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ABSTRACT

Robotic Localization of Hostile Networked Radio Sources

Using a Directional Antenna. (December 2005)

Qiang Hu, B.S., Tsinghua University

Co–Chairs of Advisory Committee: Dr. Dezhen Song
Dr. Deepa Kundur

One of the distinguishing characteristics of hostile networked radio sources (e.g.,

enemy sensor network nodes), is that only physical layer information and limited

medium access control (MAC) layer information of the network is observable. We

propose a scheme to localize hostile networked radio sources based on the radio signal

strength and communication protocol pattern analysis using a mobile robot with a

directional antenna. We integrate a Particle Filter algorithm with a new sensing

model which is built on a directional antenna model and Carrier Sense Multiple

Access (CSMA)-based MAC protocol model. we model and analyze the channel

idle probability and busy collision probability as a function of the number of radio

sources in the CSMA protocol modeling. Based on the sensing model, we propose a

particle-filter-based scheme to simultaneously estimate the number and the positions

of networked radio sources. We provide a localization scheme based on the method

of steepest descent for the purpose of performance comparison. Simulation results

demonstrate that our proposed localization scheme has a better success rate than the

scheme based on the steepest descent at different tolerant distances.
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CHAPTER I

INTRODUCTION AND RELATED WORK

In this chapter, we introduce the motivation and approach of problem. The motiva-

tion of this work is described in Section. A. A brief discussion of our scheme is given

in Section. B. Related work is introduced and discussed in Section. C. Finally, an

overview of the rest chapters of the thesis is given in Section. D.

A. Motivation

We address the problem of localizing hostile networked radio sources in this work. By

networked radio sources, we refer to a large class of devices that communicate with

each other via wireless radio, e.g. cellular phones and wireless sensor networks [1]. A

key characteristics of networked radio sources is that they are networked according

to specific communication protocols. Hostile networked radio sources, such as enemy

sensor network nodes, are characterized by that we can only obtain the physical

layer and limited MAC layer information of the network. An example of the hostile

networked radio sources is enemy sensor networks.

Imagine a scenario, there is a sensor network deployed by enemy. We dispatch a

mobile robot equipped with directional Radio Frequency (RF) antenna to search and

destroy the networked radio sources. We need an effective scheme to guide the robot to

accomplish this job. This scenario is shown in Fig. 1. We have several networked radio

sources (e.g., sensor nodes in Fig. 1). A mobile robot with a directional antenna is used

to localizing these radio sources. The mobile robot navigates in the environment and

measures the received RF signal. An algorithm is needed to automatically generate

The journal model is IEEE Transactions on Automatic Control.
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Fig. 1. Robotic localization of hostile radio sources: scenario.

motion command and drive the robot navigating the environment to search and locate

the radio sources according to the received information and current knowledge about

the environment.

In a hostile environment, we cannot decode the received signal to get detailed

information about the network. Therefore, we have no detailed information about the

target network. We do not even know the source of the signal (e.g., the identification

of the sending sensor node). The information we can obtain is the signal strength and

the communication pattern. Our scheme use a mobile robot with a directional antenna

to to localize the networked radio sources based on the received signal strength and

communication pattern analysis. To the best of our knowledge, our scheme is the first

one that combines the RF signal strength and the communication protocol analysis

in the multiple-source localization problem.

This scheme can also be used for applications such as search and rescue, and



3

Fig. 2. Robotic localization of hostile radio sources: particle filter-based approach.

protecting privacy [2], [3]. Typical applications include enemy detection in battlefield

and object tracking for disaster response.

B. Approach

Our localization scheme will generate a sequence of robot motion command to guide

the robot, navigating in the environment and report newly changed signal strength.

To effectively process the information, we integrate a Particle Filter (PF) [4] with a

new sensing model that is built on the characteristics of the directional antenna and

a Carrier Sense Multiple Access (CSMA) [5] protocol model. A system diagram of

our approach is shown in Fig. 2.

The robot used in the scheme is shown in Fig. 3, which is equipped by a Brain-

Stem Moto 1.0 Module from Acroname Inc. [6]. The BrainStem Moto 1.0 Module is

used to control received commands from laptop computer to drive two wheels of the
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Fig. 3. The mobile robot.

Fig. 4. The log periodic dipole array antenna (LPDA).
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Fig. 5. The Crossbow Motes sensor nodes.

robot. Each of the two wheels is equipped with a Nubotics WW-02 Wheel Watcher

[7] to measure the actual speed to the wheel. In addition, the robot carries a Devan-

tech Digital Compass Module [8] to measure the direction of the robot. The robot

is equipped with a directional antenna which is shown in Fig. 4. The antenna is a

WinRadio AX-31B Planar Log-periodic Dipole Array [9] (LPDA) antenna which is a

type of broadband directional antenna. The antenna can work in a broad range of

radio frequency from 230 to 1600 MHz. In our problem, the antenna is working in

the frequency of 433 MHz since our target radio sources work in this frequency. Our

target radio sources are the MICA2 and MICA2DOT sensor network nodes, often

referred as Motes, which are shown in Fig. 5 from Crossbow Technology Inc. [10]

operating at 433MHz.

In our work, the robot navigates in a outdoor environment without obstacles.

Therefore, in the theoretical modeling, the change of signal strength is determined

only by the distance between the robot and the radio source, and the relative antenna

direction in terms of the radio source location. Our scheme integrates a particle filter

with a new sensing model which is built on the LPDA antenna model and CSMA

protocol model to process the sequence of measured signal strength. The LPDA
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antenna model is obtained by a curve fitting based on the numerical simulation. The

main advantage of our antenna model is its computational efficiency. We construct

the sensing model on top of the CSMA-based Medium Control Access (MAC) layer

protocol because our target radio sources (Motes sensor nodes) use a CSMA-based

protocol, also because that a large class of wireless communication networks use a

CSMA-based protocol.

The main contributions of this work include:

1. Propose a computationally efficient antenna model and a correspond-

ing single-source sensing model for the LPDA antenna. To localize the

radio sources with signal strength, we need to model the received signal strength

and the reading of the radio receiver for specific position and direction of the

antenna and the position of the radio source. Since the theoretical model of

the LPDA antenna is expensive in computation, we use numerical modeling

software SuperNEC [11] to model the antenna through simulation. We further

fit the result with a computational efficient function in the sense of minimum

mean square error (MMSE). We derive a single-source sensing model based on

the antenna model by modeling the measurement noise as an additive zero-mean

Gaussian distribution.

2. Design a scheme to localize single radio source. A scheme to localize

single radio source is the basis for a general scheme to localize multiple radio

sources. We design the scheme based on Particle Filtering algorithm. We

integrate the Particle Filtering algorithm with the single-source sensing model

which is derived from our proposed antenna model and a motion model for the

robot.

3. Analyze the general sensing model for multiple radio sources. For
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the purpose of multiple-source localization, we define a collision type to be a

set of concurrent sending radio sources. The general sensing model could be

obtained by computing the conditional probability of signal strength for any

given collision type and the probability of the collision type. The conditional

probability is analyzed based on wave superposition. The probability of any

given collision type could be obtained by the CSMA modeling.

4. Give a detailed modeling and analysis of the CSMA-based MAC layer

protocol. We give a simplified model of the CSMA protocol which can be em-

bedded into the particle filter framework. We model the channel idle probability

and busy collision probability as a function of the number of the radio sources,

the propagation delay and the message generating rate. We also derive the

number of radio sources as a function of the measured idle probability. The

model and analysis is verified by simulations.

5. Design a scheme to localize multiple radio sources. We extend the single-

source localization scheme to a multiple-source localization scheme. We design

a scheme based on the general sensing model which is built on the directional

antenna model and the CSMA model. We also propose a simultaneous number

estimation and localization scheme for networked radio sources. A scheme based

on the method of steepest descent is designed and used for comparison. The

performances of the two schemes are compared by simulations.

C. Related Work

This work relates to a variety of research topics. The closest one is to localize friendly

radio sources with beacons. The existing work either limits to individual radio source

[12] [13] [14] [15] or assumes receiver is part of the network which knows the detailed
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packet information of the network [16] [17] [18] [19] [20]. However, such information

is not always available in our case in hostile environment. Most RF-based systems

use position-static beacon nodes (i.e., nodes that are aware of their locations) to help

localize sensor nodes. While in our research, we use a mobile robot to localize the

sensor nodes. A scheme similar to our idea is to localize sensor network nodes with a

mobile beacon [19]. However, the scheme mentioned in [19] requires communication

between the mobile beacon and the sensor nodes to identify the origin (e.g., sensor

node identification (ID)) of the radio signal. Since we cannot communicate with

enemy sensor nodes, this type of communication cannot be applied in hostile envi-

ronment. In recent work, the authors of [13] propose a localization scheme based on

wireless signal strength and apply a spatial connectivity graph to help localizing radio

sources. This work is similar to our scheme because it is based on Particle Filter and

RF signal strength. However, our scheme differs from [13] in the following aspects.

First, our work use a mobile robot to localize hostile radio sources, while [13] assumes

static beacon nodes and known signal source. Second, we apply a time-variant com-

munication pattern analysis while [13] employs pre-determined spatial information to

help localizing radio sources.

In robotics research, Simultaneous Localization and Mapping (SLAM) is defined

as the process to map the environment and localize the robot position at the same

time [21] [22] [23] [24] [25] [26]. Although SLAM is based on similar Bayesian approach

[26] we used in this work, it assumes that the environment is static or close to static.

In our case, networked radio sources can be viewed as an environment, but directly

adopting SLAM methods cannot make use of basic communication pattern, which will

limit the effectiveness of the method and suggest new development for the problem

of localizing networked radio sources.

Several methods are studied as implementations of the Bayesian approach, such
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as Kalman Filtering[21], Grid-based Localization [27] and Particle Filter [28], [4].

Among which, Particle Filtering is a new class of method to solve general non-

Gaussian, non-linear SLAM problems [4] [28] [29] [30] [31]. Particle Filter is based

on the Bayesian rule and represent the probability distribution with samples, each of

which represent an unique status of the robot pose, called a particle. In this work,

we expand particle filter with a new sensing model that built on the new directional

antenna model and the CSMA protocol model.

Since the LPDA directional antenna is the primary sensor of our robot, we need

to understand the antenna. In antenna research field, detailed physical model of the

LPDA antenna has been constructed more than 20 years ago [32] [33]. However, the

detailed physical model is constraint by random factors in the antenna such as mate-

rial, surface and shape. None of the physical model can provide accurate prediction

of signal field. On the other hand, physical model is computational expensive and

only useful for antenna design. For application that requires dynamic understanding

of signal field, a simplified computation model is needed. However, existing research

in sensor network often overly simplify the signal field as inverse quadratic functions

which cannot capture the directivity of the antenna. Our work try to approximate

the directional antenna with a tractable computation model. A similar research work

discussed in [14] uses directional antennas to estimate the position of a radio source.

However, the scheme uses multiple static beacon nodes with directional antennas and

derives the position of a single radio source by triangulation. In our proposed scheme,

we use a mobile robot to collect RF signal information from several radio sources.

Unlike the deterministic method used in [14], we use a probabilistic method which

is based on particle filter and a new sensing model which is built on the directional

antenna model and CSMA-type MAC protocol model.

Since majority of the networked radio sources use CSMA-based MAC layer pro-



10

tocol. To incorporate this knowledge into localization will be very helpful. However,

existing MAC layer models [34] [35] focus on detailed modeling of the MAC protocol

behavior and channel capacity, and cannot be directly applied to localization mod-

els. A simplified approximation that captures the main characteristics of the CSMA

protocol and can be integrated into localization framework is needed. Our sensing

model is based on the CSMA model as well as the antenna model.

D. Thesis Overview

The rest of this thesis is organized as follows.

In Chapter II, we introduce our problem definition. The problem is defined

rigorously and some assumptions used in our scheme and modeling are made.

In Chapter III, we propose our scheme to localize hostile networked radio sources.

We start with a review of Particle Filter in Section A. In Section B, we introduce

an computationally efficient antenna model and corresponding single-source sensing

model. We introduce a deterministic motion model in Section C. Combining the

models, we design a scheme to localize single radio source in Section D. We gener-

ize our sensing model for multiple radio sources in Section E. In order to complete

our general sensing model, we model and analyze the CSMA protocol model in Sec-

tion F. We integrate the models with particle filter and propose the multiple-source

localization scheme in Section G.

In Chapter IV, we verify our modeling and scheme with simulation experiments.

We design a localization scheme based on the method of steepest descent. This

proposed scheme is used to compare with our proposed scheme based on Particle

Filter. The performances of the two schemes are compared through simulation results.

Finally, Chapter V concludes this research work with a summary and some di-



11

rections for future work.
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CHAPTER II

PROBLEM DEFINITION

Our work is to use a mobile robot with a directional antenna to localize hostile

networked radio sources. In this chapter, we define our problem rigorously. We start

our discussion from several assumptions we made in the modeling and scheme design

in Section. A. We then define our problem in Section. B.

A. Assumptions

Before we discuss our problem definition, we make following assumptions in our mod-

eling and scheme.

1. The received RF signal does not contain the information for the signal

source. This is the common characteristics of a hostile network environment.

We cannot decode the packets received, thus we do not know the detail of the

network, including the sender information of the received signal.

2. The radio sources are networked sparsely. We assume sparse networked

radio sources so that most of the collision cases are happened between two radio

sources.

3. The radio sources are communicate with a CSMA-type MAC pro-

tocol. Since a large class of wireless networks use CSMA-based protocol, we

assume the MAC layer protocol is CSMA-based to address a broad range of sce-

narios. It is also because that the target radio sources in our approach, Motes

sensor nodes, are using CSMA-based MAC protocol. Although we focus on

CSMA-based protocol in this work, our localization framework can be extended

for non-CSMA type MAC protocol such as TDMA.
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4. The antenna has a high sensitivity. We assume the directional antenna

carried by the robot is highly sensitive so that the antenna can listen to any

signal transmitting in the air.

5. The radio sources are static nodes that do not move over time. We

assume our target radio sources are static in terms of their positions, which

is the common case of sensor networks since usually the sensors will not move

after they are deployed.

B. Problem Definition

The definitions of variables used in the scheme is shown in Table. I. With the variable

definitions, we can define our problem rigorously.

Problem Definition:

Given,

1. the received RF signal strength up to time t, zk, k = 1, 2, · · · , t;

2. the robot motion measurement up to time t, uk, k = 1, 2, · · · , t;

3. the measured channel idle probability Pidle.

Find,

1. the number of the radio sources, m;

2. the position estimation of each radio source, {(xi, yi)}, i = 1, 2, · · · ,m.
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Table I. Definitions of variables used in the scheme.

Variable Description

(x, y) A point in the 2-D space.

m The number of radio sources.

l The number of remaining particles.

ni The i-th radio source, i = 1, 2, · · · ,m.

(xi, yi) The position of the i-th radio source.

φi The initial transmission phase of the i-th radio source.

ri The distance between the robot and the i-th radio source.

θi The angle between the robot antenna direction

and the line connecting the robot and the i-th radio source.

z The received signal strength. It is a random variable.

z0 The mean value of received signal strength.

zt The received signal strength at time t.

u The measured motion of the robot.

ut The measured motion of the robot at time t.

(D,T ) A robot motion command where D is the required moving distance and

T is the required turn angle.

Pidle The channel idle probability.

Pbc The busy collision probability.
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CHAPTER III

RADIO SOURCES LOCALIZATION SCHEME

The purpose of this chapter is to design a scheme to localize hostile networked radio

sources. In Section. A, we review the Bayesian rule and the Particle Filter (PF) which

is the basis of our scheme. A single-source sensing model based on a directional an-

tenna model is introduced in Section. B. A deterministic motion model is introduced

in Section. C. Based on the sensing model and the motion model, a single-source

localization scheme is designed and described in Section. D. In Section. E, a gen-

eral sensing model for localizing multiple radio sources are proposed. To complete

the sensing model, we analyze and model the CSMA-based MAC protocol in Sec-

tion. F. Finally, we detailed our scheme to localize multiple networked radio sources

in Section. G.

A. Review of Particle Filter

Since our scheme is based on Particle Filter. We start with a review of Particle Filter,

which is a new probabilistic method based on Bayes filter to solve the robot mapping

problem.

1. Robotic Mapping

Robotic mapping [21] addresses the problem of acquiring spatial models of physical

environments through mobile robots. Our problem is to estimate the positions of un-

known radio sources, which can be viewed as a problem of environment mapping and

thus fits in the category of robotic mapping. The physical environments can be static

or dynamic, structured or unstructured, of limited size or large-scale. In our work,

the target radio sources are static in positions but dynamic in communication pattern
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over time. Furthermore, the sensor network nodes are assumed to be unstructured in

terms of placement and of limited size.

To acquire a map, robots must possess sensors that enable it to perceive the

outside world. In our work, the sensor is a radio signal receiver with a directional

antenna which is shown in Fig. 4. The motion commands (controls) issued during

environment exploration carry important information for building maps, since they

convey information about the locations at which different sensor measurements were

taken. Sometimes, the mobile robot need to learn the maps as well as the location of

the robot itself. This problem is referred as Simultaneous Localization and Mapping

(SLAM) problem.

A key challenge in robotic mapping arises from the nature that robotic mapping

is characterized by uncertainty and sensor noise. Therefore, probabilistic methods

are often used to address the robotic mapping problem. Traditional probabilistic

methods such as Kalman Filter, assume a linear motion model with a Gaussian noise.

However, in our problem, the motion model cannot be viewed as linear. Particle

Filter algorithm, also referred as Monte Carlo Localization (MCL) [29] has attracted

great research interest recently since it can solve non-Gaussian, non-linear localization

problem.

2. Bayes Filter

Bayes filters address the problem of estimating the state X of a dynamical system

from sensor measurements. For example, in single-source mobile robot localization

problem the dynamical system is a mobile robot, the state is the robot’s pose (specified

by a position in a two-dimensional Cartesian space (x0, y0) and an antenna direction

θ), and measurements are the radio receiver readings. Bayes filters assume that the

environment is Markov, that is, past and future data are (conditionally) independent
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if one knows the current state.

The key idea of Bayes filter is to estimate the posterior probability density over

the state space conditioned on the data. Simply speaking, we need to take the best

guess for each step given the current information and known knowledge. Mathemat-

ically, Bayes rule is often used to compute the posterior possibility p(X|d) according

to the prior possibility p(X).

p(X|d) = ηp(d|X)p(X). (3.1)

Suppose we want to learn about a quantity X (e.g., a map), based on mea-

surement data d (e.g., sensor readings, odometry). The Bayes rule tells us that the

problem can be solved by multiplying two terms: p(d|X) and p(X). The term p(d|X)

specifies the probability of observing the measurement d under the hypothesis X.

Thus, p(d|X) is a generative model, in that it describes the process of generating sen-

sor measurements under different conditions X. The term p(X) is called the prior. It

specifies our willingness to assume that X is the case in the world before the arrival

of any data. Finally, η is a normalizer that is necessary to ensure that the left hand

side of Bayes rule is indeed a valid probability distribution. In the robotics and AI

literature, this posterior is typically called belief.

In robotic mapping, data arrives over time. Two types of data are used in the

mapping process: sensor measurements and controls. Let us denote sensor measure-

ments by the variable z, and the controls by u. For convenience, let us assume that

the data is collected in alternation:

z1, u1, z2, u2, · · · ,

Here subscripts are used as time index. In particular, zt is the sensor measure-
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ment taken at time t, and ut specifies the robot motion command asserted in the

time interval [t− 1, t). In our work, the feedbacks from the robot wheel encoders are

used for u instead of controls, since they can more accurately reflect the actual robot

motion. We further follow common notation by using a superscript t to refer to all

data leading up to time t, that is:

zt = {z1, z2, · · · , zt}

ut = {u1, u2, · · · , ut}.

Our goal is to study the probability of the state X given a sequence of measure-

ments and controls, i.e., p(Xt|z
t, ut). According to the Bayes rule shown in Eqn. (3.1),

it can be expressed as,

p(Xt|z
t, ut) = ηp(zt|Xt, z

t−1, ut)p(Xt|z
t−1, ut) (3.2)

The Markov assumption states that measurements zt are conditionally indepen-

dent of past measurements and odometry readings given knowledge of the state Xt:

p(zt|Xt, z
t−1, ut) = p(zt|Xt). (3.3)

This allows us to conveniently simplify Eqn. (3.2) to:

p(Xt|z
t, ut) = ηp(zt|Xt)p(Xt|z

t−1, ut) (3.4)

By integrate throughout the pose Xt−1 at time t− 1, we obtain a recursive form

of Eqn. (3.4):
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p(Xt|z
t, ut) = ηp(zt|Xt)

∫

p(Xt|Xt−1, z
t−1, ut)p(Xt−1|z

t−1, ut−1)dXt−1. (3.5)

The Markov assumption also implies that given knowledge of Xt−1 and ut−1, the

state Xt is conditionally independent of past measurements z1, · · · , zt−1 and odometry

readings u1, · · · , ut−2, that gives:

p(Xt|Xt−1, z
t−1, ut) = p(Xt|Xt−1, ut−1). (3.6)

Eqn. (3.5) can be writen as a recursive estimator:

p(Xt|z
t, ut) = ηp(zt|Xt)

∫

p(Xt|ut, Xt−1)p(Xt−1|z
t−1, ut−1)dXt−1, (3.7)

which is known as Bayes filter. η is a normalizing constant. This equation is the

basis for the Particle Filtering algorithm.

3. Particle Filtering

In the robotics literature, the posterior is typically called belief. We use the following

notation for a belief:

Bel(Xt) = p(Xt|z
t, ut). (3.8)

In order to implement Bayes filter, one needs to know three distributions: the

initial belief Bel(X0) (e.g., uniform), the next state probability p(st|ut, st−1) (called

the motion model), and the perceptual likelihood p(zt|Xt) (called the sensing model).

We will discuss the sensing model and the motion model later in this chapter. When

we have these models ready, we can implement the Bayes filter with Particle Filter.

The idea of Particle Filter (Monte Carlo Localization) is to represent the belief



20

Bel(X) by a set of l weighted samples distributed according to Bel(X)

Bel(X) = {X(i), p(i)}i=1,··· ,l.

Here each X(i) is a sample (a state), and p(i) are non-negative numerical factors

called importance factor, which sum up to one. As the name suggests, the importance

factors determine the weight (=importance) of each sample.

Initially, the beliefs of the pose is a uniform distribution over the robot’s space,

annotated by the uniform importance factor 1
l
. The recursive update is realized in

three steps,

1. Sample a state Xt−1 from Bel(Xt−1), by drawing a random X(i)t−1 from the

sample set representing Bel(Xt−1) according to the discrete distribution defined

through the importance factors p
(i)
t−1.

2. Use the sample X(i)t−1 and the action ut−1 to sample X
(j)
t from the distribution

p(Xt|Xt−1, ut−1). The predictive density of X
(j)
t is now given by the product

p(Xt|Xt−1, ut−1)Bel(Xt−1).

3. Finally, weight the sample X
(j)
t by the importance factor p(yt|X

(j)
t ), the likeli-

hood of the sample X
(j)
t given the measurement yt.

This procedure implements Eqn. (3.42), from right to left.

B. Antenna Model and Single-source Sensing Model

The sensing model is essential in constructing a Particle Filter. Our sensing model is

based a directional antenna model. In antenna research, the signal strength received

by a directional antenna can be modeled as
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S0(r, θ) = Cr−βf(θ), (3.9)

where C is a constant, r−β is the signal decay in terms of the distance, and the

directivity of the antenna is captured by the term f(θ). β is a factor between 2 and

4. β = 2 is well accepted to be the model for the ideal radio decay in free space. In

our scheme, we assume β = 2 through all of our following modeling. β = 4 is often

used to model signal decay in a long distance which is bigger than a certain distance.

We need to model f(θ) to understand the antenna. f(θ) is referred in antenna

research as Radiation Pattern [36]. The exact radiation pattern model of LPDA

antenna [37] is given in [32] but it is computationally expensive. In our work, we

use a numerical method to compute the radiation pattern of the LPDA antenna.

NEC-2 [38] is widely accepted as a antenna modeling toolkit. We use NEC-2 based

SuperNEC [11] software to model and compute the radiation pattern of the LPDA.

The real antenna as shown in Fig. 4 has a structural model in SuperNEC as shown

by Fig. 6. The resulting radiation pattern at an operating frequency of 433MHz is

given by Fig. 7. The antenna gain as shown in Fig. 7 is represented by DBi, which

is defined as the number of decibels of gain of an antenna referenced to the zero dB

gain of a free-space isotropic (i.e. direction independent) radiator. SuperNEC toolkit

provides an application programming interface (API) to access the raw data of the

antenna gain GdBi in dBi. We convert the value of dBi to the absolute gain value G

as follows.

G = 10GdBi/20, (3.10)

The resulting antenna gain in terms of the direction θ is shown in Fig. 8. Since we

need to dynamically understand the antenna behavior in each step of robot movement
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Fig. 6. LPDA antenna structure model in SuperNEC.
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and compute the receiver reading for each particle, we need a efficient computation

model for the LPDA directional antenna to achieve the system efficiency. The gain

function shown in Fig. 8 could be approximated with a function as follows.

f(θ) =











a cos θ, 0 ≤ θ < π
2

or 3π
2
≤ θ < 2π,

−b cos θ, π
2
≤ θ < 3π

2
.

(3.11)

By fitting the curve to minimize the mean square error (MSE), we get a = 1.4825

and b = 1.0654. The resulting function is given by,

f(θ) =











1.4825 cos θ, 0 ≤ θ < π
2

or 3π
2
≤ θ < 2π,

−1.0654 cos θ, π
2
≤ θ < 3π

2
.

(3.12)

the original antenna gain (blue line) and the fitting function (red line) are shown

together in Fig. 9. The resulting MSE is 0.0044. As we can see, the fitted function
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Fig. 9. LPDA antenna gain curve fitting.

(Eqn. (3.12)) is close to the numerical result and computationally efficient.

The antenna model in Eqn. (3.9) gives a deterministic signal strength at a posi-

tion determined by the pair of (r, θ). But due to measurement error, we cannot guar-

antee the received signal strength at a specific position is given by the Eqn. (3.9). The

result signal strength given by Eqn. (3.9) gives a reference value of signal strength,

or the mean value of the signal strength, which is a deterministic value. The actual

received signal strength and the corresponding reading are random variables. The re-

ceiver we used is the WR-1550e Radio Receiver from WinRadio Ltd. The reading of

radio signal is presented by a number between 0 and 120 and approximately equal to

the dB value of the signal strength. To convert the signal strength into the reading of

the radio receiver, we need to map the expression of signal strength S0 into a number

in the range between 0 and 120. We called this number as the expected sensor reading

z0(r, θ), which can be obtained by,
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z0(r, θ) = C1 + C2 log S0 = C1 + C2 log Cr−βf(θ). (3.13)

The actual radio receiver reading z is not always equal to the expected sensor

reading z0 because of measurement error. The measurement error is modeled by

an additive Gaussian noise N with zero mean and standard deviation σ, i.e. N ∼

N (0, σ2). The actual reading z of the received signal strength is given by,

z = z0(r, θ) + N. (3.14)

C1, C2, C and σ are the physical parameters determined by the receiver.

Given all of the parameters, we can compute the sensing model p(zr|Xt) =

p(zr|r, θ), where zr is the received signal reading. We assume the reading in the

range of [z − ∆z, z − ∆z] will be rounded to the reading z. Since our receiver gives

integer reading, we use ∆z = 0.5. The probability distribution of received signal

strength z is a normal distribution with mean z0(r, θ) and standard deviation σ, i.e.

z ∼ N (z0(r, θ), σ
2). Therefore, the probability that the receiver gets the integer

reading zt can computed as the shaded area in Fig. 10, which is given by,

p(zt|r, θ) = P (zt − 0.5 ≤ z ≤ zt + 0.5)

= p(z ≤ zt + 0.5) − p(z ≤ zt − 0.5)

=
1

2
[1 + erf(

zt + 0.5 − z0(r, θ)

σ
)] −

1

2
[1 + erf(

zt − 0.5 − z0(r, θ)

σ
)]

=
1

2
[erf(

zt + 0.5 − z0(r, θ)

σ
) − erf(

zt − 0.5 − z0(r, θ)

σ
)] (3.15)

We use physical experiments to fit the parameters of the Gaussian distribution

N (0, σ2). By collecting the receiver readings for a specific sensor position for 200

times, a histogram showing the experimental received signal reading frequency is
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Fig. 12. Robot motion model.

given by Fig. 11. The curve is best fitted by a Gaussian distribution with the standard

deviation 0.9093. Thus, the sensing model is given by,

p(zt|r, θ) =
1

2
[erf(

zt + 0.5 − z0(r, θ)

0.9093
) − erf(

zt − 0.5 − z0(r, θ)

0.9093
)] (3.16)

C. Motion Model

We model the robot motion as a deterministic function in terms of the initial pose

(x, y, θ) of the robot, the moving distance D travelled by the robot, and the turn T

performed by the robot. We assume the motion error can be ignored since we have

wheel encoders equipped in both of the robot wheels to detect the actual wheel speeds

as well as a digital compass to detect the initial and ending directions of the robot. An

improved version of the robot carries a GPS receiver which guarantee better accuracy

of the knowledge of the robot position is in construction and will be used in the future.

Therefore, we assume the movement of the robot can be accurately estimated based
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Fig. 13. Single radio source localization.

on the given parameters. The robot movement is illustrated in Fig. 12. Although the

robot head turns for an angle of T , the actual angle β that the robot body turns is

approximately T/2. The motion model used in this thesis is given by [39],























x′ = x + D cos(θ + T
2
)

y′ = y + D sin(θ + T
2
)

θ′ = (θ + T ) mod 2π.

(3.17)

D. Single-source Localization Scheme

By integrating the Particle Filtering algorithm with the sensing model in Section. B

and the motion model in Section. C, we design our scheme to localize single radio

source.

The scheme is illustrated in Fig. 13. The robot is initially at (x0, y0). An angle θ

is defined as the angle from the line connecting the robot and the radio source to the

antenna direction which is used to estimate the receiver reading. The initial value of
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this angle is θ0. The static single radio source remains at position (0, 0), unchanged

through the whole localization process. Our scheme should drive the robot toward

the radio source gradually.

The particle is defined as the pair of state and its probability, where the state

is defined by (x(i), y(i), θ(i)) for the i-th particle. The total number of particles is N .

Assume our robot lies between a range within the space. We first generate N particles

randomly in the whole state space, with the probability of each particle equals to 1
N

.

The system updates its particles iteratively. In each iteration,

1. Get a sensor reading zt.

2. weight the sample (x(i), y(i), θ(i)) with the non-normalized importance factor

p(zt|(x
(i), y(i), θ(i))). Based on Eqn. (3.18), with r =

√

(x(i))2 + (y(i))2, we know,

p[zt|(x
(i), y(i), θ(i))] =

1

2
[erf(

zt + 0.5 − z0(r, θ)

σ
) − erf(

zt − 0.5 − z0(r, θ)

σ
)],

(3.18)

where σ = 0.9093, and

z0(r, θ) = C1 + C2 log C
1

(x(i))2 + (y(i))2
f(θ(i)).

3. After we weight the samples, normalize the weight of samples. Thus,

p(i) =
p[zt|(x

(i), y(i), θ(i))]
∑

i

p[zt|(x(i), y(i), θ(i))]
. (3.19)

4. Then, we resample the sample set from Bel(xt) according to the probability

distribution defined by the importance factor p
(i)
t .
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5. Compute the average among all of the remaining particles,































xave = 1
Nremain

∑

i

x
(i)
t p

(i)
t

yave = 1
Nremain

∑

i

y
(i)
t p

(i)
t

θave = 1
Nremain

∑

i

θ
(i)
t p

(i)
t ,

(3.20)

where Nremain is the number of the remaining particles.

6. Generate a motion command (D,T ) with,











D = Dc

T = (2π − θave) mod π,
(3.21)

where D = Dc is a constant distance the robot will move in a step. T is the

angle of the turn that the robot should make.

7. Update the resampled sample set x
(i)
t with the motion model according to .























x
(i)
t+1 = x

(i)
t + D cos(θi

t + T
2
)

y
(i)
t+1 = y

(i)
t + D sin(θi

t + T
2
)

θ
(i)
t+1 = (θ

(i)
t + T ) mod 2π.

(3.22)

8. Stop if the remaining particles fit the stop condition, otherwise, go to Step 1.

The stop condition is defined as,











dave =
√

x2
ave + y2

ave ≤ dth

MSEd = 1
Nremain

∑

i

[(xave − x
(i)
t )2 + (yave − y

(i)
t )2] ≤ MSEth.

(3.23)

The first condition dave ≤ dth denotes that the estimated distance of the robot
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and the radio source is less than a threshold value dth. The second condition

MSEd ≤ MSEth denotes that the certainty of the estimation is less than a

threshold MSEth.

E. General Sensing Model

When we have m radio sources to be localized, since we do not know the exact origin

of the received signal, it’s possible that the received signal is a signal from several

radio sources transmitting radio signals at the same time. We define a collision type

A which is a set of concurrent sending radio sources to denote the different types of

collision.

We define the set M of all the radio sources as,

M = n1, n2, · · · , nm,

the combination of the sending sources at any time is a subset of M. Thus, the set

of all the combination of the sending sources is the power set of M, which is denoted

by P(M). The power set P(M) of the set S is defined by the set of all the subsets of

M . Thus,

P(M) = {{}, {n1}, · · · , {nm}, {n1, n2}, · · · , {n1, n2, · · · , nm}}.

The power set P(M) contains 2m elements. We use |A| to denote the number of

elements in set A. Thus,

|P(M)| = 2m.

A ∈ P(M) is a set of sending radio sources, i.e., a collision type. The set of P(M)

includes all possible collision types. Using the Bayesian rule, a general probabilistic
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sensing model is given by,

p(zt|Xt) =
∑

A∈P(M)

p(zt|A, Xt)p(A). (3.24)

There are 2m items in the right side of this equation, among which, m items with

|A| = 1 can be obtained by the single source sensing model. |A| = 0 corresponds the

channel idle time, which can not be used to localize the radio sources directly. It is

shown later, the channel idle probability can be used to estimate the number of the

radio sources. When |A| ≥ 2, several radio sources are sending together, we need

to model p(zt|A, Xt) which is the conditional probability of received signal strength

reading for a given collision type. In addition, we need to update our model of p(A)

for all elements of A ∈ P(S), which is the probability of a given collision type. We

discuss the models for p(A) in the next section of CSMA protocol model. Now we

focus on the discussion of the model of the conditional probability p(zt|A, Xt).

Assume a collision type A contains v radio sources n1, n2, · · · , nv send together

at the same frequency. Each radio source ni, i = 1, 2, · · · , v has amplitude Ai and

phase φi. Each wave Ψi can be described with a wave function as follows.

Ψi = Ai cos (ωt + φi) (3.25)

where ω is the sending frequency. The combined wave Ψ is given by,

Ψi =
v

∑

i=1

Ai cos (ωt + φi) = A cos (ωt + φ) (3.26)

where
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A2 =
v

∑

i=1

A2
i + 2

v
∑

i=1

v
∑

j>i

AiAj cos (φi − φj). (3.27)

The signal strength S is proportional to the square of amplitude A2. Thus, the

received signal strength can be obtained from Eqn. (3.27) and is given by,

S =
v

∑

i=1

Si + 2
v

∑

i=1

v
∑

j>i

√

SiSj cos (φi − φj). (3.28)

where Si is the signal strength caused by the i-th radio source received by the

antenna if only this radio source exists. Si can be computed by Eqn. (3.9). Based

on Eqn. (3.28), we can get the receiver reading by Eqn. (3.13). Similarly, the sensing

model is given by Eqn. (3.18).

With the assumption that the radio sources are sparse distributed in the 2-D

space, the most cases of collision is happened between two radio sources. Thus, the

general sensing model can be approximately simplified as,

p(zt|Xt) =
m

∑

i=1

p(zt|ni, Xt)p(ni) +
m

∑

i=1

m
∑

j>i

p(zt|ni, nj, Xt)p(ni, nj). (3.29)

Thus, the two-source collision type is the most important in our scheme. If v = 2,

Eqn. (3.28) becomes

S = S1 + S2 + 2
√

S1S2 cos (φ1 − φ2), (3.30)

where S1 and S2 are the signal strengths of the two sources received by the

antenna individually, φ1 and φ2 are the phases of the two sources, respectively.

Since the combined field of two radio sources is important in the following mod-

eling, we discuss it in detail.
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Fig. 14. Combined radio signal of two sources.

As shown in Fig. 14, suppose the positions of the two radio sources are (x1, y1)

and (x2, y2). The robot is in (xr, yr) and the antenna direction is θ, which is the

absolute angle between the antenna and the x axis. r1 and r2 can be computed as,

r1 =
√

(xr − x1)2 + (yr − y1)2,

r2 =
√

(xr − x2)2 + (yr − y2)2.

θ1 and θ2 could be computed as,

θ1 = π − θ0 + α1,

θ2 = π − θ0 + α2.

where
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α1 = arctan(
yr − y1

xr − x1

),

α2 = arctan(
yr − y2

xr − x2

).

So we have,

S1 =
Cf(π − θ0 + arctan( yr−y1

xr−x1

))

(xr − x1)2 + (yr − y1)2
,

S2 =
Cf(π − θ0 + arctan( yr−y2

xr−x2

))

(xr − x2)2 + (yr − y2)2
,

combined with Eqn. (3.30), we can get the expression of expected signal strength

for given collision type, which can be used to compute the conditional probability of

sensing for the given collision type.

F. CSMA Model

In this section, we discuss the modeling of P (A) for each collision type A ∈ P(M) in

Eqn. (3.24). If A = Ø, the channel is idle. Thus, we define the idle probability Pidle

as Pidle = p(A|A = Ø). The channel busy probability is defined as the probability

that the channel is not idle, which is given by Pb = 1 − Pidle. If |A| = 1, i.e.,

The channel is occupied by one and only one radio source, the transmission is called

successful. If |A| > 1, the channel has collision. We define the collision probability

Pc as Pc = p(A||A| > 2). We further define busy collision probability Pbc which is

given by,

Pbc =
Pc

Pb

=
Pc

1 − Pidle

. (3.31)
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When the total number m of sensor nodes increases, the number of elements in

the set of P(M) increases exponentially. Use the sparse network assumption, we know

that the probability that more than two radio sources collide is very small. Thus, we

get the simplified general sensing model which is shown in Eqn. (3.29). So, we could

decrease the number of items of Eqn. (3.24) from an exponential scale to a polynomial

scale.

Before we consider the model of multiple-source localization problem, we first

consider the collision model of the MAC protocol used in the sensor nodes. The

CSMA-based MAC protocol is given in [40]. The protocol can be described as follows.

Upon receiving a frame to transmit the sensor node generates a random initial backoff

interval, uniformly distributed in the range [15, 68.3] ms, and starts a timer. Then,

it enters a loop in which it performs the following actions. Upon timer expiration

the channel is sensed. If it is found idle and no incoming frame is detected the frame

is transmitted. On the other hand, if the channel is found busy the sensor node

generates a further random time interval congestion backoff, uniformly distributed in

the range [12.08, 193.3] ms, and starts the backoff timer again. The above actions are

repeated until the channel is found free and the frame is thus transmitted.

We use the transmission period analysis [35] as shown in Fig. 15 to model this

protocol. The variable definitions used in this section is shown in Table. II.

Assume we have m Poisson source nodes, each of which has a packet genera-

tion rate of λ packets/second. Thus, the aggregate mean packet generation rate of

the traffic is given by S = mλ packets/second. The actual packet arrival rate on

the transmission channel will be larger than the packet generation rate due to the

retransmission. The real traffic arrival rate offered to the channel is called offered

traffic rate which is denoted by G where G ≥ S. The key of our modeling is to find

out the relationship between S and G, since S it related to the sender’s characteris-
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Table II. Definitions of variables used in the CSMA protocol modeling.

Variable Description

Pidle Channel idle probability.

Pb Channel busy probability.

Pc Channel collision probability.

Pbc Busy collision probability.

P
(n)
bc The probability that n radio sources collide in busy periods.

m The number of radio sources.

λ The Poisson packet generation rate for each radio source.

S The aggregate packet generation rate for the m radio sources.

G The offered traffic rate.

T Packet transmission time, T = 1.

X Transmission delay between two packets.

τ Propagation delay, τ ≪ T .

δ Normalized average transmission delay, δ = X̄/T .

a Normalized propagation delay, a = τ/T ≪ 1.

t The start of a busy period.

t + a Vulnerable period.

t + Y The time that the last packet arrives between t and t + a.

B The duration of busy period.

I The duration of idle period.

U The time during a cycle that the channel is used without conflicts.
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Fig. 15. CSMA: Busy and idle period.

tics and G is related to the channel statistics. Our goal is to represent the channel

statistics in terms of the number of sender and the sending rate of each radio source.

Without loss of generality, we choose packet transmission time T = 1. We express

X̄ and propagation time τ in these normalized time units as δ = X̄/T and a = τ/T .

We should make two assumptions to qualify the following theoretical analysis.

1. Assumption 1: The average retransmission delay X̄ is large compared to T .

2. Assumption 2: The interarrival times of the point process defined by the start

times of all the packets plus retransmissions are independent and exponentially

distributed.

It is clear that Assumption 2 is violated in the protocols we consider. However,

it is shown in [35] the assumption gives the problem excellent performance approxi-

mation and analytic simplicity.

G denotes the arrival rate of new and rescheduled packets. All arrivals, in this

case, do not necessarily result in actual transmissions (a packet which finds the chan-

nel in a busy state is rescheduled without being transmitted). Thus, G constitutes

the “offered” channel traffic and only a fraction of it constitutes the channel traffic

itself. Consider the time axis (See Figure. 15) and let t be the time of arrival of a
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packet which senses the channel idle and such that no other packet arriving between

t and t + a will find (sense) the channel as unused, will transmit, and hence will

cause a conflict. If no other terminal transmits a packet during these a seconds (the

“vulnerable” period), then the first packet will be successful.

Let t+Y be the time of occurrence of the last packet arriving between t and t+a.

The transmission of all packets arriving in (t, t + T ) will be completed at t + Y + 1.

Only a seconds later will the channel be sensed unused. Now, any terminal becoming

ready between t+a and t+Y +1+a is called a transmission period (TP). There can

be at most one successful transmission during a TP. Define an idle period to be the

period of time between two consecutive TP’s (also called busy periods in this simple

case). A busy period plus the following idle period constitute a cycle. Let B̄ be the

expected duration of the busy period, Ī the expected duration of the idle period, and

B̄ + Ī the expected length of a cycle. Let U denote the time during a cycle that

the channel is used without conflicts. Using renewal theory arguments, the average

channel utilization is simply given by,

S =
Ū

B̄ + Ī
. (3.32)

The probability that a TP is successful is simply the probability that no terminal

transmits during the first a seconds of the period and is equal to e−aG. Therefore

Ū = e−aG. (3.33)

The average duration of an idle period is simply 1/G. The average duration of a

busy interval is 1 + Ȳ + a, where Ȳ is the expected value of Y .

The distribution function for Y is
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FY (y) = Pr{Y ≤ y}

= Pr{no arrival occurs in an interval of length a − y}

= exp[−G(a − y)], (y ≤ a). (3.34)

The average of Y is therefore given by

Ȳ = a −
1

G
(1 − e−aG). (3.35)

Therefore, Eqn. (3.32) could be written as

S =
Ū

B̄ + Ī

=
e−aG

1/G + 1 + Ȳ + a

=
Ge−aG

G(1 + 2a) + e−aG
. (3.36)

The idle probability is given by,

Pidle =
1/G

1/G + 1 + Ȳ + a

=
1

G(1 + 2a) + e−aG
. (3.37)

When a is very small, we get from Eqn. (3.36),

lim
a→0

S =
G

1 + G
,

thus,
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G ≈
S

1 − S
=

mλ

1 − mλ
.

Therefore, the idle probability could be expressed as a function of m and λ as,

Pidle =
1

G(1 + 2a) + e−aG

=
1

mλ
1−mλ

(1 + 2a) + e−a mλ

1−mλ

. (3.38)

Furthermore, if we can detect Pidle, we can estimate the number of radio sources

m. In order to express m using Pidle, we further simplify Eqn. (3.37) based on the

fact that Ȳ ≈ a ≪ 1.

Pidle =
1/G

1/G + 1 + Ȳ + a

≈
1/G

1/G + 1 + 2a

=
1

G(1 + 2a) + 1

=
1

mλ
1−mλ

(1 + 2a) + 1

=
1 − mλ

1 + 2amλ
, (3.39)

which can be rewritten to

m =
1

λ

1 − Pidle

2aPidle + 1
. (3.40)

From this equation, we can estimate the number of the sensor nodes based on

the detected channel idle probability given the knowledge of the propagation delay a

and the packet generation rate λ.
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The busy collision probability Pbc is defined as the probability that the busy

period has a collision, which is equal to the probability that a TP is not successful

and can be simply given by,

Pbc = 1 − e−aG = 1 − eamλ/(1−mλ).

If we have n sensor nodes with Poisson arrival rate λ, the probability that the n

nodes conflict simultaneously is given by,

P
(n)
bc =

e−aG(aG)n−1

(n − 1)!
. (3.41)

The transmission rate S is always less than 1. For an efficiently working condi-

tion, the retransmission should not be very significant. Thus, G is a little bigger than

S, which causes a very small number of aG because of a ≪ 1. Therefore, P
(n)
bc ≪ 1

in an effectively working radio source network. This is an additional verification that

most cases of collision will happen between two radio sources, other than the sparse

network assumption.

G. Multiple-source Localization Scheme

Combining the general sensing model built on the antenna model and the CSMA pro-

tocol model, we propose our particle filter based scheme to localize hostile networked

radio sources in this section.

1. Particle Definition

When we need to localize multiple radio sources, we define the location of robot

as the origin (0, 0). Assume there are m radio sources to be localized, for each

radio source, a state of the radio source is characterized by its position (xi, yi) and
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its initial radio transmission phase φi. We define the state of a radio source as

si = (xi, yi, φi), i = 1, 2, · · · ,m. Thus, the particle in the multiple-source localization

problem is defined as the states for all the radio sources and the absolute direction of

the antenna θ. A pose of the system X is defined as,

X = (s1, s2, · · · , sm, θ).

Assume we have lt remaining particles in a given time t. A particle is defined

as a pair of a pose and its corresponding probability, i.e. (X(j), p(j)), j = 1, 2, · · · , lt,

where X(j) is the pose of the j-th particle, p(j) is the probability of this particle. With

this particle definition, we can rewrite the Eqn. (3.42) to,

p(Xt|z
t, ut) = ηp(zt|Xt)

∫

p(Xt|ut, Xt−1) ·

p(Xt−1|z
t−1, ut−1)dXt−1. (3.42)

With the new particle definition, we need to adjust our motion model and sensing

model accordingly, which is described as follows.

2. Motion Model

Since we fixed the robot position as the origin, we need to update the robot direction

and the relative particle positions for each movement. The new motion model is

shown as follows.

For each particle, its state X(j) should be updated by,











x′
i
(j) = xi

(j) − D cos(θ(j) + T
2
)

y′
i
(j) = yi

(j) − D sin(θ(j) + T
2
)

, i = 1, 2, · · · ,m; j = 1, 2, · · · , lt. (3.43)
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and

θ′
(j)

= (θ(j) + T ) mod 2π, j = 1, 2, · · · , lt. (3.44)

3. Multiple-Source Localization Scheme

We extend our scheme to localize single radio source according to new particle defi-

nition, motion model and sensing model.

In the multiple-source localization problem, we assume the robot position is

the origin of the Cartesian coordinates (0, 0). Although the robot is moving during

the localization process, we can keep a corresponding moving coordinate system to

guarantee the robot position is always (0, 0). In addition, we assume the antenna

direction θ is originally heading to the positive x-axis. To model the robot movement,

we keep moving the Cartesian coordinates. Correspondingly, we need to update the

position estimations of the radio sources since they are assumed to be relatively static

to the Cartesian coordinates. We model the turn of robot by rotate the antenna

direction θ.

Assume we have m networked radio sources n1, n2, · · · , nm to be localized. We

define their initial positions as (xi, yi), i = 1, 2, · · · ,m. We also define the initial radio

transmission phase of each radio source as φi, i = 1, 2, · · · ,m. The system state is

given by the position and phase information of all the radio sources plus the antenna

direction. We use si = (xi, yi, φi), i = 1, 2, · · · ,m, to characterize a radio source.

Since the positions of the radio sources are changing with the coordinates, we denote

a radio source at time t as,

(si)t = [(xi)t, (yi)t, (φi)t], i = 1, 2, · · · ,m.
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where (φi)t will not change with time t, so we can denote the state of a radio

source as,

(si)t = [(xi)t, (yi)t, φi], i = 1, 2, · · · ,m.

A particle is defined as the pair of state and its probability, where the state is

defined by {(x(j)
1 , y

(j)
1 , φ

(j)
1 ), (x

(j)
2 , y

(j)
2 , φ

(j)
2 ), · · · , (x

(j)
m , y

(j)
m , φ

(j)
m ), θ} for the j-th particle.

For the value of the j-th particle at time t, we denote it as follows.

X
(j)
t = {[(x(j)

1 )t, (y
(j)
1 )t, φ

(j)
1 ], [(x

(j)
2 )t, (y

(j)
2 )t, φ

(j)
2 ], · · · , [(x(j)

m )t, (y
(j)
m )t, φ

(j)
m ], θ},

j = 1, 2, · · · , lt.

This definition of particle results a higher number of parameters used to describe

the system. Thus, we need more particles for a good space coverage, which causes a

higher time and space complexity for the problem. In addition to use a higher number

of particles, we design a dynamic particle updating algorithm to multiply the number

of particles in the middle of the localization process. By doing this, we increase

the localization accuracy with moderate space complexity. In addition, we update

the estimation of the number of the radio sources during the process of localization,

we need an algorithm to increase and decrease the variables in a particle definition

dynamically. We will not detail the algorithm to manage the particles in this thesis.

The initial total number of particles are l0. We first generate l0 particles randomly

in the state space, with the probability of each particle equals to 1
l0

. The system

updates its particles iteratively. In each iteration,

1. Initialize the propagation delay a, the busy collision probability Pbc and the

number of sensor nodes m.
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2. Scan for 100 times in one time unit (one second in our simulation). Update the

idle probability Pidle and average reading of received signal strength zt according

to the readings of all the scanning tries.

Pidle =
(tidle)total

ttotal

,

zt =

∑

ts

zts

ts
,

where (tidle)total is the total idle time, ttotal is the total simulated time. ts is the

times that a non-zero signal is detected within the 100 scanning times, zts is

the signal strength reading at time ts.

3. Use idle probability Pidle and the estimation value of a to get a estimation of

sensor number m.

m =
1

λ

1 − Pidle

2aPidle + 1
. (3.45)

where λ is the Poisson arrival rate of each source which is assumed to be a

constant in the scheme. If the estimated number m is different with the previous

estimation, we need to modify our particle definition accordingly by adding

or removing corresponding items in the particle definition and update all the

remaining particles.

4. We weight the sample

X
(j)
t = {[(x(j)

1 )t, (y
(j)
1 )t, φ

(j)
1 ], [(x

(j)
2 )t, (y

(j)
2 )t, φ

(j)
2 ], · · · , [(x(j)

m )t, (y
(j)
m )t, φ

(j)
m ], θ}
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with the non-normalized importance factor p(zt|Xt).

We use the simplified general sensing model (Eqn. (3.29)) in the multiple-source

localization problem.

p(zt|Xt) =
M

∑

i=1

p(zt|ni, Xt)p(ni) +
M

∑

i=1

M
∑

j>i

p(zt|ni, nj, Xt)p(ni, nj). (3.46)

where p(ni) is the probability that the sensor node ni is transmitting given the

channel is busy (i.e., the receiver reading indicates that signal exists.), p(ni, nj)

is the probability that the sensor node ni and nj is transmitting in the same

time given the channel is busy.

We assume all the sensor nodes are identical and the communication protocol

is fair. Thus, the probability that each sensor node transmits is equal, and the

probability that any two sensor nodes transmit in a same transmission period

is equal. Thus,

p(n1) = p(n2) = · · · = p(nm) = p,

p(n1, n2) = p(n1, n3) = · · · = p(nm−1, nm) = q. (3.47)

Since the probability that more than 2 sensor nodes transmits together is very

small, we have,

p(n1) + p(n2) + · · · + p(nm) + p(n1, n2) + p(n1, n3) + · · · + p(nm−1, nm) = 1,

which is,
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mp +
m(m − 1)

2
q = 1, (3.48)

where m(m−1)
2

q = Pbc is the busy collision probability. From Eqn. (3.48), we

have,

p =
1

m
−

m − 1

2
q =

1

m
(1 − Pbc),

q =
2Pbc

m(m − 1)
. (3.49)

The busy collision probability is modeled as,

Pbc = 1 − eamλ/(1−mλ), (3.50)

where λ is a given constant, a and m are parameters to be estimated. Prop-

agation delay a is proportional to the largest distance between any two sensor

nodes. Thus,

a = Cad
(k)
max

where Ca is a constant and d
(k)
max is the maximum distance of the k-th particle,

which is computed by,

d(k)
max = max

i,j
(

√

[x
(k)
i − x

(k)
j ]2 + [y

(k)
i − y

(k)
j ]2), k = 1, 2, · · · , lt.

In the localization scheme, we assign an initial value to a and update the es-

timation of a during the iteration. The estimation â of a in each iteration is

computed by the average of the largest distances of all the remaining particles,
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â =
Ca

Nremain

∑

k

d(k)
max. (3.51)

The estimation m̂ of m is according to the idle probability.

m̂ =
1

λ

1 − Pidle

2aPidle + 1
,

which requires the estimation of a and the detected idle probability Pidle.

The other items in Eqn. (3.29) need to be modeled are p(zt|ni, Xt) and p(zt|ni, nj, Xt).

p(zt|ni, Xt) is the single radio source sensing model which is given by,

p(zt|ni, Xt) = p[zt|x
(j)
i , y

(j)
i , θ(j))]

=
1

2
[erf(

zt + 0.5 − z0(r, θ
(j))

σ
) − erf(

zt − 0.5 − z0(r, θ
(j))

σ
)],

(3.52)

where σ = 0.9093,

z0(r, θ) = C1 + C2 log C
1

(x
(j)
i )2 + (y

(j)
i )2

f(θ(j)).

The item p(zt|ni, nj, Xt) corresponds the general sensing model from a collision

type which contains two radio sources ni and nj,

S0(ni, nj, Xt) = Si + Sj + 2
√

SiSj cos (φi − φj), (3.53)

where,
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Si =
Cf(π − θ + arctan( y1

x1

))

(x1)2 + (y1)2
,

Sj =
Cf(π − θ + arctan( y2

x2

))

(x2)2 + (y2)2
,

Similarly, we need to consider the measurement error. Thus,

p(zt|ni, nj, θ) =
1

2
[erf(

zt + 0.5 − z0(ni, nj, θ
(j))

σ
)

−erf(
zt − 0.5 − z0(ni, nj, θ

(j))

σ
)]. (3.54)

By examining Eqn. (3.49), Eqn. (3.50), Eqn. (3.52) and Eqn. (3.54), we can

compute p(zt|Xt) with Eqn. (3.29).

5. After we weight the samples, normalize the weight of samples. Thus,

p(i) =
p[zt|Xt]

∑

i

p[zt|Xt]
. (3.55)

6. Then, we resample the sample set from Bel(xt) according to the probability

distribution defined by the importance factor p
(i)
t .

7. Compute the average position of all of the sensor nodes in all of the particles,































xave = 1
ltm̂

∑

i

∑

j

(x
(j)
i )t(p

(j)
i )t

yave = 1
ltm̂

∑

i

∑

j

(x
(j)
i )t(p

(j)
i )t

θave = 1
ltm̂

∑

i

∑

j

(θ
(j)
i )t(p

(j)
i )t,

(3.56)

where lt is the number of the remaining particles at time t.
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8. Generate a motion command (D,T ) with,











D = Dc

T = 2π − θave mod π,
(3.57)

where D = Dc is a constant distance the robot will move in a step. T is the

requested angle that the robot should change.

9. Update the resampled sample set x
(i)
t with the motion model according to .























(x
(j)
i )t+1 = (x

(j)
i )t − D cos((θ

(j)
i )t + T

2
)

(y
(j)
i )t+1 = (y

(j)
i )t − D cos((θ

(j)
i )t + T

2
)

(θ
(j)
i )t+1 = ((θ

(j)
i )t − T ) mod 2π.

(3.58)

10. Update a according to the average of the estimation of the maximum distance

within a particle.

â =
Ca

Nremain

∑

k

d(k)
maxp

(k).

11. Update Pbc according to a and m.

Pbc = 1 − eamλ/(1−mλ).

12. Stop if the remaining particles fit the stop condition. Otherwise, go to step 3.

The stop condition is defined as,











dave =
√

x2
ave + y2

ave ≤ dth

MSEd = 1
lt

∑

i

[(xave − (x
(i)
ave)t)2 + (yave − (x

(i)
ave)t)2] ≤ MSEth.

(3.59)
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where ((x
(i)
ave)t, (y

(i)
ave)t) is the center position of the i-th particle which is defined

as,















((x
(i)
ave)t =

m
∑

j=1

((x
(i)
j )t

((y
(i)
ave)t =

m
∑

j=1

((y
(i)
j )t

(3.60)

The first condition dave ≤ dth denotes that the estimated distance of the robot

and the radio source is less than a threshold value dth. The second condition

MSEd ≤ MSEth denotes that the certainty of the estimation is less than a

threshold MSEth.
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CHAPTER IV

SIMULATION EXPERIMENTS

In this chapter, we verify our modeling and scheme with simulation experiments.

In Section. A, we verify the CSMA-based MAC protocol model with simulations. In

Section. B, we validate our algorithm of radio source number estimation. We evaluate

our particle filter based localization scheme with simulations in Section. C.

All simulation programs are written with C++ compiling in Microsoft Visual

Studio .NET 2003 and running in Windows XP operating system. The computer

used to run the simulation codes is a PC Laptop with 1.6 GHz Centrino CPU and

512MB RAM.

A. CSMA Protocol Model Verification

We first verify our CSMA modeling by looking at the model of channel idle probability.

We fix the value of source sending rate λ = 0.01 and simulate the CSMA protocol for

different number of radio sources m. The idle probability Pidle in different values of

propagation delay a is shown in Fig. 16. The blue lines are the simulation results and

the red lines are the theoretical results from our CSMA model for the idle probability.

As we can see from the figure, the two classes of lines are pretty close. In Fig. 17,

we fix the value of propagation delay a = 0.04, and simulate the CSMA protocol

for different number of radio sources m. The resulting blue lines are the simulation

results and the red lines are the theoretical results from our CSMA model for the idle

probability. As we can see from the figure, the two types of lines are close.

We then fix a = 0.01, λ = 0.01, and the simulation results of Pidle with different

values of m are shown in Fig. 18. Blue line is the simulation result and red line is the

CSMA modeling result.



54

0.02 0.025 0.03 0.035 0.04 0.045 0.05
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

a

P
id

le
Simulation results, m=2
CSMA model, m=2
Simulation results, m=3
CSMA model, m=3
Simulation results, m=4
CSMA model, M=4

m=2

m=3

m=4

Fig. 16. The idle probability simulation results and the theoretical model with different

values of a, for m = 2, 3 and 4 radio sources. λ = 0.01.
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Fig. 17. The idle probability simulation results and the theoretical model with different

values of λ, for m = 2, 3 and 4 radio sources. a = 0.04.
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Fig. 18. The idle probability simulation results and the theoretical model with different

m (Number of sensor nodes). a = 0.01, λ = 0.01.

We then look at the model of busy collision probability. We fix the value of

source sending rate λ = 0.01 and simulate the CSMA protocol for different number of

radio sources m. The busy collision probability Pbc in different values of propagation

delay a is shown in Fig. 19. The blue lines are the simulation results and the red lines

are the theoretical results from our CSMA model for the busy collision probability.

As we can see from the figure, the two classes of lines are pretty close. In Fig. 20,

we fix the value of propagation delay a = 0.04, and simulate the CSMA protocol

for different number of radio sources m. The resulting blue lines are the simulation

results and the red lines are the theoretical results from our CSMA model for the

busy collision probability. As we can see from the figure, the two types of lines are

close.

We then fix a = 0.01, λ = 0.01, and the simulation results of Pbc with different

values of m are shown in Fig. 21. Blue line is the simulation result and red line is the
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Fig. 19. The busy collision probability simulation results and the theoretical model

with different values of a, for m = 2, 3 and 4 radio sources. λ = 0.01.
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Fig. 20. The busy collision probability simulation results and the theoretical model

with different values of λ, for m = 2, 3 and 4 radio sources. a = 0.04.
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Fig. 21. The busy collision probability simulation results and the theoretical model

with different m (Number of sensor nodes). a = 0.01, λ = 0.01.

CSMA modeling result.

B. Radio Source Number Estimation Verification

We also verify the accuracy of our algorithm to estimate the number of the radio

sources according to Eqn. (4). We randomly generate a number for the number of

radio sources m between 2 and 10, then we construct a network by uniformly insert

all radio sources into a 2-D space. We use the measured channel idle probability to

estimate the number of the radio sources. If the estimated number is correct, we say

it is a successful case. We repeat it for 5000 tries for each combination of a and λ, We

compute the average success rate for all the tries and obtain a success rate of 86.6%.

C. Localization Scheme Performance Evaluation

1. Performance Metric

We use success rate to evaluate the performance of our localization scheme. The suc-

cess rate is defined as the probability of successful localization in a given maximum
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allowed steps Tm. The success rate is a function of the tolerant distance dth. Specifi-

cally, if the robot approaches a radio source such that the distance of the robot and

the radio source is less than dth, we say this radio source is localized. If all the radio

sources are localized in a steps less than the step limit Tm, we say this is a successful

localization case. We compute the possibility of successful case in all the localization

tries and get the success rate.

2. The Method of Steepest Descent

In order to provide a comparison scheme, we construct a framework of localization

scheme based on the method of steepest descent. We first introduce the method of

steepest descent.

The method of steepest descent, also called gradient descent, is a well-studied

numerical method to find a local minimum of an arbitrary function g. The method

can be described as follows:

1. Evaluate g at an initial approximation x(0) = (x
(0)
1 , x

(0)
2 , · · · , x

(0)
n )T ;

2. Determine a direction from x(0) that results in a decrease in the value of g;

3. Move an appropriate distance in this direction and call the new vector x(1);

4. Repeat steps 1) through 3) with x(0) replaced by x(1).

The algorithm runs iteratively. The key of the algorithm is to determine the

direction in step 2) and the distance in step 3). Theoretically, the direction of move-

ment must be the negative direction of the gradient of function g (i.e., −∇g(x)) to

guarantee a steepest descent of function value. The distance of movement can be

decided by minimize the resulting function value.
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Fig. 22. A demonstration of the steepest descent for a one-node case.

In the localization problem, our goal is to find the maximum of the RF signal

strength reading. For one sensor node, the local maximum is the global maximum,

thus, we can use a variation of steepest descent algorithm, also called hill climbing

algorithm, to solve this problem.

we can obtain the function value g(x) in position x by the sensor reading of the

robot, but the position of x is unknown and need to be estimated. We assume a

constant movement distance in each step. The problem need to be solved is to find

the direction to move. Since we cannot compute the gradient directly, an gradient

detection method is essential for our hill climbing algorithm. A demonstration of the

method of steepest descent for a one-node case is shown in Fig. 22.

Based on our antenna model, the signal strength is a function of the angle between

the antenna and the signal source.

The gain of the antenna in terms of the angle θ is shown in Fig. 23. The direction

with the highest gain is the direction of the sensor node. The problem becomes finding
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Fig. 23. Antenna gain vs. direction, shifted by π/2.

a local maximum. It is obviously in Fig. 23, we have two local maxima. Fortunately,

the two maxima is in an opposite direction. So, we just need to find a local maximum

and drive the robot heading to this direction for a given distance. If the signal

strength increases, we know this is the direction of sensor nodes, otherwise, we know

the opposite direction is our target. Since we don’t know the exact direction of the

antenna, we need to find a local maximum through a search algorithm. We design and

implement a binary search algorithm to find a local maximum. The search algorithm

is described as follows.

1. Put the robot randomly at a pose (x0, y0, θ0).

2. Get a reading z0 from the receiver.

3. Assign an initial turning angle α.

The following process is iterative. In each iteration:

4. Turn the robot to a pose (xt−1, yt−1, θt−1 + α) and get a new reading zt.

5. If |zt − zt−1| < e, where e is a tolerance error, a local maximum is found. Stop.

6. If zt > zt−1, go back to Step 4) with t = t + 1.
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7. If zt < zt−1 and, there is no reading for the time t − 2, i.e., this is the second

reading in a given robot position, we discard this reading, change α to −α and

go back to Step 4).

8. If zt−2 exists, we need to compare zt−2 and zt. If zt < zt−2, we know a local

maximum is in the range of [zt−2, zt−1], otherwise, a local maximum is in the

range of [zt, zt−1]. In each case, change the α to α/2 and search in the new

range. Go back to Step 4).

When this algorithm stops, we have an estimation of the local maximum of

direction. We drive the robot toward this direction, and compare the new reading

with the current one to decide if this local maximum is the correct one we are finding.

If the new reading is bigger, we know the movement is correct and start to find a

new direction in the new position. If the new reading is smaller, we need to drive

the robot back and to the opposite direction. By repeating this algorithm, we can

localize the radio source.

We apply the single-source localization algorithm based on the steepest descent

several times in different initial points to localize multiple networked radio sources.

3. Performance Comparison

We did simulations for the scheme based on the method of steepest descent and our

scheme based on the particle filtering in a same condition. We use a two-node scenario

in the simulations. We changed the threshold of localization distance error dth from

0.4 to 1.6. The maximum allowed number of steps is Tm = 400. Simulation results

for performance comparison are shown in Fig. 24. The resulting success rates of our

proposed scheme based on the particle filtering is shown as the solid blue line. The

success rates of the scheme based on steepest descent is shown as the dashed red line.
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Fig. 24. Performance comparison between the localization scheme based on particle

filtering and that based on steepest descent.

As we can see from the figure, our proposed scheme can perform better than a scheme

based on the steepest descent we introduced in this chapter.
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CHAPTER V

CONCLUSION AND FUTURE WORK

The ideas presented in this document have been expressed in terms of a Particle Fil-

tering based localization framework, a sensing model which is built on a directional

antenna model and a CSMA-based MAC protocol model, with the final goal of local-

izing hostile networked radio sources. In this chapter, we summarize the major work

we did and indicate some future directions for extension of this work.

A. Conclusion

Localization of hostile networked radio sources such as sensor network nodes is im-

portant in applications like search and rescue, and protecting privacy. The focus of

previous work has been to a large extent to localize the sensor nodes based on the

signal source, e.g., sensor identification, and the received RF signal strength. In our

work, we proposed a particle filter based localization scheme to localize hostile net-

worked radio sources based on a new sensing model which combines the received RF

signal strength and the measured communication pattern.

In Chapter II, we made assumptions for our modeling and scheme design and

give a mathematic definition of our problem.

The localization scheme is introduced and detailed in Chapter III. First, we give

a review of particle filter in Section. A. Then we introduce a directional antenna

model and a single-source sensing model based on the antenna model. By combining

the single-source sensing model with a robot motion model, we introduce a single-

source localization scheme. Then we generize the sensing model for multiple radio

sources. A CSMA-based MAC protocol model is then detailed as a component of

the sensing model. Finally, we proposed the localization scheme based on the sensing
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model which is built on the antenna model and the CSMA protocol model.

We verified our modeling and evaluated the scheme performance by simulation

experiments in Chapter IV. For the purpose of performance comparison, we designed

a localization scheme based on the method of steepest descent. We compared the

performance of our particle filter based method and the method based on the steepest

descent. Simulation results show that, our method has a superior performance in

terms of the successful rate within a limited maximum allowed step than the method

based on the steepest descent.

B. Future Work

1. Multiple-Robot Multiple-Source Localization

In future work, we are interested in designing multiple-robot multiple-source local-

ization scheme, where we use collaborative robots to localize hostile networked radio

sources. In a multiple-robot environment, the key problems to be solved are the infor-

mation synchronization and fusing between different robots. A distributed Particle

Filtering algorithm is often referred to address these problems. However, there are

research topics on problems such as how to improve the performance of localization

by using multiple robots, and how to analyze the communication pattern information

from different robots.

2. Localizing Moving Radio Sources

Localizing moving radio sources is an interesting topic as a future direction and will

pose new challenge to the localization framework.
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3. Experiment Validations

This work is mainly based on theoretical modeling and simulation. Both the antenna

model and the localization scheme require validations from real world experiments.



66

REFERENCES

[1] I. Akyildiz, S. Weilian, Y. Sankarasubramaniam, and E. Cayirci, “A survey on

sensor networks,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102–114,

Aug. 2002.

[2] N. Xu, “A survey of sensor network applications,”

http://enl.usc.edu/∼ningxu/papers/survey.pdf, accessed on 11/14/2005.

[3] K. Lorincz, D. Malan, T. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnayder,

G. Mainland, S. Moulton, and M. Welsh, “Sensor networks for emergency re-

sponse: Challenges and opportunities,” IEEE Pervasive Computing, Special Is-

sue on Pervasive Computing for First Response, vol. 03, no. 4, pp. 16–23,

October - December 2004.

[4] D. Fox, S. Thrun, F. Dellaert, and W. Burgard, “Particle filters for mobile ro-

bot localization,” in Sequential Monte Carlo Methods in Practice, A. Doucet,

N. de Freitas, and N. Gordon, Eds. New York: Springer Verlag, 2000.

[5] L. Kleinrock and F. Tobagi, “Carrier sense multiple access for packet switched

radio channels,” in International Conference on Communications, Minneapolis,

Minnesota, 1974, pp. 21B–1 to 21B–7.

[6] Acroname Inc., “BrainStem Moto 1.0 Module,”

http://www.acroname.com/robotics/parts/S10-MOTO-BRD.html, accessed on

11/14/2005.

[7] Acroname Inc., “Nubotics WW-02 Wheel Watcher,”

http://www.acroname.com/robotics/info/examples/ww-2/ww-2.html, accessed

on 11/14/2005.



67

[8] Acroname Inc., “Devantech compass module,”

http://www.acroname.com/robotics/info/examples/compass-1/compass-1.

html, accessed on 11/14/2005.

[9] Winradio Communications, “WiNRADiO AX-31B Planar Log-Periodic An-

tenna,” http://www.winradio.com/home/ax31b.htm, accessed on 11/14/2005.

[10] Crossbow Technology Inc., “MICA2/DOT Professional Kit,”

http://www.xbow.com/Products/productsdetails.aspx?sid=69, accessed on

11/14/2005.

[11] Poynting Software Ltd., “SuperNEC Antenna Simulation Software,”

http://www.supernec.com, accessed on 11/14/2005.

[12] P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based user lo-

cation and tracking system,” in INFOCOM (2), 2000, pp. 775–784.

[13] J. Letchner, D. Fox, and A. LaMarce, “Large-scale localization from wireless

signal strength,” in Proc. of the National Conference on Artificial Intelligence

(AAAI-05), Pittsburgh, PA, July 2005.

[14] N. Malhotra, M. Krasniewski, C. Yang, S. Bagchi, and W. Chappell, “Location

estimation in ad hoc networks with directional antennas,” in Proc. of the 25th

IEEE International Conference on Distributed Computing Systems (ICDCS’05).

Washington, DC, USA: IEEE Computer Society, 2005, pp. 633–642.

[15] M. Youssef, A. Agrawala, and U. Shankar, “Wlan location determination via

clustering and probability distributions,” in IEEE PerCom 2003, 2003, p. 143.

[16] N. Bulusu, J. Heidemann, and D. Estrin, “Gps-less low cost outdoor localization

for very small devices,” IEEE Personal Communications Magazine, vol. 7, no. 5,



68

pp. 28–34, October 2000.

[17] X. Ji and H. Zha, “Sensor positioning in wireless ad-hoc sensor networks using

multidimensional scaling,” in Proc. of INFOCOM’04, 2004, pp. 2652–2661.

[18] K. Lorincz and M. Welsh, “Motetrack: A robust, decentralized approach to rf-

based location tracking,” in Proc. of the International Workshop on Location

and Context-Awareness (LoCA 2005) at Pervasive 2005, 2005.

[19] M. Sichitiu and V. Ramadurai, “Localization of wireless sensor networks with

a mobile beacon,” in first IEEE International conference on Mobile Ad hoc and

Sensor Systems, 2004, pp. 174 – 183.

[20] N. Bulusu, V. Bychkovskiy, D. Estrin, and J. Heidemann, “Scalable, ad hoc

deployable rf-based localization,” in Grace Hopper Celebration of Women in

Computing Conference 2002, Vancouver, British Columbia, Canada., October

2002.

[21] S. Thrun, “Robotic mapping: A survey,” in Exploring Artificial Intelligence in

the New Millenium, G. Lakemeyer and B. Nebel, Eds. San Fransisco, CA:

Morgan Kaufmann, 2002.

[22] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and

M. Csorba, “A solution to the simultaneous localization and map building (slam)

problem,” IEEE Transactions on Robotics and Automation, vol. 17, no. 3, pp.

229–241, 2001.

[23] M. Montemerlo, “Fastslam: A factored solution to the simultaneous localiza-

tion and mapping problem with unknown data association,” Ph.D. dissertation,

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, July 2003.



69

[24] S. Thrun, D. Fox, and W. Burgard, “A probabilistic approach to concurrent

mapping and localization for mobile robots,” Machine Learning, vol. 31, pp.

29–53, 1998, also appeared in Autonomous Robots 5, 253–271 (joint issue).

[25] D. Hähnel, W. Burgard, D. Fox, K. Fishkin, and M. Philipose, “Mapping and lo-

calization with RFID technology,” in Proc. of the IEEE International Conference

on Robotics and Automation (ICRA), 2004.

[26] K. P. Murphy, “Bayesian map learning in dynamic environments,” in NIPS, 1999,

pp. 1015–1021.

[27] H. Moravec, “Sensor fusion in certainty grids for mobile robots,” AI Mag., vol. 9,

no. 2, pp. 61–74, 1988.

[28] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo localization for

mobile robots,” in IEEE International Conference on Robotics and Automation

(ICRA99), May 1999, pp. 99–141.

[29] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo localization:

Efficient position estimation for mobile robots,” in Proc. of the Sixteenth National

Conference on Artificial Intelligence (AAAI’99), July 1999, pp. 343–349.

[30] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust Monte Carlo localization

for mobile robots,” Artificial Intelligence Journal, vol. 128, no. 1-2, pp. 99–141,

2000.

[31] A. Doucet, N. de Freitas, K. P. Murphy, and S. J. Russell, “Rao-blackwellised

particle filtering for dynamic bayesian networks,” in Proc. of the 16th Conference

on Uncertainty in Artificial Intelligence. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2000, pp. 176–183.



70

[32] A. Paul and I. Gupta, “An analysis of log periodic antenna with printed dipoles,”

IEEE Transactions on Microwave Theory and Techniques, vol. MTT-29, no. 2,

pp. 114–117, Feb. 1981.

[33] J. Wolter, “Solution of Maxwell’s Equations for log-periodic dipole antennas,”

IEEE Transactions on Antennas and Propagation, vol. 18, pp. 734 – 741, Nov.

1970.

[34] F. Cali, M. Conti, and A. Gregoryi, “Dynamic tuning of the IEEE 802.11 pro-

tocol to achieve a theoretical throughput limit,” IEEE/ACM Transactions on

Networking (TON), vol. 8, pp. 785 – 799, Dec. 2000.

[35] L. Kleinrock and F. A. Tobagi, “Packet switching in radio channels: Part i –

carrier sense multiple-access modes and their throughput-delay characteristics,”

IEEE Transactions on Communications, vol. COM-23, no. 12, pp. 1400–1416,

Dec. 1975.

[36] R. S. Elliott, Antenna Theory and Design. Piscataway, NJ: The IEEE Press,

2003.

[37] L. B. Cebik, LPDA Notes. Corpus Christi, TX: AntenneX Online Magazine,

2001.

[38] Trevor Marshall, “Numerical Electromagnics Code,”

http://www.nec2.org, accessed on 11/14/2005.

[39] A. Eliazar and R. Parr, “Learning probabilistic motion models for mobile ro-

bots,” in Proc. of the Twenty-first International Conference on Machine Learn-

ing, Banff, Alberta, Canada, 2004, p. 32.



71

[40] A. Alastasi, A. Falch, A. Passarella, M. Conti, and A. Gregoryi, “Performance

measurements of motes sensor networks,” in The Seventh ACM International

Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Sys-

tems, Venezia, Italy, Oct. 2004, pp. 114–117.



72

VITA

Qiang Hu received his B.S. degree in electronic engineering from Tsinghua Uni-

versity in 2000. He began pursuing his M.S. degree in electrical engineering at Texas

A&M University in January 2004. His research interests include robotics and com-

puter networks.

Mr. Hu may be reached at:

Qiang Hu C/O Daoquan Hu

Baishulin, Building 12, 14-5

Shapingba, Chongqing, China, 400044


