and their standard errors (SE) from population CML312 x NAW 
conducted under high nitrogen conditions at Harare, Zimbabwe during 2003 
and 2004.  

 
  AD ASI PH 
AD  -1.03 (0.29) 0.32 (0.72) 
ASI -0.49 (0.60)  -0.38 (0.93) 
PH -0.02 (0.08)  0.07 (0.08)  

   AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height. 
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Fig. 42.  Single value decomposition biplot of standardized traits showing their correlations for 
     population CML312 x NAW evaluated under high nitrogen conditions in Harare, Zimbabwe  
     during 2003 and 2004.  (GYG, grain yield; AD, 50% anthesis; PH, plant height; ASI, anthesis-   
     silking interval; MOI, moisture content). 
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Chitala well-watered experiment  

 

This experiment was conducted under irrigated conditions at Chitala Experimental 

Station (Malawi) during the dry season in 2004. Water was applied to the experiment to 

field capacity from planting up to physiological maturity. The trial was fertilized with 

120 kg N ha-1 and 60 kg ha-1 P2O5.  Grain yield, anthesis-silking interval, plant height 

and ears per plant had significant differences among the testcrosses (Table 78). 

Heritabilities were low for all the traits: 0.17 for grain yield, 0.24 for anthesis-silking 

interval, 0.22 for plant height, 0.01 for moisture content while the rest of the traits had 

0.00 heritability estimates. The mean of the first and last 50 testcrosses were not 

significantly different from each other. Average grain yield was 3.90 Mg ha-1 while the 

range was 1.28 to 6.03 Mg ha-1 (Table 78). 

 
 
 
Table 78. Statistics, genotypic variance, heritability and their standard errors for 

traits in testcrosses from population CML312 x NAW evaluated under well-
watered conditions at Chitala, Malawi in 2004.  

 
Statistics GYG AD ASI PH EPP TEX MOI 
 Mg ha-1 d d cm # 1-5 % 
Mean 3.90 79.6 2.71 202.6 0.66 2.69 13.9 
Significance ** NS * *** ** NS NS 
Minimum 1.28 76.3 0.86 128.6 0.21 1.95 10.9 
Maximum 6.03 84.7 6.71 232,1 9.70 3.50 16.8 
LSD (5%) 1.94 3.77 2.35 25.1 0.30 1.07 3.00 
CV (%) 24.6 2.40 47.9 6.40 31.6 20.2 9.80 
MSE 0.92 3.81 1.70 168.1 0.04 0.30 1.84 
Mean (Ent. 1-50)   3.90 79.6 2.80 204.0 0.70 2.70 13.9 
Mean (Ent. 51-100) 3.90 79.6 2.60 201.0 0.70 2.70 13.9 
σ2

e 0.92 3.22 1.40 168.0 0.03 0.28 2.03 
σ2

G 0.09 0.00 0.22 23.9 0.00 0.00 0.01 
h2 (family basis) 0.17 0.00 0.24 0.22 0.00 0.00 0.01 
Standard Error h2 0.19 0.00 0.17 0.19 0.00 0.00 0.25 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
MOI, grain moisture content; TEX, grain texture.  
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Grain yield had positive genotypic correlations with plant height and negative 

correlation with anthesis-silking interval (Table 79). Most phenotypic correlations 

amongst the traits were positive but in low magnitude (Table 79 and Fig. 43). 

 
 
Table 79. Genotypic (above diagonal) and phenotypic (below diagonal)  

correlations and their standard errors (SE) from population CML312 x NAW 
conducted under well-watered conditions at Chitala, Malawi in 2004.  

 
 GYG ASI PH EPP 
GYG  -0.50 (1.36) 0.37 (0.58) - 
ASI 0.002 (0.08)  0.91 (0.003) - 
PH 0.13 (0.01) -0.001 (0.001)  0.47 (3.54) 
EPP          -  0.13 (0.08) 0.05 (0.09)  
GYG, grain yield; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant. 
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Fig. 43. Single value decomposition biplot of standardized traits showing their  

correlations for population CML312 x NAW evaluated under well-watered conditions at 
Chitala, Malawi in 2004. (GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; 
PH, plant height; EPP, ears per plant; MOI, grain moisture content, TEX, grain texture. 
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Chiredzi well-watered 

 

This experiment was conducted under well-watered conditions at Chiredzi, Zimbabwe 

during the dry season under irrigation in 2004. Water was applied to the experiment to 

field capacity from planting up to physiological maturity. The trial was fertilized with 

120 kg N ha-1 and 60 kg ha-1 P2O5.  Mean grain yield was 6.06 Mg ha-1, while the range 

was from 4.23 to 7.65 Mg ha-1.  No significant differences were observed for any trait 

and for the means of the first and last 50 testcrosses (Table 80). This was not expected as 

no apparent reason was observed that could increase the error or reduce genotypic 

variance.  

 
 
 
Table 80. Statistics, genotypic variance, heritability and their standard errors for 

traits in testcrosses from population CML312 x NAW evaluated under well-
watered conditions at Chiredzi, Zimbabwe in 2004.  

 
Statistics GYG AD ASI PH EPP MOI 
 Mg ha-1 d d cm # % 
Mean 6.06 101.0 0.75 256.2 0.95 9.65 
Significance NS NS NS NS NS NS 
Minimum 4.23 97.5 -1.91 217.6 0.69 7.88 
Maximum 7.65 103.4 2.59 286.3 1.17 12.6 
LSD (5%) 2.08 2.44 2.38 39.0 0.26 2.17 
CV (%) 17.3 0.50 0.70 6.81 15.5 11.0 
MSE 1.09 1.39 1.29 304.1 0.02 1.13 
Mean (Ent. 1-50)   6.00 100.9 0.80 257.0 0.93 9.67 
Mean (Ent. 51-100) 6.10 101.1 0.70 256.0 0.96 9.64 
σ2

e 1.07 1.40 1.39 304.1 0.02 1.12 
σ2

G 0.004 0.20 0.03 0.59 0.00 0.11 
h2 (family basis) 0.01 0.22 0.05 0.004 0.00 0.17 
Standard Error h2 0.21 0.17 0.20 0.23 0.00 0.18 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
MOI, grain moisture content.  
 

 

Single value decomposition biplot of standardized traits was done to estimate phenotypic 

correlations among the traits. Strong phenotypic correlations were observed between 

grain yield and ears per plant, between plant height and anthesis-silking interval, and 
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between moisture content and 50% anthesis (Fig. 44). The pairs of positive correlations 

were negatively correlated. 
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Fig. 44. Single value decomposition biplot of standardized traits showing their  

correlations for population CML312 x NAW conducted under well-watered conditions at 
Chiredzi, Zimbabwe in 2004. (GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking 
interval; PH, plant height; EPP, ears per plant; MOI, grain moisture content).  

 

 
 

Chitala drought experiment 

 

The experiment was conducted during the dry season at Chitala Experimental Station 

(Malawi) in 2004. Water was applied to the experiment up to field capacity from 

planting until three weeks before flowering, when irrigation was withdrawn. The 

intention was to induce drought stress during the flowering period. No significant 
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differences were observed for any trait (Table 81). All the traits had 0.00 heritability 

estimates due to the non significance of the traits and subsequent estimates for genotypic 

variance equal to 0.00.  Grain yield averaged 1.29 Mg ha-1 and ranged from 0.57 to 2.19 

Mg ha-1. 

 
 
 
Table 81. Statistics, genotypic variance, heritability and their standard errors for  

traits in testcrosses from population CML312 x NAW evaluated under drought 
conditions at Chitala, Malawi in 2004.  

 
Statistics GYG AD ASI PH EPP TEX MOI GWT 
 Mg ha-1 d d cm # 1-5 % g 
Mean 1.29 80.7 3.83 175.3 0.52 2.55 20.1 35.2 
Significance NS NS NS NS NS NS NS NS 
Minimum 0.57 75.2 -1.40 50.7 0.08 1.44 13.5 24.6 
Maximum 2.19 87.3 17.4 200.0 0.80 3.50 25.8 48.5 
LSD (5%) 1.10 6.22 4.47 27.0 0.38 1.26 6.70 11.6 
CV (%) 41.3 3.69 53.3 7.89 33.3 24.3 16.2 16.8 
MSE 0.28 8.89 4.13 191.1 0.03 0.38 10.6 34.8 
Mean (Ent. 1-50)   1.33 80.7 3.60 175.0 0.50 2.50 20.0 35.1 
Mean (Ent. 51-100) 1.25 80.7 4.10 176.0 0.50 2.60 20.2 35.2 
σ2

e 0.25 8.89 6.23 191.1 0.02 0.33 9.59 31.3 
σ2

G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
h2 (family basis) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Standard Error h2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
MOI, grain moisture content, TEX, grain texture.  
 

 
 

Phenotypic correlations among traits were estimated using single value decomposition of 

standardized traits. Negative correlations were observed between grain yield and 

anthesis-silking interval, between ears per plant and 50% anthesis date, and between 

grain yield and 50% anthesis. Positive correlations were observed between grain yield 

and ears per plant and between 100 kernel weight and 50% anthesis date (Fig. 45). 

 
 
 
 
 

 



   149

GYG

AD

ASI

PH

EPP

MOI

SEN

TEX

GWT

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

 
Fig. 45. Single value decomposition biplot of standardized traits showing their correlations for  

population CML312 x NAW conducted under drought conditions at Chitala, Malawi in 2004. 
(GYG, grain yield, AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, 
ears per plant; SEN, leaf senescence; GWT, 100 kernel weight; TEX, grain texture; MOI, 
moisture content). 

 
 
 

Chiredzi drought experiment 

 

This experiment was conducted during the 2004 dry season at Chiredzi Experimental 

Station (Zimbabwe). Water was applied to the experiment up to field capacity from 

planting until three weeks before flowering when irrigation was withdrawn to induce 

drought stress during the flowering period. Despite that nitrogen fertilizer was applied, 

the general performance was poor because of inherent low fertility of the experimental 

site. Grain yields were very low with a mean of 0.20 Mg ha-1 (range was from 0.00 to 

0.93 Mg ha-1) (Table 82). Significance differences were observed for all traits. Estimates 
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of heritabilities were moderate ranging from 0.26 for grain yield and was the highest for 

anthesis date with 0.52. The mean of the best 50 and the mean of the worst 50 testcrosses 

were not significantly different. 

 
 
 
Table 82. Statistics, genotypic variance, heritability and their standard errors for  

traits in testcrosses from population CML312 x NAW evaluated under drought 
conditions at Chiredzi, Zimbabwe in 2004.  

 
Statistics GYG AD ASI PH EPP 
 Mg ha-1 d d cm # 
Mean 0.20 101.9 6.90 184.1 0.20 
Significance *** *** *** * *** 
Minimum 0.00 98.3 0.10 120.2 0.20 
Maximum 0.93 109.2 16.4 211.3 0.60 
LSD (5%) 0.44 3.57 6.34 32.2 0.20 
CV (%) 111.8 1.80 43.9 8.04 69.6 
MSE 0.05 3.24 9.18 219.2 0.02 
Mean (Ent. 1-50)   0.20 101.0 6.50 185.0 0.20 
Mean (Ent. 51-100) 0.20 102.0 7.20 183.0 0.10 
σ2

e 0.05 2.90 8.91 218.9 0.12 
σ2

G 0.01 1.56 1.30 59.8 0.01 
h2 (family basis) 0.26 0.52 0.23 0.35 0.47 
Standard Error h2 0.16 0.10 0.33 0.12 0.12 

***,**,* Significant at P < 0.001, 0.01 and 0.05, respectively, and NS = non significant. 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant.  
 

 

 

Single value decomposition biplot of standardized traits showed grain yield was 

positively correlated with ears per plant and negatively correlated with anthesis-silking 

interval and 50% anthesis date (Fig. 46).  
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Fig. 46. Single value decomposition biplot of standardized traits showing their correlations for 

population CML312 x NAW evaluated under drought conditions at Chiredzi, Zimbabwe in 
2004. (GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; 
EPP, ears per plant).  
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Results across environments  

 

Across all environments significant for grain yield 

 

The analysis across environments was conducted for those environments that had 

significant differences for grain yield in this population. These were no nitrogen 

fertilization (Chitedze), low nitrogen (Harare), high nitrogen (Chitedze), well-watered 

(Chitala) and drought (Chiredzi). 

 

There were significant differences for grain yield, 50% anthesis date, plant height, 

moisture content and 100 kernel weight  (Table 83). Average grain yield was 3.19 Mg 

ha-1. Heritability estimates were generally low for all the traits with 0.04 for grain yield, 

0.32 for 50% anthesis date, 0.04 for anthesis-silking interval, 0.27 for plant height, 0.45 

for moisture content, 0.21 for grain texture, 0.37 for 100 kernel weight and 0.00 for ears 

per plant.  

 
 
 
Table 83. Statistics, averages, variance components, heritability and its standard  

error for experiment CML312 x NAW across all environments with significant 
differences for grain yield in Malawi and Zimbabwe in 2003 and 2004. 

 
Statistics GYG AD ASI PH EPP MOI TEX GWT 
 Mg ha-1 d d cm # % 1-5 g 
Mean 3.19 85.53 2.04 218.88 0.62 3.02 13.50 40.21 
Significance * *** NS *** NS *** NS ** 
CV 36.12 3.75 71.74 8.54 67.37 14.34 9.96 12.86 
σ2

e 0.91 8.22 2.44 263.32 0.17 0.19 1.31 24.23 
σ2

G 0.005 0.43 0.01 11.93 0.00 0.02 0.04 1.48 
σ2

GxE 0.14 0.60 0.09 30.64 0.00 0.02 0.04 0.24 
h2 (family basis) 0.04 0.32 0.04 0.27 0.00 0.45 0.21 0.37 
Standard Error h2 0.17 0.11 0.17 0.13 0.00 0.13 0.19 0.12 

***,**,* Significant at P < 0.001, 0.01, and 0.05, respectively, NS = non-significant 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
MOI, grain moisture; TEX, grain texture; GWT, 100 kernel weight. 
MSE, mean square error; h2, broad sense repeatability. 
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Positive genotypic correlations were observed between grain yield  and plant height and 

between grain yield and 100 kernel weight while negative correlations were between 

grain yield and 50% anthesis date (Table 84). 

 
 
 
Table 84. Genotypic (above diagonal) and phenotypic (below diagonal)  

correlations and their standard errors (SE) from population CML312 x NAW  
across environments significant for grain yield evaluated in Malawi and 
Zimbabwe in 2003 and 2004. 

 
 GYG AD PH MOI GWT 
GYG  0.21 (0.93) 1.59 (2.07) -1.94 (3.73) 5.63 (106.9) 
AD -0.07 (0.03)  0.05 (0.40) 0.84 (0.83) - 
PH 0.37 (0.03) 0.19 (0.03)  1.17 (1.05) 0.67 (0.57) 
MOI 0.15 (0.04) 0.38 (0.03) 0.26 (0.03)  -0.45 (0.83) 
GWT 0.27 (0.03) - 0.26 (0.03) 0.22 (0.04)  
GYG, grain yield; AD, 50% an thesis date; PH, plant height; MOI, moisture content; GWT, 100 kernel 
weight. 
 

 

Across high N environments 

 

Experiments conducted under high nitrogen environments in Malawi and Zimbabwe 

during the 2003/2004 were used in this analysis. Significant differences were observed 

for grain yield, 50% anthesis date and grain texture in analysis across optimal nitrogen 

fertilization under rain fed conditions in Malawi and Zimbabwe during the 2003/2004 

season (Table 85 and Appendix K).  Heritability estimates were 0.84 for grain texture, 

0.46 for 100 kernel weight, and 0.28 for grain yield. The rest of traits including anthesis-

silking interval, ears per plant and moisture content had 0.00 heritability estimates. 
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Table 85. Statistics, averages, variance components, heritability and its standard 
error for experiment CML312 x NAW across high nitrogen conditions in 
Malawi and Zimbabwe in 2003 and 2004. 

 
Statistics GYG AD ASI PH EPP MOI TEX GWT 
 Mg ha-1 d d cm # % 1-5 g 
Mean 6.62 75.6 0.99 249.6 0.66 14.8 3.06 41.6 
Significance ** ** NS NS NS NS *** NS 
CV% 21.1 2.32 128.2 6.20 28.2 6.20 7.80 11.1 
σ2

e 1.77 2.67 1.61 212.8 0.67 0.68 0.05 14.6 
σ2

g 0.19 0.06 0.00 13.7 0.00 0.00 0.10 3.10 
σ2

GxE 0.08 0.64 0.00 3.51 0.00 0.00 0.01 0.00 
h2 (family basis) 0.28 0.05 0.00 0.20 0.00 0.00 0.84 0.46 
Standard Error h2 0.15 0.20 0.00 0.17 0.00 0.00 0.04 0.11 

***,**,* Significant at P < 0.001, 0.01, and 0.05, respectively, NS = non-significant 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
MOI, grain moisture; TEX, grain texture; GWT, 100 kernel weight. 
MSE, mean square error; h2, broad sense repeatability. 
 

 
 

Across drought environments 

 

This is a combined analysis of two experiments that were conducted under drought stress 

in Malawi and Zimbabwe in 2004. No significant differences were observed for all traits 

except anthesis-silking interval (Table 86 and Appendix L). Average grain yield was 

very low (0.74 Mg ha-1). In addition, heritabilities estimates ranged from 0.00 to 0.31. 
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Table 86. Statistics, averages, variance components, heritability and its standard  
error for experiment CML312 x NAW across drought environments in Malawi 
and Zimbabwe in 2003 and 2004. 

 
Statistics GYG AD ASI PH EPP MOI GWT 
 Mg ha-1 d d cm # % g 
Mean 0.74 91.3 4.06 180.0 0.32 20.2 35.3 
Significance NS NS ** NS NS NS NS 
CV 72.7 3.36 56.6 11.7 57.5 16.1 17.0 
σ2

e 0.15 6.21 6.69 206.4 0.02 9.59 31.3 
σ2

g 0.001 0.17 0.75 14.0 0.001 0.00 0.00 
σ2

GxE 0.00 0.27 0.00 14.5 0.001 0.00 0.00 
h2 (family basis) 0.02 0.09 0.31 0.19 0.17 0.00 0.00 
Standard Error h2 0.18 0.21 0.17 0.19 0.19 0.00 0.00 

***,**,* Significant at P < 0.001, 0.01, and 0.05, respectively, NS = non-significant 
GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
MOI, grain moisture; GWT, 100 kernel weight. 
MSE, mean square error; h2, broad sense repeatability. 
 

 

Correlations among traits across environments and stresses 

 

Across all environments 

 

Positive phenotypic correlations were observed between grain yield and ears per plant, 

100 kernel weight and plant height across all stressed and non stressed environments 

(Fig. 47). Flowering time (50 % anthesis date) and grain moisture were also closely 

correlated. Anthesis-silking interval was negatively correlated with grain yield, plant 

height and 100 kernel weight. 
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Fig. 47. Single value decomposition biplot for different traits showing their correlations for   

for population CML312 x NAW evaluated across all environments in Malawi and Zimbabwe in 
2003 and 2004. (GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant 
height; EPP, ears per plant; MOI, grain moisture; TEX, grain texture; GWT, 100 kernel 
weight). 

 

 
 

Across high N environments 

 

There were positive phenotypic corrections between grain yield and plant height, and 

100 kernel weight and ears per plant. Negative correlation was observed between 50% 

anthesis date and anthesis-silking interval and between ears per plant and grain texture 

(Fig. 48).  
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Fig. 48. Single value decomposition biplot across high nitrogen environments for 

population CML312 x NAW evaluated in Malawi and Zimbabwe in 2003 and 2004. GYG, grain 
yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
MOI, grain moisture; TEX, grain texture; GWT, 100 kernel weight. 

 

 

Correlations across drought environments 

 

Positive correlations were observed between grain yield and plant height and ears per 

plant while 50% anthesis date was negatively correlated with plant height, grain yield 

and ears per plant (Fig. 49). Grain yield was negatively correlated with anthesis-silking 

interval and 50% anthesis date. 
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Fig. 49. Single value decomposition biplot for different traits showing their correlations for  

population CML312 x NAW evaluated across drought environments in Malawi and Zimbabwe 
in 2003 and 2004. (GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, 
plant height; EPP, ears per  plant; MOI, grain moisture; TEX, grain texture; GWT, 100 kernel 
weight). 

       
 
 

Relationships among environments for grain yield  

 

The AMMI biplot for grain yield showed that in both Malawi and Zimbabwe, well- 

watered environments discriminated the testcrosses equally. High nitrogen environments 

also classified the genotypes in a similar manner.  However, drought environments in 

Malawi and Zimbabwe discriminated the genotypes differently. No nitrogen fertilization 

and low nitrogen environments were closely related to high nitrogen environments (Fig. 

50 and Table 87). 
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Fig. 50. AMMI biplot for grain yield showing the relationship among environments for experiment 

CML312 x NAW evaluated in Malawi and Zimbabwe in 2003 and 2004. (ZMLN, Zimbabwe low 
nitrogen;  MLWWW, well-watered Malawi;  ZMWW, well-watered Zimbabwe, MLWNF, 
Malawi no nitrogen fertilization;  MLWDRT, drought Malawi;  ZMDRT, drought Zimbabwe;  
MLWHN, high nitrogen Malawi;  ZMHN, high nitrogen Zimbabwe). 

 

 
 
Table 87. Genotypic (above diagonal) and phenotypic (below diagonal) 

correlations among environments and their standard errors (SE) for population 
CML312 x NAW evaluated in Malawi and Zimbabwe in 2003 and 2004. 

 
Environment MLWNF ZMLN MLWHN MLWWW ZMDRT 
MLWNF  0.07 (0.44)  0.76 (0.63) -0.43 (0.82) - 
ZMLN   0.01 (0.07)   0.55 (0.39) -0.42 (0.86) - 
MLWHN   0.07 (0.07) 0.12 (0.07)  -1.00 (1.03) - 
MLWWW -0.09 (0.07) 0.05 (0.07) -0.04 (0.07)  - 
ZMDRT - - - -  

ZMLN, Zimbabwe low nitrogen;  MLWWW, well-watered Malawi;   MLWNF, Malawi no nitrogen 
fertilization;   ZMDRT, drought Zimbabwe;  MLWHN, high nitrogen Malawi. 
- No estimable because one or the two traits were non significant at any environment 
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Expected genetic gain  

 

Estimates of heritabilities and genetic variances were used to compute genetic gain for 

both direct (selection in one environment or stress to improve performance in that 

environment or stress) and indirect (selection in one environment or stress to improve 

performance in another environment and stress). Estimates of genetic gain for direct 

selection were variable across environments and stresses as consequence of variable 

heritabilities and genetic variance display (Table 88). Greater genetic gains were from 

Chitedze and Harare high nitrogen environments (0.52 and 0.42 Mg ha-1, respectively) 

while the lowest genetic gain was observed under drought stressed environment at 

Chitala (0.00).  

 
 
 
Table 88. Expected genetic gain for grain yield (Mg ha-1) across environments and 

stresses for population CML312 x NAW conducted in Malawi and Zimbabwe in 
2003 and 2004 assuming selection of the best 10%.  

 

Environment Mean Error 
Gen. 

variance h2 
Genetic Gain 

(R) 

Chitedze no fertilization 
 

5.47 
 

1.87 
 

0.20 
 

0.18 0.33 
Harare low N 1.75 0.44 0.13 0.38 0.39 
Chitedze high N 4.54 1.27 0.29 0.31 0.52 
Harare high N 8.74 2.26 0.29 0.2 0.42 
Chitala well-watered 3.9 0.92 0.09 0.17 0.22 
Chiredzi well-watered 6.06 1.07 0.004 0.01 0.01 
Chitala drought 1.29 0.25 0.00 0.00 0.00 
Chiredzi drought 0.2 0.05 0.01 0.26 0.09 
Average across locations 4.00 1.03 0.02 0.18 0.11 

h2, broad sense repeatability. 
 

 

Expected genetic gain across all environments was 0.11 Mg ha-1 (Table 89). The highest 

genetic gain corresponded to environments under high nitrogen.  
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Table 89. Expected genetic gain for grain yield (Mg ha-1) across environments for 
experiment CML312 x NAW conducted in Malawi and Zimbabwe in 2003 and 
2004 assuming selection of the best 10%.  

 

Environment Mean Error 
Gen. 

variance h2  
Genetic 
Gain (R) 

Across all environments 4.00 1.03 0.02 0.18 0.11 
Across high N 6.62 1.77 0.19 0.28 0.40 
Across well-watered 5.06 1.01 0.002 0.01 0.01 
Across drought 0.74 0.15 0.001 0.02 0.01 

Gen., genetic; h2, broad sense repeatability. 
 
 

Estimates of correlated response for indirect selection were also variable depending on 

the genetic correlation between selection and target environments as well as their 

heritabilities (Table 90). The highest correlated response was for selection under low 

nitrogen environments to improve environment with high nitrogen fertilization (0.44 Mg 

ha-1). Positive correlated responses were estimated for selection under well-watered 

environment to improve yield at high nitrogen environments (0.21 Mg ha-1) and for 

selection under no nitrogen fertilization to improve yield under high nitrogen (0.30 Mg 

ha –1). Negative correlated responses were estimated when selection was done under 

well-watered conditions for low nitrogen and no nitrogen fertilization (-0.11 and -0.14 

Mg ha-1, respectively) and very low response when selection was done under no nitrogen 

fertilization conditions to improve yield under low nitrogen (0.02 Mg ha-1). These results 

suggest that for this population, direct selection is more effective than indirect selection.   
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Table 90. Correlated response estimates for indirect selection for different 
environments and stresses for population CML312 x NAW evaluated in Malawi 
and Zimbabwe in 2003 and 2004. 

 
Selection under Response in Correlated Response (CR) 

Well-watered    no fertilization -0.14 
Well-watered low nitrogen -0.11 
Well-watered high nitrogen 0.21 
No fertilization low nitrogen 0.02 
No fertilization high nitrogen 0.30 
Low nitrogen high nitrogen 0.44 
 
 

 

Preliminary assessment of MAS efficiency in testcrosses 

 

There were significant differences between the means of two groups of testcrosses in 

only under low nitrogen environment in Zimbabwe but not for all other individual 

environments and across (Table 91). 

 
 
 
Table 91. Grain yield means for the  first and last 50 entries, their differences and  

significances at single and across environments for population CML312 x NAW 
evaluated in Malawi and Zimbabwe in 2003 and 2004. 

   
Environment Mean (Ent. 1-50) 

Grain yield 
 (Mg ha-1) 

Mean (Ent. 51-100) 
Grain yield 
 (Mg ha-1) 

Difference Significance 

Chitedze no fertilization 5.55 5.38  0.17 NS 
Harare low N 1.84 1.64  0.20 * 
Chitedze high N 4.45 4.62 -0.17 NS 
Harare high N 8.50 8.90  0.40 NS 
Chitala well-watered 3.90 3.90 0 NS 
Chiredzi well-watered 6.00 6.10 -0.10 NS 
Chitala drought 1.33 1.25  0.08 NS 
Chiredzi drought 0.20 0.20 0 NS 
Average across locations 4.00 4.01 -0.01 NS 
Average High N 6.52 6.74 -0.22 NS 
Average well-watered 5.03 5.10 -0.07 NS 
Average Drought 0.77 0.71 0.06 NS 

 

 



   163

Selection of the best five entries for each environment was conducted based on the 

highest yielding testcrosses to assess which group of testcrosses (best or worst) 

contributed most to the 5 highest yielding testcrosses.  Best 5 testcrosses came from both 

groups (Table 92). It was observed that entry 10 was among the best 5 under no nitrogen 

fertilization, low nitrogen, across all environments, across high nitrogen environments 

and across drought environments. Entry 23 was among the best 5 under high nitrogen, 

across all environments and across high nitrogen environments while entry 32 was 

among the best 5 entries under high nitrogen, under drought stress and across all drought 

environments. This indicates that there are potential genotypes that can perform across 

environments and for specific environments. 

 
 
 
Table 92. Top 5 entries for grain yield at single environment and across 

environments for population CML312 x NAW evaluated in Malawi and 
Zimbabwe in 2003 and 2004.  
 

Environment Best 5 entries for grain yield 
Chitedze no fertilization 40,53, 17, 10, 75 
Harare low N 10, 44, 83, 26, 16 
Chitedze high N 74, 71, 76, 23, 56 
Harare high N 90, 65, 32, 43, 85 
Chitala well-watered 6, 98, 45, 74, 68 
Chiredzi well-watered 88, 36, 89, 38, 55 
Chitala drought 32, 26, 35, 18, 94 
Chiredzi drought 16, 96, 36, 85, 101 
Average across locations 10, 23, 44, 40, 32 
Average High N 10, 23, 85, 73, 25 
Average Well-watered 98, 6, 38, 3, 99 
Average Drought 32, 10, 24, 25, 26 

 

 

 

Drought (DTI) and nitrogen (NTI) tolerance indices were estimated in order to identify 

testcrosses that reduce less their performances under stressed conditions relative to 

unstressed conditions at the same locations. Testcrosses that maintain a good 

performance under stress are good sources for drought tolerance genes. The average DTI 
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for the first and last 50 entries was 63.5% and 64.2% (Malawi) and 96.4% and 96.9% 

(Zimbabwe), respectively (Appendix P). The average NTI for the first and last 50 entries 

was 77.9% and 81.6%), respectively. The testcrosses with the best DTU and NTI indices 

came from both groups (Table 93).  

  

 
Table 93. Best testcrosses based on drought and nitrogen tolerance indices at two 

locations for population CML312 x NAW evaluated in Malawi and 
Zimbabwe in 2003 and 2004 season.  

 
Parameter Zimbabwe Malawi 

DTI 96, 16, 85, 36, 101 72, 52, 18, 94, 26 

NTI 16, 26, 4, 10, 83 - 
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Summary results across populations 
 

Grain yield and its components  
 

For selection, each environment served a different purpose. Low nitrogen environments 

would help select cultivars which are superior in the utilization of available nitrogen 

while high nitrogen and well-watered environments allowed for monitoring yield 

potential under optimal conditions. Drought environments were meant to identify 

cultivars which would do well under drought.  The results from all the populations 

showed that there was variability in these populations for grain yield, its components and 

other agronomic traits. Highest average grain yields across populations and 

environments were obtained from CML444 x K64R and lowest from CML440 x 

COMPE. Generally, high yields were obtained from the high nitrogen environments 

which was expected and lowest under drought.  

 

The no nitrogen environment in Malawi produced grain yields which were comparable 

and in some cases even higher than high nitrogen fertilization (a site meant to be a low 

nitrogen site). This observation demonstrated the need for proper management of test 

environments otherwise wrong conclusions can be drawn. Therefore, this site should no 

longer be used as a low N site until further depletion is done to reduce the nitrogen 

content of the soil. Malawi and Zimbabwe well-watered environments were consistently 

non significant. This was very surprising because these locations had high grain yields 

and more variability among testcrosses was expected.  A possible reason to this could be 

because the magnitude of the error was high. Another possible reason would be due to 

the effect of single row plots which have been reported to reduce performance of 

individual genotypes such as height, aggressive rooting and lax leaves which may 

provide little or no advantage in well bordered plots and may be disadvantageous under 

drought (Bolanos and Edmeades, 1996). This could hold true because this was under 

well-watered conditions where plants are more vigorous.  Banziger, et al., (1995) 
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observed that small plots were not a major source of environmental error during 

selection under low nitrogen. 

 

Grain yield was associated with plant height, ears per plant, anthesis-silking interval and 

anthesis date in populations CML441 x CML444, CML444 x K64R and CML312 x 

NAW (Figures 51 and 52). No relation was observed between grain yield and ears per 

plant in population CML440 x COMPE. This shows that as selection tools, some traits 

can be more important in one population than another. Across environments, low 

nitrogen, high nitrogen and drought environments were responsible for most of the 

variation in all populations but well-watered environments were not significant (Table 

94). 

 

 

Table 94. Significances for grain yield and secondary traits across populations and 
environments evaluated in Malawi and Zimbabwe in 2003 and 2004. 

 

    
Population CML441 X 
CML444       

Population CML440 X 
COMPE 

ENVT GYG AD ASI PH EPP TEX
GY
G AD ASI PH  EPP TEX MOI

MLW 
NF *** *** NS NS *** *** NS NS NS NS NS NS NS 
ZM LN NS *** *** *** *** NA * ** NS * NA NA NA 
MLW 
HN * NS *** *** NS *** NS NS NS NS NS NS NS 
ZM HN *** *** NS *** * *** * NS NS * NS NA NA 
MLW 
WW NS NS NS NS NS NS NS *** NS *** NS NS NS 
ZM 
WW *** *** NS *** ** NA NS NS NS NS ** NS NS 
MLW 
DRT * *** *** *** NS NA ** *** NS ** *** NA NA 
ZM 
DRT * NS NS NS NS NA ** NS NS NS *** NA NA 
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Table 94. continued 
 

    
Population CML444 X 
K64R     

Population CML312 X 
NAW 

ENVT GYG AD ASI PH EPP TEX GYG AD ASI PH  EPP TEX
MLW 
NF *** * NS NS NS *** ** * NS NS * NS 
ZM LN ** * NS NS * NA ** ** ** ** NS NA 
MLW 
HN *** *** NS *** NS NS * NS NS NS NS *** 
ZM HN *** *** NS NS *** NA NS *** * * NS NA 
MLW 
WW NS NS NS NS NS NS * NS * ** *** ** 
ZM 
WW NS NS NS NS NS NS NS NS NS NS NS NS 
MLW 
DRT * NS NS NS NS NS NS NS NS NS NS NS 
ZM 
DRT *** *** *** *** *** NA *** *** *** * *** NA 

GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant height; EPP, ears per plant; 
MOI, grain moisture; GWT, 100 kernel weight. 
ZMLN, Zimbabwe low nitrogen;  MLWWW, well-watered Malawi;  ZMWW, well-watered Zimbabwe, 
MLWNF, Malawi no nitrogen fertilization;  MLWDRT, drought Malawi;  ZMDRT, drought Zimbabwe;  
MLWHN, high nitrogen Malawi;  ZMHN, high nitrogen Zimbabwe. 
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Fig. 51. Relationship between grain yield and ears per plant across populations  evaluated in  

Malawi and Zimbabwe in 2003 and 2004. 
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Fig. 52. Relationship between grain yield and anthesis-silking interval (ASI) across  
populations and stresses evaluated in Malawi and Zimbabwe in 2003 and 2004. 

 

Heritabilities across populations 

 
Estimates of heritability for the different traits were variable across environments and 

populations. Testcrosses from CML441 x CML444 and CML444 x K64R had higher 

heritability estimates for grain yield, 50% anthesis date, ears per plant and plant height 

compared to the other two populations, CML440 x COMPE and CML312 x NAW.  

 

Heritabilities were generally larger for grain yield, anthesis date, ears per plant and plant 

height under high nitrogen and drought environments in both Malawi and Zimbabwe 

across all populations (Fig. 53). While it has been observed that heritability of grain 

yield declines under drought (Blum, 1988), the results of the current study indicate that 

similar progress can be made for grain yield under both drought and low N conditions. 

 



   170

This is in agreement with what was reported by Lafitte and Edmeades (1994) especially 

when grain yield is significantly different (Table 94 and Fig 54). The observed low 

values of heritability estimates under well-watered conditions was due to non significant 

differences for the traits, which resulted in genetic variance estimates being estimated to 

zero. 
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Fig. 53. Relationship between grain yield and heritability estimates across different environments 

and populations evaluated in Malawi and Zimbabwe in 2003 and 2004. 
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Fig. 54. Heritability estimates for grain yield, anthesis date, anthesis-silking interval, plant height 

and ears per plant in four testcross populations across single environments. (ZMLN, Zimbabwe 
low nitrogen;  MLWWW, well-watered Malawi;  ZMWW, well-watered Zimbabwe, MLWNF, 
Malawi no nitrogen fertilization;  MLWDRT, drought Malawi;  ZMDRT, drought Zimbabwe;  
MLWHN, high nitrogen Malawi;  ZMHN, high nitrogen Zimbabwe). 

 
 
 
Relationships between  environments across populations 
 

The AMMI analysis biplot highlights the behavior of environments in discriminating the 

genotypes. In case of grain yield, drought and well-watered environments behaved 

similarly, as well as high nitrogen and no nitrogen fertilization environments. This was 

consistent for populations CML441 x CML444, CML444 x K64R and CML312 x 

NAW. Apparently populations behaved in a similar manner across testing environments. 

Population CML 440 x COMPE reacted to environments differently. Different 
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populations then can have different response to environmental variation (Fig. 54a, b, c, 

and d).  
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   Fig.  55a. AMMI biplots for grain yield showing the relationship among environments for   

 population CML441 x CML 444 evaluated in Malawi and Zimbabwe in 2003 and 2004.  
(ZMLN, Zimbabwe low nitrogen;  MLWWW, well-watered Malawi;  ZMWW, well-watered 
Zimbabwe, MLWNF, Malawi no nitrogen fertilization;  MLWDRT, drought Malawi;  ZMDRT, 
drought Zimbabwe;  MLWHN, high nitrogen Malawi;  ZMHN, high nitrogen Zimbabwe). 
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Fig. 55b. AMMI biplots for grain yield showing the relationship among environments for  

populations CML440 x COMPE evaluated in Malawi and Zimbabwe in 2003 and 2004.  
(ZMLN, Zimbabwe low nitrogen;  MLWWW, well-watered Malawi;  ZMWW, well-watered 
Zimbabwe, MLWNF, Malawi no nitrogen fertilization;  MLWDRT, drought Malawi;  ZMDRT, 
drought Zimbabwe;  MLWHN, high nitrogen Malawi;  ZMHN, high nitrogen Zimbabwe). 
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Fig.  55c. AMMI biplots for grain yield showing the relationship among environments for CML312  

x NAW testcross populations evaluated in Malawi and Zimbabwe in 2003 and 2004.  (ZMLN, 
Zimbabwe low nitrogen;  MLWWW, well-watered Malawi;  ZMWW, well-watered Zimbabwe, 
MLWNF, Malawi no nitrogen fertilization;  MLWDRT, drought Malawi;  ZMDRT, drought 
Zimbabwe;  MLWHN, high nitrogen Malawi;  ZMHN, high nitrogen Zimbabwe). 
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Fig. 55d. AMMI biplots for grain yield showing the relationship among environments for population 

CML444 x K64R evaluated in Malawi and Zimbabwe in 2003 and 2004.  (ZMLN, Zimbabwe 
low nitrogen;  MLWWW, well-watered Malawi;  ZMWW, well-watered Zimbabwe, MLWNF, 
Malawi no nitrogen fertilization;  MLWDRT, drought Malawi;  ZMDRT, drought Zimbabwe;  
MLWHN, high nitrogen Malawi;  ZMHN, high nitrogen Zimbabwe). 

 
 
 
Expected genetic gain for selection and usefulness 
 
 

Yield under low N was reduced by over 60 % compared to yield under high nitrogen 

experiments across all the populations. Yield under drought was reduced by over 90% in 

Zimbabwe and about 50% in Malawi compared to yield under well-watered 

environments.  High nitrogen environments had the highest genetic gain across all the 

populations while drought conditions had the lowest genetic gain. Banziger et al. (1997) 

that reported that selection under high nitrogen was less efficient for performance under 
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low N when yield was reduced by more than 40%. Across all populations, higher 

expected genetic gain was associated with high heritability estimates (Fig. 56).  

 

Correlated responses were variable among the populations. Tescrosses from CML441 x 

CML444 had the highest correlated response when selection was done under drought 

conditions to improve yield under high nitrogen conditions (0.23 Mg ha-1). Population 

CML312 x NAW had the highest correlated response when selection was done under 

low nitrogen to improve yield under high nitrogen conditions (0.44 Mg ha-1). Negative 

correlated responses means that direct selection is more beneficial than indirect selection 

and also that testcrosses had to be selected for each environment separately.  

 

Heritability estimates showed a positive correlation with genetic gain (Fig 56). The 

higher the heritability, the higher the genetic gain. This correlation showed that the 

possibility of making progress during selection is higher for traits or populations with 

higher heritability estimates. For our populations, more progress could be achieved in 

populations CML441 x CML444 and CML444 x K64R than with CML440 x COMPE 

and CML312 x NAW. Selection for plant height, ears per plant, 50%, anthesis silking 

interval and grain yield had greater expected genetic gain than other traits moisture 

content, 100 kernel weight and root lodging. 
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Fig. 56. Relationship between expected genetic gain (Mg ha-1) for grain yield and heritability 
estimates in four testcross populations evaluated in Malawi and Zimbabwe in 2003 and 2004 
assuming a selection intensity of 10%. 
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Correlation among traits across populations 
 
Correlations between grain yield and secondary traits were variable across populations 

(Fig. 56a and 56b). Positive correlations were observed between grain yield and ears per 

plant, and grain yield and plant height in three of the populations (CML440 x COMPE, 

CML444 x K64R and CML312 x NAW). Population CML441 x CML444 had positive 

correlations between grain yield and ears per plant but not with between grain yield and 

plant height. All populations had negative correlations between anthesis-silking interval 

and grain yield, grain yield and 50% anthesis date and between anthesis-silking interval 

and ears per plant (Fig 57) although the magnitudes were different.  In addition, the data 

also reveals that genotypic and phenotypic correlations of grain yield and ears per plant 

were apparently higher across all the populations than the other traits suggesting that this 

relationship is ubiquitous in maize. Ears per plant is one of the key traits that could be 

used for indirect selection for grain yield in these populations and environments. The 

negative correlation between grain and anthesis silking interval should also account for 

the increased number of ears per plant as short anthesis silking interval is associated with 

increased partitioning of assimilates to the growing ear and reduced number of barren 

ears (Bolanos and Edmeades, 1996). 

 

Genotypic and phenotypic correlations between grain yield and the rest of traits were 

very small and inconsistent. Genotypic and phenotypic correlations generally agreed in 

sign and magnitude although some exceptions existed. 
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Fig. 57a. Single value decomposition biplot for different traits across environments for  populations 
CML441 x CML44 (above) and CML440 x COMPE (below) evaluated in Malawi and 
Zimbabwe in 2003 and 2004. (GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking 
interval; PH, plant height; EPP, ears per plant; MO, grain moisture; TEX, grain texture; GWT, 
100 kernel weight). 
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Fig. 57b. Single value decomposition biplot for different traits across environments and populations 

CML444 x K64R (above) and CML312 x NAW (below) evaluated in Malawi and Zimbabwe in 
2003 and 2004. (GYG, grain yield; AD, 50% anthesis; ASI, anthesis-silking interval; PH, plant 
height; EPP, ears per plant; MO, grain moisture; TEX, grain texture; GWT, 100 kernel 
weight). 
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Fig. 58. Correlation between anthesis-silking interval and ears per plant across populations  
evaluated in Malawi and Zimbabwe in 2003 and 2004. 

 
 
 
Preliminary assessment of MAS 
 
A comparison of the best and worst entries for grain yield showed that there were 

significant differences among the best 50 and the worst 50 testcrosses in few cases 

across the environments and populations (Table 95). Population CML441 x CMM444 

had a large number of significant differences between the two groups than the other 

populations. Population CML444 x K64R did not have any differences between the two 

groups across all the environments. There was variability in the efficiency of MAS 

among the different populations. Bernardo et al. (2002) indicated that lack of correlation 

between QTLs and their correlated responses in the field are due to false positives which 

account for 10 to 30 times more exaggerated. It was therefore recommended that in order 

to improve efficiency of MAS, a 0.0001 probability level should be used compared to  
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Table 95. Grain yield significances for the first and last 50 entries, at single  
environments, across environments and across populations evaluated in Malawi 
and Zimbabwe in 2003 and 2004.  

  
Environment CML441 x 

 CML444 
CML440 x 
 COMPE 

CML444 x  
K64R 

CML312 x  
NAW 

Chitedze no fertilization * NS NS NS 
Harare low N * NS NS * 
Chitedze high N * * NS NS 
Harare high N NS NS NS NS 
Chiredzi well-watered NS NS NS NS 
Chitala well-watered * NS NS NS 
Chitala drought NS NS NS NS 
Chiredzi drought NS * NS NS 
Average across 
locations 

NS NS NS NS 

Average High N NS NS NS NS 
Average Well-watered NS NS NS NS 
Average Drought NS NS NS NS 

 
 
0.10 which is currently used by most researchers. This Marker assisted selection for 

drought tolerance was not efficient in these populations. There are several possible 

reasons for this outcome: (1) QTL mapping and MAS were conducted based on inbred 

progeny performance when here selected inbreds were evaluated as testcrosses with 

representative testers; (2) difference in environmental conditions between QTL mapping 

and testcross evaluations could affect the results;  and (3) MAS for several traits and 

QTLs is difficult and complex.  could be because we tested testcross and not the actual 

inbred lines which were selected for MAS, too many QTLs and differences in testing 

environments which affected MAS. However, the non-sisgnificance was also a good 

indication that the one hundred genotypes tested were a good representation of each 

population. 

 

Using drought tolerance index and nitrogen tolerance index for in comparing the two 

groups, also showed no differences. Recommended testcrosses for different 

environments were also mixed from both the best and the worst group. The current 

results suggests that more work needs to be done in order to fine tune the use of marker-

assisted selection in selecting drought and low N tolerant genotypes because the current 
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study has not identified the difference between the best and the worst group of 

testcrosses. 
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CHAPTER V 

CONCLUSIONS  

 

There were significant differences among the populations for grain yield. Highest grain 

yields were obtained from population CML444 x K64R and the lowest grain yields were 

obtained from CML440 x COMPE. Across the test environments, high nitrogen sites had 

the highest yields while the lowest were for drought conditions. The site which has been 

used for low nitrogen experimentation at Chitedze in Malawi has accumulated a lot of 

nitrogen, therefore it should be depleted further before any low N work is conducted on 

this site. 

 

Heritability estimates were variable across populations and environments. Testcrosses 

from CML441 x CML444 and CML444 x K64R had higher heritability estimates for 

grain yield, 50%anthesis date, ears per plant, and plant height compared to CML440 x 

COMPE and CML312 x NAW. Across the test environments, drought and high nitrogen 

environments had higher heritability estimates for grain yield, 50%anthesis date and ears 

per plant. More progress during selection can be achieved in some populations and less 

in others because if differences in heritability of the traits. 

 

Environments discriminated testcrosses differently. Drought and well-watered 

environments discriminated testcrosses in a similar manner as one group while high and 

low nitrogen environments were also another group which discriminated the genotypes 

equally. This discrimination was consistent for two populations CML441 x CML444 and 

CML444 x K64R but different for populations CML440 x COMPE and CML312 x 

NAW. 

 

Correlations between grain yield and secondary traits were variable. All populations had 

negative correlations between grain yield and anthesis silking interval while positive 

correlations were observed between grain yield and ears per plant for all populations. So 
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for these populations, these two traits could be used for more useful for indirect selection 

for grain yield. However, genotypic and phenotypic correlations for the other traits were 

very small and inconsistent but they generally agreed in sign and magnitude. 

 

Marker-assisted selection was not efficient in this study possibly because we tested 

testcross instead of the inbred lines which were selected for drought tolerance and also 

because of differences in testing environments. 

  

All populations had highest direct genetic gain from high nitrogen environments and 

lowest gains were realized under drought. Correlated responses due to selection under 

one environment to improve yield in another environment were different among the 

populations. Grain yield were improved under high nitrogen environments when 

selection was done under drought (CML441 x CML444) and under low nitrogen 

(CML132 x NAW). But in general, direct selection was more beneficial than indirect 

selection. 

 

Results from the no nitrogen fertilization site at Chitedze and well-watered environments 

have taught us the need for proper experimental management and good data collection as 

pre-requisites to production of meaningful results from field experiements. 
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APPENDIX A 

GRAIN YIELD AND ITS COMPONENTS FOR POPULATION CML441 x 

CML444 EVALUATED ACROSS ALL ENVIRONMENTS IN MALAWI AND 

ZIMBABWE IN 2003 AND 2004 

Entry Pedigree Grain Rank Anth ASI Plant EPP Moisture Kernel
Yield Date height content weight
Mg/ha # d d cm # % g

1 CML312/CML442//[CML441/CML444]-B-1 4.86 11 81.5 2.7 196.4 0.8 12.3 32.8
2 CML312/CML442//[CML441/CML444]-B-7 4.50 39 81.2 2.4 210.2 0.8 12.4 32.3
3 CML312/CML442//[CML441/CML444]-B-28 4.34 54 80.4 3.1 197.7 0.7 12.5 31.7
4 CML312/CML442//[CML441/CML444]-B-31 4.67 22 82.1 2.3 204.6 0.7 12.2 33.7
5 CML312/CML442//[CML441/CML444]-B-40 4.36 52 80.0 3.1 196.9 0.8 12.5 31.1
6 CML312/CML442//[CML441/CML444]-B-72 4.11 73 79.0 3.1 187.5 0.7 12.4 33.7
7 CML312/CML442//[CML441/CML444]-B-103 5.02 2 80.6 3.1 201.6 0.8 12.8 34.2
8 CML312/CML442//[CML441/CML444]-B-121 4.60 32 81.0 1.8 197.7 0.7 12.6 36.1
9 CML312/CML442//[CML441/CML444]-B-133 4.33 56 80.2 3.2 195.0 0.7 12.4 31.9

10 CML312/CML442//[CML441/CML444]-B-135 4.22 65 81.2 2.6 210.3 0.7 12.5 36.3
11 CML312/CML442//[CML441/CML444]-B-147 4.81 16 82.6 3.4 195.0 0.7 12.6 32.9
12 CML312/CML442//[CML441/CML444]-B-148 4.56 36 80.5 3.1 206.7 0.8 12.6 36.2
13 CML312/CML442//[CML441/CML444]-B-157 4.16 71 81.6 3.6 200.6 0.7 12.6 34.8
14 CML312/CML442//[CML441/CML444]-B-158 4.23 64 80.8 2.1 190.9 0.8 12.5 31.2
15 CML312/CML442//[CML441/CML444]-B-167 4.18 70 80.0 3.0 196.9 0.8 11.9 27.7
16 CML312/CML442//[CML441/CML444]-B-177 4.98 5 82.2 3.2 202.5 0.7 12.0 34.1
17 CML312/CML442//[CML441/CML444]-B-188 4.75 18 80.2 3.5 206.0 0.7 12.3 33.4
18 CML312/CML442//[CML441/CML444]-B-203 4.71 20 81.3 2.5 199.1 0.7 13.2 31.9
19 CML312/CML442//[CML441/CML444]-B-205 4.64 28 79.4 3.1 191.9 0.8 12.4 31.8
20 CML312/CML442//[CML441/CML444]-B-234 4.47 41 80.8 2.3 207.4 0.8 12.7 30.4
21 CML312/CML442//[CML441/CML444]-B-238 4.30 61 78.9 3.1 196.1 0.7 11.7 32.8
22 CML312/CML442//[CML441/CML444]-B-332 4.31 59 80.0 2.9 202.7 0.7 12.3 37.6
23 CML312/CML442//[CML441/CML444]-B-348 4.88 10 79.8 3.8 210.2 0.8 11.9 30.9
24 CML312/CML442//[CML441/CML444]-B-383 3.61 95 81.8 2.6 185.1 0.8 11.4 30.1
25 CML312/CML442//[CML441/CML444]-B-392 4.90 8 80.7 2.8 204.4 0.8 12.6 32.6
26 CML312/CML442//[CML441/CML444]-B-404 4.66 26 80.2 2.9 202.8 0.8 12.7 32.4
27 CML312/CML442//[CML441/CML444]-B-437 4.91 7 79.7 4.1 201.2 0.7 13.3 33.6
28 CML312/CML442//[CML441/CML444]-B-445 3.62 94 81.3 2.3 200.2 0.7 12.5 31.8
29 CML312/CML442//[CML441/CML444]-B-453 4.32 58 79.8 3.3 195.5 0.7 12.8 32.0
30 CML312/CML442//[CML441/CML444]-B-465 4.99 4 79.4 3.6 204.2 0.7 12.9 31.6
31 CML312/CML442//[CML441/CML444]-B-473 4.60 33 80.3 2.7 206.0 0.8 11.5 32.5
32 CML312/CML442//[CML441/CML444]-B-481 4.48 40 81.3 2.9 203.7 0.7 12.2 27.2
33 CML312/CML442//[CML441/CML444]-B-483 4.81 15 80.6 2.6 199.0 0.7 12.6 30.8
34 CML312/CML442//[CML441/CML444]-B-487 4.31 60 81.2 3.1 207.1 0.7 12.8 33.2
35 CML312/CML442//[CML441/CML444]-B-493 4.70 21 81.1 2.3 197.7 0.8 12.0 31.2
36 CML312/CML442//[CML441/CML444]-B-494 5.35 1 81.4 2.0 200.9 0.8 12.5 33.2
37 CML312/CML442//[CML441/CML444]-B-501 4.85 12 80.9 3.0 193.6 0.8 12.2 31.2
38 CML312/CML442//[CML441/CML444]-B-505 4.39 49 81.7 2.4 193.9 0.7 12.1 32.0
39 CML312/CML442//[CML441/CML444]-B-514 4.58 34 81.4 2.3 198.8 0.7 12.5 32.2
40 CML312/CML442//[CML441/CML444]-B-534 4.07 76 81.5 2.5 203.3 0.7 12.9 33.2
41 CML312/CML442//[CML441/CML444]-B-603 4.67 23 79.6 3.3 190.6 0.8 11.8 32.9
42 CML312/CML442//[CML441/CML444]-B-662 3.83 89 79.5 2.4 201.8 0.7 12.2 28.7
43 CML312/CML442//[CML441/CML444]-B-679 4.26 62 79.4 3.9 198.2 0.8 12.7 28.2
44 CML312/CML442//[CML441/CML444]-B-690 4.42 47 80.2 3.1 196.4 0.8 12.6 27.9
45 CML312/CML442//[CML441/CML444]-B-749 4.76 17 80.0 2.6 207.6 0.8 12.1 33.1
46 CML312/CML442//[CML441/CML444]-B-772 4.03 79 79.5 2.9 193.9 0.8 12.3 30.2
47 CML312/CML442//[CML441/CML444]-B-789 4.19 67 79.4 3.2 203.6 0.7 12.0 31.7
48 CML312/CML442//[CML441/CML444]-B-817 4.36 51 75.0 2.8 199.3 0.8 11.6 31.8
49 CML312/CML442//[CML441/CML444]-B-2 4.40 48 81.1 3.6 209.4 0.7 12.4 29.8
50 CML312/CML442//[CML441/CML444]-B-12-# 2.50 99 83.4 1.7 173.7 0.7 13.0 28.1  

 
 

 



   195

Entry Pedigree Grain Rank Anth ASI Plant EPP Moisture Kernel
Yield Date height content weight
Mg/ha # d d cm # % g

51 CML312/CML442//[CML441/CML444]-B-15 1.75 100 84.2 2.4 155.0 0.6 11.5 22.2
52 CML312/CML442//[CML441/CML444]-B-51 4.57 35 80.0 3.6 202.7 0.8 13.1 28.0
53 CML312/CML442//[CML441/CML444]-B-55 4.63 29 80.9 3.9 202.1 0.7 12.4 35.0
54 CML312/CML442//[CML441/CML444]-B-89 4.11 74 81.4 3.1 203.5 0.7 12.9 35.8
55 CML312/CML442//[CML441/CML444]-B-106 3.96 85 80.1 3.2 197.5 0.7 12.9 27.3
56 CML312/CML442//[CML441/CML444]-B-107 4.07 78 80.7 2.8 199.0 0.7 12.6 34.0
57 CML312/CML442//[CML441/CML444]-B-165 4.60 31 81.1 3.1 195.5 0.8 13.5 32.4
58 CML312/CML442//[CML441/CML444]-B-219 4.32 57 80.3 1.7 196.0 0.8 12.2 28.7
59 CML312/CML442//[CML441/CML444]-B-273 4.25 63 80.1 2.5 205.6 0.7 11.3 26.6
60 CML312/CML442//[CML441/CML444]-B-277 4.18 68 79.8 2.9 193.7 0.8 12.1 31.4
61 CML312/CML442//[CML441/CML444]-B-299 4.52 38 79.8 2.9 201.1 0.8 11.7 32.0
62 CML312/CML442//[CML441/CML444]-B-320 4.03 80 79.0 4.1 202.3 0.7 12.5 29.1
63 CML312/CML442//[CML441/CML444]-B-324 3.59 96 78.7 3.7 194.6 0.7 11.7 29.4
64 CML312/CML442//[CML441/CML444]-B-337 3.96 86 79.5 3.0 198.5 0.8 12.3 29.1
65 CML312/CML442//[CML441/CML444]-B-341 3.70 93 78.9 3.1 198.1 0.7 11.8 29.0
66 CML312/CML442//[CML441/CML444]-B-365 4.10 75 79.7 3.1 195.2 0.7 11.6 32.6
67 CML312/CML442//[CML441/CML444]-B-375 3.98 84 80.5 3.9 208.2 0.7 12.4 31.6
68 CML312/CML442//[CML441/CML444]-B-380 4.39 50 78.7 2.5 192.5 0.8 12.7 32.1
69 CML312/CML442//[CML441/CML444]-B-398 4.74 19 81.1 2.6 207.5 0.8 12.7 33.7
70 CML312/CML442//[CML441/CML444]-B-412 4.61 30 80.8 2.7 205.3 0.8 12.3 33.2
71 CML312/CML442//[CML441/CML444]-B-432 4.52 37 81.5 2.6 207.3 0.8 12.9 29.1
72 CML312/CML442//[CML441/CML444]-B-439 4.42 46 79.0 3.2 211.6 0.7 12.0 37.4
73 CML312/CML442//[CML441/CML444]-B-459 4.64 27 80.0 3.3 196.2 0.8 12.1 31.7
74 CML312/CML442//[CML441/CML444]-B-482 4.84 14 81.3 3.2 215.2 0.8 13.0 30.2
75 CML312/CML442//[CML441/CML444]-B-497 4.91 6 80.8 3.4 203.8 0.8 12.7 28.8
76 CML312/CML442//[CML441/CML444]-B-500 4.99 3 80.2 3.9 207.6 0.7 12.5 36.1
77 CML312/CML442//[CML441/CML444]-B-513 4.45 44 81.5 2.2 203.9 0.9 12.9 31.9
78 CML312/CML442//[CML441/CML444]-B-521 4.84 13 81.2 2.5 196.4 0.7 12.4 31.6
79 CML312/CML442//[CML441/CML444]-B-530 4.89 9 80.5 3.3 208.1 0.7 12.9 32.5
80 CML312/CML442//[CML441/CML444]-B-531 3.99 82 80.3 2.8 188.1 0.6 12.0 29.3
81 CML312/CML442//[CML441/CML444]-B-587 3.49 97 80.1 2.6 189.7 0.6 12.8 34.8
82 CML312/CML442//[CML441/CML444]-B-598 3.98 83 79.3 3.5 193.7 0.7 12.5 28.9
83 CML312/CML442//[CML441/CML444]-B-608 4.46 43 79.6 3.6 195.0 0.8 12.4 27.8
84 CML312/CML442//[CML441/CML444]-B-614 4.34 55 80.4 3.1 193.3 0.8 12.2 29.2
85 CML312/CML442//[CML441/CML444]-B-615 4.66 25 82.0 3.1 211.0 0.8 12.4 30.0
86 CML312/CML442//[CML441/CML444]-B-637 3.93 87 79.8 3.7 197.8 0.8 12.1 33.6
87 CML312/CML442//[CML441/CML444]-B-639 4.44 45 80.5 2.4 205.8 0.8 12.3 33.5
88 CML312/CML442//[CML441/CML444]-B-660 4.18 69 79.2 3.5 204.4 0.8 11.6 29.5
89 CML312/CML442//[CML441/CML444]-B-694 3.83 90 79.5 2.7 201.0 0.8 11.7 28.7
90 CML312/CML442//[CML441/CML444]-B-712 4.47 42 80.4 2.8 199.9 0.8 11.9 35.5
91 CML312/CML442//[CML441/CML444]-B-726 4.07 77 80.2 3.3 202.1 0.8 12.6 30.6
92 CML312/CML442//[CML441/CML444]-B-752 3.71 92 78.7 2.2 192.4 0.7 11.3 30.1
93 CML312/CML442//[CML441/CML444]-B-755 3.81 91 78.1 3.3 195.3 0.8 12.0 35.7
94 CML312/CML442//[CML441/CML444]-B-766 3.84 88 80.2 2.8 185.6 0.7 11.9 28.3
95 CML312/CML442//[CML441/CML444]-B-796 4.22 66 79.8 3.1 202.0 0.7 12.1 29.6
96 SC513 4.01 81 79.9 3.8 195.4 0.7 11.7 36.4
97 CML312/CML442//CML441 3.11 98 80.2 3.2 195.5 0.6 13.0 33.0
98 CML312/CML442//CML444 4.66 24 81.9 2.6 212.7 0.8 13.2 32.2
99 CML312/CML442//[CML441/CML444]-B-164 4.34 53 80.1 2.6 195.4 0.8 12.3 30.3

100 CML312/CML442//[CML441/CML444]-B-164 4.15 72 79.8 2.8 186.8 0.7 12.9 33.9
Mean 4.32 80.3 2.5 199.3 0.7 12.9 35.0
MSE 1.28 18.8 6.0 106.9 0.4 1.7 47.8

P 0.00 0.0 0.0 0.0 0.0 0.0 0.0
CV 28.6 4.0 65.7 9.7 22.6 10.2 19.8

   Anth date, 50% anthesis date; ASI, anthesis-silking interval; EPP, ears per plant  
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APPENDIX B 

GRAIN YIELD AND ITS COMPONENTS FOR POPULATION CML441 x 

CML444 EVALUATED ACROSS HIGH N ENVIRONMENTS IN MALAWI AND 

ZIMBABWE IN 2003 AND 2004 

Entry Pedigree Grain Rank Anth. ASI Plant EPP Kernel MOI
Yield Date height weight

Mg/ha # d d cm # g %
1 CML312/CML442//[CML441/CML444]-B-1 9.12 2 75.9 0.3 231.1 1.0 39.2 15.0
2 CML312/CML442//[CML441/CML444]-B-7 7.55 25 75.3 0.3 245.4 0.9 41.6 15.5
3 CML312/CML442//[CML441/CML444]-B-28 6.93 50 74.8 0.8 210.7 0.9 38.6 15.1
4 CML312/CML442//[CML441/CML444]-B-31 7.71 21 76.4 0.3 226.7 0.9 39.9 15.4
5 CML312/CML442//[CML441/CML444]-B-40 6.64 60 74.7 0.5 229.6 0.9 36.5 16.4
6 CML312/CML442//[CML441/CML444]-B-72 6.34 70 72.3 1.3 219.1 0.8 42.9 16.5
7 CML312/CML442//[CML441/CML444]-B-103 8.36 11 76.2 -0.8 234.4 0.9 40.7 16.0
8 CML312/CML442//[CML441/CML444]-B-121 7.13 42 74.6 0.5 224.9 0.8 43.3 16.7
9 CML312/CML442//[CML441/CML444]-B-133 7.54 26 72.3 1.8 227.7 0.9 34.9 15.0

10 CML312/CML442//[CML441/CML444]-B-135 7.22 38 75.2 0.8 247.7 0.8 43.9 16.6
11 CML312/CML442//[CML441/CML444]-B-147 7.19 41 76.2 0.8 231.7 0.9 36.9 15.3
12 CML312/CML442//[CML441/CML444]-B-148 8.16 14 72.9 1.3 230.2 1.0 44.5 15.0
13 CML312/CML442//[CML441/CML444]-B-157 6.60 62 75.9 1.5 237.0 0.6 38.9 15.6
14 CML312/CML442//[CML441/CML444]-B-158 7.20 39 74.2 0.5 221.0 0.9 36.1 16.8
15 CML312/CML442//[CML441/CML444]-B-167 5.64 89 74.3 0.5 212.8 0.8 35.1 16.1
16 CML312/CML442//[CML441/CML444]-B-177 9.29 1 74.3 0.8 239.0 1.0 39.5 15.2
17 CML312/CML442//[CML441/CML444]-B-188 8.33 12 73.0 0.8 238.9 1.0 40.7 16.0
18 CML312/CML442//[CML441/CML444]-B-203 7.10 45 76.1 0.5 232.3 0.8 45.5 16.1
19 CML312/CML442//[CML441/CML444]-B-205 7.07 47 74.2 1.3 217.4 0.9 36.8 15.1
20 CML312/CML442//[CML441/CML444]-B-234 6.43 67 76.1 1.0 246.5 0.8 33.6 16.4
21 CML312/CML442//[CML441/CML444]-B-238 6.12 78 74.6 0.3 223.0 0.8 36.9 14.6
22 CML312/CML442//[CML441/CML444]-B-332 6.82 54 74.7 0.5 235.6 0.8 47.2 16.0
23 CML312/CML442//[CML441/CML444]-B-348 7.53 27 74.9 1.3 240.6 0.9 39.0 14.7
24 CML312/CML442//[CML441/CML444]-B-383 5.73 86 75.2 1.3 226.3 0.8 41.6 14.7
25 CML312/CML442//[CML441/CML444]-B-392 7.67 23 75.2 1.0 226.9 1.0 38.6 16.8
26 CML312/CML442//[CML441/CML444]-B-404 6.86 53 75.2 0.8 224.8 0.8 41.9 17.7
27 CML312/CML442//[CML441/CML444]-B-437 7.87 17 74.6 2.5 236.4 0.8 37.4 17.4
28 CML312/CML442//[CML441/CML444]-B-445 5.67 88 75.3 0.8 238.1 0.8 39.8 15.5
29 CML312/CML442//[CML441/CML444]-B-453 6.44 66 75.5 1.3 219.5 0.7 37.5 17.1
30 CML312/CML442//[CML441/CML444]-B-465 8.02 15 74.8 0.5 240.1 0.8 40.6 16.7
31 CML312/CML442//[CML441/CML444]-B-473 7.13 43 74.0 1.0 226.0 0.9 43.5 15.4
32 CML312/CML442//[CML441/CML444]-B-481 7.51 28 76.5 0.3 240.3 1.0 40.8 16.5
33 CML312/CML442//[CML441/CML444]-B-483 8.48 7 74.8 0.5 235.7 0.7 44.7 17.2
34 CML312/CML442//[CML441/CML444]-B-487 7.11 44 76.6 0.5 238.9 0.8 39.8 16.1
35 CML312/CML442//[CML441/CML444]-B-493 7.67 22 75.4 0.5 220.2 0.8 40.9 16.0
36 CML312/CML442//[CML441/CML444]-B-494 8.42 9 75.3 0.0 240.9 1.0 35.9 15.3
37 CML312/CML442//[CML441/CML444]-B-501 7.98 16 76.1 0.5 235.3 0.9 43.7 15.4
38 CML312/CML442//[CML441/CML444]-B-505 7.81 19 74.7 0.0 223.3 0.9 40.1 15.2
39 CML312/CML442//[CML441/CML444]-B-514 6.87 51 76.2 0.5 223.0 0.6 40.0 14.7
40 CML312/CML442//[CML441/CML444]-B-534 7.31 34 75.2 0.5 234.1 0.8 42.0 17.7
41 CML312/CML442//[CML441/CML444]-B-603 6.99 49 73.9 0.5 218.3 0.8 37.6 14.1
42 CML312/CML442//[CML441/CML444]-B-662 5.54 92 73.5 0.8 227.2 0.8 37.0 16.4
43 CML312/CML442//[CML441/CML444]-B-679 5.57 91 75.1 0.3 217.5 0.8 38.8 17.7
44 CML312/CML442//[CML441/CML444]-B-690 6.72 58 73.4 1.5 228.6 0.9 36.0 16.8
45 CML312/CML442//[CML441/CML444]-B-749 7.73 20 74.9 -0.3 243.4 0.7 42.1 16.0
46 CML312/CML442//[CML441/CML444]-B-772 6.23 72 74.8 1.8 223.2 0.8 37.6 16.7
47 CML312/CML442//[CML441/CML444]-B-789 6.21 73 75.7 0.3 218.9 0.8 41.6 15.3
48 CML312/CML442//[CML441/CML444]-B-817 6.87 52 76.0 0.3 236.0 1.0 41.8 13.5
49 CML312/CML442//[CML441/CML444]-B-2 7.10 46 74.9 1.5 247.2 0.8 35.9 14.9
50 CML312/CML442//[CML441/CML444]-B-12-# 1.37 99 77.5 0.5 179.1 0.7 35.2 16.0  
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Entry Pedigree Grain Rank Anth. ASI Plant EPP Kernel MOI
Yield Date height weight

Mg/ha # d d cm # g %
51 CML312/CML442//[CML441/CML444]-B-15 1.00 100 77.5 1.3 144.4 0.5 25.1 15.1
52 CML312/CML442//[CML441/CML444]-B-51 7.61 24 75.2 0.5 237.3 0.9 36.7 16.8
53 CML312/CML442//[CML441/CML444]-B-55 6.76 57 74.3 1.5 240.6 0.8 37.1 15.0
54 CML312/CML442//[CML441/CML444]-B-89 6.33 71 76.3 0.8 224.4 0.8 40.7 15.7
55 CML312/CML442//[CML441/CML444]-B-106 6.76 56 74.2 1.8 227.8 0.8 35.3 17.3
56 CML312/CML442//[CML441/CML444]-B-107 6.61 61 74.9 0.3 228.8 0.9 43.7 16.9
57 CML312/CML442//[CML441/CML444]-B-165 7.81 18 74.7 0.5 228.5 0.9 39.8 17.1
58 CML312/CML442//[CML441/CML444]-B-219 6.37 69 76.3 -0.3 231.1 0.8 36.9 15.9
59 CML312/CML442//[CML441/CML444]-B-273 6.41 68 73.9 1.0 226.3 0.9 34.2 14.1
60 CML312/CML442//[CML441/CML444]-B-277 6.70 59 74.2 0.8 216.5 0.9 36.6 16.7
61 CML312/CML442//[CML441/CML444]-B-299 6.99 48 73.3 1.8 233.7 0.9 40.7 14.7
62 CML312/CML442//[CML441/CML444]-B-320 5.92 83 73.8 1.8 218.0 0.8 37.4 16.3
63 CML312/CML442//[CML441/CML444]-B-324 4.18 97 74.6 1.0 214.9 0.7 33.9 14.2
64 CML312/CML442//[CML441/CML444]-B-337 6.10 79 73.8 1.3 218.0 0.9 33.2 15.9
65 CML312/CML442//[CML441/CML444]-B-341 5.59 90 72.9 0.5 225.4 0.8 33.4 16.5
66 CML312/CML442//[CML441/CML444]-B-365 6.13 77 73.3 1.3 230.0 0.8 40.2 15.0
67 CML312/CML442//[CML441/CML444]-B-375 6.01 80 74.8 1.0 244.6 0.9 42.3 15.0
68 CML312/CML442//[CML441/CML444]-B-380 7.35 32 72.8 1.8 205.6 0.9 37.2 16.8
69 CML312/CML442//[CML441/CML444]-B-398 8.93 5 74.7 0.5 238.5 0.9 39.2 16.5
70 CML312/CML442//[CML441/CML444]-B-412 7.46 29 75.0 0.5 228.3 0.9 39.9 15.3
71 CML312/CML442//[CML441/CML444]-B-432 7.44 31 76.4 1.0 244.3 0.9 35.4 16.0
72 CML312/CML442//[CML441/CML444]-B-439 7.20 40 73.9 1.3 262.6 0.9 42.2 14.8
73 CML312/CML442//[CML441/CML444]-B-459 7.44 30 74.7 1.5 219.7 0.9 38.5 16.3
74 CML312/CML442//[CML441/CML444]-B-482 7.24 36 75.0 1.0 248.1 0.8 39.0 16.9
75 CML312/CML442//[CML441/CML444]-B-497 8.87 6 76.5 0.8 231.1 0.9 41.1 16.4
76 CML312/CML442//[CML441/CML444]-B-500 9.10 3 74.5 -0.5 236.5 0.9 37.8 15.6
77 CML312/CML442//[CML441/CML444]-B-513 5.94 82 75.7 0.3 226.9 0.9 39.2 16.1
78 CML312/CML442//[CML441/CML444]-B-521 8.16 13 73.3 1.0 230.5 0.9 39.0 14.2
79 CML312/CML442//[CML441/CML444]-B-530 8.98 4 74.2 1.3 240.1 1.0 38.7 17.0
80 CML312/CML442//[CML441/CML444]-B-531 5.41 95 73.9 0.5 222.1 0.6 34.8 14.1
81 CML312/CML442//[CML441/CML444]-B-587 5.68 87 73.6 1.3 224.3 0.8 38.7 17.0
82 CML312/CML442//[CML441/CML444]-B-598 5.31 96 73.7 1.5 214.4 0.7 35.0 16.6
83 CML312/CML442//[CML441/CML444]-B-608 6.20 74 73.6 1.8 222.3 0.9 35.4 15.7
84 CML312/CML442//[CML441/CML444]-B-614 7.23 37 74.9 2.0 217.1 0.9 37.7 15.4
85 CML312/CML442//[CML441/CML444]-B-615 8.38 10 75.2 0.8 244.3 0.9 36.0 15.3
86 CML312/CML442//[CML441/CML444]-B-637 6.49 64 72.5 1.3 233.5 0.9 41.8 14.6
87 CML312/CML442//[CML441/CML444]-B-639 7.26 35 76.0 0.8 228.1 0.9 38.4 15.4
88 CML312/CML442//[CML441/CML444]-B-660 6.14 76 74.6 1.0 235.8 0.8 36.2 15.1
89 CML312/CML442//[CML441/CML444]-B-694 5.49 94 73.8 0.0 224.0 0.9 34.1 15.3
90 CML312/CML442//[CML441/CML444]-B-712 6.48 65 75.1 0.3 216.7 0.9 38.3 15.4
91 CML312/CML442//[CML441/CML444]-B-726 6.18 75 75.1 2.3 223.8 0.7 42.6 16.5
92 CML312/CML442//[CML441/CML444]-B-752 6.01 81 72.1 0.8 214.9 0.8 41.8 15.0
93 CML312/CML442//[CML441/CML444]-B-755 6.58 63 73.8 0.8 225.0 0.9 38.5 16.5
94 CML312/CML442//[CML441/CML444]-B-766 6.82 55 73.1 1.0 210.4 0.9 36.6 15.1
95 CML312/CML442//[CML441/CML444]-B-796 7.32 33 72.8 0.8 239.9 0.9 35.0 15.5
96 SC513 5.53 93 72.9 2.5 240.5 0.8 41.4 14.4
97 CML312/CML442//CML441 3.29 98 73.0 0.5 220.1 0.5 41.4 15.1
98 CML312/CML442//CML444 8.44 8 76.0 1.3 246.4 1.0 38.1 16.1
99 CML312/CML442//[CML441/CML444]-B-164 5.77 85 74.2 0.8 215.4 0.7 36.7 16.2

100 CML312/CML442//[CML441/CML444]-B-164 5.82 84 75.4 0.3 208.8 0.9 38.2 17.0
Mean 6.82 74.7 0.8 228.0 0.8 39.5 15.8
Probability 0.00 0.1 0.3 0.0 0.0 0.9 0.0
MSE 6.99 5.4 1.4 824.5 0.0 19.9 3.4
CV% 21.23 2.8 136.7 6.7 19.0 15.2 9.0
ASI, anthesis-silking interval; Anth date, anthesis date; EPP, ears per plant; MOI, moisture content  
 

 

 



   198

APPENDIX C 

GRAIN YIELD AND ITS COMPONENTS FOR POPULATION CML441 x 

CML444 EVALUATED ACROSS DROUGHT ENVIRONMENTS IN MALAWI 

AND ZIMBABWE IN 2004 

Entry Pedigree Grain Rank Anth. ASI Plant EPP kernel
Yield Date height weight

Mg/ha # # # cm # g
1 CML312/CML442//[CML441/CML444]-B-1 1.39 17 89.9 4.6 152.8 0.4 29.9
2 CML312/CML442//[CML441/CML444]-B-7 1.10 59 88.7 4.4 156.8 0.4 40.0
3 CML312/CML442//[CML441/CML444]-B-28 0.79 89 87.6 7.3 158.8 0.4 42.4
4 CML312/CML442//[CML441/CML444]-B-31 1.06 66 91.4 5.2 159.8 0.3 47.5
5 CML312/CML442//[CML441/CML444]-B-40 1.05 68 87.4 8.5 148.7 0.5 42.6
6 CML312/CML442//[CML441/CML444]-B-72 1.32 30 87.7 5.3 158.2 0.5 45.0
7 CML312/CML442//[CML441/CML444]-B-103 1.21 49 87.7 8.9 154.1 0.5 40.0
8 CML312/CML442//[CML441/CML444]-B-121 1.26 39 89.5 3.0 170.9 0.5 40.1
9 CML312/CML442//[CML441/CML444]-B-133 0.94 79 90.2 5.2 144.7 0.3 35.0

10 CML312/CML442//[CML441/CML444]-B-135 1.06 62 89.8 4.9 163.1 0.5 47.5
11 CML312/CML442//[CML441/CML444]-B-147 0.46 99 88.9 9.0 147.7 0.2 27.4
12 CML312/CML442//[CML441/CML444]-B-148 1.35 25 89.2 7.3 157.0 0.5 50.0
13 CML312/CML442//[CML441/CML444]-B-157 0.52 97 90.3 10.2 147.1 0.6 40.0
14 CML312/CML442//[CML441/CML444]-B-158 1.43 15 88.9 6.3 151.2 0.5 37.5
15 CML312/CML442//[CML441/CML444]-B-167 1.11 57 88.9 8.1 145.5 0.4 32.4
16 CML312/CML442//[CML441/CML444]-B-177 0.57 96 91.0 7.6 157.4 0.3 40.0
17 CML312/CML442//[CML441/CML444]-B-188 1.24 44 87.6 10.9 164.4 0.3 47.4
18 CML312/CML442//[CML441/CML444]-B-203 1.30 34 92.6 4.2 151.5 0.4 27.6
19 CML312/CML442//[CML441/CML444]-B-205 0.86 84 88.0 8.0 164.5 0.4 37.5
20 CML312/CML442//[CML441/CML444]-B-234 1.28 35 87.3 3.3 156.4 0.6 47.5
21 CML312/CML442//[CML441/CML444]-B-238 1.24 45 85.6 8.3 156.3 0.4 35.0
22 CML312/CML442//[CML441/CML444]-B-332 1.18 55 86.7 10.3 156.7 0.5 47.5
23 CML312/CML442//[CML441/CML444]-B-348 1.31 33 87.9 7.6 161.3 0.5 27.5
24 CML312/CML442//[CML441/CML444]-B-383 1.22 47 90.3 6.4 142.1 0.4 30.0
25 CML312/CML442//[CML441/CML444]-B-392 1.04 69 88.7 5.7 169.4 0.5 27.6
26 CML312/CML442//[CML441/CML444]-B-404 1.19 53 86.9 4.9 155.2 0.4 32.4
27 CML312/CML442//[CML441/CML444]-B-437 0.75 93 88.7 12.2 149.4 0.4 50.1
28 CML312/CML442//[CML441/CML444]-B-445 1.10 58 92.5 3.8 149.3 0.3 27.5
29 CML312/CML442//[CML441/CML444]-B-453 1.54 9 86.3 7.1 147.8 0.6 27.5
30 CML312/CML442//[CML441/CML444]-B-465 1.38 21 86.0 7.5 136.3 0.5 35.0
31 CML312/CML442//[CML441/CML444]-B-473 1.06 65 88.1 6.0 164.1 0.5 27.5
32 CML312/CML442//[CML441/CML444]-B-481 0.96 75 89.0 7.6 164.4 0.4 24.9
33 CML312/CML442//[CML441/CML444]-B-483 0.92 81 88.8 5.7 150.1 0.5 29.9
34 CML312/CML442//[CML441/CML444]-B-487 1.25 43 88.3 7.4 159.0 0.4 45.0
35 CML312/CML442//[CML441/CML444]-B-493 1.63 4 88.7 5.6 164.5 0.5 35.1
36 CML312/CML442//[CML441/CML444]-B-494 1.46 12 89.9 4.6 154.6 0.4 45.0
37 CML312/CML442//[CML441/CML444]-B-501 1.39 18 88.5 6.7 156.3 0.4 35.1
38 CML312/CML442//[CML441/CML444]-B-505 1.36 24 89.8 6.1 160.8 0.3 39.9
39 CML312/CML442//[CML441/CML444]-B-514 0.94 77 89.5 4.1 166.6 0.5 35.0
40 CML312/CML442//[CML441/CML444]-B-534 0.76 92 90.8 7.7 158.8 0.3 40.1
41 CML312/CML442//[CML441/CML444]-B-603 1.25 41 88.4 8.2 139.4 0.6 45.0
42 CML312/CML442//[CML441/CML444]-B-662 1.69 2 85.2 6.7 166.9 0.5 27.5
43 CML312/CML442//[CML441/CML444]-B-679 1.63 5 85.9 10.6 154.0 0.5 25.0
44 CML312/CML442//[CML441/CML444]-B-690 1.37 22 87.9 5.6 151.0 0.5 25.0
45 CML312/CML442//[CML441/CML444]-B-749 1.61 6 87.5 5.9 160.4 0.7 30.1
46 CML312/CML442//[CML441/CML444]-B-772 0.93 80 88.4 7.8 154.1 0.6 25.0
47 CML312/CML442//[CML441/CML444]-B-789 1.20 51 85.4 6.6 165.7 0.4 27.5
48 CML312/CML442//[CML441/CML444]-B-817 1.06 64 65.2 7.9 157.7 0.4 32.5
49 CML312/CML442//[CML441/CML444]-B-2 1.37 23 87.5 8.8 163.3 0.4 27.6
50 CML312/CML442//[CML441/CML444]-B-12-# 1.38 20 86.1 6.4 163.8 0.6 42.6  
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Entry Pedigree Grain Rank Anth. ASI Plant EPP kernel
Yield Date height weight

Mg/ha # # # cm # g
51 CML312/CML442//[CML441/CML444]-B-15 0.74 94 93.1 7.6 125.8 0.3 30.0
52 CML312/CML442//[CML441/CML444]-B-51 0.79 90 87.6 8.9 163.8 0.4 30.0
53 CML312/CML442//[CML441/CML444]-B-55 1.01 71 90.3 8.5 152.1 0.4 50.0
54 CML312/CML442//[CML441/CML444]-B-89 1.10 60 86.0 7.8 171.8 0.4 47.4
55 CML312/CML442//[CML441/CML444]-B-106 0.67 95 88.0 6.6 153.4 0.3 27.5
56 CML312/CML442//[CML441/CML444]-B-107 0.94 78 87.8 6.4 155.1 0.4 37.5
57 CML312/CML442//[CML441/CML444]-B-165 1.04 70 89.0 8.6 156.8 0.6 40.0
58 CML312/CML442//[CML441/CML444]-B-219 1.38 19 87.6 4.6 168.8 0.5 32.5
59 CML312/CML442//[CML441/CML444]-B-273 1.17 56 86.4 6.0 164.3 0.3 32.6
60 CML312/CML442//[CML441/CML444]-B-277 1.45 13 86.8 5.8 167.2 0.5 32.6
61 CML312/CML442//[CML441/CML444]-B-299 1.33 28 88.4 6.5 155.3 0.6 34.9
62 CML312/CML442//[CML441/CML444]-B-320 1.26 38 84.8 9.6 165.8 0.4 32.5
63 CML312/CML442//[CML441/CML444]-B-324 0.98 74 86.3 9.2 138.5 0.3 30.0
64 CML312/CML442//[CML441/CML444]-B-337 1.65 3 89.2 5.8 168.0 0.5 37.6
65 CML312/CML442//[CML441/CML444]-B-341 1.20 52 86.5 7.3 154.3 0.4 30.0
66 CML312/CML442//[CML441/CML444]-B-365 1.34 27 86.3 5.4 165.2 0.6 37.5
67 CML312/CML442//[CML441/CML444]-B-375 1.41 16 89.9 10.7 158.9 0.5 27.5
68 CML312/CML442//[CML441/CML444]-B-380 0.96 76 86.4 4.5 157.1 0.4 32.5
69 CML312/CML442//[CML441/CML444]-B-398 1.34 26 88.6 6.2 154.9 0.5 47.5
70 CML312/CML442//[CML441/CML444]-B-412 1.25 42 89.1 5.6 161.8 0.5 47.5
71 CML312/CML442//[CML441/CML444]-B-432 1.06 63 88.6 4.9 166.9 0.5 30.0
72 CML312/CML442//[CML441/CML444]-B-439 0.85 85 85.4 7.6 161.4 0.3 45.1
73 CML312/CML442//[CML441/CML444]-B-459 1.57 7 88.1 7.3 153.8 0.5 27.5
74 CML312/CML442//[CML441/CML444]-B-482 1.18 54 91.4 8.0 168.2 0.4 27.5
75 CML312/CML442//[CML441/CML444]-B-497 0.78 91 88.5 8.0 160.7 0.3 32.5
76 CML312/CML442//[CML441/CML444]-B-500 1.31 32 88.8 9.0 170.1 0.5 47.6
77 CML312/CML442//[CML441/CML444]-B-513 0.85 86 89.8 4.3 171.9 0.5 37.4
78 CML312/CML442//[CML441/CML444]-B-521 0.98 73 93.5 4.3 127.9 0.4 50.0
79 CML312/CML442//[CML441/CML444]-B-530 0.83 87 87.4 8.0 159.1 0.3 32.6
80 CML312/CML442//[CML441/CML444]-B-531 0.91 82 89.0 9.7 146.6 0.3 25.0
81 CML312/CML442//[CML441/CML444]-B-587 0.52 98 88.7 4.5 136.5 0.3 47.4
82 CML312/CML442//[CML441/CML444]-B-598 1.05 67 87.7 7.5 153.3 0.3 32.4
83 CML312/CML442//[CML441/CML444]-B-608 1.32 29 89.1 7.0 146.9 0.4 35.0
84 CML312/CML442//[CML441/CML444]-B-614 1.31 31 88.3 6.4 148.6 0.4 49.9
85 CML312/CML442//[CML441/CML444]-B-615 1.79 1 89.7 5.5 161.7 0.5 32.5
86 CML312/CML442//[CML441/CML444]-B-637 1.20 50 88.3 9.4 148.3 0.4 45.1
87 CML312/CML442//[CML441/CML444]-B-639 1.56 8 86.9 5.9 174.3 0.6 40.0
88 CML312/CML442//[CML441/CML444]-B-660 1.47 11 85.7 9.5 163.0 0.5 27.5
89 CML312/CML442//[CML441/CML444]-B-694 0.91 83 86.9 9.1 159.0 0.4 44.9
90 CML312/CML442//[CML441/CML444]-B-712 1.22 46 89.0 4.4 156.4 0.5 37.4
91 CML312/CML442//[CML441/CML444]-B-726 1.47 10 86.4 5.7 161.6 0.6 40.1
92 CML312/CML442//[CML441/CML444]-B-752 0.41 100 85.4 6.4 155.4 0.4 37.5
93 CML312/CML442//[CML441/CML444]-B-755 1.22 48 85.4 8.4 156.4 0.3 47.5
94 CML312/CML442//[CML441/CML444]-B-766 1.26 40 87.1 8.3 158.6 0.4 37.5
95 CML312/CML442//[CML441/CML444]-B-796 1.44 14 87.8 8.4 153.2 0.4 35.0
96 SC513 1.27 37 85.6 8.8 154.4 0.5 45.1
97 CML312/CML442//CML441 1.07 61 88.3 7.4 154.0 0.3 35.1
98 CML312/CML442//CML444 1.00 72 90.4 5.8 165.5 0.4 42.4
99 CML312/CML442//[CML441/CML444]-B-164 1.27 36 87.7 6.4 157.9 0.5 35.0

100 CML312/CML442//[CML441/CML444]-B-164 0.82 88 86.6 8.3 148.9 0.3 32.5
Mean 1.15 87.9 5.7 156.8 0.4 36.3
Probability 0.30 0.1 0.0 0.2 0.4 0.0
MSE 0.40 33.7 8.9 397.0 0.0 106.4
CV % 52.50 5.8 41.8 11.9 45.1 22.8
anth date, anthesis date; ASI, anthesis-silking interval, EPP, ears per plant  
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APPENDIX D 

GRAIN YIELD AND ITS COMPONENTS FOR POPULATION CML440 x 

COMPE EVALUATED ACROSS ALL ENVIRONMENTS IN MALAWI AND 

ZIMBABWE IN 2003 AND 2004 

Entry Pedigree Grain Rank Anth ASI Plant EPP Moisture Kernel
Yield Date height content weight

Mg/ha # d d cm # % g
1 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-1 3.93 71 79.9 2.1 194.0 0.7 12.7 35.8
2 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-8 4.12 42 78.8 1.7 198.4 0.8 13.1 36.9
3 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-13 4.13 40 78.7 2.6 195.3 0.7 12.9 38.2
4 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-15 4.01 58 77.5 2.5 191.6 0.8 12.8 36.9
5 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-20 3.96 69 78.9 1.8 193.1 0.7 12.7 32.8
6 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-21 4.35 17 79.7 1.2 201.5 0.8 13.4 36.9
7 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-37 3.98 67 81.3 1.3 202.5 0.7 13.2 38.7
8 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-40 4.21 31 79.0 1.9 199.5 0.8 12.9 33.8
9 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-51 3.57 100 79.2 1.7 199.6 0.7 13.2 36.7

10 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-78 4.00 61 78.8 1.8 187.4 0.8 13.4 39.9
11 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-87 4.24 28 78.2 1.0 193.8 0.8 13.5 41.5
12 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-89 4.23 29 78.0 1.7 193.2 0.8 12.2 41.1
13 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-118 4.14 38 78.3 1.6 192.6 0.8 12.0 34.3
14 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-138 4.38 11 78.7 1.6 210.4 0.8 13.0 37.1
15 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-141 3.68 97 78.2 2.1 196.7 0.7 12.8 36.0
16 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-144 4.03 55 79.1 1.1 193.5 0.7 12.5 40.5
17 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-150 4.34 19 78.9 2.4 196.1 0.8 12.7 40.2
18 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-151 4.48 5 79.0 2.5 190.5 0.8 12.8 37.2
19 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-167 4.36 13 79.2 1.5 198.3 0.8 12.8 34.1
20 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-183 4.06 50 78.8 1.5 203.8 0.8 13.6 37.5
21 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-232 3.60 99 78.1 1.9 200.1 0.7 12.2 35.2
22 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-247 4.32 21 78.7 3.0 195.2 0.8 12.8 36.1
23 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-318 3.74 89 78.2 3.4 200.5 0.7 13.0 36.9
24 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-323 4.40 9 78.3 2.0 200.1 0.7 12.5 38.2
25 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-362 4.01 59 80.3 1.7 201.3 0.7 13.3 36.7
26 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-363 4.19 32 79.6 2.7 195.5 0.8 12.2 38.1
27 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-365 4.07 47 76.8 2.1 194.3 0.8 12.3 37.8
28 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-374 4.26 25 77.3 1.6 201.8 0.6 12.7 33.8
29 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-398 3.99 65 79.1 1.5 193.6 0.8 12.2 37.0
30 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-410 4.49 4 78.6 1.3 193.2 0.8 11.7 36.2
31 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-414 3.86 77 79.2 1.0 199.2 0.8 12.7 35.0
32 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-416 4.06 48 78.5 1.6 201.4 0.7 12.3 35.2
33 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-432 4.29 24 79.3 2.0 203.0 0.8 12.8 38.1
34 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-437 4.42 8 79.2 1.5 203.2 0.8 13.1 37.3
35 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-476 4.00 60 78.5 1.3 197.5 0.8 11.5 35.3
36 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-482 4.31 22 78.5 1.1 196.5 0.7 12.4 34.1
37 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-502 3.74 90 78.7 1.6 207.3 0.8 12.6 39.0
38 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-509 3.90 74 78.6 1.4 194.1 0.8 12.7 37.7
39 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-512 4.14 39 79.1 1.9 197.9 0.8 13.2 40.2
40 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-531 3.87 76 79.2 2.1 197.6 0.7 12.9 35.4
41 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-537 4.25 27 79.2 1.2 205.4 0.8 13.2 36.8
42 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-538 3.61 98 79.1 1.2 202.1 0.7 12.6 37.9
43 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-548 4.13 41 79.0 2.6 202.9 0.8 13.0 37.3
44 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-559 4.09 46 78.5 2.3 203.2 0.8 13.2 38.2
45 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-578 4.15 36 77.7 1.9 202.8 0.8 11.8 39.0
46 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-593 4.15 37 79.3 2.0 205.8 0.7 12.9 39.0
47 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-622 3.95 70 78.4 2.5 191.5 0.8 13.1 36.8
48 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-627 4.00 63 78.8 1.6 199.5 0.8 12.9 34.3
49 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-670 4.05 53 77.8 2.5 191.0 0.8 12.5 38.6
50 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-675 4.46 7 79.7 2.5 197.2 0.8 13.8 34.7
51 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-16 3.76 86 78.4 2.4 200.4 0.7 13.5 36.5  
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Entry Pedigree Grain Rank Anth ASI Plant EPP Moisture Kernel
Yield Date height content weight

Mg/ha # d d cm # % g
52 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-18 3.98 66 79.3 2.4 209.5 0.7 12.2 35.8
53 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-24 4.33 20 79.3 0.9 203.2 0.8 12.9 36.5
54 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-30 3.75 87 79.5 2.5 209.1 0.7 13.2 37.6
55 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-43 3.75 88 78.1 1.5 191.9 0.8 13.2 37.3
56 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-55 4.40 10 79.8 2.2 206.4 0.7 13.6 36.6
57 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-75 3.71 93 79.6 1.9 196.5 0.7 12.9 36.2
58 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-130 4.35 15 78.8 2.0 197.0 0.6 12.9 40.0
59 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-132 4.10 44 78.8 1.9 204.0 0.7 13.1 35.4
60 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-134 4.15 35 78.7 2.1 207.2 0.8 12.9 39.7
61 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-145 4.35 16 78.2 2.1 191.6 0.8 12.4 35.9
62 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-147 3.69 95 78.8 1.7 196.7 0.8 12.7 37.0
63 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-149 3.70 94 79.9 2.0 196.8 0.7 13.8 39.8
64 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-163 3.82 81 78.2 0.9 190.5 0.8 12.1 42.0
65 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-173 3.98 68 78.9 2.6 194.9 0.7 12.3 39.2
66 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-218 4.36 14 81.1 1.3 201.6 0.7 13.1 35.2
67 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-276 4.12 43 78.2 1.6 196.2 0.8 13.4 38.9
68 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-292 4.06 49 78.3 2.1 189.8 0.8 12.6 33.9
69 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-303 4.10 45 77.6 2.2 197.6 0.7 11.7 40.6
70 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-330 3.85 79 79.3 0.7 200.3 0.7 13.1 36.4
71 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-334 4.37 12 78.1 2.3 194.4 0.6 12.8 36.3
72 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-337 3.72 92 79.1 1.9 191.9 0.8 12.7 37.5
73 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-348 4.69 2 79.0 1.4 192.1 0.8 13.0 36.2
74 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-366 3.82 82 78.1 2.1 199.2 0.8 12.9 40.5
75 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-381 3.79 84 79.9 1.9 195.2 0.7 12.5 34.6
76 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-388 3.89 75 78.0 1.7 195.2 0.8 12.6 35.5
77 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-393 3.85 80 77.7 2.2 199.4 0.8 12.2 35.2
78 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-400 4.06 51 79.3 1.4 198.9 0.8 12.9 36.8
79 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-403 3.73 91 78.9 1.8 198.0 0.8 13.2 35.7
80 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-413 3.47 102 79.5 2.0 193.8 0.7 12.9 35.4
81 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-421 3.78 85 79.0 2.5 209.0 0.7 13.5 38.9
82 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-438 3.90 73 78.6 1.9 201.8 0.8 12.8 35.9
83 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-440 4.65 3 78.4 2.2 186.5 0.7 13.5 36.0
84 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-447 4.34 18 80.0 1.8 200.7 0.8 12.8 39.0
85 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-451 4.06 52 78.7 1.5 190.7 0.8 13.2 38.6
86 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-457 3.86 78 79.1 1.4 204.1 0.7 12.9 37.5
87 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-474 4.00 64 78.4 2.0 194.0 0.8 12.6 36.2
88 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-493 4.76 1 78.8 2.2 202.1 0.9 12.7 34.3
89 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-499 4.21 30 79.0 2.1 191.6 0.7 12.0 37.3
90 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-513 4.16 34 78.2 2.0 194.0 0.8 13.1 36.3
91 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-522 4.19 33 80.8 1.9 198.9 0.7 13.1 36.4
92 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-533 3.68 96 79.5 1.8 204.5 0.7 12.2 39.3
93 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-535 4.30 23 78.6 2.1 204.9 0.8 12.6 35.5
94 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-536 4.25 26 79.6 1.1 197.6 0.9 13.2 40.3
95 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-543 4.02 56 78.7 1.8 196.3 0.7 13.0 35.4
96 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-560 4.02 57 79.4 2.3 202.0 0.7 12.3 37.1
97 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-572 4.47 6 78.4 2.2 202.7 0.7 12.3 38.1
98 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-597 3.81 83 78.8 2.5 200.3 0.7 12.1 34.8
99 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-631 4.04 54 78.0 2.6 191.5 0.7 12.4 37.8

100 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-638 3.53 101 78.9 1.6 198.4 0.7 12.8 33.9
101 CML395/CML444//CML440 4.00 62 78.2 3.3 191.4 0.7 13.5 38.1
102 CML395/CML444//[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-BBB 3.92 72 78.1 2.3 204.8 0.7 13.2 38.7

Mean 4.06 78.8 1.9 198.3 0.8 12.9 36.8
P 0.17 0.00 0.07 0.00 0.00 0.00 0.92

MSE 1.51 10.5 4.3 526.5 0.1 3.5 32.5
CV 28.30 3.2 98.8 9.2 25.6 11.7 15.9

Anth date, anthesis date; ASI, anthesis-silking interval, EPP, ears per plant  
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APPENDIX E 

GRAIN YIELD AND ITS COMPONENTS FOR POPULATION CML440 x 

COMPE EVALUATED ACROSS HIGH N ENVIRONMENTS IN MALAWI AND 

ZIMBABWE IN 2003 AND 2004 

Entry Pedigree Grain Rank Anth ASI Plant EPP Moisture
Yield date height content

(Mg/ha) # d d cm # %
1 CML395/CML444//[CML440/[COMPE2/P4 6.96 39 71.0 2.3 220.7 0.7 12.9
2 CML395/CML444//[CML440/[COMPE2/P4 6.59 72 72.1 0.8 229.8 0.8 13.2
3 CML395/CML444//[CML440/[COMPE2/P4 7.17 25 70.8 2.3 228.6 0.7 13.2
4 CML395/CML444//[CML440/[COMPE2/P4 7.06 32 71.8 0.3 226.8 0.8 13.1
5 CML395/CML444//[CML440/[COMPE2/P4 6.83 50 71.8 0.3 218.5 0.7 13.9
6 CML395/CML444//[CML440/[COMPE2/P4 7.24 23 71.4 0.8 227.7 0.7 12.2
7 CML395/CML444//[CML440/[COMPE2/P4 6.62 66 72.0 0.8 245.8 0.8 13.0
8 CML395/CML444//[CML440/[COMPE2/P4 7.12 27 70.7 1.3 228.4 0.8 13.7
9 CML395/CML444//[CML440/[COMPE2/P4 5.62 99 70.9 1.0 225.5 0.8 13.0

10 CML395/CML444//[CML440/[COMPE2/P4 6.23 87 70.4 0.3 211.0 0.7 13.7
11 CML395/CML444//[CML440/[COMPE2/P4 7.04 33 70.9 0.8 221.9 0.8 14.5
12 CML395/CML444//[CML440/[COMPE2/P4 7.44 13 69.2 0.5 231.1 0.6 12.6
13 CML395/CML444//[CML440/[COMPE2/P4 6.37 80 70.4 1.8 219.8 0.6 13.2
14 CML395/CML444//[CML440/[COMPE2/P4 7.12 28 70.0 1.0 236.9 0.8 12.9
15 CML395/CML444//[CML440/[COMPE2/P4 5.89 94 70.2 1.5 234.7 0.6 13.7
16 CML395/CML444//[CML440/[COMPE2/P4 7.26 20 71.0 -0.5 221.4 0.7 13.3
17 CML395/CML444//[CML440/[COMPE2/P4 6.88 46 70.2 1.0 232.3 0.8 12.7
18 CML395/CML444//[CML440/[COMPE2/P4 7.62 8 71.7 0.0 230.5 0.9 13.6
19 CML395/CML444//[CML440/[COMPE2/P4 7.79 5 71.3 0.3 230.0 0.9 13.2
20 CML395/CML444//[CML440/[COMPE2/P4 7.19 24 71.3 0.3 237.1 0.8 13.8
21 CML395/CML444//[CML440/[COMPE2/P4 6.31 84 72.6 0.3 221.2 0.7 13.0
22 CML395/CML444//[CML440/[COMPE2/P4 7.46 12 70.9 2.3 217.1 0.8 13.3
23 CML395/CML444//[CML440/[COMPE2/P4 6.00 90 70.6 0.5 243.4 0.7 13.9
24 CML395/CML444//[CML440/[COMPE2/P4 7.41 15 70.9 0.3 234.7 0.7 11.9
25 CML395/CML444//[CML440/[COMPE2/P4 6.05 88 72.1 -0.3 230.7 0.7 13.0
26 CML395/CML444//[CML440/[COMPE2/P4 6.92 43 70.9 1.5 209.8 0.9 12.1
27 CML395/CML444//[CML440/[COMPE2/P4 6.69 59 70.7 0.0 228.1 0.8 13.5
28 CML395/CML444//[CML440/[COMPE2/P4 6.79 52 68.9 1.3 235.5 0.7 14.0
29 CML395/CML444//[CML440/[COMPE2/P4 6.44 77 69.9 0.8 225.6 0.8 12.5
30 CML395/CML444//[CML440/[COMPE2/P4 8.12 4 70.6 0.0 235.3 1.0 10.1
31 CML395/CML444//[CML440/[COMPE2/P4 6.78 54 71.5 -0.8 221.9 0.7 13.7
32 CML395/CML444//[CML440/[COMPE2/P4 7.37 16 71.6 1.0 222.1 0.7 13.4
33 CML395/CML444//[CML440/[COMPE2/P4 7.79 6 72.3 0.5 239.6 0.8 12.9
34 CML395/CML444//[CML440/[COMPE2/P4 7.13 26 72.9 1.3 231.8 0.7 12.8
35 CML395/CML444//[CML440/[COMPE2/P4 7.10 29 69.8 0.5 235.2 0.9 10.3
36 CML395/CML444//[CML440/[COMPE2/P4 6.66 64 71.3 0.5 222.6 0.8 12.9
37 CML395/CML444//[CML440/[COMPE2/P4 6.88 45 71.3 1.3 240.1 0.8 12.5
38 CML395/CML444//[CML440/[COMPE2/P4 6.32 83 69.3 1.0 223.2 0.7 12.7
39 CML395/CML444//[CML440/[COMPE2/P4 7.56 11 70.3 0.5 229.1 0.8 13.0
40 CML395/CML444//[CML440/[COMPE2/P4 6.43 78 71.4 0.8 235.1 1.0 13.0
41 CML395/CML444//[CML440/[COMPE2/P4 7.43 14 71.5 0.8 232.5 1.0 13.4
42 CML395/CML444//[CML440/[COMPE2/P4 6.69 58 71.7 0.3 219.9 0.8 12.7
43 CML395/CML444//[CML440/[COMPE2/P4 6.99 38 69.9 1.5 238.9 0.8 13.5
44 CML395/CML444//[CML440/[COMPE2/P4 7.30 18 71.0 0.3 244.0 0.8 13.1
45 CML395/CML444//[CML440/[COMPE2/P4 6.36 81 70.8 1.3 227.6 0.9 12.0
46 CML395/CML444//[CML440/[COMPE2/P4 6.79 53 71.4 1.0 243.1 0.8 13.2
47 CML395/CML444//[CML440/[COMPE2/P4 6.61 67 71.2 0.8 219.7 0.6 12.8
48 CML395/CML444//[CML440/[COMPE2/P4 6.84 48 71.2 0.5 237.1 1.0 13.5
49 CML395/CML444//[CML440/[COMPE2/P4 6.45 76 70.2 0.5 209.2 0.9 12.1
50 CML395/CML444//[CML440/[COMPE2/P4 7.57 10 71.5 1.5 237.1 0.9 13.3
51 CML395/CML444//[CML440/[COMPE2/P4 6.48 75 69.6 1.3 229.1 0.5 13.7  
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Entry Pedigree Grain Rank Anth ASI Plant EPP Moisture
Yield date height content

(Mg/ha) # d d cm # %
52 CML395/CML444//[CML440/[COMPE2/P4 7.03 35 71.1 2.0 230.1 0.7 12.4
53 CML395/CML444//[CML440/[COMPE2/P4 7.08 31 72.2 0.5 228.9 0.6 13.8
54 CML395/CML444//[CML440/[COMPE2/P4 6.60 70 72.4 1.0 244.6 0.6 13.4
55 CML395/CML444//[CML440/[COMPE2/P4 6.60 69 70.4 0.8 234.7 0.8 14.7
56 CML395/CML444//[CML440/[COMPE2/P4 7.10 30 71.5 0.8 238.6 1.0 14.0
57 CML395/CML444//[CML440/[COMPE2/P4 5.97 93 72.6 0.3 241.1 0.6 12.3
58 CML395/CML444//[CML440/[COMPE2/P4 6.69 57 71.6 1.0 229.3 0.8 12.6
59 CML395/CML444//[CML440/[COMPE2/P4 7.60 9 69.1 1.5 232.1 0.8 13.6
60 CML395/CML444//[CML440/[COMPE2/P4 6.37 79 70.8 0.5 232.0 0.7 13.2
61 CML395/CML444//[CML440/[COMPE2/P4 7.63 7 71.6 0.8 220.0 0.8 13.3
62 CML395/CML444//[CML440/[COMPE2/P4 5.35 101 71.4 1.3 217.7 0.6 12.8
63 CML395/CML444//[CML440/[COMPE2/P4 6.26 86 70.1 1.3 223.6 0.6 13.3
64 CML395/CML444//[CML440/[COMPE2/P4 6.68 60 70.8 0.3 221.2 0.7 13.1
65 CML395/CML444//[CML440/[COMPE2/P4 6.75 55 70.6 1.3 231.4 0.6 12.5
66 CML395/CML444//[CML440/[COMPE2/P4 6.84 49 71.6 1.0 241.7 0.9 12.1
67 CML395/CML444//[CML440/[COMPE2/P4 7.25 22 71.2 1.3 224.3 0.8 13.2
68 CML395/CML444//[CML440/[COMPE2/P4 6.81 51 71.0 0.8 218.4 0.9 13.0
69 CML395/CML444//[CML440/[COMPE2/P4 7.25 21 68.8 2.8 224.4 0.8 13.0
70 CML395/CML444//[CML440/[COMPE2/P4 6.02 89 72.2 -0.3 228.3 0.6 13.1
71 CML395/CML444//[CML440/[COMPE2/P4 6.86 47 70.2 1.8 225.1 0.6 13.7
72 CML395/CML444//[CML440/[COMPE2/P4 6.59 71 69.7 1.3 231.4 0.8 12.8
73 CML395/CML444//[CML440/[COMPE2/P4 8.28 3 71.2 0.5 217.4 1.0 13.2
74 CML395/CML444//[CML440/[COMPE2/P4 7.03 34 72.7 0.5 235.8 0.9 13.1
75 CML395/CML444//[CML440/[COMPE2/P4 5.78 96 71.3 0.5 232.1 0.5 13.2
76 CML395/CML444//[CML440/[COMPE2/P4 5.98 91 70.4 1.8 227.1 0.6 13.3
77 CML395/CML444//[CML440/[COMPE2/P4 6.34 82 68.9 0.8 234.0 0.9 13.1
78 CML395/CML444//[CML440/[COMPE2/P4 6.67 62 71.2 -0.8 226.8 0.6 12.5
79 CML395/CML444//[CML440/[COMPE2/P4 5.80 95 70.2 1.3 220.5 0.8 13.8
80 CML395/CML444//[CML440/[COMPE2/P4 5.30 102 70.6 1.5 226.1 0.6 13.1
81 CML395/CML444//[CML440/[COMPE2/P4 6.53 74 69.9 1.8 232.3 0.8 12.8
82 CML395/CML444//[CML440/[COMPE2/P4 5.97 92 72.4 0.5 236.6 0.9 13.0
83 CML395/CML444//[CML440/[COMPE2/P4 7.01 37 70.4 1.0 204.2 0.7 13.4
84 CML395/CML444//[CML440/[COMPE2/P4 8.31 2 71.9 0.8 238.2 0.9 14.2
85 CML395/CML444//[CML440/[COMPE2/P4 6.64 65 71.0 -0.3 221.4 0.8 12.9
86 CML395/CML444//[CML440/[COMPE2/P4 5.59 100 71.8 -0.3 241.6 0.7 13.3
87 CML395/CML444//[CML440/[COMPE2/P4 6.55 73 72.1 0.5 223.7 0.8 12.6
88 CML395/CML444//[CML440/[COMPE2/P4 7.33 17 71.2 1.0 241.7 1.0 13.0
89 CML395/CML444//[CML440/[COMPE2/P4 6.96 40 72.1 1.8 221.4 0.4 10.3
90 CML395/CML444//[CML440/[COMPE2/P4 7.27 19 70.4 0.5 229.6 0.8 13.6
91 CML395/CML444//[CML440/[COMPE2/P4 6.60 68 73.9 0.8 239.9 0.6 13.3
92 CML395/CML444//[CML440/[COMPE2/P4 5.78 97 71.7 0.0 241.5 0.5 13.5
93 CML395/CML444//[CML440/[COMPE2/P4 6.30 85 71.9 1.8 238.2 0.7 14.0
94 CML395/CML444//[CML440/[COMPE2/P4 6.91 44 71.6 -0.3 226.4 0.7 14.2
95 CML395/CML444//[CML440/[COMPE2/P4 6.92 42 71.7 1.0 221.1 0.6 13.6
96 CML395/CML444//[CML440/[COMPE2/P4 6.74 56 71.9 0.8 238.8 0.8 13.1
97 CML395/CML444//[CML440/[COMPE2/P4 8.32 1 71.5 0.5 232.7 0.8 13.7
98 CML395/CML444//[CML440/[COMPE2/P4 6.67 61 71.6 1.0 234.8 0.8 10.9
99 CML395/CML444//[CML440/[COMPE2/P4 6.94 41 71.2 0.8 240.9 0.9 12.9

100 CML395/CML444//[CML440/[COMPE2/P4 5.63 98 70.4 -0.3 229.1 0.6 13.2
101 CML395/CML444//CML440 7.01 36 71.2 1.0 218.7 0.7 13.8
102 CML395/CML444//[COMPE2/P43- 6.66 63 69.9 1.0 242.2 0.7 12.9

Mean 6.79 71.1 0.8 229.5 0.8 13.1
P 0.28 0.9 0.9 0.0 0.9 0.2

MSE 1.61 3.6 1.7 329.4 0.0 2.7
CV % 17.79 3.0 183.9 6.5 24.3 11.6

Anth date, anthesis date; ASI, anthesis-silking interval; EPP, ears per plant  
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APPENDIX F 

GRAIN YIELD AND ITS COMPONENTS FOR POPULATION CML440 x 

COMPE EVALUATED ACROSS DROUGHT ENVIRONMENTS IN MALAWI 

AND ZIMBABWE IN 2004 

Entry Pedigree Grain Rank Anth ASI Plant EPP
Yield date height

Pedigree Mg/ha # d d cm #
1 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-1 1.58 93 83.8 3.4 176.0 0.9
2 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-8 2.37 32 84.2 1.9 177.1 1.2
3 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-13 2.43 28 83.6 3.2 185.3 1.0
4 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-15 2.18 48 84.0 4.7 175.0 0.9
5 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-20 1.99 72 86.6 1.3 168.9 1.0
6 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-21 2.17 50 86.4 1.2 181.6 1.0
7 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-37 1.53 95 88.3 1.2 180.0 0.9
8 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-40 2.56 20 84.9 2.0 185.2 0.9
9 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-51 1.66 92 87.0 1.0 174.5 1.0

10 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-78 2.00 69 85.7 2.2 160.2 1.0
11 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-87 2.34 35 86.2 0.7 171.7 1.0
12 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-89 1.92 79 86.0 2.9 168.7 1.1
13 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-118 2.04 66 85.2 1.6 164.1 1.1
14 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-138 3.23 2 85.5 2.3 181.4 1.0
15 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-141 1.87 82 85.4 2.6 167.3 1.1
16 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-144 2.07 62 87.2 2.3 171.5 0.9
17 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-150 1.88 81 85.8 2.9 176.1 0.9
18 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-151 2.75 9 87.2 3.9 156.2 1.0
19 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-167 2.36 34 86.4 1.5 177.2 1.0
20 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-183 1.80 85 86.6 1.6 180.6 0.8
21 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-232 1.92 80 84.1 3.4 173.7 0.8
22 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-247 2.13 56 86.6 1.9 166.3 1.0
23 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-318 2.12 57 85.2 3.2 179.5 0.9
24 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-323 2.40 31 84.4 2.1 165.9 0.9
25 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-362 2.29 39 86.6 3.2 182.8 0.9
26 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-363 2.26 42 85.7 2.5 186.3 1.0
27 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-365 1.68 89 83.2 3.8 179.8 0.9
28 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-374 2.98 5 83.9 2.3 179.8 0.9
29 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-398 2.03 67 86.1 2.3 160.5 0.9
30 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-410 2.15 53 86.8 2.7 160.2 0.7
31 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-414 2.00 70 85.2 2.2 183.9 1.0
32 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-416 2.14 55 85.6 2.1 177.4 1.0
33 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-432 2.24 44 86.6 1.9 167.7 1.1
34 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-437 3.06 4 87.7 -0.6 173.4 1.0
35 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-476 1.46 97 85.8 1.9 163.0 0.9
36 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-482 2.36 33 85.0 3.0 172.5 0.9
37 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-502 1.98 73 86.5 3.5 177.1 1.0
38 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-509 2.30 38 85.2 2.0 185.2 1.0
39 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-512 1.99 71 85.5 2.9 167.2 1.0
40 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-531 2.51 21 85.2 3.1 162.3 0.8
41 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-537 2.50 22 87.0 -0.5 183.3 1.0
42 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-538 1.79 87 86.5 2.6 179.2 1.0
43 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-548 2.71 10 85.5 4.9 164.1 1.0
44 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-559 2.50 23 86.8 3.8 168.7 1.1
45 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-578 2.65 13 84.5 2.9 179.0 1.0
46 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-593 2.19 46 85.1 1.7 191.3 0.9
47 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-622 1.98 75 84.9 3.2 165.5 0.8
48 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-627 2.27 40 86.1 1.2 173.2 1.1
49 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-670 2.10 59 85.3 2.5 182.1 1.1
50 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-675 1.97 76 86.2 3.2 179.2 1.0
51 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-16 1.33 100 85.0 3.1 174.1 0.9  
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Entry Pedigree Grain Rank Anth ASI Plant EPP
Yield date height

Pedigree Mg/ha # d d cm #
52 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-18 2.08 61 86.7 5.2 180.7 0.9
53 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-24 3.12 3 84.9 1.0 178.9 1.0
54 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-30 1.40 98 85.7 3.0 185.0 1.0
56 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-43 2.57 19 85.9 1.9 193.4 0.9
57 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-55 1.79 86 86.3 3.6 158.9 1.2
58 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-75 2.65 14 85.6 2.8 175.9 0.9
59 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-130 2.23 45 86.8 1.8 190.2 0.9
60 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-132 2.61 16 85.7 2.4 182.4 0.9
61 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-134 2.47 25 85.6 3.7 166.5 1.0
62 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-145 2.16 51 85.9 2.4 178.0 1.0
63 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-147 1.56 94 87.0 3.7 170.8 1.0
64 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-149 1.67 91 84.8 1.5 168.7 0.9
65 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-163 2.01 68 85.4 5.0 176.2 1.0
66 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-173 2.30 37 87.5 1.0 183.9 1.0
67 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-218 2.76 8 84.3 1.0 171.2 0.8
68 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-276 1.67 90 85.9 2.6 168.6 1.0
69 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-292 1.74 88 85.3 2.2 174.8 0.9
70 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-303 1.38 99 84.5 1.8 183.1 0.9
71 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-330 2.17 49 85.4 3.8 171.6 0.9
72 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-334 2.09 60 88.0 3.5 167.6 0.9
73 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-337 2.69 12 84.8 2.6 171.9 0.9
74 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-348 1.85 84 84.6 1.6 175.4 1.0
75 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-366 1.86 83 88.3 2.9 166.9 1.0
76 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-381 2.26 41 83.8 1.8 177.4 0.9
77 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-388 2.15 52 85.8 1.2 175.9 1.1
78 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-393 2.07 63 88.0 0.8 181.1 0.9
79 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-400 2.42 30 86.1 1.3 173.8 1.0
80 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-403 2.15 54 86.7 2.4 171.5 0.9
81 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-413 1.94 78 88.6 1.2 173.5 0.9
82 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-421 1.51 96 84.3 2.7 169.8 1.0
83 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-438 3.37 1 84.4 2.9 160.6 1.0
84 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-440 2.05 65 86.7 2.6 176.2 1.0
85 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-447 2.43 27 84.0 2.5 168.1 0.9
86 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-451 2.42 29 85.9 1.5 186.9 0.9
87 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-457 2.11 58 85.0 4.3 176.5 1.0
88 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-474 2.33 36 85.3 2.5 177.0 1.0
89 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-493 2.59 17 84.8 1.4 177.8 0.9
90 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-499 2.63 15 84.4 1.8 180.6 1.0
91 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-513 2.46 26 87.4 2.4 167.2 0.9
92 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-522 1.95 77 85.8 3.1 176.4 1.1
93 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-533 2.80 7 85.5 2.6 175.1 0.9
94 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-535 2.90 6 87.0 2.0 177.5 0.9
95 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-536 2.49 24 85.7 1.7 178.8 1.0
96 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-543 2.57 18 85.1 3.2 177.2 0.9
97 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-560 2.19 47 84.3 3.7 176.8 1.0
98 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-572 1.98 74 84.5 2.3 185.9 1.0
99 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-597 2.24 43 83.8 2.7 164.8 1.0

100 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-631 1.19 101 87.4 3.0 170.6 1.0
101 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-638 2.07 64 84.7 5.3 172.2 0.9
102 CML395/CML444//CML440 2.70 11 82.8 2.9 181.1 0.9

Mean 2.19 85.7 2.5 175.0 1.0
P 0.11 0.0 0.2 0.5 0.6

MSE 1.45 7.3 5.2 393.7 0.01
CV % 49.50 2.6 86.8 11.4 10.9

Anth date, anthesis date; ASI, antheis silking interval; EPP, ears per plant  
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APPENDIX G 

GRAIN YIELD AND ITS COMPONENTS FOR POPULATION CML444 x K64R 

EVALUATED ACROSS ALL ENVIRONMENTS IN MALAWI AND 

ZIMBABWE IN 2003 AND 2004 

Entry Pedigree Grain Rank Anth ASI Plant EPP Moisture Kernel
Yield Date height content weight
Mg/ha # d d cm # % g

1 CML312/CML442//[K64R/CML444]-B-3 4.11 52 82.5 2.4 208.6 0.8 13.0 31.6
2 CML312/CML442//[K64R/CML444]-B-7 4.13 47 82.3 2.7 214.4 0.7 13.0 37.2
3 CML312/CML442//[K64R/CML444]-B-23 3.82 81 78.1 2.8 200.8 0.7 12.4 37.4
4 CML312/CML442//[K64R/CML444]-B-32 4.25 33 82.8 3.0 211.2 0.7 13.0 39.8
5 CML312/CML442//[K64R/CML444]-B-34 3.66 92 81.0 3.3 200.9 0.8 13.0 41.7
6 CML312/CML442//[K64R/CML444]-B-36 4.43 15 82.0 2.0 210.5 0.8 13.1 42.9
7 CML312/CML442//[K64R/CML444]-B-44 4.44 13 83.6 2.3 213.6 0.7 13.1 39.4
8 CML312/CML442//[K64R/CML444]-B-66 4.13 48 84.5 2.3 208.7 0.7 13.5 35.4
9 CML312/CML442//[K64R/CML444]-B-73 3.73 87 82.7 2.3 209.6 0.7 13.4 34.2

10 CML312/CML442//[K64R/CML444]-B-93 3.90 76 82.6 3.0 201.7 0.7 13.1 33.0
11 CML312/CML442//[K64R/CML444]-B-94 3.74 86 84.3 2.1 183.4 0.7 13.3 34.7
12 CML312/CML442//[K64R/CML444]-B-115 4.58 5 84.2 2.8 201.3 0.8 13.2 35.2
13 CML312/CML442//[K64R/CML444]-B-126 4.39 18 81.5 2.5 211.4 0.7 12.7 32.7
14 CML312/CML442//[K64R/CML444]-B-149 4.10 55 83.4 3.2 207.0 0.7 13.2 37.5
15 CML312/CML442//[K64R/CML444]-B-155 4.18 40 83.5 2.4 214.6 0.7 13.4 35.4
16 CML312/CML442//[K64R/CML444]-B-160 4.03 64 84.0 2.6 208.2 0.7 13.2 42.7
17 CML312/CML442//[K64R/CML444]-B-165 4.04 58 83.7 2.3 205.8 0.7 13.3 34.8
18 CML312/CML442//[K64R/CML444]-B-177 4.22 36 82.7 3.7 208.6 0.7 13.3 38.5
19 CML312/CML442//[K64R/CML444]-B-205 3.60 93 83.5 3.2 205.0 0.7 12.9 39.0
20 CML312/CML442//[K64R/CML444]-B-226 4.54 6 82.8 2.0 218.5 0.8 12.6 33.3
21 CML312/CML442//[K64R/CML444]-B-249 3.29 96 81.3 2.1 203.4 0.7 13.2 36.9
22 CML312/CML442//[K64R/CML444]-B-251 4.11 51 83.1 3.6 214.0 0.7 13.2 37.9
23 CML312/CML442//[K64R/CML444]-B-274 4.44 11 82.7 2.7 204.0 0.8 12.5 37.9
24 CML312/CML442//[K64R/CML444]-B-292 4.03 63 81.9 4.8 203.7 0.7 12.9 36.7
25 CML312/CML442//[K64R/CML444]-B-346 4.04 59 77.7 2.2 209.4 0.8 13.0 37.4
26 CML312/CML442//[K64R/CML444]-B-351 4.20 37 82.2 2.7 207.0 0.8 13.3 34.8
27 CML312/CML442//[K64R/CML444]-B-407 4.40 16 82.8 3.1 213.6 0.8 12.9 35.0
28 CML312/CML442//[K64R/CML444]-B-427 4.13 46 82.7 2.3 207.2 0.7 13.4 34.7
29 CML312/CML442//[K64R/CML444]-B-439 4.25 34 82.6 3.1 207.6 0.8 13.4 32.3
30 CML312/CML442//[K64R/CML444]-B-456 4.67 3 81.3 2.9 215.2 0.7 13.2 36.1
31 CML312/CML442//[K64R/CML444]-B-470 4.13 49 82.8 3.4 204.7 0.7 12.9 35.7
32 CML312/CML442//[K64R/CML444]-B-487 4.15 43 81.2 2.9 206.3 0.8 13.5 36.4
33 CML312/CML442//[K64R/CML444]-B-497 4.12 50 84.1 2.6 215.3 0.7 12.3 30.2
34 CML312/CML442//[K64R/CML444]-B-530 4.06 57 83.3 1.5 212.9 0.8 13.2 38.0
35 CML312/CML442//[K64R/CML444]-B-550 3.68 91 82.7 2.1 199.0 0.7 13.3 33.5
36 CML312/CML442//[K64R/CML444]-B-570 4.15 42 82.3 2.9 210.9 0.7 13.4 41.8
37 CML312/CML442//[K64R/CML444]-B-607 4.03 65 83.2 1.8 206.5 0.8 13.0 39.8
38 CML312/CML442//[K64R/CML444]-B-612 4.18 39 81.5 3.1 210.9 0.7 13.4 38.2
39 CML312/CML442//[K64R/CML444]-B-621 3.96 71 82.4 2.3 206.6 0.7 13.4 41.6
40 CML312/CML442//[K64R/CML444]-B-631 3.94 73 83.4 3.8 195.5 0.7 13.6 40.0
41 CML312/CML442//[K64R/CML444]-B-639 4.31 26 82.7 3.2 213.2 0.7 13.4 38.9
42 CML312/CML442//[K64R/CML444]-B-693 3.83 80 82.6 2.7 194.4 0.7 12.9 37.8
43 CML312/CML442//[K64R/CML444]-B-708 3.95 72 81.7 2.8 202.0 0.7 12.7 35.6
44 CML312/CML442//[K64R/CML444]-B-717 4.35 21 82.0 2.8 220.2 0.7 13.0 36.6
45 CML312/CML442//[K64R/CML444]-B-718 4.03 62 83.7 2.4 210.7 0.7 13.1 41.5
46 CML312/CML442//[K64R/CML444]-B-753 4.48 10 83.1 1.7 201.1 0.7 13.5 39.3
47 CML312/CML442//[K64R/CML444]-B-763 4.36 20 85.2 3.8 210.1 0.8 12.8 37.4
48 CML312/CML442//[K64R/CML444]-B-766 4.32 25 81.7 2.7 200.5 0.7 12.7 45.0
49 CML312/CML442//[K64R/CML444]-B-33 3.86 78 84.4 3.0 211.8 0.7 13.1 35.4
50 CML312/CML442//[K64R/CML444]-B-55 2.09 98 86.4 3.2 174.6 0.4 13.6 30.3  
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Entry Pedigree Grain Rank Anth ASI Plant EPP Moisture Kernel
Yield Date height content weight
Mg/ha # d d cm # % g

51 CML312/CML442//[K64R/CML444]-B-78 4.44 12 82.5 1.4 210.3 0.7 13.4 36.2
52 CML312/CML442//[K64R/CML444]-B-85 4.20 38 84.5 2.3 208.1 0.7 13.0 38.3
53 CML312/CML442//[K64R/CML444]-B-92 4.58 4 83.5 2.1 211.4 0.8 13.1 38.0
54 CML312/CML442//[K64R/CML444]-B-99 3.85 79 83.3 2.1 210.4 0.7 13.1 32.0
55 CML312/CML442//[K64R/CML444]-B-120 4.29 28 83.3 3.8 202.0 0.8 12.8 38.4
56 CML312/CML442//[K64R/CML444]-B-133 3.90 75 82.2 2.9 212.5 0.8 13.0 37.2
57 CML312/CML442//[K64R/CML444]-B-142 4.54 7 83.5 2.5 209.3 0.7 13.6 41.9
58 CML312/CML442//[K64R/CML444]-B-146 4.35 22 83.5 3.0 211.5 0.7 13.2 35.7
59 CML312/CML442//[K64R/CML444]-B-167 3.71 88 82.5 2.0 204.2 0.7 13.2 39.4
60 CML312/CML442//[K64R/CML444]-B-227 4.10 53 82.6 2.4 199.7 0.7 13.0 38.7
61 CML312/CML442//[K64R/CML444]-B-233 4.43 14 84.0 2.7 213.7 0.7 13.1 36.2
62 CML312/CML442//[K64R/CML444]-B-267 4.08 56 81.8 2.8 201.7 0.7 13.0 36.9
63 CML312/CML442//[K64R/CML444]-B-270 4.29 30 83.4 2.9 213.0 0.7 12.7 37.2
64 CML312/CML442//[K64R/CML444]-B-302 4.34 24 83.3 3.3 201.1 0.7 12.9 35.2
65 CML312/CML442//[K64R/CML444]-B-306 4.02 66 83.1 3.1 206.5 0.7 14.0 36.4
66 CML312/CML442//[K64R/CML444]-B-310 4.04 60 83.8 2.5 210.8 0.7 12.9 40.1
67 CML312/CML442//[K64R/CML444]-B-322 3.38 95 84.1 1.2 196.2 0.7 13.4 32.0
68 CML312/CML442//[K64R/CML444]-B-343 4.52 8 82.7 3.2 209.9 0.8 13.1 36.8
69 CML312/CML442//[K64R/CML444]-B-355 3.44 94 80.9 3.2 198.3 0.7 13.5 34.4
70 CML312/CML442//[K64R/CML444]-B-360 4.29 29 82.4 2.3 208.9 0.8 12.8 35.5
71 CML312/CML442//[K64R/CML444]-B-412 4.29 31 83.5 3.2 204.4 0.7 13.5 35.6
72 CML312/CML442//[K64R/CML444]-B-430 3.78 84 83.5 2.2 193.8 0.8 13.4 35.8
73 CML312/CML442//[K64R/CML444]-B-458 4.04 61 83.2 2.3 208.0 0.6 12.6 41.9
74 CML312/CML442//[K64R/CML444]-B-465 4.01 67 85.1 2.3 202.8 0.7 13.8 33.3
75 CML312/CML442//[K64R/CML444]-B-495 4.31 27 83.7 2.6 211.6 0.7 12.7 37.3
76 CML312/CML442//[K64R/CML444]-B-511 4.14 45 82.7 3.0 201.1 0.6 12.6 34.5
77 CML312/CML442//[K64R/CML444]-B-520 3.80 83 82.6 3.1 203.4 0.7 13.1 37.9
78 CML312/CML442//[K64R/CML444]-B-523 4.28 32 83.0 2.8 204.0 0.7 13.1 35.3
79 CML312/CML442//[K64R/CML444]-B-543 4.34 23 82.9 3.3 334.8 0.8 13.4 37.1
80 CML312/CML442//[K64R/CML444]-B-564 3.81 82 82.3 3.4 208.9 0.7 13.2 35.9
81 CML312/CML442//[K64R/CML444]-B-601 3.69 90 82.2 2.5 195.1 0.7 13.7 37.1
82 CML312/CML442//[K64R/CML444]-B-606 3.96 70 83.1 2.4 203.9 0.7 13.3 34.4
83 CML312/CML442//[K64R/CML444]-B-626 3.05 97 84.7 2.0 201.7 0.7 13.7 33.4
84 CML312/CML442//[K64R/CML444]-B-637 4.14 44 83.1 1.5 206.3 0.8 13.5 37.3
85 CML312/CML442//[K64R/CML444]-B-643 4.24 35 83.4 2.1 212.1 0.7 12.4 34.6
86 CML312/CML442//[K64R/CML444]-B-658 4.10 54 84.3 1.8 203.9 0.7 13.2 40.1
87 CML312/CML442//[K64R/CML444]-B-661 3.89 77 83.2 2.5 209.3 0.7 13.0 32.2
88 CML312/CML442//[K64R/CML444]-B-669 4.37 19 82.8 2.7 205.2 0.7 13.0 33.0
89 CML312/CML442//[K64R/CML444]-B-734 3.99 68 83.8 3.3 208.4 0.8 12.7 41.2
90 CML312/CML442//[K64R/CML444]-B-736 4.49 9 84.5 2.0 205.7 0.8 12.9 40.3
91 CML312/CML442//[K64R/CML444]-B-750 3.71 89 84.6 2.4 206.6 0.7 13.1 37.2
92 CML312/CML442//[K64R/CML444]-B-771 3.96 69 82.9 2.4 205.1 0.6 13.2 38.0
93 CML312/CML442//[K64R/CML444]-B-773 4.17 41 83.6 3.7 201.2 0.6 12.7 44.2
94 CML312/CML442//[K64R/CML444]-B-774 4.40 17 82.9 2.0 212.0 0.8 13.5 36.9
95 CML312/CML442//[K64R/CML444]-B-779 3.75 85 83.1 2.4 207.4 0.7 12.5 37.8
96 CML312/CML442//[K64R/CML444]-B-793 4.81 1 83.2 8.1 217.7 0.8 13.3 41.5
97 CML312/CML442//K64R 3.91 74 81.3 1.0 201.2 1.2 13.4 34.1
98 CML312/CML442//CML444 4.76 2 84.5 2.3 209.7 0.8 13.2 39.5

Mean 4.09 83.0 2.1 207.8 0.7 13.1 37.7
P 0.00 0.00 0.07 0.16 0.00 0.11 0.02

MSE 2.45 24.6 10.2 3234.8 0.1 1.5 83.8
CV 26.9 4.8 134.6 25.5 28.8 9.6 20.7

Anth date, anthesis date; ASI, anthesis-silking interval; EPP, ears per plant  
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APPENDIX H 

GRAIN YIELD AND ITS COMPONENTS FOR POPULATION CML444 x K64R 

EVALUATED ACROSS HIGH N ENVIRONMENTS IN MALAWI AND 

ZIMBABWE IN 2003 AND 2004 

Entry Pedigree Grain Rank Anth ASI Plant EPP Moisture Kernel
Yield date height content weight

Mg/ha # d d cm # % g
1 CML312/CML442//[K64R/CML444]-B-3 7.08 65 73.6 0.8 250.0 1.1 14.4 39.1
2 CML312/CML442//[K64R/CML444]-B-7 7.10 63 73.7 1.3 246.7 0.9 14.7 40.0
3 CML312/CML442//[K64R/CML444]-B-23 6.84 75 74.2 1.5 247.3 0.9 13.7 43.1
4 CML312/CML442//[K64R/CML444]-B-32 8.05 27 75.6 -0.2 233.0 1.0 14.1 42.4
5 CML312/CML442//[K64R/CML444]-B-34 5.41 96 72.6 1.0 231.8 1.0 14.5 43.3
6 CML312/CML442//[K64R/CML444]-B-36 7.04 69 72.1 0.3 246.0 0.8 14.3 48.6
7 CML312/CML442//[K64R/CML444]-B-44 7.26 57 74.5 0.8 241.1 0.8 14.6 40.3
8 CML312/CML442//[K64R/CML444]-B-66 7.94 33 77.3 0.2 232.2 0.9 14.8 39.5
9 CML312/CML442//[K64R/CML444]-B-73 6.40 87 75.4 1.0 245.4 1.0 14.1 33.4

10 CML312/CML442//[K64R/CML444]-B-93 8.67 6 73.9 0.8 242.3 1.0 13.9 42.5
11 CML312/CML442//[K64R/CML444]-B-94 6.82 76 75.2 0.5 221.1 0.9 14.5 37.8
12 CML312/CML442//[K64R/CML444]-B-115 8.30 19 77.2 0.8 229.2 0.8 14.6 42.2
13 CML312/CML442//[K64R/CML444]-B-126 8.71 3 73.9 0.7 242.8 0.8 13.2 36.2
14 CML312/CML442//[K64R/CML444]-B-149 6.65 82 74.7 1.5 229.8 0.8 14.3 41.7
15 CML312/CML442//[K64R/CML444]-B-155 7.72 43 75.0 0.8 255.9 0.8 14.6 38.7
16 CML312/CML442//[K64R/CML444]-B-160 7.43 54 76.0 -0.2 248.5 0.8 14.1 41.3
17 CML312/CML442//[K64R/CML444]-B-165 8.09 25 75.6 0.5 253.7 0.8 15.0 44.2
18 CML312/CML442//[K64R/CML444]-B-177 7.97 32 74.1 1.2 241.3 0.8 15.5 43.6
19 CML312/CML442//[K64R/CML444]-B-205 6.34 88 75.6 0.2 240.7 1.0 14.6 46.0
20 CML312/CML442//[K64R/CML444]-B-226 8.57 8 74.3 -0.3 253.7 1.0 15.5 39.4
21 CML312/CML442//[K64R/CML444]-B-249 5.72 93 71.6 0.2 237.1 0.9 14.6 49.2
22 CML312/CML442//[K64R/CML444]-B-251 8.02 29 75.2 0.3 245.4 1.0 14.5 41.6
23 CML312/CML442//[K64R/CML444]-B-274 8.02 29 73.9 2.2 250.3 1.0 14.0 44.5
24 CML312/CML442//[K64R/CML444]-B-292 7.07 67 73.5 1.0 233.1 0.9 14.1 37.9
25 CML312/CML442//[K64R/CML444]-B-346 6.88 74 75.4 0.0 261.5 0.9 13.7 41.0
26 CML312/CML442//[K64R/CML444]-B-351 7.08 66 73.5 1.3 238.5 0.9 15.0 45.8
27 CML312/CML442//[K64R/CML444]-B-407 8.41 14 74.5 0.8 252.9 1.0 14.8 36.0
28 CML312/CML442//[K64R/CML444]-B-427 7.50 50 77.2 -0.5 233.1 0.8 15.2 41.7
29 CML312/CML442//[K64R/CML444]-B-439 7.20 59 73.7 0.8 246.3 1.0 14.3 41.4
30 CML312/CML442//[K64R/CML444]-B-456 8.05 26 72.8 1.5 234.9 1.0 14.7 40.3
31 CML312/CML442//[K64R/CML444]-B-470 7.88 37 73.4 0.8 245.4 0.9 14.5 46.1
32 CML312/CML442//[K64R/CML444]-B-487 7.06 68 73.8 0.2 234.0 0.9 14.5 42.7
33 CML312/CML442//[K64R/CML444]-B-497 8.47 11 75.4 -0.5 254.1 1.0 14.4 41.1
34 CML312/CML442//[K64R/CML444]-B-530 7.86 39 75.6 -0.2 244.3 1.0 14.6 47.5
35 CML312/CML442//[K64R/CML444]-B-550 6.23 90 73.3 0.2 223.2 0.7 15.3 37.0
36 CML312/CML442//[K64R/CML444]-B-570 7.73 42 72.7 2.3 238.3 0.8 14.5 40.9
37 CML312/CML442//[K64R/CML444]-B-607 6.93 72 77.5 0.5 228.5 0.8 14.6 45.0
38 CML312/CML442//[K64R/CML444]-B-612 7.45 53 74.6 0.8 248.3 0.9 15.0 40.4
39 CML312/CML442//[K64R/CML444]-B-621 7.47 52 75.0 0.3 240.1 0.9 14.4 41.9
40 CML312/CML442//[K64R/CML444]-B-631 7.08 64 73.8 1.7 231.8 0.7 14.5 42.6
41 CML312/CML442//[K64R/CML444]-B-639 7.41 55 74.4 0.5 233.7 0.9 14.7 39.4
42 CML312/CML442//[K64R/CML444]-B-693 6.30 89 73.7 1.7 234.0 0.9 13.7 38.5
43 CML312/CML442//[K64R/CML444]-B-708 7.23 58 73.8 0.0 230.5 1.0 14.5 44.2
44 CML312/CML442//[K64R/CML444]-B-717 8.42 13 72.7 0.9 251.1 0.9 14.2 42.2
45 CML312/CML442//[K64R/CML444]-B-718 8.13 22 75.7 0.0 246.9 1.0 14.6 49.3
46 CML312/CML442//[K64R/CML444]-B-753 8.37 16 75.3 0.2 235.8 1.0 15.5 47.7
47 CML312/CML442//[K64R/CML444]-B-763 8.51 9 76.4 0.5 252.8 0.8 14.2 48.2
48 CML312/CML442//[K64R/CML444]-B-766 7.90 34 74.1 1.0 235.4 1.0 14.3 48.3
49 CML312/CML442//[K64R/CML444]-B-33 7.17 62 77.3 0.0 254.2 0.9 13.8 42.5  
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Entry Pedigree Grain Rank Anth ASI Plant EPP Moisture Kernel
Yield date height content weight

Mg/ha # d d cm # % g
50 CML312/CML442//[K64R/CML444]-B-55 2.84 98 74.9 1.5 206.4 0.4 13.9 32.8
51 CML312/CML442//[K64R/CML444]-B-78 7.69 45 74.7 -0.3 242.0 0.9 14.4 42.3
52 CML312/CML442//[K64R/CML444]-B-85 7.20 60 74.3 1.5 226.6 0.9 15.4 40.4
53 CML312/CML442//[K64R/CML444]-B-92 8.03 28 73.7 1.2 243.9 0.8 14.1 43.7
54 CML312/CML442//[K64R/CML444]-B-99 6.57 84 75.1 0.5 234.3 0.9 15.2 36.4
55 CML312/CML442//[K64R/CML444]-B-120 7.67 46 75.5 1.2 233.5 0.9 14.3 42.7
56 CML312/CML442//[K64R/CML444]-B-133 6.58 83 74.4 0.8 245.1 0.8 16.1 40.8
57 CML312/CML442//[K64R/CML444]-B-142 7.59 49 75.4 0.5 245.5 0.8 14.2 38.3
58 CML312/CML442//[K64R/CML444]-B-146 8.34 17 76.5 0.8 246.0 1.0 14.8 39.2
59 CML312/CML442//[K64R/CML444]-B-167 6.69 81 73.2 0.5 232.6 1.0 14.2 43.2
60 CML312/CML442//[K64R/CML444]-B-227 6.93 73 75.4 0.3 224.3 1.0 14.2 39.9
61 CML312/CML442//[K64R/CML444]-B-233 8.02 31 76.5 0.5 252.4 0.8 13.7 46.4
62 CML312/CML442//[K64R/CML444]-B-267 7.87 38 73.1 2.0 239.1 0.9 14.4 35.1
63 CML312/CML442//[K64R/CML444]-B-270 8.43 12 75.6 0.7 242.1 1.0 14.5 40.7
64 CML312/CML442//[K64R/CML444]-B-302 7.78 41 75.4 1.0 232.9 1.1 14.4 40.6
65 CML312/CML442//[K64R/CML444]-B-306 6.98 71 75.3 1.3 232.7 0.8 15.0 42.0
66 CML312/CML442//[K64R/CML444]-B-310 8.32 18 76.0 0.5 259.1 1.0 14.4 48.8
67 CML312/CML442//[K64R/CML444]-B-322 5.49 95 76.0 0.7 215.4 0.8 14.8 35.3
68 CML312/CML442//[K64R/CML444]-B-343 8.70 4 75.6 0.0 246.9 0.9 14.0 45.5
69 CML312/CML442//[K64R/CML444]-B-355 5.36 97 72.5 1.0 227.9 0.5 14.9 41.3
70 CML312/CML442//[K64R/CML444]-B-360 7.90 34 75.3 -0.3 234.4 1.1 14.2 40.4
71 CML312/CML442//[K64R/CML444]-B-412 7.35 56 75.5 0.7 225.0 0.8 14.8 41.9
72 CML312/CML442//[K64R/CML444]-B-430 6.56 85 76.5 0.7 236.6 0.9 14.7 42.3
73 CML312/CML442//[K64R/CML444]-B-458 7.48 51 75.7 0.8 228.5 0.9 14.2 50.1
74 CML312/CML442//[K64R/CML444]-B-465 8.16 21 75.4 0.8 248.2 0.8 15.0 36.5
75 CML312/CML442//[K64R/CML444]-B-495 7.64 47 75.3 0.4 255.9 0.8 13.8 40.6
76 CML312/CML442//[K64R/CML444]-B-511 7.81 40 76.5 0.0 232.5 0.9 14.7 37.2
77 CML312/CML442//[K64R/CML444]-B-520 7.62 48 74.5 1.5 247.9 1.1 14.7 41.8
78 CML312/CML442//[K64R/CML444]-B-523 8.10 24 73.9 1.5 242.4 1.0 14.6 43.4
79 CML312/CML442//[K64R/CML444]-B-543 8.51 10 75.1 0.5 248.2 1.0 15.4 35.6
80 CML312/CML442//[K64R/CML444]-B-564 6.76 78 73.7 0.8 237.8 0.9 13.6 43.5
81 CML312/CML442//[K64R/CML444]-B-601 6.77 77 74.3 1.0 235.9 0.9 14.5 42.9
82 CML312/CML442//[K64R/CML444]-B-606 7.71 44 75.5 0.5 238.4 0.7 14.5 40.0
83 CML312/CML442//[K64R/CML444]-B-626 5.55 94 75.9 -1.2 237.1 0.9 14.7 40.9
84 CML312/CML442//[K64R/CML444]-B-637 7.02 70 74.8 -0.5 229.2 0.8 15.3 43.8
85 CML312/CML442//[K64R/CML444]-B-643 8.64 7 74.2 0.0 245.0 1.1 13.6 38.5
86 CML312/CML442//[K64R/CML444]-B-658 6.45 86 78.1 0.0 232.9 0.7 15.9 42.8
87 CML312/CML442//[K64R/CML444]-B-661 6.72 79 74.9 0.3 238.6 0.9 14.7 38.8
88 CML312/CML442//[K64R/CML444]-B-669 8.25 20 73.8 0.2 231.5 1.0 14.3 38.5
89 CML312/CML442//[K64R/CML444]-B-734 7.19 61 76.7 0.2 234.1 0.9 15.0 42.3
90 CML312/CML442//[K64R/CML444]-B-736 8.13 22 77.3 -0.2 241.4 1.2 13.7 44.0
91 CML312/CML442//[K64R/CML444]-B-750 6.19 91 75.5 1.0 244.7 0.9 15.0 36.6
92 CML312/CML442//[K64R/CML444]-B-771 7.90 34 75.5 -0.5 240.0 0.7 14.2 43.9
93 CML312/CML442//[K64R/CML444]-B-773 8.69 5 76.1 1.2 223.1 0.8 14.4 48.5
94 CML312/CML442//[K64R/CML444]-B-774 9.05 2 73.0 1.0 247.5 1.1 15.0 37.0
95 CML312/CML442//[K64R/CML444]-B-779 6.72 80 76.0 0.5 241.1 0.9 13.7 43.3
96 CML312/CML442//[K64R/CML444]-B-793 8.39 15 74.4 0.8 248.7 0.8 15.1 50.7
97 CML312/CML442//K64R 6.16 92 73.1 0.2 219.4 2.9 15.2 37.0
98 CML312/CML442//CML444 9.37 1 77.0 -0.7 241.8 1.0 14.3 37.2

Mean 7.43 74.9 0.6 239.4 0.9 14.5 42.1
P 0 0.0 0.3 0.0 0.5 0.0 0.7

MSE 3.73 7.0 1.7 442.4 0.1 1.1 29.6
CV % 17.89 2.6 205.7 5.9 37.1 6.1 13.6

Anth date, anthesis date; ASI, anthesis silking interval; EPP, ears per plant  
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APPENDIX I 

GRAIN YIELD AND ITS COMPONENTS FOR POPULATION CML444 x K64R 

EVALUATED ACROSS DROUGHT ENVIRONMENTS IN MALAWI AND 

ZIMBABWE IN 2004 

Entry Pedigree Grain Rank Anth ASI Plant EPP Moisture Kernel
Yield date height content weight

Mg/ha # d d cm # % g
1 CML312/CML442//[K64R/CML444]-B-3 1.11 32 90.8 3.4 168.6 0.3 13.7 27.5
2 CML312/CML442//[K64R/CML444]-B-7 1.67 4 91.7 5.5 172.6 0.5 15.8 37.5
3 CML312/CML442//[K64R/CML444]-B-23 0.66 87 72.3 6.5 140.0 0.3 14.3 46.1
4 CML312/CML442//[K64R/CML444]-B-32 1.10 34 92.3 8.4 167.9 0.4 16.4 27.5
5 CML312/CML442//[K64R/CML444]-B-34 1.10 33 91.0 11.5 153.6 0.5 15.0 40.0
6 CML312/CML442//[K64R/CML444]-B-36 1.12 29 92.6 3.4 154.5 0.4 15.9 42.5
7 CML312/CML442//[K64R/CML444]-B-44 1.43 8 94.9 2.7 166.3 0.4 16.0 40.0
8 CML312/CML442//[K64R/CML444]-B-66 0.87 71 96.4 6.0 179.5 0.3 17.1 26.1
9 CML312/CML442//[K64R/CML444]-B-73 1.35 12 91.3 5.0 157.8 0.4 16.3 40.0

10 CML312/CML442//[K64R/CML444]-B-93 0.95 61 93.3 5.4 148.6 0.4 18.3 31.1
11 CML312/CML442//[K64R/CML444]-B-94 0.76 80 95.6 3.5 137.3 0.4 17.4 31.1
12 CML312/CML442//[K64R/CML444]-B-115 1.18 23 94.1 8.1 147.1 0.4 14.2 23.9
13 CML312/CML442//[K64R/CML444]-B-126 1.00 51 89.8 6.2 162.3 0.5 15.4 23.9
14 CML312/CML442//[K64R/CML444]-B-149 1.25 19 94.8 5.5 174.1 0.4 18.0 37.5
15 CML312/CML442//[K64R/CML444]-B-155 1.06 42 92.1 6.4 167.6 0.4 16.2 32.5
16 CML312/CML442//[K64R/CML444]-B-160 1.19 20 93.1 1.7 161.7 0.4 17.3 51.1
17 CML312/CML442//[K64R/CML444]-B-165 1.14 27 93.8 9.6 154.2 0.4 18.7 28.9
18 CML312/CML442//[K64R/CML444]-B-177 0.98 54 92.3 11.7 162.6 0.4 18.8 35.0
19 CML312/CML442//[K64R/CML444]-B-205 0.96 59 92.5 9.3 154.3 0.4 17.4 45.0
20 CML312/CML442//[K64R/CML444]-B-226 0.88 69 92.0 5.2 165.6 0.3 9.9 37.5
21 CML312/CML442//[K64R/CML444]-B-249 0.38 97 92.0 4.9 162.2 0.4 18.4 30.0
22 CML312/CML442//[K64R/CML444]-B-251 0.95 60 91.8 10.8 161.1 0.4 16.8 40.0
23 CML312/CML442//[K64R/CML444]-B-274 1.07 37 90.7 6.7 156.5 0.6 14.9 25.0
24 CML312/CML442//[K64R/CML444]-B-292 0.80 77 90.1 15.7 165.1 0.4 16.8 48.9
25 CML312/CML442//[K64R/CML444]-B-346 1.16 25 71.2 5.5 158.8 0.5 14.1 46.1
26 CML312/CML442//[K64R/CML444]-B-351 1.08 36 94.0 6.7 158.4 0.3 15.7 32.5
27 CML312/CML442//[K64R/CML444]-B-407 1.19 21 93.4 8.5 160.1 0.4 13.9 27.5
28 CML312/CML442//[K64R/CML444]-B-427 0.73 83 87.5 8.4 155.8 0.5 17.3 30.0
29 CML312/CML442//[K64R/CML444]-B-439 1.06 46 91.5 7.9 160.4 0.5 18.3 25.0
30 CML312/CML442//[K64R/CML444]-B-456 1.11 31 89.5 7.4 166.7 0.3 15.4 27.5
31 CML312/CML442//[K64R/CML444]-B-470 0.93 64 94.9 6.3 155.1 0.3 . 33.9
32 CML312/CML442//[K64R/CML444]-B-487 0.96 58 87.8 8.5 164.4 0.4 16.9 35.0
33 CML312/CML442//[K64R/CML444]-B-497 0.66 86 94.5 10.7 157.6 0.2 11.8 18.0
34 CML312/CML442//[K64R/CML444]-B-530 0.90 66 91.5 2.6 166.6 0.4 16.3 42.5
35 CML312/CML442//[K64R/CML444]-B-550 1.07 38 92.7 5.6 171.4 0.4 15.3 27.5
36 CML312/CML442//[K64R/CML444]-B-570 0.69 85 91.6 6.4 158.3 0.3 18.5 45.0
37 CML312/CML442//[K64R/CML444]-B-607 1.32 13 90.7 4.3 164.8 0.5 13.5 40.0
38 CML312/CML442//[K64R/CML444]-B-612 1.52 6 88.5 6.5 166.6 0.5 16.6 42.5
39 CML312/CML442//[K64R/CML444]-B-621 0.98 53 92.0 5.5 167.8 0.4 17.5 50.0
40 CML312/CML442//[K64R/CML444]-B-631 0.36 98 94.5 9.4 154.1 0.4 19.5 37.5
41 CML312/CML442//[K64R/CML444]-B-639 1.45 7 91.5 7.6 177.8 0.4 18.8 42.5
42 CML312/CML442//[K64R/CML444]-B-693 0.81 75 91.0 7.5 172.6 0.4 17.7 32.5
43 CML312/CML442//[K64R/CML444]-B-708 1.68 2 89.8 6.2 174.2 0.6 13.2 27.5
44 CML312/CML442//[K64R/CML444]-B-717 0.94 62 91.0 6.6 175.2 0.2 17.0 37.5
45 CML312/CML442//[K64R/CML444]-B-718 0.63 88 93.2 6.9 155.3 0.3 17.7 47.5
46 CML312/CML442//[K64R/CML444]-B-753 0.44 93 93.4 7.0 149.5 0.2 15.2 23.9
47 CML312/CML442//[K64R/CML444]-B-763 0.77 79 93.1 16.9 150.5 0.5 14.5 26.1
48 CML312/CML442//[K64R/CML444]-B-766 1.27 17 89.4 4.3 150.2 0.4 15.3 45.0
49 CML312/CML442//[K64R/CML444]-B-33 0.86 72 96.8 7.6 163.1 0.1 17.1 35.0  
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Entry Pedigree Grain Rank Anth ASI Plant EPP Moisture Kernel
Yield date height content weight

Mg/ha # d d cm # % g
50 CML312/CML442//[K64R/CML444]-B-55 0.82 74 99.1 7.3 139.4 0.2 . 40.0
51 CML312/CML442//[K64R/CML444]-B-78 1.06 40 92.4 4.4 161.9 0.3 19.9 25.0
52 CML312/CML442//[K64R/CML444]-B-85 0.85 73 95.6 8.1 164.1 0.3 13.1 37.5
53 CML312/CML442//[K64R/CML444]-B-92 1.11 30 96.7 6.5 180.9 0.4 18.8 46.1
54 CML312/CML442//[K64R/CML444]-B-99 1.07 39 92.7 2.9 178.0 0.3 15.9 25.0
55 CML312/CML442//[K64R/CML444]-B-120 1.30 15 93.8 10.4 148.1 0.4 17.0 40.0
56 CML312/CML442//[K64R/CML444]-B-133 0.97 57 92.0 8.3 155.3 0.4 11.1 32.5
57 CML312/CML442//[K64R/CML444]-B-142 0.98 55 93.1 6.5 153.7 0.5 15.7 50.0
58 CML312/CML442//[K64R/CML444]-B-146 0.71 84 96.2 7.1 155.3 0.3 17.6 40.0
59 CML312/CML442//[K64R/CML444]-B-167 0.89 68 93.4 3.6 164.2 0.4 17.9 47.5
60 CML312/CML442//[K64R/CML444]-B-227 1.58 5 91.8 5.1 168.7 0.5 18.3 43.6
61 CML312/CML442//[K64R/CML444]-B-233 1.06 45 92.6 4.6 169.1 0.4 18.5 30.0
62 CML312/CML442//[K64R/CML444]-B-267 1.26 18 90.6 5.2 157.9 0.4 16.3 50.0
63 CML312/CML442//[K64R/CML444]-B-270 0.97 56 92.7 7.4 175.6 0.3 16.3 35.0
64 CML312/CML442//[K64R/CML444]-B-302 1.06 44 93.1 9.9 157.9 0.4 19.5 48.9
65 CML312/CML442//[K64R/CML444]-B-306 1.18 22 91.7 4.6 171.0 0.5 20.2 37.5
66 CML312/CML442//[K64R/CML444]-B-310 1.06 43 92.5 6.6 166.8 0.3 15.9 35.0
67 CML312/CML442//[K64R/CML444]-B-322 1.68 3 94.5 -0.5 158.5 0.5 16.8 35.0
68 CML312/CML442//[K64R/CML444]-B-343 0.94 63 91.7 8.3 159.0 0.6 18.8 33.0
69 CML312/CML442//[K64R/CML444]-B-355 1.04 49 88.6 5.1 165.7 0.5 20.0 26.1
70 CML312/CML442//[K64R/CML444]-B-360 1.32 14 91.8 6.0 169.8 0.6 16.3 30.0
71 CML312/CML442//[K64R/CML444]-B-412 1.12 28 92.0 9.9 165.6 0.4 19.3 25.0
72 CML312/CML442//[K64R/CML444]-B-430 1.16 24 89.7 7.0 163.3 0.5 18.3 38.6
73 CML312/CML442//[K64R/CML444]-B-458 0.42 94 91.8 6.0 163.6 0.2 15.6 40.4
74 CML312/CML442//[K64R/CML444]-B-465 0.52 90 96.0 7.3 163.8 0.4 16.6 27.5
75 CML312/CML442//[K64R/CML444]-B-495 1.05 47 93.8 11.0 155.2 0.4 16.6 23.9
76 CML312/CML442//[K64R/CML444]-B-511 0.79 78 92.4 6.6 156.5 0.3 14.5 27.5
77 CML312/CML442//[K64R/CML444]-B-520 0.87 70 92.1 6.1 164.8 0.3 16.8 37.5
78 CML312/CML442//[K64R/CML444]-B-523 0.91 65 93.6 8.1 155.7 0.4 17.5 30.0
79 CML312/CML442//[K64R/CML444]-B-543 1.28 16 91.5 7.3 178.1 0.4 20.2 47.5
80 CML312/CML442//[K64R/CML444]-B-564 0.75 81 91.4 8.4 166.3 0.4 18.4 45.0
81 CML312/CML442//[K64R/CML444]-B-601 0.99 52 91.3 5.3 160.1 0.4 18.1 42.5
82 CML312/CML442//[K64R/CML444]-B-606 0.80 76 93.8 5.7 159.1 0.3 19.3 25.0
83 CML312/CML442//[K64R/CML444]-B-626 0.45 92 95.0 5.6 158.6 0.2 17.0 35.0
84 CML312/CML442//[K64R/CML444]-B-637 1.06 40 92.5 4.0 160.7 0.6 16.2 35.0
85 CML312/CML442//[K64R/CML444]-B-643 0.50 91 93.3 5.1 158.3 0.3 16.1 37.5
86 CML312/CML442//[K64R/CML444]-B-658 1.40 10 94.7 3.3 162.3 0.4 15.6 45.0
87 CML312/CML442//[K64R/CML444]-B-661 1.02 50 92.1 7.6 180.9 0.3 16.6 35.0
88 CML312/CML442//[K64R/CML444]-B-669 0.61 89 94.1 8.7 146.5 0.3 13.8 15.5
89 CML312/CML442//[K64R/CML444]-B-734 1.42 9 90.7 5.8 170.2 0.6 13.8 40.0
90 CML312/CML442//[K64R/CML444]-B-736 1.10 35 94.5 4.7 144.2 0.5 17.3 51.1
91 CML312/CML442//[K64R/CML444]-B-750 0.90 67 96.5 6.1 138.5 0.3 19.0 46.1
92 CML312/CML442//[K64R/CML444]-B-771 0.39 96 91.6 5.2 165.4 0.2 19.4 40.0
93 CML312/CML442//[K64R/CML444]-B-773 0.42 95 92.9 11.2 156.9 0.2 17.1 47.5
94 CML312/CML442//[K64R/CML444]-B-774 1.04 48 94.1 4.0 160.8 0.4 17.7 40.0
95 CML312/CML442//[K64R/CML444]-B-779 0.73 82 90.7 4.7 160.4 0.2 . 50.0
96 CML312/CML442//[K64R/CML444]-B-793 1.14 26 90.1 8.1 165.1 0.4 15.8 45.0
97 CML312/CML442//K64R 1.72 1 88.0 1.5 174.6 0.7 15.1 36.1
98 CML312/CML442//CML444 1.38 11 95.4 5.4 162.9 0.2 15.6 47.5

Mean 1 92.18 5.44 161.54 0.37 16.67 36.44
P 0.26 0.4 0.1 0.75 0.27 0.11 0.22

MSE 0.76 4968 20.27 625.45 0.06 7.86 119.2
CV % 82.5 7.6 65.12 16.5 63.4 14.36 27.58

Anth date, anthesis date; ASI, anthesis-silking interval; EPP, ears per plant  
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APPENDIX J 

GRAIN YIELD AND ITS COMPONENTS FOR POPULATION CML312 x NAW 

EVALUATED ACROSS ALL ENVIRONMENTS IN MALAWI AND 

ZIMBABWE IN 2003 AND 2004 

Entry Pedigree Grain Rank Anth ASI Plant EPP Moisture Kernel
Yield Date height content weight
Mg/ha # d d cm # % g

1 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-9 3.67 86 83.3 1.9 225.9 0.6 14.2 39.2
2 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-10 4.30 17 83.7 2.3 213.5 0.6 13.4 39.5
3 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-13 3.71 82 82.6 2.4 227.8 0.7 13.3 35.7
4 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-38 4.33 12 82.9 2.4 217.9 0.7 13.4 36.4
5 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-45 4.07 50 84.4 1.5 234.2 0.6 13.6 42.3
6 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-58 4.32 13 82.4 2.4 219.2 0.7 13.9 40.1
7 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-63 4.27 21 84.5 2.0 221.1 0.7 14.7 39.9
8 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-92 3.87 71 83.0 2.7 229.0 0.6 13.7 40.3
9 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-107 3.16 101 82.8 2.3 225.1 0.6 13.4 35.3

10 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-167 4.82 1 83.7 1.7 232.8 0.8 14.3 41.1
11 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-201 4.06 52 83.1 1.9 226.9 0.6 14.0 38.9
12 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-202 4.04 54 83.3 1.6 226.0 0.6 13.4 40.0
13 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-224 3.70 83 82.4 2.5 224.2 0.6 13.7 39.6
14 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-235 3.98 57 84.7 1.6 225.4 0.5 13.9 40.9
15 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-249 4.01 55 83.9 2.5 224.4 0.7 13.4 42.6
16 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-258 4.25 23 82.5 1.2 231.6 0.7 13.7 38.3
17 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-270 3.90 66 82.6 2.9 227.4 0.7 13.3 37.2
18 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-273 3.86 72 84.6 1.7 227.9 0.5 15.5 41.9
19 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-279 3.56 93 81.6 2.4 224.8 1.2 13.4 40.7
20 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-286 4.15 40 82.6 1.8 220.0 0.7 13.1 38.6
21 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-287 4.21 28 82.4 1.8 226.2 0.6 13.5 40.9
22 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-292 4.11 43 83.9 1.7 234.2 0.6 13.7 38.1
23 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-315 4.62 2 82.8 2.2 236.1 0.7 13.6 40.0
24 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-320 4.17 35 81.7 2.5 223.0 0.7 13.2 40.0
25 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-321 4.12 42 82.8 2.2 223.1 0.7 13.5 39.0
26 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-324 3.95 59 82.6 2.3 228.2 0.6 13.4 37.0
27 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-325 4.40 8 83.7 2.6 226.6 0.7 12.6 38.8
28 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-330 3.76 79 83.3 3.4 227.1 0.6 13.6 39.7
29 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-359 3.62 88 82.2 2.5 221.3 0.7 13.5 39.9
30 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-379 3.59 89 83.2 2.1 223.6 0.6 13.5 41.3
31 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-405 3.95 61 83.2 2.3 225.0 0.7 13.4 37.6
32 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-409 4.48 5 83.8 1.9 228.5 0.7 13.6 39.6
33 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-410 3.91 64 82.6 2.0 226.7 0.6 14.2 39.9
34 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-419 3.88 70 83.4 3.0 221.3 0.7 14.3 37.1
35 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-422 4.20 30 83.2 2.5 225.0 0.7 14.0 38.2
36 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-437 4.05 53 83.2 2.7 224.2 0.7 13.8 38.9
37 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-439 3.91 65 84.2 2.9 228.9 0.6 13.7 38.5
38 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-445 4.32 14 83.0 2.7 220.3 0.7 13.7 39.9
39 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-482 3.59 90 82.0 2.3 227.2 0.6 13.4 42.5
40 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-501 4.54 4 82.6 1.9 223.4 0.7 13.3 40.5
41 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-540 3.34 100 83.3 2.4 219.1 0.5 13.7 39.1
42 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-559 3.40 99 83.1 3.0 220.5 1.2 14.3 39.5
43 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-560 4.09 48 84.0 2.0 232.8 0.6 13.8 38.2
44 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-603 4.61 3 83.5 1.9 233.1 0.7 14.0 40.3
45 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-658 4.21 27 83.8 1.9 223.0 0.6 14.6 39.4
46 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-675 4.16 38 83.2 2.5 227.9 0.6 14.5 39.5
47 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-703 3.43 98 83.0 2.9 229.2 0.6 14.4 38.6
48 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-705 4.23 25 83.0 1.8 225.9 0.7 13.4 37.1
49 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-728 3.95 60 82.2 2.4 227.9 0.7 13.2 40.3
50 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-767 3.55 94 82.9 2.1 221.5 0.6 13.2 38.7  
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Entry Pedigree Grain Rank Anth ASI Plant EPP Moisture Kernel
Yield Date height content weight
Mg/ha # d d cm # % g

51 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-8 3.66 87 82.8 2.7 219.7 0.6 13.0 39.3
52 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-32 3.92 63 82.0 2.5 230.2 0.6 13.9 39.0
53 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-34 4.39 9 83.4 2.6 221.6 0.6 13.6 41.4
54 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-75 4.42 7 82.6 1.7 227.4 0.6 13.5 40.1
55 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-79 4.28 20 83.2 2.6 229.8 0.6 13.2 40.4
56 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-87 4.19 32 82.8 2.9 226.0 0.6 14.3 40.0
57 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-95 3.69 85 82.9 3.1 215.2 0.6 13.6 41.3
58 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-101 3.57 91 84.7 1.4 227.4 0.6 14.4 37.9
59 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-108 3.84 75 84.0 2.7 223.2 0.6 14.0 38.8
60 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-110 4.28 18 83.6 1.8 229.3 0.7 14.2 42.2
61 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-130 4.09 46 84.2 1.6 227.3 0.6 13.4 39.8
62 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-173 3.84 76 82.5 2.0 230.3 0.6 14.5 42.3
63 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-174 4.07 51 84.4 1.8 216.4 0.7 13.5 39.9
64 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-211 4.16 37 83.0 3.1 231.8 0.6 14.0 40.6
65 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-215 4.47 6 83.3 2.3 234.0 0.6 13.2 41.4
66 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-227 3.88 69 84.1 2.5 230.7 0.6 13.3 40.3
67 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-233 4.20 29 82.1 2.7 231.2 0.6 14.4 39.3
68 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-267 4.39 11 82.0 1.8 225.9 0.7 13.4 43.2
69 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-268 3.86 73 83.7 2.3 228.2 0.5 14.6 40.6
70 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-269 3.92 62 83.9 2.6 227.5 0.6 14.5 40.6
71 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-281 4.16 39 82.6 1.9 218.1 0.6 13.6 39.4
72 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-288 3.89 68 83.5 2.5 222.3 0.6 13.3 40.4
73 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-295 4.31 16 84.1 2.0 229.1 0.7 13.5 37.5
74 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-308 4.27 22 83.9 2.7 224.0 0.7 13.6 41.0
75 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-309 4.31 15 83.2 2.6 231.6 0.7 13.6 41.6
76 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-310 4.18 34 83.8 2.8 224.2 0.6 13.2 41.3
77 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-326 3.90 67 83.2 2.6 221.0 0.6 13.8 39.3
78 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-356 4.16 36 84.2 1.9 221.9 0.6 14.3 39.2
79 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-372 3.57 92 84.3 2.9 220.6 0.6 13.3 40.2
80 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-376 3.48 97 83.9 2.4 220.9 0.6 13.2 39.1
81 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-423 3.53 95 83.5 2.5 220.9 0.7 14.3 40.0
82 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-427 4.19 31 83.2 2.5 219.2 0.6 14.7 42.6
83 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-430 4.25 24 83.1 2.8 229.0 0.7 13.7 39.8
84 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-463 4.00 56 83.2 2.5 228.1 0.6 13.8 36.7
85 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-467 4.39 10 83.8 2.7 234.6 0.6 13.5 42.4
86 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-502 3.50 96 84.1 2.6 228.5 0.6 13.3 37.4
87 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-536 3.73 80 83.9 1.9 225.8 0.7 13.5 36.6
88 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-561 3.72 81 84.2 2.1 215.8 0.5 13.4 36.0
89 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-570 3.70 84 77.8 1.7 219.3 0.6 12.1 35.8
90 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-585 4.22 26 82.6 2.1 221.0 0.6 13.6 38.3
91 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-639 4.10 45 82.5 3.0 219.0 0.6 13.2 38.0
92 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-644 3.98 58 83.4 2.1 228.4 0.6 13.5 41.8
93 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-661 4.08 49 83.4 2.0 225.3 0.7 14.3 38.7
94 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-722 4.10 44 82.8 3.0 229.5 0.7 13.8 41.6
95 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-724 3.80 78 82.7 2.1 233.1 0.7 14.4 41.2
96 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-733 4.18 33 82.9 2.0 223.0 0.7 13.7 40.2
97 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-736 4.28 19 82.9 2.5 217.3 0.6 14.3 43.0
98 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-750 4.09 47 83.8 1.8 233.4 0.5 14.2 42.6
99 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-758 4.13 41 83.1 1.9 230.2 0.6 13.0 42.0

100 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-771 3.85 74 84.2 3.3 221.7 0.6 14.4 37.1
101 CML395/CML444//CML312 3.81 77 82.7 2.4 223.1 0.7 13.5 36.5
102 CML395/CML444//[NAW5867/P49-SR(S2#)//NAW5867]FS#-48-2-2-BBB 3.06 102 85.1 2.6 202.8 0.6 13.0 35.6

Mean 4.00 83.3 2.0 225.4 0.6 13.9 39.5
P 0.01 0.00 0.09 0.01 0.87 0.68 0.10

MSE 1.89 13.0 3.0 520.0 0.1 2.9 34.4
CV 28.70 3.5 78.8 8.5 56.4 12.7 13.6

Anth date, anthesis date; ASI, anthesis silking interval; EPP, ears per plant  
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APPENDIX K 

GRAIN YIELD AND ITS COMPONENTS FOR POPULATION CML312 x NAW 

EVALUATED ACROSS HIGH N ENVIRONMENTS IN MALAWI AND 

ZIMBABWE IN 2003 AND 2004 

Entry Pedigree Grain Rank Anth ASI Plant EPP Grain MoistureKernel 
Yield date height texure content weight

Mg/ha # d d cm # 1 to 5 % g
1 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-9 6.01 77 76.0 0.8 246.4 0.8 3.1 15.3 42.7
2 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-10 7.43 15 75.0 1.5 226.7 0.7 3.0 15.4 43.0
3 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-13 5.21 95 73.5 1.5 246.9 0.7 2.9 15.3 37.3
4 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-38 6.99 44 76.5 0.8 236.0 0.9 2.9 14.3 37.5
5 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-45 6.76 50 77.5 -0.3 256.3 0.6 2.9 15.2 44.9
6 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-58 6.78 48 74.4 0.3 249.2 0.6 3.5 15.1 44.3
7 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-63 7.14 35 75.5 0.5 244.8 0.7 3.0 14.2 41.1
8 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-92 6.00 78 74.8 1.3 250.9 0.6 3.0 14.4 42.6
9 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-107 4.03 102 75.2 0.5 229.6 0.3 3.3 14.5 27.6

10 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-167 8.18 1 75.2 1.3 244.7 0.7 3.0 15.7 41.5
11 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-201 7.16 31 74.6 1.3 259.6 0.7 2.7 15.5 40.6
12 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-202 6.61 56 77.2 1.0 254.8 0.6 3.5 15.3 41.5
13 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-224 6.81 47 74.8 0.3 240.3 0.8 3.0 13.6 40.7
14 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-235 7.13 36 75.9 0.8 259.2 0.6 3.3 15.4 43.9
15 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-249 6.60 58 77.4 1.3 255.3 0.6 3.5 14.5 40.3
16 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-258 5.64 92 76.6 0.3 247.1 0.7 3.2 14.4 39.7
17 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-270 6.44 63 76.5 1.8 251.3 0.7 3.0 14.5 41.9
18 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-273 5.77 89 77.2 0.8 247.9 0.6 3.0 14.2 45.4
19 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-279 6.17 74 74.9 2.0 248.1 0.5 3.3 14.2 40.7
20 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-286 6.70 52 75.2 0.8 242.1 0.6 2.7 15.2 40.0
21 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-287 7.23 27 74.5 0.5 248.4 0.7 3.0 14.3 41.1
22 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-292 7.28 23 76.5 1.0 261.2 0.6 3.0 15.0 40.7
23 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-315 8.18 2 76.4 1.3 251.8 0.8 2.8 14.9 42.6
24 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-320 7.40 17 73.6 1.3 261.6 0.7 3.3 15.4 41.6
25 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-321 7.85 5 74.5 1.3 244.8 0.9 2.5 14.5 42.6
26 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-324 5.95 81 74.8 1.0 251.0 0.5 3.2 15.3 36.8
27 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-325 7.39 18 76.8 0.0 248.6 0.8 3.0 14.2 40.5
28 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-330 5.88 85 74.6 1.3 243.8 0.6 2.7 15.2 42.3
29 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-359 5.77 90 74.2 2.8 249.3 0.7 2.4 15.2 45.1
30 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-379 5.39 94 75.1 1.3 251.1 0.6 3.3 13.7 43.9
31 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-405 7.26 24 76.1 1.5 246.7 0.7 3.0 15.3 39.6
32 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-409 7.15 33 76.8 1.4 265.1 0.4 2.8 14.1 41.3
33 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-410 5.96 79 73.1 1.3 248.6 0.7 3.0 16.2 42.4
34 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-419 6.32 70 76.8 1.3 247.9 0.6 2.2 15.2 38.2
35 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-422 5.88 84 75.5 1.0 241.5 0.6 3.2 14.5 39.4
36 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-437 6.55 61 75.1 2.0 238.6 0.7 2.1 14.9 40.5
37 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-439 7.29 22 76.0 1.8 254.7 0.9 2.5 14.4 41.7
38 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-445 6.29 73 75.0 1.0 249.4 0.8 3.0 15.6 38.8
39 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-482 5.96 80 73.1 1.8 253.8 0.8 3.0 14.4 43.3
40 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-501 7.24 25 75.7 1.1 241.3 0.5 3.0 14.5 44.2
41 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-540 4.73 100 76.9 0.8 234.9 0.5 2.7 14.4 38.1
42 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-559 4.89 99 74.4 1.5 245.4 0.5 3.8 15.2 40.9
43 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-560 7.51 12 76.9 1.3 263.1 0.6 2.9 14.5 42.8
44 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-603 7.14 34 75.9 0.3 254.2 0.7 3.5 14.4 38.7
45 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-658 7.69 8 76.3 0.3 246.6 0.6 2.9 15.2 42.5
46 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-675 7.59 9 76.1 0.8 256.9 0.9 2.5 14.4 43.3
47 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-703 4.25 101 73.6 1.3 242.0 0.4 2.9 15.0 34.3
48 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-705 6.65 54 75.4 0.8 254.5 0.9 2.4 14.5 39.4
49 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-728 6.14 76 73.5 1.8 258.1 0.7 2.9 14.5 40.5
50 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-767 5.53 93 74.4 0.8 243.7 0.5 3.0 15.3 44.6
51 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-8 6.37 66 76.1 1.8 246.0 0.6 4.2 13.5 39.9  
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Entry Pedigree Grain Rank Anth ASI Plant EPP Grain MoistureKernel 
Yield date height texure content weight

Mg/ha # d d cm # 1 to 5 % g
52 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-32 6.34 69 75.0 1.3 253.0 0.5 3.8 15.5 42.9
53 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-34 7.04 40 76.2 1.3 223.7 0.7 3.7 14.1 45.5
54 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-75 7.83 6 73.5 1.5 247.9 0.7 3.5 14.0 42.1
55 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-79 7.16 32 76.1 1.0 244.1 0.8 3.3 13.7 39.4
56 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-87 7.70 7 74.0 1.8 259.4 0.7 4.0 14.4 41.0
57 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-95 5.85 86 75.8 0.8 245.9 0.6 3.0 14.4 47.2
58 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-101 5.81 87 78.0 -1.3 251.9 0.4 3.0 14.3 43.4
59 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-108 6.34 68 77.8 0.3 245.8 0.7 3.0 15.4 41.5
60 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-110 7.19 29 77.5 0.5 260.2 0.8 3.1 14.5 44.4
61 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-130 6.65 53 76.4 1.0 253.7 0.7 2.8 14.7 43.6
62 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-173 5.91 82 75.7 0.8 248.7 0.7 3.0 14.7 42.5
63 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-174 7.05 39 77.1 -0.8 255.9 0.7 3.3 13.6 41.5
64 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-211 6.83 46 75.7 1.3 254.5 0.5 3.0 15.4 42.8
65 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-215 7.40 16 75.5 2.0 261.2 0.6 3.7 14.4 42.3
66 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-227 4.99 97 75.3 1.3 252.6 0.8 2.7 14.3 39.5
67 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-233 7.45 14 74.5 1.3 236.0 0.6 3.7 15.5 41.8
68 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-267 6.89 45 74.2 0.0 248.7 0.6 3.0 14.2 43.9
69 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-268 7.00 43 75.2 1.8 263.5 0.6 3.2 16.1 40.4
70 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-269 6.58 59 75.7 0.8 245.5 0.4 3.3 14.1 43.1
71 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-281 7.35 21 75.2 0.3 243.3 0.7 4.0 14.1 45.1
72 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-288 7.03 41 75.2 0.8 243.9 0.9 3.4 14.5 42.7
73 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-295 7.95 4 75.9 1.5 256.9 0.8 3.0 15.3 39.2
74 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-308 7.58 11 75.2 1.8 256.4 1.0 3.1 14.5 42.2
75 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-309 6.74 51 77.5 0.5 259.8 0.6 3.0 14.4 45.2
76 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-310 7.50 13 74.7 0.5 247.4 0.7 3.5 15.3 47.1
77 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-326 6.45 62 76.1 0.8 255.4 0.8 3.3 15.0 41.1
78 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-356 7.07 37 76.4 0.5 253.8 0.8 2.4 15.3 40.8
79 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-372 6.65 55 75.3 1.4 251.9 0.6 3.3 13.6 44.6
80 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-376 6.31 72 76.6 0.8 242.5 0.5 3.0 14.5 41.5
81 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-423 5.18 96 75.2 1.3 243.7 0.6 2.5 14.5 40.4
82 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-427 7.58 10 75.3 0.5 250.0 0.6 3.3 15.5 43.4
83 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-430 6.60 57 74.8 1.0 252.3 0.6 2.9 14.2 39.5
84 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-463 6.37 67 74.8 1.0 255.2 0.8 3.0 15.3 37.5
85 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-467 8.02 3 75.9 1.3 267.2 0.6 2.5 14.6 46.5
86 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-502 5.89 83 75.1 2.5 249.4 0.6 3.0 14.4 38.6
87 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-536 5.78 88 76.6 0.4 263.1 0.4 3.0 15.3 41.4
88 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-561 6.31 71 76.4 0.5 240.9 0.4 3.7 15.5 42.5
89 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-570 6.38 65 75.0 -0.2 259.1 0.5 3.0 14.2 39.4
90 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-585 7.39 19 75.0 0.8 245.4 0.6 2.9 14.3 41.1
91 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-639 6.43 64 75.3 0.8 243.0 0.6 2.5 13.6 41.2
92 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-644 7.03 42 76.2 0.8 258.9 0.7 2.8 15.1 43.5
93 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-661 6.57 60 76.0 0.8 254.1 0.6 3.0 15.5 40.0
94 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-722 7.37 20 75.5 1.3 242.3 0.8 3.2 15.8 46.3
95 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-724 7.17 30 76.0 0.8 268.9 0.8 2.7 16.0 45.6
96 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-733 7.24 26 75.7 1.0 254.9 0.8 2.3 14.5 43.1
97 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-736 7.20 28 75.8 1.8 233.0 0.6 3.0 15.3 43.5
98 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-750 6.15 75 75.7 1.0 248.7 0.4 3.2 15.4 44.6
99 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-758 6.78 49 74.0 1.8 258.6 0.7 2.8 14.5 42.2

100 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-771 7.06 38 74.8 0.8 255.8 0.8 3.1 15.0 38.0
101 CML395/CML444//CML312 5.74 91 75.7 1.5 242.1 0.7 2.9 15.3 39.7
102 CML395/CML444//[NAW5867/P49-SR(S2#)//NAW5867]FS#-48-2-2-BBB 4.95 98 76.2 1.8 227.6 0.7 3.3 14.1 34.2

Mean 6.63 75.6 1.0 249.6 0.7 3.1 14.8 41.6
P 0.01 0.0 0.6 0.1 0.6 0.0 0.7 0.7

MSE 2.91 4.6 1.5 311.3 0.0 0.3 0.8 18.6
CV % 21.14 2.3 128.2 6.2 28.2 7.8 0.2 11.1

Anth date, anthesis date; ASI, anthesis-silking interval; EPP, ears per plant  
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APPENDIX L 

GRAIN YIELD AND ITS COMPONENTS FOR POPULATION CML312 x NAW 

EVALUATED ACROSS DROUGHT ENVIRONMENTS IN MALAWI AND 

ZIMBABWE IN 2004 

Entry Pedigree Grain Rank Anth ASI Plant EPP Moisture Kernel
yield date height content weight

Mg/ha # d d cm # % g
1 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-9 0.71 55 90.4 3.1 185.2 0.2 20.3 39.4
2 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-10 0.68 61 92.1 3.5 166.9 0.4 19.3 37.5
3 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-13 0.67 64 90.8 4.6 189.6 0.4 18.7 36.3
4 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-38 0.79 36 90.1 4.6 178.2 0.3 20.1 32.6
5 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-45 0.87 26 90.4 4.1 189.6 0.4 20.5 41.8
6 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-58 1.07 8 90.2 3.9 172.0 0.3 22.7 39.0
7 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-63 0.65 68 95.0 3.1 175.1 0.4 23.1 39.8
8 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-92 0.58 80 91.3 8.2 184.9 0.2 21.0 39.3
9 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-107 0.70 57 88.9 4.5 177.9 0.4 17.1 33.9

10 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-167 1.20 2 91.1 2.5 190.6 0.5 21.3 33.4
11 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-201 0.80 33 91.1 4.6 176.3 0.4 20.4 33.3
12 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-202 0.85 29 90.7 2.8 171.0 0.3 20.5 31.9
13 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-224 0.47 95 90.4 6.5 187.1 0.3 21.2 37.5
14 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-235 0.71 54 93.6 3.7 175.2 0.1 23.1 42.0
15 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-249 0.75 45 91.2 5.9 172.9 0.4 18.3 38.6
16 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-258 0.89 25 88.7 3.9 190.4 0.4 18.6 34.1
17 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-270 1.12 6 87.9 7.9 193.3 0.5 17.2 32.4
18 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-273 0.94 21 91.4 2.9 183.2 0.2 26.3 37.6
19 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-279 0.64 69 89.0 4.7 181.5 0.4 16.3 30.5
20 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-286 0.60 75 91.2 4.3 175.0 0.2 15.6 37.6
21 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-287 0.58 79 90.7 2.9 178.0 0.2 19.3 38.5
22 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-292 0.73 52 91.9 1.6 183.0 0.3 18.3 29.9
23 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-315 0.75 43 89.4 5.8 190.4 0.4 19.3 36.0
24 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-320 1.19 3 88.7 5.1 178.2 0.5 16.4 35.4
25 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-321 1.16 4 88.1 4.1 181.8 0.5 19.3 40.3
26 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-324 1.13 5 90.6 4.6 189.5 0.3 19.2 36.1
27 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-325 0.76 41 90.2 5.1 184.7 0.3 14.3 36.3
28 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-330 0.47 94 92.0 12.4 182.6 0.3 19.9 32.2
29 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-359 0.74 47 90.5 4.8 182.7 0.3 19.0 34.7
30 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-379 0.79 35 91.9 3.8 183.3 0.3 20.6 30.4
31 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-405 0.53 89 91.1 4.6 185.8 0.3 20.4 40.0
32 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-409 1.26 1 92.1 4.5 184.5 0.4 19.5 32.4
33 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-410 0.79 34 91.0 3.0 184.6 0.3 18.9 35.9
34 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-419 0.82 30 90.1 6.4 182.2 0.4 24.0 35.3
35 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-422 1.04 12 90.9 7.2 185.3 0.3 19.0 25.2
36 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-437 0.74 48 90.3 6.9 179.8 0.4 19.2 31.7
37 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-439 0.74 46 91.9 5.4 182.3 0.4 21.3 30.3
38 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-445 0.52 90 93.4 6.9 165.5 0.4 20.1 41.6
39 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-482 0.50 93 90.0 3.4 181.7 0.2 19.0 48.4
40 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-501 0.73 50 90.8 5.7 178.5 0.3 20.2 32.5
41 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-540 0.36 100 89.3 5.2 157.4 0.1 19.1 32.0
42 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-559 0.55 84 94.2 4.9 172.3 0.2 22.0 33.8
43 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-560 0.86 27 91.3 3.3 180.9 0.3 20.5 32.6
44 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-603 0.98 16 91.0 4.1 180.5 0.4 22.3 33.7
45 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-658 0.66 67 92.3 4.4 178.7 0.3 22.6 37.1
46 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-675 0.53 88 92.0 5.8 185.3 0.3 24.2 30.6
47 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-703 0.96 18 91.0 8.9 188.9 0.4 22.2 28.6
48 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-705 1.07 10 91.4 2.3 173.8 0.3 20.1 31.8
49 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-728 0.95 20 88.9 4.4 191.1 0.4 19.2 33.3
50 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-767 0.46 96 92.8 5.4 181.3 0.2 17.9 34.1
51 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-8 0.54 86 90.0 5.9 168.5 0.4 21.3 36.7  
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Entry Pedigree Grain Rank Anth ASI Plant EPP Moisture Kernel
yield date height content weight

Mg/ha # d d cm # % g
52 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-32 0.98 15 89.7 5.8 187.1 0.4 22.1 34.4
53 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-34 0.59 78 91.8 5.2 180.6 0.2 21.1 36.4
54 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-75 0.92 22 90.9 0.8 185.2 0.3 18.7 32.7
55 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-79 0.64 70 92.3 5.3 192.6 0.2 21.3 37.3
56 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-87 0.78 40 90.2 7.7 178.6 0.3 20.6 32.5
57 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-95 0.34 102 92.8 8.9 156.7 0.1 19.9 33.6
58 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-101 0.59 77 92.8 7.9 187.9 0.3 22.0 38.2
59 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-108 0.57 81 90.7 12.7 172.8 0.3 21.3 32.8
60 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-110 0.66 66 90.5 4.1 178.8 0.3 20.7 34.9
61 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-130 0.75 44 93.2 1.7 195.2 0.2 18.3 30.0
62 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-173 0.70 58 91.6 3.6 189.5 0.3 22.2 39.8
63 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-174 0.35 101 95.4 6.0 151.5 0.3 21.1 37.8
64 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-211 0.96 19 89.8 7.5 187.8 0.3 21.6 32.9
65 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-215 0.85 28 91.7 2.8 179.3 0.4 18.9 35.5
66 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-227 0.81 32 94.5 6.3 178.4 0.2 17.0 40.9
67 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-233 0.68 60 90.0 5.9 196.8 0.4 22.5 36.3
68 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-267 0.90 24 90.8 4.2 178.4 0.4 18.2 36.6
69 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-268 0.56 83 91.5 5.5 176.9 0.2 22.6 38.4
70 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-269 0.40 97 92.6 6.1 177.1 0.2 23.6 45.8
71 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-281 0.50 91 91.5 5.0 182.9 0.2 20.9 31.8
72 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-288 0.98 17 92.0 4.7 176.0 0.3 19.5 32.0
73 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-295 1.08 7 91.9 3.9 165.5 0.5 18.6 26.2
74 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-308 0.75 42 93.9 5.3 172.6 0.3 21.2 33.2
75 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-309 0.90 23 89.9 7.9 181.4 0.4 22.1 32.3
76 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-310 0.63 71 92.5 6.1 172.2 0.2 16.6 32.1
77 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-326 0.71 56 89.1 7.6 167.9 0.3 18.6 35.4
78 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-356 0.67 63 92.1 5.5 163.5 0.3 23.5 36.8
79 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-372 0.53 87 92.9 8.0 174.2 0.2 15.3 31.0
80 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-376 0.79 38 92.1 3.9 166.8 0.5 18.5 29.8
81 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-423 0.73 51 92.8 5.7 171.7 0.3 23.2 34.6
82 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-427 0.63 72 91.8 7.0 175.6 0.2 24.2 47.3
83 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-430 0.79 37 91.2 6.9 178.1 0.4 20.9 34.0
84 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-463 0.66 65 91.7 5.5 186.3 0.3 22.3 33.3
85 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-467 1.07 9 92.5 6.3 184.6 0.4 23.2 40.6
86 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-502 0.82 31 91.3 4.5 190.7 0.2 18.6 41.0
87 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-536 0.63 72 92.9 3.2 172.1 0.4 14.0 32.8
88 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-561 0.57 82 91.6 4.6 162.8 0.2 13.1 27.4
89 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-570 0.70 59 89.1 4.1 192.7 0.4 20.4 34.5
90 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-585 0.72 53 91.3 6.4 183.4 0.3 19.3 31.3
91 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-639 0.67 62 90.9 6.9 184.7 0.3 19.3 35.3
92 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-644 0.74 49 91.5 4.8 175.7 0.3 19.1 35.9
93 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-661 0.78 39 90.5 4.5 185.6 0.2 21.3 35.2
94 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-722 1.03 13 90.4 8.7 194.2 0.3 16.1 36.6
95 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-724 0.50 92 89.4 5.2 188.5 0.3 21.1 33.6
96 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-733 1.03 14 90.2 5.2 171.3 0.4 20.6 32.3
97 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-736 0.62 74 91.0 5.1 184.2 0.3 21.4 39.4
98 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-750 0.36 99 92.0 4.3 183.3 0.2 21.3 35.7
99 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-758 0.55 85 91.8 4.2 192.7 0.3 18.0 42.2

100 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-771 0.60 76 91.8 9.4 183.7 0.3 24.1 37.4
101 CML395/CML444//CML312 1.05 11 89.7 3.6 189.6 0.4 20.2 32.0
102 CML395/CML444//[NAW5867/P49-SR(S2#)//NAW5867]FS#-48-2-2-BBB 0.38 98 95.3 3.7 152.2 0.2 19.4 37.6

Mean 0.74 91.3 4.1 180.0 0.3 20.3 35.3
P 0.99 0.2 0.0 0.6 0.7 0.6 0.7

MSE 0.17 10.6 10.4 432.7 0.0 10.0 32.8
CV % 72.68 3.3 56.6 11.7 57.5 16.1 17.0

Anth date, anthesis date; ASI, anthesis-silking interval; EPP, ears per plant.  
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APPENDIX M 

DROUGHT TOLERANCE INDEX FOR GRAIN YIELD FOR CML441 x 

CML444 GROWN IN MALAWI AND ZIMBABWE IN 2004 

Chitala- Malawi Chiredzi-Zimbabwe
Grain yield Grain yield
Mg/ha Mg/ha

Entry Pedigree Drought  Rank DTI (%) Drought Rank DTI (%)
1 CML312/CML442//[CML441/CML444]-B-1 2.91 9 34.8 0.24 60 95.7
2 CML312/CML442//[CML441/CML444]-B-7 2.03 60 58.4 0.18 70 96.4
3 CML312/CML442//[CML441/CML444]-B-28 1.52 83 63.9 0.31 41 95.3
4 CML312/CML442//[CML441/CML444]-B-31 2.46 25 54.1 0.02 98 99.7
5 CML312/CML442//[CML441/CML444]-B-40 1.93 65 61.3 0.20 67 96.4
6 CML312/CML442//[CML441/CML444]-B-72 2.43 27 50.2 0.11 86 98.5
7 CML312/CML442//[CML441/CML444]-B-103 2.34 31 53.8 0.37 30 94.5
8 CML312/CML442//[CML441/CML444]-B-121 2.08 55 58.4 0.67 9 91.4
9 CML312/CML442//[CML441/CML444]-B-133 1.41 91 75.8 0.29 50 91.1

10 CML312/CML442//[CML441/CML444]-B-135 1.92 66 53.7 0.11 87 97.9
11 CML312/CML442//[CML441/CML444]-B-147 0.82 98 87.4 0.29 49 96.4
12 CML312/CML442//[CML441/CML444]-B-148 1.83 73 62.1 0.73 5 88.4
13 CML312/CML442//[CML441/CML444]-B-157 0.46 99 91.8 0.31 42 92.1
14 CML312/CML442//[CML441/CML444]-B-158 1.91 68 57.1 0.45 23 89.6
15 CML312/CML442//[CML441/CML444]-B-167 2.05 56 67.4 0.23 62 96.5
16 CML312/CML442//[CML441/CML444]-B-177 1.21 94 75.3 0.16 78 97.8
17 CML312/CML442//[CML441/CML444]-B-188 2.42 28 51.0 0.16 77 97.6
18 CML312/CML442//[CML441/CML444]-B-203 2.21 40 61.4 0.00 100 100.0
19 CML312/CML442//[CML441/CML444]-B-205 1.74 76 58.4 0.15 80 98.1
20 CML312/CML442//[CML441/CML444]-B-234 2.23 38 51.5 0.29 52 95.9
21 CML312/CML442//[CML441/CML444]-B-238 2.63 19 45.7 0.25 56 96.7
22 CML312/CML442//[CML441/CML444]-B-332 2.18 43 35.0 0.35 33 95.1
23 CML312/CML442//[CML441/CML444]-B-348 2.44 26 51.1 0.52 17 92.7
24 CML312/CML442//[CML441/CML444]-B-383 2.12 49 25.7 0.24 58 95.0
25 CML312/CML442//[CML441/CML444]-B-392 1.50 84 74.1 0.44 24 92.1
26 CML312/CML442//[CML441/CML444]-B-404 2.65 18 62.3 0.17 75 96.3
27 CML312/CML442//[CML441/CML444]-B-437 1.05 96 85.0 0.22 64 97.3
28 CML312/CML442//[CML441/CML444]-B-445 1.87 71 62.2 0.09 89 98.3
29 CML312/CML442//[CML441/CML444]-B-453 1.72 77 62.6 1.29 1 81.5
30 CML312/CML442//[CML441/CML444]-B-465 3.26 2 26.3 0.34 36 95.3
31 CML312/CML442//[CML441/CML444]-B-473 1.86 72 63.1 0.32 40 96.2
32 CML312/CML442//[CML441/CML444]-B-481 1.52 82 67.6 0.23 61 96.5
33 CML312/CML442//[CML441/CML444]-B-483 1.58 81 72.5 0.27 54 95.5
34 CML312/CML442//[CML441/CML444]-B-487 2.93 7 47.9 0.31 43 94.3
35 CML312/CML442//[CML441/CML444]-B-493 3.02 4 24.1 0.49 20 92.1
36 CML312/CML442//[CML441/CML444]-B-494 2.59 20 60.2 0.06 94 99.1
37 CML312/CML442//[CML441/CML444]-B-501 2.76 15 37.2 0.15 82 98.0
38 CML312/CML442//[CML441/CML444]-B-505 2.81 12 31.8 0.04 96 99.3
39 CML312/CML442//[CML441/CML444]-B-514 1.45 88 71.4 0.34 38 94.9
40 CML312/CML442//[CML441/CML444]-B-534 1.41 90 71.2 0.11 87 98.0
41 CML312/CML442//[CML441/CML444]-B-603 2.25 36 54.7 0.29 48 94.9
42 CML312/CML442//[CML441/CML444]-B-662 2.95 6 17.8 0.78 3 87.4
43 CML312/CML442//[CML441/CML444]-B-679 2.91 8 39.6 0.35 32 94.3
44 CML312/CML442//[CML441/CML444]-B-690 2.03 58 53.1 0.77 4 88.0
45 CML312/CML442//[CML441/CML444]-B-749 2.19 42 42.4 0.72 6 89.6
46 CML312/CML442//[CML441/CML444]-B-772 1.41 89 73.1 0.35 34 94.7
47 CML312/CML442//[CML441/CML444]-B-789 2.53 23 51.9 0.02 97 99.7
48 CML312/CML442//[CML441/CML444]-B-817 2.14 47 59.1 0.36 31 93.3
49 CML312/CML442//[CML441/CML444]-B-2 2.81 11 37.6 0.07 93 99.0
50 CML312/CML442//[CML441/CML444]-B-12-# 1.94 64 64.4 1.12 2 85.3  
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Chitala- Malawi Chiredzi-Zimbabwe
Grain yield Grain yield
Mg/ha Mg/ha

Entry Pedigree Drought  Rank DTI (%) Drought Rank DTI (%)
51 CML312/CML442//[CML441/CML444]-B-15 1.60 80 21.6 0.39 27 93.5
52 CML312/CML442//[CML441/CML444]-B-51 1.67 78 72.7 0.18 71 97.0
53 CML312/CML442//[CML441/CML444]-B-55 2.08 53 57.2 0.14 83 98.3
54 CML312/CML442//[CML441/CML444]-B-89 1.82 74 66.5 0.30 44 95.2
55 CML312/CML442//[CML441/CML444]-B-106 1.91 67 63.8 0.00 99 99.9
56 CML312/CML442//[CML441/CML444]-B-107 1.60 79 62.0 0.19 68 97.2
57 CML312/CML442//[CML441/CML444]-B-165 1.88 70 70.4 0.59 14 91.9
58 CML312/CML442//[CML441/CML444]-B-219 2.77 14 40.0 0.22 65 96.3
59 CML312/CML442//[CML441/CML444]-B-273 1.98 62 53.0 0.28 53 96.1
60 CML312/CML442//[CML441/CML444]-B-277 2.24 37 55.4 0.56 15 90.5
61 CML312/CML442//[CML441/CML444]-B-299 2.78 13 33.4 0.20 66 97.5
62 CML312/CML442//[CML441/CML444]-B-320 2.66 16 36.6 0.34 37 94.4
63 CML312/CML442//[CML441/CML444]-B-324 2.01 61 62.8 0.05 95 99.2
64 CML312/CML442//[CML441/CML444]-B-337 2.84 10 38.7 0.40 26 92.5
65 CML312/CML442//[CML441/CML444]-B-341 2.39 30 34.0 0.12 85 97.9
66 CML312/CML442//[CML441/CML444]-B-365 2.18 44 57.9 0.51 18 93.0
67 CML312/CML442//[CML441/CML444]-B-375 3.00 5 34.9 0.64 13 90.1
68 CML312/CML442//[CML441/CML444]-B-380 1.46 86 68.7 0.70 7 87.9
69 CML312/CML442//[CML441/CML444]-B-398 2.08 54 53.7 0.38 28 94.1
70 CML312/CML442//[CML441/CML444]-B-412 2.19 41 55.0 0.15 81 98.1
71 CML312/CML442//[CML441/CML444]-B-432 1.46 87 73.9 0.47 22 90.4
72 CML312/CML442//[CML441/CML444]-B-439 1.47 85 61.8 0.26 55 96.2
73 CML312/CML442//[CML441/CML444]-B-459 3.03 3 35.5 0.07 91 98.8
74 CML312/CML442//[CML441/CML444]-B-482 2.34 32 50.0 0.07 92 99.1
75 CML312/CML442//[CML441/CML444]-B-497 1.32 92 72.4 0.19 69 97.1
76 CML312/CML442//[CML441/CML444]-B-500 2.11 50 63.5 0.42 25 93.4
77 CML312/CML442//[CML441/CML444]-B-513 2.05 57 60.4 0.08 90 99.0
78 CML312/CML442//[CML441/CML444]-B-521 1.89 69 59.4 0.32 39 95.2
79 CML312/CML442//[CML441/CML444]-B-530 1.11 95 75.3 0.37 29 94.1
80 CML312/CML442//[CML441/CML444]-B-531 2.66 17 46.6 0.22 63 96.9
81 CML312/CML442//[CML441/CML444]-B-587 0.93 97 71.6 0.17 74 97.1
82 CML312/CML442//[CML441/CML444]-B-598 2.27 34 56.8 0.30 47 95.8
83 CML312/CML442//[CML441/CML444]-B-608 2.47 24 60.9 0.66 10 89.3
84 CML312/CML442//[CML441/CML444]-B-614 2.56 21 44.2 0.48 21 93.2
85 CML312/CML442//[CML441/CML444]-B-615 3.58 1 17.6 0.25 57 96.6
86 CML312/CML442//[CML441/CML444]-B-637 2.11 51 55.9 0.66 11 88.2
87 CML312/CML442//[CML441/CML444]-B-639 2.40 29 53.3 0.64 12 87.5
88 CML312/CML442//[CML441/CML444]-B-660 2.16 45 53.2 0.18 72 97.6
89 CML312/CML442//[CML441/CML444]-B-694 1.79 75 61.6 0.30 46 95.9
90 CML312/CML442//[CML441/CML444]-B-712 2.09 52 57.6 0.30 45 95.9
91 CML312/CML442//[CML441/CML444]-B-726 2.30 33 52.9 0.68 8 88.8
92 CML312/CML442//[CML441/CML444]-B-752 0.36 100 89.9 0.29 51 96.1
93 CML312/CML442//[CML441/CML444]-B-755 2.14 48 46.5 0.49 19 92.7
94 CML312/CML442//[CML441/CML444]-B-766 2.15 46 49.8 0.13 84 96.0
95 CML312/CML442//[CML441/CML444]-B-796 2.55 22 42.6 0.24 58 96.3
96 SC513 2.22 39 57.8 0.35 35 93.2
97 CML312/CML442//CML441 2.03 59 61.8 0.15 79 97.3
98 CML312/CML442//CML444 1.96 63 62.9 0.18 73 97.4
99 CML312/CML442//[CML441/CML444]-B-164 2.26 35 55.1 0.53 16 92.9
100 CML312/CML442//[CML441/CML444]-B-164 1.32 93 73.6 0.16 76 97.7

DTI, drought tolerance index  
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APPENDIX N 

DROUGHT TOLERANCE INDEX FOR GRAIN YIELD FOR CML440 x 

COMPE GROWN IN MALAWI AND ZIMBABWE IN 2004 

Chitala-Malawi Chiredzi-Zimbabwe
Grain yield Grain yield
Mg/ha Mg/ha

Entry Pedigree Drought  Rank DTI(%) Drought  Rank DTI (%)
1 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-1 2.78 40 35.1 2.23 22 59.1
2 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-8 1.73 92 51.0 1.26 89 70.2
3 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-13 2.75 44 34.0 1.69 62 65.6
4 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-15 2.98 24 33.7 1.88 49 61.2
5 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-20 2.50 60 27.8 1.62 64 63.0
6 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-21 3.07 14 -1.9 1.37 83 72.5
7 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-37 2.36 67 33.3 1.49 69 66.8
8 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-40 2.89 28 16.7 1.95 42 59.3
9 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-51 2.37 66 47.4 1.06 97 79.3

10 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-78 2.23 74 53.2 2.67 6 45.4
11 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-87 2.98 23 26.3 0.54 100 89.0
12 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-89 3.26 9 -41.6 1.30 85 75.4
13 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-118 2.58 55 17.2 2.37 14 45.6
14 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-138 2.37 65 18.5 1.90 48 60.8
15 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-141 1.73 91 61.1 2.09 32 62.2
16 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-144 2.51 58 35.6 2.03 35 61.6
17 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-150 2.17 77 44.6 1.27 87 71.3
18 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-151 2.83 36 4.3 2.07 34 56.8
19 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-167 2.56 57 48.2 2.51 9 35.8
20 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-183 4.27 1 16.2 1.22 93 71.1
21 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-232 2.83 33 25.6 2.70 5 30.7
22 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-247 3.68 4 21.1 1.58 67 66.9
23 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-318 3.16 11 -14.2 1.79 54 64.1
24 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-323 1.91 88 47.0 1.46 75 70.7
25 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-362 1.94 86 60.2 1.47 74 68.6
26 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-363 1.68 94 45.8 2.31 17 53.6
27 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-365 2.74 45 30.5 2.85 2 35.8
28 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-374 1.57 97 59.8 2.84 3 42.7
29 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-398 2.10 79 33.4 2.42 12 49.2
30 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-410 2.92 26 23.5 2.16 25 38.3
31 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-414 1.72 93 63.2 1.49 70 65.4
32 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-416 2.97 25 -12.5 1.90 47 52.0
33 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-432 2.89 27 31.8 1.40 81 77.0
34 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-437 3.35 8 7.2 2.37 15 56.0
35 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-476 2.02 82 60.0 3.67 1 25.1
36 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-482 3.58 5 9.6 2.46 11 48.4
37 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-502 2.74 46 19.1 1.10 96 77.2
38 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-509 3.83 3 -1.6 2.13 29 57.5
39 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-512 3.48 7 30.0 2.82 4 47.8
40 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-531 1.46 99 19.2 2.03 36 48.8
41 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-537 1.92 87 51.2 1.24 90 75.2
42 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-538 3.04 17 16.1 1.48 73 69.7
43 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-548 2.50 59 28.6 1.42 78 70.5
44 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-559 3.06 16 9.7 1.61 65 68.8
45 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-578 2.68 50 39.9 1.67 63 58.5
46 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-593 2.21 75 63.7 1.73 61 64.3
47 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-622 1.98 85 48.9 2.26 20 42.3
48 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-627 2.15 78 31.8 1.96 40 60.3
49 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-670 2.48 61 53.2 2.16 26 51.1
50 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-675 2.56 56 34.9 1.40 82 74.4
51 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-16 2.79 39 17.5 1.60 66 63.3  
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Chitala-Malawi Chiredzi-Zimbabwe
Grain yield Grain yield
Mg/ha Mg/ha

Entry Pedigree Drought  Rank DTI(%) Drought  Rank DTI (%)
52 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-18 2.83 37 11.0 0.00 101 100.0
53 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-24 2.74 47 26.7 1.74 58 61.4
54 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-30 2.68 51 48.0 1.27 88 72.9
55 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-43 2.87 30 3.0 2.09 33 56.4
56 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-55 1.35 100 51.8 1.23 92 72.9
57 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-75 1.59 96 38.7 1.11 95 79.5
58 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-130 2.00 83 44.2 1.58 68 69.0
59 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-132 2.60 54 42.8 2.61 7 39.9
60 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-134 3.53 6 -40.2 0.75 99 83.5
61 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-145 2.40 63 42.7 1.74 59 55.8
62 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-147 1.98 84 45.0 1.23 91 72.6
63 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-149 2.77 41 30.9 1.29 86 72.7
64 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-163 3.03 18 -31.1 1.95 44 64.8
65 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-173 2.84 32 18.1 1.83 51 62.5
66 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-218 1.06 101 68.8 1.48 72 73.8
67 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-276 4.01 2 -18.5 2.60 8 33.3
68 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-292 3.14 12 -29.1 2.38 13 56.9
69 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-303 2.08 80 57.0 2.34 16 48.7
70 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-330 2.28 72 30.2 2.09 31 61.5
71 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-334 2.99 21 -13.2 1.42 77 69.1
72 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-337 2.44 62 39.7 2.13 28 54.8
73 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-348 2.77 42 -8.1 1.93 45 54.3
74 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-366 3.21 10 -19.7 1.81 52 59.2
75 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-381 2.80 38 35.4 1.95 41 60.2
76 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-388 2.66 53 32.0 2.02 38 48.2
77 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-393 2.35 68 42.0 1.45 76 73.6
78 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-400 2.28 71 53.4 1.41 80 71.1
79 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-403 2.28 70 15.1 2.03 37 57.8
80 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-413 2.84 31 23.7 1.74 59 56.9
81 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-421 2.88 29 32.1 1.83 50 64.6
82 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-438 3.03 19 30.1 0.89 98 82.5
83 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-440 2.06 81 61.1 2.10 30 55.9
84 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-447 1.88 89 54.6 2.48 10 56.4
85 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-451 2.35 69 34.6 2.21 23 59.9
86 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-457 2.73 48 47.7 1.76 56 62.6
87 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-474 0.92 102 81.3 2.28 19 50.4
88 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-493 3.01 20 20.6 2.30 18 49.6
89 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-499 2.21 76 41.9 1.95 43 58.5
90 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-513 1.87 90 43.5 2.19 24 57.6
91 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-522 3.06 15 8.6 1.99 39 61.7
92 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-533 1.63 95 39.0 1.31 84 74.9
93 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-535 2.83 34 49.5 1.76 55 67.9
94 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-536 3.08 13 35.5 1.74 57 65.2
95 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-543 2.99 22 -41.8 1.92 46 62.5
96 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-560 1.53 98 64.5 1.49 71 68.8
97 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-572 2.68 52 46.8 2.24 21 51.1
98 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-597 2.83 35 6.7 1.41 79 67.2
99 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-631 2.24 73 35.1 2.16 27 56.5

100 CML395/CML444//[CML440/[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-B]-B-638 2.39 64 38.5 1.81 53 60.1
101 CML395/CML444//CML440 2.76 43 38.3 1.20 94 68.7
102 CML395/CML444//[COMPE2/P43-SR//COMPE2]FS#-20-1-1-B-1-BBB 2.71 49 29.2 0.00 101 100.0

DTI, drought tolerance index  
 

 

 



   

 

222

APPENDIX O 

DROUGHT TOLERANCE INDEX FOR GRAIN YIELD FOR CML444 x K64R 

GROWN IN MALAWI AND ZIMBABWE IN 2004 

Chitala-Malawi Chiredzi-Zimbabwe
Grain yield Grain yield
(Mg/ha) (Mg/ha)

Entry Pedigree Drought Rank DTI (%) Drought Rank DTI (%)
1 CML312/CML442//[K64R/CML444]-B-3 2.64 4 51.0 0.16 58 97.2
2 CML312/CML442//[K64R/CML444]-B-7 3.26 1 23.9 0.19 53 95.8
3 CML312/CML442//[K64R/CML444]-B-23 2.04 35 57.7 0.13 65 97.9
4 CML312/CML442//[K64R/CML444]-B-32 2.06 33 48.1 0.02 88 99.6
5 CML312/CML442//[K64R/CML444]-B-34 1.37 82 70.9 0.12 68 97.7
6 CML312/CML442//[K64R/CML444]-B-36 1.96 43 63.2 0.30 21 94.5
7 CML312/CML442//[K64R/CML444]-B-44 2.07 31 61.4 0.19 52 96.4
8 CML312/CML442//[K64R/CML444]-B-66 2.06 32 57.2 0.20 50 95.7
9 CML312/CML442//[K64R/CML444]-B-73 2.21 23 59.3 0.47 6 88.3

10 CML312/CML442//[K64R/CML444]-B-93 1.28 86 67.2 0.35 15 91.9
11 CML312/CML442//[K64R/CML444]-B-94 1.35 83 70.2 0.31 19 93.0
12 CML312/CML442//[K64R/CML444]-B-115 1.83 51 50.1 0.25 36 95.2
13 CML312/CML442//[K64R/CML444]-B-126 1.71 60 60.5 0.44 8 91.6
14 CML312/CML442//[K64R/CML444]-B-149 2.41 11 40.5 0.16 59 97.1
15 CML312/CML442//[K64R/CML444]-B-155 1.67 63 58.0 0.41 10 91.7
16 CML312/CML442//[K64R/CML444]-B-160 1.85 49 36.0 0.01 90 99.7
17 CML312/CML442//[K64R/CML444]-B-165 1.93 47 35.3 0.15 61 97.0
18 CML312/CML442//[K64R/CML444]-B-177 1.66 64 67.5 0.25 36 95.8
19 CML312/CML442//[K64R/CML444]-B-205 2.17 25 46.5 0.29 27 94.3
20 CML312/CML442//[K64R/CML444]-B-226 2.01 40 52.8 0.00 93 100.0
21 CML312/CML442//[K64R/CML444]-B-249 1.80 54 60.9 0.55 3 87.2
22 CML312/CML442//[K64R/CML444]-B-251 1.74 58 62.3 0.27 32 94.3
23 CML312/CML442//[K64R/CML444]-B-274 1.43 74 74.4 0.32 17 93.4
24 CML312/CML442//[K64R/CML444]-B-292 1.57 69 69.5 0.26 35 95.6
25 CML312/CML442//[K64R/CML444]-B-346 2.03 38 63.0 0.30 23 93.5
26 CML312/CML442//[K64R/CML444]-B-351 2.49 7 58.0 0.20 51 95.7
27 CML312/CML442//[K64R/CML444]-B-407 2.02 39 51.9 0.09 77 98.3
28 CML312/CML442//[K64R/CML444]-B-427 1.21 89 76.4 0.22 45 94.9
29 CML312/CML442//[K64R/CML444]-B-439 1.68 62 71.6 0.28 31 95.6
30 CML312/CML442//[K64R/CML444]-B-456 2.49 6 53.7 0.08 79 98.8
31 CML312/CML442//[K64R/CML444]-B-470 1.93 46 51.5 0.00 93 100.0
32 CML312/CML442//[K64R/CML444]-B-487 1.34 84 72.4 0.30 22 94.4
33 CML312/CML442//[K64R/CML444]-B-497 1.77 57 66.5 0.22 46 95.2
34 CML312/CML442//[K64R/CML444]-B-530 1.14 91 70.7 0.27 33 95.1
35 CML312/CML442//[K64R/CML444]-B-550 1.95 44 56.1 0.08 78 98.5
36 CML312/CML442//[K64R/CML444]-B-570 1.11 92 78.8 0.37 11 92.2
37 CML312/CML442//[K64R/CML444]-B-607 2.34 18 57.0 0.35 14 93.3
38 CML312/CML442//[K64R/CML444]-B-612 2.42 10 52.2 0.25 39 95.0
39 CML312/CML442//[K64R/CML444]-B-621 1.79 56 67.8 0.22 44 95.4
40 CML312/CML442//[K64R/CML444]-B-631 1.00 96 76.5 0.19 55 96.5
41 CML312/CML442//[K64R/CML444]-B-639 2.33 19 53.2 0.03 86 99.5
42 CML312/CML442//[K64R/CML444]-B-693 2.14 27 52.1 0.23 41 96.3
43 CML312/CML442//[K64R/CML444]-B-708 2.35 17 47.5 0.54 4 88.6
44 CML312/CML442//[K64R/CML444]-B-717 2.35 16 32.7 0.04 84 99.2
45 CML312/CML442//[K64R/CML444]-B-718 1.28 87 69.1 0.25 38 95.9
46 CML312/CML442//[K64R/CML444]-B-753 1.50 73 75.8 0.37 12 94.4
47 CML312/CML442//[K64R/CML444]-B-763 1.22 88 73.1 0.28 29 94.4
48 CML312/CML442//[K64R/CML444]-B-766 2.10 29 52.3 0.20 48 96.4  
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Chitala-Malawi Chiredzi-Zimbabwe
Grain yield Grain yield
(Mg/ha) (Mg/ha)

Entry Pedigree Drought Rank DTI (%) Drought Rank DTI (%)
49 CML312/CML442//[K64R/CML444]-B-33 2.22 21 53.5 0.00 93 100.0
50 CML312/CML442//[K64R/CML444]-B-55 1.82 52 61.1 0.00 93 100.0
51 CML312/CML442//[K64R/CML444]-B-78 2.44 8 44.6 0.15 60 97.6
52 CML312/CML442//[K64R/CML444]-B-85 1.79 55 58.6 0.28 28 95.2
53 CML312/CML442//[K64R/CML444]-B-92 1.63 66 72.5 0.29 25 94.5
54 CML312/CML442//[K64R/CML444]-B-99 2.10 30 49.0 0.14 63 97.2
55 CML312/CML442//[K64R/CML444]-B-120 2.21 22 41.9 0.00 93 100.0
56 CML312/CML442//[K64R/CML444]-B-133 1.86 48 67.0 0.02 87 99.5
57 CML312/CML442//[K64R/CML444]-B-142 1.66 65 71.3 0.46 7 91.3
58 CML312/CML442//[K64R/CML444]-B-146 1.40 77 72.5 0.12 69 97.7
59 CML312/CML442//[K64R/CML444]-B-167 1.40 78 64.4 0.11 71 98.1
60 CML312/CML442//[K64R/CML444]-B-227 2.59 5 48.3 0.42 9 90.7
61 CML312/CML442//[K64R/CML444]-B-233 1.83 50 65.3 0.34 16 93.9
62 CML312/CML442//[K64R/CML444]-B-267 2.64 3 40.7 0.04 83 99.0
63 CML312/CML442//[K64R/CML444]-B-270 1.81 53 47.6 0.29 26 94.2
64 CML312/CML442//[K64R/CML444]-B-302 1.70 61 70.7 0.30 24 95.2
65 CML312/CML442//[K64R/CML444]-B-306 1.59 68 66.1 0.58 2 89.3
66 CML312/CML442//[K64R/CML444]-B-310 1.37 80 64.1 0.00 93 100.0
67 CML312/CML442//[K64R/CML444]-B-322 2.43 9 34.1 0.04 85 99.1
68 CML312/CML442//[K64R/CML444]-B-343 1.42 75 68.6 0.49 5 91.0
69 CML312/CML442//[K64R/CML444]-B-355 2.14 28 45.8 0.21 47 95.8
70 CML312/CML442//[K64R/CML444]-B-360 2.15 26 55.9 0.28 30 94.8
71 CML312/CML442//[K64R/CML444]-B-412 2.03 37 52.7 0.27 34 95.5
72 CML312/CML442//[K64R/CML444]-B-430 1.61 67 64.5 0.11 70 97.6
73 CML312/CML442//[K64R/CML444]-B-458 1.11 93 75.5 0.20 49 96.0
74 CML312/CML442//[K64R/CML444]-B-465 1.55 70 72.1 0.10 76 97.7
75 CML312/CML442//[K64R/CML444]-B-495 1.50 72 68.3 0.18 56 97.3
76 CML312/CML442//[K64R/CML444]-B-511 2.40 12 31.4 0.05 82 99.1
77 CML312/CML442//[K64R/CML444]-B-520 1.10 94 67.5 0.10 75 97.5
78 CML312/CML442//[K64R/CML444]-B-523 2.05 34 61.8 0.18 57 96.2
79 CML312/CML442//[K64R/CML444]-B-543 2.18 24 59.0 0.01 91 99.8
80 CML312/CML442//[K64R/CML444]-B-564 1.73 59 61.6 0.15 62 97.6
81 CML312/CML442//[K64R/CML444]-B-601 2.24 20 45.6 0.31 20 94.2
82 CML312/CML442//[K64R/CML444]-B-606 1.32 85 67.3 0.10 74 98.3
83 CML312/CML442//[K64R/CML444]-B-626 1.37 81 68.7 0.01 92 99.7
84 CML312/CML442//[K64R/CML444]-B-637 1.52 71 69.0 0.36 13 93.3
85 CML312/CML442//[K64R/CML444]-B-643 1.17 90 71.4 0.13 64 97.1
86 CML312/CML442//[K64R/CML444]-B-658 2.38 13 47.4 0.23 43 96.0
87 CML312/CML442//[K64R/CML444]-B-661 1.42 76 71.1 0.13 67 97.4
88 CML312/CML442//[K64R/CML444]-B-669 1.95 45 53.2 0.11 72 98.2
89 CML312/CML442//[K64R/CML444]-B-734 2.38 14 52.2 0.19 54 93.4
90 CML312/CML442//[K64R/CML444]-B-736 2.00 41 66.5 0.32 18 94.1
91 CML312/CML442//[K64R/CML444]-B-750 1.96 42 57.1 0.02 89 99.7
92 CML312/CML442//[K64R/CML444]-B-771 1.03 95 75.7 0.13 66 97.7
93 CML312/CML442//[K64R/CML444]-B-773 0.62 98 87.2 0.06 81 98.7
94 CML312/CML442//[K64R/CML444]-B-774 1.38 79 71.7 0.24 40 95.8
95 CML312/CML442//[K64R/CML444]-B-779 0.90 97 76.3 0.23 42 95.5
96 CML312/CML442//[K64R/CML444]-B-793 2.36 15 64.1 0.10 73 98.4
97 CML312/CML442//K64R 2.03 36 55.2 1.04 1 79.4
98 CML312/CML442//CML444 2.72 2 44.8 0.08 80 98.7

DTI, drought tolerance index  
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APPENDIX P 

DROUGHT TOLERANCE INDEX FOR GRAIN YIELD FOR CML312 x NAW 

GROWN IN MALAWI AND ZIMBABWE IN 2004 

Chitala-Malawi Chiredzi-Zimbabwe
Grain yield Grain yield
(Mg/ha) (Mg/ha)

Entry Pedigree Drought Rank DTI (%) Drought Rank DTI (%)

1 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-9 1.40 35 68.5 0.41 14 91.2
2 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-10 1.20 55 63.1 0.19 43 97.1
3 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-13 0.97 85 80.4 0.25 33 96.4
4 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-38 1.18 59 73.3 0.37 19 94.3
5 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-45 1.35 38 68.2 0.00 90 100.0
6 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-58 1.87 9 68.9 0.43 12 93.7
7 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-63 0.96 87 78.2 0.21 38 97.0
8 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-92 1.03 75 70.7 0.12 57 98.0
9 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-107 1.01 79 67.3 0.21 36 96.4

10 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-167 1.86 10 43.1 0.53 8 90.8
11 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-201 1.33 43 54.5 0.42 13 93.2
12 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-202 1.24 50 68.4 0.28 28 95.7
13 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-224 0.90 89 78.5 0.04 79 99.2
14 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-235 1.97 6 36.1 0.09 66 98.6
15 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-249 1.76 15 41.9 0.00 90 100.0
16 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-258 0.72 98 85.2 0.93 1 84.8
17 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-270 1.58 23 49.7 0.16 50 96.6
18 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-273 2.01 4 17.9 0.02 84 99.7
19 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-279 1.02 78 58.2 0.02 83 99.6
20 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-286 1.11 66 75.7 0.32 24 94.7
21 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-287 1.23 53 73.9 0.19 40 96.7
22 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-292 1.02 77 63.0 0.07 72 98.4
23 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-315 1.37 36 64.9 0.04 80 99.4
24 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-320 1.84 12 37.5 0.56 6 90.9
25 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-321 1.55 29 65.3 0.31 26 93.5
26 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-324 2.17 2 23.9 0.14 53 97.8
27 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-325 1.26 48 66.7 0.07 74 99.0
28 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-330 1.18 58 77.0 0.00 90 100.0
29 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-359 1.34 42 58.9 0.10 63 98.3
30 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-379 1.42 32 66.5 0.15 52 97.2
31 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-405 1.01 81 72.8 0.36 20 94.1
32 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-409 2.19 1 43.6 0.35 21 94.1
33 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-410 1.48 31 52.5 0.00 90 100.0
34 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-419 0.87 93 71.9 0.49 10 92.0
35 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-422 2.06 3 52.9 0.00 90 100.0
36 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-437 1.03 76 76.5 0.78 3 89.8
37 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-439 1.27 47 70.4 0.07 73 98.9
38 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-445 0.64 99 84.0 0.32 25 95.8
39 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-482 1.04 74 73.0 0.27 30 95.1
40 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-501 1.09 69 62.1 0.34 22 93.2
41 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-540 1.01 82 73.9 0.00 90 100.0
42 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-559 1.00 84 76.4 0.05 78 99.3
43 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-560 1.61 21 28.9 0.07 71 98.8
44 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-603 1.66 18 66.5 0.19 41 97.0
45 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-658 1.18 61 78.0 0.07 69 98.8
46 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-675 0.87 91 75.3 0.13 54 97.9
47 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-703 1.56 26 48.1 0.39 17 93.5
48 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-705 1.77 13 64.9 0.00 90 100.0
49 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-728 1.56 27 69.7 0.33 23 95.2
50 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-767 0.89 90 77.6 0.17 45 97.1
51 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-8 0.97 86 75.7 0.20 39 96.4  
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Chitala-Malawi Chiredzi-Zimbabwe
Grain yield Grain yield
(Mg/ha) (Mg/ha)

Entry Pedigree Drought Rank DTI (%) Drought Rank DTI (%)

52 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-32 1.89 8 -11.9 0.11 60 98.3
53 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-34 1.09 68 69.4 0.16 48 97.6
54 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-75 1.75 16 55.9 0.16 49 97.6
55 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-79 1.13 64 63.7 0.00 89 100.0
56 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-87 1.42 33 60.9 0.01 88 99.8
57 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-95 0.57 101 87.1 0.08 68 98.7
58 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-101 1.18 60 67.9 0.03 81 99.5
59 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-108 1.01 80 60.4 0.12 56 98.0
60 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-110 1.08 71 68.2 0.12 58 98.4
61 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-130 1.17 62 71.2 0.48 11 92.8
62 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-173 1.15 63 75.9 0.11 62 98.1
63 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-174 0.73 97 82.5 0.06 77 99.0
64 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-211 1.61 22 67.3 0.22 34 96.3
65 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-215 1.76 14 60.5 0.12 59 98.3
66 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-227 1.62 20 67.0 0.22 35 96.8
67 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-233 1.35 41 64.0 0.10 64 98.3
68 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-267 1.24 52 76.1 0.55 7 91.1
69 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-268 1.07 72 57.0 0.15 51 97.1
70 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-269 0.74 96 83.4 0.00 90 100.0
71 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-281 0.87 92 77.7 0.06 75 99.0
72 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-288 1.95 7 -52.8 0.17 47 97.4
73 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-295 1.84 11 53.3 0.00 90 100.0
74 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-308 1.30 44 74.9 0.19 41 96.5
75 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-309 1.66 17 59.6 0.06 76 98.9
76 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-310 1.13 65 75.2 0.29 27 93.2
77 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-326 1.40 34 64.6 0.08 67 98.7
78 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-356 1.08 70 76.5 0.11 61 98.3
79 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-372 0.91 88 73.2 0.07 70 98.5
80 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-376 0.82 94 79.5 0.40 16 91.7
81 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-423 1.00 83 75.7 0.02 82 99.6
82 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-427 1.10 67 75.0 0.40 15 93.5
83 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-430 1.35 39 69.5 0.39 18 93.1
84 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-463 1.20 56 71.4 0.18 44 96.8
85 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-467 1.58 24 64.4 0.71 4 87.1
86 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-502 1.51 30 61.4 0.02 85 99.6
87 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-536 1.25 49 72.3 0.17 46 97.2
88 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-561 1.55 28 38.8 0.00 90 100.0
89 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-570 1.24 50 64.1 0.27 31 96.5
90 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-585 1.37 37 72.4 0.00 90 100.0
91 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-639 1.30 45 71.4 0.28 29 95.6
92 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-644 1.57 25 54.2 0.02 86 99.7
93 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-661 1.19 57 67.0 0.52 9 92.1
94 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-722 1.99 5 21.3 0.13 55 98.0
95 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-724 0.77 95 58.8 0.21 37 96.4
96 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-733 1.23 54 71.8 0.88 2 82.4
97 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-736 1.27 46 71.4 0.00 90 100.0
98 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-750 0.58 100 90.3 0.09 65 98.6
99 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-758 1.06 73 77.6 0.26 32 95.6

100 CML395/CML444//[[NAW 5867/P49-SR(S2#)//NAW 5867] FS#-48-2-2-BB/CML312]-B-771 1.35 40 62.5 0.02 87 99.7
101 CML395/CML444//CML312 1.63 19 66.4 0.64 5 90.7
102 CML395/CML444//[NAW5867/P49-SR(S2#)//NAW5867]FS#-48-2-2-BBB 0.57 102 85.8 0.00 90 100.0

DTI, drought tolerance index  
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