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ABSTRACT

Exact Polynomial System Solving for

Robust Geometric Computation. (December 2006)

Koji Ouchi, B.S., University of Tokyo;

M.S., New York University

Co–Chairs of Advisory Committee: Dr. Donald Friesen
Dr. John Keyser

I describe an exact method for computing roots of a system of multivariate

polynomials with rational coefficients, called the rational univariate reduction. This

method enables performance of exact algebraic computation of coordinates of the

roots of polynomials. In computational geometry, curves, surfaces and points are de-

scribed as polynomials and their intersections. Thus, exact computation of the roots

of polynomials allows the development and implementation of robust geometric algo-

rithms. I describe applications in robust geometric modeling. In particular, I show

a new method, called numerical perturbation scheme, that can be used successfully

to detect and handle degenerate configurations appearing in boundary evaluation

problems. I develop a derandomized version of the algorithm for computing the ra-

tional univariate reduction for a square system of multivariate polynomials and a

new algorithm for a non-square system. I show how to perform exact computation

over algebraic points obtained by the rational univariate reduction. I give a formal

description of numerical perturbation scheme and its implementation.
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CHAPTER I

INTRODUCTION

Geometric computation suffers from robustness problems [100] [51]. A robustness

problem refers to the tendency of well-designed algorithms to fail in practice due to

invalid assumptions.

For example, many program designers assume that any real number arithmetic

operation can be done exactly in constant time. This is invalid. In fact, most real

numbers cannot be represented exactly on existing computers, and real numbers rep-

resented in fixed-precision arithmetic usually include round-off errors. Furthermore,

exact arithmetic operations cannot be done in constant time.

Another example is an assumption that every geometric object is in general

position, meaning that small changes in the input will not change the topological

nature of the output. The situation where this assumption is violated is called a

degeneracy. The general position assumption is often invalid in practice. There are

many degeneracies occurring in the real world. Say a human touches the wall of a

building. Then, the surface of the human intersects with the wall tangentially. This

is a degeneracy, but a very normal situation in our life.

Robustness problems must be resolved, because naive implementations of algo-

rithms with invalid assumptions can end up with the wrong results or, even worse,

catastrophic crashes.

In order to make geometric computation robust, exact computation must be used.

The use of exact computation resolves the problems due to numerical inaccuracy. The

use of exact computation also helps us to detect degeneracies.

This dissertation follows the style of IEEE Transactions on Automatic Control.
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The research described in this dissertation is motivated by the demands of the

exact computations that enable geometric computation to be robust. Geometry is

the study of points and curves. Curves can be expressed exactly by polynomials. A

point can be specified as an intersection of curves. Thus, the problem of representing

a point exactly reduces to the problem of solving a system of polynomial equations

exactly.

Solving a given system of polynomial equations is one of the most fundamental

problems in computer science. Most of my effort has been dedicated to the develop-

ment of algorithms for solving a given system of polynomial equations exactly. There

are various methods for solving a system of polynomial equations. However, most of

them are designed to find approximations for solutions of a given system of polyno-

mial equations. The problem becomes significantly more challenging when exactness

is required.

I solve a system of polynomial equations using the Rational Univariate Reduction

(RUR). The method uses successive application of relatively simple linear algebra

subroutines. It can be implemented to produce exact representation of common roots

of a given system of polynomials.

Points in the RUR can be readily adapted to exact computation. I propose a

relatively simple implementation of geometric predicates that enables us to perform

exact computation over algebraic points and curves.

Finally, as an application of exact geometric computation, I will deal with an-

other major source of robustness problems, degeneracies. I will develop a method for

detecting degeneracies and propose a new approach to remove degeneracies.
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1.1 Geometric Computation

Computational geometry is the study of algorithms for solving geometric problems.

The objects dealt with in computational geometry are sets of points in a vector

space over a field K. We assume that a coordinate system is introduced to the space

so that every point can be represented as a tuple of numbers belonging to K, a certain

type of metric is defined, and the topology induced from the metric is endowed to the

space. A typical example of such a space is the real Euclidean space Rd.

These sets of points are not necessarily finite, but they must be finitely specifiable

so that they are encoded as a string of finite length in algorithms. Thus, in addition to

sets of finitely many individual points, computational geometry also deals with curves,

surfaces, portions of curves, portions of surfaces, and solid objects. For example, a

line is an object in computational geometry because it can be specified by two distinct

points. Note that a line can also be specified via a string of finite length as the zero

set of a linear polynomial.

There are two major sources of robustness problems in computational geometry:

(1) numerically inaccurate geometric data appearing during computation, and

(2) topologically degenerate configurations of (input, intermediate, or output) geo-

metric objects.

The use of exact computation resolves the robustness problems due to numerical

inaccuracy.

In geometric computations, slight modification of objects in degenerate position

can result in configurations that are significantly different topologically. Accumu-

lated numerical errors may cause predicates to be evaluated incorrectly, and thus, an

execution of the program goes into the wrong branch. Hence, exact computation is
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necessary to handle degeneracies.

In any case, in order for geometric computation to be robust, exact computation

must be used.

1.2 Exact Computation for Algebraic Points and Curves

In this dissertation, we assume that all the geometric objects are algebraic or semi-

algebraic sets over a field K so that they are exactly represented on the Turing ma-

chine. We mainly consider the case where K is a field Q of rational numbers, but

most theories and algorithms can naturally be adapted to the other types of algebraic

numbers such as algebraic numbers over some finite field.

An algebraic curve is implicitly described as the zero set of some polynomial

with coefficients belonging to K. Some algebraic curves may also be represented

parametrically as a tuple of rational functions with coefficients belonging to K.

An algebraic point is defined to be an intersection of algebraic curves. The

coordinates of an algebraic point are algebraic numbers (over K). An algebraic point

is also specified by giving all its coordinates.

I would like to develop a technique for exact computation of algebraic points

and curves. Here, by exact computation, we mean that the numeric computations

associated with geometric objects are computed to enough precision that topological

decisions about the objects are made correctly. This is different from exact arithmetic

in the naive sense, where all the numerical data will be computed to full precision,

which is usually costly and often infeasible.

An exact computation technique developed in some geometric algorithm usually

applies only to the data structures appearing in the algorithm. As a result, it can be

quite difficult to design robust geometric algorithms by integrating exact geometric
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subroutines.

For example, suppose that we determine the topology of a given real planar curve.

The algorithm returns a set of monotone pieces of the curve. Often, a piece of a curve

is specified by its endpoints, which are represented as a so-called “insulating box,”

which is defined to be a box of arbitrary size containing one and only one point of

interest. This representation of points is perfectly robust for describing the topology

of the curve. However, if the determination of the topology of a curve is a part of

some other process, e.g. a geometric solid modeling process, and the endpoints of the

pieces of the curve will be passed to some other subroutines, then these insulating

boxes might no longer be appropriate. In fact, if a point is represented by only an

insulating box then the query whether or not a point lies on a curve might not be

answerable.

In this dissertation, I propose the use of the Rational Univariate Representa-

tion (RUR) for algebraic points. In the RUR, an n-dimensional algebraic point x is

specified as n+ 1 univariate polynomials h, h1, . . . , hn so that

x = (h1 (θ) , . . . , hn (θ)) (1.1)

for some root θ of h. I shall show an algorithm for computing the RUR for a given

system of polynomial equations. I extend the so-called root bound approach to exact

sign determination of algebraic numbers [23] [7]. Consequently, we can tell whether

or not a given point in the RUR lies on a given curve.

In particular, the coordinates of real algebraic points are real algebraic numbers

that are possibly irrational. A real algebraic number is specified as the unique root of

some polynomial with rational coefficients in some interval on R. The endpoints of this

interval can be chosen to be rational numbers. Thus, in general, a real algebraic point

can be represented as an n-dimensional hypercube. The corners of this hypercube
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can be set to have rational coordinates.

1.3 Degeneracies

I will apply the developed method for exact computation over algebraic points and

curves to the degeneracy detection / removal problem in the robust boundary eval-

uation of solid objects. Handling degeneracies is a well-known problem in geometric

computation.

Many geometric algorithms are designed and implemented under the “general

position assumption.” Stated roughly, this assumption says that small changes in the

input will not change the nature of the output. More specifically, small changes in

the input can change the numerical (or geometric) aspects of the output, but not the

combinatorial (or topological) aspects. A violation of this assumption is referred to

as a degeneracy.

More formally, degeneracies are defined in terms of a description of program

flow. As a program is executed, branching decisions are made on the basis of various

predicates, where the program branches depending on whether the predicate evaluates

to negative, 0, or positive [78]. Situations that lead to a predicate being evaluated to

0 are considered degenerate. An infinitesimally tiny perturbation in the data could

change the evaluation of the predicate to be either positive or negative, and thus

change program flow.

As a simple example, consider a collision-detection test on two spheres touching

at a single point. A degeneracy will be encountered since a small change in the

position of a sphere will make the spheres either interpenetrate or separate.

Degenerate data is common in many real-world geometric applications. Some-

times these problems are unintentional, for example due to round-off error in com-
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putation, low sampling frequency, or poor training of a designer. Other times the

problems may be intentional, for example a designer placing two spheres in contact.

If programs correctly account for all predicates, i.e. handle every case where a

predicate evaluates to 0 consistently and ensure that there is no error in the evalu-

ation of the predicates, they are considered robust. Regardless of the source, robust

geometric computation must be able to deal with degeneracies.

Our goal is to handle degeneracies cleanly so that a program on a degenerate

input will not fail.

1.4 Objective

The objective of this dissertation is the following:

The Rational Univariate Representation (RUR) effectively supports ex-

act computation over algebraic points and curves. This enables robust

geometric computation, in particular, degeneracy handling.

The objective is proved by:

(1) developing an exact representation of an algebraic point based on the Rational

Univariate Representation (RUR),

(2) developing methods to support exact computation over algebraic numbers, points

and curves,

(3) applying these methods in order to detect degeneracies appearing in boundary

evaluation of solid objects, and

(4) developing an exact numeral perturbation scheme for handling degeneracies ap-

pearing in boundary evaluation of solid objects.
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1.5 Results

The primary result of this research is a comprehensive description and implementation

of algorithms for exact representation of algebraic points and exact manipulation of

algebraic points and curves. The developed technique is applied to degeneracy detec-

tion / removal problems appearing in the boundary evaluation process of geometric

modeling.

The subproblems explored in this dissertation are as follows:

The Rational Univariate Reduction (RUR) is used for computing an exact repre-

sentation for algebraic points. An algorithm for computing the RUR for the zero set

of a given system of multivariate polynomials is described. The algorithm refines the

ones presented in [81] [83] [60]. The algorithm is derandomized in a sense that ran-

dom choices are made only if the probability that making a successful choice is 1 and

the wrong choices are detectable. As a consequence of derandomization, a variation

of the algorithm for computing real roots of a system becomes much simpler. The

subalgorithm for computing the RUR for the zero set of an overconstrained system

is new.

The existing root-bound approach to sign determination of real algebraic num-

bers [57] [7] is extended to sign determination of the real and imaginary parts of

complex algebraic numbers. Together with the RUR, an algorithm for exact manip-

ulation of algebraic points and curves is established.

The developed exact computation technique for algebraic points and curves is

applied to the degeneracy detection problem appearing in boundary evaluation of

solid objects. Degeneracy detection is done by checking for topologically irregular

interaction between objects. Because the RUR can be computed even for degenerate

intersections, it is appropriate to use the RUR for this application.
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An exact numerical perturbation scheme for removing degeneracies is described.

It is shown that, comparing to the symbolic perturbation scheme, an exact numerical

perturbation scheme potentially works better in terms of arithmetic complexity.

These algorithms are implemented. The implementation is built on top of ES-

OLID [58] and MAPC [59]. MAPC is a library that manipulates exact computation

for two-dimensional real algebraic points and curves. MAPC may not be able to

answer some queries such as whether or not a point lies on a curve. ESOLID is a

robust geometric modeling system. ESOLID performs exact boundary evaluation on

curved solids. ESOLID assumes that all the solids are in general position. The ex-

actly implemented RUR is the library which computes the exact RUR for the zero

set of a system of polynomials with rational coefficients exactly. Together with the

root bound approach to sign determination of algebraic numbers, exact primitive ge-

ometric predicates are implemented, and, I can add routines for detecting / handling

degeneracies. See Figure 1.

The implementation is optimized for relatively small n. The implementation is

exact; all the rational coefficients of the univariate polynomials forming the RUR will

be computed to full precision. I show some experimental results. Tested systems

include examples of a degenerate system and an overdetermined system as well as

some problems picked from real world industry.

1.6 Overview of Chapters

The organization of the rest of this dissertation is as follows:

Chapter II describes the background materials relevant to this research.

Chapter III describes algorithms for computing the Rational Univariate Reduc-

tion (RUR) of a given system of polynomials.
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MAPC

ESOLID

Perturbation
Numerical

RUR

Fig. 1. Libraries implemented. ESOLID is the existing library that performs exact

boundary evaluation of given solid objects. MAPC is the portion of ESOLID

that provides exact manipulation of algebraic points and curves. The exactly

implemented RUR computes the exact RUR for a given system of multivariate

polynomials. I also implement the library that performs numerical perturbation

over input solids to ESOLID.

Chapter IV describes algorithms for exact computation over algebraic numbers,

points and curves and the way to apply those algorithms in order to detect degenera-

cies appearing in boundary evaluation of solid objects.

Chapter V describes a method for removing degeneracies.

Chapter VI describes the implementation of the algorithms described in this

dissertation. Performance on examples is also presented.

Chapter VII concludes the dissertation and discusses future directions of research

related to this work.
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CHAPTER II

BACKGROUND

This chapter provides the background material relevant to this research. In Section

2.1, definitions and preliminary results for this research are reviewed. In Section 2.2,

the previous work relevant to this research is listed.

2.1 Definitions and Preliminary Results

In this section, definitions and preliminary results for this research are reviewed.

In Section 2.1.1, the Rational Univariate Reduction (RUR) for the zero set of a

system of multivariate polynomials is introduced.

In Section 2.1.2, the root bound approach to sign determination of real algebraic

numbers is explained.

In Section 2.1.3, degeneracies appearing in geometric computation are described

and several methods for removing them are discussed. Furthermore, boundary evalu-

ation of solid objects and degeneracies appearing in it are described. Also, the library

ESOLID that performs boundary evaluation of solid objects [58] is introduced.

2.1.1 Rational Univariate Reduction

Let K be a field. Write K for the algebraic closure of K and K∗ for K \ {0}.
Consider a square system of n polynomials f1, . . . , fn in n variables with coeffi-

cients in K. It is known [81] [86] [3] that there exists a finite set Z ′ which contains

all the isolated common roots of the input system (in Kn
) such that

Z ′ =
{
(h1 (θ) , . . . , hn (θ)) ∈ Kn | θ ∈ K with h (θ) = 0

}
. (2.1)
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That is, the i-th coordinate of every point in Z ′ is represented as some univariate

polynomial hi with coefficients in K evaluated at a root θ (∈ K) of some other

univariate polynomial h with coefficients in K. This reduction of a set of multivariate

polynomials to the set of uni-variate polynomials is called the Rational Univariate

Reduction (RUR) and this representation of the zero set of the system is called the

Rational Univariate Representation (RUR).

Write M for the cardinality of the finite set of Z ′. Generally, the quantity M is

the number of the common roots of the input system. More precisely, if the input

system is zero-dimensional, i.e., the input system has only finitely many common

roots, and all the roots are toric, i.e., all the roots are in (K∗)n then Z ′ is the zero set

of the input system and M matches the number of distinct roots of the input system.

The RUR can be derived from the toric perturbation [81], which is a general-

ization of the “toric” u-resultant. In this section, the preliminary facts about toric

resultants (Section 2.1.1.1) and toric perturbations (Section 2.1.1.2) are described.

2.1.1.1 Toric Resultants

Let f be a polynomial in n variables X1, . . . , Xn with coefficients in K. Define the

support of f to be the finite set A of exponents of all the monomials appearing in f

with non-zero coefficients. Thus, A is some non-empty finite set of integer points in

Rn, and

f =
∑
a∈A

caX
a, ca ∈ K∗

where Xa = Xa1
1 · · ·Xan

n for a = (a1, . . . , an).

Fix n+1 non-empty sets A0, A1, . . . , An of integer points in Rn. A system of n+1

polynomials f0, f1, . . . , fn in n variables X1, . . . , Xn with supports A0, A1, . . . , An is
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specified via coefficient vectors c0, c1, . . . , cn where

ci = (cia ∈ K∗ | a ∈ Ai) such that fi =
∑
a∈Ai

ciaX
a.

For i = 0, 1, . . . , n, write MV−i for the mixed-volume of the convex hulls of

A0, A1, . . . , Ai−1, Ai+1, . . . , An [94] [17] [95]. Recall that all these mixed volumes are

non-negative, i.e., MV−i ≥ 0 for i = 0, 1, . . . , n [17]. Assume at least one of these

mixed volumes MV−0,MV−1, . . . ,MV−n is strictly positive, i.e.,
∑n

i=0 MV−i > 0.

Then, there exists a unique (up to sign) irreducible polynomial

TResA0,A1,...,An (c0, c1, . . . , cn) ∈ Z [c0, c1, . . . , cn] ,

called the toric resultant or the sparse resultant for the system which has the following

property:

the system (f0, f1, . . . , fn) has a common root in (K∗)n

=⇒ TResA0,A1,...,An (c0, c1, . . . , cn) = 0.

The toric resultant is also written as TRes (f0, f1, . . . , fn).

Several algorithms for computing the toric resultant for a given system of n+ 1

polynomials in n variables with supports A0, A1, . . . , An have been proposed [32] [14].

These algorithms construct a square matrix N , called the toric resultant matrix or the

Newton matrix, whose determinant is some non-trivial multiple of the toric resultant.

The non-zero entries of every row of N are the coefficients ci of some input polynomial

fi. It follows that detN is a homogeneous polynomial in each coefficient vector ci

[32] [14], and thus, the total degree of detN with respect to each coefficient vector ci,

degci
(detN), is well-defined. These quantities degci

(detN) are bounded in terms of
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the mixed-volumes. More precisely, it is known [32] [14] that

degc0
(detN) = MV−0, (2.2)

degci
(detN) ≥ MV−i, i = 1, . . . , n. (2.3)

Note that the equality (2.2) always holds, while, in (2.3), the equalities hold only

when detN is the toric resultant without any extraneous factor [76].

2.1.1.2 Toric Perturbations

Consider a square system of n polynomials f1, . . . , fn ∈ K [X1, . . . , Xn] with supports

A1, . . . , An. Assume the mixed volume MV−0 of the convex hulls of A1, . . . , An is

strictly positive, i.e., MV−0 > 0.

Let A0 = {o, b1, . . . , bn} where o is the origin and bi is the i-th standard basis vec-

tor in Rn. Also, let f0 = u0 +u1X1 + · · ·+unXn where u = (u0, u1, . . . , un) is a vector

of parameters. Choose n polynomials f ∗1 , . . . , f
∗
n ∈ K [X1, . . . , Xn] with supports con-

tained in A1, . . . , An, that have only finitely many common roots in (K∗)n. Define the

toric Generalized Characteristic Polynomial TGCP (s,u) for the system (f1, . . . , fn)

to be the toric resultant for the perturbed system (f0, f1 − sf ∗1 , . . . , fn − sf ∗n):

TGCP (s,u) = TRes (f0, f1 − sf ∗1 , . . . , fn − sf ∗n) ∈ K [s] [u] .

Also, define a toric perturbation TPert (u) for the system (f1, . . . , fn) to be the non-

zero coefficient of the lowest degree term in TGCP (s,u) regarded as a polynomial in

variable s.

Theorem 2.1. Rojas ([81] Main Theorem 2.4)

TPert (u) is well-defined, i.e., for a given square system of polynomials f1, . . . , fn

in n variables with coefficients in K, making a suitable choice of polynomials
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f ∗1 , . . . , f
∗
n, TGCP (s,u) (regarded as a polynomial in s) always has a non-zero co-

efficient. TPert (u) is a homogeneous polynomial in parameters u0, u1, . . . , un with

coefficients in K which has the following properties:

(1) If (ζ1, . . . , ζn) ∈ (K∗)n is an isolated common root of the input system (f1, . . . , fn)

then u0 + u1ζ1 + · · ·+ unζn is a linear factor of TPert (u).

(2) TPert (u) completely splits into linear factors over K. Letting Z be the zero

set of the system (which might be infinite), for every irreducible component W

of Z ∩ (K∗)n, there is at least one factor of TPert (u) corresponding to a point

(ζ1, . . . , ζn) ∈W .

Immediately from (2.2) and (2.3) together with the definitions in the above

Corollary 2.2.

degu0
TPert (u) = MV−0, (2.4)

degs TGCP (s,u) =
n∑

i=1

MV−i ≤ dimN −MV−0. (2.5)

Remark 2.3. The assumption that MV−0 > 0 can be removed by paying only a

reasonable amount of extra computation. In the event that MV−0 = 0, we can add

O (n) points to the supports A1, . . . , An so that MV−0 is strictly positive. Those points

can be chosen deterministically [82] or at random. Because of efficiency, I will use a

randomized method, and will not talk about this in detail in this dissertation.

Remark 2.4. There is a deterministic method to choose polynomials f ∗1 , . . . , f
∗
n in

Theorem 2.1 [82]. However, because of efficiency, we will use a randomized method,

and will not talk about this in detail in this dissertation.
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2.1.2 Exact Computation over Algebraic Numbers

A complex number α is said to be algebraic if it is a root of a non-zero polynomial

with rational coefficients. In this section, I explain a method for determining the sign

of any given real algebraic number α.

2.1.2.1 Root Bounds

Let α be an algebraic number. A positive real number r such that

α 6= 0 ⇔ |α| ≥ r. (2.6)

is called a root bound or a root separation bound for α [69] [101]. Having a root bound

r for α, the query whether or not α = 0 is answered correctly by computing an

approximation α̃ of α such that |α̃− α| < r
2
, namely,

α = 0 ⇔ |α̃| < r

2
. (2.7)

If both α and α̃ are real then the sign of α is determined from the sign of α̃:

|α̃| ≥ r

2
⇒ α · α̃ > 0. (2.8)

One of the root bounds was proposed by Mahler [68] and is described in detail

by Mignotte [70]; define the Mahler measure (or simply the measure) M (e) of a

polynomial e (T ) = en

∏n
i=1 (T − ζi) ∈ Z [T ] with en 6= 0 as

M (e) = |en|
n∏

i=1

max {1, |ζi|} . (2.9)

Moreover, define the degree degα and measure M (α) of an algebraic number α to

be the degree and measure of a minimal polynomial for α over Z. Since, over Z, a

minimal polynomial for an algebraic number is uniquely determined up to a sign, the
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degree and measure of α are well-defined. Then

1

M (α)
≤ |α| ≤M (α) . (2.10)

In general, it is difficult to compute the measure M (α) of α explicitly. Instead,

some computable upper bound of M (α) is used.

If α and β are algebraic numbers then α±β, αβ and 1/α are all algebraic numbers.

Furthermore, upper bounds for the measure of those numbers can be computed from

the degree and measure of α and β:

Proposition 2.5. Mignotte [70]

Let α and β with αβ 6= 0 be algebraic numbers. Then

(1) M (α± β) ≤ 2deg α deg βM (α)deg β M (β)deg α.

(2) M (αβ) ≤M (α)deg β M (β)deg α.

(3) M
(

1
α

)
= M (α).

(4) M
(
α1/k

) ≤M (α) for every positive interger k.

Several root bounds have been proposed [7] [92] [9] [10] [66] [77]. They are

tighter than the Mahler-Mignotte bound, but, in this dissertation, arguments are

carried based mainly on the Mahler-Mignotte bound for flexibility.

2.1.2.2 Root Bound Approach to Exact Computation over Real Algebraic Numbers

The root-bound approach [23] [92] [8] has been used for exact sign determination of a

real algebraic number of the form e (ξ1, . . . , ξn) where ξi is a real root of a univariate

polynomial with rational coefficients and e is an algebraic expression involving ±, ∗, /
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Fig. 2. The DAG for a real algebraic number e =
√

9 + 4
√

2− (
1 + 2

√
2
)
.

and k
√

in the existing libraries LEDA [69] ∗ [10] † and CORE [57] ‡. In these

libraries, an algebraic number e is represented as a Directed Acyclic Graph (DAG).

Every internal node of the DAG is labeled by unary or binary operators. Every leaf of

the DAG is labeled by a rational number or a real algebraic number specified as some

real root of some univariate polynomial with rational coefficients. Every node f of

e maintains a root bound for the real algebraic number represented as the subgraph

rooted at f as well as an approximation to a certain precision.

For example, a real algebraic number e =
√

9 + 4
√

2− (
1 + 2

√
2
)

is represented

∗http://www.algorithmic-solutions.com/enleda.htm
†http://www.mpi-sb.mpg.de/projects/EXACUS/leda extension/
‡http://www.cs.nyu.edu/exact/
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Fig. 3. A root bound for every node of the DAG is recursively computed.

as the DAG shown in Figure 2. The root of the DAG is labeled by the minus operator

and has two children which represent
√

9 + 4
√

2 and 1 + 2
√

2.

Like the Mahler-Mignotte bound, the root bounds implemented in the libraries

LEDA and CORE are constructable, i.e., the root bound for every node of a DAG

is calculated as soon as the node (or equivalently, the sub-DAG rooted at the node)

is constructed. If e is a real algebraic number of the form f ◦ g where f and g are

real algebraic numbers and ◦ is some operator, then a root bound for e is recursively

computed from the root bounds for f and g, using the rules which are similar to, but

better than the rules stated in Proposition 2.5 [9] [10] [66] [77].

For example, the root bound of every node of the DAG for the real algebraic

number e =
√

9 + 4
√

2 − (
1 + 2

√
2
)

is computed as follows; The root bound for
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Fig. 4. The root bound approach to exact sign determination of a real algebraic number

e. An approximation of e to the absolute precision smaller than the half of the

root bound is computed. By (2.6), e = 0 is concluded.

the leaf labeled by a rational number 2 is 1/2. (By definition, the root bound for a

rational number x can be |x|.) The same quantity can be used for the root bound

for the node labeled by
√

2 (see the statement (4) in Proposition 2.5). In this way,

the root bound for every node of the DAG is computed while the DAG is recursively

constructed from its leaves to the root. See Figure 3.

The sign of e is exactly determined by computing ẽ to enough precision so that

(2.7) or (2.8) guarantees the sign of e.

Precision-driven computation [23] [8] is used in order to compute an approxima-

tion ẽ for e to any prescribed precision p. It is a recursive process.

Suppose e is a real algebraic number of the form f ◦ g, where f and g are real
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algebraic numbers and ◦ is some operator. Precision-driven computation is applied

to e as follows; First, precisions q and r to which f and g will be approximated

are calculated. Next, approximations f̃ and g̃ for f and g to precision q and r,

respectively, are computed. Finally, f̃ ◦ g̃ is computed to obtain ẽ.

If e is a rational number, then the exact value has already been known. If e

is a real algebraic number specified as some real root of some univariate polynomial

with rational coefficients then an approximation to e to any prescribed precision is

computed by using Sturm’s method.

Hence, during precision-driven computation, the DAG is traversed twice: first,

from the root to the leaves, calculating precisions, and then, from the leaves to the

root, computing approximations.

In Figure 4, an approximation of e to the absolute precision smaller than the

half of the root bound is computed. Since the approximation is smaller than the half

of the root bound, by (2.6), e = 0 is concluded.

The argument in this section is summarized to the following proposition:

Proposition 2.6. Let e (X1, . . . , Xm) be a rational function with rational coefficients.

Also, let ξ1, . . . , ξm be real algebraic numbers, each of which is specified as a real root

of some univariate polynomial with rational coefficients. Assume that we are able to

compute an approximation for each of ξ1, . . . , ξm to any prescribed precision. Then,

the sign of the real algebraic number e (ξ1, . . . , ξm) is determined exactly via the root

bound approach.

The statement in Proposition 2.6 will be extended later in Section 4.1.
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2.1.3 Degeneracy and Perturbations

An input to an algorithm is said to be in general position when a minor perturbation

of the input will not change the branching decisions made in a computation of the

algorithm. Many geometric algorithms are designed under the assumption that the

input is in general position. In practice, though, an input is not in general position.

An input that is not in general position is said to be degenerate. Degeneracy occurs

because of numerical error or because of the input itself. Unexpected degeneracies

can cause executions of algorithms to fail, or worse, crash.

This section reviews degeneracies.

In Section 2.1.3.1, degeneracies appearing in geometric computation are de-

scribed.

In Section 2.1.3.2, several methods for removing degeneracies, in particular, per-

turbation schemes and discussed.

In Section 2.1.3.3, boundary evaluation of solid objects are discussed.

In Section 2.1.3.4, degeneracies appearing in the process are described.

In Section 2.1.3.5, the library ESOLID that performs boundary evaluation of

solid objects [58] is introduced.

More formal and detailed descriptions about degeneracies and perturbations will

be given in Chapter V.

2.1.3.1 Degeneracies

Degeneracies are defined in terms of computations of algorithms. In a computation

of an algorithm on some input, branching decisions are made based on the sign of the

results of predicates. An input that leads to some predicate being evaluated to 0 is said

to be degenerate. If a computation can evaluate all the predicates exactly and handle
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every case where a predicate evaluates to 0 consistently then the computation is said

to be robust. Degeneracies are one of the major sources that make computations not

robust.

More formally, degeneracy is defined as follows [90] [91].

Consider an algorithm A and let F be a function from some input space I to

some output space O that is computed by A. We assume that some topology is

introduced to both I and O.

A computation of an algorithm for a function F : I → O is modeled by a ternary

tree T called an extended algebraic decision tree [78]. In this model, F (x) is computed

by a traversal of the tree T from the root to one of the leaves. Each interior node v

of T is associated with the predicate fv : I → R and its (three) branches are labeled

by −1, 0 and 1, respectively. At each internal node v of T , sv (x) = sgn (fv (x)) is

evaluated and the branch labeled by sv (x) is taken. Each leaf v of T is associated

with the result function gv : I → O. When a leaf v of T is reached, gv (x) is evaluated

and returned.

An input x ∈ I is said to be degenerate (for F ) if there exists an internal node

v of T such that sv (x) = sgn (fv (x)) becomes 0, that is, there exists some predicate

that evaluates to 0 at x.

Degeneracies can be classified into the following categories [61]:

(1) Input degeneracies are those that affect the output. An example is a set of points

on the convex hull, three or more of which are collinear, as an input to the problem

of computing the vertices of the convex hull of a given set of points.

(2) Unpredictable degeneracies are those due solely to arbitrary choices a program

makes. Those degeneracies will not affect the output. An example is a set of

points on the convex hull, three or more of which are collinear, as an input to
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the problem of computing the area of the convex hull of a given set of points.

Another example is a set of points, three or more of which are collinear and not

all of these collinear points lie on the convex hull of the input set, as an input to

the problem of computing the vertices of the convex hull of a given set of points.

Degeneracies may be produced within a program (rather than the input to the

program) [61]. Intentional degeneracies are those that the program later relies on (i.e.,

it assumes that they are true at some later stage in the computation). An example

is a program that produces the midpoint of two points, then relies on the fact that it

is a midpoint later.

In this dissertation, I will not directly address intentional degeneracies. Thus,

unless specified otherwise, all future references to degeneracies refer to input and

unpredictable degeneracies.

2.1.3.2 Handling Degeneracies

There are two main approaches for handling degeneracies: special cases, and pertur-

bation.

One approach is to treat degeneracies as special cases; whenever a program meets

the situation where some predicate evaluates to zero, the special routine is called.

In order to take this special cases approach, a program designer must determine

all potential degeneracies, detect them, and deal with them. These requirements are

difficult or worse, impossible. Still, special cases are the most commonly used method

[102].

A general approach for handling degeneracies is a perturbation scheme. The idea

is to modify the input so that no predicate evaluates to zero.

More formally, a perturbation is defined as follows [90] [91]:
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For every point x ∈ I, a perturbation of x is a curve πx : [0,∞) → O staring at

x (i.e., πx (0) = x).

For every function F : I → O, a perturbation scheme Π assigns a perturbation

πx to every input x ∈ I.
Given a function F : I → O and a perturbation scheme Π, define a perturbed

function of F to be the function F
Π

: I → O such that

F
Π

(x) = lim
ε→0+

F (πx (ε)) , ∀x ∈ I. (2.11)

There are several arguments against the validity of perturbations.

The first argument is that we solve the perturbed problem but not the original

problem. The output F
Π

(x) of the perturbed computation is not actually the output

F (x) of the original problem. Thus, in order to obtain the solution of the original

problem, the output F
Π

(x) of the perturbed computation must be post-processed.

Such post-processing is difficult or impossible.

If F is continuous at x then F
Π

(x) = F (x). If F is continuous at all inputs

then the output of the perturbed computation is exactly the same as the original. If

F is not continuous at x then there is little or nothing we can say about the relation

between F
Π

(x) and F (x).

In this sense, input degeneracies correspond to discontinuity in discontinuous

functions. Both input degeneracies and unpredictable degeneracies occur in continu-

ous functions while degeneracies for continuous functions are unpredictable.

Another argument is that the implementation of perturbation methods runs

much slower. In order to ensure no predicate evaluates to zero, the sign of the result

of the evaluation of the predicate must be computed exactly, and thus, some sort of

exact computation is required. Also, an infinitesimal amount ε has to be dealt with

somehow symbolically which is costly either at run-time or in design / analysis of
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predicates.

Despite all these arguments, a perturbation method is the one of the best

known approaches for handling degeneracies consistently. A well-chosen perturba-

tion method eliminates all potential degeneracies. Algorithms can be implemented

straightforwardly. Perturbation methods have proved successful for several problems.

2.1.3.3 Boundary Evaluation

There are two major representations used by solid modeling systems: Constructive

Solid Geometry (CSG) and boundary representation.

Fig. 5. A solid object in a CSG model.

A CSG model is a Boolean combination of primitive solid objects such as boxes,

cylinders (or generalized cones), spheres (or generalized ellipsoids) and tori (in R3).

A CSG representation is usually stored in a binary tree, where each internal node is

associated with one Boolean operation (union, intersection, or difference) applied to

its two children nodes, and each leaf is associated with a primitive. See an example

in Figure 5.

A boundary representation consists of geometric and topological information

about the boundary of the solid object.
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Boundary evaluation refers to the process of determining the boundary represen-

tation of a solid object produced as the result of a Boolean combination of primitives

given in a CSG model. Boundary evaluation is a key operation in computer aided

design. Achieving accuracy and robustness with reasonable efficiency remains a chal-

lenge in boundary evaluation.

A face of a solid object is defined by a surface and boundary edges. A surface

is usually represented as a parametric patch described as a tuple of polynomials or

rational functions with rational coefficients. A parametric patch is a map from a

2-dimensional domain of parameters, called the patch domain, into the 3-dimensional

space. The implicit form for the surface is often known, or else can be determined.

Intersections of these surfaces form the edges of the solid objects. Inside the 3-

dimensional space, these curves are sometimes represented as algebraic plane curves.

In the patch domain, these curves represented and defined by the intersections of

two surfaces are known as either trimming curves if they are specified in the input,

or intersection curves if they arise during boundary evaluation. Intersection curves

that are output become trimming curves when input to the next boundary evaluation

operation.

Intersections of three or more surfaces form vertices of the solid objects. Such

vertices may be represented in the 3-dimensional space as the common solution to

three or more trivariate equations, and in the parametric domain of the patches as

the common solution of two or more bivariate equations, or a combination of these.

The coordinates of these vertices are thus tuples of real algebraic numbers.

Boundary evaluation involves several stages, but the most fundamental oper-

ations are finding intersections, that is finding solutions to systems of polynomials.

The accuracy, efficiency, and robustness of the entire boundary evaluation operation is

usually a direct result of the accuracy, efficiency, and robustness of the computations
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used to find and work with these algebraic numbers. Determining the signs of alge-

braic expressions evaluated at algebraic numbers thus becomes a key to performing

the entire computation.

2.1.3.4 Degeneracies in Boundary Evaluation

Degeneracies are a major obstacle in boundary evaluation.

Degeneracies appearing in boundary evaluation of solid objects have been enu-

merated in terms of the ways that surfaces, curves, and points can interact [61]. These

are listed in Table I.

When solid objects are in general position, they can interact with each other in

only two ways:

(1) Two surfaces can meet transversely along a set of curves.

(2) A surface and a curve can meet transversely at a set of points.

No other interaction is allowed if the solid objects are in general position. Taking the

contra positive, degeneracies can occur in one of the following two situations:

1. Two objects interact that should not. An example is an interaction between a

surface and a point.

2. An interaction between two objects that could interact in a non-degenerate

way (two surfaces, or a surface and a curve) but the interaction is actually not

transverse. An example is a curve meeting a surface tangentially at a point,

instead of the curve passing through the surface at that point.

The (non-degenerate) intersection of two surfaces defines a curve. The (non-

degenerate) intersection of three surfaces defines a point. Four or more surfaces do
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not meet, generically. Substituting two or three surfaces to a curve or a point in the

above enumeration, the entries of Table I are filled.

Table I. Possible degeneracies in boundary evaluation. The order of each degenerate

intersection involved is in bold: points (0), curves (1), surfaces (2).

Surface Curve Point

Surface

2 Surfaces overlap
1 Surfaces are tangent

along a curve
0 Surfaces are tangent

at a point

1 A curve lies
on a surface

0 A curve is tangent
to a surface
at a point

0 A point lies
on a surface

Curve
1 Curves overlap
0 Curves intersect 0 A point lies

on a curve
Point 0 Points coincide

Among all ten degenerate intersections listed in Table I, eight are considered as

the interactions between objects that cannot interact in non-degenerate way:

(1) Two surfaces meet but not along a curve.

(a) Surfaces overlap.

(b) Surfaces are tangent at a point.

(2) Three or more surfaces meet along a curve but not at a point.

(a) A curve lies on a surface.

(b) Curves overlap.

(3) Four or more surfaces meet.

(a) A point lies on a surface.
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(b) Curves intersect.

(c) A point lies on a curve.

(d) Points coincide.

The other two degenerate intersections listed in Table I (“surfaces are tangent along

a curve” and “a curve is tangent to a surface at a point”) are interactions between

objects that could interact in non-degenerate ways but the interactions are tangential

instead of transverse.

Note that tangential intersection can occur between objects that should not

interact in non-degenerate ways.

Fig. 6. Examples of degeneracies in boundary evaluation.

Some examples of degeneracies appearing in boundary evaluation are shown in

Figure 6. More examples and complete descriptions are found in [61]. I will describe

how to detect degeneracies appearing in boundary evaluation in Chapter IV and how

to remove these degeneracies in Chapter V.

2.1.3.5 ESOLID

ESOLID is a geometric solid modeling system that performs exact boundary evalu-

ation of a given CSG model [58]. ESOLID uses exact representations for geometric
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objects and exact computations in order to guarantee accuracy and eliminate ro-

bustness problems due to numerical error (e.g. roundoff error and its propagation).

ESOLID performs geometric computation mainly on the 2-dimensional patch domain

using MAPC, the library for exact Manipulation of Algebraic Points and Curves [59].

Though significantly less efficient than an equivalent floating-point routine, it runs at

“reasonable” speed—at most 1-2 orders of magnitude slower than an inexact approach

on real-world data. Unfortunately, ESOLID is designed to work only for objects in

general position. Also, for efficiency, MAPC assumes curves are non-singular and

ignores some singular intersections such as tangential intersections.

In MAPC, an algebraic point (whose coordinates are real algebraic numbers)

is represented as a rectangle that contains one and only one intersection of a pair

of algebraic plane curves. I introduce the algorithm for finding such a point. More

formally, the problem is stated as follows; given a pair of algebraic plane curves

f (S, T ) = 0 and g (S, T ) = 0 and a region [s1, s2] × [t1, t2], find rectangles in the

region each of which contains one and only one intersection of those curves. The

procedure of the algorithm consists of several stages.

First, compute univariate polynomials s (S) = SResT (f, g) and t (T ) =

SResS (f, g) where SResX (f, g) is the Sylvester resultant for polynomials f and g

both regarded as univariate polynomial in variable X. The S and T coordinates of

the intersections of f = 0 and g = 0 are given by the roots of s and t, respectively.

Next, isolate the roots of s within the interval [s1, s2], and isolate the roots

of t within the interval [t1, t2] by using Sturm’s method. Each of these roots are

represented either by a rational number or an interval whose endpoints are rational

numbers. Let s and t have m and n roots within the intervals [s1, s2] and [t1, t2],

respectively. Form nm boxes that may contain the intersections of f = 0 and g = 0.

Then, perform a series of tests to determine which of these boxes contain the
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intersections of f = 0 and g = 0 and which of these do not. The assumption that

curves are non-singular is used in this stage, and thus, some singular intersections

such as tangential ones may not be found. (See Figure 7.)

a b

Fig. 7. Singular intersections of curves can and cannot be found by MAPC.

a. An example of a singular intersection of curves that can be found by MAPC.

b. An example of a singular intersection of curves that cannot be found by

MAPC.

Note that the rectangle representing an algebraic point can be shrunken into any

size.

MAPC may not be able to answer the query whether or not an algebraic point

lies on a curve. If the point DOES NOT lies on the curve then, after shrinking the

rectangle finitely many times, the rectangle will become small enough so that the

curve will not intersect it. On the other hand, if the point DOES lie on the curve

then, however many times it is shrunken, the curve always touches the rectangle.
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ESOLID assumes that every object is in general position. The algorithms im-

plemented in ESOLID do not have portions that take care of degenerate inputs (See

Theorem 5.24 in Chapter V). When an input is degenerate, ESOLID may return the

incorrect result, or worse, crash.

Overcoming these limitations has been a major motivation of my research.

2.2 Previous Work

This section reviews some other previous work relevant to this research.

2.2.1 Robust Geometric Computation

The need for robustness in geometric algorithms has been advocated for decades.

Robustness issues have been an active area of work in computational geometry for a

long time, now. Much of the need for robustness was highlighted by [52] [23] [100].

Exact computation [50] [57] [8] as a method for eliminating numerical errors has

been addressed. Much of the earliest work focused on polyhedrons, with only limited

work on curved objects [96] [102] [4] [36].

The research presented in this dissertation builds on top of earlier work on exact

geometric solid modeling [59] [58].

More general work supporting exact computation includes the development of the

LEDA [69] and CORE [57] libraries, along with the more general algorithms supported

by CGAL [34]. The Effective Computational Geometry for Curves and Surfaces

(ECG) project is currently developing a large set of exact geometric algorithms [8]

[9] [21] [74].
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2.2.2 Rational Univariate Reduction

The RUR for a system of polynomials has been known for more than a century. The

RUR was first seen in [64], but the RUR has been used in computer algebra only

recently [42] [81] [86] [3].

If an input system is of dimension zero then the RUR can be computed via the

“multiplication table method” [86] [44] [3]. An extension of this method finds all the

isolated real roots as well as at least one point from every real positive-dimensional

component [2] [22]. A standard implementation of the method requires reduction of

the input polynomials into some normal form via the Gröbner basis. This implemen-

tation has the disadvantage that the worst case time complexity is exponential time.

The Gröbner basis is discontinuous with respect to changes in the coefficients of the

input polynomials [73].

A Gröbner-free algorithm to compute the RUR for a zero-dimensional system

has been proposed [40]. Recent work even handles systems with multiple roots [65].

The complexity analysis of this algorithm is considered in [55].

2.2.2.1 Toric Resultants

The toric resultant (or the sparse resultant) for a system of n + 1 polynomials with

indeterminate coefficients in n variables is a polynomial with integer coefficients in

these indeterminates (as variables) that vanishes iff the system has a common root on

some toric variety over an algebraic closure of the field to which the coefficients of the

polynomials belong [13] [94] [17] [14] [95] [15] [30]. The toric resultant is expressed as

a divisor of the determinant of some square matrix, called the toric resultant matrix

or the Newton matrix [13] [94] [27] [14] [95] [30] [84]. The mixed-subdivision based

algorithm [13] [14] [30] is historically the first practical algorithm that constructs the
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resultant matrix, but the size of the matrix constructed is often too large. Another

version of this algorithm first constructs a small matrix and incrementally constructs

larger matrices until one that works is found [32]. Several efforts have been made to

construct smaller resultant matrices [18] [29] [54] [72] [62] [63].

The resultant-based method for solving a system of polynomial equations fails if

the zero set of the input system has some positive dimensional components. In order to

solve such systems, a perturbation technique is used. The Generalized Characteristic

Polynomial (GCP) by [12] can be used to express solutions to dense homogeneous

square systems with degeneracies. The toric perturbation [81] [83] is defined as a

particular coefficient of the toric GCP [80] [81] [83]. The toric perturbation works even

if an input square system has some multiple roots at the point at infinity. A potentially

more efficient perturbation technique that finds expectedly fewer monomials has been

proposed by [19] [20].

The toric resultant-based method can be modified so that it finds some set con-

taining all the affine roots of a square system [85] [67] [82] [81] [83].

The algorithm for computing the RUR of a given system of polynomials with

rational coefficients described in this paper refines the versions in [82] and [60]. I give

a step-by-step description together with an exception handler and a new algorithm

for overdetermined systems.

2.2.3 Root Bound

The root-bound approach to exact sign determination for real algebraic numbers has

been implemented in the libraries LEDA [11] [69] and CORE [57]. Several improve-

ments on root-bounds have also been reported [7] [9] [10] [66] [77].

The sign of the real algebraic number (given as roots of a univariate polynomial

with rational coefficients) can be determined algorithmically (e.g. Sturm’s method).
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2.2.4 MAPC and ESOLID

MAPC [59] is a library that manipulates exact computation for two-dimensional real

algebraic points and curves. ESOLID [61] [58] is a robust geometric modeler built on

top of MAPC. ESOLID is currently the only system we know of that supports exact

boundary evaluation for solids with curved surfaces. For efficiency, MAPC assumes

curves are non-singular and ignores some singular intersections such as tangential

intersections. Thus, ESOLID works only when provided solids that are in general

position. Addressing this deficiency has been a goal of my research.

An example from boundary evaluation is when intersection curves contain sin-

gularities (e.g. self-intersections, isolated point components, cusps). There are some

approaches that can deal with these curves [88] [53] [43] [98] [26]. However, methods

such as that in [59] fail in such situations, while the exact RUR approach is perfectly

capable of finding, e.g. the intersection between two curves at a self-intersection of

one of the curves.

2.2.5 Degeneracies

There have been a variety of methods previously proposed for handling with degen-

eracies or perturbations.

Handling with degeneracies via special-case code has been the predominant ap-

proach used. Examples can be seen in [50]. For curved objects, the issues of degen-

eracies become more complicated. A great deal of effort has focused just on handling

the intersections of quartic surfaces, such as that of Farouki et al. [35] and Geismann

et al. [39].

Perturbation schemes have arisen as a more general way of dealing with degen-

eracies. There are several different types of perturbations.
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The earliest symbolic perturbation scheme was probably that of Edelsbrunner

and Mucke [25]. Emiris and Canny varied the perturbation used to a simpler one, and

applied it to a wider variety of cases [31] [33]. Yap provided an even more generalized

perturbation approach [99]. Seidel provides a summary of these techniques, along

with a critique of the general perturbation scheme itself [90] [91]. For solid modeling

applications, Fortune describes the use of symbolic perturbation for linear solids [36].

When numerical perturbation has been applied in the past, e.g. as in Sugihara’s

work [96], it is usually done in the context of fixed precision computation. That is,

data is perturbed point-wise across a grid made up of representable points in fixed-

precision space. This significantly limits the types and amounts of perturbation that

can be applied; though it works for several cases, it is not as general in application

as the approach proposed in this dissertation. In contrast to these earlier methods,

the use of exact computation allows for a wider range of perturbation amounts. In

fact, as will be shown below, the new approach yields the full generality that could

be obtained through symbolic perturbation.

Recently, a different type of perturbation approach has been proposed by Song

et al. [93]. In this approach, input data (specifically, the parametric surfaces) are

modified in such a way as to meet a particular constraint (specifically, intersecting

on a certain curve). That is, the input is perturbed in a very specific way to ensure

a specific outcome. In contrast, our method modifies the input data, but in a more

random fashion, rather than insisting on achieving a particular result.

There are also several perturbation schemes that rely on fixed-precision computa-

tion [45] [37] [48] [49] [47] [79] [46]. In some of these approaches (e.g. [48]), geometric

objects are fattened (e.g. points become circles) and some adjustments have to be

made to the geometric algorithms. Funke et al. [38] described controlled perturbation

for Delaunay triangulations. Although they use floating point arithmetic rather than
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exact arithmetic, the idea of controlled perturbation is very similar to a ”backward

stable” operation as the scheme proposed in this dissertation.
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CHAPTER III

RATIONAL UNIVARIATE REDUCTION

This chapter describes new algorithms for computing the Rational Univariate Re-

duction (RUR) of a given system of multivariate polynomials. In Section 3.1, the

algorithms are described. In Section 3.2, some examples are shown. In Section 3.3, a

worst-case asymptotic arithmetic complexity of the algorithm is analyzed.

3.1 Algorithm

In this section, we will describe an algorithm for computing the RUR. After discussing

the derandomized process for computing the RUR for the toric zero set (the zero set

in (K∗)n) of a square system (Section 3.1.1), we will discuss extending this to the RUR

for the affine zero set (the zero set in Kn
) of a non-square system (Section 3.1.2). We

will also discuss handling the cases when K = Q or K = R and all we want to find

are the real roots (Section 3.1.3).

In the rest of this chapter, we will assume that the characteristic of the field K

is 0 or sufficiently large. An upper bound for the characteristic of K (when it is not

zero) will be given later in Section 3.1.1.

Algorithms described in this section are as follows (Figure 8):

Algorithm RUR toric square computes the RUR for the toric zero set (the

zero set in (K∗)n) of a square system of polynomials f1, . . . , fn in n variables with

rational coefficients.

Algorithm RUR square computes the RUR for the affine zero set (the zero

set in Kn
) of a square system of polynomials f1, . . . , fn in n variables with rational

coefficients. It internally calls algorithm RUR toric square.
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OUTPUT                  affine RUR

RUR

OUTPUT                  affine RUR

RUR_overconstrained

OUTPUT                  affine RUR

RUR_square

n

n

OUTPUT                  toric RUR

RUR_toric_square

INPUT           polynomials      variablesm n nINPUT           polynomials      variables

nINPUT           polynomials      variables

m nINPUT           polynomials      variables

m    nm    n ≤>

Fig. 8. Algorithms described in Section 3.1.

Algorithm RUR overconstrained computes the RUR for the affine zero set

of a system of polynomials f1, . . . , fm in n variables with rational coefficients when

m > n. It internally calls Algorithm RUR square.

Algorithm RUR computes the RUR for a system of polynomials f1, . . . , fm

in n variables with rational coefficients. It internally calls Algorithm

RUR overconstrained or Algorithm RUR square.

3.1.1 Toric RUR for Square Systems

Consider a square system of n polynomials f1, . . . , fn in n variables with coefficients

in K. Let Z be the zero set of the system. Assume that the mixed volume MV−0

of the convex hulls of supports A1, . . . , An of f1, . . . , fn is strictly positive. It follows

from Theorem 2.1 that, with a suitable choice of polynomials f ∗1 , . . . , f
∗
n, there exists
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a finite subset Z ′ of Z ∩ (K∗)n such that

• Z ′ contains all the isolated common roots of the input system in (K∗)n as well

as at least one point from every irreducible component of Z ∩ (K∗)n, and

• the univariate polynomial h (T ) in the RUR for Z ′ is derived from TPert (u) =

TPert (u0, u1, . . . , un) by setting u0 to a variable T and specializing parameters

u1, . . . , un to some appropriate values in K.

The other univariate polynomials h1, . . . , hn in the RUR are also derived from toric

perturbations. Recall that M is defined to be the cardinality of Z ′ (Section 2.1.1).

Note that if the input system has only finitely many roots then Z ′ = Z ∩ (K∗)n,

and thus, the input system has M distinct common roots (in (K∗)n). Auxiliary

polynomials f ∗1 , . . . , f
∗
n can be chosen deterministically [81], though the process is

costly. In practice, polynomials with random coefficients are used. The probability

that random polynomials work suitably is 1 and unsuitable choices are detectable.

(See steps 11 and 12 below in Section 3.1.1.1.) Thus, we will describe a version

of the algorithm in which choices of auxiliary polynomials remain randomized. The

conditions for an appropriate specialization of parameters u1, . . . , un will be clarified

later. We will see that parameters u1, . . . , un are specialized appropriately to some

integer values.

We give an algorithm for computing the RUR for Z ′ (Section 3.1.1.1). Step-by-

step details are given immediately afterward (Section 3.1.1.2).

The algorithm computes the RUR only when the mixed volume MV−0 for the

convex hulls of supports A1, . . . , An of polynomials f1, . . . , fn is strictly positive. If

MV−0 turns out to be 0 then the algorithm adds some points to A1, . . . , An so that

MV−0 becomes strictly positive. See Remark 2.3 and steps from 3 through 6 below

(Section 3.1.1.1).
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3.1.1.1 Toric RUR for Square Systems: Algorithm

This section gives the pseudo code of Algorithm RUR toric square.

Algorithm RUR toric square

Input: f1, . . . , fn ∈ K [X1, . . . , Xn] with supports A1, . . . , An ⊆ Zn.

Output: h, h1, . . . , hn ∈ K [T ] forming the RUR for some finite set Z ′ which contains

all the isolated common roots of the input system in (K∗)n as well as at least

one point from every irreducible component of the zero set of the input system

in (K∗)n.

1: A0 ← {o, b1, . . . , bn} where o is the origin and bi is the i-th standard basis vector

in Rn

2: compute MV−0 of the convex hulls of A1, . . . , An

3: if MV−0 = 0 then

4: for i := 1, . . . , n do:

5: choose a point a ∈ Zn with random coordinates and Ai ←
{a} ∪ Ai

6: go to 2

7: compute MV−1, . . . ,MV−n and construct the toric resultant matrix N for a system

of polynomials with supports A0, A1, . . . , An

8: (u0, u1, u2, . . . , un)← (1, 0, 0, . . . , 0)

9: choose polynomials f ∗1 , . . . , f
∗
n in variables X1, . . . , Xn with random coefficients in

K and supports contained in A1, . . . , An
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10: set d to be a non-negative integer such that sd is the lowest degree term with

non-zero coefficient in TGCP (s,u) (regarded as a polynomial in s)

11: if TGCP (s,u) is identically zero then

12: go to 9

13: u← 0 and M ← 0

14: (u1, u2, . . . , un)← (1, u, . . . , un−1)

15: compute p (T ) := TPert (T, u1, . . . , un) where TPert (u) is the coefficient of the

term sd in TGCP (s,u) (regarded as a polynomial in s)

16: compute the square-free part q (T ) of p (T )

17: if degT p (T ) = degT q (T ) then /* if p (T ) is square-free then */

18: M ← degT p (T )

19: else /* if p (T ) is not square-free then */

20: if u ≤ n
(
MV−0

2

)
then

21: if M < degT q (T ) then

22: M ← degT q (T )

23: increment u and go to 14

24: else /* if u > n
(
MV−0

2

)
then */

25: M ←M

26: u← 0
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27: (u1, u2, . . . , un)← (1, u, . . . , un−1)

28: compute p (T ) := TPert (T, u1, . . . , un)

29: compute the square-free part q (T ) of p (T )

30: if degT q (T ) < M then

31: increment u and go to 27

32: for i := 1, . . . , n do:

33: compute p±i (t) := TPert (t, u1, . . . , ui−1, ui ± 1, ui+1, . . . , un) ∗

34: compute the square-free part q±i (t) of p±i (t)

35: if degt q
−
i (t) < M or degt q

+
i (t) < M then

36: increment u and go to 27

37: h (T )← q (T )

38: for i := 1, . . . , n do:

39: compute the greatest common divisor g (t) of q−i (t) and q+
i (2T − t)

(regarded as a polynomial in t)

40: compute hi (T ) := −T − g0(T )
g1(T )

mod h (T ) where g0 (T ) and g1 (T ) are

the constant term and the linear coefficient of g (t), respectively, i.e.,

g (t) = g0 (T ) + g1 (T ) t

The algorithm differs from the prior version [81] in the following:

∗Step 33 does not make sense when the characteristic of K is 2, but we assume
that the characteristic of K is 0 or sufficiently large.
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• The loop from step 3 through step 6 handles the input system when MV−0 is

0.

• Step 10 uses a new criteria (see Proposition 3.7) to determine a non-negative

integer d such that sd is the lowest degree term with non-zero coefficient in

TGCP (s,u).

• The specialization of u is derandomized:

The loop from step 13 through step 25 finds an appropriate specialization of

parameters u1, . . . , un for computing the cardinality M of Z ′ (counting without

multiplicity).

Steps 26 through 36 find an appropriate specialization of parameters u1, . . . , un

for computing all the univariate polynomials h and h1, . . . , hn in the RUR.

3.1.1.2 Toric RUR for Square Systems: Description

This section gives step-by-step details of Algorithm RUR toric square.

Step 2 computes MV−0.

The loop from step 3 through step 6 adds points to A1, . . . , An so that MV−0 is

assured to be strictly positive. Those points are chosen randomly or deterministically.

For efficiency, we use a randomized method.

Step 7 computes MV−1, . . . ,MV−n and constructs the toric resultant matrix N

for a system of n+ 1 polynomials with supports A0, A1, . . . , An. Entries of matrix N

remain undetermined, and will be specialized to some values later at steps 10, 15,

29 and 33. Step 7 needs to be performed once and only once for any square system

of n polynomials in n variables with given supports A1, . . . , An.

The loop from step 8 through step 12 determines a non-negative integer d such

that TPert (u) is the coefficient of the term sd in TGCP (s,u).
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We will show, in Proposition 3.7, that if sd is the lowest degree term with non-

zero coefficient in TGCP (s, 1, 0, 0, . . . , 0) then TPert (u) is the coefficient of the term

sd in TGCP (s,u). Thus, parameters u0, u1, . . . , un are specialized to 1, 0, . . . , 0 at

step 8 and fixed throughout the loop.

Step 9 chooses auxiliary polynomials f ∗1 , . . . , f
∗
n. While randomly chosen f ∗i ’s

could turn out not to be suitable, this is almost never the case, and is detected

at step 11 if they are. As mentioned earlier, there is a deterministic method for

choosing suitable auxiliary polynomials [81], but the method is costly, and suffers

from expression swell. Thus, we stick with the randomized method.

Step 10 determines a non-negative integer d such that sd is the lowest

degree term with non-zero coefficient in TGCP (s, 1, 0, 0, . . . , 0). From (2.5),

degs TGCP (s, 1, 0, 0, . . . , 0) =
∑n

i=1 MV−i, the right hand side of which can easily

be calculated from the quantities computed at step 7, and thus, all the coefficients

of TGCP (s, 1, 0, 0, . . . , 0) can be computed via interpolation. More precisely, choose
∑n

i=1 MV−i + 1 many values for s, specialize the entries of N with the coefficients

of f0 (which is the constant polynomial 1 here), f1 − sf ∗1 , . . . , fn − sf ∗n, evaluate

TGCP (s, 1, 0, 0, . . . , 0), and interpolate TGCP (s, 1, 0, 0, . . . , 0) from these values.

Recall that the determinant of the resultant matrixN is some non-trivial multiple

of the toric resultant. In order to calculate the explicit value of TGCP (s,u) at fixed s

and u, the contribution of the extraneous factor must be eliminated. An elimination

of the extraneous factor is done by another level of interpolation through the values

of the determinant of N whose entries are specialized in several ways. One such

method is called the division method [14], which applies to both cases — when the

characteristic of K is 0 or positive.

If the characteristic of K is 0 then d can be determined by scanning the co-

efficients of some non-trivial multiple of TGCP (s, 1, 0, 0, . . . , 0) instead of the co-
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efficients of TGCP (s, 1, 0, 0, . . . , 0) without any extraneous factor. From (2.5),

degs TGCP (s, 1, 0, 0, . . . , 0) is known to be bounded from above by dimN −MV−0,

and thus, some non-trivial multiple of TGCP (s, 1, 0, 0, . . . , 0) can be computed via

interpolation from the values of detN . More precisely, choose dimN − MV−0 + 1

many values for s, specialize the entries of N with the coefficients of f0 (which is the

constant polynomial 1 here), f1 − sf ∗1 , . . . , fn − sf ∗n, evaluate detN , and interpolate.

Step 11 checks whether or not the randomly chosen f ∗i ’s at step 9 are suitable.

The loop from step 13 through step 25 finds an appropriate specialization of

parameters u1, . . . , un for computing the cardinality M of Z ′ (counting without mul-

tiplicity).

Step 14 specializes parameters u1, . . . , un to some integer values.

Step 15 computes p (T ) := TPert (T, u1, . . . , un) introducing a variable T .

From (2.4), degT TPert (T, u1, . . . , un) = MV−0, the right hand side of which

has been computed at step 7, and thus, TPert (T, u1, . . . , un) can be computed

via interpolation: choose MV−0 + 1 many values for u0, evaluate the coefficient

TPert (u) = TPert (u0, u1, . . . , un) of the term sd in TGCP (s,u), and interpolate

TPert (T, u1, . . . , un) from these values. From (2.5), degs TGCP (s,u) is known, and

thus, the coefficient of the term sd in TGCP (s,u) can be computed via another level

of interpolation: choose
∑n

i=1 MV−i + 1 many values for s, specialize the entries of

N with the coefficients of f0, f1 − sf ∗1 , . . . , fn − sf ∗n, calculate the explicit values of

TGCP (s,u), and interpolate TGCP (s,u) from these values. Note that calculation

of the explicit values of TGCP (s,u) requires an elimination of the extraneous factor

from detN .

The above paragraph holds when the characteristic of K is 0 or positive. If the

characteristic of K is 0 then TPert (T, u1, . . . , un) can be computed via interpola-

tion from the values of the coefficient of the term sd in some non-trivial multiple of
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TGCP (s,u) instead of the values of the coefficient of the term sd in TGCP (s,u)

without any extraneous factor. This is possible because, by (2.4), the contributions

of the extraneous factor are independent of u, in particular u0, and will be canceled

out during interpolation. More precisely, choose MV−0 + 1 many values for u0, eval-

uate the coefficient of the term sd in some non-trivial multiple of TGCP (s,u), and

interpolate TPert (T, u1, . . . , un) from these values. The coefficient of the term sd in

some non-trivial multiple of TGCP (s,u) is computed via another level of interpola-

tion: choose dimN −MV−0 + 1 many values for s, specialize the entries of N with

the coefficients of f0, f1 − sf ∗1 , . . . , fn − sf ∗n, evaluate detN , and interpolate.

Step 16 computes the square-free part q (T ) of p (T ) := TPert (T, u1, . . . , un) by

dividing p (T ) by the greatest common divisor of p (T ) and its derivative p′ (T ) found

using the Euclidean algorithm.

Steps 17 through 25 find M . If, for some specialization of parameters u1, . . . , un,

p (T ) := TPert (T, u1, . . . , un) is square-free then M = degT p (T ) and the computa-

tion immediately exits from the loop. On the contrary, if p (T ) remains non-square-

free for all n
(
MV−0

2

)
+ 1 many specializations of parameters u1, . . . , un then M is set

to be the maximum degree of the square-free part q (T ) of p (T ). The correctness of

this part of the algorithm will be shown later.

Steps 26 through 36 find an appropriate specialization of parameters u1, . . . , un

for computing all the univariate polynomials h and h1, . . . , hn in the RUR.

Step 27 specializes parameters u1, . . . , un to some integer values.

Steps 28 and 29 are the same as steps 15 and 16, respectively. In the loop from

step 13 through step 25, we have already tried several specializations of parameters

u1, . . . , un, and have found at least one appropriate specialization (possibly more if

step 25 has been reached) for computing M and possibly some inappropriate ones.

For those specializations of parameters u1, . . . , un that have been tried in the previous
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loop, steps 28 and 29 do not need to be performed. If a specialization of parameters

u1, . . . , un has been found inappropriate then the computation immediately goes back

to step 27. On the other hand, if a specialization of parameters u1, . . . , un has been

found appropriate for computingM , which means that it is appropriate for computing

h, then the computation jumps to step 32 and checks whether or not it is also

appropriate for computing h1, . . . , hn.

Similar to step 15, at step 33, p±i (t) are computed via interpolations, and similar

to step 16, at step 34, q±i (t) := p±i (t) / gcd
(
p±i (t) ,

(
p±i

)′
(t)

)
.

Step 37 determines the univariate polynomial h in the RUR, and the loop from

step 38 through step 40 determines the univariate polynomials h1, . . . , hn in the RUR.

Step 39 computes the greatest common divisor g (t) of q−i (t) and q+
i (2T − t) (as

a polynomial in t). We will show that whenever parameters u1, . . . , un are specialized

appropriately, g (t) is linear. In this case, the ratio of the coefficients of g (t) matches

the ratio of the coefficients of the first subresultant for q−i (t) and q+
i (2T − t) [12] [41];

if g (t) = g0 + g1t and r0 + r1t is the first subresultant for q−i (t) and q+
i (2T − t), then

g0

g1
= r1

r0
. Note that r0 and r1 are actually polynomials in T . By definition, r0 and

r1 are the determinants of some submatrices of the Sylvester matrix for q−i (t) and

q+
i (2T − t), and the degree of r0 and r1 in T are both known to be M(M − 1). Thus,

they can be computed via interpolation.

Step 40 determines the univariate polynomials h1 (T ) , . . . , hn (T ) in the RUR.

The computation at this step involves the (extended) Euclidean algorithm and arith-

metic operations over the ring of univariate polynomials with coefficients in K.

3.1.1.3 Toric RUR for Square Systems: Proof for Correctness

We give the proof for the correctness of Algorithm RUR toric square.

The following proposition completes the proof of the correctness of the loop from
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step 8 though step 12 of the algorithm.

Proposition 3.7. If sd is the lowest degree term with non-zero coefficient in

TGCP (s, 1, 0, 0, . . . , 0) then TPert (u) is the coefficient of the term sd in TGCP (s,u).

Proof. Suppose otherwise. Then, there exists a non-negative integer e < d such that

TPert (u) is the non-zero coefficient of the term se in TGCP (s,u). (We do not have

to consider the case e > d. If e > d then, for any u, the coefficient of the term sd

in TGCP (s,u) is identically zero, and in particular, the coefficient of the term sd in

TGCP (s, 1, 0, . . . , 0) is zero.) By Theorem 2.1, TPert (u) splits into (not necessarily

distinct) linear factors:

TPert (u) = c

M∏
j=1

(
u0 +

n∑

l=1

ulζ
(j)
l

)µ(j)

(3.1)

where c is a non-zero constant belonging to K and µ(1), . . . , µ(M) are positive inte-

gers. Thus, TPert (1, 0, 0, . . . , 0) 6= 0. This is a contradiction, since the coefficient

TPert (1, 0, 0, . . . , 0) of the term se in TGCP (s, 1, 0, . . . , 0) is not identically zero but

e < d.

In the rest of this section, we describe the conditions for an appropriate special-

ization of parameters u1, . . . , un, the existence of appropriate specializations and the

remaining proofs of the correctness of the algorithm.

We use the famous concept of separating polynomials and their properties. For

more details, see textbooks like [3].

A polynomial f in n variables with coefficients in a field L is said to separate two

distinct points α and β in Ln if f (α) 6= f (β). A polynomial f in n variables with

coefficients in L is said to separate a finite subset A of Ln if f separates every pair of

two distinct points in A.
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Lemma 3.8. Let L be a field of characteristic 0 or a finite field of characteristic at

least n + 1. Furthermore, let α and β be two distinct points in Ln+1. Then, at least

one of the linear polynomials in n+1 variables X0, X1, . . . , Xn with integer coefficients

vu = X0 + uX1 + · · ·+ unXn, u = 0, 1, . . . , n, (3.2)

separates α and β.

We describe the conditions for an appropriate specialization of parameters

u1, . . . , un.

Recall that Z ′ is some finite subset of the zero set of the input system of polyno-

mials with coefficients in K such that the univariate polynomial h (T ) in the RUR for

Z ′ is derived from TPert (u) by setting u0 to a variable T and specializing parameters

u1, . . . , un to some appropriate values in K. Let M be the cardinality of Z ′ so that

Z ′ =
{(
ζ

(1)
1 , . . . , ζ(1)

n

)
, . . . ,

(
ζ

(M)
1 , . . . , ζ(M)

n

)}
. (3.3)

By Bernstein’s theorem [5]

M ≤ MV−0 = degT TPert (T, u1, . . . , un) . (3.4)

We say that parameters u1, . . . , un are specialized appropriately if the linear

polynomials in n variables

u1X1 + · · ·+ unXn (3.5)

and

u1X1 + · · ·+ ui−1Xi−1 + (ui ± 1)Xi + ui+1Xi+1 + · · ·+ unXn,

i = 1, . . . , n

(3.6)
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separate Z ′, or equivalently, the following conditions are satisfied:

j 6= k ⇒
n∑

l=1

ulζ
(j)
l 6=

n∑

l=1

ulζ
(k)
l (3.7)

and

j 6= k ⇒
n∑

l=1

ulζ
(j)
l ± ζ(j)

i 6=
n∑

l=1

ulζ
(k)
l ± ζ(k)

i , i = 1, . . . , n. (3.8)

We show that there always exists an appropriate specialization of parameters

u1, . . . , un.

Proposition 3.9. At least one of the n-tuples in

{
(u1, . . . , un) = (u, . . . , un)

∣∣∣∣∣ u = 0, 1, . . . , n

(
MV−0

2

)}

satisfies (3.7).

Proof. Let u be a non-negative integer and vu =
∑n

i=0 u
iXi as in (3.2). Define

Y ′ =
{(

0, ζ
(j)
1 , . . . , ζ(j)

n

) ∣∣∣∣ j = 1, . . . ,M

}
. (3.9)

Condition (3.7) holds if there exists a non-negative integer u such that vu separates
(

M
2

)
pairs of distinct points in Y ′. Now, apply Lemma 3.8 and (3.4).

Proposition 3.10. At least one of the n-tuples in

{
(u1, . . . , un) = (u, . . . , un)

∣∣∣∣∣ u = 0, 1, . . . , (2n+ 1)n

(
M

2

)}

satisfies (3.7) and (3.8).

Proof. Let u be a non-negative integer and vu =
∑n

i=0 u
iXi as in (3.2). Define Y ′ as

in (3.9) and define

Y ′±
i =

{(
±ζ(j)

i , ζ
(j)
1 , ζ

(j)
2 , . . . , ζ(j)

n

) ∣∣∣∣ j = 1, . . . ,M

}
, i = 1, . . . , n.
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Note that the cardinality of each Y ′±
i is M . Conditions (3.7) and (3.8) hold if there

exists a non-negative integer u such that vu separates
(

M
2

)
pairs of distinct points

in Y ′,
(

M
2

)
pairs of distinct points in Y ′+

i for i = 1, . . . , n, and
(

M
2

)
pairs of distinct

points in Y ′−
i for i = 1, . . . , n, in total, (2n+ 1)

(
M
2

)
pairs of distinct points. Now,

apply Lemma 3.8.

Remark 3.11. All the parameters u1, . . . , un are specialized appropriately to some

integers. †

We complete the proof of the correctness of the algorithm.

First, we show that condition (3.7) holds iff, at step 18 or step 25, M is correctly

set.

By Theorem 2.1, TPert (T, u1, . . . , un) splits into (not necessarily distinct) linear

factors:

TPert (T, u1, . . . , un) = c

M∏
j=1

(
T +

n∑

l=1

ulζ
(j)
l

)µ(j)

(3.10)

where c ∈ K∗ and µ(1), . . . , µ(M) are some positive integers.

Suppose TPert (u1, . . . , un) is not square-free. The possible situations are

(1) µ(j) ≥ 2 for some j, and/or

(2) parameters u1, . . . , un are specialized inappropriately so that condition (3.7) does

not hold.

If µ(1) = · · · = µ(M) = 1 then, by Proposition 3.9, within finitely many attempts, a

specialization of parameters u1, . . . , un satisfying condition (3.7) will be found even-

tually to compute TPert (T, u1, . . . , un) which becomes square-free. Thus, the com-

putation reaches step 25 only if µ(j) ≥ 2 for some j. In this case, n
(
MV−0

2

)
+ 1 many

†Since we assume that the characteristic of K is 0 or sufficiently large, K always
contains integers.
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specializations of parameters u1, . . . , un are tried. Again, by Proposition 3.9, at least

one of them must satisfy condition (3.7). Whenever a specialization of parameters

u1, . . . , un satisfying condition (3.7) is used, degT q (T ) at step 21, which precisely

matches the number of distinct linear factors of TPert (T, u1, . . . , un), is maximized,

since, with any inappropriate specialization of parameters u1, . . . , un breaching con-

dition (3.7), TPert (T, u1, . . . , un) must have fewer distinct linear factors.

Next, we show that conditions (3.8) hold iff, at step 30, degT q (T ) = M and

simultaneously, at step 35, degt q
±
i (t) = M for i = 1, . . . , n.

By (3.10), TPert (t, u1, . . . , ui−1, ui ± 1, ui+1, . . . , un) splits into (not necessarily

distinct) linear factors:

TPert (t, u1, . . . , ui−1, ui ± 1, ui+1, . . . , un)

= c

M∏
j=1

(
t+

n∑

l=1

ulζ
(j)
l ± ζ(j)

i

)µ(j)

, i = 1, . . . , n.

(3.11)

If conditions (3.8) hold then every q±i (t) computed at step 34 is a product of M

distinct linear factors:

q±i (t) = c

M∏
j=1

(
t+

n∑

l=1

ulζ
(j)
l ± ζ(j)

i

)
, i = 1, . . . , n. (3.12)

Thus, degt q
±
i (t) = M for i = 1, . . . , n.

On the other hand, if not all conditions (3.8) hold then, for some i, q−i (t) or

q+
i (t) has strictly fewer than M distinct linear factors. Thus, degt q

−
i (t) < M or

degt q
+
i (t) < M for some i.

Furthermore, by Proposition 3.10, an appropriate specialization of parameters

u1, . . . , un satisfying conditions (3.7) and (3.8) will be found eventually, which results

in degT q (T ) = degt q
±
i (t) = M for i = 1, . . . , n. This shows that the computation

eventually exits from the loop from step 26 through step 36.
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Finally, we show that the greatest common divisor of q−i (t) and q+
i (2T − t) is

linear.

It follows that, provided condition (3.7) holds, at step 37, h (T ) is a product of

M distinct linear factors:

h (T ) = c

M∏
j=1

(
T +

n∑

l=1

ulζ
(j)
l

)
, (3.13)

and thus, h (T ) has precisely M distinct roots θ(1), . . . , θ(M) in K where

θ(j) = −
n∑

l=1

ulζ
(j)
l , j = 1, . . . ,M. (3.14)

Substituting (3.13) into (3.12), we see that, provided (3.7) and (3.8) hold,

q−i (t) = c

M∏
j=1

(
t−

(
θ(j) + ζ

(j)
i

))
,

q+
i (2T − t) = c

M∏
j=1

(
2T − t−

(
θ(j) − ζ(j)

i

)) i = 1, . . . , n. (3.15)

Then

q−i (t) = q+
i

(
2θ(j) − t) = 0⇔ t = θ(j) + ζ

(j)
i ,

i = 1, . . . , n,

j = 1, . . . ,M.

(3.16)

In fact, any root of q−i (t) is of the form θ(k) + ζ
(k)
i for some k. But, if k 6= j then

q+
i

(
2θ(j) − t) is not square-free.

It now follows from (3.16) that, for every hi (T ) computed at step 40, hi

(
θ(j)

)
=

ζ
(j)
i for j = 1, . . . ,M .

3.1.2 RUR

Recall that Algorithm RUR toric square computes the RUR for the toric zero set

(the zero set in (K∗)n) of a square system. We would like to develop an algorithm for
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computing the RUR for the affine zero set (the zero set in Kn
) for a system which is

not necessarily square.

3.1.2.1 RUR for Square Systems

Consider a square system of polynomials f1, . . . , fn in n variables with coefficients in

K. Let Z be the zero set of the system. Write A1, . . . , An for the supports of f1, . . . , fn,

respectively. It is known [67] [81] [83] that if, in Algorithm RUR toric square,

instead of A1, . . . , An, the sets {o} ∪ A1, . . . , {o} ∪ An are used then the algorithm

computes the RUR for some finite set Z
′
that contains all the isolated common roots

of the input system (in Kn
) as well as at least one point from every irreducible

component of Z(⊆ Kn
). Note that Z

′
may contain some extraneous points which do

not belong to Z.

Algorithm RUR square

Input: f1, . . . , fn ∈ K [X1, . . . , Xn].

Output: h, h1, . . . , hn ∈ K [T ] forming the RUR for some finite set Z
′
which contains

all the isolated common roots of the input system as well as at least one point

from every irreducible component of the zero set of the input system.

1: for i := 1, . . . , n do:

2: set Ai to be the support of fi

3: Ai ← {o} ∪ Ai where o is the origin in Rn

4: call Algorithm RUR toric square on the input f1, . . . , fn and A1, . . . , An to com-

pute h, h1, . . . , hn ∈ K [T ]
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3.1.2.2 RUR for Overdetermined Systems

Throughout this section, let L be an algebraically closed field containing K.

Let f1, . . . , fm be polynomials in n variables with coefficients in L. Write

Z(n) (f1, . . . , fm) for the zero set of polynomials f1, . . . , fm in Ln:

Z(n) (f1, . . . , fm) =

{(z1, . . . , zn) ∈ Ln | f1 (z1, . . . , zn) = · · · = fm (z1, . . . , zn) = 0} .

We will use the following facts. The proofs are found in textbooks of algebraic

geometry, e.g., [16].

• Let f1 and f2 be polynomials in n variables with coefficients in L. Then

Z(n) (f1, f2) = Z(n) (f1) ∩ Z(n) (f2) . (3.17)

and

Z(n) (f1 · f2) = Z(n) (f1) ∪ Z(n) (f2) . (3.18)

• An algebraic set Z in Ln is written as a finite union of irreducible algebraic sets

in Ln:

Z = V1 ∪ · · · ∪ Vl (3.19)

where V1, . . . , Vl are irreducible algebraic sets in Ln. A decomposition (3.19) of

Z is said to be minimal if Vi 6⊆ Vj for i 6= j. A minimal decomposition of Z

always exists and is unique up to the order in which V1, . . . , Vl are written.

• Let Z1 and Z2 be irreducible algebraic sets in Lm and Ln, respectively. Then,

Z1 × Z2 is an irreducible algebraic set in Lm+n.

In the rest of this paragraph, assume m > n.
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Let f1, . . . , fm be polynomials in n variables X1, . . . , Xn with coefficients in L.

Introducing m − n variables Xn+1, . . . , Xm, f1, . . . , fm are seen as polynomials in m

variables X1, . . . , Xn, Xn+1, . . . , Xm with coefficients in L. Thus, Z(m) (f1, . . . , fm) is

well-defined and

Z(m) (f1, . . . , fm) =




(z1, . . . , zn, zn+1, . . . , zm) ∈ Lm

∣∣∣∣∣
(z1, . . . , zn) ∈ Z(n) (f1, . . . , fm) ,

(zn+1, . . . , zm) ∈ Lm−n




.

Let Π denote the projection from Lm onto Ln which ignores the last m − n

coordinates:

Π : Lm 3 (z1, . . . , zn, zn+1, . . . , zm) 7→ (z1, . . . , zn) ∈ Ln.

Proposition 3.12. Let f1, . . . , fm be polynomials in n variables X1, . . . , Xn with co-

efficients in L. Furthermore, let

Z(n) (f1, . . . , fm) = V1 ∪ · · · ∪ Vl (3.20)

be the unique minimal decomposition of Z(n) (f1, . . . , fm) into a union of distinct ir-

reducible algebraic sets in Ln. For k = 1, . . . , l, define

Wk = Vk × Lm−n

=





(z1, . . . , zn, zn+1, . . . , zm) ∈ Lm

∣∣∣∣∣
(z1, . . . , zn) ∈ Vk,

(zn+1, . . . , zm) ∈ Lm−n




.

Then

Z(m) (f1, . . . , fm) = W1 ∪ · · · ∪Wl (3.21)

is the unique minimal decomposition of Z(m) (f1, . . . , fm) into a union of distinct ir-

reducible algebraic sets in Lm.
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Proof. It is easy to see that the equality (3.21) holds. It remains to be shown that

(3.21) is a decomposition of Z(m) (f1, . . . , fm) into a union of irreducible algebraic sets

in Lm and is actually the unique minimal decomposition.

For k = 1, . . . , l, a product Wk of an irreducible algebraic set Vk in Ln and an

irreducible algebraic set Lm−n is an irreducible algebraic set in Lm.

Because of the minimality of the decomposition (3.20) of Z(n) (f1, . . . , fm), Vi 6⊆
Vj for i 6= j, i.e., there exists a point (z1, . . . , zn) ∈ Vi \ Vj. Then, for every m − n
tuple (zn+1, . . . , zm) ∈ Lm−n, (z1, . . . , zn, zn+1, . . . , zm) is a point in Wi \ Wj, i.e.,

Wi 6⊆ Wj for i 6= j. Thus, (3.21) is a minimal decomposition of Z(m) (f1, . . . , fm) into

a union of distinct irreducible algebraic sets in Lm, and its uniqueness follows from

the minimality.

Corollary 3.13. Let f1, . . . , fm be polynomials in n variables X1, . . . , Xn with coeffi-

cients in L. Furthermore, let

Z(m) (f1, . . . , fm) = W1 ∪ · · · ∪Wl (3.22)

be the unique minimal decomposition of Z(m) (f1, . . . , fm) into a union of distinct

irreducible algebraic sets in Lm. Then

Z(n) (f1, . . . , fm) = Π (W1) ∪ · · · ∪ Π (Wl) (3.23)

is the unique minimal decomposition of Z(n) (f1, . . . , fm) into a union of distinct irre-

ducible algebraic sets in Ln.

Proof. Let Z(n) (f1, . . . , fm) = V1 ∪ · · · ∪ Vl′ be the unique minimal decomposition of

Z(n) (f1, . . . , fm) into a union of distinct irreducible algebraic sets in Ln. By Propo-

sition 3.12, Z(m) (f1, . . . , fm) = V1 × Lm−n ∪ · · · ∪ Vl′ × Lm−n is the unique minimal

decomposition of Z(m) (f1, . . . , fm) into a union of distinct irreducible algebraic sets
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in Lm. Thus, l′ = l and, relabeling if necessary, for k = 1, . . . , l, Wk = Vk × Lm−n

which implies Vk = Π (Wk).

Consider a system of m polynomials f1, . . . fm in n variables X1, . . . , Xn with

coefficients in K. Introducing m − n variables Xn+1, . . . , Xm, construct a square

system of m polynomials g1, . . . , gm in m variables X1, . . . , Xm with coefficients in K:

gi (X1, . . . , Xm)

= fi (X1, . . . , Xn) · (Xn+1 − an+1) · · · · · (Xm − am)

i = 1, . . . ,m, (3.24)

where an+1 . . . , am are some constants in K.

Let

Z(m) (f1, . . . , fm) = W1 ∪ · · · ∪Wl (3.25)

be the unique minimal decomposition of Z(m) (f1, . . . , fm) into a union of distinct

irreducible algebraic sets in Km
.

Proposition 3.14. Following the notations above,

Z(m) (g1, . . . , gm)

= W1 ∪ · · · ∪Wl ∪ Z(m) (Xn+1 − an+1) ∪ · · · ∪ Z(m) (Xm − am)

(3.26)

is the unique minimal decomposition of Z(m) (g1, . . . , gm) into a union of distinct ir-

reducible algebraic sets in Km
.
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Proof. The equality (3.26) holds since

Z(m) (g1, . . . , gm) =
m⋂

i=1

Z(m) (gi)

=
m⋂

i=1

(
Z(m) (fi) ∪

m⋃
j=n+1

Z(m) (Xj − aj)

)

=
m⋂

i=1

Z(m) (fi) ∪
m⋃

j=n+1

Z(m) (Xj − aj)

= Z(m) (f1, . . . , fm) ∪
m⋃

j=n+1

Z(m) (Xj − aj)

=
l⋃

k=1

Wk ∪
m⋃

j=n+1

Z(m) (Xj − aj)

where the first and the fourth equalities follow from (3.17), the second equality follows

from (3.18) and the last equality follows from (3.25).

All the components appearing on the right hand side of (3.26) are irreducible.

By assumption, W1, . . . ,Wl are all irreducible. Each Z(m) (Xj − aj) is the zero set of

a linear polynomial Xj − aj, and thus, is irreducible.

Furthermore, all the components appearing on the right hand side of (3.26) are

distinct. By assumption, Wi 6⊆ Wj for i 6= j. Any pair of Wk and Z(m) (Xj − aj)

are distinct because Wk contains a point whose j-th coordinate is not aj. If i 6= j

then Z(m) (Xi − ai) 6⊆ Z(m) (Xj − aj) since the former contains a point whose j-th

coordinate is not aj. Hence, the decomposition (3.26) is minimal, and its uniqueness

follows from the minimality.

Note that all the irreducible components of the unique minimal decomposition

of Z(m) (g1, . . . , gm) are of positive dimension; each Wk contains a copy of Km−n
and

each Z(m) (Xj − aj) contains a copy of Km−1
.

Suppose Algorithm RUR square will be applied to the square system of poly-
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nomials g1, . . . , gm in m variables with coefficients in K and univariate polynomi-

als h and h1, . . . , hm with coefficients in K are returned. These polynomials form

the RUR for some finite set Y
′

that contains at least one point from every irre-

ducible component of Z(m) (g1, . . . , gm). By Proposition 3.14, Y
′
contains at least one

point from each Wk: for k = 1, . . . , l, there exists a root θ (in K) of h such that

Wk 3 (h1 (θ) , . . . , hm (θ)). By Proposition 3.12 and Corollary 3.13, there is a bi-

jective correspondence between irreducible components V1, . . . , Vl of Z(n) (f1, . . . , fm)

and irreducible components W1, . . . ,Wl of Z(m) (f1, . . . , fm), and Vk = Π (Wk) for

k = 1, . . . , l. Thus, for k = 1, . . . , l, there exists a root θ (in K) of h such that

Vk 3 (h1 (θ) , . . . , hn (θ)). Hence, the set

Z
′
= Π

(
Y
′)

=
{
(h1 (θ) , . . . , hn (θ)) | θ ∈ K with h (θ) = 0

}

contains at least one point from every irreducible component of Z(n) (f1, . . . , fm).

In particular, Z
′
contains all the isolated roots of the input system of polynomials

f1, . . . , fm in n variables.

Algorithm RUR overconstrained

Input: f1, . . . , fm ∈ K [X1, . . . , Xn].

Output: h, h1, . . . , hn ∈ K [T ] forming the RUR for some finite set Z
′
which contains

all the isolated common roots of the input system as well as at least one point

from every irreducible component of the zero set of the input system.

1: for i := 1, . . . ,m do:

2: gi (X1, . . . , Xm)← fi (X1, . . . , Xn)·(Xn+1 − an+1)·· · ··(Xm − am) where

an+1, . . . , am are some constants in K.
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3: call Algorithm RUR square on the input g1, . . . , gm ∈ K [X1, . . . , Xm] to compute

h, h1, . . . , hm ∈ K [T ] forming the RUR for some finite set Y
′
which contains at

least one point from every irreducible component of the zero set (in Km
) of the

system of polynomials g1, . . . , gm

4: discard hn+1, . . . , hm to obtain h, h1, . . . , hn ∈ K [T ] forming the RUR for Z
′

One may suspect that the RUR for (some finite subset of) Z(m) (f1, . . . , fm) may

be computed via Algorithm RUR square by simply treating polynomials f1, . . . , fm

as polynomials in m variables X1, . . . , Xm instead of generating g1, . . . , gm. Un-

fortunately, this is not so. Recall that all irreducible components W1, . . . ,Wl of

Z(m) (f1, . . . , fm) are of positive dimension. In order to compute the RUR for (some

finite subset of) the zero set of positive dimension, the input system of polynomials

f1, . . . , fm must be perturbed by auxiliary polynomials f ∗1 , . . . , f
∗
m with the conditions

(1) the support of f ∗i is contained in the support of fi for i = 1, . . . ,m, and

(2) f ∗1 , . . . , f
∗
m have only finitely many common roots in Km

. (See step 9 of Algorithm

RUR toric square.)

Suppose the condition (1) is satisfied. Since variables Xn+1, . . . , Xm do not appear in

the supports of f1, . . . , fm, they are not in the supports of f ∗1 , . . . , f
∗
m. Then, the zero

set of f ∗1 , . . . , f
∗
m never becomes finite; it always contains Km−n

. Thus, there is no

system of polynomials f ∗1 , . . . , f
∗
m satisfying the above two conditions simultaneously,

and step 9 of Algorithm RUR toric square always fails.

3.1.2.3 RUR for Underdetermined Systems

Consider a system of m polynomials f1, . . . , fm in n variables with coefficients in K.

Assume m < n. Then, we can construct a square system by adding n−m copies of
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fm to the input system and use Algorithm RUR square.

In general, the zero set of an underdetermined system has some positive dimen-

sional components. Our algorithm cannot find them, but just picks up finitely many

points on them. This is not very interesting, as the result is nearly meaningless in

any real application.

3.1.2.4 Algorithm RUR

Putting the results from the previous sections together, given a system of m poly-

nomials f1, . . . , fm in n variables with coefficients in K, even though m 6= n, we can

compute the RUR for some set Z
′
which contains all the isolated common roots of

the input system in Kn
(rather than in (K∗)n) as well as at least one point from every

irreducible component of the zero set of the input system.

Algorithm RUR

Input: f1, . . . , fm ∈ K [X1, . . . , Xn].

Output: h, h1, . . . , hn ∈ K [T ] forming the RUR for some finite set Z
′
which contains

all the isolated common roots of the input system as well as at least one point

from every irreducible component of the zero set of the input system.

1: if m > n then

2: call Algorithm RUR overconstrained to compute h, h1, . . . , hn ∈
K [T ] forming the RUR for Z

′

3: else if m = n then

4: call Algorithm RUR square to compute h, h1, . . . , hn ∈ K [T ] forming

the RUR for Z
′
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5: else /* if m < n then */

6: g1 ← f1, . . . , gm ← fm, gm+1 ← fm, . . . , gn ← fm

7: call Algorithm RUR square on the input g1, . . . , gn to compute

h, h1, . . . , hn ∈ K [T ] forming the RUR for Z
′

3.1.3 Real Solving via RUR

Consider a square system of polynomials f1, . . . , fn in n variables with coefficients in

Q. Assume MV−0 > 0. We have seen that we are able to compute the RUR for some

set Z
′ ⊆ (C∗)n. The value of the i-th coordinate of a point in Z

′
can be obtained

by evaluating the univariate polynomial hi with coefficients in Q at some root θ of

the univariate polynomial h with coefficients h. If θ ∈ R then, obviously, hi (θ) ∈ R.

In this section, we will show that, under a certain condition, the converse is also

true. Although the result in this section sounds trivial, it is very important from the

computational view point.

Our goal is to develop an algorithm for solving a system of a multivariate polyno-

mials with coefficients in Q. Via the RUR, a multivariate polynomial system solving

problem can be reduced to a univariate polynomial system solving problem. But,

there is no algebraic method for computing the values of complex roots of the uni-

variate polynomial h with coefficients in Q exactly. Thus, the RUR cannot be applied

for exact solving a system of multivariate polynomials with coefficients in Q. On the

other hand, we are able to isolate all the real roots of h. Furthermore, we are also

able to approximate the value of a real root of h to any given precision. Together with

the results in this section, we are able to perform the exact computation over the real

algebraic numbers given as coordinates of common roots of a system of multivariate

polynomials with coefficients in Q.
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Consider a square system of n polynomials f1, . . . , fn in n variables with rational

coefficients. Let Z be the zero set of the input system (in Cn). Suppose that Algorithm

RUR square is called on the input f1, . . . , fn and returns the univariate polynomials

h and h1, . . . , hn with rational coefficients forming the RUR for some finite set Z
′
.

The set Z
′
contains all the isolated common roots of the input system.

Proposition 3.15. For any root θ of h,

θ ∈ R ⇔ (h1 (θ) , . . . , hn (θ)) ∈ Rn. (3.27)

Proof. The necessary condition is obvious. Thus, we only need to show the sufficient

condition.

Rewriting (3.14), θ = −∑n
l=1 ul · hl (θ). By Remark 3.11, u1, . . . , ul ∈ Z. Hence,

h1 (θ) , . . . , hn (θ) ∈ R⇒ θ ∈ R.

If Z is of dimension zero then all the common roots of the input system are

isolated, and thus, Z
′ ⊇ Z. Hence, the set

Z
′
R = {(h1 (θ) , . . . , hn (θ)) | θ ∈ R with h (θ) = 0} ⊆ Rn

contains all the real roots of the input system. Therefore, our algorithm can be used

for real solving of zero dimensional square systems.

On the other hand, if Z is of positive dimension then there may be some real

roots of the input system which are not contained in Z
′
R. Algorithm RUR square

picks up least one point from each of the positive dimensional components of Z.

These positive dimensional components of Z contain finitely or infinitely many real

points. However, there is no guarantee that the points picked up by the algorithm

are real, even if there are only finitely many real roots on some positive dimensional

components. Note that Proposition 3.15 still holds, though it is not useful in this
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case.

3.2 Examples

In this section, we give examples that illustrate the results and shortcomings of our

algorithms. Due to the limited space to display results, all the examples listed are of

low dimension.

Example F1:

Consider a system F1 of 2 polynomials in 2 variables with integer coefficients:

f1 = 1 + 2X − 2X2Y − 5XY +X2 + 3X3Y,

f2 = 2 + 6X − 6X2Y − 11XY + 4X2 + 5X3Y
(3.28)

The zero set of F1 consists of 2 isolated points (1, 1) ,
(

1
7
, 7

4

)
and 1 irreducible compo-

nent X = −1 of dimension 1.

The RUR for the zero set of F1 is computed as follows:

h (T ) = 84T 4 + 306T 3 − 574T 2 − 1545T + 1989,

h1 (T ) = −T − r1,1(T )

r1,0(T )
,

h2 (T ) = −T − r2,1(T )

r2,0(T )

(3.29)
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where

r1,1 (T ) =− 1382279494376841984T 3 − 5914280670220800T 2

+ 9458729449441411392T − 8992070973148449600,

r1,0 (T ) =− 396314714894789376T 3 − 1262397960878976T 2

+ 2717758211316680448T − 2585831836226329728,

r2,1 (T ) =− 541204302243578448279294533632

3176523
T 3

− 3120374299759092128055296

27
T 2

+
1069598558052109058795873435648

1058841
T

− 262531016085535220116679598080

352947
,

r2,0 (T ) =− 9874040237517291328323911680

151263
T 3

+
1904111379091981805699072

27
T 2

+
90160740289030972717139378176

151263
T

− 36109849182685470578177769472

50421
.

The univariate polynomial h has 4 roots θ and the values of the real and imaginary

parts of h1 (θ) and h2 (θ) are approximated as follows:

( <h1 (θ) , =h1 (θ) ), ( <h2 (θ) , =h2 (θ) )

( −1 , −1.0561× 10−46 ), ( −0.32019 , −1.6753× 10−47 )

( 1 , 1.6658× 10−47 ), ( 1 , 8.0503× 10−48 )

( 0.14286 , 1.0519× 10−51 ), ( 1.75 , 1.0512× 10−51 )

( −1 , −5.2409× 10−43 ), ( 0.19519 , −3.5186× 10−40 )

The table above suggests that, for the RUR computed as (3.29), we find 2 isolated

roots along with 2 points on the positive dimensional component.



69

Example F2:

Consider a system F2 of 3 polynomials in 3 variables with integer coefficients:

f1 = X2 + Y 2 + Z − 1,

f2 = X2 + Y 2 − Z + 1,

f3 = Z − 1.

(3.30)

It is easy to see that F2 has one and only one real root (0, 0, 1) which actually lies

on the intersection of 2 complex positive dimensional components
{(−√−1Y, Y, 1

)}

and
{(√−1Y, Y, 1

)}
of the zero set of the input system.

The univariate polynomial h in the RUR for the zero set of F2 is computed as

follows:

h = −T 4 − 4T 3 − 6T 2 − 4T − 5. (3.31)

Since the degree of h is 4, the RUR for the set determines 4 points lying on the

positive dimensional components. By using Sturm’s method, we can easily see that

h has no real roots. Thus, by Proposition 3.15, none of those 4 points are real.

In general, if the zero set of the input system has some positive dimensional

components on which there are only finitely many real points then our algorithm

often will not pick up (some or all of) these real points. See Section 3.1.3.

Example F3:

Let L3 be a system of 3 linear polynomials in 3 variables with integer coefficients:

l1 = 3X − Y − 1,

l2 = X − Y + 1,

l3 = X + Y − 3.

(3.32)

The zero set of L3 consists of a single point (1, 2).
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Now, consider a system F3 of 3 polynomials 2 in variables with integer coefficients:

f1 = l2 · l3 = X2 − 2X − Y 2 + 4Y − 3,

f2 = l1 · l3 = 3X2 + 2XY − 10X − Y 2 + 2Y + 3,

f3 = l1 · l2 = 3X2 − 4XY + 2X + Y 2 − 1.

(3.33)

By construction, we immediately see that the zero set of F3 consists of a single point

(1, 2). Note, however, the zero sets of any subsystem consisting of 2 polynomials has

a positive dimensional component. (The subsystems (f1, f2), (f1, f3) and (f2, f3) have

positive dimensional components l3, l2 and l1, respectively.) Thus, an approach such

as finding solutions for one pair of equations and “checking” them the third equation

would not be sufficient.

Since F3 is an overdetermined system, Algorithm RUR overconstrained con-

structs a square system G3 of 3 polynomials in 3 variables with rational coefficients:

g1 = f1 · (Z − 1) = (X2 − 2X − Y 2 + 4Y − 3) (Z − 1) ,

g2 = f2 · (Z − 1) = (3X2 + 2XY − 10X − Y 2 + 2Y + 3) (Z − 1) ,

g3 = f3 · (Z − 1) = (3X2 − 4XY + 2X + Y 2 − 1) (Z − 1) .

(3.34)

The univariate polynomial h in the RUR for the zero set of G3 is computed as

follows:

h = −5505024000T 10 − 391643136000T 9

−9566787993600T 8 − 43491325378560T 7

+2475168513392640T 6 + 58123559884554240T 5

+571184791525785600T 4 + 2276891395149004800T 3

−4405394155933532160T 2 − 70411662389988556800T

−176330303770208501760.

(3.35)

Likewise, but not shown here, we compute h1, h2, and h3. The RUR for the zero set
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of F3 is obtained from the RUR of the zero set of G3 by ignoring the last coordinate

(i.e. ignoring h3). Evaluating h1 and h2 at roots of h gives us multiple points at the

single location (1, 2).

3.3 Complexity Analysis

In this section, we give a worst-case asymptotic complexity analysis of Algorithm

RUR toric square described in Section 3.1.1.

The computational model used here is either the Turing machine or the BSS

machine [6]. If K is Q or some finite field then the algorithm can be implemented

on Turing machines (or existing computers). On the other hand, if K is R or C then

the algorithm cannot be implemented (exactly) on Turing machines. In this case, the

BSS machine over R or C is used. On the BSS machine over a field K, an arithmetic

operation over K is done in constant time, and thus, roughly speaking, the time com-

plexity of a given algorithm matches the number of arithmetic operations over K.

In order to make a valid argument on either of those computational models, in this

section, we only consider the arithmetic complexity (the number of arithmetic oper-

ations) of the algorithm. The bit-length of the quantities appearing in the algorithm

is not discussed here, but some discussion of the practical performance can be found

in Section 6.1.1.2.

The following notations are used:

Let O∗ ( ) denote a big oh notation in which a polylog factor is ignored:

O∗ (n) = O (n logr n) for some r ≥ 0. Also, let ω be the constant so that the

matrix multiplication of two square matrices of dimension l takes O (lω) arithmetic

operations. It is well-known that ω < 2.376.
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3.3.1 Arithmetic Complexity Analysis

Consider a square system of polynomials f1, . . . , fn in n variables with coeffi-

cients in K. Let Ai be the support of fi for i = 1, . . . , n. Suppose Algorithm

RUR toric square is called on the input f1, . . . , fn and A1, . . . , An and returns the

RUR for some finite subset Z ′ of the zero set Z of the input system. The algorithm

sets the support A0 of f0 so that f0 is a linear polynomial.

We introduce two quantitiesM and N .

As before, let MV−i denote the mixed-volume of the convex hulls of

A0, A1, . . . , Ai−1, Ai+1, . . . , An. (See Section 2.1.1.1.) DefineM =
∑n

i=0 MV−i. Thus,

M is the degree of the toric resultant.

Step 7 of the algorithm constructs the toric resultant matrix N whose determi-

nant is some non-trivial multiple of the toric resultant. Let N = dimN .

Step 18 or step 26 of the algorithm determines the cardinality M of Z ′ which

matches the degree of the univariate polynomial h in the RUR.

Recall the following facts [97]:

• Given l + 1 distinct values in K, a unique univariate polynomial of degree at

most l with coefficients in K that takes those values at l+1 distinct points in K

can be computed via interpolation using O∗ (l) arithmetic operations over K.

• Given two univariate polynomials with coefficients in K of degree at most l,

their GCD is computed using O∗ (l) arithmetic operations over K. Thus, given

a univariate polynomial with coefficients in K of degree at most l, its square

free part is computed using O∗ (l) arithmetic operations over K.

The value of the toric resultant for a system of n + 1 polynomials in n vari-

ables with supports A0, A1, . . . , An and with arbitrary but fixed coefficients in K is
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calculated using O∗ (nMN ω) arithmetic operations over K [32] [14].

The arithmetic complexity of the algorithm is governed by the loop from step

13 through step 25 or the loop from step 26 through 36.

By (2.5), degs TGCP (s,u) =
∑n

i=1 MV−i = M− MV−0, and thus, the coef-

ficients of TGCP (s,u) at fixed u (regarded as a univariate polynomial in s) are

computed via interpolation using O∗ (nM2N ω) arithmetic operations over K.

By (2.4), degT TPert (T, u1, . . . , un) = MV−0. Thus, at step 15 or step

28, TPert (T, u1, . . . , un) at fixed (u1, . . . , un) is computed via interpolation using

O∗ (nMV−0M2N ω) arithmetic operations over K, and at step 16 or step 29, the

square-free part of TPert (T, u1, . . . , un) is computed using O∗ (MV−0) arithmetic op-

erations over K.

By the same argument as the previous paragraph, for i = 1, . . . , n, at step

33, TPert (t, u1, . . . , ui−1, ui ± 1, ui+1, . . . , un) at fixed (u1, . . . , un) are computed using

O∗ (nMV−0M2N ω) arithmetic operations over K, and at step 34, q±i (t) are computed

using O∗ (MV−0) arithmetic operations over K. Hence, the for loop from step 33

through step 36 is executed using O∗ (n2MV−0M2N ω) arithmetic operations over K.

By Proposition 3.9, the loop from step 13 through step 25 is repeated

O
(
nMV2

−0

)
times, and each iteration uses O∗ (nMV−0M2N ω) arithmetic operations

over K. Thus, in total, the number of arithmetic operations over K needed to process

this loop is O∗ (
n2MV3

−0M2N ω
)
.

By Proposition 3.10, the loop from step 26 through step 36 is repeated O (n2M2)

times, and each iteration uses O∗ (n2MV−0M2N ω) arithmetic operations over K.

Thus, in total, the number of arithmetic operations over K needed to process this

loop is O∗ (n4M2MV−0M2N ω).

Putting all together, the univariate polynomials h and h1, . . . , hn forming the
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RUR are computed using O∗ (
n2

(
MV2

−0 + n2M2
)
MV−0M2N ω

)
arithmetic opera-

tions over K.

By (3.4), MV−0 ≥ M . The equality holds if Z ′ does not contain any multiple

root of the input system. In this case, the loop from step 26 through step 36 governs

the complexity of the algorithms. On the other hand, if Z ′ contains some multiple

roots of the input system then TPert (T, u1, . . . , un) is not square-free and

degT TPert (T, u1, . . . , un) = MV−0 > M = deg h. (3.36)

In this case, there is a slight chance that the loop from step 13 through 25 takes

more arithmetic operations over K than the loop from step 26 through step 36.

When the loop from step 13 through 25 is executed, M has not yet been determined.

On the other hand, the loop from step 26 through step 36 is executed after M is

correctly determined. Thus, the loop from step 26 through step 36 does not have to

be repeated unnecessarily.

3.3.1.1 M and N

We have seen that the arithmetic complexity of the algorithm is expressed in terms

of M and N . In this section, we consider how the relation of those two quantities

affect the complexity of the algorithm.

When the characteristic of K is 0, at step 15 or step 28 or step 33,

TPert (T, u1, . . . , un) at fixed (u1, . . . , un) (regarded as a univariate polynomial in

T ) is computed via interpolation through the values of the coefficient of the term sd

in some non-trivial multiple of TGCP (s,u) instead of the values of the coefficient

of the term sd in TGCP (s,u) without any extraneous factor. Recall that the value

of any coefficient of some non-trivial multiple of TGCP (s,u) is interpolated from

the values of detN while the value of any coefficient of TGCP (s,u) without any ex-



75

traneous factor is interpolated from the values of TRes (f0, f1 − sf ∗1 , . . . , fn − sf ∗n).

Recall that calculation of the explicit value of the toric resultant requires addi-

tional steps to eliminate the contribution of the extraneous factor from the value

of detN . That is, any coefficient of some non-trivial multiple of TGCP (s,u) is

computed without executing these additional steps. (See Section 3.1.1.) In such a

case, TPert (T, u1, . . . .un) at fixed (u1, . . . , un) is computed using O∗ (MV−0N 1+ω)

arithmetic operations over K, and thus, the number of arithmetic operations over K

needed to compute univariate polynomials h and h1, . . . , hn forming the RUR becomes

O∗ (
n

(
MV2

−0 + n2M2
)
MV−0N 1+ω

)
.

The quantity N actually depends on the algorithm used to construct the re-

sultant matrix N . From (2.2) and (2.3), N ≥ M. However, no algorithm that

constructs an optimal N (i.e., N satisfying N = M) has been found except for

very small n [62] [63]. Even if the best algorithm currently known is used, there

is a risk that N becomes exponentially bigger than M [32] [14]: N = O
(

en√
n
M

)
.

Thus, asymptotically, the cost for additional steps to eliminate the extraneous fac-

tor will be negligible compared to the cost for interpolations through the values of

the determinant of a bigger matrix. Hence, even if the characteristic of K is 0, the

“best” worst-case arithmetic complexity of Algorithm RUR toric square remains

O∗ (
n2

(
MV2

−0 + n2M2
)
MV−0M2N ω

)
. In practice, N rarely becomes exponentially

bigger than M. This matter is discussed more later in Section 6.1. Nevertheless,

developing an algorithm for computing a resultant matrix of smaller (or the smallest)

size is still an active area of research.
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CHAPTER IV

EXACT COMPUTATION FOR ALGEBRAIC POINTS AND CURVES

This chapter explains a method for exact manipulation of algebraic points and curves.

In Section 4.1, I describe the root bound approach to exact determination of the sign of

the real and imaginary parts of a given algebraic number. Together with the Rational

Univariate Reduction (RUR) introduced in Chapter III, exact sign determination of

the real and imaginary parts of algebraic numbers enables me to develop some exact

geometric predicates for algebraic points and curves (Section 4.2). As an application

of these predicates, in Section 4.3, I discuss how to detect degeneracies appearing in

exact boundary evaluation of solid objects.

4.1 Exact Computation for Complex Algebraic Numbers

This section describes the root bound approach to exact determination of the sign of

the real and imaginary parts of a given algebraic number.

For a complex algebraic number ζ, write <ζ and =ζ for the real and imaginary

parts of ζ:

ζ = <ζ +
√−1=ζ. (4.1)

Note that both <ζ and =ζ are real algebraic numbers.

In Section 2.1.2.2, I explain the root bound approach to exact sign determina-

tion of a real algebraic number of the form e (ξ1, . . . , ξn) where ξi is a real root of

a univariate polynomial with rational coefficients and e is an algebraic expression

involving +,−, ∗, / and k
√

. In this section, this approach will be extended to exact

sign determination of the real and imaginary parts of a complex algebraic number.

Thus, the goal of this section is stated as follows:
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Let e be an expression in m variables with rational coefficients. Furthermore, let

ζ1, . . . , ζm be complex algebraic numbers. We would like to determine the sign of the

real and imaginary parts of the complex algebraic number e (ζ1, . . . , ζm) exactly.

Set eR and eI to be rational functions in 2m variables with rational coefficients

that satisfy

e (ζ1, . . . , ζm) = eR (<ζ1, . . . ,<ζm,=ζ1, . . . ,=ζm)

+
√−1eI (<ζ1, . . . ,<ζm,=ζ1, . . . ,=ζm) .

(4.2)

For example, if e (ζ) = ζ2 then eR (<ζ,=ζ) = (<ζ)2−(=ζ)2 and eI (<ζ,=ζ) = 2<ζ=ζ.
We will apply the root bound approach to exact sign determination of the real

algebraic numbers (introduced in Section 2.1.2.2) to these two real algebraic numbers

eR = eR (<ζ1, . . . ,<ζm,=ζ1, . . . ,=ζm) and eI = eI (<ζ1, . . . ,<ζm,=ζ1, . . . ,=ζm) .

The root bounds for eR and eI and approximations ẽR and ẽI for eR and eI , respec-

tively, to any prescribed precision are computed by using recursive rules (introduced

in Section 2.1.2.2). In order to complete the adaption, the base cases of recursion

must be treated. Thus, the remaining task is stated as follows:

Let ζ be a complex algebraic number specified as a root of a univariate polynomial

e with rational coefficients. For real numbers <ζ and =ζ, we would like to compute

(1) “constructive” bounds for the degree and Mahler measure of <ζ and =ζ, and

(2) approximations for the real and imaginary parts of ζ to any prescribed precision.

For (2), Aberth’s method [1] is used to compute approximations for the (real and

imaginary parts of) roots of univariate polynomials with rational coefficients. The

method is implemented with floating point numbers with arbitrary precision mantissa

in order to obtain an approximation to any given precision.
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For (1), we first find univariate polynomials with integer coefficients Re and Ie

such that Re (<ζ) = Ie (=ζ) = 0 (Proposition 4.16 below). We then calculate bounds

on the degrees and measures of <ζ and =ζ from the degrees and coefficients of Re

and Ie (Proposition 4.17 below).

In the rest of this section, we assume, for simplicity, that all the polynomials

have integer coefficients. The results are still valid for polynomials with rational

coefficients.

Proposition 4.16. Let ζ be an algebraic number specified as a root of a polynomial

e (T ) ∈ Z [T ]. Write SResU (f, g) for the Sylvester resultant of univariate polynomials

f and g w.r.t. variable U . Then

(1) <ζ is a real algebraic number and a root of

Re (T ) =
m∑

i=0

2isiT
i ∈ Z [T ]

where
∑m

i=0 siT
i = SResU (e (T − U) , e (U)).

(2) =ζ is a real algebraic number and a root of

Ie (T ) =

bm
2
c∑

j=0

22j (−1)j s2jT
2j ∈ Z [T ]

where
∑m

i=0 siT
i = SResU (e (T + U) , e (U)).

Proof. Recall that, for f and g ∈ Z [T ], if α and β are roots of f and g, respectively,

then α± β is a root of SResU (f (T ∓ U) , g (U)) [97].

If ζ is a root of e then its complex conjugate ζ is also a root of e. Thus, the sum

ζ + ζ = 2<ζ of two roots of e is a root of SResU (e (T − U) , e (U)).

Similarly, the difference ζ − ζ = 2
√−1=ζ of two roots of e is a root of

SResU (e (T + U) , e (U)).
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If 2ξ is a root of
∑m

i=0 siT
i then ξ is a root of

∑m
i=0 2isiT

i.

If, for ξ ∈ R,
√−1ξ is a root of

∑m
i=0 siT

i then ξ is a root of
∑bm

2
c

j=0 (−1)j s2jT
2j.

Putting these together, the statements in the proposition hold.

By Gauß’s lemma, if α is a root of a polynomial e (T ) =
∑n

i=0 eiT
i ∈ Z [T ] with

ene0 6= 0 then degα ≤ deg e and M (α) ≤ M (e). By Landau’s theorem [70], for

e (T ) ∈ Z [T ], M (e) ≤ ||e||2 =
√∑n

i=0 |ei|2. Thus, we could use deg e and ||e||2 as

“constructive” upper bounds on degα and M (α).

Proposition 4.17. Following the notation above

(1) deg<ζ ≤ degRe ≤ deg2 e,

M (<ζ) ≤M (Re) ≤ ||Re||2 ≤ 22n2+n ||e||2n
2 ,

(2) deg=ζ ≤ deg Ie ≤ deg2 e and

M (=ζ) ≤M (Ie) ≤ ||Ie||2 ≤ 22n2+n ||e||2n
2 .

Proof. (1) It can be shown [101] that, for f and g ∈ Z [T ],

deg SResT (f (T ) , g (T )) ≤ deg f deg g and

||SResU (f (T − U) , g (U))||2 ≤
(
2deg f+1 ||f ||2

)deg g ||g||deg f
2 .

Thus

m = deg
m∑

j=0

sjT
j = deg SResU (e (T − U) , e (U)) ≤ deg2 e = n2

and ∣∣∣
∣∣∣∑m

j=0 sjT
j
∣∣∣
∣∣∣
2

= ||SResU (e (T − U) , e (U))||2
≤ (

2deg e+1 ||e||2
)deg e ||e||deg e

2

= 2n2+n ||e||2n
2 .
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Hence ∣∣∣
∣∣∣∑m

j=0 2jsjT
j
∣∣∣
∣∣∣
2

=
√∑m

j=0 22j |sj|2

≤
√∑m

j=0 22m |sj|2

= 2m
√∑m

j=0 |sj|2

= 2m
∣∣∣
∣∣∣∑m

j=0 sjT
j
∣∣∣
∣∣∣
2

≤ 2n2
(
2n2+n ||e||2n

2

)
.

(2) The proof is similar to (1).

The argument in this section is summarized to the following proposition:

Proposition 4.18. Let e (X1, . . . , Xm) be a rational function with rational coeffi-

cients. Also, let ζ1, . . . , ζm be algebraic numbers, each of which is specified as a root

of some univariate polynomial with rational coefficients. Assume that we are able to

compute approximations for the real and imaginary parts of each of ζ1, . . . , ζm to any

prescribed precision. Then, the sign of the real and imaginary parts of the algebraic

number e (ζ1, . . . , ζm) can be determined exactly.

4.2 Exact Computation for Algebraic Points and Curves

The goal of the discussion in this section is to develop some exact geometric predicates

for algebraic points and curves.

When an algebraic point is specified as a common root of a system of polynomi-

als, using the RUR (introduced in Chapter III), every coordinate of such an algebraic

point is expressed as (h1 (ζ) , . . . , hn (ζ)) where h1, . . . , hn are univariate polynomials

(or rational functions) with rational coefficients and ζ is some root of some other

univariate polynomial with rational coefficients. Thus, in general, every coordinate

of an algebraic points is expressed as e (ζ1, . . . , ζm) where e is a rational function with
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rational coefficients and each ζi is some root of some univariate polynomial with ratio-

nal coefficients. Together with the root bound approach to exact sign determination

of the real and imaginary parts of algebraic numbers (introduced in Section 4.1), the

sign of the real and imaginary parts of every coordinate of an algebraic point can be

exactly determined.

Section 4.2.1 describes a method for determining the sign of the real and imagi-

nary parts of the coordinates of an algebraic point expressed in the RUR. Section 4.2.2

discusses the development of some exact geometric predicates for algebraic points and

curves.

4.2.1 Exact Computation for RUR

In this section, first, I describe how to determine the exact sign of the real and

imaginary parts of the coordinates of an algebraic point expressed in the RUR (Section

4.2.1.1). Then, I present several algorithms for supporting exact computation for

algebraic points expressed in the RUR (Section 4.2.1.2).

4.2.1.1 Exact Sign for RUR

Let e be a rational function in n variables X1, . . . , Xn with rational coefficients. Also,

let Z ′ be a finite set of algebraic points in Cn. Furthermore, assume that there

exist univariate polynomials h, h1, . . . , hn with integer coefficients such that for every

point (ζ1, . . . , ζn) ∈ Z ′, (ζ1, . . . , ζn) = (h1 (θ) , . . . , hn (θ)) for some root θ ∈ C of h.

Algorithm Exact sign below determines whether or not e (ζ1, . . . , ζn) = 0 exactly.

Algorithm Exact sign

Input: e ∈ Q (X1, . . . , Xn) and h, h1, . . . , hn ∈ Z [T ].
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Output: The exact sign of the real and imaginary parts of e (h1 (θ) , . . . , hn (θ)) for

every root θ ∈ C of h.

1: Set rR and rI to be bivariate rational functions with integer coefficients such that

e (h1 (θ) , . . . , hn (θ)) = rR (<θ,=θ) +
√−1rI (<θ,=θ)

2: Recursively compute bounds for the degree and measure of algebraic numbers

rR = rR (<θ,=θ) and rI = rI<θ,=θ using Proposition 2.5. The base cases are

given in Proposition 4.17.

3: for every root θ ∈ C of h do:

4: Recursively compute approximations r̃R and r̃I for rR = rR (<θ,=θ)
and rI = rI (<θ,=θ), respectively, to a certain precision such that the

root bounds allow us to determine their signs by (2.7) or (2.8). The

base case, i.e., computing approximations for <θ and =θ to a certain

precision, are done by Aberth’s method.

Note that Algorithm Exact sign is an irregular application of the root bound

approach. The root bound approach is powerful when it is used to test whether a

given number IS NOT zero. If it is used to test whether a given number IS zero then

approximations we must compute approximations for the real and imaginary parts of

the number up to the precision specified by their root bounds, which usually costs a

lot.

4.2.1.2 Exact Computation for RUR

In Chapter III, I present Algorithm RUR that, given a system of m polynomials

f1, . . . , fm in n variables with rational coefficients, computes the RUR for some set Z
′
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that contains all the isolated common roots of the input system in Cn
as well as at

least one point from every irreducible component of the zero set of the input system.

Note the set Z
′
may contain some points that are not common roots of the input

system. Sometimes, we would like to remove this redundancy. Also, note that, if

the input system is not zero-dimensional, i.e., the input system has infinitely many

common roots then the finite set Z
′
cannot contain all the common roots of the input

system. We would like to know whether or not the input system is zero-dimensional.

The following algorithms solve these problems.

Algorithm Exact RUR removes the points that are not common roots of the

input system from Z ′, and thus, gives the exact RUR for some finite subset Z ′ of the

zero set of the input system that contains all the isolated common roots of the input

system as well as at least one point from every irreducible component of the zero set

of the input system.

Algorithm: Exact RUR

Input: f1, . . . , fm ∈ Q [X1, . . . , Xn].

Output: h, h1, . . . , hn ∈ Q [T ] and Θ ⊆ C such that Z ′ = {h1 (θ) , . . . , hn (θ) | θ ∈ Θ}
contains all the isolated common roots of the input system as well as at least

one point from every irreducible component of the zero set of the input system.

1: call algorithm RUR to compute h, h1, . . . , hn ∈ Q [T ] forming the RUR for some

finite set Z
′
that contains all the isolated common roots of the input system as

well as at least one point from every irreducible component of the zero set of the

input system

2: set Θ to be the set of all the roots of h
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3: for i := 1, . . . , n do:

4: for θ ∈ Θ do:

5: call Algorithm Exact sign to compute the exact sign σR and

σI of the real and imaginary parts of fi (h1 (θ) , . . . , hn (θ)), re-

spectively

6: if σR × σI 6= 0 then

7: Θ← Θ \ {θ}

The correctness and exactness of Algorithm Exact RUR immediately follow

from the correctness and exactness of Algorithm RUR and Algorithm Exact sign.

Next, I present a generic algorithm to determine whether or not the zero set

of a given system of polynomials with rational coefficients has positive dimensional

components.

Recall that Algorithm Exact RUR finds the RUR for some finite subset Z ′ of the

zero set Z of the input system that contains at least one point from every irreducible

component of Z. If Z is infinite (i.e., Z has positive-dimensional components) then

Z ′ depends on the polynomials f ∗1 , . . . , f
∗
n used to perturb the input system. (See step

9 in Algorithm RUR toric square in Section 3.1.1.1).

Suppose two distinct executions of Algorithm Exact RUR find two finite subsets

Z ′1 and Z ′2 of Z and their exact RUR’s:

Z ′k =
{(
h

(k)
1 (θk) , . . . , h

(k)
n (θk)

)
| h(k) (θk) = 0

}
, k = 1, 2. (4.3)

If ζ is an isolated common root of the input system then ζ ∈ Z ′1 ∩ Z ′2, and thus, ∃θ1
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and θ2 ∈ C such that

ζ =
(
h

(1)
1 (θ1) , . . . , h

(1)
n (θ1)

)
=

(
h

(2)
1 (θ2) , . . . , h

(2)
n (θ2)

)
. (4.4)

Hence, Z ′1 \ Z ′2 6= ∅ implies that Z has some positive dimensional components. We

can compare Z ′1 and Z ′2 pointwise using Algorithm Exact sign.

Algorithm Positive Dimensional Components

Input: f1, . . . , fm ∈ Q [X1, . . . , Xn] and a small positive integer Max Trials.

Output: True or Probably False

1: Has Pos Dim Compo← Probably False

2: Trial ← 0

3: while Trail < Max Trials and Has Pos Dim Compo = Probably False do:

4: call Algorithm Exact RUR to compute the exact RUR for some finite

subsets Z ′1 and Z ′2 of the zero set of the input system

5: call Algorithm Exact sign to compare Z ′1 and Z ′2 pointwise

6: if Z ′1 6= Z ′2 then

7: Has Pos Dim Compo← True

8: else

9: increment Trial

If the zero set Z of the input system has a positive dimensional component

and polynomials f ∗i are chosen generically, then almost always Z ′1 \ Z ′2 6= ∅. Thus,

Max Counts is usually set to be 2.
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Now, I present an algorithm to compute the real roots of a given square zero-

dimensional system of polynomials with rational coefficients.

Consider a system of n polynomials f1, . . . , fn in n variables with rational coef-

ficients. Let Z be the zero set of the input system (in Cn). Suppose that Algorithm

RUR square in Section 3.1.2.1 is called on the input f1, . . . , fn and returns the uni-

variate polynomials h and h1, . . . , hn with rational coefficients forming the RUR for

some finite set Z
′
. The set Z

′
contains all the isolated common roots of the input

system. If Z is zero-dimensional, i.e., Z is finite then all the common roots of the

input system are isolated, and thus, Z
′ ⊇ Z. Hence, the set

Z
′
R = {(h1 (θ) , . . . , hn (θ)) | θ ∈ R with h (θ) = 0} ⊆ Rn

contains all the real roots of the input system. Therefore, our algorithm can be used

for real solving of zero dimensional square systems.

Algorithm Exact RUR real

Input: A zero-dimensional system of polynomials f1, . . . , fn ∈ Q [X1, . . . , Xn]

Output: h, h1, . . . , hn ∈ Q [T ] and Θ ⊆ R such that Z = {h1 (θ) , . . . , hn (θ) | θ ∈ Θ}
is the set of all the real common roots of the input system.

1: call Algorithm RUR square to compute h, h1, . . . , hn ∈ Q [T ] forming the RUR

for the zero set of the input system

2: use Sturm’s method to compute the set Θ of all the real roots of h

3: for i := 1, . . . , n do:

4: for θ ∈ Θ do:
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5: use the root bound approach to determine the exact sign σ of

fi (h1 (θ) , . . . , hn (θ))

6: if σ 6= 0 then

7: Θ← Θ \ {θ}

It is important to note the algorithm Exact RUR real works correctly only if

the system has finitely many common roots. In particular, the algorithm may not be

able to find real points lying on some (complex) positive dimensional components.

4.2.2 Exact Geometric Computation

The objects dealt with in computational geometry are sets of points in a vector space

over the field K. We assume that a coordinate system is introduced to the space so

that every point can be represented as a tuple of numbers belonging to K, a certain

type of metric is defined, and the topology induced from the metric is endowed to the

space. For simplicity, in the rest of this chapter, we assume that K = R.

These sets of points are not necessarily finite, but they must be finitely specifiable

so that they are encoded as a string of finite length in algorithms. Thus, in addition

to sets of finitely many individual points, computational geometry also deals with

curves, surfaces, portions of curves, portions of surfaces, and solid objects.

An algebraic curve is implicitly described as the zero set of some polynomial.

An algebraic curve of a certain type may be represented parametrically as a tuple

of rational functions. For simplicity, we only deal with algebraic curves defined by

polynomials with rational coefficients.

An algebraic point is defined to be an intersection of algebraic curves. The

coordinates of an algebraic point are algebraic numbers. In particular, the coordinates
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of real algebraic points are real algebraic numbers. Note that they are possibly

irrational. A real algebraic number is specified as the unique root of some polynomial

with rational coefficients in some interval on R. The endpoints of this interval can be

chosen to be rational numbers. Likewise, a real algebraic point can be represented

as an n-dimensional hypercube. The corners of this hypercube can be set to have

rational coordinates.

Let an algebraic point x be represented by some hypercube. Any point contained

in the hypercube can be used as an approximation of x. The size of the hypercube

corresponds to an upper bound for the (absolute) error of these approximations.

The smaller the hypercube is, the more precise the approximations are. Usually,

the hypercube can shrink into any size so that it stores approximations to arbitrary

precision.

The drawback of this hypercube representation of algebraic points is that we

may not able to tell whether or not

(1) two given points x and y are identical, or

(2) a given point x lies on a given curve C.

Since (1) reduces to (2), we only consider (2). The query is answered by testing

whether or not C intersects with the hypercube representing x. If C does not intersect

with the hypercube representing x then we know that x does not lie on C. On

the other hand, if C intersects with the hypercube representing x then we cannot

distinguish the case where x really does lie on C from the case where x actually does

not lie on C but the hypercube has not yet shrunk enough.

This situation is resolved if we somehow can predict how small the hypercube

must be (or how precise an approximation contained in the hypercube must be) in

order to make a correct decision. I show that, provided that the exact RUR is used
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for representing algebraic points, such precision can be calculated via the root bound

approach to exact sign determination of algebraic numbers.

Proposition 4.19. Assume a real algebraic point x is specified as either

(1) a tuple of algebraic numbers, or

(2) an intersection of algebraic curves defined as a common root of some polynomials

with rational coefficients, or

(3) the result of a vector space addition/subtraction applied to other algebraic points,

or

(4) the product of a rational number and another algebraic point.

In any case, there exist rational functions e1, . . . , en with rational coefficients and

algebraic numbers ζ1, . . . , ζm each of which is specified as some root of some univariate

polynomial with rational coefficients such that

x = (e1 (ζ1, . . . , ζm) , . . . , en (ζ1, . . . , ζm)) . (4.5)

Proof. The first case where x is specified as a tuple of algebraic numbers is straight-

forward.

For the case (2), the exact RUR provides this representation.

The case (3) and (4) are obtained recursively in an obvious way.

I present here some algorithms to support exact manipulation of algebraic points

in some space. These algorithms are referred to later in Section 4.3.

Proposition 4.20. Let f be a polynomial in n variables with rational coefficients and

let x be an n-dimensional algebraic point x specified as in Proposition 4.19. Then,

whether or not f (x) = 0 is tested exactly.
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Proof. By Proposition 4.19, x is expressed as

x = (e1 (ζ1, . . . , ζm) , . . . , en (ζ1, . . . , ζm)) . (4.6)

where e1, . . . , em are rational functions with rational coefficients and each of ζ1, . . . , ζm

is an algebraic number specified as some root of some univariate polynomial with

rational coefficients. Let g be a composition of f and e1, . . . , en:

g (X1, . . . , Xm) = f (e1 (X1, . . . , Xm) , . . . , en (X1, . . . , Xm)) . (4.7)

Then, g is a rational function with rational coefficients. Thus, by Proposition 4.18,

the sign of the real algebraic number

f (x) = f (e1 (ζ1, . . . , ζm) , . . . , en (ζ1, . . . , ζm)) = g (ζ1, . . . , ζm) (4.8)

is exactly determined via the root bound approach.

Corollary 4.21. Let x and y be algebraic points. Then, the query whether or not x

and y are identical is determined exactly.

Proof. Define

fi (X1, . . . , Xn) = Xi, i = 1, . . . , n. (4.9)

That is, fi just extracts the i-th coordinate of a point. Then, x and y are identical iff

f1 (x− y) = · · · = fn (x− y) = 0. (4.10)

The last equalities are exactly examined by Proposition 4.20.
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4.3 Degeneracy Detection in Geometric Solid Modeling

This section describes how the techniques introduced in the previous section is applied

to an actual geometric problem, using degeneracy detection appearing in boundary

evaluation of solid objects as an example.

4.3.1 Boundary Evaluation

Consider a solid modeling system that computes the boundary representation (b-rep)

of a solid object in R3 given as a Constructive Solid Geometry (CSG) tree of solid

objects. Leaves of a CSG tree correspond to “primitive” solid objects such as cubes,

spheres, cylinders, etc., and each internal node is marked by one Boolean operation

(union, intersection, or difference). We traverse a CSG tree from the bottom up and,

at each internal node, perform boundary evaluation, meaning we find a representation

of the boundary of the solid object formed by applying the Boolean operation on the

solid objects represented by the two child subtrees. For every pair of surface patches

of these two solid objects, we compute their intersection to form the surface patches

of the resulting solid object. In order to make a geometric modeling system robust,

(1) exact computation is used to eliminate numerical errors, and

(2) degenerate configurations of the input solid objects must be handled.

Towards goal (2), first degeneracies must be detected. This degeneracy detection ap-

pearing in boundary evaluation is our focus here. Degeneracies are found by checking

for irregular interaction of surface patches.

Any surface of the resulting solid object is a part of some surface of the input solid

objects. Surfaces of the input solid objects are described parametrically by (triples

of) rational functions with real coefficients. They are also described implicitly by (the
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zero sets of) trivariate polynomials with real coefficients. Implicit representations are

either given or computed on demand.

In this section, we assume that surfaces of the input solid objects are given implic-

itly by polynomials with rational coefficients. Then, trimming curves and intersection

curves are represented implicitly by bivariate polynomials with rational coefficients in

the surface patch domains. Thus, an algebraic point we are interested in is described

as a common root of two bivariate polynomials with rational coefficients.

This assumption may sound too strict or unrealistic. One may say that the

input data potentially have some errors. This is true, but we choose to assume some

interpretation of the data on which to compute. To represent all error in the input

would result in a vague or fuzzy representation that, under some circumstances, will

not have a well-defined answer. We choose to have a well-defined operation, at the

possible cost of making a bad initial interpretation.

A second objection is that in order to describe some solid objects exactly, one

might need irrational coefficients. For example, suppose that the designer intends to

rotate a cube by 30 degrees. Then, even if all the corners of the cube at the initial

position are given by rational numbers, after rotation, the corners will have irrational

coordinates, and the surface representations will also have irrational coefficients. This

is a real issue, requiring other means to address, but we point out that in many

systems this is not the way rotations are specified. Instead, a transformation matrix

is given, the entries of which are usually given as rational numbers (often floating-

point data that has already been rounded from the irrational number). Thus, our

representations using rational coefficients will directly reflect the input. Also, we

point out that for any given rotation, we can find a rotation matrix with rational

entries that is arbitrarily close to the given rotation.
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In the rest of this section, we first identify irregular interactions of surface patches,

restate the problems in terms of basic geometric operations, and then describe how

to detect them.

4.3.2 Degeneracy Detection

Degeneracies are detected during the boundary evaluation process by checking for

irregular interactions. In Table I in Section 2.1.3.4, possible degeneracies appearing

in boundary evaluation are enumerated according to how surfaces, curves and points

interact. I now describe, for each type of degeneracy, how it is detected.

In this section, by F2|F1 , we denote the intersection curve of surfaces F1 and F2

within the surface patch domain for F1.

(1) Two surfaces meet but not along a curve

(a) Two surfaces overlap:

The degeneracy may be detected by checking whether or not their implicit

forms share some common factors of positive degree. Alternatively and more

efficiently, this degeneracy is detected when substitution of the parametric

form of one surface into the implicit form of the other surface causes the

implicit form to vanish.

(b) Two surfaces are tangent along a curve:

There are two subcases.

i. When the tangency is along the entire intersection curve of two surfaces

(i.e. they never cross), the degeneracy cannot be seen within either of

these surface patch domains. Thus, this case (and only this case) cannot

be detected locally in the patch domains. It can be detected by a more
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global view examining the relative positions of the patches within each

solid object.

ii. When the tangency is at only an isolated point (or points), the point of

tangency becomes a cusp or a self-intersection of the intersection curve

in either of the surface patch domains.

(c) Two surfaces are tangent at a point:

In this case, their intersection curve shrinks to an isolated point within either

of the surface patch domains. (e.g., S2 + T 2 = 0)

(d) A curve is tangent to a surface at a point:

Suppose that a curve C1 of a solid object S1 is tangent to a surface F2 of a

solid object S2. Let C1 be the border between surfaces F11 and F12 of S1.

Within the surface patch domain for F11, where C1 is one of the trimming

curves, the intersection curve F2|F11 intersects with C1 tangentially.

Conversely, within some surface patch domain, if some intersection curve

shrinks to an isolated point, or has some cusps or self-intersections, or in-

tersects with some trimming curve tangentially, then a degeneracy of one of

the above three cases must occur.

(2) Three surfaces meet at a curve but not a point

(a) A curve lies on a surface:

Suppose that a curve C1 of a solid object S1 lies on a surface F2 of a solid

object S2. Let C1 be the border between surfaces F11 and F12 of S1. Within

the surface patch domain for F11, where C1 is one of the trimming curves, the

intersection curve F2|F11 and C1 overlap. Whenever the degeneracy occurs,
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some trimming curve and some intersection curve have some non-trivial

common factor.

(b) Curves overlap:

Suppose that a curve C1 of a solid object S1 and a curve C2 of a solid object

S2 overlap. Let C1 be the border between surfaces F11 and F12 of S1. Also,

let C2 be the border between surfaces F21 and F22 of S2. Within the surface

patch domain for F11, where C1 is one of the trimming curves, C1 and the

intersection curve F21|F11 overlap (and C1 and F22|F11 overlap). As in the

previous case, whenever the degeneracy occurs, some trimming curve and

some intersection curve have some non-trivial common factor.

Conversely, within some surface patch domain, if some trimming curve and

some intersection curve have some non-trivial common factor, then a degen-

eracy of either of the above two cases must occur.

(3) Four or more surfaces meet at a point.

(a) A point lies on a surface:

Suppose that a point P1 of a solid object S1 lies on a surface F2 of a solid

object S2. There exist surfaces F11 and F12 of S1 such that P1 is one of the

endpoints of the border C1 between F11 and F12. Within the surface patch

domain for F11, C1 meets the intersection curve F2|F11 at P1. Thus, whenever

the degeneracy occurs, one of the endpoints of some trimming curve lies on

some intersection curves.

(b) Curves intersect tangentially:

Suppose that a curve C1 of a solid object S1 and a curve C2 of a solid object

S2 intersect tangentially. Let C1 be the border between surfaces F11 and F12



96

of S1. Also, let C2 be the border between surfaces F21 and F22 of S2. Within

the surface patch domain for F11, where C1 is one of the trimming curves,

the point, where C1 and the intersection curve F21|F11 meet, and the point,

where C1 and the intersection F22|F11 meet, are identical.

Conversely, within some surface patch domain, if some trimming curve meets

two (or more) intersection curves at the same point, then the degeneracy of

this type must occur.

(c) A point lies on a curve:

Suppose that a point P1 of a solid object S1 lies on a curve C2 of a solid object

S2. There exist surfaces F11 and F12 of S1 such that P1 is one of the endpoints

of the border C1 between F11 and F12. Let C2 be the border between surfaces

F21 and F22 of S2. Within the surface patch domain for F11, C1 meets the

intersection curve F21|F11 at P1. Thus, whenever the degeneracy occurs, one

of the endpoints of some trimming curve lies on some intersection curves.

(d) Points coincide:

Suppose that a point P1 of a solid object S1 lies on a point P2 of a solid

object S2. There exist surfaces F11 and F12 of S1 such that P1 is one of

the endpoints of the border C1 between F11 and F12. Within the surface

patch domain for F11, C1 meets the intersection curve F21|F11 at P1. Thus,

whenever the degeneracy occurs, one of the endpoints of some trimming

curve lies on some intersection curves.

Conversely, within some surface patch domain, if some trimming curve meets

some intersection curve at one of the endpoints of the trimming curve, then

the degeneracy of one of the above three cases must occur.

To summarize, except the case “Surfaces overlap,” that is detected in R3, and
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the first realization of the case “Surfaces are tangent along a curve,” that must be

handled at higher level, degeneracies are detected locally within each surface patch

domain.

Proposition 4.22. Degeneracies listed in Table I in Section 2.1.3.4 except “Surfaces

overlap” and “Surfaces are tangent along a curve” are detected by checking, within

each surface patch domain, whether or not

(1) some intersection curve shrinks to an isolated point, or

(2) some intersection curve has some cusps or self-intersections, or

(3) some intersection curve intersects with some trimming curve tangentially, or

(4) some trimming curve and some intersection curve have some non-trivial common

factor, or

(5) some trimming curve meets two (or more) intersection curves at the same point,

or

(6) some trimming curve meets some intersection curve at one of the endpoints of

the trimming curve.

4.3.3 Degeneracy Detection (Algebra)

In this section, the occurrences of degeneracies found in Proposition 4.22 are restated

in terms of algebra.

Recall that, within each surface patch domain, a curve (a trimming curve or

an intersection curve) is described implicitly by bivariate polynomials with rational

coefficients, and a point is described as an intersection of curves, and thus, a common

root of a pair of bivariate polynomials with rational coefficients.
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The cases (1) and (2) in Proposition 4.22 can be detected by resolving the topol-

ogy of an algebraic planar curve. Note that some curve might shrink to a single point.

Several algorithms for resolving the topology of an algebraic planar curve are known.

We used the algorithm introduced in [59], but with the new algorithm for finding

common roots of a pair of bivariate polynomials with rational coefficients, so that the

algorithm does not fail at cusps or self-intersections, or tangential intersections which

are the points we are particularly interested in.

The case (3) actually fits more in the cases (5) and (6), with considering the

topology also. First, find the intersections and then, determine if each of them are

tangential by looking at topology.

The case (4) can be detected by testing whether or not a pair of algebraic curves in

R2 share some non-trivial components. The test, in general, reduces to computing the

GCD of a pair of bivariate polynomials with rational coefficients. It can be shown that

a pair of algebraic curves in C2 share some non-trivial components iff their defining

polynomials have a non-constant GCD. In R2, the statement is no longer valid since

curves may share some positive dimensional components in C2 on which there are

only finitely many real points. In the worst case, we use a 2-dimensional Sturm query

[71] which tells us the number of real zeros in a given region. Fortunately, for the

bivariate case, an efficient algorithm for computing the GCD of a pair of polynomials

[97] is known. Thus, testing “non-degeneracy” is relatively easy. Furthermore, for

a certain type of curves, we can immediately tell whether or not they have finitely

many zeros (e.g. planes). Only those instances which remain to be suspicious after

all these tests are applied would be passed to the costly test.

The remaing cases ((5) and (6)) reduce to the primitive geometric computations

within the 2-dimensional surface patch domain, namely, testing
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(a) whether or not a pair of 2-dimensional algebraic points are identical, and

(b) whether or not a 2-dimensional algebraic point lies on an algebraic planar curve.

The trimming curves and the intersection curves are algebraic planar curves described

implicitly by polynomials with rational coefficients. Every algebraic point is (initially)

specified as an intersection of a pair of algebraic curves, that is, a common root of a

pair of bivariate polynomials with rational coefficients. Thus, our task can be restated

as follows:

Given a pair of algebraic planar curves C1 and C2 specified implicitly by bi-

variate polynomials f1 (S, T ) and f2 (S, T ) with rational coefficients and some region

[LS, HS]× [LT , HT ] with rational corners, we would like to compute all the intersec-

tions of C1 and C2 in the region.

Without loss of generality, we may assume that the zero set of the square system

of bivariate polynomials f1 and f2 is zero-dimensional (otherwise, it must be treated

as the above). Thus, the RUR for the zero set of (f1, f2) in (R∗)n will generate all

the points in (R∗)n.

In order to see if there are any points with 0-coordinate, we test whether uni-

variate polynomials f1 (0, T ) and f2 (0, T ) have some common roots and whether

univariate polynomials f1 (S, 0) and f2 (S, 0) have some common roots.

Thus, all intersections are represented as in Proposition 4.19.

Next, using a root bound approach, we can exclude those roots outside of the

region [LS, HS] × [LT , HT ]. Note that this is done after all roots are found, i.e. we

cannot limit the roots found to the domain at an earlier point in the computation (as

we could with prior, less general, methods).

By Proposition 4.20 and its corollary, we can test whether or not a pair of 2-

dimensional algebraic points are identical and whether or not a 2-dimensional alge-
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braic point lies on an algebraic planar curve. This has been described in section

4.2.

4.3.4 Example

Suppose we would like to intersect a cube and a torus shown.This configuration suffers

from degeneracy Two Surfaces are Tangent at a Point. One surface of the cube and

one surface of the torus touch each other at a single point. On the surface of the

cube, the intersection curve is described by bivariate polynomial

f = 36X4 − 72X3 + 72X2Y 2

− 72X2Y + 64X2 − 72XY 2 + 72XY

− 28X + 36Y 4 − 72Y 3 + 80Y 2

− 44Y + 9

(4.11)

(with some coordinate system). In order to resolve the topology of the curve, the

system tries to find points where f and its partial derivative fX both vanish.

fX = 144X3 − 216X2 + 144XY 2 − 144XY

+ 128X − 72Y 2 + 72Y − 28.

(4.12)

One of the solutions is (2, 2) which is the self intersection of the curve, which is not

found by some systems, e.g. MAPC [59], but it is found using the RUR. See Section

6.1.3.
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CHAPTER V

NUMERICAL PERTURBATION

This chapter describes the exact numerical perturbation scheme for resolving degen-

eracies appearing in geometric computation. In Section 5.1, a formal description of

the exact numerical perturbation scheme is presented. In Section 5.2, examples of

numerical perturbation is shown.

5.1 Exact Numerical Perturbation

In this section, I present a formal description of exact numerical perturbations anal-

ogous to that for symbolic perturbations discussed by Seidel [90] [91], and I discuss

issues related to implementation of exact numerical perturbation.

Throughout this chapter, write R∗ for R \ {0}.

5.1.1 Degeneracies

I first give a formal definition of degeneracies.

Consider an algorithm A and let F be a function from some input space I to

some output space O that is computed by A. We assume that some topology is

introduced to both I and O. For simplicity, I will consider only the case I is RM

with the Euclidean topology.

For example, consider the function CHS that computes the sequence of indices

of vertices of the Convex Hull of a given sequence of m points (x1, y1) , . . . , (xm, ym)

in R2. The input space for CHS is the Euclidean space R2m where the sequence of m

points is encoded to 2m-tuple (x1, y1, . . . , xm, ym). The output space for CHS is the

set of all the permutations of n distinct integers from {1, . . . ,m} where 1 ≤ n ≤ m
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and the discrete topology is introduced. On the other hand, for the function CHA

that computes the area of the Convex Hull of a given set of (x1, y1) , . . . , (xm, ym) in

R2, I = R2m and O = R both with the Euclidean topology.

A computation of an algorithm for a function F : RM → O is modeled by a

ternary tree T called an extended algebraic decision tree [78]. Each interior node v of

T is associated with the predicate fv : RM → R and its three branches are labeled

by −1, 0 and 1, respectively. Each leaf v of T is associated with the result function

gv : RM → O. For simplicity, I assume that, for every internal node (or leaf) v of T ,

the predicate fv is continuous at every input x that reaches v.

In this model, F (x) is computed by a traversal of the tree T from the root to one

of the leaves. At each internal node v of T , sv (x) = sgn (fv (x)) is evaluated and the

branch labeled by sv (x) is taken. When a leaf v of T is reached, gv (x) is evaluated

and returned.

An input x ∈ RM is said to be degenerate (for F ) if there exists an internal node

v of T such that sv (x) = sgn (fv (x)) becomes 0, that is, there exists some predicate

that evaluates to 0 at x.

Let x = (x1, y1, . . . , xm, ym) ∈ R2m where, among all m points encoded to x, 3

or more of them are collinear. Then, x is degenerate for both CHS and CHA. Note

that CHA is a continuous function while CHS is not. In fact, CHA is continuous

even at x while CHS is discontinuous at x. Note that CHS is continuous at x if x

is not degenerate.

5.1.2 Perturbations

In this section, I give a formal definition of symbolic and numeric perturbations.

First, I define (linear) symbolic and numerical perturbations.

For every input x = (x1, . . . , xM) ∈ RM , define a (linear) symbolic perturbation
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πx of x to be the ray starting at x and going to some direction dx = (dx1, . . . , dxM) ∈
(R∗)M . More formally,

πx : [0,∞) 3 ε 7→
x+ εdx = (x1 + εdx1, . . . , xM + εdxM) ∈ RM .

(5.1)

For every input x = (x1, . . . , xM) ∈ RM , define a (linear) numerical perturbation

ψx of x to be the point obtained by perturbing x by dx for some deviation dx =

(dx1, . . . , dxM) ∈ (R∗)M . More formally,

ψx = x+ dx = (x1 + dx1, . . . , xM + dxM) ∈ RM . (5.2)

Next, I define (linear) symbolic and numerical perturbation schemes.

For every function F : RM → O, a symbolic perturbation scheme Π assigns a

symbolic perturbation πx to every input x ∈ RM .

Similarly, for every function F : RM → O, a numerical perturbation scheme Ψ

assigns a numerical perturbation ψx to every input x.

Immediately from the definition (5.2) above, it is clear that a (linear) numerical

perturbation of x is totally specified by giving a deviation dx. Thus, assigning a

(linear) numerical perturbation ψx to an input x means associating a deviation dx

with x. Note that a (linear) symbolic perturbation of x is totally specified just by

giving a direction dx. Of course, if d′x is a direction and dx = cd′x for some positive

real number c, then d′x specifies the same (linear) symbolic perturbation as dx does.

Now, I define and consider (linear) symbolic and numerical perturbed functions.

Given a function F : RM → O and a symbolic perturbation scheme Π, define a

symbolically perturbed function of F to be the function F
Π

: RM → O such that

F
Π

(x) = lim
ε→0+

F (πx (ε)) , ∀x ∈ RM . (5.3)
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We assume that a perturbed function is well-defined, i.e., the limit appearing in the

RHS of (5.3) exists.

Given a function F : RM → O and a numerical perturbation scheme Ψ, define a

numerically perturbed function of F to be the function F̃Ψ : RM → O such that

F̃Ψ (x) = F (ψx) , ∀x ∈ RM . (5.4)

We write F or F̃ for the perturbed function whenever the perturbation scheme

is clear from the context.

Note that the perturbed function does depend on the perturbation scheme. That

is, for two different symbolic perturbation schemes Π and Π′, the symbolically per-

turbed functions F
Π

and F
Π′

are not always the same. Also, for two different numer-

ical perturbation schemes Ψ and Ψ′, the numerically perturbed functions F̃Ψ and F̃Ψ′

are usually different. However, the way symbolically pertubed functions depend on

symbolic perturbation schemes and the way numerically perturbed functions depened

on numerical pertubation schemes are very different.

How does F and F or F̃ relate? There is a simple, obvious but useful lemma:

Lemma 5.23. Seidel [90] [91] For any symbolic perturbation scheme Π, if F is con-

tinuous at x ∈ RM then F
Π

(x) = F (x).

Note that the statement in the lemma holds even if there is a degeneracy at x.

If F is not continuous at x, then there is not much we can say about the rela-

tionship between F
Π

(x) and F (x).

One immediate consequence of Lemma 5.23 is another fact about the difference

between symbolic and numerical perturbations regarding the dependency of perturbed

functions on perturbation schemes. When F is continuous at x, F
Π

(x) = F
Π′

(x) for

any pair of symbolic perturbation schemes Π and Π′. On the other hand, for two
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different numerical perturbations schemes Ψ and Ψ′, F̃Ψ (x) and F̃Ψ′ (x) are usually

different.

For example, for an arbitrary but fixed input x, CHA (x) = CHA (x). If, among

all m points encoded to x, 3 or more of them on the convex hull are collinear then

CHS is discontinuous at x and CHS (x) 6= CHS (x). If x is not degenerate for CHS

then CHS is continuous at x and CHS (x) = CHS (x). On the other hand, for an

arbitrary but fixed input x, CHA (x) 6= C̃HA (x). If x is degenerate for CHS then

CHS (x) 6= C̃HS (x). If x is not degenerate for CHS then CHS is continuous at x

and CHS (x) = C̃HS (x).

Note, in this case, CHS (x) happens to be a subsequnce of CHS (x), and with

relatively simple post-processing, CHS (x) is recovered from CHS (x). However,

post-processing is usually not easy, or even worse, impossible. The relation between

F (x) and F (x) is not always clear.

We have seen (Section 5.1.1) that, for a function F : RM → O and an input

x ∈ RM , the computation of F (x) is modeled by a traversal of some algebraic decision

tree T from the root to a leaf.

The symbolically perturbed function F (x) is computed by a traversal of the

same tree T from the root to one of its leaves. At each internal node v of

T , instead of sv (x) = sgn (fv (x)), sv (x) = limε→0+ sgn (fv (πx (ε))) is evaluated

and used to take the branch. When a leaf v of T is reached, instead of gv (x),

gv (x) = limε→0+ sgn (gv (πx (ε))) is evaluated and returned.

Similarly, the numerically perturbed computation F̃ (x) is modeled by a traver-

sal of T . At each internal node v of T , instead of sv (x) = sgn (fv (x)), s̃v (x) =

sgn (fv (ψx)) is evaluated and used to take the branch to the appropriate subtree.

When a leaf v of T is reached, instead of gv (x), g̃v (x) = sgn (gv (ψx)) is evaluated

and returned.
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Let f : RM → R be a continuous function, and let x ∈ RM . A symbolic

perturbation πx is said to be valid for f iff limε→0+ sgn (f (πx (ε))) exists and is not

zero. Similarly, a numeric perturbation ψx is valid for f iff f (ψx) 6= 0. A (symbolic

or numerical) perturbation scheme is said to be valid for f iff, for all x ∈ RM , the

(symbolic or numerical) perturbation of x is valid.

Let T be the extended algebraic decision tree for an algorithm for computing a

function F : RM → O. Furthermore, let F be the set of all the predicates appearing

in the tree. Recall that we have assumed that the predicates are all continuous.

Suppose Π is a symbolic perturbation scheme that is valid for all the predicates in F .

Then, during the computation of F
Π

(x), no branch labeled 0 will be taken. Thus, in

order to compute F
Π

for every input x, we do not need to implement some (or all)

of those 0-branches, i.e., the program does not have to deal with degenerate cases.

Similarly, if Ψ is a numerical perturbation scheme that is valid for all the predicates

in F then we do not need to implement those 0-branches.

Thus, the implementation of an algorithm for computing F or F̃ is simpler,

in terms of a traversal of the algebraic decision tree, than the implementation of an

algorithm for computing F because the branches for handling “degenerate inputs” can

be omitted. Of course, other aspects of the computation may be more complicated.

The above arguments are summarized into the following two theorems; Theorem

5.24 is for symbolic perturbation and is proven in [90] [91] and Theorem 5.25 is its

numerical counterpart.

Theorem 5.24. Seidel [90] [91]

Let T be an extended algebraic decision tree that computes a function F : RM →
RN . Furthermore, let Π be a symbolically valid perturbation scheme for all the predi-

cates appearing at internal nodes of T . Then



107

(1) A symbolically perturbed traversal of T computes the symbolically perturbed func-

tion F
Π
.

(2) If F is continuous at x ∈ RM then F
Π

(x) = F (x).

(3) The above statements remain true even if some (or all) of the 0-branches of T

are removed.

Theorem 5.25. Let T be an extended algebraic decision tree that computes a function

F : RM → O. Furthermore, let Ψ be a numerically valid perturbation scheme for all

the predicates appearing in T . Then

(1) A numerically perturbed traversal of T computes the numerically perturbed func-

tion F̃Ψ.

(2) If F is continuous at x ∈ RM , then, for any δ > 0, there exists a numerical

perturbation ψx = x+ dx such that
∣∣∣F̃Ψ (x)− F (x)

∣∣∣ < δ.

(3) The above statements remain true even if some of (or all) the 0-branches of T

are removed.

Proof. (1) Described above.

(2) Fix any δ > 0. Since F is continuous at x ∈ RM , ∃y ∈ RM with y 6= x s.t.

|F (y)− F (x)| < δ. Set dx = y − x. Then, dx ∈ (R∗)M . Now, define the

numerical perturbation ψx at x to be the point x + dx = y so that F̃Ψ (x) =

F (ψx) = F (x+ dx) = F (y).

(3) Described above.

The statement (2) in Theorem 5.24 says that, provided F is continuous at x,

the output of the original problem is obtained by the perturbed computation without

post-processing.
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On the other hand, the statement (2) in Theorem 5.25 will be understood as

follows:

The result of the numerically perturbed function is truly different from the result

of the original function. However, the measure of the difference can be as small as

desired.

5.1.3 Directions and Amount of Perturbation

We would like to construct a valid (symbolic or numerical) perturbation. Recall that

we have seen that a symbolic or numerical perturbation is assigned to an input by

giving a direction or deviation vector. In a symbolic perturbation, the amount of

perturbation is symbolic and the limit when this symbolic amount approaches to

0 will be taken. In a numerical perturbation, the deviation vector specifies both

the direction and the amount of perturbation. In this section, I show that if the

direction of a (symbolic or numerical) linear perturbation is randomly chosen, the

perturbation is almost always valid. I also show that determining the validity of a

random numerical perturbation is much more efficient than for symbolic.

Let f : RM → R be a continuous function. Furthermore, let πx = x + εdx be a

linear symbolic perturbation of an input x ∈ RM . Recall that πx is the ray starting at

x and going in the direction dx. Then, πx is invalid for f if any open initial segment

of the ray πx intersects with the set f−1 (0) ⊆ RM . This occurs when either

(1) a linear ray πx entirely lies on the set f−1 (0), or

(2) f is “amorphous, ” meaning that, in any open initial segment of the ray πx, the

values of f become both zero and non-zero infinitely many times.

Since (2) is not the case for almost all test functions appearing in geometric compu-

tation, we will ignore this case hereafter.
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A linear symbolic perturbation scheme is totally specified by giving its direction

at every input. The following theorems tell us the probability that a symbolic per-

turbation fails to be valid when the direction at every input is chosen “uniformly at

random.”

Theorem 5.26. Seidel [91]

Let f be a multivariate polynomial of total degree at most D, and let Bf be a

black box algorithm computing f . Let πx be a linear symbolic perturbation of x that

is valid for f . Then, limε→0+ sgn (f (πx (ε))) can be determined using at most D + 1

calls to Bf plus some small overhead.

Theorem 5.27. Seidel [91]

Let T be an extended algebraic decision tree with a set F of predicates, each a

multivariate polynomial of total degree at most D, and let x ∈ RM be an arbitrary but

fixed input to T . Furthermore, let R be a finite set of real numbers. If the direction dx

is chosen uniformly at random from RM\{0}, then the linear perturbation πx = x+εdx

fails to be valid with probability at most D|F|
|R| .

Suppose that the direction of a linear perturbation of every input is chosen at

random. By Theorem 5.27, we are very unlikely to choose an invalid perturbation

direction. Thus, we will use the following strategy: In the unlikely event that a chosen

perturbation direction dx turns out to be bad, we can simply restart the computation

using a new direction for dx.

Next, I show analogous results for numerical perturbations.

A linear numerical perturbation scheme is totally specified by its deviation at

every input. The question is what is the probability that a numerical perturbation

fails to be valid when the deviation at every input is chosen “uniformly at random?”
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Theorem 5.28. Let f be a multivariate polynomial, and let Bf be an algorithm that

evaluates f . Let ψx be a linear numercial perturbation of x that is numerically valid

for f . Then, we can determine whether or not f (ψx) = 0 using just one call to Bf

together with some small overhead.

Proof. The query whether or not f (ψx) = 0 is determined by evaluating f at ψx =

(x1 + dx1, . . . , xM + dxM) once.

Notice that, comparing to the result for symbolic perturbations in Theorem 5.26,

we find that numerical perturbation can simplify computation drastically.

Theorem 5.29. Let T be an extended algebraic decision tree with a set F of predi-

cates, each is a multivariate polynomial of total degree at most D, and let x ∈ I be

an arbitrary but fixed input to T . Furthermore, let R be a finite set of real numbers.

If the deviation dx is chosen uniformly at random from RM then the linear numerical

perturbation

ψx = (x1 + dx1, . . . , xM + dxM)

fails to be valid with probability at most D|F|
|R| .

Proof. It suffices to show that, for every f ∈ F , when the coordinates dx1, . . . , dxM

of dx are randomly chosen from RM , the probability that ψx is invalid is D
|R| .

The perturbation ψx is invalid whenever f (ψx) = 0. Now,

h (x1, . . . , xM , dx1, . . . , dxM) = f (ψx) is a multivariate polynomial in variables

xi and dxi of total degree at most D. By the Schwartz-Zippel lemma [89], when dx

are randomly chosen from RM , the probability h (x1 . . . , xM , dx1, . . . , dxM) vanishes

is at most D
|R| .

By Theorem 5.29, we see that there are not many invalid numerical perturbations.

In the unlikely event that chosen deviation dx turns out to be bad, we can simply
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abort and restart the computation with a new deviation dx and, almost always, the

corresponding perturbation becomes valid.

5.1.4 Issues of Implementation

There are several issues that must be dealt with in order to move from the theory of

exact numerical perturbation to a practical implementation.

5.1.4.1 Directions and Amount of Perturbation

Recall that assigning a (linear) symbolic perturbation ψx to an input x means asso-

ciating a direction dx with x while assigning a (linear) numerical perturbation of x

means associating is the direction and the amount of a deviation dx.

By Theorem 5.29, a random perturbation almost always works, i.e., if the devi-

ation is a (linear) numerical perturbation is chosen at random, with the probability

1, it will be valid. However, not all deviations are considered “good.” We would like

to choose the deviation of a perturbation that is likely to capture the intent of the

designer. The choice of a “good” deviation will depend heavily on the problem itself.

For example, earlier work on boundary evaluation [96] [36] [75] uses an expansion and

contraction operation on basic primitives to achieve a “good” perturbation. Since

an appropriate choice of deviation is problem-dependent, I cannot propose a single

solution, but rather describe below (Section 5.2), a couple of general methods for

choosing deviations.

It is possible that the deviation chosen in order to capture designer’s intent might

not remove degeneracies. An example is seen in Figure 9, where the degeneracy

remains if both objects are perturbed through expansion and contraction.

The output of a numerically perturbed computation may have some extra “very

small but positive measure” structures. Strictly speaking, the intent of the designer
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Fig. 9. Example where numerical expansion and contraction lead to undesirable re-

sults. Perturbing surfaces inward and outward does not remove the degeneracy.

is lost when numerical perturbation is applied because of these small structures. In

many cases, though, those small structures will be no worse than the measure zero

structures obtained in symbolic perturbation.

Another issue with the amount of perturbation comes from meeting the validity

constraints of the above theorems. We have seen (Section 5.1.3) that a numerical

perturbation is valid if the amount of perturbation is so small that any smaller per-

turbation would not change the sign of any predicate. However, giving a bound on

the amount of valid perturbation is not straightforward.

One way of getting around this difficulty is to rely on an idea of a global tolerance.

That is, we assume that the input geometric data is correct within some amount, τ .

A global tolerance is often used to take in to account the inexact nature of real-
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world data. Any perturbation smaller than the input τ is allowed. As the tolerance

value approaches zero, the perturbed surfaces still approach the original surfaces, and

thus we can achieve valid exact numerical perturbation. This matches the notion of

a backward-stable operation: we compute the output of a perturbed version of the

original input.

5.1.4.2 Exact Computation

It is important to note that exact computation is necessary for implementing nu-

merical perturbations. Like symbolic perturbations, a perturbed computation relies

on exact sign determination of predicates. Also, for numerical perturbations, exact

computation is needed because we may have to reduce our perturbation amount to

any level desired. Note that the use of exact computation entails a significant cost in

efficiency.

5.1.4.3 Symbolic and Numerical Perturbation

Implementing symbolic perturbations is much harder than implementing numerical

perturbations.

In order to implement symbolic perturbation, an infinitesimal amount ε has to

be dealt with. The computation proceeds treating the perturbation amounts as a

symbolic variable, and the limit of the perturbation is taken at the end. Several efforts

have been made to reduce the amount of computation. For example, the simulation of

simplicity scheme [25] applied to the sidedness test reduced to the sign of a polynomial

in the infinitesimal amount ε as ε approaches to zero. This can be found by the sign

of the lowest degree non-zero term. Nevertheless, in the implementation of a symbolic

perturbation, ε must be treated more or less symbolically.

On the other hand, the implementation of a numerical perturbation is straightfor-
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ward. Only an input must be preprocessed, but the implementation of the algorithm

remains the same.

5.2 Examples of Numerical Perturbations

In this section, we describe two simple instantiations of numerical perturbation, “ran-

dom translation” and “contraction/expansion.”

5.2.1 Random Translation

Random translation is a numerical perturbation where input instances are translated

by random deviations. The random translation approach fits most easily into the

description of exact numerical perturbation outlined above. By Theorem 5.29, with

a truly random choice of deviation, with probability 1, any degeneracy will be elimi-

nated.

As an example, consider the problem P1 to locate four parabolas





f1 : 2X2 − Y = 0,

f2 : X2 − Y = 0,

f3 : −X2 − Y = 0,

f4 : −2X2 − Y = 0.

They are in degenerate configuration; namely, they intersect with each other at a

single point, the origin. See Figure 10 a. Suppose a random translation is applied to

them as follows:




f̃1 : translate f1 along Y -axis by −1
2
,

f̃2 : translate f2 along X-axis by −1
4
,

f̃3 : translate f3 along X-axis by 1
2
,

f̃4 : translate f4 along Y -axis by 1
4
.
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Fig. 10. Four parabolas degenerate and non-degenerate.

a. Four parabolas in degenerate configuration. They intersect with each other

at a single point, the origin.

b. Four parabolas randomly translated.

That is, we obtain 



f̃1 : 2X2 − 1
2
− Y = 0,

f̃2 : X2 + 1
2
X + 1

16
− Y = 0,

f̃3 : −X2 +X − 1
4
− Y = 0,

f̃4 : −2X2 + 1
4
− Y = 0.

(Note, this is not actually a very random perturbation, but it illustrates the idea

well.) Then, no three or four of the perturbed parabolas intersect simultaneously at

a single point. See Figure 10 b. They are no longer in degenerate configurations.

Thus, this random translation is valid.

Now, consider another problem P2 to locate four parabolas f1, . . . , f4 with the
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circle

g1 : X2 + Y 2 − 1 = 0.

If we travel on g1 clockwise from the point (0, 1) to the point (0,−1) , then we meet

those parabolas in order of f1, f2, f3, f4. On the other hand, we meet the perturbed

parabolas in order of f̃2, f̃1, f̃3, f̃4. Thus, even though this random translation is valid,

it fails to maintain the designer’s intent.

If we consider the problem P3 to locate four parabolas f1, . . . , f4 and the circle

g2 : X2 + Y 2 − 4 = 0

then the random translation removed degeneracies and still keeps the order of inter-

sections between parabolas and the circle g2. Thus, this random translation is valid

and also maintains the designer’s intent.

In general, it is neither trivial nor easy to maintain the designer’s intent with

application of random translations. The difference between problems P2 and P3 has

to do with the size of the deviation of the perturbation relative to the size of the

circle being tested (i.e. the larger circle was equivalent to having a smaller perturba-

tion). For a given circle size, the perturbation amount could be reduced to be small

enough to guarantee correct ordering of the intersections. Similarly, a given numerical

perturbation can always be made small enough (since exact computation is used) to

be topologically equivalent to any symbolic perturbation. Determining that amount

ahead of time, though, is usually a difficult problem.

5.2.2 Expansion / Contraction

Another type of numerical perturbation described here is expansion / contraction.

This method has been shown to be quite useful in the handling of boundary evaluation
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operations [75].

With expansion / contraction, an input is effectively scaled outward or inward,

from the centroid of an object in the input. For simple geometric objects, this is usu-

ally straightforward. By adjusting which objects are perturbed inward (contracted)

and which outward (expanded), we can capture designer’s intent relatively well.

There are a few shortcomings to the expansion and contraction as applied to

boundary evaluation:

(1) First, there are a limited number of cases for which expansion or contraction is

not sufficient. See Figure 9 in section 5.1.4.1.

(2) Second, it is possible with perturbation schemes to create small, unintended ob-

jects. While these will indeed be small (see the statement (2) in Theorem 5.24

in Section 5.1.2), and thus, should not affect the overall topology of the output,

they can be annoying to deal with in subsequent computation.

I will describe an implementation of expansion / contraction to the standard

CSG primitives in Section 6.2 in Chapter VI.
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CHAPTER VI

IMPLEMENTATION

The algorithms described in the previous chapters have been implemented. This

chapter explains the details of the implementation and shows some experimental

results. In Section 6.1, I describe the implementation of the algorithm for computing

the Rational Univariate Reduction of a given system of polynomials with rational

coefficients. In Section 6.2, I describe the implementation of a numerical perturbation

scheme in order to handle degeneracies appearing in boundary evaluation of solid

objects.

6.1 Rational Univariate Reduction (RUR)

This section describes the implementation of the algorithm for computing the Ra-

tional Univariate Reduction (RUR) for a given system of polynomials with rational

coefficients, i.e., the case K = Q of the algorithm introduced in Chapter III.

Since all the algorithms reduce to Algorithm RUR toric square (see Figure 8,

in Section 3.1 ), here, I discuss the implementation of Algorithm RUR toric square

introduced in Section 3.1.1.1.

The goal is to develop a library for computing the RUR for the zero set of a

square system of n polynomials in n variables with rational coefficients such that

(1) the univariate polynomials forming the RUR are derived from the toric resultant

for the input system, in particular, the implementation is Groëbner-free,

(2) the RUR is computed exactly, meaning that all the rational coefficients of the

univariate polynomials h, h1, . . . , hn forming the RUR will be computed to full

precision, and
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(3) for small n, the library runs in an acceptable amount of time in practice although

the main concern here is to guarantee the exactness.

6.1.1 Implementation of RUR toric square

This section describes an implementation of Algorithm RUR toric square for com-

puting the RUR for the zero set of a square system of n polynomials f1, . . . , fn in n

variables with rational coefficients. The pseudo code and the step-by-step description

of the algorithm are given in Section 3.1.1.1 and 3.1.1.2, respectively.

Let Ai be the support of fi for i = 1, . . . , n. The algorithm sets, at step 1, the

support A0 of f0 so that f0 is a linear polynomial.

Step 7 constructs the toric resultant matrix N for a system of n + 1 polyno-

mials in n variables with supports A0, A1, . . . , An. Emiris’s incremental algorithm

[32] is implemented. This algorithm computes, as byproducts, the convex hulls Qi

of Ai and the quantities MV−i for i = 0, 1, . . . , n where MV−i is the mixed-volume

of Q0, Q1, . . . , Qi−1, Qi+1, . . . , Qn. The computation of Qi and the computation of

MV−i both reduce to some linear programming problems [32] [14] where all the linear

constraints have rational coefficients. These linear programming problems are solved

via a standard two-phase simplex method that is implemented with multi-precision

rational number arithmetic in order to help deal with instability issues.

Note that, for the resultant matrix constructed by Emiris’s incremental algo-

rithm, the equality (2.2) holds [32]. Thus, the equality (2.4) also holds, on which the

correctness of Algorithm RUR toric square relies.

Recall that, when the characteristic of K is 0, in particular, K = Q, there are

two options for determining d at step 10 and computing TPert (T, u1, . . . , un) at fixed

(u1, . . . , un) at step 15, step 28 and step 33. I implement a version in which d at

step 10 is determined by scanning the coefficients of some non-trivial multiples of
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TGCP (s, 1, 0, . . . , 0) instead of the coefficients of TGCP (s, 1, 0, . . . , 0) without any

extraneous factor. Also, TPert (T, u1, . . . , un) is computed via interpolation through

the values of the coefficient of the term sd in some non-trivial multiple of TGCP (s,u)

instead of the values of the coefficient of the term sd in TGCP (s,u) without any

extraneous factor. That is, we do not eliminate the contribution of the extraneous

factor from detN before interpolating some non-trivial multiple of TGCP (s,u). (See

Section 3.1.1.) In Section 3.3.1.1, we have seen that, asymptotically, the cost for

eliminating the extraneous factor is negligible compared to the cost for interpolations

through the values of the determinant of a bigger resultant matrix. However, this

is not true in practice. The resultant matrix constructed by Emiris’s incremental

algorithm is generically not too big [32]. In particular, for small n, we usually gain

significant speed up by avoiding the costly process of elimination of the extraneous

factors, even though the cost for interpolations slightly increases.

Whenever detN is evaluated, the non-zero entries of N are specialized to the

coefficients of the linear u-polynomial f0 = u0 + u1X1 + · · ·+ unXn and polynomials

in the perturbed system f1− sf ∗1 , . . . , fn− sf ∗n. By Proposition 3.7 and Remark 3.11,

parameters u0, u1, . . . , un are always specialized to some integers. The coefficients of

the input polynomials f1, . . . , fn are rational numbers. Since the characteristic of Q

is 0, the coefficients of auxiliary polynomials f ∗1 , . . . , f
∗
n can be chosen from rational

numbers at step 9, and at any interpolation, we can assign rational values to s. Thus,

the entries of N are always specialized to rational numbers. Hence, all the coefficients

of some non-trivial multiple of TGCP (s,u) are rational numbers. It immediately

follows that all the coefficients of TPert (T, u1, . . . , un) are rational numbers and they

can be computed to full-precision.

The rest of the algorithm involves arithmetic operations and the Euclidean al-

gorithm over the ring of univariate polynomials with rational coefficients, and the
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computation of the first subresultant of two univariate polynomials. Therefore, by

the use of multi-precision rational number arithmetic, all the steps of Algorithm

RUR toric square can be implemented exactly and the exact RUR will be com-

puted.

6.1.1.1 Toric Resultants Algorithms

In order to have a practically efficient implementation of the algorithm, it is impor-

tant to choose a fast algorithm that constructs resultant matrices of reasonable size.

There are several algorithms for computing the toric resultant for a square system of

polynomials [14] [32] [18] [30] [62]. While I implement Emiris’s incremental algorithm,

the other algorithms can be used if the prerequisite conditions are met.

Emiris’s algorithms [14] [32] for computing the toric resultant for a system of

n + 1 polynomials in n variables constructs the resultant matrix whose determinant

is some non-trivial multiple of the toric resultant for the system. The toric resultant

without the extraneous factor is computed via interpolation through the values of the

determinant of the resultant matrix whose entries are specialized in several ways [14].

There are two versions: the mixed-subdivision based algorithm and the incre-

mental algorithm. The mixed-subdivision based algorithm [14] constructs a single

resultant matrix that works, but the size of the resultant matrix constructed is often

much larger than the optimal one. In fact, the difference might become exponential in

n [14] [32]. On the other hand, the incremental algorithm [32] tries several matrices.

Starting at a matrix of the smallest possible size, the algorithm keeps enlarging matri-

ces until one that works is found. If none of these trials are successful, the incremental

algorithm constructs the same resultant matrix as the mixed-subdivision based algo-

rithm does. Thus, in the worst case, the incremental algorithm requires much more
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computation and still ends up returning a big matrix. However, it is observed that

the incremental algorithm usually constructs a resultant matrix of reasonable size

within only a few iterations.

In terms of the arithmetic complexity, the argument above is rephrased as fol-

lows: letting NS and NI be the size of the resultant matrices constructed by the

mixed-subdivision based algorithm and the incremental algorithm, respectively, the

arithmetic complexity for these algorithms is O∗ (N ω
S ) and O∗ (N 1+ω

I

)
, respectively.

In the worst case, NI = NS, however, usually, NI is much smaller than NS.

Note that, for both versions, the number of rows of the resultant matrix whose

entries are specialized to the coefficients of f0 is fixed to MV−0. Thus, the equality

(2.2) holds [14] [32].

There are some algorithms that explicitly compute the toric resultant without

any extraneous factor.

D’Andrea’s formula [18] computes the toric resultant as a quotient of two de-

terminants. The matrix whose determinant becomes the numerator is as big as the

resultant matrix constructed by Emiris’s algorithms. Thus, evaluating the toric re-

sultant using this formula costs at least as much as evaluating the determinant of the

toric resultant matrix (with some extraneous factor) constructed by Emiris’s algo-

rithms. While D’Andrea’s formula has the added benefit of removing the extraneous

factor, we eliminate this extraneous factor via interpolation.

Khetan’s formula [62] [63] computes the toric resultant as the determinant of a

single matrix. Formulas have been found for unmixed systems of 3 polynomials in

2 variables [62] and 4 polynomials in 3 variables [63], but it is probably impossible

to find such formulas for general systems of n + 1 polynomials in n variables. If

we would apply the formula to a mixed system with supports A0, A1, . . . , An then
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we must treat the input system as unmixed by pretending all the input polynomials

have the identical support
⋃n

i=0Ai. The degree of the toric resultant for this “fake”

unmixed system could be much larger than that of the original system. Also, the

resultant matrix contains a block whose entries themselves are the determinants of

some other matrices. Thus, the cost for evaluating the resultant matrix constructed

using Khetan’s formula is more than the cost for evaluating the optimal resultant

matrix.

6.1.1.2 Expression Swell

The algorithms suffer from expression swell, thus slowing performance. The swell

could be caused by large input coefficients. However, even if the coefficients of the

input polynomials are small, the intermediate and final quantities could grow quite

large.

Algorithm RUR toric square consists of exact evaluation of the determinant

of a given square matrix with rational entries, polynomial interpolations over ratio-

nal numbers and operations over the ring of univariate polynomials with rational

coefficients.

Modular arithmetic is used in order to avoid expression swell occurring in exact

evaluation of determinants. The value of the determinant is obtained from the val-

ues of the determinant evaluated on several moduli by using the Chinese remainder

algorithm.

At step 10, step 15, step 28 and step 33, we evaluate the determinant of the toric

resultant matrix N whose entries are specialized in several ways, while, at step 39,

we evaluate the determinant of the first subresultant matrices of size 2M − 1 where

M = deg h. We have seen that dimN > MV−0 ≥ M , but dimN is not necessarily
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larger than 2M − 1. The size of the entries of N depends on the input and could be

large or small, while the entries of the first subresultant matrices are usually large

because of expression swell of intermediate quantities. Thus, we always use modular

arithmetic to compute the first subresultants, while modular arithmetic is used to

evaluate detN only when dimN is large and/or the size of the entries of N is large.

For more about exact evaluation of determinants, see [28] and [56].

Modular arithmetic can also be used for interpolations and operations over the

ring of univariate polynomials with rational coefficients. That is, we use the Chinese

remainder theorem for Q [T ] /I where I is some appropriately chosen ideal of Q [T ]. In

this way, we are able to limit the degree of polynomials involved in the computation.

For more details, see fast interpolation and Chinese remaindering algorithms described

in [97].

Recall that, at step 40, hi (T ) = −T − ri,1 (T ) · ri,0 (T )−1 mod h (T ) where

ri,0 (T )+ ri,1 (T ) t is the first subresultant of q−i (t) and q+
i (2T − t). Given ri,0 (T ), its

inverse modulo h is computed using the extended Euclidean algorithm, which usually

causes significant expression swell. In order to avoid this problem, we instead could

compute hi (T ) as a rational representation: hi (T ) = −T − ri,1(T )

ri,0(T )
mod h (T ). In

most applications, rational representations with significantly smaller coefficients are

preferable to polynomials with large coefficients.

6.1.2 Experiments

Algorithm RUR toric square and the other algorithms in Figure 8 are implemented

exactly. This section shows some experimental results of our implementation. The

implementation is compiled with GNU C++. The GNU Multi Precision (GMP)

arithmetic library is used to support multi-precision rational number arithmetic. All
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the experiments shown in this section are performed on a 3 GHz Intel Pentium CPU

with 6 GB memory using Linux Kernel 2.6. In Table II, I show timing breakdowns for

the application of the exact RUR to a few sample systems. I give a brief discussion

of each case, and summarize the results.

Systems F1 through F3 are all drawn from examples described in Section 3.2,

while systems F4 through F6 are all drawn from cases encountered in an actual geo-

metric boundary evaluation computation. The source data is real-world data provided

from the BRL-CAD [24] solid modeling system.

System F4 consists of a line with an ellipse. There are 2 intersections and both

are real.

System F5 consists of two ellipses. Rather than real intersections, these ellipses

have 2 complex intersections.

System F6 consists of two ellipses with supports

(2, 0) , (1, 0) , (0, 2) , (0, 1) , (0, 0)

and

(2, 0) , (1, 1) , (1, 0) , (0, 2) , (0, 1) , (0, 0) ,

respectively. System F6 has 4 roots and all of them are real.

For this example, we spent the most time computing polynomials h1 and h2.

This was because the coefficients of the polynomial h, h1 and h2 become huge.

6.1.2.1 Summary of Timing Breakdowns

While the examples shown above are not comprehensive, from these and other cases

examined, the following conclusions can be drawn:

• The performance of our algorithm is reasonable for lower dimension/degree
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Table II. Timing breakdown for several examples F1, . . . , F6.

Rows 2 through 6 characterize the input systems. Rows 7 through 10 char-

acterize the complexity of the toric resultant algorithm (See Section 3.3).

Rows 11 through 13 characterize the outputs. Rows 14 through 18 show

the timing. Row 15 shows the percentage for computing the resultant ma-

trix (Steps from 1 through 7 in Algorithm RUR toric square). Row 16

shows the percentage for computing h (Steps from 8 through 31 in Algo-

rithm RUR toric square). Row 17 shows the percentage for computing

q±i (Steps from 32 through 36 in Algorithm RUR toric square). Row 18

shows the percentage for computing hi (Steps from 38 through 40 in Algo-

rithm RUR toric square).

Input System F1 F2 F3 F4 F5 F6

# of polynomials 2 3 3 2 2 2

# of variables 2 3 2 2 2 2

max. degree of monomials 4 2 2 2 2 2

max bit-length of coefficients 4 1 4 307 51 95

# of roots of system ∞ ∞ ∞ 2 ∞ 4

MV−0 4 4 12 2 4 4

M =
∑n

i=0 MV−i 12 12 36 5 8 8

N = dimN 12 17 42 6 10 10

M = # of roots of h 4 4 10 2 4 4

max bit-length of coefficients of h 18 20 68 844 159 292

max bit-length of coefficients of ri,j 173 96 1549 1686 2061 2820

max bit-length of coefficients of hi 44 11 273 358 8563 416

total time (sec) .333 1.87 111 .0662 .672 .104

computing resultant matrix (%) 27 41 0 70 10 11

computing h (%) 14 13 9 2 4 1

computing q±i (%) 48 44 51 6 13 3

computing hi (%) 11 2 40 22 73 86
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systems. However, for higher dimension/degree systems, the implementation

tends not to be practical.

• Constructing the toric resultant matrix takes up an insignificant portion of the

time. Evidently, the use of Emiris’s incremental algorithm rather than the

mixed-subdivision based algorithm is justified.

• For lower dimension/degree systems, the most time consuming part of the al-

gorithm is repeated evaluation of the determinant of the toric resultant matrix.

By the use of the incremental algorithm, I am able to construct resultant ma-

trices of reasonably small size and sometimes even the optimal one. e.g. F1.

However, the size of the toric resultant matrix grows quite rapidly with respect

to the dimension/degree of the input system.

• For positive dimensional systems, the resultant evaluation contributes a certain

amount to the total time, while for the zero dimensional systems, the resultant

evaluation is insignificant.

• For higher dimension/degree systems, the most time consuming part is com-

puting univariate polynomials forming the exact RUR, mainly because of their

huge coefficients. Further optimization such as the use of modular arithmetic

should be a target of future speedup efforts.

• For these examples, except for F5, we did not find any benefit in using rational

representations for hi instead of univariate polynomials. For higher dimen-

sion/degree systems, though, significant improvement should be seen.
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6.1.3 RUR v.s. MAPC

This section compares my exact implementation of the RUR with the library MAPC

[59], introduced in Section 2.1.3.5, that supports exact manipulation of algebraic

points and curves in the 2-dimensional space.

In MAPC, a 2-dimensional algebraic point is specified as an intersection of a pair

of algebraic curves, and is represented by a rectangle containing one and only one in-

tersection of these curves. A 2-dimensional algebraic curve is specified by bivariate

polynomials with rational coefficients. Thus, an algebraic point is represented as a

rectangle containing one and only one common root of those bivariate polynomials

with rational coefficients. Such a rectangle is generated as follows: first, enumerate

disjoint rectangles where intersections are possibly located, and then, for each such

rectangle, determine whether or not there really is an intersection by checking how

curves hit the boundary edges of the rectangle. Thus, some intersections at singular-

ities cannot be found. (See the description and Figure 7 in Section 2.1.3.5).

The rectangle representing an algebraic point can be shrunk into any size on

demand. This feature allows us to manipulate algebraic points exactly. However,

MAPC may not be able to test whether or not a point lies on a curve, or whether or

not two given points are identical. We have already seen (Section 4.2) that, provided

algebraic points are represented in the RUR, those queries are correctly answered.

MAPC is able to find only intersections in a certain region; simply consider only

rectangles in the region. On the other hand, the exactly implemented RUR finds all

the intersections first, then, if necessary, pick up those in a given region by using some

other means (e.g., using Algorithm Exact sign).

We are particularly interested in the comparison of the exactly implemented

RUR with the part of MAPC that computes intersections of two algebraic planar
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Table III. Timings for solve systems F4, F6, F7, F8.

Row 2 shows the number of real roots of the input system computed by

the exactly implemented RUR. Row 3 shows the degree of the univariate

polynomial h in the RUR. When the input system is zero-dimensional, this

quantities generally matches to the number of all the roots of the input

system. Row 4 shows the number of real roots of the input system computed

by MAPC. MAPC may not be able to find some roots. Rows 5 and 6 show

the timing by the exactly implemented RUR and MAPC, respectively, in

seconds.

Input System F4 F6 F7 F8

# of real roots by RUR 2 2 0 4

# of roots of h 2 2 2 4

# of real roots by MAPC 2 2 0 2

total time by RUR (sec) 0.0662 0.104 0.183 0.687

total time by MAPC (sec) 0.017 0.017 0.024 0.017

curves, or equivalently finds common roots of two bivariate polynomials with rational

coefficients. We find intersections of a pair of algebraic planar curves via the exactly

implemented RUR and MAPC. Timings for a comparison of the exactly implemented

RUR with that of MAPC are shown in Table III.

Systems F4 and F6 are from Section 6.1.2.

The other systems in Section 6.1.2 have some intersections that MAPC fails to

find, and thus, they are not listed here.

Systems F7 and F8 are drawn from the same source as systems F4 and F6.

System F7 consists of a line and an ellipse. There are 2 intersections and both

are real.

System F8 consists of two ellipses. Rather than real intersections, they have 2
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complex intersections. MAPC finds only those 2 real intersections.

6.1.3.1 Summary of Timing Breakdowns

In Table III, I show timings for a comparison of the exactly implemented RUR with

that of MAPC.

Recall that MAPC cannot finds some intersections at singularity while the ex-

actly implemented RUR finds all the intersections. This describes the difference in

the number of roots found in F7 and F8.

The exactly implemented RUR suffers from expression swell independent of the

actual geometry and topology of the intersections. This is observed in F8.

From these cases, it is clear that for generic cases which a method such as MAPC

can handle, the exactly implemented RUR has an unacceptably high performance

cost. For this reason, it will be best to use the excatly implemented RUR only in

a hybrid fashion, when the other methods will fail. An important caveat should be

considered, in that the exactly implemented RUR has not been fully optimized. On

the the hand, MAPC has been significantly optimized through the use of various

speedup techniques, such as floating-point filters and lazy evaluation approaches.

Such optimizations should increase the performance of the excatly implemented RUR

significantly, although there will still be fundamental limitations that will make the

excatly implemented RUR less efficient in most generic cases encountered in practice.

Finally, note that performance could be improved by isolating only real roots

of the minimal polynomial, h, which would allow us to isolate the real roots of the

system. In fact, this is the approach taken by the GBRS system [87]. However, doing

so would not allow us to determine the positive dimensional components, where the

points isolated on the component could be complex.
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6.2 Numerical Pertubations

This section describes the implementation of one of the numerical perturbation

schemes, “expansion / contraction,” in order to remove degeneracies appearing in

boundary evaluation of solid objects.

a b

Fig. 11. Expansion / contraction.

a. A perturbation information of a certain node becomes a set of expansion

/ contraction operations at the leaves [61]. If A ∪ B or A ∩ B need to be

expanded, both A and B would be expanded. With a difference operation

A−B, however, A would be expanded, and B would be contracted.

b. Since different degeneracies might require a primitive solid object to be

expanded in different directions, for the different operations, different amounts

of perturbations are allowed.

ESOLID, introduced in Section 2.1.3.5, is a geometric solid modeling system
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that performs exact boundary evaluation for a given CSG model of solid objects[58].

Throughout the system, exact computation is used in order to eliminate the robust-

ness problem due to numerical errors. Unfortunately, ESOLID assumes that every

object is in general position. On a degenerate input, ESOLID may return a wrong

result, or even worse, crash.

ESOLID uses the library MAPC [59] that supports exact manipulation of al-

gebraic points and curves in a 2-dimensional space. For efficiency, MAPC assumes

curves are non-singular and ignores some singular intersections such as tangential

intersections.

We would like to overcome this situation.

In Section 4.3 in Chapter IV, I show that the use of RUR helps us to detect

degeneracies. I will add another component that performs one of the numerical per-

turbation schemes, “expansion / contraction” over the solid objects input to ESOLID.

See Figure 1 in Chapter I.

A numerical perturbation approach requires very little modification to ESOLID,

yet eliminates degeneracies.

I emphasize that the use of exact computation enables us to achieve greater

robustness and consistency. The goal is not necessarily to have an exact solution

to the input problem, but without accounting for numerical error and degeneracies,

programs are subject to crashes or inconsistent output, neither of which is a desirable

condition. We would like to have a program that can reliably produce a set of valid

output, for a wide variety of input.

6.2.1 Expansion / Contraction for CSG Trees

Applying expansion / contraction to general curved solid objects is difficult, and often

suffers from the complex topological issues. Fortunately, however, it is relatively easy
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to apply expansion / contraction to the standard CSG primitive solid objects: boxes,

cylinders (generalized cones), spheres (generalized ellipsoids) and tori. Perturbations

at one level of a CSG tree can always be propagated to the primitive solid objects at

leaves.

In my implementation, each primitive object can be scaled by a certain amount

(bounded from above by the global tolerance τ), relatively easily. By fixing the

centroid of a solid, any point in the solid object is scaled outward or inward by the

same amount in any direction. For example, an ellipsoid can be expanded just by

increasing its radius.

Perturbation is applied, during boundary evaluation, whenever a degeneracy is

detected. Since this may occur at a high level node in a CSG-tree, the perturbation

information must be propagated from the node down to the leaves (i.e. the input

primitive solid objects). There is a rule [61] that decides which object(s) is expanded

and which contracted. Assume we wish to propagate an expansion information down

the tree. Each union or intersection node would also propagate an expansion down-

ward. That is, if A ∪ B or A ∩ B need to be expanded, both A and B would be

expanded. With a difference operation A − B, however, A would be expanded, and

B would be contracted. In this way, a perturbation information of a certain node

becomes a set of expansion / contraction operations at the leaves. See an example in

Figure 11 a.

After a perturbation is applied, the following holds:

Proposition 6.30. 1. Any surface of a primitive solid is expanded/contracted so

that it is parallel to that of the original.

2. Any surface of any solid represented as some subtree rooted at some internal

node of a CSG-tree is expanded/contracted so that either 1) it is parallel to that
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of the original or 2) there is no counterpart in the original.

3. Any edge of a primitive solid is expanded/contracted so that it is parallel to that

of the original.

4. Any edge of any solid represented as some subtree rooted at some internal node

of a CSG-tree is expanded/contracted so that either 1) it is parallel to that of

the original or 2) there is no counterpart in the original.

5. The centroid of any primitive solid does not move.

Expansion / contraction of primitive solid objects offers the opportunity to cap-

ture design intent. Expansion / contraction follows the principles proposed first by

Sugihara and Iri [96] and Fortune [36], where the surfaces of input solid objects are

symbolically perturbed inward or outward. In the implementation described in this

dissertation, however, for simplicity, perturbations are applied only to primitive solid

objects. The approach taken here is different from these previous approaches in that

mine can be applied to non-polyhedral solid objects, and in that the perturbation

information is propagated through the CSG tree only to resolve specific degeneracies.

It should be noted that if there are multiple degeneracies in a CSG tree, it

is possible that different degeneracies might require a primitive solid object to be

expanded in different directions. In this case, by allowing perturbations of different

amounts for the different operations, both operations can be satisfied. Since one

degeneracy must precede the other in the tree, the perturbation from the higher

level node affects degeneracies at the lower-level nodes. As long as the solid objects

are perturbed by an amount enough to resolve their own degeneracy, but not so

much as to change the perturbation direction required by the higher degeneracy, the

perturbation will work. See Figure 11 b. This is likely to lead to much higher bit

complexity, however.
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6.2.1.1 Implementation

The perturbation scheme described in Section 6.2 is implemented. ESOLID is used

to convert parts from CSG format to an exact B-rep format. Whenever a degener-

acy is detected, ESOLID either aborts or loops. If ESOLID aborts then numerical

perturbation is applied. Perturbation is propagated through the entire CSG tree

and eventually all the input primitive solids are perturbed. Then, the computation

restarts.

The experiments are performed on three parts shown in Figure 12 taken from a

Bradley Fighting Vehicle that is developed by the Army Research Lab with their BRL-

CAD solid modeler [24], using a 3.0 GHz Intel Pentium CPU with 6 GB of memory.

Each model contained degenerate data that could crash a standard modeler. The

numerical perturbation described in this dissertation scheme allows us to compute

results with a general-position algorithm, while maintaining designer’s intent.

Tables IV, V and VI show experiments on the examples in Figure 12. Rows 3 and

4 give the number of times the basic bivariate and univariate root-finding routines

were invoked while computing. MAPC performs root isolation and sign evaluation

(of a polynomial at a given value) by using floating point filters. When the filter fails,

methods involving multi-precision arithmeticoperations are invoked. The number of

such root isolation and sign evaluations is shown, along with the percentage of the time

that the floating point filter fails (and thus exact methods must be used). Column

1 shows the result when ESOLID (i.e. without perturbation) is used for operations

on solids not in degenerate configuration, while column 2 shows the performance

of ESOLID on a perturbed version (by 1
1024

) of those same solids. Column 3 gives

the results for the entire part, including the perturbed solids that have removed the

degeneracies.
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The part cargo hatch is obtained by joining 11 solids. ESOLID fails to model 4

of them because of degeneracies. The part commander hatch is obtained by joining 5

solids. ESOLID fails to model 1 of them because of a degeneracy. In both examples,

all the degeneracies can be eliminated by numerical perturbation. The part engine

is obtained by joining 14 solids. One of them has a degeneracy that makes ESOLID

loop. Thus, this part is ignored. Among the other 13 solids, ESOLID fails on 3 of

them because of the degeneracies.

The perturbed versions ran slower than the unperturbed versions (on the por-

tions that both could compute), due to higher bit-length. Filters failed slightly more

often. For the parts cargo hatch and engine, the increase in time was very modest,

however, the part commander hatch took significantly more time to compute. This

exceedingly longer time was due to secondary effects of the perturbation. Specifically,

the perturbation created a situation (having to separate two very close curves that

were once only one curve) that the particular evaluation algorithm used here was not

adept at handling.

In summary, on these real-world cases, note first that numerical perturbation

allows us to compute the result while maintaining designer’s intent. The perturbed

versions do, indeed, run slower than the unperturbed versions and require a higher

percentage of sign evaluations of polynomials using exact arithmetic, rather than

floating-point filters (due to increases in bit-length).
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Table IV. Experiments on cargo hatch.

Column 2 show statistics without perturbation until ESOLD fails because

of degeneracies. Column 3 show statistics with a numerical perturbation

but stops at the point when no perturbation version (shown in column 2)

fails. Column 4 show statistics when entire part is build (with a numerical

perturbation). Bivariate root-finding and univariate root-finding are two

major heavy calls to MAPC. These root-finding operations internally call

root isolation and sign evaluation. FP-filter is used for root isolation and

sign evaluation if possible.

w/o pert. w/ pert. all solids

time (msec) 36570 50487 141474

# of CSG boolean op’s 17 17 34

# of bivariate root-finding 25137 25764 50902

# of univariate root-finding 23809 26344 56800

# of root isolation 32616 36879 82024

% of exact computation 6.30 3.88 7.33

# of sign evaluation 486139 573022 1288838

% of exact computation 6.37 7.37 11.33
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a b

c

Fig. 12. Real-world tank examples. a. Cargo hatch, b. Commander hatch, c. Engine.

Each of these contained degenerate data that could crash a standard modeler.

The numerical perturbation allowed us to compute results with a general-po-

sition algorithm, while maintaining designer’s intent.
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Table V. Experiments on commander hatch.

Column 2 show statistics without perturbation until ESOLD fails because

of degeneracies. Column 3 show statistics with a numerical perturbation

but stops at the point when no perturbation version (shown in column 2)

fails. Column 4 show statistics when entire part is build (with a numerical

perturbation). Bivariate root-finding and univariate root-finding are two

major heavy calls to MAPC. These root-finding operations internally call

root isolation and sign evaluation. FP-filter is used for root isolation and

sign evaluation if possible.

w/o pert. w/ pert. all solids

time (msec) 95658 701096 722385

# of CSG boolean op’s 6 6 12

# of bivariate root-finding 5331 4103 6636

# of univariate root-finding 12354 4772 8635

# of root isolation 19889 8761 13032

% of exact computation 18.87 17.62 11.85

# of sign evaluation 359768 136517 208196

% of exact computation 3.66 7.85 6.15
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Table VI. Experiments on engine.

Column 2 show statistics without perturbation until ESOLD fails because

of degeneracies. Column 3 show statistics with a numerical perturbation

but stops at the point when no perturbation version (shown in column 2)

fails. Column 4 show statistics when entire part is build (with a numerical

perturbation). Bivariate root-finding and univariate root-finding are two

major heavy calls to MAPC. These root-finding operations internally call

root isolation and sign evaluation. FP-filter is used for root isolation and

sign evaluation if possible.

w/o pert. w/ pert. all solids

time (msec) 224803 279560 1233390

# of CSG boolean op’s 15 15 33

# of bivariate root-finding 18252 17827 36456

# of univariate root-finding 30222 29154 51079

# of root isolation 49370 48878 86664

% of exact computation 14.46 16.42 20.38

# of sign evaluation 826664 821022 1501026

% of failure of FP-filter 3.59 4.49 7.95
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CHAPTER VII

CONCLUSION

This dissertation describes several operations for supporting exact geometric compu-

tation, in particular, the Rational Univariate Representation (RUR) for the zero set

of a system of polynomials. This chapter summarizes my research, reviews how the

objective of my dissertation is demonstrated and discusses future work to be done.

7.1 Objective

The objective of this dissertation is the following:

The Rational Univariate Representation (RUR) effectively supports ex-

act computation over algebraic points and curves. This enables robust

geometric computation, in particular, degeneracy handling.

The objective has been proved by:

(1) developing an exact representation of an algebraic point based on the Rational

Univariate Representation RUR (Chapter III and Section 6.1 in Chapter VI),

(2) developing methods to support exact computation over algebraic numbers, points

and curves (Section 4.1 and Section 4.2 in Chapter IV),

(3) applying these methods in order to detect degeneracies appearing in boundary

evaluation of solid objects (Section 4.3 in Chapter IV), and

(4) developing an exact numeral perturbation scheme for handling degeneracies ap-

pearing in boundary evaluation of solid objects (Chapter V and Section 6.2 in

Chapter VI).
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7.1.1 Rational Univariate Reduction

This section summarizes the results in Chapter III and Section 6.1 in Chapter VI.

New algorithms for computing the Rational Univariate Representation (RUR)

for the zero set of a given system of multivariate polynomials are presented (Chapter

III).

An algorithm for computing the RUR for the zero set of a square system re-

fines the algorithm originally presented in [81]. In both algorithms, the univariate

polynomials forming the RUR are derived from the toric perturbation, which is a

generalization of the toric u-resultant, by specializing indeterminate u’s to some ap-

propriate values. A deterministic way to specialize those indeterminates appropriately

is presented.

A new algorithm for computing the RUR for the zero set of an overdetermined

system has been presented. The algorithm constructs a square system of higher

dimension so that the projection of the RUR for the zero set of the square system will

become the RUR for the zero set of the input system. In contrast to the algorithm

for an overdetermined system described in [83], where a square system of the same

dimension is constructed from the input system with some random choices, the new

algorithm is deterministic.

As a consequence of derandomization, a new algorithm for computing real roots

of a given system of multivariate polynomials becomes much simpler.

The arithmetic complexity of the new algorithm is analyzed. The analysis tells

us that the size of the resultant matrices governs the complexity of the algorithm.

The implementation of the new algorithms for the case when all the coefficients of

the input polynomials are rational numbers is described in detail. The implementation

is exact; all the rational coefficients of the univariate polynomials forming the RUR
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will be computed to full precision.

7.1.2 Exact Manipulation of Algebraic Points and Curves

This section summarizes the results in Chapter IV.

The root bound approach to exact sign determination of the real and imaginary

parts of algebraic numbers is explained.

I propose an exact representation for an algebraic point. In particular, I show that

algebraic points specified as intersections of algebraic curves can be exactly expressed

in the Rational Univariate Representation. Together with the root bound approach to

exact sign determination of the real and imaginary parts of algebraic numbers, I show

some fundamental predicates in computational geometry can be computed exactly.

This enables us to perform exact manipulation of algebraic points and curves.

The proposed technique for exact manipulation of algebraic points and curves

is applied to the degeneracy detection problem appearing in boundary evaluation of

solid objects. Degeneracy detection is done by checking irregular interaction between

surfaces, edges and points. Since the RUR can be used even for points at a singularity,

and exact comparisons over algebraic points in the RUR is straightforward, the RUR

is a powerful method for problems dealing with degeneracies.

7.1.3 Numerical Perturbations

This section summarizes the results in Chapter V and Section 6.2 in Chapter VI.

A formal description of exact numerical perturbation schemes for removing de-

generacies is given analogous to the formal description of symbolic perturbation

schemes [90] [91]. Several aspects of numerical perturbation schemes are derived.

In particular, it is shown that random numerical perturbations work almost always.

Several problems regarding the implementation of numerical perturbation
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schemes are discussed. Some examples are shown. It turns out that an arbitrary

numerical perturbation is unlikely to meet any criteria of capturing designer’s intent.

Even though the computation might complete, the output can be different from the

what the designer intended - some guidance for how to perturb is needed.

One numerical perturbation scheme, “expansion / contraction of primitive solid

objects” is implemented in order to remove degeneracies appearing in boundary eval-

uation of solid objects. It is successfully used to model several solid objects from

real-world examples.

7.2 Future Work

There are several avenues of future work open, some of which I list here.

The algorithms for computing the RUR for a given system of polynomials form

the foundations in this research. More work on the RUR is planed.

I have developed Algorithm Positive dimensional Components to detect

whether or not the zero set of the input system has some positive dimensional com-

ponents (Section 4.2.1.2). While it would also be nice to develop a means of actually

finding a representation for the positive dimensional components of the zero set of

the input system, this would be a much harder problem.

I have not analyzed asymptotic arithmetic complexity of Algorithm

RUR overconstrained (Section 3.1.2.2). I strongly believe that the arithmetic com-

plexity of the new algorithm is worse compared to the algorithm described in [83],

although the new algorithm behaves better for small n. A bit-complexity analysis of

these algorithms would also be useful.

Although some efficiency improvements have been installed, the implementation

of the algorithms can be further optimized. One avenue in particular would be to



145

use better algorithms for constructing the resultant matrices or evaluating the toric

resultant. Any improvement here would be helpful, since the resultant computation

governs the performance of the algorithms both in theory and practice. Also, faster

subroutines for linear algebra operations and polynomial ring operations would be

useful. For instance, I should take advantage of the sparse structure of the resultant

matrix when its determinant is evaluated.

Also, it would be nice to extend the implementation described in this dissertation

to include coefficients belonging to a field other than the field of rational numbers.

Over a finite field, an implementation must look different since we cannot use tech-

niques that work over a field of characteristic 0. Also, an implementation for coeffi-

cients that are real or complex algebraic numbers would be interesting. Even more

generally, there are practical reasons to consider polynomials whose coefficients are

not given exactly. In contrast to Gröbner basis approaches to determining the RUR,

the toric approach is continuous over perturbations in the coefficients, thus there is

some hope that it would offer a method for dealing with such input. Developing

theory and implementation to support such polynomials would be very valuable.

The goal of this research is to support robust geometric computation. In this

dissertation, the exact numerical perturbation scheme is proposed and applied to

boundary evaluation of solid objects (Section 4.3.2 and Section 6.2). More geometric

problems should be explored. In the future, I would like to further develop the various

types of implementations of exact numerical perturbation schemes, and test them.
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system solving,” Journal of Complexity, vol. 17, no. 1, pp. 154 – 211, 2001.
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