
DESIGN AND ANALYSIS OF A 3-DIMENSIONAL CLUSTER

MULTICOMPUTER ARCHITECTURE USING OPTICAL

INTERCONNECTION FOR PETAFLOP COMPUTING

A Dissertation

by

EKPE APIA OKORAFOR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2005

Major Subject: Computer Engineering

DESIGN AND ANALYSIS OF A 3-DIMENSIONAL CLUSTER

MULTICOMPUTER ARCHITECTURE USING OPTICAL

INTERCONNECTION FOR PETAFLOP COMPUTING

A Dissertation

by

EKPE APIA OKORAFOR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Gwan S. Choi
Committee Members, Duncan M. Walker

Henry F. Taylor
Sunil P. Khatri

Head of Department, Costas N. Georghiades

December 2005

Major Subject: Computer Engineering

iii

ABSTRACT

Design and Analysis of a 3-Dimensional Cluster Multicomputer Architecture Using

Optical Interconnection for PetaFLOP Computing. (December 2005)

Ekpe Apia Okorafor, B.E., University of Nigeria;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Gwan Choi

In this dissertation, the design and analyses of an extremely scalable distributed

multicomputer architecture, using optical interconnects, that has the potential to

deliver in the order of petaFLOP performance is presented in detail. The design

takes advantage of optical technologies, harnessing the features inherent in optics,

to produce a 3D stack that implements efficiently a large, fully connected system of

nodes forming a true 3D architecture. To adopt optics in large-scale multiproces-

sor cluster systems, efficient routing and scheduling techniques are needed. To this

end, novel self-routing strategies for all-optical packet switched networks and on-line

scheduling methods that can result in collision free communication and achieve real

time operation in high-speed multiprocessor systems are proposed. The system is de-

signed to allow failed/faulty nodes to stay in place without appreciable performance

degradation. The approach is to develop a dynamic communication environment that

will be able to effectively adapt and evolve with a high density of missing units or

nodes. A joint CPU/bandwidth controller that maximizes the resource allocation in

this dynamic computing environment is introduced with an objective to optimize the

distributed cluster architecture, preventing performance/system degradation in the

presence of failed/faulty nodes. A thorough analysis, feasibility study and description

iv

of the characteristics of a 3-Dimensional multicomputer system capable of achieving

100 teraFLOP performance is discussed in detail. Included in this dissertation is

throughput analysis of the routing schemes, using methods from discrete-time queu-

ing systems and computer simulation results for the different proposed algorithms. A

prototype of the 3D architecture proposed is built and a test bed developed to obtain

experimental results to further prove the feasibility of the design, validate initial as-

sumptions, algorithms, simulations and the optimized distributed resource allocation

scheme. Finally, as a prelude to further research, an efficient data routing strategy

for highly scalable distributed mobile multiprocessor networks is introduced.

v

To my loving wife, Unoma, and my beautiful daughter, Chisom.

vi

ACKNOWLEDGMENTS

I am indeed indebted to many people in the course of producing this dissertation.

First, I would like to express my thanks to Dr. Mi Lu, who gave me the opportunity,

initial guidance and support to pursue my graduate studies here at Texas A&M

University. Her directives provided me with a clear insight and understanding of the

initial problems I tackled in producing this dissertation.

Next, I would like to acknowledge the members of my committee, Dr. Gwan Choi,

Dr. Hank Walker, Dr. Henry Taylor & Dr. Sunil Khatri. Together they inspired

me to achieve excellence in research. The many discussions and collaborations have

really paid off. Their great insight and understanding of related subject matters have

had a profound impact on me. The road to success in a PhD program in part rests

on the support and guidance from one’s committee members, and I was blessed to

have the best.

I had the opportunity to work on many projects that resulted in both conference

and journal papers while interning at IBM, at the Almaden and Watson facilities. I

want to thank Claudio Fleiner, Richard Garner and Wilfried Wilcke at the Almaden

Research Center. At the Watson Center, many thanks to Jeremy Silber, Dimitrios

Pendarakis and Laura Wynter.

To my parents and siblings, I just want to say thanks, I made it. Last, but

certainly not the least, my wife, Unoma, who has to put up with me. Thanks, baby,

you are the best. I give God Almighty all the glory. Thank you Lord for the many

blessings in my life.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Problem Definition . 2

1. Architecture and Optical Implementation 4

2. Routing and Scheduling 4

3. Fault Tolerance and Adaptability 6

4. System Optimization and Performance 7

B. Objectives . 8

C. Current Status . 9

II ARCHITECTURE AND OPTICAL IMPLEMENTATION . . . 15

A. Basic Architecture . 15

1. Basic Building Block 16

2. 3D System . 18

B. 100 TeraFLOP Performance: A Case Study 20

1. Feasibility Analysis for Optical Components 20

a. Free Space Optical Coupler Interface 21

b. Optical Transmitters/Receivers 22

c. Power . 22

d. Guided Planar Optical Interconnect 22

C. Analysis of the Optical Interconnection Network 23

1. Modeling the Free-space Optical Interconnect 23

a. Cross-talk and Transmission Efficiency 24

b. Bit Error Rate 24

c. Simulation Results and Discussion 25

2. Modeling the POF Guided Planar Optical Interconnect 26

a. Cross-talk and Transmission Efficiency 27

b. Simulation Results and Discussion 29

D. Performance Evaluation 30

1. Implementation of Compute/Communication In-

tensive Algorithm . 30

2. Comparing the Single-hop and Multi-hop Commu-

nication Methods . 32

viii

CHAPTER Page

III ALL-OPTICAL ROUTING . 34

A. The Self-routing Scheme 35

1. Node Structure and Address 37

2. Routing . 39

B. Optical Implementation 41

C. Analytical Model . 43

1. Average Packet Hop Count and Throughput 44

2. Packet Loss Probability 46

D. Simulation Results . 48

E. Conclusion . 50

IV MESSAGE SCHEDULING . 52

A. System Model . 54

B. Scheduling Algorithm . 56

1. Control Frame Ordering 57

2. Data and Control Frame Ordering 58

3. Multiple Data and Control Frame Ordering 59

4. Multiple Data and Control Frame Ordering with

Multicast Partition . 60

C. Simulation Results . 61

V FAULT TOLERANCE . 67

A. Percolation in Large Systems 71

B. Percolation Routing with Optical Interconnectivity 74

1. Address Formulation, Path Setup, and Channel

Assignment . 76

2. Routing Algorithms 78

a. Notation . 78

b. Dimension order routing (XYZ routing) 80

c. Probability-based percolation random routing . . 83

C. Feasibility of Optical Implementation 86

D. Simulation Results . 89

VI SYSTEM OPTIMIZATION AND PERFORMANCE 95

A. Overview of Related Work 98

B. Experimental Design . 100

1. Bandwidth Policing 100

2. CPU Monitoring . 102

 ix

CHAPTER Page

 3. Bandwidth Monitoring 103
4. Controller 104

C. Experimental Procedure and Results 105
1. Experimental Procedures 106

a. Linux Scheduler Priority (nice) 107
b. Class-based Kernel Resource Manager (CKRM) . . 107
c. Autonomic Traffic Management System (ATM) . . 108

2. Experimental Results 108
D. Conclusion and Future Work 113

 VII ROUTING IN MOBILE MULTICOMPUTER NETWORK
 - A CASE STUDY . 116

 A. The System Model 120

1. Network Partition Scheme 121
2. Node Addressing 122
3. Node Community Update 124
4. Location Inquiry 127

B. Distributed Mobile Data Routing 128
1. Path Setup 128
2. Path Hand-over 131
3. Predictive Data Routing 132

C. Analysis 133
1. Analysis for Optimal Partitioning 133
2. Analysis for Delay Improvement 135

D. Simulation Results 136
E. Conclusion 139

 VIII CONCLUSION 140

REFERENCES AND LINKS 142

APPENDIX A 156

APPENDIX B 158

VITA 160

x

LIST OF TABLES

TABLE Page

I Optimized Parameters . 27

II Characteristics of Sources/Detectors 28

III Simulation Parameters for the All-Optical Packet Routing Subsystem 90

xi

LIST OF FIGURES

FIGURE Page

1 Diagram showing basic node structure with FSOI couplers capable

of gigahertz communication . 16

2 Diagram showing logical interconnection within each node 17

3 Schematic diagram of each PE . 18

4 3D 4x4x4 mesh interconnection network using optical interconnect . 19

5 Optical link assembly with built-in redundancy 21

6 Channel density as interconnection length is increased 25

7 Transmission efficiency of the free-space of lens with different focal

numbers . 26

8 The plot of BER as a function of the angular tilt 26

9 The plot of BER as a function of the laser power 27

10 Transmission of the POF based guided-wave interconnect using a

VCSEL . 30

11 Jacobi iteration . 31

12 Ratio of single-hop to multi-hop raw bandwidth-per-link against

network size for a 3D mesh . 33

13 Two field address structure . 36

14 A 48-node 3-D network . 37

15 The node structure . 38

16 Diagram to illustrate output link options 39

17 Data routing illustration . 40

xii

FIGURE Page

18 Packet address illustration . 41

19 Temporal snapshot of (a) programming (b) & (c) processing stages . 42

20 Phase matching diagram . 43

21 Average hop count for 48-node network topology 48

22 Average hop count for 48-node network topology under higher loads . 49

23 Packet loss probability for a 48-node topology 49

24 Node throughput for a 48-node topology 50

25 Diagram to illustrate output link options 54

26 Operational system cycles . 55

27 Plot of average packet delay versus arrival rate per node 64

28 Plots showing average packet delay versus multicast rate 65

29 Throughput versus arrival rate per node 66

30 3-dimensional mesh network with failed nodes depicted as white nodes 72

31 Diagram showing min-cut in both 2- and 3-dimension 73

32 Two field address structure . 75

33 Distribution of link loading on traffic model for 0% 86

34 Distribution of link loading on traffic model for 50% 87

35 Block diagram of header recognition subsystem using OTDM 88

36 Bit format of the OTDM packet . 88

37 Bit format of the OTDM packet . 89

38 Channel width . 91

xiii

FIGURE Page

39 Network latency for a 10x10x10 3D mesh network with arbitrary

fixed message size under uniform random traffic 92

40 Effect of faulty node degree on saturation throughput 92

41 Effect of faulty node degree on worse case loading 93

42 Average number of hot spots . 94

43 CPU utilization measured using each of the 3 management schemes:

nice, CKRM, and ATM for varying processing levels. Each scheme

is represented by two lines for the two tasks, and the target CPU

utilizations are indicated by the dotted lines labeled “targets” 109

44 Bandwidth Utilization measured using each of the 3 management

schemes: nice, CKRM, and ATM for varying processing levels.

Each scheme is represented by two lines corresponding to the two tasks.110

45 Standard deviation of CPU utilization 112

46 Standard deviation of bandwidth utilization 112

47 Graphical illustration of network showing only two levels 120

48 Illustration of the hexagonal tree structure 122

49 Illustration of network-layout showing levels of the partition hierarchy 123

50 Comparison between rectangle and hexagonal packing 133

51 Comparing the control signal delay of SEEK and different regular

topologies . 137

52 Effect of reservation techniques on control signal delay 137

53 Comparing the average packet delay of SEEK and other topologies . 138

54 Effects of predictive routing on average packet delay using SEEK . . 138

 1

CHAPTER I

INTRODUCTION

In this dissertation, the design and analysis of an extremely scalable distributed mul-

ticomputer architecture using optical interconnects that has the potential to deliver

in the order of petaFLOP (1015 floating point operations per second) performance is

presented in detail. The design takes advantage of optical technologies, harnessing

the features inherent in optics, to produce a 3D stack that implements efficiently

a large, fully connected system of nodes forming a true 3D architecture. To adopt

optics in large-scale multiprocessor cluster systems, efficient routing and scheduling

techniques are needed.

To this end, novel self-routing strategies for all-optical packet switched networks,

and on-line scheduling methods that can result in collision free communication and

achieve real time operation in high-speed multiprocessor systems are proposed. The

system is designed to allow failed/faulty nodes stay in place without appreciable per-

formance degradation. The approach will be to develop a dynamic communication

environment that will be able to efficiently adapt and evolve with a high density of

missing units or nodes. A joint CPU/bandwidth controller that maximizes the re-

source allocation in this dynamic computing environment is introduced with an objec-

tive to optimize the distributed cluster architecture, preventing performance/system

degradation in the presence of failed/faulty nodes.

A thorough analysis and feasibility study is done for a 100 teraFLOP perfor-

mance and description of the characteristics of the proposed hardware components is

outlined.

This dissertation follows the style and format of the Journal of Optical Networking.

2

Included in this dissertation will be throughput analysis of the routing schemes,

using methods from discrete-time queuing systems and computer simulation results

for the different proposed algorithms. A prototype of the 3D architecture proposed

is built and a test bed developed to obtain experimental results to further prove

the feasibility of the design, validate initial assumptions, algorithms, simulations and

the optimized distributed resource allocation scheme. Finally, as a prelude to fur-

ther research, an efficient data routing strategy for highly scalable distributed mobile

multiprocessor networks is introduced.

A. Problem Definition

Some of the serious issues faced by the designers of large-scale computers or computing

systems include the following in order of importance;

• Inter-processor communication is a bottleneck

• System management is too complex

• Wide range of scalability

• System acquisition cost, and

• Environmental issues (floor space, power, cooling and noise)

The architecture and subsequently, computer system proposed in this dissertation

will improve on all these metrics simultaneously. The problems or issues dealt with

in this dissertation can be broadly grouped into four main categories:

1. Architecture and Optical Implementation

2. Routing and Scheduling

3

3. Fault Tolerance and Adaptability

4. System Optimization and Performance

This classification is by no means exhaustive and perhaps not exlusively authori-

tative. However, it is the authors opinion that these broad categories which form the

basis of the research, will provide readers and computer designers some understanding

of the problems, and offer possible solutions to these problems, faced in large-scale

computer networks and systems.

The current trend in multi-computer network design is to pack nodes more

densely in such a manner as to efficiently distribute computing resources and intercon-

nect uniformly in three-dimensional space. This has led to a remarkable improvement

in communication performance, scalability and density. Ultimately, the demand for

ever-greater performance by many computation problems pushes the boundaries for

the development of such large-scale supercomputers. PetaFLOP performance are re-

quired by many applications and they include real-time image processing, artificial

intelligence, real-time processing of databases, weather modeling, simulation of neural

networks, simulation of physical and biological phenomena, etc.

The functions of such large-scale petaFLOP-performance computer architecture

will include data acquisition and transmission, data processing, data management

and storage. These functions necessitate a large-scale, cost-effective computing and

storage capability to handle the extensive requirements for simulations and analysis

of massive amounts of data. They rely on advanced, emerging information technolo-

gies to create combinations of hardware and software, which will achieve unprece-

dented increases in numerical processing through parallel computation. However, the

main cause for the difficulty in managing and designing such large systems is the

proliferation of too many building blocks such as processors, disk arrays, switches,

4

communication protocols, etc. This leads to a combinatorial explosion complexity.

1. Architecture and Optical Implementation

From the foregoing, the issue of scalability of such large-scale petaFLOP-performance

computer cannot be over-emphasized. Massively parallel systems are required to scale

in the sense that their performance should be proportional to the number of nodes.

Unfortunately, unlimited scalability is not theoretically possible and worse still even

harder to achieve practically beyond some order of magnitude in the number of nodes.

The performance objectives of supercomputers is hindered because of the difficulties

associated with developing low complexity, high-bisection bandwidth, and low-latency

interconnection networks to connect thousands of nodes while still keeping the system

scalable.

It is desirable to have low-dimensional massively parallel computers with full-

connectivity in each direction. It is also desirable to make use of a topology that has

an extremely small diameter and average inter-node distance, and a large bisection

width. The utmost flexibility in exploiting parallelism is afforded by a topology with

diameter equal to one, where each processor can directly communicate with any other

processor. The most useful properties of a parallel processor interconnection network

are high bandwidth (scaling directly with the number of processors), low latency, no

arbitration delay, and non-blocking communication. It is apparent that the electronic

implementation of such a large-scale system is very difficult. Hence, the need to

investigate the feasibility of using optics instead.

2. Routing and Scheduling

Traditional optical communication systems are impaired by the severe drawbacks

imposed by Photonic-Electronic signal conversions at intermediate nodes. All optical

5

switching and routing can remove such bottleneck, maximizing link capacity and

network transparency. Decoding addresses optically in real time allows us to design

a self-routing scheme, break the 10Gb/s interconnection speed barrier, and eliminate

the need for wire connections. Speeds of up to 100Gb/s are possible if both the

header and payload remain in the optical domain. Terabytes or petabytes memory

capacity can be achieved in the dense cluster of computer systems. Free space optical

interconnects combined with the ability to perform all optical routing has broad

applications in highly scalable massively parallel systems, neural networks, optical

and quantum computing, optical Ethernet, LAN, ultra fast signal processing, and

super high speed switches for broadband communication.

There are two ways of communication in photonic networks. It can either be

Circuit Switched or Packet Switched communication. In circuit switched networks,

dedicated links are established between communicating nodes. In contrast, for packet

switched networks, packets are sent across the network like the postal system. The

packet switched network has the potential to provide better efficiency and lower cost

when compared to the circuit switched network, as the number of nodes in the network

increases, for ideal conditions. However, because of the OEO (i.e. Optical-Electrical-

Optical) conversion, unnecessary delays and losses are introduced degrading the per-

formance.

To take advantage of the enormous potential of single-hop WDM networks, effi-

cient access protocols and scheduling algorithms [1-3] are needed to allocate and man-

age the system resources. These protocol and algorithms have to meet the communi-

cation and computation constraints. In such mode of communication, a reservation-

based technique is employed for scheduling. Scheduling algorithms can be broken

down into two distinct stages, a channel assignment stage and a packet/message or-

dering stage. The assignment stage involves selecting an appropriate channel for

6

message transfer. It may also involve establishing a time slot for the transfer. The

ordering stage deals primarily with arranging the messages in a particular order ready

for transmission. The assignment stage has been researched extensively; however the

ordering aspect has not received as much attention.

There are three main communication traffic types, unicast, multicast and broad-

cast, based on the number of intended receivers. The individual traffic types have

received a great deal of attention [4-8]. A unicast packet has only one destination

address; a multicast packet has two or more destination addresses, while a broadcast

packet is intended for all the receiver nodes in the network. The obvious problems

include source and destination address conflicts of data packets. This has the effect of

causing large data delays and degrading throughput. It then becomes important to

device a way to schedule these different packets so that conflicts and collisions can be

avoided. A collision occurs when two or more transmitters access the same channel at

the same time, while a conflict occurs when two or more transmitting nodes transmit

to a single receiver on different channels at the same time.

3. Fault Tolerance and Adaptability

As noted earlier, the current trend in multi-computer network design is to pack nodes

more densely in such a manner as to efficiently distribute computing resources and

interconnect uniformly in three-dimensional space. A direct consequence of these

trends is that as these computing devices and their accessories get cheaper, smaller

and faster, users demand more of these units to be packed in as small a space as

possible. Herein lies a potential problem - the percolation problem, that deals with

the ability of a system as a whole to continue its functions with some of its components

missing or faulty. As individual nodes in a multicomputer system get smaller and the

packing gets denser, it becomes less desirable to try to fix problems that occur in

7

individual nodes or accessories. Any attempt to fix a problem with a node may result

in making problems worse in the system as a whole. A notion widely shared by large-

scale computer system designers is that human error when carrying out maintenance

or repair results in so much loss or down time and is usually quite expensive. The

problem then is to design a system that is able to function adequately in the presence

of failed nodes.

4. System Optimization and Performance

With the design of such large scale systems, it is expected that neither the comput-

ing nor the communication subsystem become the bottleneck. A novel autonomic

control system for high performance stream processing systems is proposed. The sys-

tem uses bandwidth controls on incoming or outgoing streams to achieve a desired

resource utilization balance among a set of concurrently executing stream processing

tasks. An objective is to show that CPU prioritization and allocation mechanisms in

schedulers and virtual machine managers are not sufficient to control such I/O-centric

applications, and to present an autonomic bandwidth control system that adaptively

adjusts incoming and outgoing traffic rates to achieve target CPU utilizations.

The system learns the bandwidth rate necessary to meet the CPU utilization ob-

jectives using a stochastic nonlinear optimization, and detects changes in the stream

processing applications that require bandwidth adjustment. The Linux implementa-

tion is lightweight, has low overhead, and is capable of effectively managing stream

processing applications.

8

B. Objectives

This dissertation aims at introducing an extremely scalable multicomputer architec-

ture that has the potential to deliver in the order of petaFLOP performance utilizing

optical interconnects. The architecture should be robust and fault-tolerant even with

a high degree of failed nodes. The objectives are as follows:

1. Propose an interconnection network that has an extremely high connectivity and

reduced packaging complexity in a large scale distributed cluster environment

2. Control combinatorial explosion of complexity by encapsulating complexity

within physical building blocks or nodes

3. Realize petaFLOP performance by solving the scalability and bandwidth issues

associated with such large scale systems

4. Analyze the different MAC protocols, routing and flow control techniques and

come up with the best suited for optimal performance

5. Evaluate the interconnection network in terms of fault tolerance and adaptabil-

ity in an environment with high degree of missing or faulty nodes

6. Setup an experimental test bed to derive and analyze performance results

7. Optimize the system by developing a joint CPU/bandwidth controller to effi-

ciently allocate resources in this highly dynamic environment

8. Finally, discuss the analytical, simulation and experimental results to prove the

feasibility of our design

9

C. Current Status

This section, with the objectives stated above and the classes of problems identi-

fied, outlines some research done in some of those areas, focusing on the existing

methods, the strengths and weakness of each method, the hardness to overcome the

insufficiencies and the basis of our approach.

Many interconnection networks have been proposed for the design of massively

parallel computers, including hypercubes [9], meshes and tori [10]. Others include fat

trees and enhanced meshes. Amongst these, the hypercube has been researched more

intensively because of its good topological properties and high interconnectivity. The

difficulty posed by the extremely high VLSI complexity incurred, due to very high

communication channels needed to implement these interconnection networks, has

continued to hinder the use of these topologies to achieve large-scale computer sys-

tems. The high VLSI complexity problem is obviously unbearable for any scalability.

According to [11], metal interconnects have reached their physical limits and

have become a limiting factor because of power, delays and density considerations.

The idea of optical interconnection of very large-scale integration (VLSI) electronic

was proposed and analyzed in [12]. This no doubt was the start of the field of optical

interconnects. Many advances have been made in the field of optical interconnects to

date. Engineering analysis has showed specific energy dissipation benefits of optical

interconnect [13, 14]. It is becoming increasingly clear to silicon semiconductor indus-

try that electrical interconnects are beginning to run into serious scaling limitations.

As an electrical line is scaled down on all three dimensions, its resistive-capacitive

time constant does not change. This is an undesirable quality, since the wires do

not scale to keep up with the transistors. Optical interconnects avoid this problem

altogether because they do not have the resistive loss physics that gives rise to this

10

phenomenon. In recent years, extremely fast photonic networks are being developed

that have the potential to support very large bandwidth interconnections, with an

extraordinarily quick response time and very low latency.

Significant progress both at the device and sub-system levels has been made

in Free-Space Optical Interconnects (FSOI) to the point where FSOI can now be

considered in computing hardware at the board to board interconnect level [15]. Opto-

Electronic (OE) devices including Vertical Cavity Surface Emitting Laser (VCSELs),

light modulators, and detectors have now been developed to the point that they

can enable high speed and high density FSOI [16-18]. It is important to note here

that recent attempts to connect boxes or computer systems with FSOI links have

proven practical [19]. System boards usually run at some fraction of the processor

clock, usually about half. In the next few years, we would expect the off-board

communication to approach 10 GHz. Signals have to be routed at 10 GHz over a

small distance at 2.5 or 1.8 V cycles. Cross-talk and reflections on electrical lines have

been identified as major problems. It is well known that VCSEL links can provide

the interconnection bandwidth thereby replacing the current large edge connectors.

This will improve system noise margins because cross-talk and ground noise coupling

become more difficult to control in traditional connectors as edge rates increase.

Sophisticated CAD tools for free-space optical systems are already in development

[20].

From the foregoing, an interconnection network that utilizes free-space and guided

wave optical technology because of its increased connectivity and reduced packaging

complexity is proposed. A 3-dimensional mesh interconnection is considered for this

design. As the number of nodes in a mesh-connected multicomputer increases, the

chance of failures also increases. The complex nature of networks also makes them

vulnerable to disturbances, which can be either deliberate or accidental. Therefore it

11

is so important that the network have the ability to tolerate failures especially in the

communication subsystem.

Many routing schemes have been proposed including Deflection [21-23], Store-

and-Forward [24] and Hot Potato routing algorithms [25-27]. These routing controls

either require complex optical routing control or internal output buffers. There will

also be some latency issues particularly where wavelength conversion is required. In

terms of logic devices, optics is still in its infancy compared to electronics. Self-

routing schemes require less complex routing control. Some work has been done

to deal with the current shortcomings of using optics in packet switched networks.

Self-routing schemes have been applied to regular topologies like the hypercubes,

meshes and Manhattan Street networks in the electronic domain. In [28] a self-

routing scheme is introduced but requires routing tables, hence not really practical

for large multiprocessor systems implemented using optics. The OEO conversions

become a bottleneck that limits the performance.

To circumvent this bottleneck, researchers are working on optical packet switched

networks [29]. Such networks are very difficult to implement, especially in dealing

with contentions at the switch. Two ways to deal with contentions at the switch

include Optical Buffering and Deflection Routing. In deflection routing, a packet

is sent to a different output because of contention at its destined port. This mode

results in some delay but it is much cheaper than keeping a packet in an optical

buffer. Practical optical buffers are not yet readily available compared to electronic

buffers [30]. Optical buffering can be achieved through the use of fiber delay lines

[31]. This approach however, is not appropriate for multiprocessor systems but suited

more for long distance type communication. In order to delay a single packet for 5

ms it requires over a kilometer of fiber [32].

A scheme introduced for an arbitrary topology [33] does not require a lookup

12

table, but need single bit processing only. It can also be adapted for use in hierar-

chical networks. However, as the number of nodes in the system increases, the node

addresses can become extremely large causing a lot of overhead. This overhead is sig-

nificant compared to the payload in multiprocessor systems, which typically assume

short fixed message sizes.

In this dissertation, a proposal is made for a self-routing all-optical packet switch-

ing scheme to be applied to multiprocessor systems with a 3D mesh topology. This

technique can also be applied to an architecture that supports point-to-multicast com-

munication. The proposed scheme does not require lookup tables; instead a source

node runs an algorithm that establishes a preferred route and its alternative. It

also circumvents the use of output optical buffers and bit-by-bit processing of header

information, by substituting with real-time address header decoding suitable for high-

speed multiprocessor systems.

Some algorithms developed for scheduling are classified as either non-partitioning

[34] or partitioning [35, 36]. In the non-partitioning schemes, the multi-destination

packets are transmitted to all the intended receiver nodes simultaneously. The prob-

lem here lies in the fact that some receiver nodes may not be available at the time

of transmission. On the other hand, with the partitioning algorithms, the multi-

destination packets can be transmitted in two or more steps to accommodate those

receivers not available in the initial transmission. However, if the number of transmis-

sions of these multi-destination packets is large, the WDM scheme is underutilized.

The maximum-destination-scheduling algorithm [36] attempts to remedy this prob-

lem. If these multi-destination packets are scheduled first, then it means that a lot

more data packets are prevented from being transmitted.

A priority based scheduling algorithm [37] in which the transmission of multicast

packets with more destination address overlap is postponed has been proposed. The

13

scheme is applied to a system with fixed transmitters and tunable receivers. However,

this method requires that each node maintain some global information. This is not

practical for multiprocessor systems with many nodes, as the memory requirement

becomes a bottleneck.

In this dissertation, a proposal is made for a scheduling algorithm suitable for

multiprocessor systems. A set of reservation-based schemes for scheduling fixed-length

messages consisting of mixed packet types in single-hop, WDM interconnection net-

work is evaluated. In order to reduce the packet delay, the method incorporates

the scheme where multi-destination packets are accorded lower priority than unicast

packets. Priority is also accorded to multi-destination packets with less destination

overlap. The algorithm is designed to prevent starvation, a case whereby a packet is

indefinitely postponed, by servicing messages in batches. The methos method uses

both time and wavelength division multiplexing and will be suitable for distributed

real-time systems that require very high performance. In the scheme, both the trans-

mitter and receiver of a node are tunable.

Prior to producing this dissertation, no previous work has been done in the area

of optimizing both CPU and bandwidth allocation concurrently in a dynamic, dis-

tributed computing environment. There is an appreciable amount of work done in

the area of fair scheduling, load balancing and resource management in maximizing

either CPU utilization or bandwidth allocation, but typically not both at the same

time. Control mechanisms in software are relatively new and more interest will be

shown to this area. In [38], the authors introduce a feedback-control-based resource

manager that allows a computer system allocate resources based on the perceived

progress of the application. Applications are broken into threads, and each thread

feeds into a buffer. By monitoring the buffer and keeping the buffer half full, resources

are allocated or dispatched continuously with feedback control. The idea of feedback

14

control and progress based scheduling introduced here is novel however, each resource

is treated separately. Optimizing one resource in isolation does not necessarily lead

to optimizing resource utilization in the whole system, especially when more than one

application is running. Some work has also been done in the area of co-scheduling.

In [39], buffered co-scheduling is introduced as a new methodology for multitasking

parallel jobs on a distributed system, while [40] is a design that alleviates the ineffi-

ciencies of gang scheduling by using flexible co-scheduling, in an attempt to improving

resource utilization. An area addressed in this context is the dependencies between

different applications executing on different nodes. In other words, application A

running on node N1 requires communication with application B, running on another

node, N2. This results in a very complex scheduling problem across multiple nodes.

The model designed will be slightly different in that an assumption that each

application runs on two communicating nodes (i.e., it is a client-server application)

but do not look at cross dependencies between different applications is made. This fits

more the model of processing continuous streams. From the review of these papers

and the work done, it appears that they still do not explicitly look at bandwidth

differentiation mechanisms for influencing the progress of different applications. Much

work has been done at packet level scheduling however, the progress of some tasks

may not be measured in terms of bits/second, but rather at the application layer, for

example, in frames/second when the application is video streams.

15

CHAPTER II

ARCHITECTURE AND OPTICAL IMPLEMENTATION

This chapter outlines an overview of the initial design of the extremely scalable su-

percomputer that has the potential to deliver in the order of petaFLOP performance,

mentioned in the previous chapter. The design takes advantage of free-space opti-

cal technologies, harnessing the features inherent in optics, to produce a 3D stack

that implements efficiently a large, fully connected system of nodes forming a true

3D mesh. Each node is a complete computer system with both compute and stor-

age units, and six communication interfaces to the optical medium. This packaging

greatly improves density and communication performance. The system is designed to

allow failed nodes stay in place without appreciable performance degradation. The

case study for 100 teraFLOP performance is investigated in detail and a descrip-

tion of the characteristics of the proposed hardware used for the design. Results on

performance based on the implementation of an important algorithmic kernel and

simulation results comparing two approaches in the optical interconnection design

will be presented.

A. Basic Architecture

The architecture encompasses a 3D optical interconnection network. The basic node

architecture has the capability to circumvent the need for optical-electrical-optical

OEO conversion at the node-to-node interface. In the next subsection, the structure

of the basic building block and the issues relating to the implementation are presented.

This 3D structure is a true mesh with each node connected to six nearest neighbors.

16

Fig. 1. Diagram showing basic node structure with FSOI couplers capable of gigahertz

communication

1. Basic Building Block

The basic design takes advantage of free-space optics technology to produce a fully

connected scalable node unit. The following design concept is strictly adhered to; high

density and low packaging complexity, reliable, low-cost yet powerful, and above all a

robust interconnection network. A root cause for the staggering difficulty of managing

large systems is the proliferation of too many building blocks such as processors, disk

arrays, switches, communication protocols, etc. [41]. Accordingly, this has lead

to combinatorial explosion of complexity. In this design, encapsulating complexity

within the basic building blocks or nodes controls this explosion. These nodes have

well defined hardware and software interfaces. The basic shape of our node is a cube

with six sides.

Figure 1 shows the basic node structure in our design. All nodes have six sides

as in a cube structure. On each side is an optical coupler capable of gigahertz com-

munication. Internally, each node consists of 8 multiprocessor units coupled to the

optical highway as shown in Figure 2.

Each node consists of 8 CMOS PEs with optical trasmitters and receivers as

the only means of external high-speed data communication. Each PE in the node

has its own local memory. Packets passing through a node can be transparent to

the electronic components and as such routed by the optical switch without any

17

Fig. 2. Diagram showing logical interconnection within each node

OEO conversions. Each processor unit is interfaced with optical transmitter/receiver

modules and attached wave guide for inter-processor data transfer. The wave guide

provides single hop inter-processor communication. The wave guide is then coupled

to an 8-port optical switch. This switch routes data to the respective node interface

coupler for external node communication. The destination address for a data transfer

is decoded in real time. Using n distinct wavelength (n colors), each processor is able

to transmit to and receive from all other processors in the node. WDM techniques are

employed for inter-processor communication within a node. Each CPU is assigned a

unique transmitting wavelength λn.

Figure 3 is a schematic of the design concept of each processor. Each PE in-

cludes two CPUs with L1 and L2 cache connected by a high-speed multiport optical

switch. The switch connects to an on-chip shared L3 cache and multiple high-speed

optical ports. The thermal management of the electrical CMOS and optical ports are

separated. The optical port interfaces, decode and multiplex signals for all-optical

routing. The interface consists of low-power VCSEL transmitters, photodetector re-

ceivers and the optical interface. Each optical port is capable of sustaining 40GB/s

(320 Gb/s) data throughput in each direction. Each PE has 8 of such optical ports.

One is dedicated to local main memory, another for inter-chip communication and

the remaining six are for external IO.

18

 Fig. 3. Schematic diagram of each PE

As mentioned earlier, encapsulating complexity within the basic building blocks

or nodes controls the combinatorial explosion of complexity. The scalability of the

system is depends on availability of network bandwidth. The bisection bandwidth of

the 8-port optical switch in each PE is 640 GB/s (5.12 Tb/s). The result of this design

is a set of high-performance encapsulated processors serviced by high-bandwidth optic

interconnects that form the basic building block of the 3D system.

2. 3D System

As stated earlier, each node is made up of 8 PEs all connected via guided, planar

optical interconnect. The nodes need to communicate with each other, other nodes

and also with the external world. Two very important considerations in a design

of this nature are power and cooling, however, these will not be discussed in this

dissertation, as it is beyond the scope. A network which links all the nodes into a

true 3D mesh realizes the communication is shown in Figure 4.

This physical architecture leads to very high system density. An important in-

19

Fig. 4. 3D 4x4x4 mesh interconnection network using optical interconnect

novation is the elimination of cables and connectors, and instead substituted with

free-space optical couplers. This undoubtedly leads to remarkably improved commu-

nication hardware cost/performance (magnitudes greater than 100 Gb/s per interface)

compared to conventional, centralized switch solutions. This architecture is able to

scale extensively while delivering a large amount of bandwidth. It is important to

emphasize that the quest for teraFLOP computing begins by solving the scalability

and bandwidth issues.

Recall that each processor unit has 6 optical ports for external communication.

Each of these ports is capable of sustaining 320 Gb/s data throughput in each direc-

tion. Each of these ports is also optically coupled to the specified node interface. The

free-space optical coupler attached to each face of the node is capable of sustaining 40

GB/s (320 Gb/s) data throughput in each direction. If we assume the communication

frequency fc for each PE is about 1GHz (2 Gb/s). The guided planar optical intercon-

nect should be able to sustain 16 Gb/s data throughput in each direction. Similarly,

each node optical interface has to sustain this data rate. Obviously, this is quite lower

than the capacity of the interface and indeed the guided planar optical interconnect.

The number of processors in a node can be increased up to the bandwidth capacity

of the inter-processor link. However, due to power and thermal considerations, there

20

will be a limit to how many processors can be packed in a certain volume of space.

B. 100 TeraFLOP Performance: A Case Study

Innovative circuit design using 0.1-m CMOS technology have produced clock speeds in

GHz. The resulting peak performance of a single processor is about 10 gigaFLOPS.

Thus for 100 teraFLOPS performance, we need approximately 10,000 processors.

Each node in our design with multiple processors is capable of peak performance

n10 gigaFLOPS, where n = 8, we have 80 gigaFLOPS. For such massively parallel

systems to be viable, the physical volume and the size must be reasonably small. In

addition, the communication capabilities should match closely those of computation.

In order words, I/O performance should not be the bottleneck that affects the overall

performance of such systems. It was stated earlier that the use of optics and optical

technology will certainly increase the bandwidth potential but also eliminate the need

for wire. This leads to a dense array of processors in a very small volume, precisely

what we want to achieve. The system thus far described, is also scalable in both

architecture and optical technology based on the values stated, and therefore further

performance improvement is possible, should the need arise. An n x n x n 3D mesh

has a total of 8n3 processors. Since each processor is capable of 10 gigaFLOPS, to

achieve 100 teraFLOPS or more we need at least 10,000 processors. This gives a

value of n = 11. In the next few subsections, the feasibility analysis for the optical

components in this design is undertaken.

1. Feasibility Analysis for Optical Components

The analysis is done for the 3D mesh architecture made up of 1331 (11 x 11 x 11)

nodes. This gives a performance of roughly 106.5 teraFLOPS. The optical link an-

21

VCSEL array Transmitter lens

Free-space

Receiver lens PD array

Opto-mechanical
Components for
alignment

PML array

Node interface

VCSEL array Transmitter lens

Free-space

Receiver lens PD array

Opto-mechanical
Components for
alignment

PML array

Node interface

Fig. 5. Optical link assembly with built-in redundancy

alyzed is integrated in a bi-directional free-space interconnect between two adjacent

faces of two nodes, separated by a distance ranging from 0 to 25 cm. This system

is able to sustain a 1-mm lateral misalignment, and a 10 angular misalignment be-

tween the adjacent faces. The system uses VCSELs arrays and photodetectors (PDs).

The design incorporates optical coupler interfaces, transmitters/receivers, power con-

sumption, and the optical planer wave-guide.

a. Free Space Optical Coupler Interface

As stated earlier each FSOI is capable of sustaining 320 Gb/s. FSOI can provide high

bandwidth with no physical contact, however it suffers from poor tolerance to mis-

alignment. Therefore, a key implementation objective is to use an active alignment

scheme in conjunction with an optimized optical design. The optical link is imple-

mented using both passive and active alignment techniques. The system is aligned

mechanically under no lateral misalignment. When misalignment is introduced, re-

dundancy is used to guarantee proper optical performance. A schematic of the optical

link is shown in Figure 5.

22

b. Optical Transmitters/Receivers

The optical system provides a maximum power coupling efficiency between a (2 x

4) array of single-mode 960-nm 3-m diameter VCSELs with 250-m pitch, and (2 x

4) array of 70-m diameter PDs with a 125-m, under any degree of lateral or angular

misalignment within the specified limits. Each VCSEL in the array emits -2.22 dBm

of optical power. In [14], the performance of single- and multimode VCSELs intended

for high capacity free space optical interconnects at 10 Gb/s is presented. The receiver

sensibility at about 2 Gb/s results in a requirement of at least -25 dBm of optical

power. The optical link system for the transmitter consists of a planar microlens

(PML) array to collimate the VCSELs and a macrolens to relay beams. The receiver

part of the link uses only macroptics.

c. Power

As already mentioned each VCSEL in the array emits -2.22 dBm of optical power.

Each node transmits information to each of the 1330 other nodes in the system via

approximately 48 = (6 x 8) dedicated VCSELs, and radiates, on the average, 1330 x

48 x -2.22 dBm = 14W of optical power.

d. Guided Planar Optical Interconnect

Plastic optical fibers (POFs) are used as the optical pathways within a node. POFs

are preferred over glass fibers because of their lower cost, their smaller bending radius

and their large numerical aperture (NA). The pitch of the POFs is designed to match

that of the active devices (250-m). These optical pathways have been fabricated using

Toray’s PGR-FB125 fiber. In [15], an interconnect demonstrator using multimode

POF fiber ribbon is presented. The fiber is butt-coupled to the VCSEls and detectors.

23

The light from each processor is coupled into the POF.

To connect all the PEs, an (8 x 8) POF arrays (pitched at 250 mm in the two

dimensions) is developed. The optical pathways for connecting the different PEs

have been fabricated. They consist of two arrays of (8 x 8) POF ribbons. The optical

pathway in GigaLink uses an approach where 1-D arrays of POF-fiber plates are

stacked, which makes it easier to manufacture.

C. Analysis of the Optical Interconnection Network

This section presents some results of the analysis, simulation, and feasibility study

for the optical interconnection network of the design.

1. Modeling the Free-space Optical Interconnect

Contrary to the guided-wave approach, where the diameters of the POFs limit the

maximum channel density of the optical intra-MCM interconnects, the free-space

bridge has the advantage that there are no major technological fabrication limitations

for small lenslet diameters at different focal lengths. The only design consideration

is to make the diameters of the lenslets smaller than the channel pitch. This means

that the free-space approach has the potential advantage of being scalable because

lower lens diameters imply higher channel densities and consequently higher total

throughputs. The minimum lens diameter for each interconnection length L, will

be determined by the diffraction of the VCSEL beam, which has a waist w0 and a

divergence θ. From the minimum lens diameter we can then calculate the maximum

channel density as a function of the distance traveled in the optical path box (OPB),

assuming that the pitch of the channels equals the lens diameter.

24

a. Cross-talk and Transmission Efficiency

Assume that in the middle of the OPB (at z = 0) the beam waist is w’(0)= w’0 then

the beam radius at the lens (z = Lmax/2 = L) is given w’(L) = w
I
0

5
1 = λ2L2

π2wI40
.

Now apply the rule that the laser beam must always be smaller than 2/3 of the

lens diameter so that more than 99% optical energy throughput through the lenses is

achieved and cross-talk is absent in the system, we also have that w’(L) = θlens
3
and

L = π
λ

5
wI20θ2lens

9
− wI40.

Calculate the beam waist w0 such that the optical interconnection distance L is

maximum. For δL
δwI0

= 0 we find wI0 =
θlens
3
√
2
and Lmax = 2L =

π
λ

θ2lens
9
So due to diffraction

of the laser beam the minimum lens diameter θlens lens for an interconnection length

L is limited to

θlens3

�
λ

π
Lmax (2.1)

b. Bit Error Rate

The bit error rate (BER) indicates the required source power and signal-to-noise levels

necessary to achieve a desired signal fidelity, and represents an important measure of

system performance. With Gaussian statistics we find that the probability of error

(PE) is given by

PE ≡ 1

(2πQ)1/2
e−Q

2/2 (2.2)

where Q is a normalized number that qualifies the quantity of the current signal.

To achieve a BER of 10-17, Q = 8.5.

25

Fig. 6. Channel density as interconnection length is increased

c. Simulation Results and Discussion

Figure 6 shows calculated results for the allowed channel density as a function of

the interconnection length in the design using an 8 x 2 array of VCSELs. Using

the earlier derived expression (1), the minimum lens diameter to achieve at least

99% transmission efficiency while avoiding cross-talk is approximately 130 μm with

wavelength (λ = 960 nm).

Next, the transmission efficiency of the optical interconnection system (the ratio

between the powers of the emitted light and the light impinging on the detector area)

is calculated for different focal numbers of the lens and for different working distances

between the sides of two adjacent communicating nodes. The results are shown in

Figure 7.

The angular tilt of the optical beam presents a major constraint in our design.

Proper alignment of the optical system is of utmost importance. A value of 0.10

optimizes the system, whereas a larger angular tilt will require an increase in the lens

radius, and other system dimensions as a consequence. It is impractical to compensate

for the tilt by increasing the laser power due to the exponential nature of the curve.

In Figure 8, the BER for a laser power of 5mW as a function of the angular tilt

26

Fig. 7. Transmission efficiency of the free-space of lens with different focal numbers

is shown, while the BER as a function of laser power is shown in Figure 9. Some of

the optimized parameters in the design are shown in table I.

0

-10

-20

-30

-40

-50
0.1 0.12 0.14 0.16 0.18

Angular Tilt (degrees)

Lo
g

10
(B

E
R

)

0.08

0

-10

-20

-30

-40

-50
0.1 0.12 0.14 0.16 0.18

10

0.08

0

-10

-20

-30

-40

-50
0.1 0.12 0.14 0.16 0.18

Angular Tilt (degrees)

Lo
g

10
(B

E
R

)

0.08

0

-10

-20

-30

-40

-50
0.1 0.12 0.14 0.16 0.18

10

0.08

Fig. 8. The plot of BER as a function of the angular tilt

2. Modeling the POF Guided Planar Optical Interconnect

For modeling purposes, the interconnection block is schematically divided into two

main parts: the emitter side and the receiver side. This allows one to investigate the

two optical sub-systems on efficiency, cross-talk and tolerances individually. Listed

in table II, are the parameters that affect the cross-talk and the efficiency. The

characteristics of the VCSEL sources and of the InP photo-detectors can also be

27

Fig. 9. The plot of BER as a function of the laser power

found in table II. Considered here are small diameter POFs with a core diameter of

120 m and a device pitch of 250 m.

Table I. Optimized Parameters

Maximum efficiency % 98.7

Focal number 2.9

Propagation distance (μm) 1550

Allignment tolerance (degrees) 0.1

Reflective power loss (dB/cm) 0.25

Wavelength (μm) 0.96

Detector diameter (μm) 130

Q parameter of receiver 8.5 for a BER of 10−17

RMS current noise by receiver (nA) 789.6

a. Cross-talk and Transmission Efficiency

It is important to derive an analytic expression for the maximum working distance

Lmax from the emitter or receiver to the POF, below which no cross-talk between

neighboring fibers will occur. Lmax is given by 2.3 at the emitter side and by 2.4

28

Table II. Characteristics of Sources/Detectors

VCSEL POF Detector

Substrate thickness (μm) 150 150

Diameter (μm) dsource = 7 120 ddet = 75

NA θFWHM = 12o 0.25

Pitch (μm) 250

Working distance L L

at the receiver side. Here θ represents the divergence angle θFWHM of the micro-

emitters as long as θFWHM is smaller than the acceptance angle of the POF. If the

latter condition is not satisfied θ takes the value of the acceptance angle θPOF of the

POF:

Lmax =
P − dIsource

2
− D

2

tan θ
(2.3)

where dIsource = dsource + 2T tan(arcsin
sin θFWHM

ηGaAs
)

Lmax =
P − dIsource

2
− D

2

tan θPOF
(2.4)

where dIsource = dsource + 2T tan(arcsin
NA
ηInP

)

where, P = pitch of the devices, ddet, dsource = diameter of the active area of the

detector and source, D = diameter of POF, NA = numerical aperture of POF, θPOF

= acceptance angle of the POF, T = substrate thickness, ηGaAs, ηInP = index of

refraction, θFWHM = FWHM angle of the emitter

and

θ = θPOF if θPOF > θFWHM

θ = θFWHM if θPOF < θFWHM

29

To study the transmission efficiency of the POF-based interconnect as a function

of the working distance L, both the emitter and detector module via ray tracing and

radiometric calculations, are simulated using the photonics design software SOLSTIS.

When simulating the emitter side, the VCSEL is modeled with a user-defined source

featuring a circular geometry with a uniform emittance distribution. The assumption

is made regarding the intensity to have a revolution angular distribution. A Gaussian

angular intensity distribution is also assumed. Next, the coupling efficiencies of both

sources for the different POFs are calculated. In a next step the receiver side is

simulated to calculate how much of the light emerging from the POF impinges on the

detector area. Here again, a user-defined source models the light that is coupled out

of the POF. Multiplying the values of the coupling efficiencies of both the emitter and

receiver side for an identical working distance L then gives the transmission efficiency

of the optical interconnection system for this working distance.

b. Simulation Results and Discussion

Figure 10 shows the results of the transmission efficiency for two combinations of the

diameter and the NA of the POF as a function of the distance between the POF and

the emitter or receiver.

Observe that the NA of the fiber used does not affect the coupling efficiency at

the emitter side because of the small divergence angle of the laser. This means that a

fiber with a smaller NA and diameter can be used with the result being an improved

coupling efficiency at the detector side and a more relaxed cross-talk condition.

30

Fig. 10. Transmission of the POF based guided-wave interconnect using a VCSEL

D. Performance Evaluation

In evaluating the performance of this design, the communication and computational

capabilities of the system is investigated. The relative raw bandwidth available to

the network links in the context of the network topology. The later is achieved by

comparing the single-hop and the multi-hop modes of communication. In the single-

hop approach, the signal in the communication link between source and destination

remains in the optical domain, while in the multi-hop case, the signal undergoes

optical-electrical conversion and vice versa at the intermediate nodes between source

and destination.

1. Implementation of Compute/Communication Intensive Algorithm

The efficient implementation of application algorithms on the proposed system is vital

for its success. A kernel frequently encountered in scientific codes is used to examine

the performance of the design. Some of these computation kernels include; SAXPY,

31

A(N,N,N), B(N,N,N)
do K=2,N-1
do J=2,N-1
do I=2,N-1
A(I,J,K) = C*(B(I-1,J,K)+B(I+1,J,K)+

B(I,J-1,K)+B(I,J+1,K)+
B(I,J,K-1)+B(I,J,K+1))

A(N,N,N), B(N,N,N)
do K=2,N-1
do J=2,N-1
do I=2,N-1
A(I,J,K) = C*(B(I-1,J,K)+B(I+1,J,K)+

B(I,J-1,K)+B(I,J+1,K)+
B(I,J,K-1)+B(I,J,K+1))

Fig. 11. Jacobi iteration

Large Stride Vector Fetch and Store, Irregular Scatter/Gather, 3D Jacobi Kernel, 3D

Jacobi Kernel with large local computation, and Tree-matching.

The 3D Jacobi kernel which is a class of kernels known as Edge-based “stencil-

op” loops shown in Figure 11. These kernels are characterized by large ratio of

work to data, and colored edge concurrency (local communication). The potential

architectural stresspoints are the inter-node bandwidth and the load/store bandwidth.

For the implementation, let n = 108.

The 3D Jacobi kernel with a problem size (N = 1000) is executed. This com-

putation is a convolution-and-reduction operation applied for all values of C for a

given A. The corresponding sum of B terms is computed only once for each A. The

number of iterations involving all indices I, J, and K is larger than the number of

PEs, so the loops are distrubuted among all the PEs. Thus, each PE performs ψ =

(10003/10648), which is approximately 93915 iterations involving these loops. For a

given (I, J, K), a PE performs:

• Five additions involving six elements from B, resulting in 5C additions

• One multiplication involving C, and one addition involving the result of the
multiplication and the previous value of A(I, J, K). These are performed C2

times.

From the foregoing, each node performs a total of (5C + C)ψ additions and C2ψ

32

multiplications. Data transfer is facilitated by mapping the arrays A and B onto the

processors in our 3D mesh topology. This is achieved by partitioning the 3D (I, J,

K) grid for mapping onto the logical 3D mesh.

The execution time of the algorithm is given by

T = 2Tm + td + tc + (5C + 2C
2){ψ
5
Qtc + td (2.5)

where tm is the inter-PE propagation delay (1/1GHz = 1ns), tc the CPU speed

(1/2GHz = 0.5ns), td the memory speed (1/1.5GHz = 0.67ns). The denominator is

the speedup resulting from using PEs with 5 FPUs. Assume C = 5, then the execution

time for the algorithm is T = 704.36 μs. The amount of parallelism available in the

algorithm is 10003 x (5C + 2C2) = 75 x 109 operations. The execution rate therefore

is 106.48 teraFLOPS, which is remarkably close to the peak rate of 106.5 teraFLOPS.

2. Comparing the Single-hop and Multi-hop Communication Methods

The aggregate bandwidth is defined as

BI = LT [
L3
i=1

1

B(mi)
]−1 (2.6)

where L = number of transceiver groups (each node has 6 groups), B(m) is the

bandwidth of a single channel, and T is the total number of transceivers. Each node

in the topology has 6 neighbors. Assume n = number of nodes, and use, L = Lsh = 6

to evaluate the single-hop bandwidth, while L = Lmh = 6+ 2(
3
√
n− 1) for the multi-

hop bandwidth. The ratio of the single-hop bandwidth-per-link to the multiple-hop

bandwidth-per-link in the design is plotted and results are shown in Figure 12.

The ratio Lmh:Lsh is the idealized ratio where the aggregate bandwidth of the

interface is fixed. For small network sizes, the modeled ratios are relatively close to

33

0

2

4

6

8

10

12

14

16

18

0
20

0
40

0
60

0
80

0

Number of nodes

R
at

io
 o

f b
an

dw
id

th
-p

er
-li

nk
 (

si
ng

le
-

ho
p/

m
ul

ti
-h

op
)

0

2

4

6

8

10

12

14

16

18

0
10

00
-

-
-

-

Lmh :Lsh
Equal power
Equal number

0

2

4

6

8

10

12

14

16

18

0
20

0
40

0
60

0
80

0

Number of nodes

R
at

io
 o

f b
an

dw
id

th
-p

er
-li

nk
 (

si
ng

le
-

ho
p/

m
ul

ti
-h

op
)

0

2

4

6

8

10

12

14

16

18

0
10

00
-

-
-

-

Lmh :Lsh
Equal power
Equal number

Lmh :Lsh
Equal power
Equal number

Fig. 12. Ratio of single-hop to multi-hop raw bandwidth-per-link against network size

for a 3D mesh

the Lmh:Lsh, however, as the network size increases, the three curves begin to deviate

quite clearly. The single-hop performance is better than that of the multi-hop case

due in part to the difference in the number of links that share each optical interface.

To summerize, the design described so far is suitable and feasible for very high

performance computing. The system is characterized by immense bisection band-

width, scalabilty, and low interconnect complexity. This design meets all the per-

formance objectives earlier on outlined. The design is able to control combinatorial

explosion of complexity by encapsulating complexity within the basic building blocks

or nodes. Optical interconnection will be an inevitable solution to the bandwidth

needs anticipated in the quest for petaFLOP performance. Analyses of the optical

interconnection network as well as performance result for an important algorithmic

kernel were employed to further support the claim that this design achieves outstand-

ing performance.

34

CHAPTER III

ALL-OPTICAL ROUTING

In large multiprocessor systems such as massively parallel computers, interprocessor

communication is increasingly becoming the bottleneck that limits the performance

of such supercomputing systems [42, 43]. In recent years, extremely fast photonic

networks are being developed that have the potential to support very large bandwidth

interconnections, with an extraordinarily quick response time and very low latency

[44, 45]. To adapt such photonic networks for use in multiprocessor systems, routing

schemes that do not require sophisticated processing of the optical data is required.

In this chapter, a novel self-routing technique for all-optical packet switched net-

works for the multiprocessor system presented in Chapter II, with real-time processing

of the header is introduced. In Chapter II, a 3-D hierarchical regular topology was

proposed. This type of topology results in a greater degree of freedom in design and

a relaxation of the design constraints thereby achieving better routing performance

as shown by results. The approach discussed in this chapter aims at resolving con-

tentions at the nodes, eliminating the need for buffering in the optical domain and

reducing the overhead associated with address decoding. The scheme is designed to

support point-to-multicast transmissions.

The proposed scheme also eliminates the need for lookup tables. Despite the fact

that memory requirements for a lookup tables is no longer of major consequence, even

for a network of significantly large number of nodes, this can have significant effect

in an all optical type network. This arises from the fact that, at each intermediate

node, an OEO (Optical-Electrical-Optical) conversion has to be performed in order to

carry out the lookup operation to determine the next hop. The conversions that have

to take place at each intermediate node will undoubtedly degrade the performance,

35

defeating the goal of using optics.

Optical logic is still in its infancy and so designs that involve complex logic in

decoding header information will not achieve the expected improvements in routing

performance. The goal is to harness the features inherent in optics in the design to

achieve decoding, data directional capability and contention resolution in real time.

In this design, the need for optical buffering is eliminated, which is clearly unsuitable

for large multiprocessor systems, by aggressively reducing the probabilities of data

contentions and unavailability of outgoing links at each intermediate node.

Multicasting without packet replication is done, by encoding in the header the

routing that services the multicast group. This technique is unique to this design

and demonstrates the dynamic nature of this self-routing scheme. In summary, this

is a network that is self-routing, all optical in nature with no optical buffers, is

hierarchical with a 3-D structure, and is able to route data without OEO conversions

in real time. The network has a distributed control and supports point-to-multicast

communication. This design will find applications in massively parallel machines,

neural networks, optical and quantum computing, network servers and local Area

Networks (LANs) just to mention a few.

A. The Self-routing Scheme

In the scheme, the path between two nodes is provided with an alternative path.

These two paths can be switched back and forth depending on the availability of

output links at each intermediate node. An address encodes a unique path from

source to destination. For each node, three situations are observed when a packet

reaches that node. The packet is (1) destined for the node, (2) not destined for the

node, or (3) destined for the node and also other nodes (multicast group). In the

36

P (Preferred)

A (Alternate)

Intermediate nodes 1 2 n

+ + + + + + +- - - - - -

+ + + + + +- - - - -- -

. . .

Fig. 13. Two field address structure

first case the address of the packet matches that of the node. In the second case

the packet address does not match that of the node. In the last case, the node

address is a member of the set of addresses encoded in the packet address. A packet

is encapsulated in layers of Address Markers corresponding to the action taken at

an intermediate node. After each marker is traversed, it is striped from the address

exposing the next marker. It becomes obvious that the last marker of a packet will be

the destination node or the last destination in a multicast group. Our scheme ensures

that the path chosen will traverse all the nodes belonging to a multicast group.

These markers may be defined on a per-destination basis, on a source/destination

pair basis, or on a per-flow basis. However, we acknowledge that being a self-routing

scheme, it is difficult to implement congestion control and traffic engineering. For

each destination address, each intermediate node has a preferred output link and an

alternative output link should the preferred link be unavailable. If an alternative

output link is taken, then the address markers have to change accordingly. In this

design, an address is made up of two fields as shown in Figure 13. At each node, the

preferred output link is always chosen. This corresponds to field P. If, however, an

alternative link A is taken then the field to which the link belongs to becomes the

preferred field P.

37

Fig. 14. A 48-node 3-D network

1. Node Structure and Address

The network considered consists of N nodes. The links associated with each node are

space invariant links and bi-directional. As an illustration, a 48-node network is shown

in Figure 14. As already mentioned, the address of the destination node(s) encodes

the routing instructions at each intermediate node. The address of a destination node

obtained from a source node may defer from that of another source node. This is

because the route to a node from two other nodes may be different. The process of

defining the address of a destination node or nodes can be divided into three sub-

problems.

The first sub-problem is to determine the intermediate nodes needed from source

to destination(s). The second is to determine the primary outgoing links at each

intermediate node. Assume that for a source-destination pair, the shortest path is

chosen. This means that the destination address has to encode information about

the intermediate nodes and the outgoing link in each node in the shortest path. The

intermediate links for a source-destination pair can be found by running Dijkstra’s

38

To lower plane

To Upper plane

To nodes on the same plane

Fig. 15. The node structure

shortest-path algorithm. For multicast packets, a number of path routing algorithms

are available. However, the constraint lies in not having the header extremely large

or complicated, and considering only optical real-time decoding with small overhead.

Either a Minimum Spanning Tree (MST) or a Minimum Rectilinear Steiner Tree

(MRST) approach can be adopted in determining the intermediate nodes and outgo-

ing links. Thirdly, deflection alternative(s) have to be established at each intermediate

node. This process has to be done such that loops are avoided. In [46], an algorithm

for loopless deflection is studied and presented.

Figure 15 shows the node structure considered. As already mentioned this self-

routing scheme should support a 3-D structure. Each node is represented by a three-

turple N(i,j,k). The subscripts i and j identify a node on a plane, where i represents

the row index and j represents the column index. Subscript k, is associated with

the plane number. On a plane, a node has four bi-directional links. Two links are

available for communication across planes. Incoming packets have three options for

outgoing links. The packets can either (1) remain on the same axis as the entry, (2)

move along a perpendicular direction along the horizontal plane or (3) move along a

perpendicular direction in the vertical plane. An illustration is shown in Figure 16.

A destination address basically represents an action taken at each intermediate

node. The action taken directs a packet to the appropriate output link. A node

39

(1)

Axis of entry

(2)

(3)

Y-axis

Z-axis
X-axis

Horizontal
Plane

Vertical
Plane

Fig. 16. Diagram to illustrate output link options

knows that the packet has arrived at the destination if no further action is to be

taken in the case of a unicast packet. This means that the structure of an address

for a packet while remaining unchanged throughout the transport process will illicit

different actions at different nodes. The action is processed in real time. The node

identifies an address and on the fly directs the packet to one of its output links. If

the primary link is unavailable, the alternate link is chosen.

2. Routing

When a packet arrives at a node prior to the transport over the network, the processor

identifies if the packet is a unicast or multicast packet. If it is a unicast packet, the

processor runs the shortest-path algorithm to establish the primary and alternative

routes at each intermediate node. This information is then encoded and attached onto

the header. The header will typically precede the payload. As already mentioned,

the address of the destination will encode routing instructions at each intermediate

node. For a multicast packet, the processor runs either the MST or MSRT algorithms

to establish the primary and alternative routes as before. Consider the transmission

of a packet from node A111 to node B232 illustrated in Figure 17.

As shown in Figure 17, there are a number of shortest paths from node A to node

40

(111)

(112)

(212)

(222)

(232)

(132)

(122)

(121)

(131) (231)

Fig. 17. Data routing illustration

B. From the figure, node A has a choice of three outgoing links that would satisfy

the shortest path condition. Shown are three of the paths that have exclusive links

from source to destination. Any of the paths is chosen at random as the primary

route. The alternative route is established on a node by node basis depending on the

primary path chosen. At each intermediate node, an alternative output link is chosen

should the primary link become unavailable at an intermediate node. Consider that

path (111-112-122-132-232) is chosen as the primary path P. The processor chooses

an alternative link that still satisfies the shortest distance condition on a node by

node basis. It does this by routing the packet to a nearest node belonging to one

of the earlier established shortest routes from source to destination. So in this case,

if the primary outgoing link in, say, node 112 is not available, then the packet is

routed to node 212. Node 212 belongs to path (111-211-212-222-232). In a likewise

manner, if the primary outgoing link in node 132 is not available, the packet is routed

to node 131. At the least, two additional intermediate nodes are traversed if the

outgoing link between an intermediate node and the destination is unavailable. It is

41

P (Preferred)

A (Alternate)

Intermediate nodes 1 2 n

112 232132

131 231212 222 232

. . .

122

232

Fig. 18. Packet address illustration

worth mentioning again that looping and backtracking are not allowed in this scheme.

From the foregoing the address from node 111 to node 232 is shown in Figure 18.

As shown in the diagram, the address is obtained by providing an alternative

outgoing link for all intermediate nodes in the preferred path.

B. Optical Implementation

Optical implementation of our routing scheme is based on the following:

• Ability to decode optical data in real time

• Data directional capability and

• Contention detection/resolution.

Each node has an array of six receivers corresponding to the six available output

links. These receivers are tuned to six different wavelengths with no tuning capabil-

ities. The receiving node is able to receive messages simultaneously on all six links.

Each node also has a tunable transmitter, able to tune to all six wavelengths. The

wavelengths are not exclusively associated with a particular output link. Wavelength

Division Multiplexing WDM scheme to be applied with our self-routing method has

been extensively researched and as such will not be discussed here, due to the space

limit.

Recently, a demonstration has been done of address header decoding using an

erbium doped insulating crystal (Er:YSO) [47]. The crystal was programmed to recog-

42

Er:YSO

Crystal

Primary (A)
Address
Pulse

Alternate (B)
Address
Pulse Primary (A)

Direction
Pulse

Alternate (B)
Direction
Pulse

XA

Xadd

XB

Er:YSO

Crystal
XH

Header Encoded with
Primary Address

Header Encoded with
Alternate Address

Er:YSO

Crystal
Stimulated Echo

Stimulated Echo

A
SEX

B
SEX

XA

XA

XB

XB

(a)

(b)

(c)

Fig. 19. Temporal snapshot of (a) programming (b) & (c) processing stages

nize biphase-coded address headers and to decode an arbitrary sequence of headers.

This result is spatially discriminated optical output pulses. Each of these output

pulses in turn is used to route the combined header and data packet in real time. Ac-

cording to [47], the address header decoding was performed in two stages. The first

stage involves programming the crystal with a distinct spatial-spectral holographic

grating for each address header by the application of a pair of optical programming

pulses. An illustration is shown in Figure 19. This grating is stored utilizing the

absorption property of the Er:YSO spectral hole-burning material. It is worth men-

tioning that independent gratings at other adjacent wavelengths in the absorption

profile can be stored with the application of wavelength division multiplexing.

43

The second stage involves header processing. The headers are propagated along

the normal direction, where each header generates stimulated photon-echo output

signals following interaction with each stored grating. The direction of each combined

header and data is predicted by the phase-matching conditions

This is illustrated in Figure 20. The shape of the simulated echo is determined

by the cross correlation of the header pulse with the convolution of the address and

direction-programming pulse stored in each grating.

A
SEX

B
SEX

XH

-Xadd

-Xadd

XA

XB

Fig. 20. Phase matching diagram

C. Analytical Model

A theoretical model for evaluating the performance of the network is proposed in this

section. In [48-50], results were obtained for queuing-based models of regular network

topologies. While these present an insight to the problem dealt with the design of

the network considered here, they are not applicable being that the network attempts

to eliminate message buffering. The objective is to come up with some method of

determining the maximum throughput achievable under uniform load, the average

number of hops made by a packet from source to destination, and the packet loss

probabilities.

44

1. Average Packet Hop Count and Throughput

Assume that all links are similar and are accorded equal status. Assume also that

traffic generation follows a Poisson process. The packets are considered to be all of

the same size, that is, of fixed length t seconds. The arrival rate is defined as the

average number of packets that enter the network in a unit of time. In a network of

N nodes, the total number of links N x L, where L represents the number of incoming

(outgoing) links per node.

The performance of the network depends on the availability of outgoing links.

Therefore a very important consideration is how busy a link is, or put in other words,

the probability that a link is not available as an outgoing link. If δ is defined as

the average number of links traveled by a packet from source to destination, the

probability that a given link is not available is described by the following relationship:

P(prob)α
δλ

NL
(3.1)

P is the same for all the links because the network is regular, and the aim is to

derive a method of calculating δ as a function of P and by further solving a system of

equations, derive δ as a function of λ. Since the routing decision at any intermediate

node does not depend on the routing history of the packet, the routing operation can

be taken as an element in a Markovian chain. Suppose Nd denotes the destination

node, then the expected number of intermediate nodes to be traversed from a certain

node Ni on its way to Nd is Ei.

Ei = 1 +
L3
j=1

PjEXj (3.2)

where Pj is the probability that the packet will be routed via the output port j,

and xj is the index of the link connected to Ni via that port. The probabilities Pj

45

are determined by the routing function at the source node Ns. The average number

of links traversed by a packet in the network with N nodes can be calculated given

the values E1,..., EN−1 as:

δ =

�N−1
i=1 Ei

N − 1 (3.3)

The three equations generated so far can be solved in an iterative process to

obtain δ as a function of λ. The procedure is as follows:

1. Set P = 0.

2. Solve the linear set of 3.2 to calculate E1,..., EN .

3. Calculate δ using 3.3

4. A new value for P is obtained from 3.1, go back to 2.

In step 3, a sequence of δi’s is generated for the approximations of δ. The

implication here is that if the sequence converges then it means that λ is below the

saturation point and that

δ = lim
x→∞ δn (3.4)

This then gives the average packet hop count. In calculating the maximum

throughput achievable, note that the number of inputs/outputs at the node (d = 6).

Define U as the link utilization, then the admissible load at each node is given by:

λaccept =
dU

δ
(3.5)

46

2. Packet Loss Probability

In evaluating the packet loss probability, note that the network is asynchronous. The

arrival rate λijk of the packets traversing a particular link λijk is a summation of all

the packet arrivals that will pass through the link λijk. The arrival rate also depends

on the Pijk. The probability that a packet encounters contention at link ijk is equal

to the probability that the link is busy:

Pijk =
t

E[T]
(3.6)

where E[T], the expected cycle time, between two consecutive packet departures

is found by adding the expected time till the next packet arrival with the expected

packet transmission time:

E[T] =
1

λijk
+ t (3.7)

According to this implementation, the following types of links depending on

whether the link is on the primary path from source to destination(s) or is an alternate

link to the destination:

1. Link lsp is on the primary path and is directly connected to the source, in which

case the arrival rate is lsp.

2. Link lip is on the primary path but is not directly connected to the source, in

which case the arrival rate is lip consisting of all the packets directed through

that node.

3. Link lsa is the alternate link for the primary link and is directly connected to

the source, in which case the arrival rate is λsdPsd, Psd being the probability

that the packet experiences contention at the source node.

47

4. Link lia is the alternate link for the primary link and is connected to an in-

termediate node, in which case the arrival rate is λia, made up of all the load

experiencing contention in the primary link.

From the foregoing, a number of equations to determine the arrival rates for each

node and hence Pijk can be derived.

λTotal = λsp (lijk = lsp) (3.8)

λTotal =
3
i

λip(1− Pip) (lijk = lip) (3.9)

λTotal =
3
i

λip(1− Pip) ((lIijk = lia , (lijk = lsp)) (3.10)

λTotal = λsaPsp (lijk = lsa) (3.11)

λTotal =
3
i

λip(1− Pip)Pid ((lIijk = lia , (lijk = lip)) (3.12)

The packet loss probability is a measure of the performance of the network. A

packet is lost if both the primary and alternate links are not available. Consider the

transmission of a packet from source to destination, two routes can be distinguished,

a primary route and the alternate route. Therefore, the packet loss probability is

given by:

Ploss = PspPsa + (1− Psp)Pip(loss) + Psp(1− Psa)Pia(loss) (3.13)

The equation above is for a source destination pair. We note that destination

here may refer to the last node in a multicast group. The total packet loss probability

for the system is found by taking an average of the packet losses for each such source-

destination pair.

48

1
0

1.5

2

2.5

3.0

3.5

4

Average Hop Count for 48 nodes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Load (Erlang)

Analysis
Manhattan Street
Proposed 3-D

A
ve

ra
ge

 H
op

 C
o

un
t

Fig. 21. Average hop count for 48-node network topology

D. Simulation Results

In this section, the self-routing method in the 48-node network topology shown in

Figure 14 is evaluated. The 3-D network consists of bi-directional links in which the

nodal degree is equal to six. The packets are assumed to have fixed lengths of 384 bits.

With a transmission rate of 10Gb/s, packet arrival follows a Poisson process, with

uniform traffic distribution over the entire network. We compare the results obtained

from analysis and that obtained using a regular Manhattan street architecture against

our proposed 3-D structure to show the performance of the self-routing scheme.

Figure 21 shows the average hop count as a function of load for a 48-node net-

work. It is observed that the proposed 3-D structure has better average hop count

performance than the Manhattan street topology. In Figure 22, the average hop count

for higher network loads in the 48-node network is plotted. For the Manhattan street

topology, as the load increases, the average hop count increases, indicating that more

packets are being deflected and successfully reaching the destinations. However, as

49

Fig. 22. Average hop count for 48-node network topology under higher loads

the load is further increased, deflection starts to lead to packet loss, and consequently

a drop in the number of successful packet transmissions. Hence, the average hop

count reduces. The proposed 3-D structure exhibits similar characteristics, however

there are more successful packet transmissions as the load is increased.

Fig. 23. Packet loss probability for a 48-node topology

50

Throughput (48 nodes)

Load (Erlang)

Th
ro

u
gh

p
ut

Analysis
Manhattan Street
Proposed 3-D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Fig. 24. Node throughput for a 48-node topology

Figure 23 shows the packet loss probability as a function of load. It is observed

that the 3-D structure offers significantly low packet loss probabilities than the Man-

hattan street network. It suffices to say that from the result, a higher nodal degree

means that more nodes have alternative link options. This is very important since

only loopless packet routing is considered.

Finally, in Figure 24, node throughput is shown as a function link utilization.

A maximum of 0.6 packet/time/node is obtained by analysis, while 0.67, and 0.74

packet/time/node are the corresponding maximums for the Manhattan street and

proposed 3-D structure respectively.

E. Conclusion

A self-routing scheme for an all-optical packet switched network has been introduced.

This scheme resolves contentions and avoids the need for optical buffers. Optical real

time header data processing is applied to reduce the overhead associated with address

decoding. The need for optical buffers is eliminated and while avoiding looping of

51

optical packets. A general analytical model, which can be applied to a wide range of

packet switched schemes and on a wide range of topologies, was developed to evaluate

our routing scheme. The scheme assumes that there is only one alternative link for

every primary link in the case of contention, however, this can be modified so that

more alternatives are established for each primary link at the time of address encoding.

More research would be needed to encode a large amount of information corresponding

to the different link alternatives without degrading the performance of the routing

scheme. It is shown that with a higher node degree, the self-routing scheme provides

better performance. Specifically, the 3-D structure provides lower average hop count,

lower packet loss probability and much better node throughput than the Manhattan

Street topology. At high loads, the 3-D structure appears to be more reliable in

successfully transmitting packets from source to destination in a loopless environment.

In this design, a network type more suited to high-speed multiprocessors is achieved.

The design is self-routing and all optical in nature. It circumvents the need for OEO

conversions, optical buffers and looping. The proposed design supports point-to-

multicast communication and provides real time optical header decoding. Lookup

tables are not needed to make routing decisions, while still achieving a distributed

control. In summary, this self-routing scheme achieves all the objectives set earlier

and provides the needed reliability and performance in high-speed multiprocessor

computing environment.

52

CHAPTER IV

MESSAGE SCHEDULING

Network performance for a single-hop WDM network deteriorates due to packet colli-

sions that occur in both source and destination nodes. These collisions can also occur

in both the control and data channels as in the case where reservation techniques

are adopted. In order to reduce these collisions and maximize bandwidth utiliza-

tion, an on-line scheduling method that can result in collision free communication

and achieve real time operation in high-speed multiprocessor systems is presented.

The method proposed can be easily adapted to other network types employing opti-

cal interconnects. A throughput analysis of the scheme is done using methods from

discrete-time queuing systems and use computer simulation results to compare the

different variations of the scheduling algorithm.

The message scheduling method outlined in this chapter, efficiently utilizes the

enormous bandwidth potential optical interconnects and Wavelength Division Mul-

tiplexing (WDM) techniques provide in computer network communication. This

method is unique because it allows the transmission schedule to be staggered in time

and space with provision for on-line packet arrivals and mixed packets types (unicast,

multicast and broadcast). It is topology independent. Access to each data channel

is controlled by a priority based cluster scheme that optimizes bandwidth utilization

while minimizing packet delay.

The basic idea of the proposed scheduling method is to show that the data packet

sequencing has a profound effect on network traffic performance and, surprisingly, it

has not received much attention. Accordingly, results show that efficient message or-

dering in the data scheduling stage of the Routing and Wavelength Allocation (RWA)

process, can better effectively utilize the enormous bandwidth potential available in

53

optics. These results consequently lead to a remarkable improved throughput perfor-

mance and lower average packet delay.

In this chapter, the problem of on-line scheduling of mixed packet transmissions

in single-hop Wavelength Division Multiplexing (WDM) multiprocessor systems is

examined, where for each node both the data receivers and transmitters are tun-

able. WDM is an effective way to utilize the large bandwidth of optics. In WDM,

multiple messages can be transmitted in parallel on separate channels. In single-hop

communication, all nodes can reach any other node directly. This means that the

transmitted data are not passed through any intermediate routing stages and remain

in optical form all the way from the source node to the destination node. Single-hop

architectures employing WDM [51-53] have been proposed thereby.

To take advantage of the enormous potential of single-hop WDM networks, effi-

cient access protocols and scheduling algorithms are needed to allocate and manage

the system resources. These protocol and algorithms have to meet the communication

and computation constraints. In such mode of communication, a reservation-based

technique is employed for scheduling.

Scheduling algorithms can be broken down into two distinct stages, a channel

assignment stage and a packet/message ordering stage. The assignment stage involves

selecting an appropriate channel for message transfer. It may also involve establishing

a time slot for the transfer. The ordering stage deals primarily with arranging the

messages in a particular order ready for transmission. The assignment stage has

been researched extensively, however the ordering aspect has not received as much

attention.

54

Optical
Star

Coupler

Node 1

Node 2

Node 3

Node 4

Node N

.

.

.

Fig. 25. Diagram to illustrate output link options

A. System Model

The network described consists of N nodes optically coupled using a passive star

coupler shown in Figure 25. Each node consists of a fixed tuned transmitter and

receiver (FT-FR), a control channel (CC) access, and a tunable transmitter and

receiver (TT-TR) for data channel access. Accordingly, based on Mukerjee taxonomy

[51], the network can be classified as a single-hop system with CC-FT-FR-TT-TR.

There are λ numbers of channels available for data transfer. The bandwidth is divided

into λ + 1 channels, where N ≥ λ. Each node has a queue length determined

by design. The length l of the queue determines the number of messages that a

transmitting node is allowed to broadcast control information about. The following

are assumed:

1. that the data packets are of fixed sizes

2. that one time slot is the time to transmit a data packet

3. clock synchronization over all channels

Node communication involves two cycles. The first cycle is called the control

cycle (CTRC). In this cycle, the schedule for data transmission is established and

55

…...

Source Field Destination Field Data Type

CTRC # i+1

Control slot

Control packet

1 2 3 4 5 N

1 2 3 4 J

1 time slot

DTC # i

CTRC # i+2

DTC # i+1

Fig. 26. Operational system cycles

the information about this arbitration is broadcast to all the nodes. The other cycle

is called the data transfer cycle (DTC). The transmitting nodes perform the actual

data transfer in the data transfer cycle. By using two distinct cycles for data transfer

it is possible to realize the two in a parallel fashion. However, because the DTC

depends on CTRC, the present DTC cycle can be overlapped with the control cycle

of the next data transfer. This is shown in Figure 26. It becomes obvious that the

length of the CTRC must be less than or at most equal to the DTC. The length of

the CTRC is a function of N, the number of nodes in the network in the simplest

implementation. Control channel access accords each node equal priority and as

such Time Division Multiplexing (TDM) is used. Each node has a predetermined

time slot to send control packet to the control frame. This control packet will contain

information about the source node address, destination node address and the message

type (unicast, multicast or broadcast).

56

B. Scheduling Algorithm

The basic algorithm consists of three steps:

1. Each node transmits a control packet

2. Each node separately runs the distributed scheduling algorithm

3. The nodes transmit and receive data packets

Having mentioned earlier that the allocation of wavelength in the scheduling

process has received a lot of research, the focus will be on message ordering or se-

quencing of messages for transmission. In this approach, the message-ordering algo-

rithm is independent of the allocation algorithm. The way in which the contents of

the control packets are calculated and incoming messages and buffers are handled has

a profound effect on the network characteristics and performance.

There are two instances where message ordering can take place based on the

priorities chosen. The first instant occurs in the source node and the other is in the

control packets. This means that an algorithm can be deployed to the source nodes

intermittently to order the messages accordingly before control information is sent

to the control packet. It also becomes possible to modify the control information in

the control packet to effect a more globally optimized ordering to reduce delay, avoid

collisions and starvation, and improve performance.

A number of different scheduling schemes are obtained depending on whether

message ordering is done at

• the source node

• the control frame or

• both at the source node and at the control frame

57

Other variations that occur depend on whether single or multiple message control

information is transmitted to the control packet and the priority scheme adopted. In

the following subsections, some of the variations and characteristics will be discussed.

1. Control Frame Ordering

In the above scheme, there is no message ordering at the source node as the name

indicates. The messages arriving at the queues of each node are maintained in a

strictly First-Come-First-Serve (FCFS) fashion. During its scheduled time slot, a

transmitting node transmits control information about the message at the head of its

queue. This information will contain the message destination(s). After the control

frame has received all the control information from all the N nodes, the message-

ordering algorithm is invoked to sort the message according to unicast, multicast and

broadcast packet types.

Unicast packets are accorded the highest priority while the broadcast packets

have the lowest. After the sorting is accomplished and the order of message trans-

mission is determined, the time of transmission and channels are allocated according

to the wavelength allocation algorithm employed. At the completion of the control

cycle (ordering + allocation), the transmitting and receiving nodes know on which

channel to tune to and at what time to do this.

This scheme does not lead to starvation because the messages are serviced in

batches. Each batch of messages, consisting of all the currently arriving messages

of each source node, is completed before another set can be serviced. This scheme

allows one message per node to be transmitted in the DTC. It may not lead to a

very efficient utilization of the resources available, because an equal opportunity is

given to all nodes to transmit data regardless of whether each node has data to be

transmitted or not. It works well with nodes without queues where at most one

58

message is represented at the source node.

Analysis:

Consider λ number of data channels for N number of nodes. If all the data

packets at the front of the N source node queue are all unicast messages with exactly

non-overlapping destinations, then the lower bound on how many time slots in a DTC

required to complete the data transfer of the N packets is given by TCF = {N/λQ.
If all the packets are broadcast messages, which is the upper bound, then TCF = N.

It then implies that N ≥ TCF ≥ {N/λQ. The DTC length can either be fixed as the
time it takes to transmit N broadcast packets, or make the DTC variable depending

on the message composition. If there are U unicast, M multicast, and B broadcast

data packets in the control frame then:

TCF ≈ {U/λQ+ tM +B (4.1)

where t is a positive value in the range 1 ≥ t > 0.

2. Data and Control Frame Ordering

As the name suggests, in this scheme, the data is sorted at two instances. The first is

at the source node and the other at the control packet. This scheme obviously requires

that the source nodes maintain a queue for arriving messages. As the messages arrive,

the priority scheme adopted, in our case a unicast packet scheduled first and broadcast

packets last, is strictly adhered to. Consequently, at each instant in time, the message

with the highest priority is always at the head of the queue. During its pre-allocated

time slot, a node sends control information about the message to the control frame.

The message-ordering algorithm is invoked after receipt of all control packets, and

the scheduling proceeds just like in the previous scheme.

59

The scheme will obviously lead to starvation, since there is a high probability that

the messages with higher priority will keep on arriving and as such delay indefinitely

the chances that multicast or broadcast messages will be transmitted. The arriving

unicast messages are automatically put at the head of the message queue. To remedy

this effect, a window is associated with a batch of packets. This batch of packets

must be serviced before another set of packets is included in the window.

3. Multiple Data and Control Frame Ordering

In the previous two schemes the control packet sent to the control frame contains

information about only one message. In the current approach, the control packet will

include information for multiple messages. In addition, each node utilizes the priority-

based algorithm earlier mentioned to order the messages in its queue. It is expected

that not all nodes will have a message packet at the time of control information

transmission, while in some cases very few nodes will. At other times almost all

the nodes will, and in the worst case scenario, all the nodes have a message to be

transmitted. To address this unbalance and unpredictable traffic flow of messages,

control information for multiple messages per node could be transmitted in the control

packet. Ordering is done once when all the control packets have been received. The

ordering algorithm sorts all the messages and imposes a sequence based on the priority

scheme discussed.

This scheme like the first one discussed does not lead to starvation since each

batch is serviced before another set is serviced. This approach is an attempt to

globally optimize the scheduling algorithm. The length of the service queue (LSQ)

determines the number of messages scheduled to be transmitted at once. It is expected

that as LSQ increases, the scheduling algorithm becomes more efficient. A large LSQ

means that the scheduling time is increased, however, there is a reduction in the

60

number of times the scheduling algorithm is needed.

Analysis: The maximum number of messages represented in the control frame

is LSQ x N, and as previously stated the DTC is increased and on the average, the

DTC has a time lapse:

TMDCF ≈ LSQ({U/λ + tM +B) (4.2)

4. Multiple Data and Control Frame Ordering with Multicast Partition

In the previous schemes, the multicast packets have been treated collectively as having

the same priority. In this scheme, the multicast packets are also accorded priority

based on the number of overlapped receiver nodes. A multicast packet with fewer

destinations has a higher priority than the one with more destinations. Sorting of the

multicast packets in this fashion enables the scheduling of some unicast packets at the

same time as multicast packets provided there is no overlap of destination address.

This highly optimizes network efficiency and reduces message delay.

As in the previous method, the control packet contains multiple message packet

information for each source node intending to transmit data in the next DTC.

Analysis: In the last scheme, the DTC had a time lapse, TMDCF ≈ LSQ({U/λQ+
tM +B). In this section, a more accurate representation of T is obtained, assuming

the worst case scenario. The worst case include the following:

• The queues are full with data packets

• All the nodes are involved in transmitting messages

If m is defined as the number of non-overlapping destinations observed in a batch

of unicast messages, then the number of data slots required in a DTC is:

61

TU = {U/λ(m
u
)Q (4.3)

Each multicast packet can be modeled as k unicast packets emanating from a

single destination. Here k represents the number of destinations for each multicast

packet. It is obvious 0 < k < N. Within each multicast packet, there is obviously no

destination overlap.

There are M multicast packets, and each will independently take one time slot

in the DTC. At most, M time slots are needed.

TM = dmax if dmax < M (4.4)

TM =M else (4.5)

Some of the multicast packets will have destination overlaps. Define di as the

number of destination overlaps observed for each destination in a multicast packet

as compared to others in the control frame. In other words, for each destination in

a multicast packet in the control frame, d represents the number of other multicast

packets having the same destination. The maximum number of non-unique destina-

tions observed amongst the multicast packets in the control frame dmax determines

the number of time slots required to transmit the M multicast packets. From the

foregoing, the number of time slots required is calculated as follows:

TDTC = TU + TM + TB = {U/λ(m
u
)Q+ dmax +B (4.6)

C. Simulation Results

Results are obtained for the average message delay and throughput by computer

simulation. The average message delay is defined as the time it takes a packet arriving

62

at the queue of a transmitting node to be transmitted to all its destination nodes.

The throughput is defined as the number of messages that get to its destination per

time slot. Each packet is equally likely destined to any of the nodes and the message

arrivals follow a Bernoulli process with a rate βin. ρM is defined as the percentage

of all messages belonging to the multicast group and δ[M] as the average number of

destination addresses of a multicast message. The four strategies described earlier

are identified using the acronyms: CF = Control Frame, DCF = Data and Control

Frame, MDCF = Multiple Data and Control Frame, and MDCFMP = Multiple Data

and Control Frame with Multicast Partitioning. The tuning times are assumed to be

negligible.

The results obtained for the average packet delay as a function of the arrival

rates is shown in Figure 27. For the simulation, shown are results for a network of

48 nodes (N=48), ρM is set to 0.5, while δ[M] = 6. The results are also shown for

number of channels l = 16, 32, 48.

From Figure 27, observed that the best performance is obtained when the MD-

CFMP scheme is implemented. By prioritizing the transmission of the different pack-

ets, there is a decrease in the number of packets prevented from transmission. With

the ability to transmit control information for multiple packets, the frequency of in-

voking the scheduling algorithm reduces, thereby increasing efficiency, minimizing

bandwidth latency while globally optimizing the performance. The multicast parti-

tion enables the overlap of multicast packets that do not have destination conflicts.

The results clearly show that the MDCFMP scheme achieves lower delays as the

arrival rates increase.

Shown in Figure 28, is the effect of the ratio of multicast packets to the average

packet delay. The results are obtained for bin = 0.125, 0.175. As evident from

the results, the MDCFMP scheme maintains a lower average packet delay as the

63

percentage of the multicast packets is increased. In the other schemes where multicast

partition is not allowed, each multicast packet is treated as a broadcast packet and

hence, no other packets can be scheduled in the same time slot.

In Figure 29, the results of throughput as a function of arrival rate per node

is shown. More packets are able to be transmitted using the MDCFMP scheme

because there is packet prioritizing, global optimization, and multicast partitioning.

The bandwidth is much more efficiently utilized and network latency is lower.

The basic idea of the proposed scheduling method underscores the profound

effect and remarkable improvement data packet sequencing has on network traffic

performance. The surprise that it has not received much attention, was only assuaged

by the fact that optics in computer communication is still in a relatively early stage.

From analysis and results, efficient message ordering in the data scheduling stage

of the Routing and Wavelength Allocation (RWA) process, effectively utilizes the

enormous bandwidth potential available in optics.

Four possible variations on the proposed algorithm for scheduling mixed packet

types has been described. Prioritizing the transmission of the packets, with the ability

to send multiple data control information and utilizing multicast partitions, improves

the performance of the algorithm significantly. It was shown through computer simu-

lations that the algorithm utilizing the MDCFMP scheme can decrease the number of

data packets prevented from transmission, reduce the average delay, improve through-

put performance and completely prevent starvation. This technique is easily adapted

to suit any optical network type and is topology independent.

64

 Average packet delay versus arrival rate per node
� = 16

Arrival rate per node

A
ve

ra
ge

 p
ac

ke
t d

el
ay

(t
im

e
sl

ot
s)

CF
DCF
MDCF
MDCFMP

0.04 0.08 0.12 0.16 0.20 0.24

0

5

10

15

20

25

Average packet delay versus arrival rate per node
� = 16

Arrival rate per node

A
ve

ra
ge

 p
ac

ke
t d

el
ay

(t
im

e
sl

ot
s)

CF
DCF
MDCF
MDCFMP

0.04 0.08 0.12 0.16 0.20 0.24

0

5

10

15

20

25

Average packet delay versus arrival rate per node
� = 32

Arrival rate per node

A
ve

ra
ge

 p
ac

ke
t
de

la
y

(t
im

e
sl

ot
s)

CF
DCF
MDCF
MDCFMP

0.05 0.10 0.15 0.20 0.25

0

5

10

15

20

25

Average packet delay versus arrival rate per node
� = 32

Arrival rate per node

A
ve

ra
ge

 p
ac

ke
t
de

la
y

(t
im

e
sl

ot
s)

CF
DCF
MDCF
MDCFMP

0.05 0.10 0.15 0.20 0.25

0

5

10

15

20

25

Average packet delay versus arrival rate per node
� = 48

Arrival rate per node

A
ve

ra
ge

 p
ac

ke
t d

el
ay

(t
im

e
sl

ot
s)

CF
DCF
MDCF
MDCFMP

0.06 0.12 0.18 0.24 0.30

0

5

10

15

20

25

Average packet delay versus arrival rate per node
� = 48

Arrival rate per node

A
ve

ra
ge

 p
ac

ke
t d

el
ay

(t
im

e
sl

ot
s)

CF
DCF
MDCF
MDCFMP

0.06 0.12 0.18 0.24 0.30

0

5

10

15

20

25

Fig. 27. Plot of average packet delay versus arrival rate per node

65

 Average packet delay versus multicast rate
ßin = 0.125

Percentage of multicast packets (x10)

A
ve

ra
ge

 p
ac

ke
t d

el
ay

(t
im

e
sl

ot
s)

CF
DCF
MDCF
MDCFMP

1
0

2

4

6

8

10

2 3 4 5 6 7 8

Average packet delay versus multicast rate
ßin = 0.125

Percentage of multicast packets (x10)

A
ve

ra
ge

 p
ac

ke
t d

el
ay

(t
im

e
sl

ot
s)

CF
DCF
MDCF
MDCFMP

1
0

2

4

6

8

10

2 3 4 5 6 7 8

Average packet delay versus multicast rate

Percentage of multicast packets (x10)

A
ve

ra
ge

 p
ac

ke
t d

el
ay

(t
im

e
sl

ot
s)

CF
DCF
MDCF
MDCFMP

1 2 3 4 5 6 7 8
0

5

10

15

20

25

ßin = 0.175
Average packet delay versus multicast rate

Percentage of multicast packets (x10)

A
ve

ra
ge

 p
ac

ke
t d

el
ay

(t
im

e
sl

ot
s)

CF
DCF
MDCF
MDCFMP

1 2 3 4 5 6 7 8
0

5

10

15

20

25

ßin = 0.175

Fig. 28. Plots showing average packet delay versus multicast rate

66

 Throughput versus arrival rate per node
� = 16

Arrival rate per node

T
hr

ou
gh

pu
t (

of

 p
ac

ke
ts

pe
r

tim
e

sl
ot

s) CF
DCF
MDCF
MDCFMP

0.05 0.10 0.15 0.20 0.25 0.30

0

2

4

6

8

10

12

14

16

Throughput versus arrival rate per node
� = 16

Arrival rate per node

T
hr

ou
gh

pu
t (

of

 p
ac

ke
ts

pe
r

tim
e

sl
ot

s) CF
DCF
MDCF
MDCFMP

0.05 0.10 0.15 0.20 0.25 0.30

0

2

4

6

8

10

12

14

16

Throughput versus arrival rate per node
� = 32

Arrival rate per node

T
hr

ou
gh

pu
t
(#

 o
f p

ac
ke

ts
pe

r
tim

e
sl

ot
s) CF

DCF
MDCF
MDCFMP

0.05 0.10 0.15 0.20 0.25 0.30

0

5

10

15

20

25

30

Throughput versus arrival rate per node
� = 32

Arrival rate per node

T
hr

ou
gh

pu
t
(#

 o
f p

ac
ke

ts
pe

r
tim

e
sl

ot
s) CF

DCF
MDCF
MDCFMP

0.05 0.10 0.15 0.20 0.25 0.30

0

5

10

15

20

25

30

Throughput versus arrival rate per node
� = 48

Arrival rate per node

T
hr

ou
gh

pu
t (

of

 p
ac

ke
ts

pe
r

tim
e

sl
ot

s) CF
DCF
MDCF
MDCFMP

0.05 0.10 0.15 0.20 0.25 0.30

0

10

20

30

40

50

Throughput versus arrival rate per node
� = 48

Arrival rate per node

T
hr

ou
gh

pu
t (

of

 p
ac

ke
ts

pe
r

tim
e

sl
ot

s) CF
DCF
MDCF
MDCFMP

0.05 0.10 0.15 0.20 0.25 0.30

0

10

20

30

40

50

Fig. 29. Throughput versus arrival rate per node

67

CHAPTER V

FAULT TOLERANCE

This chapter investigates the network communication behavior of the three-dimensional

(3D) multicomputer system using optical interconnection. In this environment, faulty

nodes are left in place, a concept called fail-in-place. This is called the percolation

problem in which various amounts of missing nodes fixed in position in the network

may have a dramatic effect on the networks ability to transport data effectively. As

the number of failed nodes increases, data have to be rerouted through intermedi-

ate nodes creating potential hot spots. These hot spots become the bottleneck that

degrades performance.

The ability to absorb rerouted data without ejecting it from the network is critical

in massively parallel computing systems. Optical technology is a promising solution

for internode communication with extraordinarily quick response time supporting

enormous bandwidth. To adopt it in multiprocessor systems, efficient routing tech-

niques are needed. We adapt self-routing strategies for all-optical packet routing in

3D mesh networks and investigate the percolation properties. To achieve percola-

tion routing, the features inherent in optics are incorporated to achieve decoding and

routing capability in real time.

The objective is to develop a dynamic communication environment that adapts

and evolves with a high density of missing units or nodes, and by employing analytical,

experimental, and simulation methods, show that optical interconnection in this dense

3D system reduces considerably this percolation problem.

Interprocessor communication has become one of the most important issues af-

fecting system performance. The topology, the communication medium, and the

routing algorithm all have a great effect on network performance. While the routing

68

algorithm and topology decide the path between two nodes involved in a one-to-one

communication, the medium determines the volume and speed with which the rout-

ing can be accomplished. The current trend in multicomputer network design is to

pack nodes more densely for efficient distribution of computing resources and uniform

interconnection in 3D space. This has led to improved communication performance,

scalability, and density.

This trend toward placing more and more computing devices, accessories, power

supplies, and the data communications linking these devices into ever smaller spaces

has created a new and quite interesting percolation problem. The percolation problem

deals with the ability of a system as a whole to continue its functions with some of

its components missing or faulty. As individual nodes in a system get smaller and

the packing gets denser, it becomes less desirable to try to fix problems that occur in

individual nodes or accessories. Any attempt to fix a problem with a node may result

in making problems worse in the system as a whole. It then becomes increasingly

important to leave these nodes in the system, a concept referred to as “fail-inplace”.

Many recent multicomputers and multiprocessors [54-57] use grid topology based

on the mesh-connected topology [58, 59]. Mesh-connected topologies, also called k-

ary ndimensional meshes, have an n-dimensional grid structure with k nodes in each

dimension such that every node is connected to two other nodes in each dimension by

direct communication. Mesh-connected topologies include n-dimensional meshes, tori,

and hypercubes. In large multicomputer systems, exchanging data at high speeds is

increasingly becoming the bottleneck that limits the performance of such large-scale

systems [60-63]. This creates the need to investigate new physical approaches to

dense and high-speed interconnections at various levels of a system interconnection

hierarchy. In recent years, extremely fast photonic networks have been developed

that have the potential to support large bandwidth interconnections, with an extra-

69

ordinarily quick response time and low latency. However, the business model that

enables optics to invade telecommunication as the medium of choice for communica-

tion is not applicable in computer systems. This has the effect of limiting the use of

optical components in modern computing systems because of the high cost of optical

devices.

Optics and optical interconnects present some solutions that can potentially ad-

dress the increasingly complex communication requirements for multicomputer sys-

tems [64-66]. Time- and wavelength-division multiplexing are techniques employed

in optical communication to increase the number of connections that can be simul-

taneously established in a network. This has the effect of reducing the frequency

of control operations and thus limited network control overhead. Two approaches

are used to establish sourcedestination connections. One approach called link multi-

plexing establishes connection on more than one communication link, possibly using

different channels on each link. Conversely, path multiplexing uses the same channel

on each of the links.

Several routing strategies that work in the presence of failed nodes for the mesh

topology have been proposed in the literature [67-71]. The simplest routing algo-

rithms are deterministic (oblivious) and define a single path between the source and

destination. A message must wait for each busy channel in the path to become

available. On the other hand, adaptive routing algorithms support multiple paths

between the source and destination. Adaptive routing algorithms are either minimal

or nonminimal. Minimal routing algorithms allow only shortest paths to be chosen,

while nonminimal routing algorithms also allow longer paths. An adaptive routing

algorithm is fully adaptive if it does not impose any restriction on the selection of non-

faulty profitable links, and is partially adaptive otherwise. Therefore, a fully adaptive

algorithm can exploit all alternative optimal paths to well disperse local congestion,

70

thus outperforming deterministic and partially adaptive algorithms. While most of

these approaches are local-information-based (knowledge of only neighbor status),

others are global-information-based. Local-information-based routing does not yield

the shortest possible path in the presence of failures because insufficient informa-

tion is available when the routing decisions are made. On the other hand, while

global-information-based routing can achieve optimal or near routing, its overhead in

maintaining up-to-date fault information at all network nodes is usually quite high.

The main challenge is to devise a simple and effective way of efficiently routing infor-

mation in a system that has a high degree of failed nodes that can be implemented

using optical interconnection devices with limited global fault information.

Several header-processing systems have been proposed that can be used to im-

plement an all-optical routing [72, 73]. In [72] an all-optical header processing using

a terahertz optical asymmetric demultiplexer (TOAD) is demonstrated that has a bit

rate of 250 Gbit/s. This TOAD-based header recognition operates at low energy and

allows photonic integration. A disadvantage with this approach is that the control

pulse has to be synchronized with the header bits. To circumvent this, in [74] an

asynchronous multioutput all-optical header processing technique based on the two-

pulse correlation principle in a semiconductor laser amplifier in a loop optical mirror

configuration (SLALOM) is presented. This concept was employed in an all-optical

packet switch [75]. One disadvantage though in [74] is that the SLALOM configura-

tion is too large to allow photonic integration. In the implementation of an optical

interconnection network that supports a percolation routing in a multicomputer sys-

tem operating under the fail-in-place condition, a dual-output header differentiation

scheme that will allow a synchronous operation suited to photonic integration is pro-

posed. The model proposed is an all-optical time-division-multiplexed transmission

based on TOAD. Optical time-division multiplexing (OTDM) is an alternative to

71

WDM for future networks that utilize a single wavelength at high (> 100 Gbit/s)

data rates [76, 77].

In OTDM networks many signals are combined before being transmitted with a

single wavelength. Each signal from a lower-bit-rate source is broken up into many

segments (slots), each having short duration and multiplexed in a rotating repeating

sequence (i.e., round-robin fashion) onto a high bit-rate transmission line. The use

of short-duration (soliton) pulses allows information to be transmitted at very high

bit rates (> 100 Gbit/s). An asset of OTDM is its flexibility; the scheme allows for

variation in the number of signals being sent along the line and constantly adjusts

the time intervals to make optimum use of the available bandwidth. Consequently,

it is believed that OTDM networks are excellent candidates for meeting the future

system requirements for massive ultrafast networks [78-80].

A. Percolation in Large Systems

The percolation theory as it describes computing with a faulty array of processors

has been introduced in [81], while [82] looks at this phenomenon in large storage

systems. In our context, percolation deals with the effects of varying the richness of

interconnections present in a random system. The basic idea of percolation is the

existence of a sharp transition at which the long-range connectivity of the system

disappears (or, going the other way, appears). This transition occurs abruptly when

some generalized density in this system reaches a critical value (percolation thresh-

old). The percolation transition makes percolation a natural model for describing

a diversity of phenomena. The percolation model is described as one with failures

modeled as complete elimination of both data and communication in a node. The

central idea is that various amounts of missing elements fixed in position in a network

72

Fig. 30. 3-dimensional mesh network with failed nodes depicted as white nodes

may have a dramatic effect on the networks ability to transport material, and in our

case, information. Figure 30 is an illustration of a network with failed nodes. Every

node in the network has a direct network connection with all its six neighbors. For

nodes located on the surface of the network or adjacent to failed nodes, the number

of neighbors is obviously less than six. An important definition is the percolation

threshold, which is a fraction of lattice elements, or in our case, good nodes, below

which all the nodes remaining are connected to one another only as small clusters,

not enough to span the whole structure or network. So if a node fails, availability

requires that the repair be accomplished quickly. However, in a large system, trying

to repair a bad node may ultimately introduce more problems, hence the fail-in-place

concept. This means that in a cluster of nodes, there will increasingly be nodes that

fail and are allowed to remain in place in order to reduce maintenance cost and avoid

the introduction of more problems due to human error. In such an environment, the

connectivity, bandwidth and data path lengths among others are adversely affected.

Increasing the number of failures will drastically degrade the performance by

creating hot spots and discontinuities in the network. As the number of failed nodes

increases, we expect that the overall bandwidth will decrease. This decrease in band-

73

Fig. 31. Diagram showing min-cut in both 2- and 3-dimension

width is due to fewer paths becoming available because traffic is rerouted around

failed nodes. This also has the effect of creating hot spots. As a consequence, with

half the nodes in operation, the bandwidth for data traffic is only 10% of the initial

value. To see the effect of faulty nodes on overall bandwidth, we can calculate the

maximum number of parallel paths that exist connecting opposite faces of an array

with faulty nodes. Figure 31 shows the min-cut in both two-dimensional (2D) and

3D site percolation as a function of the fraction of good nodes. We define the min-cut

as the smallest fraction of links that must be cut by a continuous, but not necessarily

flat, surface passing normal to one axis of either a 2D or 3D lattice.

This graph is obtained by an algebraic analysis of a worst-case measure of overall

bandwidth reduction due to node failure. Actual observed bandwidth may be even

lower because of hot spots in the message traffic. As seen in the graph, when the

number of faulty nodes is half the total number of bricks, the relative bandwidth

available is reduced to 10% in the 3D site percolation. The increase in path length

due to avoiding failed nodes is not particularly significant in this design. The increase

74

becomes large when the number of faulty nodes is close to the percolation threshold.

As mentioned above, considered here is a design with 50% or more good nodes.

B. Percolation Routing with Optical Interconnectivity

In this section the percolation routing in a 3D mesh adaptable for optical interconnec-

tion networks is examined. The proposed scheme is based on the concept of limited

global fault information and eliminates the need for lookup tables. Limited global

information, means that individual nodes know which, if any, of its neighbors are

faulty. This model is also known as the one-step local information model. As men-

tioned, a fault means that its entire communication links are faulty. The emphasis is

not so much the dynamic nature of the faults that occur in the system, but how well

the system as a whole handles steady-state faults in a fail-in-place environment.

The size of a lookup table for a network of a significantly large number of nodes

presents a challenge to large-scale network design. The lookup times for such large

address spaces are of the order of micro- or milliseconds. In addition to the large

lookup times, an OEO (opticalelectricaloptical) conversion has to be performed in or-

der to carry out the lookup operation to determine the next hop in an optical system.

The conversions that have to take place at each intermediate node will undoubtedly

degrade the performance, and as such, the goal of using optics in the first place is de-

feated. However, since optical logic is still in its infancy, designs that involve complex

logic in decoding header information will not achieve the expected improvements in

routing performance. The features inherent in optics are harnessed to achieve header

recognition and decoding, data routing capability, and contention resolution in real

time in this design. In the design the need for optical buffering is eliminated, which is

clearly unsuitable for large multiprocessor systems, by aggressively reducing the prob-

75

In te r m e d ia te n o d e s

s rc d e s t

s rc d e s t

p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9

a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9

P r e fe r r e d

A lte r n a te

In te r m e d ia te n o d e s

s rc d e s t

s rc d e s t

p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9

a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9

P r e fe r r e d

A lte r n a te

Fig. 32. Two field address structure

abilities of data contentions and unavailability of outgoing links at each intermediate

node.

In this implementatione, the path P between two nodes, source S and destina-

tion D, is provided with an alternative path A. Consequently, every primary link is

provided with an alternate physical one. These two paths can be switched back and

forth depending on the availability of output links at each intermediate node. An

address encodes a unique path from S to D. A packet is encapsulated in layers of

address markers corresponding to the action taken at an intermediate node i. After

each marker is traversed, it is stripped from the address exposing the next marker.

These markers may be defined on a per-destination basis, on an S-D pair basis, or on

a per-flow basis. However, in a self-routing scheme it is difficult to implement conges-

tion control and traffic engineering. For each destination address, each intermediate

node has a preferred output link and an alternativeoutput link should the preferred

link be unavailable. If an alternative output link is taken, then the address markers

have to change accordingly. In this design, an address is made up of two fields as

shown in Figure 32. At each node, the preferred output link is always chosen. This

corresponds to field P. If, however, an alternative link is taken then the field to which

the link belongs becomes the preferred field.

Every node in a 3D mesh has a direct network connection with all six of its neigh-

bors. The exceptions are the nodes on the surface of the mesh and those adjacent

76

failed nodes. The process of routing data from source to destination can be done in

three phases. The first phase is to determine the primary and alternative intermediate

nodes between source and destination and thereby forming the address. An address

basically represents an action taken at each intermediate node. The action taken

directs a packet to the appropriate output link. This means that the structure of

an address for a packet while remaining unchanged throughout the transport process

will illicit different actions at different nodes. The action is processed in real time.

The node identifies an address and on the fly directs the packet to one of its output

links. If the primary link is unavailable, the alternate link is chosen. The second in-

volves path setup by assigning channels to each of the primary outgoing links at each

intermediate node. Since we consider optical real-time decoding with little overhead,

the header should not be extremely large or complicated. The destination address

has information about the intermediate nodes, while these intermediate nodes make

decisions on assigning channels to the outgoing link used to get to the next interme-

diate node. Third, the data are sent out by the source. As already mentioned, this

self-routing scheme should support a 3D structure. Each node is represented by a

3-tuple N(x,y, z), which completely describes the position of a node in a 3D mesh.

1. Address Formulation, Path Setup, and Channel Assignment

Given a source node S = (xs, ys, zs) and a destination nodeD = (xd, yd, zd), ADDR =

(S, i2, ..., in−1, D) is defined as the set of address to give minimal distance routing,

where i represent the intermediate links between the source and destination nodes,

n number of nodes and there are n-1 intermediate links. The primary route address

ADDRP = (S, i2, ..., in−1,D) and alternate route addressADDRA = (S, i2, ..., in−1, D)

are chosen from a set of equally unique routes that satisfy the following conditions:

77

1. ADDRP
	
ADDRA = {S,D}

2. ADDRP {ix}&ADDRA {ix} [where x = (2,3, . . . ,n-1)]; have only one of the
(x,y, z) coordinates differing by only one in Hamming distance, a well known

concept in channel coding is used.

Condition 1 means that no intermediate node address belongs to both the pre-

ferred and alternate node address set except the source and destination addresses. In

condition 2, the Hamming distance, a well known concept in channel coding is used.

Let a and b be two binary sequences or coordinates in space of the same length.

The Hamming distance between these two addresses is the number of symbols that

disagree. To further illustrate, an example is given. If the third intermediate node of

the preferred address is (2,3,4), the set of possible options for the alternate address

will be (1,3,4), (3,3,4), (2,2,4), (2,4,4), (2,3,3), (2,3,5). These obviously correspond

to the six nearest neighbors. The conditions mentioned above try to guarantee that

the minimal path length feasible is maintained when the alternate path is taken and

in most cases only an additional link is traversed in the event that a link is faulty,

especially near the destination. However, as the number of faults increases in the net-

work, the path length will invariably increase. The scheme proposed is best described

as a nonminimal adaptive routing scheme based on limited global information.

Having determined the intermediate nodes/links needed for data transfer, the

sender S sends a header flit that contains information on the primary and alternate

intermediate nodes (links) needed for the data transfer [ADDRP = (S, i2, ..., in−1,D)

and ADDRA = (S, i2, ..., in−1, D)]. Each intermediate node has the task of assigning

unused channels on the appropriate outgoing links. A hold state is placed on any

channel assigned. If the header flit is successfully transmitted to the destination D,

the sender S then sends the data preceded by the control flit that contains information

78

on the intermediate routes with channel assignments. A channel is released only when

the final flit of data passes through it. In this implementation, the path setup/channel

assignment phase is overlapped with data transfer. The data lags behind to give time

for the intermediate nodes to assign and place a hold on the appropriate channels.

In the next subsections, the different strategies in the algorithm used to perform

percolation routing is outlined. Emphasis is placed on the feasibility of implementing

the algorithm using optical devices.

2. Routing Algorithms

In a 3D mesh array or nodes, there may exist up to six first hops that lead to a shortest

path to a distant node. Two natural ways of selecting one of the alternative first steps

for routing exist. The first follows a predetermined rule, and the second is random.

The predetermined rule is traditionally used in nonadaptive mesh routing. However,

the random rule is likely to cope with high levels of failed nodes more gracefully. In

what follows, we describe these two approaches of the routing methodology.

a. Notation

Given a source node S = (xs, ys, zs), and a destination node D = (xd, yd, zd), Cs,d is

defined as the smallest cube that includes both S and D. Without faulty nodes, the

algorithm will find a path from Sto D within Cs,d. It is worth mentioning that Cs,d

is not unique for an S-D pair.With S as our focal point, let all the nodes n in Cs,d be

labeled nx,y,z, where (x, y, z) represent the x, y, z coordinates in space. In the XYZ

rule, a canonical ordering, the approach is to always move first in the x direction if

possible, then in the y direction if possible, then in the z direction. The pair of nodes

S-D is represented as (sx,y,z, dx,y,z). If the number of virtual channels is C, then the

algorithm finds for each S-D pair an allocation Ci that is free. Links are defined links

79

as follows:

lx ∈ L(x0, x1, ..., x|d−s|) = LX , (5.1)

ly ∈ L(y0, y1, ..., y|d−s|) = LY , (5.2)

lz ∈ L(z0, z1, ..., z|d−s|) = LZ. (5.3)

The value |d−s| represents the number of intermediate nodes between the source and
destination. Thus, a path from S to D is represented as path (S−D) = {LX , LY , LZ}.
Consequently, a channel allocation for an S-D pair is denoted by an integer value

channel ± alloc(LX , LY , LZ). B channel is used to represent a set of blocked channels
that exist on the links that make up the path (S-D). To simplify the notation, two

states, f = current state, and h = next state are defined.

η = sy if θ = x = dx,

η = sz if θ = y = dy,

η = sx if θ = z = dz.

First, the XYZ routing for path and link multiplexing is discussed and then an

adaptation for faulty nodes implemented using optical devices.

Algorithm 1 (XYZ rule (No faults, path multiplexing))

Inputs: (S-D)pair, channel alloc(sx,y,z, dx,y,z), B channel

Output: XYZ routing

begin

initialize channel alloc(sx,y,z, dx,y,z) = null for all links;

for(each S-D pair requesting connection) do

path(sx,y,z, dx,y,z) = {null} and Bchannel = {null};
x = sx;

80

while(ϕ W= dϕ) do
add lϕ to path(sx,y,z, dx,y,z) and ϕ = ϕ+ 1;

if ϕ = dϕ, break; then ϕ = η;

if η = z = dz, break;

end while

B channel = B channel
	
channel alloc(sx,y,z, dx, y, z)

channel = (n /∈ B channel) && (n < C)

for (every link {LX , LY , LZ} in path (sx,y,z, dx,y,z)) do
set C(sx,y,z, dx,y,z) = channel;

channel alloc(sx,y,z, dx,y,z) = channel alloc(sx,y,z, dx,y,z)
	{channel};

end for

end for

end

b. Dimension order routing (XYZ routing)

In the path-multiplexing algorithm above (Algorithm 1), channels are not assigned to

connections as the path is constructed. Information about the channel availability is

obtained first before a channel is assigned to a path. As a consequence, if a channel is

not available in the preferred route from source to destination, a longer route may have

to be taken, and data could be ejected from the network or some delay incurred while

waiting for channel availability. Link multiplexing is better suited to alleviate this

constraint. Therefore, the algorithm above can be modified by eliminating “channel”

and “B channel” as shown in Algorithm 2 below.

The next step is to take a closer look at the percolation routing of the XYZ rule.

As mentioned above, Cs,d is not unique for an S-D pair. This property enables the

81

system to circumvent faulty nodes or links by implementation of the algorithm for the

alternate path. Information about the failed link is obtained during the path setup

phase. It is important to note that link failure is different from link unavailability.

The consequence being that link unavailability is transient and not permanent, so the

information is treated as such. The differentiation between link failure and unavail-

ability is done at the hardware sense level. The objective of the routing algorithm will

be to minimize the number of additional steps needed to circumvent a faulty node.

The heuristic percolation routing follows the XYZ rule, albeit only loosely. If a fault

is detected in the x-axis, move a step in the y-axis toward the destination node. The

same rule applies to faults in both y- and z-axes. In both cases move in the z and

x axes respectively. This method is described as cyclic-XYZ rule, where ψ denotes a

faulty link.

Algorithm 2 (XYZ rule (No faults, link multiplexing))

Inputs: (S-D)pair, channel alloc(sx,y,z, dx,y,z), B channel

Output: XYZ routing

begin

initialize channel alloc(sx,y,z, dx,y,z) = null for all links;

for(each S-D pair requesting connection) do

path(sx,y,z, dx,y,z) = {null} and Bchannel = {null};
x = sx;

while(ϕ W= dϕ) do
add lϕ to path(sx,y,z, dx,y,z) and ϕ = ϕ+ 1;

channel alloc(lϕ) = channel alloc(lϕ) + 1;

if ϕ = dϕ, break; then ϕ = η;

end while

82

end for

end

Algorithm 3 (XYZ rule (Pecolation))

Inputs: (S-D)pair, channel alloc(sx,y,z, dx,y,z), B channel

Output: XYZ routing

begin

initialize channel alloc(sx,y,z, dx,y,z) = null for all links;

for(each S-D pair requesting connection) do

path(sx,y,z, dx,y,z) = {null} and Bchannel = {null};
x = sx;

while(ϕ W= dϕ) do
if (lϕ W= ψ)

add lϕ to path(sx,y,z, dx,y,z) and ϕ = ϕ+ 1;

channel alloc(lϕ) = channel alloc(lϕ) + 1;

else

ϕ = η and add lϕ to path(sx,y,z, dx,y,z);

channel alloc(lϕ) = channel alloc(lϕ) + 1;

if ϕ = dϕ, break; then ϕ = η;

end if

end while

end for

end

83

c. Probability-based percolation random routing

In this approach each intermediate node determines the next step on the basis of

its current position, calculated probability of success, and the destination address.

The current node chooses a next step in order to produce a minimal path to the

destination. Routing at each node is based on a calculated probability vector P =

(P1
N , ..., Pn

N). Each intermediate node determines a set of faulty neighbors and

updates its faulty set Fx,y,z. With this it calculates the probability vector P1. It then

performs an exchange with its neighbors to determine the rest of the vector elements,

Pl
N , for all (n ≥ l ≥ 2). PlN represents the probability that a destination at distance

l(x,y,z) cannot be reached from the current node N(x,y,z) using a minimal path due to

a faulty intermediate node. In summary, each node runs the following basic steps of

this algorithm:

• Determine Fx,y,z of unreachable neighbors; compute probability vector P =

(P1
N , ..., Pn

N) based on Fx,y,z and exchanged information from neighbors.

• Determine primary and alternate route to destination based on probability vec-
tor and encode information in header and data flits.

A path is faulty if it includes at least one faulty or unreachable node. Since

there are at most six neighbors to each node and f is defined as the number of faulty

neighbors, then

P1
N = f/6 (5.4)

If Ql
N(i)

is defined as the probability of reaching a destination at distance l from N

via its neighbor N (i), then the probability P1
N , l ≥ 2, can be expressed as

P1
N =

6�
i=1

(1−QlN(i)

) (5.5)

84

where,

Ql
N(i)

= 0 if node N(i) is faulty

Ql
N(i)

= 1
6
(1−QlN(i−1)

) otherwise

After the probability vector P1
N is determined, a source node S selects two paths

at random that have the least P1
N . The source node then encodes these two addresses

onto the header and data flits as the primary and alternate addresses. See Algorithm

4.

Algorithm 4 (Random rule (Pecolation))

Inputs: (S-D)pair, f, channel alloc(sx,y,z, dx,y,z)

Output: Random pecolation routing

begin

initialize channel alloc(sx,y,z, dx,y,z) = null for all links;

for(each S-D pair requesting connection) do

path(sx,y,z, dx,y,z) = {null};
P1

N = f

6
; /* determine the probability vector */

for(l = 2 to n) do

Pl
N = 1;

for(i = l to n) do

if(N (i) is faulty)

Ql
N(i)

= 0;

else

Ql
N(i)

= 1
6
(1−Ql−lN(i)

);

Pl
N = Pl

n(1−QlN(i)

);

end for

85

end for

Randomly select two minimal routes based on least Pl
N ;

Encode primary and alternate address: ADDRP
	
ADDRA = {S,D};

while (N W= D) do
if(lN(P) W= ψ) /* lN(P) denotes primary link on current node */

add lN(P) to path(sx,y,x, dx,y,z);

channel alloc(lN(P)) = channel alloc(lN) + 1;

else

lN(P) = lN(A) and add lN(P) to path(sx,y,x, dx,y,z);

channel alloc(lN(A)) = channel alloc(lN) + 1;

end while

end for

end

To show how these two approaches perform in various degrees of number of failed

nodes, a traffic model is defined. In the traffic model, each node is either a compute

node or a storage node.We have an nnn network, with n = 10. Of the 1000 nodes,

100 are compute nodes. Each compute node reads data from all the storage nodes,

performs some specified computation on the collected data, and writes the result to

all the storage nodes. Next, for each storage node, its data are mirrored to another

node in the network. An acknowledgement is also returned to the original compute

node. The idea is to generate as much traffic as possible to every node. The compute

nodes are distributed uniformly throughout the whole network. This traffic model is

simulated using various degrees of failed nodes. The traffic model for both types of

routing rules is simulated. Of particular interest is in understanding the hot spots

that form under load. The performance of the network is more adversely affected by

86

Fig. 33. Distribution of link loading on traffic model for 0%

the bottlenecks and worst-case loadings rather than the average loadings. Single link

failures are not considered, rather, a node failure means that all six outgoing links

are no longer available for routing.

Figure 33 shows that with all the nodes working, the predetermined rule produces

a highly regular and balanced arrangement. By contrast, the random routing scheme

produces a tail of heavily loaded buffers when all nodes are working. However, as the

number of failed nodes increases, the random routing scheme is progressively better

than the predetermined case up to 50% as shown in Figure 34.

C. Feasibility of Optical Implementation

For a practical implementation of the all-optical header processing system utilized

in devising an all-optical packet switch, the header processor should be scalable,

have low power consumption, be high speed, and be photonic integrated on a chip.

In particular, scalability defines the capacity of the header processor to recognize a

large amount of header information and eventually to update the system easily to

87

Fig. 34. Distribution of link loading on traffic model for 50%

recognize more headers. High-speed operation is required for matching the line rate

of the optical transmission system so that no bottleneck is generated. Low power

consumption and photonic integration guarantee largescale production, low cost, and

integration with other functionalities on the same chip. Optical implementation of

our routing scheme is based on the following:

• Address recognition

• Ability to decode optical data in real time

• Generation of switching control signal

• Contention detection/resolution

In this section the feasibility of implementing this routing scheme and the ability

to accomplish all the goals stated above is demonstrated. The architecture is based

on a system that has as its inputs an OTDM packet containing header and payload

88

OTDM
Packet

Generator

AWGN
Channel

OTDM
Router

Filter1 Detector1

Filter2 Detector2

Node interface

Link 1(Primary)

Link 2(Alternate)

Fig. 35. Block diagram of header recognition subsystem using OTDM

information. Figure 35 shows a block diagram of the simulated OTDM transmission

system. It consists of an OTDM packet generator, additive white Gaussian noise

(AWGN) channel, optical router, matched filter, and detector. Figure 36 shows the

format of two consecutive packets at the output from the OTDM packet generator.

Framing bits indicate the interpacket boundaries thereby providing a synchronization

mechanism. The address bits indicate the destination port to which the payload

information is routed. A value of 1 (0) results in the payload information being routed

to link 1 (link 2) of the OTDM router. To demonstrate all-optical address recognition

and single-bit self-routing, a single node of the OTDM router is constructed from two

TOADs.

Fig. 36. Bit format of the OTDM packet

89

Buffer

TOAD #1
(decode address)

TOAD #2
(route data)

Beam
SplitterData

1X2

Output link 1

Output link 2

Control signal Control signal

Buffer

TOAD #1
(decode address)

TOAD #2
(route data)

Beam
SplitterData

1X2

Output link 1

Output link 2

Control signal Control signal

Fig. 37. Bit format of the OTDM packet

As shown in Figure 37, the switching node consists of an all-optically controlled

routing switch (TOAD #2 with ∆x = Tc/2, where T = 20ps is the width of switching

window), an ultrafast controller (TOAD #1 with ∆x = Tc/2, where T is the width

of the window equals the duration of the address bit), and a buffer. The ultrafast

controller all-optically sets the states of the routing switch (TOAD #2) in a switched

or unswitched state, and the optical buffer matches the delays of the input packet to

the processing delay of the routing controller [32].

When an OTDM data signal enters the node, the clock, which is an orthogonal

polarization signal, is separated from the optical packet by use of a polarization beam

splitter and then used as the control signal of TOAD #1. A portion of the packet is

split off and sent to TOAD #1 before entering the buffer. TOAD #1 reads the packet

destination address bit and uses it as the optical routing control for the routing switch

(TOAD #2). In a single bit routing scheme, packets with address bit of value 1 are

routed to output link 1, while packets with an address bit of value 0 are routed to

output link 2. Thus photonic packets are self-routed through an all-optical ultrafast

switch without the need for optoelectronic conversion.

D. Simulation Results

This section presents simulation results for the 3D mesh in a fail-in-place situation

with varied amounts of failed nodes. The simulator is a 10,000-line C++ program

90

Table III. Simulation Parameters for the All-Optical Packet Routing Subsystem

Bit period 4ps

Control pulse width FWHM 2ps

Control pulse wavelength 1550nm

Data signal width FWHM 2ps

Data signal wavelength 1550nm

SOA length 300μm

SOA active area 0.2 e−12m2

SOA carrier density 1024m−3

SOA confinement factor 0.30

SOA position ∆x 2ps

capable of modeling multicomputer nodes, routing, and interconnection network prop-

erties already discussed in the preceding sections. We compare the results of both

electrical and optical interconnects using the same topology but based on their known

properties for various degrees of faulty nodes, to show the strength of our routing

methodology. The following parameters and values listed in Table III are used in

modeling the optical header decoding and routing subsystem.

The electrical interconnection network is modeled using the gigabit Ethernet

specifications approved by the IEEE 802.3z Gigabit Task Force in 1996. Throughput,

packet transmission delay (or network latency), and worst-case loading effects for

various degrees of faulty nodes are used as the indices of performance. The two net-

works are driven with the following traffic loads: uniform random traffic, saturation

traffic, and hot-spot traffic. In uniform random traffic mode, every node generates

messages with exponentially distributed arrival times and uniformly distributed des-

tination nodes. Figure 38 shows the channel width for both types of interconnects as

91

Channel width

0

20

40

60

80

100

120

140

160

180

2 3 4 5 6

dimension, n

ch
an

ne
l w

id
th

, b
it

s/
ch

an
ne

l
elec

optics

Fig. 38. Channel width

a function of dimension. Optics has a wider channel in all cases. As shown in Figure

39, optical interconnects achieve lower latency and are closer to achieving constant

minimal network latency for various degrees of faulty nodes for a 3D mesh.

Figure 40 illustrates the effect of faulty node degree on saturation throughput for

both electrical and optical interconnection networks. The destination nodes for each

source are uniformly distributed, and fully adaptive routing is used. Each source is

constantly injecting a message into the network. This is done to maintain 100to keep

the network saturated. The figure shows that the optical interconnection network

achieves a much higher saturation throughput and is less affected by the number of

faulty nodes. Both interconnection networks have high bisection bandwidth and a

large number of routing options; however, as the number of faulty nodes increases, the

number of routing options decreases. This decrease is more apparent in the electrical

case owing to its smaller network link capacity.

In hot-spot traffic, the network is over saturated. The idea is to identify bottle-

necks and worst-case loading in an effort to understand the hot spots that form under

92

Network latency (10x10x10)

0

50

100

150

200

250

300

350

400

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

fraction of good nodes

ne
tw

or
k

la
te

nc
y.

 n
s

elec

optics

Fig. 39. Network latency for a 10x10x10 3D mesh network with arbitrary fixed message

size under uniform random traffic

Fig. 40. Effect of faulty node degree on saturation throughput

93

Worse-case loading

0

200

400

600

800

1000

1200

0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.

8

0.
85 0.
9

0
.9

5 1

fraction of good nodes

m
es

sa
g

es
 p

er
 li

nk
 (a

rb
itr

ar
y

un
it

s)

elec

optics

Fig. 41. Effect of faulty node degree on worse case loading

this traffic mode. The next set of figures show curves for worst-case loading. The hot

nodes (bottlenecks) will increasingly have to deal with a lot more load being diverted

through them as the number of faulty nodes increases. In Figure 41 the maximum

number of packets passing per unit time is plotted as the degree of faulty nodes is

increased for both electrical and optical networks. Figure 42 shows the number of hot

spots created for a worst-case loading as the number of faulty nodes is increased for

both electrical and optical cases. The result shows that with optical interconnects,

the number of hot spots created is relatively small compared with electrical. As a

consequence, more routing options are available, resulting in an increased throughput

and a balanced load distribution.

In a large system, there will increasingly be nodes that fail and are allowed to

remain in place. Using simulation analysis it has been shown that bandwidth is the

most critical factor affected by the so-called fail-in-place problem. Optical intercon-

nection is the solution to this bandwidth need created by the percolation problem

that exists in large computing systems. A routing strategy for alloptical packet-

switched networks that harnesses the features inherent in optics to achieve header

94

Worse-case loading

0

50

100

150

200

250

300

350

0.5 0.
55 0.

6
0.

65 0.
7

0.7
5 0.

8
0.

85 0.
9

0.
95 1

fraction of good nodes

av
er

ag
e

nu
m

be
r

of
 h

ot
 s

po
ts

elec

optics

Fig. 42. Average number of hot spots

recognition/decoding and data routing in real time was presented. Analytical study

and simulations have been used to examine the feasibility of such a network. A sim-

ple OTDM system model based on the optical router developed in [83] is presented.

The model successfully recognizes the address bits and routes the data at speeds up

to 0.25 Tbit/s. The all-optical communication system overcomes the bottleneck of

optoelectronic conversion because of its ultrafast switching capability. This commu-

nication environment is able to adapt and evolve with a high density of missing units

or nodes.

95

CHAPTER VI

SYSTEM OPTIMIZATION AND PERFORMANCE

A novel autonomic control system for high performance stream processing systems is

presented suited for large scale systems described in this dissertation. The system,

“Automomic Traffic Management” (ATM), uses bandwidth controls on incoming or

outgoing streams to achieve a desired resource utilization balance among a set of

concurrently executing stream processing tasks. The objective is to show that CPU

prioritization and allocation mechanisms in schedulers and virtual machine managers

are not sufficient to control such I/O-centric applications, and present an autonomic

bandwidth control system that adaptively adjusts incoming and outgoing traffic rates

to achieve target CPU utilizations. The system learns the bandwidth rate necessary

to meet the CPU utilization objectives using a stochastic nonlinear optimization, and

detects changes in the stream processing applications that require bandwidth adjust-

ment. The Linux implementation designed here is lightweight, has low overhead, and

is capable of effectively managing stream processing applications.

In modern distributed processing systems, system resources such as processing

cycles, memory, and interconnection bandwidth must be carefully managed for effi-

cient operation. Cost and reliability benefits have driven consolidation of formerly

isolated server applications into fewer physical machines, while I/O subsystems (such

as memory, storage, and network) have increasingly replaced processors as the bot-

tleneck of many important classes of workload. The semiconductor industrys shift to

multi-core processors and multi-processor systems makes it all the more important,

and difficult, to keep processing units supplied with the data they require. As grid

and on-demand computing become more prevalent, system resources must be shared

not only among many applications, but among many organizations with different

96

workloads, service level requirements, and contracts. Whether managing a single

server or an entire cluster, effective management of system resources is critical to

achieving desired application performance levels. While substantial prior work exists

on independently managing processing resources (processor usage) and networking

resources (bandwidth), little attention has been given to understanding the complex

relationship between the two or managing them jointly. Furthermore, the currently

prevailing solution to resource management in high performance computing and grid

clusters is to carefully control the processor usage of different tasks, and ignore en-

tirely the bandwidth used by each task. This approach is reasonable when intercon-

nection bandwidth is overprovisioned to the point that the network can keep pace

with processors demands for data, and thus the processors are the bottleneck that

limits throughput. However, with extremely bandwidth-intensive applications (e.g.

high-rate stream processing) or when network resources are scarce or prohibitively

expensive (e.g. in global-scale grid computing), such overprovisioning is not practi-

cal. In such applications network bandwidth must be considered to be as important

as, and sometimes even more important than, processing power.

Traditional CPU scheduling algorithms can fail to achieve their goals when CPU

is not really the bottleneck resource. For example, without any bandwidth control,

some processes may consume more than their fair share of bandwidth, thus “starving”

other (potentially more important) processes to the point where they cannot utilize

their allocated CPU share. The ideal CPU utilization targets may be a three to one

ratio, but a CPU scheduler would not enforce any bandwidth restriction, and that

task may take up 90% of the CPU. Or, with TCP or similar flow control mechanisms,

each task may receive an equal bandwidth share. Either way, failure to allocate

or prioritize access to network resources can counteract careful allocation of CPU

shares. This network allocation problem differs from traditional network congestion

97

control, however. Traditional network QoS solutions require system administrators

and/or application developers to provide a characterization of the traffic generated

by the applications and the corresponding network resource requirements, such as

link bandwidth and network buffers. The commonly used leaky (or token) bucket

model characterizes a network traffic source by its average bit rate (the bucket rate)

and its maximum burst size (the bucket depth). Such a characterization may only be

possible in very static and predictable environments. In real-life distributed systems,

where multiple external factors affect application performance, apriori traffic charac-

terization is inevitably imprecise and burdensome for the system administrator. This

is even more the case for emerging distributed computing paradigms such as grid and

on demand computing where the system has to provide QoS to applications which

are unknown and even outside the control of the system operator.

There is therefore a clear need for systemmanagement solutions that autonomously

monitor applications progress, in terms of meeting quality objectives, with respect

to their use of system resources, thus learning the implicit relationship between the

two. Such a solution is described in this paper. Specifically, a system for autonomic

management of network resources to effect the desired balance between concurrently

executing processes on a stream processing node is presented. This system is capa-

ble of maintaining this balance with or without the presence of explicit perprocess

CPU allocation mechanisms (e.g. processor sharing between LPAR partitions[84],

VMWare images[85], or CPU-allocating schedulers such as CKRM[86]). In systems

without per-process CPU allocation mechanisms, such as a stock Linux kernel, our

management system is able to autonomously determine the appropriate data rate

for each process to achieve its CPU target and allocate the corresponding amount of

network resources. Even in systems equipped with per-process CPU allocation mech-

anisms, our autonomic traffic management system ensures that less important tasks

98

dont starve more important tasks of bandwidth. We anticipate that current trends

in distributed systems will make it increasingly important to carefully monitor appli-

cation performance and link it with resource utilization requirements and allocation.

Furthermore, systems should be able to cope with disparate and quickly changing

loads and resource requirements. The analysis presented here is an important step in

this direction.

A. Overview of Related Work

In this section discussion will be based on prior work that is related to management

of distributed stream processing systems. The problem of providing network QoS via

bandwidth reservation, scheduling and policing has been extensively researched over

the past years. The main focus of this work [87-90] has been to study mechanisms

that, given an appropriate traffic characterization, can guarantee high efficiency sta-

tistical multiplexing while ensuring the requested levels of QoS (or limiting violations

thereof). The traffic parameters (such as leaky bucket rate and size) along with the

negotiated QoS can be thought of as a contract between the user and the network.

This work underlined part of the work of the Internet Engineering Task Force Inte-

grated Services (IntServ) [91, 92] and Differentiated Services (DiffServ) [93] working

groups. One common shortcoming of these approaches is that they rely on accurate

characterization of the traffic streams entering the network. While this assumption

might have been true for a small set of well known applications, it is clearly not

applicable in todays heterogenous, on demand computing envirornment, where the

traffic generated by an application and the relation to CPU resource availability is

not know in advance. Additionally, as already pointed out, this work does not link

the allocation of network bandwidth with CPU processing utilization. Still, the tech-

99

niques developed to allocate and police bandwidth allocation domain can be used as

a building block in the 3D multicomputer control system.

Substantial amount of work in managing distributed applications has been car-

ried in the domain of operating systems. This work focuses on intelligent scheduling

of different tasks across different nodes, prioritization and allocation of CPU, mem-

ory and disk resources. Typically the network is assumed to be of sufficient capacity

that it can be considered infinite. The authors in [94, 95] consider the interaction

of traffic with the network and propose using a simple feedback mechanism based

on local buffer occupancy levels to control the progress of different processes. Load

balancing [96] has been also used to asign different nodes in a cluster to different

processes requiring processing. It relies on individual nodes to periodically send state

(processing load and resource availability) measurements to a gateway node that

then determines the appropriate job dispatch policy. Prior research in multimedia

and stream processing systems is also relevant to our work; multimedia applications

have often been developed with build-in adaptation mechanisms to handle network

or system congestion. [97] describes application-level quality adaptation techniques.

[98] presents adaptive mechanisms for real-time applications that adjust resource allo-

cation if there is risk of failure to satisfy timing constraints. Transcoding of web page

multimedia objects based on the available bandwidth is used in [99] to provide service

differentiation across different clients. Abeni and Buttazzo in [100] propose a frame-

work for dynamically allocating CPU resources to tasks whose execution times are

not know apriori. The motivation for learning the tasks CPU requirements is similar

to the work presented here; however the authors consider only the CPU bandwidth

and not that of the network and do not address the dependency between the utiliza-

tion of multiple resources. A multiple-resource utilization prediction model, based on

autocorrelation and cross correlation between two resources (e.g., CPU and memory)

100

is presented in [101]. This work presents a novel model for predicting the joint utiliza-

tion requirements of different resources but does not address how to achieve a desired

operating point from a system management perspective. Among more recent system

management tools, VMware [85], creates virtual machines (VMs) on x86 architecture

systems. It partitions a single physical system into logical compartments, each run-

ning its own copy of operating system and applications and, thus, giving the illusion

of a separate system. While such separation is an effective way for managing different

applications requirements, the granularity of the different VMs is quite coarse and not

very well suited for individual stream processing applications. In addition, creating

and management of different VMs entails substantial overhead, of the order of 2-20%,

depending on the application, product and experimental setting [85], substantially

more than the 0.2-0.5% that our system exhibits.

B. Experimental Design

This section details the system architecture of the Autonomic Traffic Manager sys-

tem. The system is designed to be compatible with standard Linux kernels and

legacy applications, so no modification of either the kernel or the applications under

management is necessary.

1. Bandwidth Policing

The bandwidth policing component uses Linuxs tc command (part of the iproute2

package to enforce the bandwidth allocations decided by the controller. tc (short

for “traffic control”) is a user-space Linux application that allows a user (with root

privileges) to configure a set of packet queues, traffic classes, and traffic shapers that

reside in the Linux kernel and control the handling of incoming and outgoing packets.

101

tc supports a range of packet filters for classifying traffic, queueing disciplines for

scheduling packet processing and an efficient mechanism for controlling traffic rates.

In this dissertation, only policing of the rate of incoming traffic will be considered.

While iproute2 has a variety of scheduling and shaping mechanisms for outgoing

traffic, it is quite limited in its ability to handle incoming traffic. While outgoing

packets may be queued and scheduled for later transmission, incoming packets must

be policed, i.e., delivered or dropped without delay (recent iproute2 releases now

support queueing of incoming traffic). In the first realization of this scheme, emphasis

will be on making use of the policing functionality only, which simplifies the system

and increases compatibility. Since the policing functionality is available for both

incoming and outgoing traffic, these methods are applicable to traffic either entering

or leaving the host.

The bandwidth policing module finds the ports in use by the processes being

managed using netstat. It then creates tc filters that match packets addressed to

those ports (or, equivalently for outgoing traffic, packets coming from those ports).

To detect new port numbers, netstat may be run periodically. Otherwise it need

be executed only when a process initially comes under management. tc implements

policing using a “token bucket filter”. The “bucket” is conceptually a container for

tokens which arrive at a specified rate. When a packet of size x bytes arrives at

the policing filter, it tries to remove x tokens from the bucket. If the bucket does

not contain x tokens, the packet is dropped. The two most important settings of

a token bucket filter are its fill rate and its size. The fill rate determines the maxi-

mum sustainable throughput. The bucket size determines the amount of “burstiness”

that is allowed in the packet flow: a burst of packets can be delivered immediately

(temporarily exceeding the token fill rate) if there are enough tokens accumulated

in the bucket. Sizing of the bucket is important for efficient operation, as a cer-

102

tain amount of burstiness is unavoidable. At a minimum, the bucket size must hold

enough tokens to deliver a single maximum-size packet, and also large enough to

deliver the number of bytes per timer tick that corresponds to the desired policing

rate. The former condition requires bucketsize > MTU , and the latter requires

bucketsize(bits) ≥ rate(bps)/clockfrequency (using the default Linux clock tick res-
olution of 10ms, this translates to bucketsize(bits) ≥ rate(bps)/100). In practice, the
bucket size must be somewhat larger than these lower bound requirements to achieve

the desired maximum rate. However, larger bucket sizes allow more bursty traffic,

which can make the system more difficult to control. It was determined that setting

the bucket size to a (small) fixed multiple of the minimal bucket size ensured that

traffic can reach the target rate without allowing very large bursts.

At each iteration of the control algorithm a new bandwidth allocation vector

is computed and passed to the bandwidth policing module which sets new policing

rates and bucket sizes. It should be noted that the current implementation of tc does

not allow rates on existing filters to be changed; therefore, at each iteration, existing

filters must be deleted and replaced with new ones at the desired rate. This limitation

presents another challenge in choosing bucket sizes: when initialized, each bucket is

full of tokens, and thus each filter can immediately emit a burst of packets equal

to the bucket size. Experiments showed that the heuristic for setting small bucket

sizes appears to mitigate this effect. Additionally, there is a short time between the

deletion of a filter and the creation of a new one where packets might be subject to

no rate control, but in practice no significant effect was observed.

2. CPU Monitoring

ATM attempts to set bandwidth allocations so as to maximize a system quality of

service (QoS) metric. In order to do so, a monitoring component that periodically

103

recalculates the value of the chosen QoS metric is utilized. Ideally, QoS measurement

should be accurate, inexpensive, and meaningful down to a short time scale. For

the results described in this dissertation, the goal was to achieve a given target CPU

utilization vector, and our QoS metric is derived from the squared distance of the

observed operating point from that vector. Specifically, at each iteration. j, seek to

minimize:

E[f j(b)] =
1

2
E
3
i=1...n

(ti − Cij(bi))2 = 1

2
E , t− Cj(b),2 = 1

2
, t− Cj(b),2. (6.1)

The function 6.1 must be optimized subject to constraints on the control variable,

b. That is, impose the following set of constraints:

b ∈ B := {b| 3
i=1...n

1 ≥ bi ≥ 0, i = 1...n}. (6.2)

The input target CPU levels, ti, i = 1...n, satisfy 1 ≥ �i=1...n ti. bi is the

bandwidth allocation for process i and Cj
i(bi) is the corresponding CPU utilization

at iteration j.

CPU utilization is read from Linux’s /proc virtual filesystem, which provides the

number of CPU ticks used for each process and by the system as a whole. For any

given interval, the ratio of ticks used by a process to the total provides the fractional

CPU utilization (regardless of the number of CPUs). This metric is inexpensive to

obtain, and accurate for polling frequencies down to tenths of a second.

3. Bandwidth Monitoring

In addition to creating and deleting filters for policing streams, tc allows a user to

query a filter for some basic information: bytes delivered, packets delivered, and

packets dropped. Bytes delivered statistic is used to monitor the amount of traffic

associated with each process under management. The measured traffic rate usually

104

differs from the allocated rate, even when an application attempts to use the full

amount of bandwidth allocated to it. This difference is attributed to transient effects

caused from filter creation/deletion (see section 3.1), TCP rate control, and approxi-

mations by the rate control filters. These short terms variations make it difficult to

use the measured bandwidth in this adaptation algorithm, so only measured band-

width is used to determine whether or not an application is attempting to utilize

all the bandwidth allocated to it. Thus, small changes in the measured bandwidth

are not taken to indicate changes in an applications CPU/bandwidth function; how-

ever, when the measured bandwidth is considerably less than the allocated, it is used

as an indication that the application is not capable of utilizing the full bandwidth

allocation.

4. Controller

The controller uses input from the bandwidth and CPU monitoring components to

iteratively adjust the bandwidth policing levels until the CPU resources are shared in

the desired proportion. Good controller design is critical, since the system is inher-

ently difficult to control, each iteration is potentially expensive given that it perturbes

the operating point, and poorly-chosen bandwidth policing levels can significantly de-

crease the efficiency and endanger the stability of the computing processes. Critical

requirements in the controller design are stability, low overhead and minimum number

of steps to convergence.

Additionally, the controller has to be able to cope with noisy input variables.

In particular, CPU utilization is subject to significant noise levels; this can be due

to the granularity of the Linux kernel scheduler. For example, if CPU utilization is

measured over a period shorter than a complete scheduler epoch, the measurement

will overstate the CPU share of the processes that have already run while understating

105

the share of those that have not yet run. The next CPU utilization measurement will

likely over/understate different sets of processes. This noise can be decreased by

measuring CPU utilization over longer measurement periods, somewhat decreasing

the responsiveness of the control. Other sources of CPU utilization noise are harder

to control, such as the periodic execution of various system services and any other

processes not under direct management.

More important than random noise in CPU utilization, however, is the fact that

processes can exhibit different relationships between bandwidth use and CPU utiliza-

tion over time. This relationship can change quite rapidly and quite often, as a process

handling of incoming traffic may be entirely dependent on the content of the data.

To address this problem, the controller has a mechanism outside the usual adaptation

algorithm that recognizes a fundamental shift in the bandwidth/CPU relationship,

and triggers a reset of the learning and control algorithm. Some processes may ex-

hibit totally unpredictable behavior with no meaningful statistical mean, in which

case the autonomic traffic manager would not be able to make meaningful decisions,

but the controller can effectively manage samples of several real-world processes with

data-dependent processing times.

The controller problem is formulated as a non-linear stochastic optimization

problem. Details of the optimization formulation and the approach to solving it

can be found in [102]

C. Experimental Procedure and Results

To evaluate the performance of ATM, a series of experiments was setup, to both

compare it against other existing alternatives and evaluate how well it can work in

conjunction with these mechanisms. In this section, a comparison is made on the

106

ATMs ability to achieve and maintain a desired CPU allocation with attempts to

reach the same allocation using two alternative mechanisms: process priorities in

the Linux 2.6 kernel scheduler, and CPU allocation with the “Class-based Kernel

Resource Manager” (CKRM) patch. Experiments are then conducted to evaluate

how well ATM performs when operating in conjunction with CKRM.

1. Experimental Procedures

The goal in the experiments is to maintain a target 3:1 ratio of processing allocation

between two instances of the same stream processing application, each instance re-

ceiving a separate stream of input data over a shared 100Mbit local area network. Of

interest is in experimenting with applications that exhibit different bandwidth and

CPU resource requirement profiles, from low bandwidth, very CPU intensive to those

requiring high bandwidth but relatively low CPU. A synthetic stream processing ap-

plication is created, that can be tuned to model a wide spectrum of applications with

different CPU/bandwidth requirements. It achieves this by having a configuration ar-

gument that specifies the number of (numerical) computation loops (i.e. operations)

to execute for each kilobyte-sized block of incoming data. Each of the management

mechanisms is configured (manually, in the case of nice levels, automatically in the

case of CKRM and ATM) to get as close as possible to the 3:1 ratio target of CPU

utilization. The observed CPU utilization and incoming bandwidth is recorded for

at least 3 minutes for each test case, and repeated for each management mechanism.

This procedure is repeated for several different settings of the data processing appli-

cations argument (number of loops per 1Kb of data). This gives a complete picture

of the effectiveness of the different management mechanisms across a wide range of

stream-processing applications, varying from high to low bandwidth intensity. To

reduce noise in measurements due to background processing, the maximum CPU

107

targets are limited to 75% and 20%, reserving at least 5% for system processes.

a. Linux Scheduler Priority (nice)

In a stock Linux kernel, the sole mechanism for influencing the relative cpu allocation

of running tasks is adjustment of scheduling priorities (also known as nice levels,

in reference to the Linux nice command, which allows a ‘‘nice’’ user to depriori-

tize their own tasks and a priveleged user to prioritize tasks). The kernel scheduler

uses these priorities to determine both the precedence of and the timeslice given to

each task in every scheduling epoch. The nice levels range from -20 to 19, with

-20 being the highest priority. The kernel adjusts the nice level by an interactivity

bonus/penalty ranging from -5 to +5, depending on whether a program usually sleeps

waiting for some input (bonus) or usually runs (penalty).

The process for managing CPU allocation using scheduler priorities involves man-

ually searching for the pair of priorities for the two running tasks that result in CPU

utilizations closest to the targets. For lower values of the processing loops per kilobyte

of data, even the most extreme pair of priorities (-20 and 19) were not able to reach

the desired CPU targets. In such cases the results obtained with these minimum and

maximum priorities are shown.

b. Class-based Kernel Resource Manager (CKRM)

CKRM is a patch to the Linux kernel that allows “Class-based Kernel Resource Man-

agement”. Through a psuedo filesystem, users can create classes, assign running tasks

to them, and set CPU sharing allocations of each class. The process for managing

CPU allocation using CKRM involves putting each task in a separate class, then set-

ting the CPU share guarantees (which is also used as a weight for CPU sharing) to

the desired targets. As previously mentioned, the sum of the two targets is allowed

108

to be at most 95% of the CPU. Leaving less than 5%of the CPU available for system

tasks and the monitoring components leaves the system unresponsive and potentially

unstable.

c. Autonomic Traffic Management System (ATM)

ATM can be launched by any user with sudo priveleges to run the kernel network

QoS controller tc. It accepts arguments specifying the names or pids of the tasks to

be controlled, and the desired CPU targets.

The system is configured to sample CPU usage every second, and to use 5 of

these samples per iteration. In such a configuration, the system may change the

bandwidth allocation to a task at most once every five seconds, though in actuality

it rapidly converges on an allocation and maintains it unless the system is disturbed.

2. Experimental Results

Figure 43 shows the CPU utilizations achieved by the tested management schemes

under a range of per-kilobyte processing levels ranging from 0 to 80 loops per kilobyte.

The dotted lines labeled “targets” show the target levels of CPU utilization the

desired levels to be achieved using each of the tested mechanisms.

As a note, ATM is consistently closest to the target levels across the entire

spectrum of processing load. The difference is most remarkable when processing load

per unit bandwidth is low, i.e., for very bandwidth intensive applications. In the range

between 0 and 20 processing loops per kilobyte, neither nice nor CKRM are capable

of achieving any differentiation at all between the two tasks, let alone the desired 3:1

ratio. nice begins showing the ability to effect differentiation above 20 loops/KB,

and reaches the target differentiation at about 50 loops/KB. CKRM shows very little

differentiation below 40 loops/KB, and reaches the targets at about 60 loops/KB.

109

Fig. 43. CPU utilization measured using each of the 3 management schemes: nice,

CKRM, and ATM for varying processing levels. Each scheme is represented

by two lines for the two tasks, and the target CPU utilizations are indicated

by the dotted lines labeled “targets”

Note also that nice and CKRM are unable to achieve differentiation in the case of

low CPU/high bandwidth intensity applications because the processing tasks receive

data via TCP/IP over a shared link, and the TCP/IP stack does not explicitly favor

tasks of higher nice priority or larger CKRM CPU allocation. Thus TCP/IP tends to

equalize the bandwidth allocated to each of the two tasks unless another mechanism

is used to explicitly control this allocation, which is exactly what ATM does.

For cases with 60 loops/KB and above, all three mechanisms are able to maintain

the system at target levels (note that nice and CKRM converge on CPU utilizations

slightly above the targets, since they will redistribute any unused CPU time above

the 95% allocated). As the loop count increases, tasks become increasingly CPU

dependent, and pure CPU-allocation scheduling schemes can successfully maintain

110

the desired balance, while management by pure bandwidth-allocation schemes such

as ATM become more difficult. Nevertheless, ATM is quite capable of reaching CPU

targets in separate trials with up to 10,000 processing loops/KB.

Figure 44 shows the bandwidth utilization measured during the tests. Similar

to the CPU utilization graphs, it is observed that nice and CKRM do not achieve

any meaningful differentiation between the two tasks for loops/KB values below 20.

Bandwidth differentiation closely parallels CPU differentiation: nice shows some

differentiation above 20 and converges with ATM at 50, while CKRM shows differ-

entiation above 30 and converges to ATM and nice at 60.

Fig. 44. Bandwidth Utilization measured using each of the 3 management schemes:

nice, CKRM, and ATM for varying processing levels. Each scheme is repre-

sented by two lines corresponding to the two tasks.

The bandwidth utilization lines for ATM are essentially flat for the section of

111

the line between 0 and 40 loops/KB, reflecting the fact that targets increase in direct

proportion to the number of instructions per KB. Above 50 loops/KB, the CPU is fully

utilized, so increasing the loops/KB variable leads to linear decrease in the bandwidth.

The ATM bandwidth utilizations are very near the ideal, as can be observed from the

fact that nice and CKRM converge on ATMs bandwidth utilization once they reach

the targets.

Figure 45 shows the standard deviation of all samples taken during all trials

of nice, CKRM, and ATM. The predominant feature of the graph is a large peak

demonstrated by nice in the range between 20 and 60 operations per kilobyte. Recall

that this range corresponds exactly to the region where nice transitions from achiev-

ing no differentiation between tasks to achieving the full targeted differentiation. In

fact, during experimentation it was noticed that nice was producing very unstable

system operation in this range around 40 operations per kilobyte, with both CPU

utilization and bandwidth usage oscillating quite violently. This may be the result

of interaction between the Linux scheduler giving priority and larger timeslices to a

task while TCP/IP detects higher losses on that tasks link, and repeatedly throttles

it down (via its dramatic multiplicative decrease algorithm).

CKRM exhibits standard deviation which increases roughly linearly from 0 to

50 operations per kilobyte, then drops near zero at 60 operations per kilobyte and

thereafter. ATM, in comparison, shows standard deviation roughly flat across all

operations/KB, demonstrating that it is not very sensitive to the ratio of bandwidth

to CPU. For 0 to 50 operations per kilobyte, ATM exhibits similar or less variance

around the CPU targets than either nice or CKRM. Both CKRM and nice perform

very well when tasks are sufficiently CPU-centric: with 60 or more operations per

kilobyte, nice and CKRM exhibit less variance than ATM.

Figure 46 shows the standard deviation of the bandwidth used across all samples

112

 Fig. 45. Standard deviation of CPU utilization

 Fig. 46. Standard deviation of bandwidth utilization

113

for each trial. Similar to Figure 45, we observe that nice exhibits relatively large

variance in the region between 20 and 60 operations per kilobyte. ATM displays

differing variance in different trials, at times quite high for the higher priority tasks

bandwidth, but consistently lowest of the group for the lower priority tasks band-

width. The former observation is attributed to ATMs bandwidth search mechanism,

which likely had to adjust bandwidth allocation rapidly to maintain the desired CPU

levels in this challenging operating region. In observing ATM at work, it is observed

that often, system tasks can “steal” CPU from the stream processing tasks (since

ATM, unlike nice and CKRM, does not directly control CPU scheduling). This is

consistent with the observation of low variance in the low priority task under ATM,

since it is less likely to have CPU share stolen by system tasks, and ATM can lock in

a specific bandwidth and maintain that allocation for long periods of time.

D. Conclusions and Future Work

Efficient operation of distributed and parallel computing applications depends on

efficient management of multiple resources such as CPU, system memory and link

bandwidth. While substantial work exists on independently managing system (CPU,

memory) and networking resources, little attention has been given to the complex

dependencies between utilization of processing and network bandwidth resources. As

this design shows this link is a critical piece of system management tools, especially in

the case of high bandwidth stream processing applications, for which existing system

management tools based on CPU-prioritization schemes are inadequate.

To address these shortcomings, a system that seeks to achieve system manage-

ment objectives by explicitly considering the relationship between the bandwidth

allocated to an application and its corresponding utilization of processing resources

114

has been developed. By controlling the bandwidth allocation vector across different

applications, the systen is driven towards a desired CPU utilization vector. Effective

operation of this system has been demonstrated for a wide-range of applications, from

CPU intensive to bandwidth-intensive.

The results demonstrate that weighted and prioritized CPU scheduling are not

sufficient to achieve meaningful control over high-rate stream processing operations,

and that our Autonomic Traffic Management system can achieve such control over

both high-rate (low operations/ unit of bandwidth) and low-rate (high operations/unit

bandwidth) stream processing tasks. ATM controls CPU utilization indirectly by

setting the bandwidth to (or from) each processing tasks, and so must learn the

relationship between the bandwidth and CPU resources used by each task, while

simultaneously effecting the desired control output. Despite this algorithmic com-

plexity of ATM, when compared to simple weighted CPU sharing (e.g. nice and

CKRM), ATM achieves accuracy consistency comparable to nice and CKRM for

low-rate stream processing applications, and maintains this performance with the

high-rate stream processing tasks that nice and CKRM cannot handle. Further-

more, it achieves this will notably low overhead. An attempt was made to run both

ATM and CKRM simultaneously, with no corindation between the two, and found

that the combination did not perform as well as ATM alone. Specifically, ATM seems

to experience higher variability and slightly less differentiation in the presence of

CKRM than in isolation. With ATMs ability to control highly bandwidth-centric

tasks and CKRMs ability to control CPU-oriented tasks, using the two in concert, or

dynamically choosing between them, should enable improved control across the full

spectrum of stream processing tasks, and with other types of processes as well.

Further consideration will be given to the design of a generalized resource con-

troller with the ability to allocate and prioritize tasks use of multiple resources (CPU,

115

bandwidth, and others). It is anticipated that there will be gains made by managing

multiple resources in a single framework above and beyond those we achieved here

by controlling different resources via entirely isolated mechanisms. Improvements

will be made on this autonomic traffic management system, getting closer to the

goal of increased performance in real-world systems with significant noise, changing

bandwidth/ CPU usage relationships, and complex interactions.

116

CHAPTER VII

ROUTING IN MOBILE MULTICOMPUTER NETWORK - A CASE STUDY

The advances made recently in the areas of network and computer technology have

given rise to an explosion of mobile computing devices and development of mobile

computing environment. A very important issue in data routing in mobile com-

puting involves managing or tracking of the locations of the computing devices. A

scalable distributed network imposes another level of difficulty, as this involves dy-

namic location management techniques. In this chapter a novel scheme called SEEK

(Spatial Embedded Environment Knowledge) is presented to efficiently route data

while performing location management dynamically for a scalable distributed mobile

multiprocessor network.

The idea is to use some of the communication and routing techniques developed

in previous chapters and adapt these to suite a mobile environment. The first novel

idea introduced is using age parameter to elect non-static location servers in each local

partition. The term location server is used loosely, since the nodes in the network

have equal likelihood of assuming the role of a location server. A more appropriate

name will be Elected Location Manager. Secondly, the method incorporates a new

idea for efficient path set-up for data transfer during the location inquiry and update

steps. Third, this algorithm takes into account the dynamic nature of intermediate

nodes, where nodes may also be moving during data routing.

The diversities in distributed mobile multiprocessor network mean that the net-

works are built with no fixed infrastructure. The nodes have to establish communi-

cation with each other without the services of a centralized switch. Traffic modeling

in such a system is nondeterministic with nodes having diverse mobility patterns. In

order to route data from a source to its destination(s), a host (mobile or static) needs

117

to know the address of the destination(s) at the least.

Some important problems associated with mobile computing on a large scale are

non-trivial. First, the tracking of nodes in a mobile network expends the limited

resources, such as bandwidth and power. Thus, the goal of a location management

scheme will be to optimize the update and query operations, so as to minimize the cost

of location tracking. Secondly, routing of data as a consequence involves establishing

a communication path between source and destination and getting data across the

link to the destination. In a mobile network, where singlehop communication may

not be enough to get data from source node x to destination node y, the cost of

path setup and the mobility of the intermediate routing nodes must be taken into

consideration. Hence, the objective will be to minimize the cost of path setup for

data transfer and eliminate link failures due to the mobility of intermediate nodes,

involved in data transfer.

Mobile networks depend on location servers to hold a list of nodes within a geo-

graphical area. These servers are usually assumed to be static [103-105]. However, for

a large network with many nodes, it becomes impractical to assume that in every par-

tition, a location server exists. This would make it more difficult to achieve scalablity.

The source x has to know the address of the destination y before any transactions

can take place. Assume that every node knows its geographical location by use of

GPS devices. Due to the mobility of nodes, the problem here is that for any node

x, its static address or identification has no relation to its physical location due to

mobility. Address for any node y has to be obtained with only the static address or

identification of y. Node x or y or both could be mobile, as such location update will

have to continue even after the initial handshake, during the course of data exchange.

Some work has been done in the area of Location Management for mobile dis-

tributed computing. Far less work has been done in the area of data routing for such

118

systems that takes advantage of the proposed location management schemes. In [104]

a hierarchical location management scheme is proposed that divide a network into

areas, where each area has at least one router. It achieves good results, however, the

mobility of the location servers is not discussed and it assumes that within an area,

there must exist a location server. The data packets destined for an area has to be

routed through this location server, constituting a bottleneck. In another approach

[106], the location databases hold location storage and retrieval information while an

assumption is made that these databases form an interconnection network with no

clear description on how this routing is achieved. However, the servers are assumed

to be static, which does not solve the problem of scalability. In [107], the authors

suggest a decentralized location service, in which nodes create region with similar IDs

and designate one node as the location server. The obvious problems inherent with

such a scheme lie in mobility. To find a location server, a node needs to scan an entire

network. Also, It is likely that both node and original server may move, and this is

not addressed. What happens if a new node enters the region, is not addressed either

in the paper.

Another insight to the mobility issues is found in the work of [103], in which the

authors propose a distributed location management. It has the attributes of being

distributed, scales well and meets certain mobility challenges. The address structure

is hierarchical, so it achieves address encapsulation. However, the scheme makes

use of location servers, without taking into account the mobility of such servers and

assumes that in the network partitions, there are no areas without a location server.

The cost of having dedicated location servers in each partition as the number of

partition increase will certainly prove to be enormous.

In this chapter, a novel scheme to address the issue of static location servers in

location management is presented. A data routing scheme that takes into account the

119

mobility of the communicating nodes and that of intermediate routing nodes during

data transfer is also presented.

First, a unique addressing scheme is introduced that is hierarchical and exploits

locality. This leads to the address of a node dynamically changing as it moves through

different virtual communities. Next, the SEEK set of algorithms are presented, that

perform the function of location management and data routing by establishing par-

titions of nodes to which nodes are locally identified. With the partitioning concept

only a few nodes need to be updated when a node moves. To further improve perfor-

mance, location accuracy is prioritized, so that only a small number of nodes need to

have an accurate location update. This greatly reduces the amount of resources ex-

pended in mobility tracking. Third, age is used as a parameter to determine partition

location managers in this dynamic environment. Fourth, the data routing strategy

incorporated in the location inquiry/update stage is introduced. This design takes

into account the mobility of both the communicating nodes and intermediate nodes

involved in data transfer. With this method, there is a significant reduction in delays

caused by routing data through the location managers. A further reduction in delays

is achieved by applying a novel concept called predictive data routing. This uses a

probability model to predict the location of destination nodes. Finally, some theoret-

ical analysis to show the complexity of this scheme is presented along with computer

simulations to show the performance.

The outcome of this approach is such that the mobility of the location servers

and mobility of the intermediate routing nodes are taken into account. Furthermore,

location prediction methods are applied to prevent data loss and enhance packet

routing in the case where all nodes are in motion.

120

Fig. 47. Graphical illustration of network showing only two levels

A. The System Model

In the proposed scheme, a tree structure is used to implement a hierarchy, in which

leaf nodes of the tree are the zero-level cells or level-0 partition. The tree structure

enables scalability of the network and reduces the overhead control message borne by

each cell. We show later by mathematical modeling and theoretical considerations

the upper bound on the complexity of our scheme.

In this dissertation, cell structures identical and hexagon-shaped as in wireless

cell phone structures are adopted. Hexagons have been shown to be optimal shape

in a 2D space for cell packing [108]. This proof is described in a later section. A

graphical illustration of this network is shown in Figure 47.

The mobile network is modeled on a flat two-dimensional plane physically, called

the “network area”. The cells are assumed to be non-overlapping and cover the

network area contiguously. Each node in the network can be in one and only one of

the partitions at any given time. The partitioning scheme is hierarchical and so the

addressing scheme harnesses this feature. The goal is to achieve the following:

121

• Partition the network into a hierarchy of regular 6-sided polygons to minimize
the average signaling cost registration

• Achieve address compression using a hierarchical approach

1. Network Partition Scheme

Below are some definitions.

Definition:

1. A minimum partition (hexagon) is called a level-0 partition.

2. A level-n partition consists of seven level-(n-1) partition cells, grouped together

to form another hexagonal area.

It is assumed that within a level-0 partition, the power requirements will be met,

i.e., single hop communication will be guaranteed at the least. In this scheme, the

network area is partitioned, adopting hexagonal-shaped cell structures. The center

of the network area is identified, shown in the Figure 48, as the Locus of Network

Trajectory (LocusNT). This locus is also going to be the center of a hexagon. The

LocusNt is surrounded by six other hexagons on its six sides. The result is a 7-leaf

tree structure used to implement a hierarchy, in which leaf nodes of the tree are the

level-zero partition cells. The tree structure enables scalability of the network, (ie the

network is allowed to grow) and reduces the overhead control message borne by each

cell. An illustration is given in Figure 48.

The dimensions of the base hexagon will depend on the design specifications,

which include power requirements of the nodes, so that the diameter of hexagon does

not exceed range of transmission of every node in the network. The physical partition

layout in Figure 49 shows an example of partitioning for a four-level network.

122

Fig. 48. Illustration of the hexagonal tree structure

The number of levels in this hierarchy is dependent on the number of partitions.

As more partitions are added, the number of levels increases. With this scheme, the

physical layout of the network spreads outwards. Scalability is achieved by adding

more cells around the perimeter of the network.

2. Node Addressing

Definition: A full location address completely specifies a nodes location to any other

node in the network.

As mentioned earlier, the addressing scheme follows a hierarchical structure. It

is worth mentioning that a node address is different from its identifier. An address

has the function of mapping a node location. The node address corresponds to a node

location. For a node x and number of levels = n, the address string elements {x} are:
{x0, x1, ..., x(n+1)}.

123

Fig. 49. Illustration of network-layout showing levels of the partition hierarchy

Definition: A partial location address will only completely specify a nodes ad-

dress, if and only if, both belong to the same level-(n i) partition, where n = (1, 2, ,

n-1).

From the foregoing, the following can be deduced:

• Any two nodes with the same full location address must reside in the same
level-0 partition.

• A level-n address follows a clockwise assignment (1,2,..,6) about the locus of

level-n trajectory.

• The locus of level-n trajectory has a full location address labeled [(n+2), (n+1),
0], where (n+i) indicate the parent level address.

124

Consider Figure 493, there are three levels. The locusNT has address [0, 0, 0, 0].

Each level-0 partition has full address [x3, x2, x1, x0]. Two nodes in the same level-0

partition will have the same location address. If the nodes are in different partitions,

then the extent of which their location address differs depends on which common

parent level they share in the hierarchy.

3. Node Community Update

A mobile node may leave its current location (partition) and enter another partition.

The elected location manager is updated each time this happens. If a node enters

or moves away from a partition, it sends this information to the location manager.

Assume that a node is able to determine the boundaries corresponding to the loca-

tion address. The location server updates its list and broadcasts this information to

all the nodes within the level-0 partition. Every node then updates its list. This

is necessary to enable communication amongst nodes in a cell, without reference to

the location manager in that cell. A different approach might be to have only the

location manager keep a member list and perform all the updates without broadcast-

ing. However, apart from maximizing network resources in the case of inquiry and

update, another important factor is delay. If two nodes in the same level-0 partition

need to communicate, the sender has to send the inquiry to the location manager.

The location manager becomes the bottleneck, and consequently leads to delays. In

this implementation, SEEK- (location entry) and SEEK - (location exit) algorithm

are used to achieve the node community update.

Algorithm 5 (SEEK - (Location Entry))

begin

SEEK (addr(x), id(x), node age, counter);

125

set counter = 0;

for each level-0 partition do

reset node age = 0;

start counter;

node age = counter;

for (i = 0, i < 3, i++) do

send ping packet to addr[000];

if ack packet is received then

send id(x) to addr[000];

addr(x) = memlist + 1;

addr[000] broadcasts id(x) & addr(x);

break;

else

set addr(x) = addr[000];

end

end

end

end

In location entry, when a node enters a new partition, it sends a ping packet

to address [000]. This is usually reserved for the location manager. If an ack is not

received after a specified wait time, the node retransmits the ping packet. Retrans-

mission is done three times to make sure that the partition is empty. If no ack is

received after the third ping, the node assumes the partition is empty and assigned

address [000] to itself. If however, an ack is received, the node sends its node-id to

126

the location manager.

In location exit, a node also sends a ping packet to the location manager, and the

process of updating and broadcasting is repeated. If however, the location manager

is the node exiting, it checks to see if address [001] exists in its list. If this address

exists, it hands over the member list to the node with address [001]. If this node is

non-existent, the member list is discarded.

Algorithm 6 (SEEK - (Location Exit))

begin

SEEK (addr(x), id(x), new list, old list);

for each level-0 partition do

send addr(x) to addr [000];

if addr(x) == addr[000] then

if addr[001]==NULL then ;

return 0 ;

else send memlist to addr[001];

end;

else

addr[000] updates memlist;

new list = old list - addr(x);

broadcast new list;

end

end

end

127

4. Location Inquiry

A node sends a query to its location manager only when the requested node iden-

tification is not within the level-0 partition member list. When a location manager

in level-0, receives an address inquiry from a member node, it resends this request

to the level-1 location manager. A location manager in level-n partition (where

n = 1, 2, ..., n) on receiving an address inquiry from one of the level-(n − 1) loca-
tion managers, redirects this query to the other (n − 1) sibling location managers.
These sibling location managers propagate this inquiry down to the level-0 location

managers that check their member list. If there is a match, an “ack” is sent back

with the address to the level-n location manager. The level-n location manager, then

forwards the address to the level-(n-1) manager that sent the inquiry . The level-n

location manager also broadcasts a “stop-query” packet, to signal that a match was

found. If matches are not found in the member lists of the level-0 location managers

that have root at the level-n location manager, the query is the sent to the level-

(n+1) location manager and the process is repeated until a match is found. A formal

description of the location inquiry is shown in Table 3.

Algorithm 7 (SEEK - (Location Inquiry))

begin

SEEK (id(x-inquiry), addr(x));

node(y) sends id(x-inquiry) to addr[000];

while(level-n is not level-0) do

send id(x-inquiry) to other level-n addr[000] ;

if id(x-inquiry) is in memlist do

send ack/addr(x) packet to query addr[000];

query addr[000] broadcast stop-query packet;

128

send addr(x) to node(y) or level-(n-1) addr[000];

else

send id(x-inquiry) to level-(n+1) addr[000];

end

end

end

B. Distributed Mobile Data Routing

The main objectives outlined are first, to complete the path setup for the data transfer

at the same time as the location inquiry step. Second, address the issue of mobility

of the intermediate nodes involved in data transfer, and third, apply predictive data

routing as a method of reducing delays and control overhead. The types of data

considered here will typically be of large size take quite some time to transfer like

a continuous data transfer, e.g., streaming video/audio. This scheme differs from

other schemes in that the path setup step is done at the same time as the destination

address inquiry step. The location managers are not dedicated router nodes for data

transfer, and so are not bottlenecks. Data transfer follows a flat topology, while

location management makes use of a hierarchical topology.

1. Path Setup

Data routing follows a packet switched approach. Packet switch networks have been

researched extensively and is well understood. However, mobility of the communicat-

ing nodes and indeed the intermediate routing nodes still posses some challenge in a

distributed mobile network.

129

As mentioned earlier, if a node wants to communicate with another node, it ob-

tains the address using the location inquiry technique earlier outlined. A node address

specifies the node location. Here, a description of how the path setup is incorporated

in the location inquiry step is outlined. When the destination node receives a location

query packet, the path setup commences. The destination node runs the algorithm to

determine how many hops it would take to establish communication with the source

based on the address and power transmission range. This is basically a backward

reservation technique. It then sends a request-for-reservation packet to the location

manager or level-0 location manager. This request-for-reservation packet contains

the destination address. The level-0 location manager then transmits this packet to

a level-1 location manager that broadcasts this request-for-reservation packet in the

reverse direction of data propagation. Any node along this direction of propagation

but not in the same cell or level-0 partition as either the destination node or source

node can respond to this request and send an ack packet to its location manager.

The location manager attaches the address location of the intermediate node in the

ack/address packet being propagated to the source. This process continues up and

down the hierarchy until the ack/address packet gets to the source node. The result

is that the acknowledgement packet from the destination node to the sender will con-

tain the addresses of all intermediate nodes reserved by the level-n location managers

during the course of location inquiry. Data transfer commences when this ack/address

packet is received from the destination node. A formal description of the path setup

is shown in Table 4.

Algorithm 8 (SEEK - (Path setup))

begin

SEEK (addr(*), addr(x), request-for-reservation, node(*);

130

node(x) receives id(x-inquiry) from addr[000];

attach addr(x) to request-for-reservation packet;

send request-for-reservation packet to addr[000];

set switch = 0;

transmit packet to level -1 addr[000];

while(level-n is not level-0) do

if switch = 0 do

send request-for-reservation packet to

other level-(n-1) addr[000];

if level-(n-1)==level-0 do

if (partition is a long direction of propagation

& not source node address) do;

assign node* = intermediate routing node;

attach addr(*) to request-for-reservation packet;

switch = 1;

send to level-n;

else

send request-for-reservation packet to source node;

end

else

send packet to level-(n-i) addr[000]

(i = 2, 3,..., (n- 1));

end

else

send packet to level-(n+1) addr[000];

131

end

end

end

Once data transfer is initiated, all the nodes involved in the data transfer refresh

the location addresses intermittently. This is a necessary step, to avoid link failure due

to node mobility. The data transfer and location address refresh does not include any

of the location managers. In the next section, the issue of mobility of the intermediate

nodes is addressed.

2. Packet Hand-over

During data transfer, an intermediate may move away from the path of optimal

data transfer or out of range of communication. In such a case, the link may be

broken and hence data transfer aborted, or the need may arise to route through

another intermediate node. To accommodate this we propose a Hand-over scheme,

to accommodate this problem. In a previous section, we described a SEEK- (location

exit) algorithm. In the algorithm, a node updates its location manager. If this

node is currently involved in a data transfer, it also sends the updated version of

the list of nodes involved it the data transfer. The location manager then re-assigns

another node to take over the data transfer. The location manager also modifies

the header information containing the list of addresses of the nodes involved in the

data transfer to reflect the change. It then propagates this information to the source

node. The source node and all subsequent intermediate nodes that receive this header

information attach it to the data packets. Automatically, a hand-over is achieved.

132

3. Predictive Data Routing

In predictive data routing, a source node assumes that the last known address of

the destination is still the current location address. In this case both nodes must

have communicated in the past. This approach has the overall result of reducing the

frequency of location inquiry and consequently an improvement on delay. Analysis on

delay improvement is given in Section 4. By applying predictive methods, a source

node does destination location address inquiry only if it has no record of having

communicated with the destination node in the past. In our design, we assume that

this memory requirement will not be significant for any of the nodes.

This form of routing is based on the observation that on the average a node

will communicate with a destination node more than once before the destination

node leaves its cell. In this regard, the source node is able to perform forward path

reservation. The source node is able to do this because it assumes the destination

node address has not changed. If the forward path reservation does not complete its

task in a given time frame, the normal source initiated destination address inquiry

and backward reservation is prompted.

When the destination receives the req packet from the source in forward reserva-

tion, it sends an ack packet via the intermediate nodes. This reduces the delay and

bottleneck imposed by routing this ack through the location managers.

For fault tolerant purposes, this approach also proves to be most efficient. If a

path in data routing fails due to intermediate node mobility, forward reservation is

initiated as mentioned above.

133

Fig. 50. Comparison between rectangle and hexagonal packing

C. Analysis

In this section, some analytical results on the complexity of the proposed scheme and

some theoretical bounds on performance are presented. First, a proof to show that

the optimal partitioning for a 2D space is the hexagon.

1. Analysis for Optimal Partitioning

Theorem 1: Optimal sampling in 2D results in the hexagonal or interlaced sampling :

Proof:

134

This is shown by comparing interlaced hexagonal partitioning to the commonly

used rectangular partitions [103]. Consider the partitioning of the space as a sampling

operation and the operation of assigning nodes in the space to a given partition as

analogous to 2D quantization. Then, compare this problem to one of optimal vector

quantization sampling in 2D [108]. Figure 50 shows the rectangular sampling, with

a sampling period of T , while the hexagonal sampling has a sample period of T on

the x-axis and (T2 =
�
(3)T1)/2 on the y-axis. The indices (x, y) is mapped onto the

sampling grid as

⎛⎜⎜⎝ Shx
Shy

⎞⎟⎟⎠ = Vhex
⎛⎜⎜⎝ x
y

⎞⎟⎟⎠ and
⎛⎜⎜⎝ Srx
Sry

⎞⎟⎟⎠ = Vrect
⎛⎜⎜⎝ x
y

⎞⎟⎟⎠
Assuming that both methods have the same sampling period T on the x-axis,

the matrix conveniently describes this 2D sampling

Vrect =

⎛⎜⎜⎝ T 0

0 T

⎞⎟⎟⎠ and Vhex =
⎛⎜⎜⎝ T 0

T/2 (
√
3T)/2

⎞⎟⎟⎠
Sampling density is proportional to 1

detV
. By taking ratios,

detVrect

detVhex
=

√
3

3
= 0.866 (7.1)

From this it is evident that hexagonal sampling requires 13.4% fewer samples than

rectangular sampling. This is a well-known result in communication that hexagonal

partitioning is the most efficient partition of a 2D space.

Theorem 2: The upper bound for delay for any request is twice the depth of tree

multiplied by maximum time delay for single hop.

Proof:

135

The hierarchical hexagonal partitioning may be represented as a 7-leaf tree-

partitioning scheme. To describe a fast algorithm for computing request path, we

consider recursive partitioning in which subdivision is recursively done, until the

leave nodes, i.e. the smallest hexagonal cells of the space are reached. If there are

m such cells, then we attain a level J tree where J = {2log7(n)Q. The number of
hops for a request from one node in the network to any other node is then upper-

bounded by 2J . This is true, since in the worst case scenario, requests between cells

that are farthest apart have to ascend to the over-all level J location manager, be-

fore descending again to the level- 0 node. If it takes a maximum time delay of δ

for a single hop, then 2Jδ ≥ delay for any request. This scheme presents a savings
of 7/4% over the commonly used rectangular schemes with dyadic block structures.

Each node has a total of J location servers (in hierarchy) and this represents 13.4%

fewer location managers, than in the rectangular dyadic structure proposed in [103].

Thus this scheme yields improved delays for requests.

2. Analysis for Delay Improvement

Theorem 3: The forward path reservation algorithm yields 50% delay improvement

Proof:

This is intuitive since the source node is not required to first wait for the ack

packets from the destination notes before transmission commences. For example, for

a 3-hop transmission route, the source node has to wait 12 time slots with the regular

transmission scheme before he commences transmission. This is first used to find the

destination node using location managers, and then to reserve. For the forward path

reservation, he waits only 6 time slots.

136

D. Simulation Results

The simulations are implemented using OPNET network simulator. Each nodes trans-

mission range is assumed to have a radius of 4s0 where sn is the length of a side of

the level-n hexagonal cell, s0 = 100m, the network area is a level-2 hexagon with s2

= 1400m. The nodes move randomly using a 1D Brownian model. 50 nodes are used,

all assumed to be uniformly distributed over the entire network. The duration of each

data stream is set to 5 seconds. All buffers are assumed to have infinite size, so that

delays are only due to location management, path reservation and mobility of nodes.

The following metrics are used for comparison and analysis.

1. Control signal delay: this is the average time delay needed to obtain a destina-

tion address before transfer.

2. Reservation scheme: either source initiated (backward reservation) or destina-

tion initiated (forward reservation).

3. Average packet delay: is defined as the time it takes a packet arriving at the

queue of a transmitting node to be transmitted to all its destination nodes.

Figure 51 illustrates the control signal delay comparison. The total number of

nodes is varied from 0 to 100 per simulation time. The result shows that a hierarchical

scheme performs better. In Figure 52, the effect of having either backward or forward

reservation is shown. Figure 53 shows the average packet delay as speed of nodes

is varied, while Figure 54 illustrates the effect of applying predictive routing using

SEEK algorithm.

137

Fig. 51. Comparing the control signal delay of SEEK and different regular topologies

Fig. 52. Effect of reservation techniques on control signal delay

138

Fig. 53. Comparing the average packet delay of SEEK and other topologies

Fig. 54. Effects of predictive routing on average packet delay using SEEK

139

E. Conclusion

In this chapter, a novel scheme to efficiently route data while performing location

management in a mobile multiprocessor network was presented. The scheme uses

a hierarchical addressing and hexagonal partitioning structure. This approach elim-

inates the need for static location servers and takes into account the mobility of

intermediate routing nodes to minimize packet delays. It was demonstrated that the

method is fault tolerant and scalable. Theoretical and experimental analysis was

offered to show the good performance of this design.

140

CHAPTER VIII

CONCLUSION

The ever-increasing quest for higher performance has made current multi-computer

systems exceedingly complex. This complexity lies in both hardware and software

systems, making it difficult, if not impossible, to further improve total system perfor-

mance. Furthermore, overall complexity is driving up design, development, implemen-

tation, and testing costs while decreasing system reliability. The primary motivation

of this research was to discover novel approaches to improve performance and in-

crease the capabilities of modern multi-computer systems without unduly increasing

the complexity faced by computer architects, software developers and communication

interconnection network and topologies.

The approach in this dissertation first has been to understand and predict the

changes in trends, requirements and underlying technology, then extrapolate the cur-

rent evolutionary path, identify possible paradigm shifts that can drastically simplify,

improve and expand the system, and test these hypotheses by developing a working

prototype within the current constraints. The assumption is made that building real

systems is critical in conducting credible systems research. In many instances, the

discrepancies between a theoretical paper design and a feasible design can only be

delineated or revealed by implementing a prototype. This prototype was designed to

undergo stress analysis under real world situations. The research approach encom-

passed scalable designs both in hardware and software. The underlying philosophy

used in producing this dissertation was to work closely with industry leaders in re-

search and development. It is hoped that this study will aid in understanding with

an objective to give realistic feedback to short and long term projections in large-

scale supercomputer designs capable of petaFLOP and beyond. To this end novel

141

approaches involving optical interconnects, classical and quantum computer designs,

electro-optical integration, etc., have formed the basis of this research.

The design and analyses of an extremely scalable distributed multicomputer ar-

chitecture using optical interconnects that has the potential to deliver in the order

of petaFLOP (1015 floating point operations per second) performance was presented

in detail. The design takes advantage of optical technologies, harnessing the fea-

tures inherent in optics, to produce a 3D stack that implements efficiently a large,

fully connected system of nodes forming a true 3D architecture. To adopt optics in

large-scale multiprocessor cluster systems, efficient routing and scheduling techniques

are needed. To this end, novel self-routing strategies for all-optical packet switched

networks, and on-line scheduling methods that can result in collision free commu-

nication and achieve real time operation in high-speed multiprocessor systems were

proposed. The system was designed to allow failed/faulty nodes stay in place with-

out appreciable performance degradation. The approach was to develop a dynamic

communication environment that will be able to effectively adapt and evolve with

a high density of missing units or nodes. A joint CPU/bandwidth controller that

maximizes the resource allocation in this dynamic computing environment was intro-

duced with an objective to optimize the distributed cluster architecture, preventing

performance/system degradation in the presence of failed/faulty nodes.

142

REFERENCES AND LINKS

[1] H. Zang, J. P. Jue, L. Sahasrabuddhe, R. Ramamurthy, and B. Mukherjee, ``Dy-

namic Lightpath Establishment in Wavelength-Routed WDM Networks," IEEE

Communications Magazine 39(9), 100-108 (2001).

[2] H. Zang, J. P. Jue, and B. Mukherjee, ``Capacity Allocation and Contention

Resolution in a Photonic Slot Routing All-Optical WDM Mesh Network,"

IEEE/OSA Journal of Lightwave Technology 18(12), 1728-1741 (2000).

[3] K. Lu, J. P. Jue, G. Xiao, and I. Chlamtac, ``Intermediate-Node Initiated Reser-

vation (IIR): A New Signaling Scheme for Wavelength-Routed Networks," IEEE

Journal on Selected Areas in Communications 21(8), 1285-1294 (2003).

[4] B. Hamidzadeh, M. Maode, and M. Hamdi, ``Message Sequencing Techniques

for On-Line Scheduling in WDM Networks," IEEE/OSA Journal of Lightwave

Technology 17(8), 1309-1319 (1999).

[5] T. Kitamura, M. Iizuka, M. Sakuta, Y. Nishino, and I. Sasase, ``New Parti-

tion Scheduling Algorithm by Prioritizing the Transmission of Multicast Packets

with Less Destination Address Overlap in WDM Single-Hop Networks," in Pro-

ceedings of the IEEE Global Telecommunications Conference, GLOBECOM '01,

(IEEE 2001), pp. 1469 -1473.

[6] J. E. M. Perea Martins and A. G. Neto, ``Simulation and Analysis of a Collision-

less Optical Interconnection Network," in Proceedings of the SBT/IEEE Int'l

Telecomm. Symposium, (IEEE 1998), pp. 120-125.

[7] B. Dasgupta and M. A. Palis, ``Provable Good Algorithms for Transmission

143

scheduling in WDMOptical Networks,” Journal of Parallel and Distributed Com-

puting 57, 345-357 (1999).

[8] E. Modiano, “Unscheduled Multicasts in WDMBroadcast-and-Select Networks,”

In Proceedings of the IEEE/Infocom ’98, (IEEE 1998) 1, 86-93.

[9] C. L. Seitz, “Concurrent VLSI Architectures,” IEEE Trans. On Computers C-

33(12), 1247-1265 (1984).

[10] W. J. Dally and C. L. Seitz, “The Torus Routing Chip,” Journal of Parallel and

Distributed Computing 1, 187-196 (1986).

[11] W. J. Dally, “Network and Processor Architectures for Message-driven Comput-

ers,” VLSI and Parallel Computation, R. Suaya, G. Birtwistle (Eds.), (Morgan

Kaufmann, Los Altos, CA, 1990), pp. 140-222.

[12] J. W. Goodman, F. J. Leonberger, S. C. Kung, and R. A. Athale, “Optical

Interconnections for VLSI Systems,” IEEE 72(7), 850-866, (1984).

[13] M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee, “Comparison Between

Optical and Electrical Interconnects Based on Power and Speed Considerations,”

Appl. Opt. 27, 1742-1751, (1988).

[14] D. A. B. Miller, “Optics for Low-energy Communication Inside Digital Proces-

sors: Quantum Detectors, Sources, and Modulators as Efficient Impedance Con-

verters,” Opt. Lett. 14, 146-148, (1989).

[15] S. Esener and P. Marchand, “Present and Future Needs of Free-Space Optical

Interconnects,” in Proceedings of the IPDPSWorkshop, (IPDPS 2000), pp. 1104-

1109.

144

[16] R. A. Morgan, J. Bristow, M. Hibbs-Brenner, J. Nohava, S. Bounnak, et al, “Ver-

tical Cavity Surface Emitting Lasers for Spaceborne Photonic Interconnects,” in

Proceedings of the SPIE - The International Society for Optical Engineering,

(Photonics for Space Environments IV), SPIE 2811 232-242 (1996).

[17] A. V. Kishnamoorthy, L. M. F. Chirovsky, W. H. Hobson, R. E. Leibenguth,

S. P. Hui, et al., “Vertical-Cavity Surface-Emitting Lasers Flip-chip Bonded to

Gigabit-per-Second CMOS Circuits,” IEEE Phot. Tech. Lett. 11(1), 128-130,

(1999).

[18] A. V. Krishnamoorthy, “Applications of Opto-electronic VLSI Technologies,”

Int. Journal Optoelectron 12(4), 155161, (1998).

[19] D. J. Goodwill, “Free-space Optical Interconnect for Terabit Network Elements,”

in Proceedings of the Optics in Computing Conference, (Snowmass CO, April

1999).

[20] S. P. Levitan, T. P. Kurzweg, P. J. Marchand, M. A. Rempel, D. M. Chiarulli, et

al., “Chatoyant: A Computer-aided Design Tool for Free-space Optoelectronic

Systems,” Applied Optics 37(26), 6078-6092, (1998).

[21] N. F. Maxemchuk, “Comparison of Deflection and Store-and-Forward Techniques

in the Manhattan Street and Shuffle-Exchange Networks,” INFOCOM 89 3, 800-

809, (1989).

[22] A. Choudhoury and V. Li, “Performance Analysis of Deflection Routing in the

Manhattan Street Network,” IEEE ICC’91 3, 1659-1665, (1991).

[23] T. Robertazzi and A. Lazar, “Deflection Strategies for the Manhattan Street

Network,” IEEE ICC’91 3, 1652-1658, (1991).

145

[24] N. F. Maxemchuk, “Routing in the Manhattan Street Network,” IEEE Trans.

on Communications 35(5), 503-512, (1987).

[25] A. S. Acampora and S. I. A. Shah, “ Multihop Lightwave Networks: A Compar-

ison of Store-and Forward and Hot-Potato Routing,” IEEE Trans. on Commu-

nications 40(6), 1082-1090, (1992).

[26] F. Forghieri, A. Bononi and P. Prucnal, “Analysis and Comparison of Hot-Potato

and Single Buffer Deflection Routing in Very High Bit Rate Optical Mesh Net-

works,” IEEE Trans. on Communications 43(1), 88-98, (1995).

[27] J. Brassil, A. Choudhoury and N. Maxemchuk, “The Manhattan Street Network:

A High Performance, Highly Reliable Metropolitan Area Network,” Computer

Networks and ISDN Systems 26, 841-858, (1994).

[28] F. Chevalier, D. Cotter and D. Harle, “Performance of a Novel Control and

Routing Strategy for a Manhattan Street Network,” in 15th IEE UK Teletraffic

Symposium, (Durham, UK, 1998).

[29] X. C. Yuan, V. O. K. Li, C. Y. Li and P. K. A. Wai, “A Novel Self-routing

Scheme for All-optical Packet Switched Networks with Arbitrary Topology,”

IEEE ICC’01, 7, 2155-2159, (2001).

[30] V. W. S. Chan, K. L. Hall, E. Modiano and K. A. Rauschenbach, “Architectures

and Technologies for High-speed Optical Data Networks,” Journal of Lightwave

Technology 16(12), 2146-2168, (1998).

[31] I. Chlamtac, A. Fumagalli and L. G. Kazovsky, “CORD: Contention Resolution

by Delay Lines,” IEEE Journal on Selected Areas in Communications, 14(5),

1014-1029, (1996).

146

[32] J. P. Jue, “An Algorithm for Loopless Deflection in Photonic Packet-Switched

Networks,” IEEE ICC ’02, New York, 5, 2776-2780, (2002).

[33] X. C. Yuan, V. O. K. Li, C. Y. Li and P. K. A. Wai, “A Novel Self-routing

Scheme for All-optical Packet Switched Networks with Arbitrary Topology,”

IEEE ICC’01 7, 2155-2159, (2001).

[34] M. S. Borella and B. Murkherjee, “A Reservation-Based Multicasting Protocol

for WDM Local Lightwave Networks,” in Proceedings of the IEEE ICC’95, pp.

1277-1281.

[35] J. P. Jue and B. Mukherjee, “The Advantages of Partitioning Multicast Trans-

missions in a Single- Hop Optical WDM Network,” in Proceedings of the IEEE

ICC’97, pp. 247-431.

[36] H. Lin and C. Wang, “Minimizing the Number of Multicast Transmissions in

Single-Hop WDM Networks,” in Proceedings of the IEEE ICC2000, pp. 1645-

1649.

[37] T. Kitamura, M. Iizuka, M. Sakuta, Y. Nishino, and I. Sasase, “New Parti-

tion Scheduling Algorithm by Prioritizing the Transmission of Multicast Packets

with Less Destination Address Overlap in WDM Single-Hop Networks,” in Pro-

ceedings of the IEEE Global Telecommunications Conference, GLOBECOM ’01,

pp.1469 -1473.

[38] D. Steer, M. H. Shor, A. Goel, J. Walpole, and C. Pu, “Control and Modeling

Issues in Computer Operating Systems: Resource Management for Real-rate

Computer Applications,” In Proceedings of 39th IEEE Conference on Decision

and Control (CDC), (December 2000).

147

[39] F. Petrini and W. Feng, “Buffered Coscheduling: A New Methodology for Mul-

titasking Parallel Jobs on Distributed Systems,” in Proceedings of the Inter-

national Parallel and Distributed Processing Symposium (IPDPS 2000), (April

2003).

[40] E. Frachtenberg, D. G. Feitelson, F. Petrini, and J. Fernandez, “Flexible

Coscheduling: Mitigating Load Imbalance and Improving Utilization of Hetero-

geneous Resources,” in Proceedings of the International Parallel and Distributed

Proceesing Symposium (IPDPS 2000), (April 2003).

[41] W. W. Wilcke, S. Kirkpatrick, R. B. Garner and H. Huels, “Percolation in Dense

Storage Arrays,” Physica A 314(1-4), 220-229, (2002).

[42] T. M. Pinkston, “Design Considerations for Optical Interconnects in Parallel

Computers,” in Proceedings of the First International Workshop on Massively

Parallel Processing Using Optical Interconnects, (April 1994), pp. 306-322.

[43] H. J. Siegel, “Interconnection Networks for Large Scale Parallel Processing,”

(McGraw-Hill, 1990).

[44] S. W. Seo, K. Bergman and P. R. Prucnal, “Transparent Optical Networks with

Time-Division Multiplexing,” IEEE Journal Selected Areas in Communication

14(5), 1039-1052, (1996).

[45] D. Cotter, J. K. Lucek and D. Marcenac, “Ultra-high Bit Rate Networking:

From the Trans-Continental Backbone to the Desktop,” IEEE Communications

Magazine 35(4), 90-95, (1997).

[46] J. P. Jue, “An Algorithm for Loopless Deflection in Photonic Packet-Switched

Networks,” in Proceedings of the IEEE ICC ’02, (2002), pp. 2776-2780.

148

[47] T. L. Harris, Y. Sun and R. L. Cone, “Demonstration of Real-time Address

Header Decoding for Optical Data Routing at 1536nm,” Optical Letters 23(8),

636-638, (1998).

[48] W. Dally and C. Seitz, “Deadlock-free Message Routing in Multiprocessor Inter-

connection Networks” IEEE Trans. on Computers 36(5), 547-553, (1987).

[49] S. Dandamudi, Hierarchical Hypercube Multicomputer Interconnection Net-

works, (Ellis Horwood, 1991).

[50] S. Dandamudi and D. Eager,“Hierarchical Interconnection Networks for Multi-

computer Systems,” IEEE Trans. on Computers 39(6), 786-797, (1990).

[51] B. Mukherjee, “WDM-based Local Lightwave Networks- Part I: Single-Hop Sys-

tems,” IEEE Network 6(3), 12-27, (1992).

[52] B. Mukherjee, “WDM-based Local Lightwave Networks- Part II: Multi-Hop Sys-

tems,” IEEE Network 6(4), 20-32, (1992).

[53] K. Bogineni, K. M. Sivalingam, and P. W. Dowd, “Low-Complexity Multiple Ac-

cess Protocols for Wavelength Division Multiplexed Photonic Networks,” IEEE

Journal on Communication 11(4), 590-603, (1993).

[54] K. Davis, A. Hoisie1, G. Johnson, D. J. Kerbyson, M. Lang, et al., “A Perfor-

mance and Scalability Analysis of the BlueGene/L Architecture,” in Proceed-

ings of the High Performance Computing, Networking and Storage Conference,

SC2004, PA, (2004).

[55] N. R. Adiga, G. Almasi, G.S. Almasi, Y. Aridor, R. Barik, et al., “An Overview

of the BlueGene/L Supercomputer,” in Proceedings of the SC2002, (2002).

149

[56] Cray Research Inc., Cray T3D System Architecture Overview, (1993).

[57] Intel Corporation, Paragon XP/S Product Overview, (1991).

[58] W. J. Dally, “The J-machine: System Support for Actors,” Knowledge-Based

Concurrent Computing, Hewitt and Agha eds., (MIT Press, 1989).

[59] R. K. Koeninger, M. Furtney, and M. Walker, “A Shared Memory MPP from

Cray Research,” Digital Technical Journal 6(2), 8-21, (1994).

[60] A. V. Krishnamoorthy and D. A. B. Miller, “Firehose Architectures for Free-

space Optically Interconnected VLSI Circuits,” Journal of Parallel and Distrib-

uted Computing 41(1), 109-114, (1997).

[61] P. J. Marchand, A. V. Krishnamoorthy, G. I. Yayla, S. C. Esener and U. Efron,

“Optically Augmented 3-D computer: System Technology and Architecture,”

Journal of Parallel Distributed Computing Special Issue on Optical Interconnects

41(1), 20-35, (1997).

[62] G. A. Betzos, P. A. Mitkas, “Performance Evaluation of Massively Parallel

Processing Architectures with Three-dimensional Optical Interconnections,” Ap-

plied Optics 37(2), 315-25, (1998).

[63] J. W. Goodman, F. J. Leonberger, S. C. Kung, and R. A. Athale, “Optical

Interconnections for VLSI Systems,” IEEE 72(7), 850-866, (1984).

[64] D. A. B. Miller, “Rationale and Challenges for Optical Interconnects to Elec-

tronic Chips,” IEEE 88, 728-749, (2000).

[65] S. Esener and P. Marchand, “Present and Future Needs of Free-Space Optical

Interconnects,” in Proceedings of the IPDPS Workshop, (2000), pp. 1104-1109.

150

[66] D. J. Goodwill, “Free-space Optical Interconnect for Terabit Network Elements,”

Proc. Optics in Computing Conference, (Snowmass CO, April 1999).

[67] B. F. Almohammad and B. Bose, “Fault-tolerant Communication Algorithms in

Toroidal Networks,” IEEE Trans. Parallel & Distributed Systems 10, 976-983,

(1999).

[68] J. Wu, “A Fault-tolerant Adaptive and Minimal Routing Approach in 3D

Meshes,” IEEE Trans. of Parallel and Dist. Systems 11(2), 149-159, (2000).

[69] Z. Jiang and J. Wu, “A Limited-global Fault Information Model for Dynamic

Routing in 3D Meshes,” in Proceedings of the Second IEEE International Sym-

posium on Network Computing and Applications NCA (2003), pp. 333-340.

[70] H. Shen, F. Chin, and Y. Pan, “Efficient Fault-tolerant Routing in Multi-hop

Optical WDM Networks,” IEEE Trans. on Parallel & Distributed Systems 10,

1012-1025, (1999).

[71] C. Ho and L. Stockmeyer, “A New Approach to Fault-Tolerant Wormhole Rout-

ing for Mesh-Connected Parallel Computers,” IEEE Trans. on Computers 53,

427-438, (2004).

[72] I. Glesk, K. I. Kang, and P. R. Prucnal, “All-optical Address Recognition and

Self-routing in a 250 Gbit/s Packet Switched Network,” Electron. Lett. 30, 1322-

1323, (1994).

[73] A. E. Willne, D. Gurkan, A. B. Sahin, J. E. McGeehan, and M. C. Hauer, “All-

optical Address Recognition for Optically-assisted Routing in Next-generation

Optical Networks,” IEEE Commun. Mag. 41(5), 3844, (2003).

151

[74] N. Calabretta, Y. Liu, H. de Waardt, M. T. Hill, G. D. Khoe, and H. J. S. Dorren,

“Multipleoutput All-optical Header Processing Technique Based on Two-pulse

Correlation Principle,” Electron. Lett. 37, 1238-1240, (2001).

[75] M. T. Hill, A. Srivatsa, N. Calabretta, Y. Liu, H. deWaardt, G. D. Khoe, and

H. J. S. Dorren, “1x2 optical packet switch using all-optical header processing,”

Electron. Lett. 37, 774-775, (2001).

[76] P. Toliver, I. Glesk, R. J. Runser, K. L. Deng, B. Y. Yu, and P. R. Prucnal, “Rout-

ing of 100Gb/s Words in a Packet-switched Optical Networking Demonstration

(POND) Node,” Journal of Lightwave Technology 16, 2169-2180, (1998).

[77] K. L. Deng, R. J. Runser, P. Toliver, C. Coldwell, D. Zhou, I. Glesk, and P.

R. Prucnal, “Demonstration of Highly Scalable 100Gbit/s OTDM Computer

Interconnect with Rapid Interchannel Switching Capability,” Electron. Lett. 34,

2418-2419, (1998).

[78] G. Castanon, “Optical Packet Switching with Multiple Path Routing,” Computer

Networks 32, 653-662, (2000).

[79] H. Shi and J. Lin, “Theoretical Analysis on Polarization Deviation and Switch

Window Optimization in Nonlinear Optical Loop Mirror Demultiplexer,” Journal

of Lightwave Technology 17, 2572-2576, (1999).

[80] L. Tangjun, P. Cuizhu, and Z. Yucheng, “Study on improving the performance

of OTDM device,” IEEE Photon. Technol. Lett. 11, 1389-1383, (1999).

[81] T. R. Mathies, “Percolation Theory and Computing with Faulty Arrays of

Processors,” in Proceedings of the Third Annual Symposium on Discrete Al-

gorithms (SODA), (1992), pp. 100-103.

152

[82] W. W. Wilcke, S. Kirkpatrick, R. B. Garner and H. Huels, “Percolation in Dense

Storage Arrays,” Physica A 314(1-4), 220-229, (2002).

[83] R. Gao, Z. Ghassemlooy , G. Swift and P. Ball, “Simulation of All- Optical Time

Division Multiplexed Router”, SPIE Photonics West, (San Jose, 2001).

[84] IBM “LPAR: Dynamic Logical Partitioning, An IBM Virtualization Engine Sys-

tems Technology,” (2004), http://www-1.ibm.com/servers/eserver/iseries/lpar/.

[85] T. Deane, G. Haff and J.Enuice, “VMware on the March,” Research Note, Illu-

minata, Inc., (2004), http://www.vmware.com/pdf/illuminata.pdf.

[86] Sourceforge “Class-based Kernel Resource Management (CKRM),” (2004),

http://ckrm.sourceforge.net/.

[87] R. Cruz,“A Calculus for Network Delay, Part II: Network Analysis,” IEEE Trans-

actions on Information Theory 37, 132-141, (1991).

[88] R. Guerin, H. Ahmadi, and M. Naghshineh, “Equivalent Capacity and Its Ap-

plication to Bandwidth Allocation in High-Speed Networks,” IEEE Journal on

Selected Areas in Communications 9(7), 968-981, (1991).

[89] L. Georgiadis, R. Gurin, V. Peris, K.N. Sivarajan, “Efficient Network QoS Pro-

visioning Based on per Node Traffic Shaping,” in Proceedings of the IEEE IN-

FOCOM Transactions on Networking, (1996), pp. 102-110.

[90] E. Knightly and H. Zhang, “D-BIND: An Accurate Traffic Model for Providing

QoS Guarantees to VBR Traffic,” IEEE/ACM Transactions on Networking 5(2),

219-231, (1997).

[91] R. Braden, D. Clark, S. Shenker, “Integrated Services in the Internet Architec-

ture: An Overview,”Request for Comments - RFC 1633, (1994).

153

[92] E. Crawley, Ed., L. Berger, S. Berson, F. Baker, M. Borden, J. Krawczyk, “A

Framework for Integrated Services and RSVP over ATM,” Request for Comments

- RFC 2382, (1998).

[93] K. Nichols, V. Jacobson, L. Zhang, “A Two-bit Differentiated Services Architec-

ture for the Internet,” Request for Comments - RFC 2638, (1999).

[94] A. Goel, M. H. Shor, J. Walpole, D. C. Steere, and C. Pu, “Using feedback control

for a network and CPU resource management application,” in Proceedings of the

2001 American Control Conference ACC (2001), pp. 2974-2980.

[95] D. Steere, M.H. Shor, A. Goel, J. Walpole, C. Pu, “Control and modeling issues

in computer operating systems: resource management for real-rate computer ap-

plications,” in Proceedings of the 39th IEEE Conference on Decision and Control

CDC2000 (Sydney, Australia, 2000).

[96] J. Guo and L. N. Bhuyan, “Load Sharing in a Transcoding Cluster,” in Proceed-

ings of the Distributed Computing IWDC 2918, pp. 330-339, (2003).

[97] A. Fox, “Adapting to Network and Client Variability via On-Demand Dynamic

Distillation,” in Proceedings of the Seventh Intl. Conf. on Arch. Support for

Programming Languages and Operating Systems (ASPLOS-VII), Cambridge,

MA, 1996.

[98] D. Rosu, K. Schwan, S. Yalamanchili, R. Jha, “On Adaptive Resource Allocation

for Complex Real-time Applications,” in Proceedings of the 18th IEEE Real-

Time Systems Symposium (RTSS 97), December 1997.

[99] S. Chandra, C. S.Ellis, and A. Vahdat, “Application-Level Differentiated Multi-

media Web Services Using Quality Aware Transcoding,” IEEE Special Issue on

154

QOS in the Internet, (2000).

[100] L. Abeni, G.C. Buttazzo, “Adaptive Bandwidth Reservation for Multimedia

Computing,” in Proceedings of the 6th International Conference on Real- Time

and Embedded Computing Systems and Applications (RTCSA), 1999.

[101] J. Liang, K. Nahrstedt and Y. Zhou, “Adaptive Multi-Resource Prediction

in Distributed Resource Sharing Environment,” in Proceedings of the Fourth

IEEE/ACM Symposium on Cluster Computing and the Grid (CCGrid04),

Chicago, IL, April, 2004.

[102] E. Okorafor, D. Pendarakis, J. Silber and L. Wynter, “DIRAC: A Distributed

Interface for Adaptive Network Resource Allocation and Application Control,”

unpublished manuscript, Department of Computer Engineering, Texas A&M

University, College Station.

[103] Y. Xue, B. Li, and K. Nahrstedt, “A Scalable Location Management Scheme

in Mobile Ad-hoc Networks,” in Proceedings of the IEEE Conference on Local

Computer Networks - LCN’2001, (2001), pp. 102-111.

[104] H. Hagino, T. Hara, M. Tsukamoto, S. Nishio, and J. Okui, “A Location Man-

agement Method using Network Hierarchies,” in Proceedings of the IEEE Pacific

Rim Conference on Communications, Computers and Signal Processing, (1997),

pp. 243-246.

[105] R. Subrata, and A. Y. Zomaya, “Location Management in Mobile Comput-

ing,” In Proc. ACS/IEEE International Conference on Computer Systems and

Applications, (2001), pp. 287-289.

155

[106] Z. J. Haas, and B. Liang, “Ad Hoc Mobility Management with Uniform Quorum

Systems,” IEEE/ACM Transactions on Networking 7(2), 228-240, (1999).

[107] J. Li, J. Jannotti, D. Cuoto, D. R. Karger, and R. Morris, “A Scalable Location

Service for Geographic Ad Hoc Routing,” In Proc. Sixth Annual International

Conf. on Mobile Computing and Networking (MOBICOM00), (2000), pp. 120-

130.

[108] A. Lundmark, N. Wardstromer, and H. Li,“Hierarchical Subsampling Giving

Fractal Regions,” IEEE Trans. on Image Processing 10(1), pp. 167-173, (2001).

156

APPENDIX A

NOTATION

Aapp Applications running in a node

N Number of nodes

λn n distinct wavelengths

L Length

w Waist of VCSEL

θ Divergence angle

NA Numerical Aperture

T Execution time of any process

tm Inter-PE propagation delay

tc CPU speed

td Memory speed

N(i,j,k) Three-turple representation of a node in a 3D mesh

Ns Source node

Ni Intermediate node

Nd Destination node

Ei Expected number of intermediate nodes

P Preferred data routing path

A Alternate data routing path

P(prob) Probability

Ploss Packet loss probability

δ Average number of of links

U Link Utilization

λi,j,k Packet arrival rates

157

TCF Number of times lots to complete a data transfer for CF algorithm

TMDCF Number of times lots to complete a data transfer for MDCF algorithm

TDTC Number of times lots to complete a data transfer for DTC algorithm

TMDCFMP Number of time slots to complete a data transfer for MDCFMP algorithm

βin Rate given for a Bernoulli process

LSQ The length of a service queue

S Source

D Destination

ADDRp Primary address

ADDRA Alternate address

Ci Number of virtual channels

Bchannel A set of channels reserved from source to destination

ti Target input CPU levels

bi Bandwidth allocation for process i

Cj
i(bi) CPU utilization for iteration j

158

APPENDIX B

ACRONYMS

AON All-Optical Network

ATM Autonomic Traffic Management

BER Bit Error Rate

CKRM Class Based Kernel Resource Manager

CPU Central Processing Unit

FLOP Floating Point Operations

FSOI Free Space Optical Interconnects

I/O Input/Output

LAN Local Area Network

MAC Media Access Control

MST Minimum Spanning Tree

MRST Minimum Rectilinear Steiner Tree

NA Numerical Aperture

OEO Optical-Electrical-Optical

OPB Optical Path Box

OTDM Optical Time Division Multiplexing

SEEK Spatial Embedded Environment Knowledge

PE Probability of Error

PML Planar Microlens

POF Plastic Optical Fiber

SLALOM Semiconductor Laser Amplifier in a Loop Mirror

159

TDM Time Division Multiplexing

TOAD Terahertz Optical Asymmetric Demultiplexer

V CSEL Vertical Cavity Surface Emitting Laser

V LSI Very Large Scale Integration

WDM Wavelength Division Multiplexing

RWA Routing & Wavelength Allocation

DTC Data Transfer Cycle

FCFS First-Come-First-Serve

160

VITA

Ekpe Apia Okorafor received the B.E. in electronic and computer engineering

from the University of Nigeria in 1996, the M.S. and Ph.D. in electrical and computer

engineering from Texas A&M University in 2001 and 2005 respectively.

While at Texas A&M, he was a Graduate Research Assistant. He co-authored

a number of conference and journal papers, including a best paper entry. He was a

receipient of the departmental scholarship and several academic achievement awards.

He has worked in different research labs, including IBM.

His research interests are in the areas of optical interconnection networks, mas-

sively parallel and distributed computing, high speed computer network systems, grid

computing, mobile computing and computer architecture.

Permanent Address:

209 Rugen Lane

College Station, TX 77845

USA

The typist for this thesis was Ekpe Apia Okorafor.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

