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ABSTRACT

Source-channel Coding for Robust Image Transmission

and for Dirty-paper Coding. (December 2005)

Yong Sun, B.S., Tsinghua University, Beijing, P.R.China;

M.S., Tsinghua University, Beijing, P.R.China

Chair of Advisory Committee: Dr. Zixiang Xiong

In this dissertation, we studied two seemingly uncorrelated, but conceptually

related problems in terms of source-channel coding: 1) wireless image transmission

and 2) Costa (“dirty-paper”) code design.

In the first part of the dissertation, we consider progressive image transmission

over a wireless system employing space-time coded OFDM. The space-time coded

OFDM system based on a newly built broadband MIMO fading model is theoretically

evaluated by assuming perfect channel state information (CSI) at the receiver for

coherent detection. Then an adaptive modulation scheme is proposed to pick the

constellation size that offers the best reconstructed image quality for each average

signal-to-noise ratio (SNR).

A more practical scenario is also considered without the assumption of perfect

CSI. We employ low-complexity decision-feedback decoding for differentially space-

time coded OFDM systems to exploit transmitter diversity. For JSCC, we adopt a

product channel code structure that is proven to provide powerful error protection and

bursty error correction. To further improve the system performance, we also apply

the powerful iterative (turbo) coding techniques and propose the iterative decoding

of differentially space-time coded multiple descriptions of images.

The second part of the dissertation deals with practical dirty-paper code designs.
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We first invoke an information-theoretical interpretation of algebraic binning and

motivate the code design guidelines in terms of source-channel coding. Then two

dirty-paper code designs are proposed. The first is a nested turbo construction based

on soft-output trellis-coded quantization (SOTCQ) for source coding and turbo trellis-

coded modulation (TTCM) for channel coding. A novel procedure is devised to

balance the dimensionalities of the equivalent lattice codes corresponding to SOTCQ

and TTCM. The second dirty-paper code design employs TCQ and IRA codes for

near-capacity performance. This is done by synergistically combining TCQ with IRA

codes so that they work together as well as they do individually. Our TCQ/IRA

design approaches the dirty-paper capacity limit at the low rate regime (e.g., < 1.0

bit/sample), while our nested SOTCQ/TTCM scheme provides the best performs so

far at medium-to-high rates (e.g., ≥ 1.0 bit/sample). Thus the two proposed practical

code designs are complementary to each other.
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CHAPTER I

INTRODUCTION

In this dissertation, two research problems are investigated: 1) robust image trans-

mission over wireless channels; 2) practical Costa (“dirty-paper”) code design. They

are seemingly uncorrelated, but conceptually related in their nature of source-channel

coding.

A. Robust Image Transmission over Wireless Channels

Shannon’s information separation theorem [1, 2] states that in a communication sys-

tem, one can optimize the source coding (data compression) and channel coding (error

protection) separately without any performance loss. However, this only holds under

the assumptions of infinite delay and complexity (e.g., infinite long codeword length),

which are usually invalid in practice. In recent years, considerable interests have

developed in various schemes of joint source-channel coding (JSCC). That is, jointly

optimized source-channel coders are employed to tradeoff the source and channel cod-

ing and thus achieve significant performance improvement over separate source and

channel coding.

One example is the wireless image communication system, which is becoming

more popular with the increasing demands for efficient progressive multimedia trans-

mission over wireless channels. Progressive transmission is motivated by the embed-

ded nature of state-of-the-art of image coders such as SPIHT [3] and JPEG2000 [4].

These scalable coders have the attractive feature that any initially received portion

of the source bitstream can be used to decoded an image with quality commensurate

The journal model is IEEE Transactions on Communications.
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with the bitrate and that additional received source bits can be used to improve upon

the image quality. Intuitively, information bits in an embedded bitstream have de-

creasing orders of significance, i.e., the first bit is the most important, the second bit

is less important, and so on. For progressive image transmission over noisy channels,

this necessitates unequal error protection (UEP) in JSCC: more error protection for

the beginning part of the source coded image bitstream, less protection for the middle

part, and yet less or even no protection for the last part.

Most works on wireless multimedia transmission assume a memoryless (e.g., BSC

and AWGN) channel [5, 6, 7]. For fading channels, a two-state Gilbert-Elliot model

is employed to simulate bursty errors in [8]. The JSCC design in [8] targets at bad

channel conditions and hence is not optimal for good channel conditions. Image

transmission over practical wireless channels was recently studied by Song and Liu

[9]. They evaluated the space-time coded orthogonal frequency-division multiplexing

(STC-OFDM) system and proposed a practical UEP scheme for JSCC with Reed-

Solomon (RS) codes because of their good bursty error correction capability.

In this dissertation, we consider a new system that integrates progressive image

coding, channel coding, signal modulation and antenna diversity for wireless image

transmission. Specifically, we study the progressive image transmission with JSCC

over STC-OFDM systems, as illustrated in Fig. 1. The image is first fed into the em-

bedded image coder (e.g., SPIHT [3] and JPEG2000 [4]). Based on JSCC, the source

bitstream is transformed into a sequence of packets by the channel encoders. Note

that UEP is fulfilled by providing more error protection for the significant (beginning)

part of the bitstream. We transmit all the packets through the STC-OFDM system

with multiple antennas. At the receiver, the sent symbols are first detected via STC-

OFDM decoding. Then after channel decoding, part of bitstream can be recovered

from the correctly decoded packets. The image decoder reconstructs the transmitted
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image using the source bits before the first error in the recovered bitstream.

Embedded 
Image Encoder

STC-OFDM 
Encoder

Wireless 
Channel

Transmitter

Receiver

JSCC/UEP

Embedded 
Image Decoder

STC-OFDM 
Decoder

Channel 
Decoding

Original 
image

Reconstructed 
image

Bitstream

Recovered 
bitstream

Channel encoded 
packets

Received 
packets

Fig. 1. Progressive image transmission system over STC-OFDM systems.

Orthogonal frequency-division multiplexing (OFDM) is a multi-carrier digital

modulation technique that is becoming more and more popular. It has been shown

to be effective for digital audio and digital video broadcasting in Europe. The IEEE

802.11 standard uses OFDM modulation for wireless LANs operating at bit rates

up to 30 Mbps at 5 GHz. In OFDM [10, 11], the entire channel is divided into

many narrow sub-channels through which data are transmitted in parallel, thereby

increasing the symbol duration and reducing inter-symbol interference. In addition,

OFDM transforms a frequency-selective fading channel into a set of parallel flat-

fading channels. Recent works have addressed channel estimation and receiver design

for STC-OFDM systems [12, 13].

Space-time coding (STC), which integrates spatial diversity in antenna array

and channel coding, can provide significant capacity gains in wireless channels. Since

Alamouti introduced a simple transmission scheme with two transmit antennas [14],

there have been many recent works addressing the design and applications of STC

[15, 16, 17, 18]. Most research on STC system design assumes that the receiver
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knows the fading channel state information (CSI) for coherent detection. When no

CSI is available, two methods are usually used for non-coherent detection. One is to

estimate the CSI before performing decoding [13, 19, 20]. Iterative techniques (e.g.,

the expectation-maximization (EM) algorithm [21, 22]) are usually used in receiver

design with good performance but at high computational complexity. More recently,

Lu et al. designed an iterative receiver for STC-OFDM systems in unknown wireless

dispersive fading channels in [12] with reduced complexity.

Another approach to exploiting transmit diversity while not requiring the CSI

at the receiver is differential space-time coding (DSTC) [23, 24]. When compared

with the algorithms based on CSI estimation (e.g., EM-based iterative receiver for

space-time coded OFDM systems [12]), DSTC is attractive due to its robustness and

low computational complexity. It is also more power-efficient since no pilot symbols

are required to track the CSI. However, DSTC exhibits an error floor when employed

in fading channels, just like the conventional differential demodulation schemes. The

usual solution is multiple-symbol detection (MSD) [25], which makes use of ML se-

quence estimation rather than symbol-by-symbol detection as in conventional differ-

ential detection. However, MSD has relatively high computational complexity. A low-

complexity DSTC technique, which considerably reduces the error floor, especially in

fast fading channels, is developed in [26] based on multiple-symbol decision-feedback

decoding [27, 28].

Although embedded source coding, STC and OFDM have been treated separately

under different contexts of communications system design, for the specific problem (of

progressive image transmission over STC-OFDM systems) addressed here and many

related more general problems, the tight coupling between these source and channel

coding components in the form of UEP becomes interesting and challenging. Were

it not for the embedded nature of source coding, EEP would suffice and separate
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designs of source coding and channel coding (or coded modulation) would be optimal

by Shannon’s separation theorem [1, 2].

Having motivated the choice of embedded image coding, STC and OFDM, we

now address the main problem arising from the need of UEP in JSCC: an actual

fast UEP algorithm for assigning different channel code rates to different parts of

the source bitstream. Note that the UEP algorithm has to be fast to accommodate

time-varying wireless channel conditions.

An extremely fast near-optimal algorithm based on local search was presented

in [29]. Armed with this fast UEP algorithm, we covert the problem of progressive

image transmission over STC-OFDM systems into one of optimal JSCC in the form

of UEP. Specifically, for a given signal-to-noise ratio (SNR), the BER performance

of the space-time coded OFDM system is treated as the channel condition in the

JSCC/UEP design so that the end-to-end quality of reconstructed images is optimized

in the average minimum mean square error (MSE) sense. This is different from most

data communications system designs where the aim is often to minimize the BER and

the smaller the BER (e.g., < 10−6) the better. In addition, JSCC design is targeted

at allowing image communication systems to operate at a much higher BER (hence

lower SNR) range (e.g., from 10−3 to 10−1), while limiting the occurrence of bad

image quality (due to channel decoding error) to less than one in a thousand image

transmissions. Because low SNR can be transformed into savings in power, our new

philosophy in JSCC should impact the design of future wireless image transmission

systems.
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1. Main Contributions

Depending on the availability of the CSI at the receiver in STC-OFDM systems, this

work has the following novelties:

1. Coherent detection: We first assume perfect CSI at the receiver and set up

the whole progressive image transmission system. One important contribution

is the introduction of a newly built broadband multiple-input multiple-

output (MIMO) fading model, with both time-domain fading correlation

due to Doppler shift and spatial-domain fading correlation among different re-

ceive antennas induced by the surrounding environmental parameters. Coherent

detection allows us to theoretically analyze its BER performance. We also intro-

duce adaptive modulation as an additional mechanism for optimizing system

performance.

2. Non-coherent detection: When CSI is not available at the receiver in prac-

tical applications, the low-complexity decision-feedback differential-detection

receiver is adopted due to the increasing demand of real-time wireless commu-

nication. Based on this image transmission system with DSTC, we propose the

iterative decoding of differentially space-time coded multiple descrip-

tions of images to further improve the system performance with successive

iterations.
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B. Practical Costa (“Dirty-paper”) Coding

Our second research topic concerns with practical code designs for the celebrated

Costa (“dirty-paper”) problem [30]. We start by reviewing the original background

knowledge on channel coding with side information (CCSI) at the encoder, i.e.,

Gelfand-Pinsker coding [31].

�������

m
� ������

X Y m̂

S Z

Fig. 2. Gelfand-Pinsker coding or CCSI at the encoder.

Gelfand-Pinsker coding [31] is schematically shown in Fig. 2. The transmitter

wishes to send message m ∈ {1, . . . ,M} over a memoryless channel, which is defined

by the transition probabilities p(y|x, s), where X and Y are the channel input and

output, respectively, the i.i.d. random variable S is the state of the channel (side

information) known non-causally to the encoder but not to the decoder. X and Y

are related by

Y = X + S + Z, (1.1)

where Z is the channel noise. Based on the selected message m and the side informa-

tion S, the encoder sends X, which must satisfy the power constraint E[w(X,S)] ≤

PX , with w(·, ·) being the cost measure. The capacity is given by [31]

C∗ = max
p(u,x|s)

[I(U ;Y )− I(U ;S)],

where U is an auxiliary random variable such that Y → (X,S) → U and Y →
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(U, S)→ X and E[w(X,S)] ≤ PX .

Gelfand-Pinsker coding in general suffers capacity loss when compared to channel

coding with side information available at both the encoder and the decoder. However,

when Z is N(0, PZ), we have the famous dirty-paper problem [30] without capacity

loss, i.e.,

C∗ =
1

2
log2(1 +

PX
PZ

). (1.2)

Note that the influence of the side information S is completely cancelled, and thus,

the capacity is the same as if S were available at the decoder as well. And we make

no assumption about S.

From an information-theoretical perspective, according to [32], there are granular

gain and boundary gain in source coding, and coding gain and shaping gain in channel

coding. Dirty-paper coding is primarily a channel coding problem (for transmitting

messages), one should consider the shaping gain and the coding gain. In addition, the

side information necessitates source coding (e.g., via a message-based binning scheme

[33]) to satisfy the power constraint, i.e., the constellation needs to be infinitely repli-

cated so that one can quantize the side information to satisfy the power constraint.

However, source coding in dirty-paper coding is not conventional because there is only

granular gain, but no boundary gain. One needs to establish the equivalence between

the shaping gain in channel coding and the granular gain in source coding (e.g., via a

nested lattice code [34]) for dirty-paper coding. Then one can shoot for the shaping

gain via source coding and the coding gain via channel coding, i.e., dirty-paper

code design is a source-channel code design problem. In practice, the former

should be done with quantizers (e.g., trellis-coded quantization (TCQ) [35]) having

almost spherical Voronoi regions in a high-dimensional Euclidean space, and the lat-

ter with near-capacity channel codes (e.g., turbo [36] and low-density parity-check
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(LDPC) [37, 38] codes).

Driven by applications in data hiding [39] and precoding for inter-symbol inter-

ference channels [40] and ignited by recent discovery of its important role in broadcast

coding [41, 42], dirty-paper code design has become one of the hottest research top-

ics [43, 44, 45, 46, 47, 48]. Although Costa’s proof shows the existence of a capacity

achieving random binning scheme, it does not give any indication about practical code

construction. As discussed in the above paragraph, a message-based binning scheme

[33] is needed for practical dirty-paper code design. One convenient way to illustrate

algebraic binning is through a nested lattice code. Zamir et al. [34] showed that a

nested lattice scheme can approach the capacity as the dimensionality of the employed

lattices goes to infinity. However, nested lattice coding calls for a joint source-channel

code design with the same dimensional coarse/source and fine/channel lattice codes,

which are not easy to implement in high dimensions. Thus in joint source-channel

code design for dirty-paper coding, one needs to match the employed source and

channel codes in terms of having equal lattice dimensions.

Chou et al. [43, 44] proposed a trellis-based construction which applies TCQ

[35] to achieve the high-dimensional lattice quantization in source coding and uses

turbo trellis-coded modulation (TTCM) [49] as the powerful channel code. However,

TCQ works in a sub-optimal way when combined with TTCM because of the lattice-

dimensional mismatch between them. Indeed, at an embedding rate of 1 bit/sample,

this scheme performs 2.0dB away from the capacity [44].

At low rates or equivalently, low signal-to-noise ratios, the dirty-paper code de-

sign problem is more challenging. Recently, Erez and ten Brink [47] proposed a coding

scheme within the framework of nested lattice quantization based on lattice precoding

and trellis shaping [46, 50, 51]. The main advantage of this scheme is the separation of

the source coding component and the channel coding component, which enables the
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employment of the most powerful source and channel codes that are of different lat-

tice dimensions. The code design in [47] based on irregular repeat-accumulate (IRA)

[52, 53, 54] codes performs only 1.3dB from the capacity limit at a low rate of 0.25

bit/sample, which is the best result reported so far. Another practical scheme for the

dirty-paper problem was reported by Bennatan et al. in [48]. This scheme applies

superposition coding [55] and the source and channel codes are designed separately.

The design in [48] based on LDPC code achieves the same performance as in [47]

(e.g., 1.3dB away from the capacity at 0.25 bit/sample).

1. Main Contributions

In this dissertation, we propose a source-channel coding approach to dirty-paper

coding. In addition to channel coding, source coding is employed to satisfy the power

constraint due to the presence of encoder side information. The basic element of CCSI

is binning. Following the guideline in terms of source-channel coding for algebraic

binning, we present two practical code designs as follows.

1. Nested turbo codes: We address practical dirty-paper code design based on

nested lattice codes and propose a nested turbo construction using soft-output

TCQ (SOTCQ) for source coding and TTCM [49] for channel coding. A novel

procedure is devised to obtain an optimal tradeoff between the source and chan-

nel coding performance via balancing the dimensionalities of the equivalent

lattice codes corresponding to SOTCQ and TTCM. Our nested turbo code ap-

proach performs well at both moderate and high embedding rate regime, e.g.,

≥1.0 bit/sample.

2. Dirty-paper code design based on TCQ and IRA codes: Targeting the

more challenging low rate regime, we propose practical code designs using TCQ
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[35], in conjunction with both non-systematic and systematic IRA codes [52]

and point out that the latter offers additional flexibility in allowing more design

options for the systematic part, leading to better performance within the same

complexity constraint. At low embedding rates, e.g., 0.25 and 0.5 bit/sample,

our design provides the best result to approach the theoretical limit of dirty-

paper coding.

C. Organization of the Dissertation

This dissertation is organized as follows.

In Chapter II, the progressive image transmission over STC-OFDM systems will

be discussed with the assumption of coherent detection at receivers and a new broad-

band MIMO fading model. Its efficiency is confirmed by both our performance eval-

uation and the simulation results. Based on this image transmission system, the

proposal of the adaptive modulation scheme is also studied here.

In Chapter III, a more practical scenario for robust image transmission will be

considered. We apply the low-complexity decision-feedback differential-detection re-

ceiver for exploiting transmit diversity while not requiring the CSI at the receiver

in STC-OFDM systems. Then we justify the employment of the product code as

a more powerful JSCC scheme to combat bursty errors in fading channels. Finally,

we make a connection between this product code structure and multiple description

(MD) coding, and thus propose a new iterative decoding technique for differentially

space-time coded MDs of images.

Chapter IV of this dissertation will cover the practical code designs for the dirty-

paper problem. By introducing the source-channel coding approach to dirty-paper

coding, we show the total gap to capacity limit can be separated into modulo loss



12

due to source coding and packing loss due to channel coding. Then following the

code design guideline to apply both strong source and channel codes so that the total

loss is minimized, we present two independent dirty-paper code designs which favor

different embedding rate regimes. The nested turbo code construction works well in

high or moderate rate region (≥1.0 bit/sample), while the code design based on TCQ

and IRA codes provide the best performance so far at low rates (<1.0 bit/sample).

Finally in Chapter V, we will summarize this dissertation and provide concluding

remarks.
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CHAPTER II

PROGRESSIVE IMAGE TRANSMISSION OVER STC-OFDM-BASED MIMO

SYSTEMS WITH ADAPTIVE MODULATION

A. Introduction

In this chapter, we combine JSCC with STC-OFDM systems for progressive image

transmission. For JSCC, the channel coder with RCPC/CRC is applied because of its

capability to handle bad channels with quite high BER (e.g., 10−3 ∼ 10−1). Contrary

to using EEP as done in [56], we employ UEP as called for by the sequential depen-

dencies induced by the embedded source bitstream. We focus on the performance

evaluation of the image transmission system and introduce adaptive modulation

as an additional mechanism for optimizing system performance.

We first evaluate the STC-OFDM system based on a newly built broadband

MIMO fading model, which is parameterized by the various parameters of the

physical environment such as delay spread, cluster angle spread, antenna spacing,

and Doppler shift [57, 58, 59]. When compared to the traditional flat fading or

frequency-selective fading model, our new fading channels have both time-domain

fading correlation due to Doppler shift and spatial-domain fading correlation among

different receive antennas induced by those environmental parameters. To simplify the

analysis, we study the case with only two transmit antennas and two receive antennas

and assume that the receiver has perfect channel state information for coherent de-

tection. A close-form expression of BER is derived for the STC-OFDM-based MIMO

system with M -PSK modulation. Both the time-domain and the spatial-domain fad-

ing correlation are taken into account in our derivations and their effects on the system

performance are comprehensively studied. Regarding to the time-varying character-
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istics of fading channels, we show that the interferences within single sub-carrier and

from other sub-carriers will result in error floors at high SNRs. However, in the low

SNR range, where our interest lies, the error floor is much less pronounced. In ad-

dition, when the normalized maximum Doppler frequency is small (e.g., when the

mobile receiver is moving at a low speed), the small error floor can be ignored.

Effective JSCC design requires two sets of parameters as inputs: the operational

rate-distortion (R-D) function of the image coder and the probabilities of decoding

error in packets protected by various RCPC rates for a given BER of the STC-OFDM-

based MIMO system. The operational R-D function of embedded coders (e.g., SPIHT

[3]) can be generated by encoding the original image once and decoding the bitstream

at different lower rates. However, the probability of packet decoding error can not

be evaluated accurately by analytical methods. To get around this problem, we

realize that most UEP algorithms [5, 6, 7] are designed for BSCs, we thus assume

a BSC whose crossover probability is the average BER of our STC-OFDM-based

MIMO system. Then for a given average BER, we compute the probabilities of

packet decoding error for various channel code rates via Monte Carlo simulations. In

practical image transmissions, due to the bursty nature of errors in fading channels, we

employ bit interleaving to validate the BSC assumption (with uniformly distributed

bit errors) via a random interleaver, as suggested in [9].

Given the image coder (hence the operational R-D function) and the average

BER of STC-OFDM-based MIMO system with a certain constellation size M (hence

the probabilities of packet decoding error), a UEP scheme can be determined by the

fast local search algorithm in [6], resulting the best tradeoff between source coding and

channel coding for a fixed transmission rate under a fixed channel condition (BER).

From the exact assignment of source bits in the UEP solution, we can compute the

best achievable average MSE from the operational R-D function and formulate an
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end-to-end performance measure of the image transmission system for a given M .

This prompts us to propose an adaptive modulation scheme [60] to tradeoff channel

condition and throughput (constellation size). To motivate adaptive modulation, we

note that state-of-the-art JSCC (e.g., [56]) can be designed for channels with average

BER as high as 10−1. Thus we can potentially achieve high throughput by relying

on JSCC to handle bad channel conditions. Specifically, when the SNR increases to

a point that almost all source bits can be received correctly without channel coding,

we switch to a higher M to gain more transmitted bits and enlist JSCC to help

mitigate the effect of increased BER. As a result, based on the performance of the

image transmission system for various M , we pick the M that offers the best image

quality for each average SNR.

We provide simulation results, which are generated by averaging the MSEs of

practical image transmissions before converting the average MSE into peak signal-

to-noise ratio (PSNR). We assume that the UEP scheme has been obtained via the

system evaluation as discussed above. We also assume that a random bit interleaver

is performed over all packets corresponding to the whole image. Our simulation

results are in good agreement with our expectation, corroborating the performance

derivation of the image transmission system and the proposed adaptive modulation

scheme.

This chapter is organized as follows. We will first review the required background

knowledge on progressive image coder, STC, OFDM, and JSCC with its fast local

search algorithm. In Section C, we introduce the STC-OFDM-based MIMO system

based on the new MIMO fading model and evaluate its BER performance. In Section

D, we examine JSCC of image transmission over the STC-OFDM-based MIMO sys-

tem and propose an adaptive modulation scheme. In Section E, we present numerical

results, and in Section F, we conclude this chapter and suggest the future work.



16

B. Background

1. Embedded Image Coding

A popular image coding techniques featuring progressive transmission is the SPIHT

algorithm [3], which is the enhanced version of the Embedded Zerotree Wavelet

(EZW) coding [61]. A coding algorithm producing an embedded code has the prop-

erty that the bits in the bit stream are generated in order of importance, so that all

the low rate codes are included at the beginning of the bit stream. Typically, the

encoding process stops when the target bit rate is met. Similarly, the decoder can

interrupt the decoding process at any point in the bit stream, and still reconstruct

the image. Therefore, a compression scheme generating an embedded code can start

sending over the network the coarser version of the image first, and continues with

the progressive transmission of the refinement details.

Besides its embedded feature and low complexity, the SPIHT coder outperforms

most other coders [62]. The efficiency of SPIHT arises from exploiting the properties

of the wavelet coefficients and from the efficient use of data models and conditional

entropy coding. One property is that subbands of similar orientation are correlated

across different scales. A simple, yet general model that describes the distribution of

the wavelet coefficients is based on the zerotree assumption, which assumes that, if a

wavelet coefficient at a certain scale is insignificant with respect to a given threshold,

then all the coefficients of the same orientation in the same spatial location at finer

scales are also insignificant with respect to the threshold.

With the rapid progress of wavelet-based image coding, the new JEPG2000 image

coding standard also includes the wavelet transform and applies the embedded block

coding with optimal truncation (EBCOT) [63] algorithm for bit-plane coding the

wavelet coefficients. Unlike SPIHT which employs the arithmetic coding [64] on the
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significant bits only, the arithmetic coding in EBCOT is also applied on the sign bits

and the refinement bits. Furthermore, since EBCOT breaks one bit-plane into three

fractional bit-planes and compresses them in a decreasing order of R-D importance,

the complexity of JPEG2000 coding is higher than that of SPIHT coding. In terms

of compression efficiency, JPEG2000 performs comparably to SPIHT. The strength

of the JPEG2000 standard lies in its rich set of features such as lossy and lossless

compression, scalability in rate and image resolution, region of interest (ROI) coding,

and error resilience.

In this dissertation, our focus is the proposal of the adaptive modulation based on

the performance evaluation of the progressive image transmission scheme over STC-

OFDM-based MIMO systems. In fact any embedded image coder can be applied

in our setup. Finally, we select the SPIHT codec due to its high efficiency and low

complexity.

2. STC-OFDM Systems

Consider an STC-OFDM communication system with K sub-carriers, NT transmit

antennas and NR receive antennas as shown in Fig. 3.

Firstly the information bits are modulated by anM -PSK modulator and grouped

into OFDM codewords of length K through a serial to parallel converter. Then they

are encoded by an STC encoder. Each STC codeword consists of (PNT ) symbols,

which are transmitted from NT transmit antennas and across P consecutive OFDM

slots at a particular OFDM sub-carrier. Let xj[p, k] denote the output of an STC

encoder at the pth OFDM word associated with the k-th sub-carrier and the jth trans-

mit antenna, where p = 1, . . . , P ; k = 0, . . . , K − 1; j = 1, . . . , NT . They are actually

the transmitted symbols in frequency domain. By IDFT and adding proper cyclic

prefixes, we obtain the transmitted symbols in time domain. Then these symbols are



18

�������������������� ��������������������
��	�
���
������	�
���
������	�
���
������	�
���
����

����� ������ ������ ������ � ����������� ��!���������"��� ��!������������� ��!���������"��� ��!��#�$ %"& ! '#�$ %�& ! '#�$ %"& ! '#�$ %�& ! '

����������	�����������	�����������	�����������	�

��������������������
�(��
���
��������
���
�����(��
���
��������
���
����


 	� 	�� 	�
 	� 	�� 	�
 	� 	�� 	�
 	� 	�� 	�

��	�)�*�+��	�)�*�+��	�)�*�+��	�)�*�+
,.-�+�/,.-�+�/,.-�+�/,.-�+�/

0���
��(-�1���
0(��
��(-�1(��
0���
��(-�1���
0(��
��(-�1(��

��2�3(4 �65�/��2�3�4 �.5�/��2�3(4 �65�/��2�3�4 �.5�/

����
���
���
����
���
���
����
���
���
����
���
���

,.-�+�/,.-�+�/,.-�+�/,.-�+�/

7�8�9;:7�8�9<:7�8�9;:7�8�9<:7�=�>�?�@�A�B�=�C7�=�>;?�@ A<B�=;C7�=�>�?�@�A�B�=�C7�=�>;?�@ A<B�=;C DDDDDD DDDDDD ����� ������ ������ ������ � ����������� ��!���������"��� ��!������������� ��!���������"��� ��!��#�$ %"& ! '#�$ %�& ! '#�$ %"& ! '#�$ %�& ! '
DDDDDD DDDDDD

��������������������

DDDDDD DDDDDD
DDDDDD DDDDDD

��� ���� ���� ���� � E = F�=;G�HE =�F�=;G<HE = F�=;G�HE =�F�=;G<HI C�H<J�K�LI C<H�J�K"LI C�H<J�K�LI C<H�J�K"L
DDDDDD DDDDDD ��� ���� ���� ���� � E = F�=;G�HE =�F�=;G<HE = F�=;G�HE =�F�=;G<HI C�H<J�K�LI C<H�J�K"LI C�H<J�K�LI C<H�J�K"L

DDDDDD DDDDDD
DDDDDD DDDDDD

DDDDDD DDDDDD
7�8;9�:7�8<9<:7�8;9�:7�8<9<:M�H F�=<>�?�@�A�B<=�CM�H F�=<>;?�@�A�B<=;CM�H F�=<>�?�@�A�B<=�CM�H F�=<>;?�@�A�B<=;C

��������������������

��������������������

��������������������

Fig. 3. Block diagram of STC-OFDM system.

transmitted serially from the K sub-carriers of each transmit antenna.

In OFDM systems, we assume the frequency-selective fading channel. Consider

the channel response between the j-th transmit antenna and the i-th receive antenna,

which is given by [65]

hi,j(τ ; t) =
L−1∑

l=0

αi,j(l; t)δ

(
τ − l

4f

)
, (2.1)

where δ(·) is the Kronecker delta function; L , dτm∆f + 1e denotes the maximum

number of resolvable taps, with τm being the maximum multi-path spread and ∆f the

tone spacing of the OFDM system; αi,j(l; t) is the complex amplitude of the l-th tap,

whose delay is l/4f . Each of them is independent of the other taps and has the same

normalized correlation function but its own average power σ2
i,j,l, l = 0, 1, . . . , L − 1.

Assume Jakes’ fading channel model [66] with

Rαi,j(l; t) = σ2
i,j,lJ0(2πfDt), l = 0, 1, . . . , L− 1, (2.2)

where J0(·) is the 0-th order Bessel function of the first kind; fD is the Doppler
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frequency.

For OFDM systems with proper cyclic extension, sample timing and tolerable

leakage, the channel frequency response between the j-th transmit antenna and the i-

th receive antenna at the p-th OFDM word and at the k-th subcarrier can be expressed

as

Hi,j[p, k] =
L−1∑

l=0

hi,j[l; p]e
−j2πkl/K with hi,j[l; p] , αi,j(l; pTs), (2.3)

where Ts is the duration of one OFDM word. Note that we assume that each tap of

fading process remains static during each OFDM word but it varies from one OFDM

word to another.

At the receivers, the received symbols first go through the serial to parallel con-

verters. After removing the cyclic prefixes and applying DFT on the time-domain

received symbols, we obtain the frequency-domain received symbols as

y i[p] = X [p]Wh i[p] + z i[p], i = 1, . . . , NR, p = 1, . . . , P, (2.4)

with X [p] , [X 1[p], . . . ,XNT
[p]]K×(NTK) ,

X j[p] , diag {xj[p, 1], . . . , xj[p,K]}K×K ,

W , diag {W f , . . . ,W f}(NTK)×(NTL)
,

W f , [w f (0),w f (1), . . . ,w f (K − 1)]HK×L ,

w f (k) ,
[
1, e−j2πk/K , . . . , e−j2πk(L−1)/K

]H
,

h i[p] ,
[
hH
i,1(p), . . . ,h

H
i,NT

(p)
]H
(NTL)×1

,

h i,j [p] , [hi,j[0, p], . . . , hi,j [L− 1, p]]TL×1 ,

where h i[p] is the (NTL)-dimension vector containing the complex channel frequency

responses between the i-th receive antenna and all NT transmit antennas at the
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p-th OFDM word; xj[p, k] is the STC symbol transmitted from the j-th transmit

antenna at the k-th sub-carrier and at the p-th OFDM word; y i[p] is the K-dimension

vector of received signals from the i-th receive antenna at the k-th sub-carrier and

at the p-th time slot; z i[p] is the additional white Gaussian noise (AWGN), which is

complex Gaussian with covariance matrix σ2
zI . In our work, we apply M -PSK signal

constellation, i.e., xj[p, k] ∈ A , { 1√
NT
ej

2πk
M , k = 0, 1, . . . ,M − 1}, where the factor

1√
NT

is used to normalize the energy of the transmitted signals.

The space-time code was introduced systematically in [16]. Following [16], the

space-time code is defined by a (P ×NT ) matrix G. Each row of G is a permuted and

transformed (i.e., negated and/or conjugated) version of the NT -dimensional vector

of complex data symbols x . In the simplest case with P = 2, NT = 2, we get the

Alamouti code [14]

G2 =




x1 x2

−x∗2 x∗1


 . (2.5)

The data vector is defined as x = [x1, x2]. At the first time slot, the symbols

on the 1st row [x1, x2] are transmitted simultaneously from transmit antenna 1 and

2, respectively. At the 2nd time slot, the symbols on the second row [−x∗2, x∗1] are

transmitted simultaneously from the two transmit antennas. And note that the code

matrix is orthogonal to allow a simple decoding scheme.

It is possible to simplify the system by also assuming that the fading process

remains static during one STC codeword (i.e., the channel time responses h i[p], p =

1, . . . , P , remain constant during each P consecutive OFDM slots). Then the system
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model in (2.4) can be modified as

y
i

= XWh i + z i, i = 1, . . . , NR, (2.6)

with y
i

=
[
yH
i [1], . . . ,y

H
i [P ]

]H
(PK)×1

, X ,
[
XH[1], . . . ,X H[P ]

]H
(PK)×(NTK)

,

z i ,
[
zH
i [1], . . . , z

H
i [P ]

]H
(PK)×1

, h i , h i[1] = h i[2] = . . . = h i[P ].

According to the above definitions, we have

W HXHXW = W H

(
P∑

p=1

XH[p]X [p]

)
W

= W H

(
P

NT

I

)
W =

(
PK

NT

)
· I (2.7)

Note that (2.6) and (2.7) are key equations to design the detection schemes for

the STC-OFDM system.

a. Coherent Detection for STC-OFDM Systems

Assuming perfect channel state information is available at the receiver for coherent

detection, based on (2.6), the decision rule can be expressed as

X̂ = argmin
X

NR∑

i=1

∥∥∥y
i
−XWh i

∥∥∥
2

=
K−1∑

k=0

arg min
{x [p,k]}p

[
NR∑

i=1

P∑

p=1

∣∣∣yi[p, k]− xH[p, k]W
′

f (k)hi[p]
∣∣∣
2
]
(2.8)

with x [p, k] , [x1[p, k], . . . , xNT
[p, k]]HNT×1 ,

W
′

f (k) , diag
[
wH

f (k), . . . ,w
H
f (k)

]
NT×(NTL)

,

where X̂ denotes the decisions of data symbols. All other notations follow the defi-

nitions in (2.4)v(2.6).

From (2.8) we can see that the decision rule can be broken into K indepen-

dent minimization problems since the K sub-carriers can be considered separably.
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And each minimization problem is solved by enumerating over all possible x [p, k] ∈

ANT , p = 1, . . . , P . According to the coding constraints of STC as defined in (2.5),

x [p, k], p = 1, . . . , P , should be different permutations and/or transformations of

x [1, k].

3. JSCC for Progressive Image Transmission

JSCC design is the main component of our image transmission system. As shown

in Fig. 4, the channel encoder transforms the source bitstream into NP packets

with the same lengthes LP but their own code rates rki , i = 1, 2, . . . , NP . Given m

channel codes c1, . . . , cm, let R be the set of corresponding code rates r1 < r2 <

· · · < rm. For i = 1, . . . ,m, let p(ri) denote the probability of a decoding error in a

packet protected by code ci. Then an NP -packet error protection scheme (EPS) R =

(rk1 , . . . , rkNP ) ∈ R
NP assigns to each packet i, i = 1, . . . , NP , a channel code rate rki ∈

R. The optimization problem is to determine R to achieve the best reconstructed

image quality in some criteria. More details are discussed in the following sections.

N
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 bits


r
k1


r
k2


...


...


r
kNP


Fig. 4. Structure of packets for image transmission with UEP. The shaded stripes de-

note the embedded source bitstream which flows along the direction of the

dashed line, while the blank ones denote the RCPC/CRC parity bits corre-

sponding to the code rates rki of the packets.
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Two criteria are usually considered: rate-optimal (RO) solution and distortion-

optimal (DO) solution.

The RO solution maximizes the expected number of correctly-received source

bits, i.e.,

ENP
[r](R) =

NP∑

i=0

Pi(R)Vi(R), (2.9)

where V0(R) = 0 and for i ≥ 1, Vi(R) =
∑i

j=1 υ(rkj) with υ(rkj) = LP rkj being the

number of source bits in the j-th packet. For i = 1, . . . , NP − 1, Pi(R) =
∏i

j=1(1 −

p(rkj))p(rki+1
) is the probability that no errors occur in the first i packets but with an

error in the next one, P0(R) = p(rk1) is the probability of an error in the first packet,

and PNP
(R) =

∏NP

j=1(1 − p(rkj)) is the probability that all NP packets are correctly

received.

The DO solution minimizes the expected MSE of the reconstructed image, i.e.,

ENP
[D](R) =

NP∑

i=0

Pi(R)Di(R), (2.10)

where D0(R) = D0 is a constant, and for i ≥ 1, Di(R) is the reconstruction MSE

using the first i packets. The probability that no errors occur in the first i packets,

Pi(R), i = 0, . . . , NP , has been defined above in the case of RO solution.

The optimal EPS can be computed by enumerating all possible NP -packet EPS’s

and selecting the best one. It is prohibitively time consuming when many code rates

are allowed. Thus fast algorithms are necessary for the JSCC design.

One fast algorithm for RO solution was introduced by Stanković et al. In [7].

The idea is to determine a trivial 1-packet RO EPS at first and to complete NP -packet

solution repetitively since it is easy to derive a i-packet RO EPS from a (i−1)-packet
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RO EPS. Details of this algorithm are in [7].

In a subsequent work [6], Hamzaoui et al. presented a local search algorithm to

solve the DO problem by iterative improvement. Starting with the fast computation

of an RO solution to (2.9), a quick local search can be performed among the neighbors

of the RO EPS to reach an approximation of a DO solution to (2.10). The neighbor is

defined as one EPS that differs from the current EPS in only one code rate but provide

stronger protection. If a candidate in the neighborhood is better than the current

EPS, we adopt it and repeat the local search from this new solution. Otherwise, we

stop. Details of this local search algorithm are given in [6].

RO solution is shown to be a good approximation of DO solution in [6]. And

the RO EPS is independent of both the image and the source coder. Thus the EPS

information is not required in the overhead since the UEP design can be repeated at

the receiver side. Furthermore, the RO solution is progressive, i.e., if an RO EPS for

a target transmission rate is determined, then the RO EPS for all lower transmission

rates can be obtained easily without repeating the optimization. If we allow a certain

extent of degradation in reconstructed image quality, RO solution is a substitution

for DO solution, as the work in [9].

In this chapter, we focus on the best performance of the image transmission

system. Thus DO solution is studied and its EPS design is computed by using the

fast local search algorithm in [6].

C. STC-OFDM Systems with a New Broadband MIMO Fading Model

1. Broadband MIMO Fading Channel Model

We first introduce a newly built broadband MIMO fading model parameterized by the

various parameters of the physical environment such as delay spread, cluster angle
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spread, antenna spacing, and Doppler frequency. The resulting channels will have

both time-domain fading correlation due to Doppler frequency and spatial-domain

fading correlation induced by those environmental parameters. Our channel model is

based on the previous works reported in [57, 58, 59].

Transmit 
Antennas

Receive
Antennas

cluster    = 0l

d

d

0
δ

θ 0
-

Fig. 5. Schematic representation of the broadband MIMO fading channel composed of

multiple clustered paths. Each cluster has a mean angle of arrival θ̄l and an

angle spread δl. The absolute antenna spacing is denoted by d.

We assume that the transmit antennas are surrounded by scatterers in the vicin-

ity so that fading at the transmitter end is spatially uncorrelated. We also assume

the receive antennas at the base station are placed high above the ground level so

that the scattering in the vicinity area can be ignored, which implies correlation of

spatial fading at the receiver end. For the sake of simplicity, no line of sight (LOS)

is assumed between the mobile and the receiving array. We model the delay spread
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by assuming that there are L significant scatterer clusters, which correspond to L

resolvable paths, as pictured in Fig. 5, and each of the paths from the same scatterer

cluster experiences the same delay. Each scatterer cluster has a mean angle of arrival

at the receive antenna denoted as θ̄l, a cluster angle spread δl, and a path gain σ2
l .

We also assume a uniform linear array (ULA) at both the transmitter and receiver

with identical antenna elements. The relative antenna spacing is denoted as ∆ = d/λ,

where d is the absolute antenna spacing and λ is the wavelength of the transmitted

narrow-band signal.

We consider a MIMO communication system with NT transmit antennas and

NR receive antennas. Let the (NRNT ) × 1 vector hl represents the l-th tap of

the discrete-time MIMO fading channel impulse response. Suppose different scat-

ter clusters are uncorrelated, i.e., E
{
hlh

H
l′

}
= 0(NRNT×NRNT ), for l 6= l′, where

hl ,
[
h l
0

T
,hl1

T
, . . . ,hlNT−1

T
]T
(NRNT×1)

with hli ,
[
hli,0, h

l
i,1, . . . , hli,NR−1

]T
(NR×1)

, hli,j

denotes the time-domain fading coefficient of the l-th tap associated with the i-th

transmit antenna and the j-th receive antenna.

We assume that the hli’s (l = 0, 1, . . . , L−1; i = 0, 1, . . . , NT−1) are all vectors of

zero-mean complex Gaussian random variables and the NR ×NR correlation matrix

Rl = E
{
hlih

l
i

H
}

is independent of the index i, i.e., the fading statistics are the

same for all transmit antennas. According to [57], we can write the spatial-domain

correlation matrix Rl as

[Rl]j,j′ , E
{
hli,j(h

l
i,j′)

∗} = σ2l ρl
(
(j − j ′)∆, θ̄l, σθl

)
, l = 0, 1, . . . , L− 1. (2.11)

We next assume that the angle of arrival for the l-th path cluster θl is Gaussian

distributed, i.e., θl ∼ N (θ̄l, σ
2
θl
). The variance σ2

θl
is proportional to the angular

spread δl. It is shown in [58] that the correlation function can be approximated for
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small angle spread as

ρl(p∆, θ̄l, σθl
)
≈ exp{−j2πp∆cos(θ̄l)−

1

2
[2πp∆sin(θ̄l)σθl ]

2}. (2.12)

When exploiting the time-domain fading correlation due to the Doppler fre-

quency, we assume a Jake’s model [66] as

Rh(m) = E
{
hli,j[n](h

l
i,j [n+m])∗

}
= σ2l J0(2πfDmT ) (2.13)

where hli,j[n] corresponds to the fading coefficient at the n-th time slot; J0(·) is the

0-th order Bessel function of the first kind; fD is the Doppler frequency and T is the

duration of the time slot.

2. Mathematical STC-OFDM-based MIMO System Model

It is simple to fulfill a MIMO system via well-studied STC with multiple receive

antennas. Since STC systems are originally designed for flat-fading channels, it is

challenging to apply them over multi-path MIMO fading channels. One approach is

to employ OFDM techniques, which can transform a multi-path fading channel into

many parallel flat fading sub-channels, to combat multi-path delay spread in high-

rate wireless systems. In this section, we will provide the STC-OFDM-based MIMO

system model and analyze its performance with coherent detection.

For the sake of simplicity, we consider an STC-OFDM-based MIMO system with

two transmit antennas and two receive antennas (NT = NR = 2) and K sub-carriers,

signalling through an L-tap MIMO fading channel. Under the assumption that the

fading channel coefficients remain constant within the interval of one STC word,

namely P = 2 consecutive OFDM words, similarly with (2.6), the system model is
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given by

Y = XWLh+ Z (2.14)

with Y ,
[
Y T

0,0,Y
T
0,1,Y

T
1,0,Y

T
1,1

]T
(4K×1)

,

Y j,p , [Yj(p, 0), Yj(p, 1), . . . , Yj(p,K − 1)]T(K×1) ,

X , diag (X,X)(4K×4K) ,X ,




X0 X1

−XH
1 XH

0


 ,

X i , diag (Xi[0], Xi[1], . . . , Xi[K − 1])(K×K) ,

WL , diag (wL,wL,wL,wL)(4K×4L) ,

[wL]r,s , e−j
2π
K
rs, r = 0, . . . , K − 1; s = 0, . . . , L− 1,

h ,
[
hT
0,0,h

T
1,0,h

T
0,1,h

T
1,1

]T
(4L×1)

,

hi,j ,
[
h0i,j , h

1
i,j , . . . , h

L−1
i,j

]T
,

where Yj(p, n) is the frequency-domain received symbol of the n-th sub-carrier at

the p-th time slot and the j-th receive antenna; Xi[n] represents the transmitted

symbol of the n-th sub-carrier from the i-th antenna. In our work, we apply M -PSK

constellation, i.e., Xi[n] ∈ A ,
{

1√
2
ej

2πk
M , k = 0, 1, . . . ,M − 1

}
. The factor 1/

√
2 is

used to normalize the energy of the transmitted symbols since two transmit antennas

are considered here; The AWGN vector Z contains independent zero-mean complex

Gaussian random variables with power σ2
z .
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3. BER performance of STC-OFDM-based MIMO System with Coherent

Detection

When the CSI h is known to the receiver, ML algorithm can be used as the decoding

algorithm for coherent detection, i.e.,

X̂ = argmax
X

log p (Y|X) = argmin
X

∥∥∥Y −XWLh︸ ︷︷ ︸
H

∥∥∥
2

, (2.15)

where H contains the frequency-domain fading coefficients by performing DFT on

time-domain h . We can see that the OFDM technique transforms an L-path fading

channel in time domain into K parallel flat-fading sub-channels in frequency domain.

From (2.15) and some detailed derivations in Appendix A, we compute the av-

erage BER of the proposed system as

Pb ∼= Nm

log2M
· 1

16ρ3

{
8ρ3 + f(1 + ρ)(2− ρ− 8ρ2 − 5ρ3) + f(1− ρ)(−2− ρ+ 8ρ2 − 5ρ3)

+ f3(1 + ρ)(ρ+ 2ρ2 + ρ3) + f3(1− ρ)(ρ− 2ρ2 + ρ3)
}
, (2.16)

with

Nm =

{
1, M = 2
2, M > 2

, f(ξ) =

√√√√
K

K+G ·
γ̄s
2 sin2 π

M · ξ
K

K+G ·
γ̄s
2 sin2 π

M · ξ + 1
, ρ =

∣∣∣∣∣

∑L−1
l=0 σ

2
l ρl(∆, θ̄l, σθl)∑L−1
l=0 σ

2
l

∣∣∣∣∣ ,

where γ̄s is the average SNR of the MIMO system. G ≥ L− 1 is the length of guard

interval in the OFDM system to remove the inter-symbol interference. Note that

(2.16) is an exact close-form expression of BER for BPSK and QPSK. When M > 4,

it is also a good approximation if Gray mapping is applied.

From (2.16), we see that the spatial fading correlation is induced by ρ, i.e., the

norm of correlation coefficient of the fading channels at different receivers.

As introduced in Section 2, the assumption of the constant fading channels within

one STC-OFDM codeword is necessary for the receiver design. However, this assump-
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tion does not hold since the practical channels are time-varying. One straightforward

solution is to take the mean of all fading coefficients during one STC-OFDM code-

word as a new common fading coefficient. This modelling mismatch will induce the

ICI from other sub-carriers, hence result in an error floor with the increase of SNR.

The detailed analysis of the time variance in OFDM systems is discussed in Appendix

B.

By regarding the ICIs as additive noise terms, we can still compute the BER

performance by (2.16), but with a new function f(ξ) as

f(ξ) =

√√√√
K

K+G
· γ̄TVs

2
sin2 π

M
· ξ

K
K+G

· γ̄TVs
2

sin2 π
M
· ξ + 1

, (2.17)

with

γ̄TVs =
γ̄s · ψ(fD, T,K,G)

γ̄s (1− ψ(fD, T,K,G)) + 1
, (2.18)

ψ(fD, T,K,G) =
1

2K2

K−1∑

n=0

K−1∑

n′=0

{
J0(2πfD(n− n′)T ) + J0(2πfD(n− n′ +K +G)T )

}
.

Details of the derivations are given in Appendix B. From (2.18), we see that the

temporal fading correlation is also exploited.

Fig. 6 plots the BER performance of the STC-OFDM-based MIMO system with

NT = 2 transmit antennas and NR = 2 receive antennas over a L = 3-tap fading

channel. We assume QPSK modulation and the OFDM system with K = 128 sub-

carriers and the guard interval of length G = 4. Various spatial correlation coefficients

ρ ∈ [0, 1] are considered. Given a data rate of 500 Kbauds/sec, we also select two

normalized Doppler shifts fDT = 2 × 10−4 and 10−5 to study the effect of temporal

fading correlation.

We see that the BER performance gets worse with the increase of spatial fading

correlation coefficient ρ. When ρ = 0, it is obviously a usual frequency-selective fading
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(b) fDT = 10−5

Fig. 6. BER performance of STC-OFDM-based MIMO system with NT = 2 transmit anten-

nas and NR = 2 receive antennas, signaling through an (L=3)-tap fading channel.

Various spatial correlation coefficients ρ ∈ [0, 1] and two Doppler frequencies, (a)

fDT = 2 × 10−4; (b) fDT = 10−5, are considered. We assume QPSK modulation

and the OFDM system with K = 128 sub-carriers and the guard interval of length

G = 4.



32

channel. When ρ = 1, it reduces to a system with only single receive antenna in the

means of diversity, since the symbols from a certain transmit antenna can be viewed

to pass through two equal fading channels to the receive antennas. Specifically, this

repetitive transmission, working like a repetition code, make the BER performance

with ρ = 1 be 3 dB better than that of the case with single receive antenna (denoted

by dashed lines in Fig. 6). Another observation is that the degradation of BER

performance is much more remarkable for large ρ. For example, we only find a 1-dB

loss when increasing ρ from 0 to 0.6. But a 2.5-dB gap can be observed between the

curves with ρ = 0.6 and ρ = 0.9.

From the discussion above, the time-varying property of the fading coefficients

induces ICI among the sub-carriers within one OFDM codeword, hence results in an

error floor in BER performance. As shown in Fig. 6, if fDT = 2 × 10−4, the error

floor occurs when SNR>15dB. If fD = 10−5, the error floor is not pronounced when

SNR<40dB. That is, the larger the Dopper frequency fD, the severer the ICI. And

obviously, the error floor goes up with the increase of ρ.

D. Progressive Image Transmission System with Adaptive Modulation

Fig. 7 gives the block diagram of the image transmission system, which consists

of three main functional blocks: progressive image coding, JSCC and STC-OFDM.

The image is first fed into the embedded SPIHT image coder. The bitstream is

transformed into a sequence of packets by the RCPC/CRC channel encoder. Note

that more significant source bits are assigned ahead with stronger protection via UEP.

We transmit all the packets through the STC-OFDM-based MIMO system. At the

receiver, the received symbols are first decoded by coherent detection. After channel

decoding, parity checking is performed via CRC decoding. Whenever an error is
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detected, CRC decoding stops. The image decoder then reconstructs the transmitted

image using the correctly decoded source bits before the first packet with decoding

error.
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Fig. 7. Overall block of image transmission system over STC-OFDM systems.

As introduced in Section B.3, the DO EPS design in JSCC requires two sets of

parameters as inputs: the R-D function D(rs) of the image coder (where D is the

MSE and rs is the source rate in bits per pixel (bpp)) and the probabilities of packet

decoding error p(rc) for RCPC rate rc at a given BER Pb by (2.16) and (2.17).

The R-D function D(rs) is easy to generate by practically encoding and decoding

the original image. That is, we encode the image at a given highest source rate and

then decode the bitstream at different low rates.

The probability of packet decoding error p(rc) is difficult to evaluate accurately

by analytical methods. Since in our system the RCPC is based on hard-decision

viterbi decoding, we assume a straightforward BSC, whose crossover probability is

Pb. Given a BER Pb and a channel code rate rc, we compute the corresponding p(rc)

via Monte Carlo method and store these results in a lookup table for their future
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usages. Part of values of p(rc) are demonstrated in Fig. 8 for the set of RCPC code

rates R = {8/9, 8/10, . . . , 8/32} and the range of BER 0.01 ∼ 0.2.
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Fig. 8. The probability of packet decoding error p(rc) with the RCPC codes.

Another reason to assume a BSC is that many JSCC schemes [5, 6, 7] are designed

for such channels. When compared with BSC, fading channels has the bursty nature

of errors. One straightforward way to break error burst is by using bit-interleaver. In

our practical image transmission, a random bit interleaving is performed over all NP

packets corresponding to the whole image.

Note that at high SNR (hence low BER), channel coding is not necessary and

more source bits are assigned to obtain better performance. Thus the candidate rates

for the UEP design are R′ = {1} ∪ R, where rc = 1 means no RCPC is applied.

Based on the BSC assumption, the probability of packet decoding error with rc = 1



35

is easy to compute by

p(rc = 1) = 1− (1− Pb)
LP (2.19)

Once the two sets of parameters are obtained, the DO EPS R is computed by

the fast local search algorithm in [6]. Based on R, we compute the expected MSE by

(2.10).

In this way, we obtain an end-to-end performance metric of the image transmis-

sion system, i.e., MSE(γ̄s,M) as a function of average SNR and constellation size.

The performance derivation is summarized in Fig. 9.

Practical encoding 
& decoding

Image Source 
Coder

)( srD 

 −−=

ℜ∈

=

. 

   )1(1
)(

forCarlo Monte

;1for 

cr
cr

L
b

c
PP

rp

Local Search Algo.

UEP R
(2.9) or (2.10)

min. avg. MSE

bP

sγ
(2.16) & (2.17)

Fig. 9. Summary of performance evaluation of the image transmission system.
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1. Adaptive Modulation Scheme

Based on the performance metric introduced in the previous section, an adaptive

modulation scheme [60] can be proposed to match the constellation size M with

varying channel conditions. The motivation is that we can potentially achieve high

channel throughput (constellation size) by relying on JSCC to handle bad channel

conditions (average BER). Thus, with the increase of SNR, we can switch to a larger

M to achieve a higher transmission bit rate and use JSCC to help mitigate the effect

of increased BER; And for a given SNR, we tradeoff the average BER with M to

achieve the best reconstructed image quality. This is fulfilled via the end-to-end

performance measure of the image transmission system. To give fair comparisons for

various M , we need to keep an identical total symbol energy. One way is to apply

different packet lengths as LP = LBPSK
P log2M with LBPSK

P being the packet length of

BPSK modulation. Other parameter settings are the same for different M .

Our adaptive modulation scheme is formulated as follows. At a given SNR, we

pick the M that offers the minimal average MSE subjected to a fixed transmission

rate rt in symbols per pixel (spp), i.e.,

M(γ̄s) = argmin
M

MSE(γ̄s,M) s.t. rt =
LPNP/ log2M

NrNc

= const., ∀M,(2.20)

where a image with Nr ×Nc pixels is assumed.

E. Numerical Results and Discussions

We study the transmission of the 512 × 512 gray-scale Lena image over the M -PSK

modulated STC-OFDM-based MIMO systems. Given the set of BER curves in Fig.6,

only two bounds, i.e., the lower bound (solid line) with NT = 2, NR = 2, ρ = 0 and

the upper bound (dashed line) with NT = 2, NR = 1, ρ = 0, are considered. To
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Fig. 10. BER performances of STC-OFDM-based MIMO system for various constellation

sizes M with K = 128, L = 3, G = 4, fDT = 10−5 and (a) NT = 2, NR = 1, (b)

NT = 2, NR = 2. The performance given by (2.16) and (2.17) is plotted, with

discrete points being the corresponding simulation results.
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eliminate the effect from the error floor, we select the lower normalized Doppler shift

fDT = 10−5. Other parameters about the fading channels are set as in Section 3.

Fig. 10 plots the BER performance with various constellation sizes (up to 16PSK).

We also give some discrete simulation results, which are in good agreement with the

performance of BPSK and QPSK. And forM > 4, (2.16) is also a good approximation

when SNR>10dB.

For the JSCC scheme, an embedded bitstream generated by the SPIHT image

coder is transformed into NP = 256 packets of length Lp = 256 log2M bits each. This

corresponds to the transmission rate rt = 0.25 spp. Within each packet, a 16-CRC

code [67] generated by 0x15935 polynomial is applied to detect the error. The RCPC

codes [68] with generator polynomials (0117, 0127, 0155, 0171) produce a rate 1/4

mother code having a puncturing rate of 8. Thus the set of RCPC rates is R = {8/9,

8/10, . . . , 8/32} and the candidate rates for the UEP design are R′ = {1}∪R. Given

each code rate rc and the BER Pb, we evaluate the probability of packet decoding

error p(rc) as shown in Fig. 8.

This image transmission system is evaluated by its PSNR performance. We

compute the average MSE of reconstructed image based on the processes in Fig. 9

before converting the average MSE to PSNR by

PSNR = 10 log10

(
2552

MSE

)
(dB) (2.21)

We also confirm our performance evaluation by simulation results, which are

generated after averaging the average MSEs of 1000 practical image transmissions

before converting the average MSE into PSNR. We assume that the UEP design R

in JSCC is determined in advance from the performance evaluation as illustrated in

Fig. 9. Note that for the practical image transmission, a random bit interleaving is

performed over all NP = 256 packets before the transmission of them through the
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STC-OFDM-based MIMO system.

We first consider the case of the upper bound in Fig. 6 (b) with NT = 2, NR =

1, ρ = 0 in the STC-OFDM system. The PSNR performances versus SNR with various

M are plotted in Fig. 11. Obvious and irregular gaps are observed between the PSNR

curves of DO and RO solutions with maximal degradations as 0.50, 0.70, 0.93 and 1.37

dB for BPSK, QPSK, 8PSK and 16PSK, respectively. It is not surprising to see that

the PSNR curves from RO solutions are not necessarily monotonously increasing since

an RO EPS may not lead to a DO EPS. We also show the simulation results in discrete

points, which are in good match with the DO solution. For 8PSK and 16PSK, the

disagreement between the DO solution and simulation results is only found at quite

low SNR, since (2.16) is not a good approximation of BER performance in those

cases.

To combat bursty errors in fading channels and validate the BSC assumption in

JSCC design, the employment of a random interleaver is necessary in practical image

transmission. Based on the same UEP scheme R, we compare the simulation results

with and without interleaver in Fig. 11 (a). The significant improvement in PSNR

performance shows the effectiveness of the random interleaver.

To give a convenient comparison, we plot the PSNR performances for various M

in Fig. 12 (a). We see that the PSNR curve of a larger M starts from a lower point

but outperforms that of a smallerM with the increase of SNR, and finally approaches

a higher PSNR limit given by source coding since more bits are transmitted. This

observation motivates the proposal of a 4-level adaptive modulation scheme to tradeoff

average BER with constellation size, as discussed in Section 1. This approach results

in 4 SNR ranges as indicated in Table I, each of them is assigned to a constellation

size. The best achievable PSNR performance is shown as the thick line in Fig. 12(a),

i.e., the envelope of all PSNR curves. Note that the inaccurate approximation for
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Fig. 11. Reconstructed image quality in PSNR of the image transmission sys-

tem with (a) BPSK, (b) QPSK, (c) 8PSK and (d) 16PSK mod-

ulation. NP = 256 packets of length LP = 256 log2M bits

each are transmitted over the STC-OFDM-based MIMO system with

NT = 2, NR = 1, K = 128, L = 3, G = 4 and fDT = 10−5. The PSNR

performances of DO and RO solutions are shown in solid lines and dashed

lines, respectively. And the simulation results for DO solution are plotted in

discrete points.



41

8PSK and 16PSK at low SNR has no much effect on the allocation of SNR ranges.

PSNR performances of the image transmission system with multiple receive an-

tennas (NR = 2) are given in Fig. 12 (b). When comparing with the case with a

single receive antenna for a given M , we see that the diversity gain in BER perfor-

mance is translated into the improvement in reconstructed image quality. And the

improvement is more significant at low SNR because of the PSNR limit determined

by source coding and constellation size.

Then a similar 4-level adaptive modulation scheme is proposed. Compared with

the case of a single receive antenna, the SNR ranges are left shifted as shown in Table

I, since the PSNR curves approach their limits sooner with the increase of SNR. And

more PSNR gains for the best achievable reconstructed image quality (i.e., the thick

lines in Fig. 12) are observed. Specifically, PSNR gains are 5.7, 2.2, 1.6, 1.1 dB at

SNR=0, 10, 20, 30dB, respectively.

Table I. Allocation of SNR ranges for various constellation schemes.

Constellation SNR range (dB)

scheme NR = 1 NR = 2

BPSK (−∞, 4.3] (−∞, 0.6]

QPSK (4.3, 11.0] (0.6, 10.8]

8PSK (11.0, 22.8] (10.8, 19.0]

16PSK (22.8,+∞) (19.0,+∞)
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Fig. 12. Reconstructed image quality in PSNR of the image transmission sys-

tem for various constellation sizes M . NP = 256 packets of length

LP = 256 log2M bits are transmitted over the STC-OFDM-based MIMO sys-

tem with K = 128, L = 3, G = 4, fDT = 10−5 and (a) NT = 2, NR = 1, (b)

NT = 2, NR = 2. The thick line is the envelope of all PSNR curves.
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F. Conclusions and Future Work

In this chapter, we describe a robust end-to-end image transmission system by combin-

ing physical-layer wireless communication techniques (e.g., STC-OFDM-based MIMO

systems) and JSCC. We evaluate STC-OFDM-based MIMO system by its BER per-

formance and then apply the fast algorithm for DO UEP design, so as to map the

BER performance into expected reconstructed image quality in PSNR. Based on the

PSNR performances for various constellations sizes, we propose an adaptive mod-

ulation scheme to tradeoff the channel condition (average BER) with the channel

throughput (constellation size) to achieve the best PSNR performance for a given

average SNR. Its effectiveness is confirmed by the simulation results. The diversity

gain from multiple antennas results in better reconstructed image quality, especially

in low SNR range.

To simplify the performance derivation, we assume that the receiver has perfect

knowledge of the CSI. But in practice, CSI may not be available at the receiver.

One usual solution is DSTC due to its robustness and simplicity. Implemental issues

related to this technique are still attractive but beyond the scope of this chapter. And

our derivation based on coherent detection provides a upper bound on the performance

of the practical image transmission system. Our work based on DSCT will be reported

in the next chapter.

There are several directions in which we could carry on our future work. One

direction is to apply schemes other than the usage of interleaver to handle fading

channels. One scheme is the product code [69, 70]. The row code of the product

code is EEP by using a concatenation of an outer CRC code and an inner RCPC

code, while the column code is UEP with a systematic RS code. The other scheme

is the combination of the packetization technique with the forward error correction
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[71, 72]. The idea is to packetize the output bitstream of an embedded source coder

into independently decodable packets, which are then protected by a concatenated

RCPC/CRC coder with EEP. Both schemes are proved to be efficient. Furthermore,

these two schemes require Pn(rk), the probability that n packets of NP are detected

with errors for RCPC rate rk, as an input parameter. Compared with the JSCC

design in this chapter, Pn(rk) is easy to determine via simulation over fading channels

without the assumption of memoryless channel (e.g., BSC).

Another direction of future research is to improve adaptive modulation. For

the adaptive modulation scheme proposed in this chapter, we can not see much gain

in PSNR performance at a low SNR range. A more efficient adaptive modulation

scheme can be realized by increasing the number of transmit or receive antennas to

achieve more diversity gain (approach to an AWGN channel). But this method is not

feasible when many antennas are not allowed. Another method is to apply a more

efficient channel code (e.g., turbo code [36] or LDPC code [37, 38]) than convolutional

code (i.e., RCPC [68]) to combat the fading noise in the STC-OFDM system. More

current work is reported by Lan et al. in [73], where the design and application of

rate-compatible irregular repeat accumulate codes [52] for scalable image transmission

over BSCs are studied.



45

CHAPTER III

PROGRESSIVE IMAGE TRANSMISSION OVER DIFFERENTIALLY

SPACE-TIME CODED OFDM SYSTEMS

A. Introduction

In Chapter II, we have designed the progressive image transmission system over STC-

OFDM systems and its efficiency has been confirmed via simulations. Based on this

well-studied setup, in this chapter, we consider a scenario which is much closer to the

real practice. In details, we propose a new system with DSCT and JSCC based on

product code structure.

1. DSTC: In practice, CSI is not available at the receiver. We select DSTC due

to its robustness and lower complexity when compared to approaches based on

CSI estimation (e.g., EM-based iterative receiver for space-time coded OFDM

systems [12]). And it is more power-efficient since no pilot symbols are required

to track the CSI. However, DSTC exhibits an error floor when employed in fad-

ing channels, just like the conventional differential demodulation schemes. The

usual solution is MSD [25], which makes use of ML sequence estimation rather

than symbol-by-symbol detection as in conventional differential detection. How-

ever, MSD has relatively high computational complexity. A low-complexity

DSTC technique, which considerably reduces the error floor, especially in fast

fading channels, is developed in [26] based on multiple-symbol decision-feedback

decoding [27, 28]. Due to the increasing demand of real-time wireless commu-

nication, we adopt this low-complexity decision-feedback differential-detection

receiver for the image transmission over space-time coded systems. Note that

DSTC can work well for any fading model given its known channel character-
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istics. And the focus of this chapter is the integration of DSTC in the image

transmission system. Thus for the sake of simplicity, we assume the common

frequency-selective fading channel instead of the new broadband MIMO

fading model as introduced in Chapter II.

2. Product code structure: In Chapter II, the UEP scheme in JSCC is straight-

forward and simple. And the performance evaluation is further simplified under

the assumption of BSC (validated via a long random interleaver). For the prac-

tical progressive image transmission, the most powerful JSCC systems are due

to Sherwood et al. [69] and Sachs et al. [70]. Both systems use an embedded

wavelet-based source code (e.g., SPIHT [3] and JPEG2000 [4]) and a product

channel code. The row code of the product code is a concatenation of an outer

CRC code [67] and an inner RCPC code [68], while its column code is a RS code

[74]. Both systems use EEP along the rows and UEP along the columns. But

whereas the system of [69] puts the earliest symbols of the embedded bitstream

in the first rows, the system of [70] puts these symbols in the first columns. Con-

sequently, the first system has a better progressive ability. On the other hand,

the system of [70] offers a better reconstruction quality. From another view of

channel coding, systematic RS codes [74] are capable of correcting bursty errors

due to fading channels. As demonstrated in [69], more powerful error protection

can be achieved when another channel code (e.g., a RCPC/CRC code [56]) is

applied perpendicularly to the RS codes. Thus we choose the product code

structure briefly mentioned in [69] but made more explicit in [70, 29], where the

required UEP is employed along the column RS code before EEP along the row

RCPC/CRC code.
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Note that advanced channel codes (e.g., turbo codes [36] or low-density parity-

check codes [37, 38]) can be used in place of the simple RCPC/CRC code with higher

complexity or longer delay. Moreover, the JSCC scheme also allows us to treat the

packets in the product code structure as the MDs of the image. These facts moti-

vate us to combine techniques in signal processing (MD coding) and communications

(channel coding and space-time coding) in a framework based on iterative (turbo)

decoding for image transmission over wireless fading channels.

MD coding [75] has recently emerged as an attractive framework for robust mul-

timedia transmission over on-off channels. MD coding is a technique that generates

multiple correlated descriptions of a source. Any one of these descriptions can be used

to reproduce the original source with certain fidelity. When more than one descrip-

tions are available to the decoder, they can be synergistically combined to enhance

the quality. From a source coding viewpoint, MDs can be generated via MD quanti-

zation, MD correlating transforms, or MD coding with frames. MD coding can also

be viewed as a means of JSCC, then the MDs can be easily generated with embedded

coding [3] and UEP [76].

Srinivasan [77] first employed iterative (turbo) technique in decoding MDs trans-

mitted over an AWGN channel. Results in [77] (with a Gaussian source and two MD

scalar quantizers [78]) indicate that the efficacy of iterative decoding depends on

the amount of correlation in the two descriptions. Moreover, at the same overall

transmission rate, the system employing MD coding in [77] was shown to outperform

a reference system that uses only scalar quantization. Other related works are in

[79, 80, 81].

We study transporting MDs over wireless fading channels [82, 83] rather than the

on-off channels considered in most works related to MD coding. The idea is to use

channel coding (e.g., iterative decoding [84]) techniques developed for serially con-
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catenated coding systems to improve the performance of the receiver with successive

iterations. One similar work was discussed by Barros et. al in [85], where the iterative

decoder is fulfilled by the concatenation of MD scalar quantization and convolutional

codes.

From the above discussions, in the second part of this chapter, we treat MD

coding as JSCC and apply iterative (turbo) decoding of MDs for image transmission.

Motivated by the work in [86], we consider the image transmission system consisting

of two constituent codes – an MD code as the outer code and a differential space-

time code as the inner code. Both constituent codes are used as means of introducing

redundancy for error robustness. The outer MD code can be based on MD correlating

image transforms or embedded coding [3] and UEP [76]. We adopt the latter approach

and split an embedded image bitstream into MDs using the product code structure in

[76]. The inner code is a channel code whose rate depends on the amount of diversity

in space-time coding [14]. In this work, we fix this amount of diversity (hence the

inner code rate) and rely on optimal design of the outer MD code to handle channel

variations. Specifically, for a given channel condition (or BER), optimal MD coding

is determined via JSCC in the form of embedded coding and optimal product code

design. The row code of the product code [69, 70] uses a concatenation of CRC code

and RCPC code, as necessitated by the iterative decoding algorithm of [86]. The

column code employs a systematic RS code that guarantees successful generation of

MDs (rows). Based on a serial concatenation of the two constituent codes, the MDs

are multiplexed and interleaved using a random interleaver before being passed to the

differential space-time coder. The differential space-time coder then maps the input

bits into MPSK symbols and transmits them using two antennas through a flat-fading

channel.
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To iteratively decode the differential space-time coded MDs, we propose a re-

ceiver that consists of a MAP differential space-time decoder [86], an MD decoder, an

interleaver and a deinterleaver. The two decoders exchange extrinsic values or a priori

probabilities (APP) of transmitted bits between themselves in successive iterations.

This chapter is organized as follows. We start by reviewing DSTC, the EM-based

iterative receiver with CSI estimation, and the product code structure in Section B.

Then we combine the embedded image coder, product code, and DSTC for progres-

sive image transmission over DSTC systems in Section C. The iterative decoding

of differentially space-time coded multiple descriptions of images is motivated and

discussed in Section D. Finally, the numerical results are given in Section E, and the

conclusions are drawn in Section F.

B. Background

1. EM-based Iterative Receiver for STC-OFDM System

In Chapter II, we have reviewed the transmission model of an STC-OFDM commu-

nication system and its coherent detection by assuming perfect CSI at the receiver.

When no CSI is available, we estimate the CSI and employ the EM-based ML receiver

for STC-OFDM systems [12]. Such a communication scheme is usually carried out

in a burst manner. The data burst is shown in Fig. 13. The first slot contains the

known pilot symbols. The rest slots contain q STC codewords.

The ML detection problem based on (2.6) is

X̂ = argmax
X

NR∑

i=1

log p
(
y
i
|X
)

(3.1)

where the summation of log-probabilities from all NR receive antennas follows from

the assumption that the noise at different receive antennas are independent. The
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Fig. 13. The data burst used in EM-based iterative receiver. The first slot contains

the known pilot symbols, and the rest slots contain q STC codewords.

optimal solution to (3.1) is of prohibitive complexity. To reduce the complexity, we

use the EM algorithm to solve (3.1) iteratively according to the following steps [12]:

1. E-step: ComputeQ
(
X |X (κ)

)
= E

{[
NR∑

i=1

log p
(
y
i
|X ,h i

)]∣∣∣∣∣y i
,X (κ)

}
(3.2)

2. M-step: SolveX (κ+1) = argmax
X

Q
(
X |X (κ)

)
; (3.3)

where X (κ) denotes the decisions of the data symbols at the κ-th EM iteration. Note

that X (κ) must satisfy the STC coding constraints in (2.5).

And the EM-based iterative space-time decoding algorithm can be summarized

as [12]

1. Definitions:

y
i
[m] ,

[
yH
i [mP + 1], . . . ,yH

i [mP + P ]
]H

{y
i
[m]}i ,

{
y
1
[m], . . . ,y

NR
[m]
}

X[m] ,
[
XH[mP + 1], . . . ,XH[mP + P ]

]H

2. Channel estimate for the pilot slot: ĥi[0] =
1
K
WHXH[0]yi[0], i = 1, . . . , NR

3. EM-based iterative decoding for the q data slots:

for m = 0, 1, . . . , q − 1
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for n = 1, 2, . . . , P

h̃i[mP + n] = Temp-filter
{
ĥi[mP + n− 1], . . . , ĥi[mP + n− ι]

}
,

,
∑ι

j=1 ajĥi[mP + n− j], i = 1, . . . , NR

where ĥi[mP + n− j], j = 1, . . . , ι, is computed by Step (?) below;

{aj}ιj=1 denotes the coefficients of an ι-length (ι ≤ Pq) temporal

filter, which can be pre-computed by solving the Wiener equation or

from the robust design as in [19, 20].

end

Initial estimation of X(0) [19, 20]:

X(0)[m] = argmaxX

{∑NR

i=1

∑P
n′=1 log p

[
yi[mP + n′]|X, h̃i[mP + n′]

]}

EM-based iterative decoding by (3.2) and (3.3):

X(κ+1) = EM
{
{y

i
[m]}i,X(κ)[m]

}

for n = 1, 2, . . . , P

ĥi[mP+n] = 1
K
WHX(I)H[m]y

i
[m], i = 1, . . . , NR (?)

end

end

2. Differential Space-time Coding

Differential coding is a simple and efficient way to handle the case when no CSI is

available at the receiver. For STC, it is easy to design the differential coding scheme

for NT = 2 transmit antennas based on the code matrix (2.5) [24]. However, it is

not easy to extend the scheme to the case with NT > 2 without a penalty in rate.

Because according to [24], the code matrix G should be orthogonal, but such designs

do not exist for NT > 2 [17]. Thus we only consider the system with two transmit

antennas (i.e.,NT = 2, P = 2) in the sequel.
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Firstly, we define the following vectors and matrices for NT = 2, P = 2

an[p, k] , [an,1[p, k], an,2[p, k]]
H , p = 1, 2; k = 1, . . . , K, (3.4)

An,j [p] , diag {an,j[p, 1], . . . , an,j [p,K]}K×K , p = 1, 2; j = 1, 2, (3.5)

An[p] , [An,1[p],An,2[p]]K×(2K) , p = 1, 2, . . . , (3.6)

An ,
[
AH

n [1],A
H
n [2]

]H
(2K)×(2K)

. (3.7)

where an,j[p, k] is the MPSK information symbol transmitted from the j-th transmit

antenna at the k-th sub-carrier and at the p-th OFDM word of the n-th STC code-

word. And the coding constraints of STC are taken into account when constructing

the data vector an[p, k] ∈ ANT ,∀p, i.e., an[p, k],∀p, are different permutations and/or

transformations of an[1, k] as defined in (2.5). Finally, An contains all the information

symbols associated with the n-th STC codeword.

Next the space-time differential block code is recursively defined as

X 0 = A0, Gn , AnA
H
0 , X n = GnX n−1, n = 1, 2, . . . , (3.8)

It is easy to verify that An, Gn and X n are all orthogonal matrices for NT =

2, P = 2, i.e.,

AnA
H
n = AH

nAn = I2K , GnG
H
n = GH

nGn = I2K , XnX
H
n = XH

nXn = I2K . (3.9)

Similarly with (2.6), the received signal can be modelled as

y
n,i

= X nWhn,i + z n,i, i = 1, . . . , NR, n = 0, 1, . . . , (3.10)

with y
n,i

=
[
yH
n,i[1],y

H
n,i[2]

]H
(2K)×1

, z n,i =
[
zH
n,i[1], z

H
n,i[2]

]H
(2K)×1

,

hn,i = hn,i[1] = hn,i[2],

where y
n,i
[p] is the K-dimensional vector of the received signals from the i-th receive
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antenna at the p-th OFDM word in the n-th STC codeword. z n,i[p] is the AWGN

with covariance matrix σ2
zI .

a. Multiple-symbol Decision-feedback Differential Space-time Decoding

Now we review multiple-symbol decision-feedback differential space-time decoding

[26]. The communication is carried out in a burst manner as shown in Fig. 14. For

MSD, we decode the current OFDM codeword (n-th codeword) together with the

previous N − 1 codewords ({n− 1, n− 2, . . . , n−N + 1}-st codewords), where N is

the observation window size.
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Fig. 14. The data burst used in multiple-symbol detection. WhereN is the observation

window size.

Then (3.10) can be modified as

yn,i = XnWhn,i + zn,i, i = 1, . . . , NR, (3.11)

where yn,i =
[
yH

n,i
,yH

n−1,i
, . . . yH

n−N+1,i

]H
(2NK)×1

,

Xn = diag
{
Xn,Xn−1, . . . ,Xn−N+1

}
(2NK)×(2NK)

,

W = diag {W,W, . . . ,W}(2NK)×(2NL) ,

hn,i =
[
hH
n,i,h

H
n−1,i, . . .h

H
n−N+1,i

]H
(2NL)×1

,

zn,i =
[
zHn,i, z

H
n−1,i, . . . z

H
n−N+1,i

]H
(2NK)×1

,

Gn =
[
Gn,Gn−1, . . .Gn−N+2

]
(2K)×(2(N−1)K)

.
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The ML detection problem is given by

X̂n = argmax
Xn

NR∑

i=1

log p
(
yn,i|Gn

)
. (3.12)

Based on (2.2) and (3.11), after detailed derivations, (3.12) is converted to an
MSD rule as [26]

Ĝn =
K−1∑

k=0

arg min
Gn(k)

<





NR∑

i=1

N−1∑

i′=0

N−1∑

j′=i′+1

ti′,j′y
H
n−i′,i(k)




j′−1∏

n′=i′

Gn−n′(k)


y

n−j′,i(k)



 , (3.13)

where <(·) denotes the calculation of the real part of a number. y
n,i
(k),Xn(k),Gn(k)

denote the corresponding matrices associated with the k-th sub-carrier, i.e.,

[
y
n,i
(k)
]
i′,1

,
[
y
n,i

]
((i′−1)K+k+1,1)

,

[Xn(k)]i′,j′ , [Xn]((i′−1)K+k+1,(j′−1)K+k+1) ,

[Gn(k)]i′,j′ , [Gn]((i′−1)K+k+1,(j′−1)K+k+1) , i
′ = 1, 2; j ′ = 1, 2. (3.14)

And T = [ti′,j′ ] =
(
Σα + σ2z

Eα
IN

)−1

, where the normalized N × N autocorrelation

matrix Σα has elements given by Σα[i
′, j′] = J0 (2πfD(2Ts)(i

′ − j′)). Note that during

the derivation, we assume that the total power of fading process associated with each

transmit-receive antenna pair is equal to each other, i.e.,
∑L−1

l=0 σ
2
i,j,l = Eα,∀i, j. For

simplicity, we also ignore the correlations among the channel frequency responses at

different sub-carriers [26].

From (3.13), we can detect Gn by solvingK independent minimization problems,

i.e., we can handle each sub-carrier independently. And it is necessary to calculate

KM2(N−1) metrics to detect Gn. So the computational complexity isKM 2(N−1)/(N−

1) metric calculations per code word, which grows exponentially with N . A sim-

ple and efficient way to reduce the computational complexity is to replace the pre-

vious symbol matrices Gn−1, . . . ,Gn−N+2 in (3.13) by decision-feedback matrices

Ĝn−1, . . . , Ĝn−N+2. In this way, we obtain symbol-by-symbol decision instead of
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block decision. Thus (3.13) can be translated into the following decision-feedback

decoding rule as

Ĝn(k) = arg min
Gn(k)

<





NR∑

i=1

yH
n,i
(k)Gn(k)

N−1∑

j′=1

t0,j′




j′−1∏

n′=1

Ĝn−n′(k)


y

n−j′,i(k)



 . (3.15)

Finally the decision-feedback space-time differential decoding algorithm can be

summarized as follows:

1. Initialization: Let Â0 = A0; Compute T =
(
Σα + σ2z

Eα
IN

)−1

.

2. Estimation of the initial symbols by MSD:

for n = 1, 2, . . . , N − 1

Ĝn by (3.13), choose the window size as 2;

Differentially decoding Ân = ĜnÂ0.

end

3. Decision-feedback detection:

for n = N,N + 1, . . .

Estimate Ĝn by (3.15), choose the window size as N ;

Differentially decoding Ân = ĜnÂ0.

end

b. Comparison in Computational Complexity with EM-based Iterative Receiver

In this section, we compare the computational complexities for the two non-coherent

detection algorithms: the decision-feedback differential space-time decoding and the

EM-based iterative receiver design. Specifically, we compare the number of complex

multiplications in both methods.
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Decision-feedback differential space-time decoding based on (3.15) involves a to-

tal of KNR((2 + 4)M 2 + (N − 1) + 4 (N−1)(N−2)
2

) = KNR(6M
2 + (N − 1)(2N − 3))

complex multiplications. However, some multiplications are not necessary since they

have already been computed previously. That is, we modify (3.15) to

Ĝn(k) = arg min
Gn(k)

<





NR∑

i=1

yH
n,i
(k)Gn(k)

N−1∑

j′=1

t0,j′Ĝn−1(k)




j′−1∏

n′=2

Ĝn−n′(k)


y

n−j′,i(k)





= arg min
Gn(k)

<
{

NR∑

i=1

yH
n,i
(k)Gn(k)

N−1∑

j′=1

t0,j′Ĝn−1(k)F(n−1)−(j′−1),i(k)

}

with F(n−1)−(j′−1),i(k) =




j′−2∏

n′′=1

Ĝ(n−1)−n′′(k)


y

(n−1)−(j′−1),i
(k). (3.16)

Note that F(n−1)−(j′−1),i(k) for j ′ ≥ 3 has been determined during the detection of

Ĝn−1(k). In this way, we can further reduce the number of complex multiplications

to KNR(6M
2 + 5(N − 1)).

It is not straightforward to evaluate the computational complexity of the EM-

based iterative space-time decoding algorithm, as summarized in Section 1. For sim-

plicity, we only compute the number of complex multiplications during the EM iter-

ations and ignore the FFT operations when calculating the channel responses in the

frequency domain. According to (17) in [12], IKNR(6 + 12)M 2 complex multiplica-

tions are required to detect one STC-OFDM codeword, where I denotes the number

of iterations.

For QPSK modulation and 5 iterations for EM algorithm, we see that the EM-

based iterative decoding is about 12.5 times slower than the decision-feedback dif-

ferential space-time decoding with the observation window size N = 5. If we take

into account the temporal-filtering to estimate the time-domain channel responses,

the FFT operations in the metric calculation and the initial estimation of X(0), the

computational complexity will be even higher. Due to the increasing demand of real-
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time wireless transmission, we adopt the low-complexity decision-feedback differential

space-time coding in the physical layer of our image transmission system.

3. Product Code Structure and Fast Local Search Algorithm

The product code structure is illustrated in Fig. 15. Let R = {r1, r2, . . . , rm}, with

r1 < · · · < rm, be the set of RCPC code rates, NP the number of packets and LP

the packet length in symbols (e.g., bytes). For ri ∈ R, L(ri) denotes the sum of

the number of source symbols and RS redundant symbols used in a packet protected

by RCPC code rate ri. Thus, we have L(ri) source segments S1, . . . , SL(ri), where

segment Sj, 1 ≤ j ≤ L(ri), consists of mj ∈ {1, . . . , NP} source symbols that are

protected by fj = NP −mj RS symbols.
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Fig. 15. Product code structure. There are NP = 5 packets. Every shaded cell is a

source symbol. The embedded source bitstream flows along the direction of

the dashed line.

The NP packets are sent over the wireless channel. Each received packet is de-

coded with the RCPC decoder. If the CRC detects an error, then the packet is

considered to be decoded with errors (we suppose that all errors can be detected).
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Suppose now that n out of NP packets are decoded with errors, then the RS codes

ensure that all segments that contain at most NP − n source symbols can be re-

covered. By adding the constraint f1 ≥ f2 ≥ · · · ≥ fL(ri), we guarantee that the

receiver can decode at least the first j segments whenever at most fj packets are

with errors. In the sequel, Fi denotes the set of L(ri)-tuples (f1, . . . , fL(ri)) such that

f1 ≥ f2 ≥ · · · ≥ fL(ri) and fj ∈ {0, . . . , NP − 1} for j = 1, . . . , L(ri). Moreover, pN(n)

denotes the probability that n out of NP packets are with errors. For fading channels

parameterized by the average BER, the probability function pN(n) can be obtained

via simulation with Jakes’ method [66]. The optimization problem is to determine

F = (f1, . . . , fL(ri)) ∈ Fi for each code rate ri to achieve the best reconstructed image

quality in some criteria.

One usual criterion is DO solution. Let D(·) denote the operational distortion-

rate function of the source coder and let χ be the random variable whose value is

the number of error packets. For a given code rate ri, a DO L(ri)-RS protection is a

solution to the problem

min
F∈Fi

E[D](F ) = min
F∈Fi

L(ri)∑

k=0

Pk(F )D(tk), (3.17)

where P0(F ) = P (χ > f1), Pk(F ) = P (fk+1 < χ ≤ fk) for k = 1, . . . , L(ri) − 1,

PL(ri)(F ) = P (χ ≤ fL(ri)), t0 = 0, and tk =
∑k

j=1mj for k = 1, . . . , L(ri). For

k = 1, . . . , L(ri)− 1, we have Pk(F ) = 0 if fk = fk+1 and Pk(F ) =
∑fk

n=fk+1+1 pN(n),

otherwise.

An optimal product code is then given by an RCPC code rate ri and an L(ri)-RS

protection F that solve the minimization problem

min
ri∈R

min
F∈Fi

L(ri)∑

k=0

Pk(F )D(tk). (3.18)
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Solving problem (3.18) by brute-force is impractical because the number of pos-

sible solutions is
∑m

i=1

(
L(ri)+NP−1

L(ri)

)
.

Instead of solving the high-complexity problem in (3.18), a RO solution is first

computed as an RS protection scheme that maximizes the expected number of cor-

rectly received source symbols. That is, an RO L(ri)-protection is a solution to the

problem

max
F∈Fi

E[r](F ) = max
F∈Fi

L(ri)∑

k=0

Pk(F )tk. (3.19)

The computation of an RO solution is straightforward. Indeed,

E[r](F ) =

L(ri)∑

j=1

mj

fj∑

i=0

pN(i). (3.20)

Thus, an RO solution is (fr, . . . , fr), where

fr = arg max
i=0,...,NP−1

(NP − i)
i∑

n=0

pN(n). (3.21)

It was shown in [29] that for a fixed length L(ri), an RO solution provides a

good approximation of the DO solution and that the latter has a stronger protection

than the former. A local search algorithm thus tries to improve an RO solution by an

additional local searching in the neighborhood of this solution. This neighborhood

is restricted to solutions that provide stronger protection. If a candidate in the

neighborhood is better than the current solution, we adopt it and repeat the local

search from the new solution. Otherwise, we stop.

Thus, starting with a fast computation of an RO solution to (3.19), a quick

local search can be added to reach an approximation of a DO solution to (3.17).

Then a fast joint optimization algorithm is proposed in [29] to solve the problem in

(3.18). The idea is to alternately decrease the RCPC code rate and apply the local



60

search algorithm of [29]. Results in [29] show that the local search algorithm gives

comparable PSNR performance to previous approaches [69, 70]. But it is significantly

faster because it only needs to inspect a few RCPC code rates to reach a near-optimal

solution.

C. Progressive Image Transmission over DSTC systems

Fig. 16 gives the overall block of the system. It consists of three main functional

blocks: progressive Image Coding, JSCC and differential space-time coded OFDM

(DSCT-OFDM) systems. The image is first fed into an embedded image encoder

to generate one bitstream. The scalable property of the output bitstream requires

a UEP scheme to guarantee the error robustness. And the bursty nature of errors

in fading channels prompts the employment of RS code because of its good bursty

error correction capability. And more powerful error protection can be achieved if

another channel code (e.g., convolutional code) is applied perpendicularly to the RS

codes. Based on this idea, one straightforward solution is the product code structure

in [70]. Thus, the embedded bitstream is transformed into a sequence of packets in

the product code structure by the RCPC/CRC and RS channel encoder. We then

transmit all the packets via the DSTC-OFDM system. At the receivers, we decode

the received symbols using decision-feedback differential detection. After channel

decoding, parity checking is performed via CRC decoding. Once errors are found,

the corresponding packet is considered to be decoded with errors. RS codes in the

product code enable us to recover part of bitstream from the remaining packets. Note

that only the bits before the first error in the bitstream can be used to reconstruct

the transmitted image by the image decoder.

The main component of our image transmission system is the product code de-
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Fig. 16. Overall block of image transmission system over DSTC-OFDM systems.

sign, which is optimized by determining the best RS protection for each RCPC code

rate. This is time-consuming when many RCPC code rates are allowed. A local

search algorithm that jointly optimizes the RS and RCPC code is described in [29].

As introduced in Section B.3, the product code design requires two sets of pa-

rameters as inputs: the operational distortion-rate function of source coder D(rs) and

the probability function pN(n).

The distortion-rate function is easy to generate by practically encoding and de-

coding the original image. That is, we encode the image at a given highest source rate

and then decode the bitstream at different low rates. The probability function pN(n)

is difficult to evaluate accurately by analytical methods. Given an average SNR of

fading channels and a channel code rate ri ∈ R, we perform 1000 practical image

transmissions over the STC-OFDM system and count nN(n), the number of trials

where n out of NP packets are with errors. Thus we can compute the probability

function by pN(n) = nN(n)/1000.
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Note that at high average SNR (hence low BER), channel coding is not necessary

and more source bits together with RS redundance symbols can be assigned to achieve

better performance. Thus the candidate channel rates for the product code design

are R′ = {1} ∪ R, where code rate 1 means no RCPC is applied.

Once the two sets of parameters are obtained, by employing the local search

algorithm, we jointly optimize the RS and the RCPC codes to give the best design of

product code. Then it is straightforward to compute the average MSE analytically

by (3.18) and convert average MSE to PSNR performance by (2.21).

The process of performance analysis is summarized in Fig. 17.

Image

Monte Carlo Simulation 
over DSTC-OFDM system 

LP, NP SNRri

)(npN

Local Search Algo.

Optimal code rate ri
& RS UEP F

(3.18)

min. avg. MSE

)( srD

Practical encoding 
& decoding

Source 
Coder

Fig. 17. Summarization of performance evaluation of the image transmission system

over DSTC-OFDM systems. The two inputs of the local search algorithm

are: the operational distortion-rate function of the image coder D(rs) and the

probability of packet decoding error pN(n) for a certain RCRC rate.
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D. Iterative Decoding of Differentially Space-time Coded Multiple Descriptions of

Images

1. MD Source Coding via SPIHT+UEP

The MD source coder can be simply based on embedded coding (e.g., SPIHT [3])

and UEP [29, 71]. An example with two descriptions is given in Fig. 18 [75], where

the embedded source coder is employed to produce a rate (2 − ρ)R bitstream with

0 ≤ ρ ≤ 1. The first ρR portion of the embedded bitstream is repeated in both

descriptions, as indicated by the box, while the remaining 2(1− ρ)R portion is split

between the two descriptions. It is a clear UEP scheme since the first ρR portion

of the bitstream is protected by a rate-1/2 channel code via repetition, while the

remaining portion is not protected at all. Furthermore, MD coding can be viewed as

means to introduce redundancy for error robustness. Thus, conceptually any practical

JSCC scheme with soft threshold channel coding can be employed as the MD coder

in our system.

Description 1

Description 1

Rρ

Rρ

R)1( ρ−

R)1( ρ−

Fig. 18. An example with two descriptions generated via embedded source coding and

UEP.

In our scheme, the MDs are generated via the product code structure with

RCPC/CRC and RS codes, as shown in Fig. 15. We choose RS codes along the

columns because of their good capabilities to correct bursty errors from the fading

channels. When compared with the example in Fig. 18, this structure shows an ob-

vious UEP scheme and guarantees a successful MD coder with each packet (row) as
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one description. Besides the RS codes along the columns, we also apply RCPC/CRC

codes along the rows to further enhance the performance.

It is simple to generate MDs using the discussed product code design. But the

major problem is how to optimize the product code by determining the best RS EPS

for each RCPC rate. One efficient solution by using the local search algorithm [76]

has been comprehensively discussed in previous sections.

2. An Iterative DSTC Decoding Algorithm in Fading Channels

Nguyen and Ingram have developed an iterative decoding algorithm in [86] by con-

catenating DSTC with a convolutional code, as shown in Fig. 19. The input bits

are first encoded with the outer coder-a convolutional code. The coded bits are then

interleaved and fed into the inner coder-DSTC to achieve the transmitter diversity.

The recursive property of DSTC makes it a fitful inner coder in serial concatenation

to achieve the interleaver gain. Furthermore, the recursive DSTC encoder has a trellis

structure, which make it possible to perform decoding using the Viterbi algorithm or

the BCJR algorithm [87].

BitsInput 
Conv.     

Encoder
Interleaver DSTC 

Encoder

EncoderOuter EncoderInner 

nX

 Symbols dTransmitte

Fig. 19. Serial concatenated code of convolutional code and DSTC.

The proposed receiver consists of an MAP DSTC decoder (inner decoder) [86], a

convolutional decoder (outer coder), an interleaver and a deinterleaver, as described

in Fig. 20. The two decoders exchange extrinsic values or APP of transmitted bits

between themselves in successive iterations. The DSTC demodulator has the channel
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values and the APP as its inputs. The MAP decoder calculates the APP or the LLR of

each of these extrinsic values. These values are then deinterleaved to bring them in the

right order of the MD source decoder. Using these inputs, the convolutional decoder

calculates the extrinsic values and passes them back to the MAP DSTC decoder

through an interleaver. At the last iteration, the MD source decoder also outputs the

estimations of the original input bits. Details of the receiver are discussed as in [86].

DSTC APP 
Decoder

Deinterleaver Conv. APP    
Decoder

Interleaver

ny
 Symbols Received

 Bits Detected

LLR

DecoderInner DecoderOuter 

Fig. 20. Iterative decoding of serial concatenated code.

3. Iterative Decoding of Differentially Space-Time Coded MDs of Images

We combine the outer MD code and the inner DSTC together for iterative decoding

of MDs of images. The link that connects these two constituent codes is the RCPC

coding component in the MD code (see Fig. 15). It plays the role of the outer

convolutional code in the concatenated system of [86].

Our proposed image transmission system is shown in Fig. 21. First the original

embedded image bitstream goes through the MD encoder (product code). After the

interleaver, each description (packet) is encoded by DSTC and transmitted through

the wireless channel. At the receiver, turbo decoding is performed based on the

concatenation of the DSTC decoder, the deinterleaver, the RCPC decoder and the

interleaver, as discussed in Section 2. Based on results in [86], we expect the turbo

decoding performance to improve with successive iterations. After the transmission of
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all the packets through the wireless channel and the channel decoding after a certain

number of iterations, parity checking is performed via CRC decoding. Whenever an

error is detected, the corresponding packet is considered to be decoded with errors.

With the help of the RS code in the product code structure, we recover part of the

source bitstream and reconstruct the original image by the SPIHT image decoder.

MDC Encoder
(Product Code)

Original Image

Interleaver DSTC 
Encoder

Wireless 
Channel

Deinterleaver DSTC 
Decoder

Interleaver

Reconstructed 
Image

Transmitter

Receiver

MDC Decoder

CRC Detection 
& SPIHT

RCPC 
Decoder

MDC Decoder

CRC Detection 
& SPIHT

RCPC 
Decoder

Fig. 21. Overall system of transmission of multiple descriptions of images through

differential space-time coding.

This process of performance evaluation is similar with that in Section C, and can

also be summarized in Fig. 17.
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E. Numerical Results and Discussions

1. Progressive Image Transmission over DSTC-OFDM systems

In this section, we will present the numerical results to evaluate our proposed im-

age transmission scheme over DSTC-OFDM systems. To give comprehensive com-

parisons, we also give the simulation results for coherent detection and EM-based

iterative receiver.

The STC-OFDM systems introduced in previous sections are simulated using

QPSK modulator. A 3-tap frequency-selective channel with equal power between

each pair of transmit and receive antenna is assumed. And each tap of channel is

modelled as a flat-fading channel with normalized doppler shift fDTs = 0.01. The

number of sub-carriers in the OFDM system is K = 128.

We transmit the 512 × 512 Lena image through these systems. The SPIHT [3]

image coder is used to compress the image to generate an embedded source bitstream.

The bitstream is then transformed into the product code structure with the packet

length LP = 64 Bytes. Two transmission rates, i.e., 0.5 and 1 bit per pixel (bpp),

are considered in our work with the number of packets NP = 256 and NP = 512,

respectively. In each packet, a 16-CRC code with generator polynomial 0x15935 is

applied to detect the error. And for the RCPC codes, the generator polynomials were

(0117, 0127, 0155, 0171), the mother code rate was 1/4, and the puncturing rate was 8.

Thus, the set of RCPC rates is R = {8/9, 8/10, . . . , 8/32} and the candidate RCPC

rates for the product code design are R′ = {1}∪R. The decoding of the RCPC code

is done with a list Viterbi algorithm where the maximum number of candidate paths

is 100.

Below we show the experimental results in two parts: BER performance of STC-

OFDM systems and reconstructed image qulity in PSNR.
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a. BER Performance

BER performance of the DSTC-OFDM system with NT = 2, NR = 1 and different

window sizes are shown in Fig. 22 (a) in solid curves. It is natural to see the error

floor for conventional DSTC decoding algorithm (i.e., window size N = 2). Except

for a little performance loss when SNR<10 dB, decision-feedback method (denoted

by “DF-DSTC”) is truly an efficient way to reduce the error floor for SNR>20 dB.

From Fig. 22 (a), we also find that the major gains can be achieved with moderate

observation window size N , i.e., the gaps between the BER curves become smaller

and smaller with the increase of N . Similar observations are reported in [28]. This

property allows us to achieve good performance without using large window sizes with

prohibitive complexity.

In Fig. 22 (a), we see a gap of about 3 dB between the DF-DSTC decoding

(in solid curves) and coherent detection with perfect CSI (denoted by “CD-STC”, in

dashed curves) for SNR<20 dB when error floor is almost absent. This agrees with

the analysis in [24]. Fig. 22(a) also plots BER performance of EM-based iterative

receiver (denoted by “EM-STC”, in diamond solid curves), which is about 2.5 dB

better than that of DF-DSTC when SNR<20 dB. With the increase of SNR, the gap

becomes larger and larger because the effect of error floor is more obvious for DSTC.

Note that we should adjust SNR for EM-STC to perform fair comparisons with DSTC

since we lose some rate when inserting pilot symbols.

Finally, BER performances of the systems with more receive antennas (NR = 2)

are plotted in Fig. 22 (b). We can make similar observations when comparing with

the case of a single receive. And it is not surprising to see that more diversity gains

are obtained with more receive antennas.
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Fig. 22. BER performances of QPSK-modulated STC-OFDM systems withNT = 2 transmit

antennas and (a) NR = 1 and (b) NR = 2 receive antennas. The normalized doppler

shift fDTs = 0.01. And the number of sub-carriers in the OFDM system isK = 128.

N denotes the observation window size used in DF-DSTC; For EM-STC, we choose

the number of OFDM slots in one STC codeword P = 2, the number of STC

codewords in one data burst q = 5, the number of EM iterations I = 5.
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b. Reconstructed Image Quality

Fig. 23 plots the reconstructed image quality (in PSNR) vs. SNR performance of

STC system with NT = 2, NR = 1. Two transmission rates, i.e., 0.5 and 1 bpp, are

considered. It is seen that the improvements of BER performance in our systems

can be translated into quality gains in reconstructed images. With the increase of

SNR, the PSNR results of all the systems approach the limit given by source coding.

Corresponding to BER performance in Fig. 22, we find that when BER< 10−5, PSNR

curves will reach a plateau and no much gains can be obtained by increasing the SNR.

At the transmission rate of 0.5 bpp, the PSNR results of DF-DSTC systems with

various observation window sizes are shown in the solid curve (N = 5) and the dashed

curve (N = 2) in Fig. 23 (a). For larger window size (N = 5), when SNR>20 dB, the

contribution to reduce the error floor will lead to a 0.6 dB higher PSNR limit. That is,

the reduction of error floor enables us to achieve the best reconstructed image quality

given a certain transmission rate. Note that the error floor in the BER performance

of DSTC is determined by the Doppler frequency. For higher Doppler frequencies,

the error floor will be more pronounced, which leads to more performance loss for

the reconstructed image. Fig. 23 (a) also shows the PSNR performance of coherent

detection and EM-based iterative decoding schemes. Comparing to EM-STC, we see

some performance loss in PSNR results for DF-DSTC at low SNRs. But this loss

becomes smaller and smaller with the increase of SNR.

When the transmission rate is increased to 1 bpp, as shown in Fig. 23 (b), we

observe almost the same performance loss in PSNR at low SNRs when comparing to

the case with the low transmission rate. However, the overall improvement of PSNR

values will mitigate the visual difference of the reconstructed image, as illustrated in

Fig. 24. On the other hand, the degradation in image quality with decision-feedback
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Fig. 23. PSNR Reconstructed image quality in PSNR (dB) of the image transmission system

over the QPSK-modulated STC-OFDM system with NT = 2, NR = 1. A product

code structure with the packet length LP = 64 Bytes is assumed. Two different

numbers of packets, NP = 256 and NP = 512, are considered, which lead to the

transmission rates of (a) 0.5 bpp and (b) 1 bpp, respectively. Various detection

schemes (i.e., CD-STC, EM-STC and DF-DSTC) are assumed. Other parameters

are the same with those in Fig. 22.
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(a) DF-DSTC, 0.5 bpp, PSNR=27.38 dB (b) EM-STC, 0.5 bpp, PSNR=29.20 dB

(c) DF-DSTC, 1 bpp, PSNR=30.12 dB (d) EM-STC, 1 bpp, PSNR=31.78 dB

Fig. 24. Reconstructed images of Lena over the STC-OFDM system with NT = 2

transmit antennas and NR = 1 receive antenna when SNR=5 dB, using

DF-DSTC at the transmission rates of (a) 0.5 bpp and (c) 1 bpp; and us-

ing EM-STC at the transmission rates of (b) 0.5 bpp and (d) 1 bpp.
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differential decoding is offset by its computational simplicity. DF-DSTC decoding

technique is a very efficient and simple way to handle the case without CSI at the

receiver, while the complicated EM-based iterative receiver is time consuming and not

easy to design, especially for hardware implementation. Thus, DF-DSTC decoding

can be a good solution when the channel is not too noisy.

From Fig. 25, the diversity gains with more antennas can make the reconstructed

image quality approach the PSNR limit sooner. This is another efficient way to reduce

the performance gap between DF-DSTC and EM-STC, e.g., at SNR=15 dB. In Fig.

26, we also show the visual difference of the reconstructed image after the transmission

over the STC-OFDM system with NT = 2, NR = 2 at a quite low SNR=5 dB. We

see that difference becomes even smaller when comparing to the single-receiver STC-

OFDM system.

Fig. 25 (a) includes the results from a related work of [9] (refer to Fig. 14 (b) in

[9], where “MDC-SPIHT” denotes the multiple SPIHT sub-bitstream transmission).

The significant performance gains show the effectiveness of the JSCC scheme in our

system.
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Fig. 25. PSNR Reconstructed image quality in PSNR (dB) of the image transmission system

over the QPSK-modulated STC-OFDM system with NT = 2, NR = 2. A product

code structure with the packet length LP = 64 Bytes is assumed. Two different

numbers of packets, NP = 256 and NP = 512, are considered, which lead to the

transmission rates of (a) 0.5 bpp and (b) 1 bpp, respectively. Various detection

schemes (i.e., CD-STC, EM-STC and DF-DSTC) are assumed. Other parameters

are the same with those in Fig. 22.
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(a) DF-DSTC, 0.5 bpp, PSNR=30.32 dB (b) EM-STC, 0.5 bpp, PSNR=32.20 dB

(c) DF-DSTC, 1 bpp, PSNR=33.53 dB (d) EM-STC, 1 bpp, PSNR=35.30 dB

Fig. 26. Reconstructed images of Lena over the STC-OFDM system with NT = 2

transmit antennas and NR = 2 receive antenna when SNR=5 dB, using

DF-DSTC at the transmission rates of (a) 0.5 bpp and (c) 1 bpp; and us-

ing EM-STC at the transmission rates of (b) 0.5 bpp and (d) 1 bpp.
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2. Iterative Decoding of Differentially Space-time Coded MDs of Images

For the sake of simplicity, we simulated our proposed scheme for iterative decoding

of the MDs of images by assuming BPSK modulation and a flat-fading channel with

Jake’s correlation structure [66] and normalized Doppler shift fDT = 0.01. Note that

for the differential detection, this high-mobility channel may result in an error floor

even when AWGN is absent. However, in the low SNR range, e.g., 0-20 dB, which is

our interest, the error floor is much less pronounced.

We consider transmitting the 512 × 512 grayscale Lena image. The SPIHT

coded bitstream of Lena first goes through the product code to generate MDs with

the number of packets N = 200 and the packet length L = 48 Bytes. Thus the

transmission rate is about 0.29 bits per pixel (bpp). In each packet, a 16-CRC code is

applied to detect the error. And the set of RCPC rates is R = {8/9, 8/10, . . . , 8/48}.

For a given number of iterations (with three being the maximum), we evaluate the

system by its average PSNR performance.

The SNR vs. average PSNR performance of the proposed system is tabulated in

Table II, where “Iter.0” denotes the first decoding process without feedback of APP

from the convolutional decoder to the DSTC decoder (see Fig. 20). We observe a

PSNR gain of about 0.3∼1.2 dB with three iterations in the 0-20 dB SNR range. Thus

iterative decoding is an effective scheme to improve the PSNR performance. To give

a clear comparison, we plot the PSNR results in Fig. 27. One important observation

is that slight performance gains are achieved for more than one iteration. We think

that the moderate increase in decoding complexity is a worthwhile investment for

improved system performance. We also see that with the increase of SNR, the gaps

between the curves of various iteration numbers become smaller and smaller. Thus,

our iterative decoding scheme works better in low SNR or bad channel conditions.
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Table II. Comparisons of PSNR performance for various numbers of iterations.

SNR PSNR (dB)

(dB) Iter. 0 Iter. 1 Iter. 2 Iter. 3

0 24.54 25.63 25.85 26.17

5 29.49 30.13 30.43 30.49

10 31.94 32.81 32.96 33.09

15 33.17 33.52 33.54 33.60

20 33.64 33.89 33.89 33.90
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Fig. 27. Transmitted image qualities (in PSNR) of our proposed system.
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F. Conclusions

The work in this chapter is one extension of that in Chapter II within a scenario much

closer to the real application. In details, we describe an end-to-end image communi-

cation system that combines JSCC and physical-layer wireless communication tech-

niques (e.g., DSTC and OFDM). Experiments show that SNR/BER improvements

can be translated into quality gains in reconstructed images. Moreover, compared to

the another non-coherent detection algorithm, i.e., EM-based iterative receiver, dif-

ferentially space-time coded OFDM systems suffer some quality loss in reconstructed

images. With the efficiency and simplicity of decision-feedback differential decod-

ing, differentially space-time coded OFDM is thus a feasible modulation scheme for

applications such as wireless image over mobile devices (e.g., cell phones).

We also make a seamless connection between the above image transmission sys-

tem over wireless fading channels with the MD coding, and use iterative (turbo)

decoding techniques developed for serially concatenated coding systems to improve

the performance of the receiver in successive decoding iterations. We treat MD cod-

ing, realized by embedded image coding plus unequal error protection (e.g., product

code structure), as the outer constituent code and use a differential space-time code

as the inner constituent code. Experimental results show that our iterative scheme

can effectively improve the system performance. Furthermore, most of the gain in

PSNR is achieved with only one iteration in the low SNR range, e.g., 0-20 dB.
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CHAPTER IV

DIRTY-PAPER CODE DESIGN: A SOURCE-CHANNEL CODING APPROACH

A. Introduction

Another research topic related to source-channel coding, Costa (“dirty-paper”) cod-

ing, will be covered in this chapter. We first invoke an information-theoretical inter-

pretation of algebraic binning for CCSI to justify our source-channel coding based

approach. Then, building upon results in [47, 34], we state that the performance loss

(in SNR) in our practical code designs is the sum of the packing loss ∆SNRp from

channel coding and a modulo loss ∆SNRm, which is a function of both the granular

loss from source coding and the target rate (or SNR). At high rate, the modulo loss

is approximately equal to the granular loss, but as the rate decreases, it becomes

higher and higher than the granular loss. Thus, besides advanced channel codes, it

is imperative to employ strong source codes so that the granular loss is small for

near-capacity dirty-paper coding, especially at low rate.

Following this guideline, we propose two practical Costa code designs which flavor

different embedding rate regions.

1. Nested turbo code for high and medium rates (≥ 1.0 bit/sample): This

approach is proposed based on high-dimensional nested lattice codes [34] that

partitions a channel code into source codes [43]. Compared to the implemen-

tations reported in [43, 44], we are able to realize a better matching of the

employed source and channel codes in terms of their equivalent lattice dimen-

sions, and hence achieve better performance. Specifically, we propose a nested

turbo scheme using TTCM [49] as the channel code and a source code based
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on soft-output TCQ (SOTCQ) [88]. Such a turbo-like source code is chosen be-

cause it has a similar parallel concatenated code structure as used in the TTCM

[49] channel code. This property facilitates the nesting of the source code inside

the channel code. In our implementation, we take into account both parallel

branches of the source code in quantizing the side information, thus effectively

constructing a good TCQ-like source code. We show that, depending on the

percentage of samples processed by one of the parallel branches in our nested

turbo code, there exists a tradeoff between the turbo-like TCQ source code and

the TTCM channel code. Optimizing this tradeoff offers a means of balancing

the dimensionalities of the source and the channel codes.

2. Code design based on TCQ and IRA codes for low embedding rates (< 1.0

bit/sample): The algebraic message-based binning interpretation of Costa cod-

ing indicates that one can shoot for the granular gain via source coding and the

packing gain via channel coding. In practice, the former should be done with

powerful quantizers (e.g., TCQ [35]) having almost spherical Voronoi cells in

a high-dimensional Euclidean space, and the latter with near-capacity channel

codes (e.g., IRA codes [52]). This justifies our combined source-channel coding

approach to dirty-paper coding based on TCQ and IRA codes. Treating TCQ

as a form of lattice VQ, we seamlessly combine TCQ with both non-systematic

and systematic IRA codes in a source-channel coding setup without sacrificing

the performance of either component, i.e., both the TCQ and IRA code com-

ponents still work well when combined together in our elaborate dirty-paper

code construction. This is one main advantage over the nested turbo approach

where we see the obvious constraint between source coding and channel coding

in terms of their individual performance. Thus, our scheme based on TCQ and
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IRA codes comes closer to the Costa limit at low rates. However, this scheme

cannot straightforwardly be applied to the high rate regime, and whether or

not they can be redesigned to operate well at high embedding rate is not clear.

This chapter is organized as follows. In Section B, we review the background

knowledge on Costa coding and motivate our code design guideline. Following this

guideline, the nested turbo code and the code design based on TCQ and IRA codes

are proposed in Section C and Section D, respectively. Then the efficiency of our

proposed schemes is evaluated via simulation in Section E. Finally, we draw the

conclusions and suggest the future work in Section F.

B. Background and Motivations

1. Nested Lattice Code Construction

Although Costa’s proof shows the existence of capacity-achieving random binning

schemes, it does not give any indication about practical code construction. Zamir

et al. [34] suggested an algebraic binning scheme based on nested lattice codes. The

scheme consists of a coarse lattice code nested within a fine lattice code. The fine

lattice code needs to be a good channel code and the coarse lattice code needs to be

a good source code to approach the capacity in (1.2).

Fig. 28 (a) illustrates 1-D nested lattice/scalar codes with an infinite uniform

constellation, where ∆ denotes the step-size. The channel codewords are grouped

into cosets/bins (labeled as 0, 1, 2, and 3) for source coding. At the encoder, the

side information S is linearly scaled by α [30] and quantized to U by the source code

selected by the message m to be transmitted (e.g., the coset/bin labelled 1 in Fig. 28

(b)), so that the obtained quantization errorX = U−αS satisfies the power constraint

E[X2] ≤ PX . Then, X is transmitted over the additive white Gaussian noise channel
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with noise Z ∼ N(0, PZ). According to [30], the optimal α = PX
PX+PZ

= SNR
SNR+1

, with

SNR=PX
PZ

. The decoder (see Fig. 28 (c)) receives the signal Y = X + S +Z, scales it

by α, and finds the codeword Û closest to αY . Finally the index of the bin containing

Û is identified as the decoded message.

Sα
SUX α−=

U
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Fig. 28. 1-D nested lattice codes for Costa coding.

It is shown in [34] that this nested scheme approaches the capacity in (1.2)

as the dimensionality of the employed lattices approaches infinity. However, nested

lattice coding calls for a joint source-channel code design, typically with the same

dimensional coarse lattice source code and fine lattice channel code, which are difficult

to implement in high dimensions.

2. Lattice Precoding and Achievable Rates

Let Λ be an n-dimensional lattice quantizer with basic Voronoi cell V . Associated with

V are several important quantities: the cell volume |V|, the second moment P (Λ), and

the normalized second moment G(Λ), defined by |V| =
∫
V dx, P (Λ) = 1

n|V|
∫
V |x|2dx,
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and G(Λ) = P (Λ)/|V| 2n , respectively. The minimum of G(Λ) over all n-dimensional

lattices is denoted as Gn. Gn >
1

2πe
,∀n and limn→∞Gn = 1

2πe
. The granular gain of

Λ is g(Λ) = −10 log10 12G(Λ), which is maximally 1.53 dB. Denote D as the random

dither uniformly distributed over V .

For any source codewords (or constellation points) u ∈ V , the encoder transmits

X = [u− αS−D] mod Λ,

while the decoder receives Y = X+ S+ Z and computes

Y′ = [αY +D] mod Λ = [u+N′] mod Λ,

where α is a scaling factor and

N′ , [(1− α)D+ αZ] mod Λ

is the equivalent modulo lattice channel noise.

The maximum achievable rate of the modulo lattice channel is 1
n
I(U;Y′), achieved

by a uniformly distributed input U over V . Due to the dither D, X is independent

of u and uniformly distributed over V with E[||X||2] = PX = P (Λ). Then, for n > 1,

1
n
I(U;Y′) can be lower bounded by assuming D has i.i.d. Gaussian components and

using the MSE-optimal α = PX
PX+PZ

= SNR
SNR+1

[30], yielding [47]

1

n
I(U;Y′) ≥ 1

2
log2(1 + SNR)− 1

2
log2 2πeG(Λ). (4.1)

Note that for any finite n, the components of D (and X) are not Gaussian or in-

dependent. In practice, n has to be high for the i.i.d. Gaussian assumption to be

approximately true and for the lower bound in (4.1) to be tight.
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3. Motivations of the Proposed Code Designs

We offer an algebraic message-based binning interpretation of dirty-paper coding in

terms of source-channel coding in [33]. From an information-theoretical perspective,

there are granular gain and boundary gain in source coding, and packing gain and

shaping gain in channel coding. Dirty-paper coding is primarily a channel coding

problem (for transmitting messages), one should consider the packing gain and the

shaping gain. In addition, the side information necessitates source coding to satisfy

the power constraint, i.e., the constellation needs to be infinitely replicated so that

one can quantize the side information to satisfy the power constraint [34]. Thus

source coding in dirty-paper coding is not conventional in the sense that there is only

granular gain, but no boundary gain. One needs to establish the equivalence between

the shaping gain in channel coding and the granular gain in source coding for dirty-

paper coding. Then one can shoot for the shaping gain via source coding and the

packing gain via channel coding.

The rate bound (4.1) indicates that with ideal channel coding, the loss in rate

due to lattice quantization (or source coding) is maximally 1
2
log2 2πeG(Λ) bit/sample.

With practical channel coding, there is an additional packing loss ∆SNRp (in dB). In

order to measure the losses from both source coding and channel coding in decibels,

following [89], we define the modulo loss (in dB) corresponding to the lower bound in

(4.1) due to the modulo operation in lattice quantization as

∆SNRm , 10 log10
SNR

SNR∗ = 10 log10
2πeG(Λ)22C

∗ − 1

22C∗ − 1
, (4.2)

where SNR∗ = 22C
∗ − 1 is the capacity-achieving SNR.

When the rate C∗ is high, ∆SNRm ≈ 10 log10 2πeG(Λ) = 1.53 − g(Λ) dB, i.e.,

the modulo loss is approximately equal to the granular loss from source coding in
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this case. But as the rate C∗ decreases, Fig. 29 indicates that the modulo loss

∆SNRm increases when G(Λ) is fixed. To reduce ∆SNRm, it is imperative to use

high-dimensional lattice quantizers (or VQ in general) to achieve as much granular

gain as possible so that 2πeG(Λ) approaches one. At C∗ = 0.25 bit/sample, when

the granular gain g(Λ) of Λ is 1.22, 1.28, 1.33, 1.36, 1.38 and 1.40 dB, ∆SNRm equals

0.98, 0.81, 0.65, 0.56, 0.49 and 0.43 dB, respectively. This highlights the importance

of having a strong source code in dirty-paper coding, especially at low rate. Thus,

the practical performance loss ∆SNR (in dB) in our designs is the sum of the packing

loss ∆SNRp due to IRA codes and the modulo loss ∆SNRm due to TCQ, i.e.,

∆SNR = ∆SNRp +∆SNRm. (4.3)
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Fig. 29. The dirty-paper capacity limit and the lower bound in (4.1) for

g(Λ) = 1.40, 1.38, 1.36 and 1.33 dB. It is seen that as the rate decreases,

the modulo loss ∆SNRm increases for fixed G(Λ).



86

With (4.3), the aim of Costa code design is now clear: one needs to employ both

strong source and channel codes so that the total loss is minimized. In addition, once

the source and channel codes are chosen, one can obtain the expected performance

of the resulting Costa code, provided that the source code is strong, i.e., the granular

loss 1.53-g(Λ) is small. This automatically precludes the scalar Costa scheme [45]

from approaching the capacity. Conversely, once the performance of a Costa code is

known, one can separately measure ∆SNRm due to source coding from (4.2), where

G(Λ) is replaced by the MSE distortion PX introduced by the quantizer, and the

packing loss ∆SNRp due to channel coding. These are the guidelines we follow in the

practical code constructions below.

C. Nested Turbo Code Construction

According to [34] and (4.3), a nested lattice code can asymptotically approach the

capacity of Costa coding in (1.2) when the dimensionality of the employed lattices (for

source coding and channel coding) goes to infinity. However, the bad news is that,

whereas recent progresses in iterative decoding of graph-based turbo/LDPC codes

have made it possible to implement equivalent lattice channel codes of very high

dimensions (e.g., in the thousands), such progresses have not yet been mirrored in

source coding. For example, a recent attempt on turbo TCQ [88] has resulted in worse

results than TCQ, which can perform roughly the same as a 69-th dimensional lattice

source code with 0.2 dB of granular loss [4]. The performance difference [32] between

lattice codes for source and channel coding due to this fundamental “dimensionality

mismatch” explains the main difficulty involved in practical Costa code design. It also

makes it almost impossible to implement high-dimensional nested codes with the same

dimensional lattice source and channel codes. But the good news is that two things
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work to our favor. First, for two lattices to be nested, they do not have to be of the

same dimensionality (e.g., a Z-lattice can be nested in any construction-A lattice as

the coarse-fine lattice pair [90]); second, although advanced source coding techniques

such as TCQ can only reach about 69-th dimension (in terms of lattice source code),

the small 0.2 dB granular loss of TCQ is acceptable in practical applications. Thus,

our main task in Costa code design is to find the best nesting between the strongest

practical source and channel codes.

In this approach, we study practical Costa code designs based on high-dimensional

nested lattice codes [34] under the framework of nesting (or binning) that groups

channel codewords into source codes. Compared to the implementations reported in

[43, 44], we are able to realize a better matching of the employed source and chan-

nel codes in terms of their equivalent lattice dimensions and hence achieve better

performance. Specifically, we propose two means of alleviating the severity of the di-

mensionality mismatch. First we propose a novel approach that uses SOTCQ as the

source code in conjunction with TTCM as the channel code. The turbo-like SOTCQ

is chosen as the source code because it has a similar parallel concatenated code struc-

ture as used in the TTCM channel code. This property facilitates the nesting of the

source code inside the channel code. In our implementation, we take into account

both parallel branches of the source code in quantizing the side information, thus

effectively constructing a good TCQ-like source code. In terms of equivalent lattice

code dimensions, SOTCQ is of higher dimension than TCQ and hence for our scheme,

the extent of the dimensional mismatch is inherently lower than that of [43, 44].

We then propose an additional means of balancing the dimensionalities of the

equivalent lattices of the employed source and channel code. The nested turbo scheme

of [43, 44] processes exactly half of the samples in one of the parallel branches of the

channel code. We show that, depending on the percentage of samples processed



88

by one of these parallel branches, there exists a tradeoff between the TCQ/SOTCQ

source code and the TTCM channel code. Optimizing this tradeoff offers a means

of dimensionality balancing. Our simulations indicate promising results at moderate

to high embedding rates. At rates of 2.0 bit/sample and 1.0 bit/sample, our scheme

significantly outperforms those of [91] and [43, 44], respectively. At lower rates (e.g.,

0.5 bit/sample), however, because of the nesting constraint in our code design that in-

troduces strong coupling between the source and channel codes, our scheme performs

only moderately well, although it still outperforms that of [91].

1. The SOTCQ/TTCM scheme

Before introducing our nested lattice coding scheme based on SOTCQ/TTCM, we

first briefly describe the nested turbo scheme of [43], which uses TCQ as the source

code and TTCM as the channel code.

The trellis structure in [43] is constructed via a rate-k/n/m concatenated code

(denoted by C1+C2, with C1 being the rate-k/n convolutional code and C2 being the

rate-n/m convolutional code). The message to be transmitted m is used to shift the

codewords of C1 by a fixed amount and select a source code for quantization. TTCM

consists of a parallel concatenated code with convolutional code C2 in both parallel

branches. C2 in the bottom branch is preceded by an n-bit symbol interleaver and

followed by an m-bit symbol deinterleaver. The two branches are multiplexed by

taking the even samples of the codeword from the top branch and the odd samples

from the bottom branch (an even-odd multiplexing which processes exactly half of

the total samples in a single parallel branch). At the decoder, the received signal

is decoded to the closest codeword, and the n-bit input sequence of C2, i.e., the

codeword of C1, is recovered. Finally, the transmitted message is reconstructed by

calculating the syndrome of the recovered codeword of C1.
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The key issue in encoding is to determine the n-bit input sequence to the TTCM

encoder, which is denoted by ~I2 = [I2(0), . . . , I2(L−1)], where L is the sequence length

(or trellis size) and I2(t) is the t-th n-bit input symbol to C2 in the sequence. The

presence of an interleaver increases the dimensionality (and hence performance) of the

equivalent lattice channel code. However, as a result of this increase in channel code

dimensions, the performance of the source code suffers. From a code construction

point of view, ~I2 in the scheme of [43, 44] is computed during the process of TCQ

at the top branch based on the trellis C1+C2. The bottom branch however employs

an interleaver and hence after multiplexing the two branches, the quantization error

is much larger when compared with that of the original TCQ, thus the performance

loss of the source code.

The dimensionality mismatch of the source and channel code in the TCQ/TTCM

scheme of [43, 44] motivated us to seek a stronger source code which could better

facilitate the nesting. We thus propose the nested turbo code construction in Fig. 30,

where the calculation of ~I2 is realized via SOTCQ. Specifically, we compute the soft-

output version of sequence ~I2, denoted by ~IS2, using a soft-output Viterbi algorithm

(SOVA) [92]. By forcing the t-th n-bit input symbol to a specific value, i.e., I2(t) =

c2 ∈ C = {0, 1, . . . , 2n − 1}, the soft-output IS2(t, c2) is given by the minimal total

distortion corresponding to all possible input sequences ~I2 ∈ CL

IS2(t, c2) = min

~I2 ∈ CL;

I2(t) = c2 ∈ C

L−1∑

l=0

{
|U(l)− αS(l)|2︸ ︷︷ ︸

ρ(l)

}
, (4.4)

where ~S = [S(0), . . . , S(L − 1)] is the length-L sequence of side information and

~U = [U(0), . . . , U(L−1)] the corresponding sequence of codewords for a certain input

sequence ~I2 with I2(t) = c2. The quantization error (branch metric) is denoted by
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ρ(l). After computing the components IS2(t, c2) for all t = 0, 1, . . . , L − 1 and all

c2 ∈ C, ~IS2 is grouped as a matrix

~IS2 =




IS2(0, 0) · · · IS2(L− 1, 0)

...
. . .

...

IS2(0, 2
n − 1) · · · IS2(L− 1, 2n − 1)



. (4.5)
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Fig. 30. Proposed nested turbo encoder for the Costa problem.

The calculation of ~IS2 in our nested turbo code construction is based on two

parallel SOTCQs, as illustrated in the left part of Fig. 30. The trellis of the top

branch, Γ1, is constructed by C1 + C2, while the one at the bottom, Γ2, contains

only C2. This parallel-branch structure is necessary for embedding the message m in

trellis Γ1. A SOVA is used to compute the soft-output ~IS2. The systematic bits are

punctured at odd instants in trellis Γ1 because of the even-odd multiplexing in the

TTCM encoder, i.e., ρ1(t) = |U(t)− αS(t)|2 if t is even; ρ1(t) = 0 if t is odd, where

ρ1(t) is the branch metric at instant t in trellis Γ1. The metrics at odd instants are

provided by trellis Γ2 as a priori information. Borrowing the idea of the initialization

step in TTCM decoding, for a systematic C2, we compute the a priori information

at instant t, denoted by A2(t, c2), as the minimal distortion corresponding to the
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input bits I2(t) = c2 and all possible parity bits B(t) ∈ B = {0, 1, . . . , 2m−n− 1}, i.e.,

A2(t, c2) = 0 if t is even; A2(t, c2) = minI2(t)=c2;B(t)∈B |U(Π(t))−αS(Π(t))|2 if t is odd,

where Π(t) denotes the same symbol interleaver as used in the TTCM encoder. This

a priori information is then deinterleaved and fed into the top trellis code. To invoke

ρ1(t) and A2(t, c2) in the computation of the soft-output IS2(t, c2), we modify (4.4)

to

IS2(t, c2) = min

~I2 ∈ CL;

I2(t) = c2 ∈ C

L−1∑

l=0

{
ρ1(l) + A2(Π

−1(l), c2)
}
,

with Π−1(l) denoting the symbol deinterleaver. After the SOVA on trellis Γ1, we out-

put ~IS2 and convert it to ~I2 by hard thresholding I2(t) = argminc2∈C={0,1,...,2n−1} IS2(t, c2).

Since the turbo-like SOTCQ source code in this case has a similar parallel con-

catenated code structure as that of TTCM, the dimensionality of the source code is

higher than that of simple TCQ (with even-odd multiplexing), and thus it facilitates

better nesting of the source code inside the channel code. Indeed our simulations

indicate that our code design outperforms those of [43, 44].

2. Dimensionality balancing

Although we tend to quell the severity of the dimensionality mismatch to some extent

by employing a strong turbo-like source code, yet one cannot help but eye the potential

gain in performance if the source and channel code were even more closer in terms

of their dimensionality. Thus, to further reduce the dimensionality mismatch, we

propose a simple, but effective solution to the problem.

Let T denote the percentage of samples processed in the top branch in the

parallel-branch structure. By default both of the schemes described above (i.e.,
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TCQ/TTCM and SOTCQ/TTCM) process exactly half of the samples in the top

branch, that is, T = 50%. Increasing T from 50%, reduces the effect of the interleaver

in the bottom branch causing the degradation in the channel coding performance.

However, in the same time, it guarantees improved source coding performance. (Note

that, when T = 100% the scheme becomes a regular TCQ based on trellis C1+C2.)

In other words, increasing T from 50% increases the dimensionality of the source code

but decreases the dimensionality of the channel code. Thus the parameter T offers a

means of balancing the dimensionality of the equivalent lattice codes of the employed

source and channel code. The best dimensionality balance between source and chan-

nel coding can be reached by searching for the optimal percentage T ∗ between 50%

and 100% that leads to minimal BER after decoding the message. Note that this

balancing procedure is equally applicable to both TCQ/TTCM and SOTCQ/TTCM

schemes.

Our experiments show that the MSE distortion PX introduced by the quan-

tizer decreases when T is increased from 50 % to 100% in both the TCQ/TTCM

and SOTCQ/TTCM schemes, which is expected since the underlying source coding

component is becoming stronger with increasing T . When T = 100%, we have the

conventional TCQ scheme based on trellis C1+C2.

On the other hand, the simulations clearly show that for the same T , our

SOTCQ/TTCM design outperforms the TCQ/TTCM code in terms of achieving

a smaller PX . This improvement in source coding ultimately leads to the better

performance of our SOTCQ/TTCM scheme over that of [44].
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D. Costa Code Design Based on TCQ and IRA Codes

Following the code design guidelines in Section B.3, we also propose a combined

source-channel coding approach to dirty-paper coding based on TCQ and IRA codes.

Specifically, treating TCQ as a form of lattice VQ, we seamlessly combine TCQ

with both non-systematic and systematic IRA codes in a source-channel coding setup

without sacrificing the performance of either component. That is: both the TCQ and

IRA code components still work the best when combined together in our elaborate

dirty-paper code constructions. This is the main advantage over our nested turbo

code approach as described in the previous section.

After using the generator polynominals in [93] to implement TCQ of different

number of states and subsequently obtaining the equivalent g(Λ), we compute ∆SNRm

from (4.2) with C∗=0.25 bit/sample. Assuming that ∆SNRp = 0.34 dB (confirmed

in our simulations), Table III lists the predicted total performance loss ∆SNR when

the target rate is C∗=0.25 bit/sample.

We view TCQ as an efficient means of implementing an equivalent high-dimensional

lattice quantizer Λ and use scalar notation in the sequel. The dither D is generated

by keeping random inputs that are only quantized to zero by TCQ. Although dither-

ing plays an important role theoretically, we observe little of its impact on the code

performance.

• Encoder: The side information S is first linearly scaled by α, then αS + D is

quantized to u by a coset of the TCQ selected by the message m so that the obtained

quantization error

X = u− αS −D (4.6)

satisfies the power constraint E[X2] = PX . X is transmitted over the side-information

channel.
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Table III. The modulo loss ∆SNRm computed from (4.2) for TCQ of different number

of states and the predicted total performance loss ∆SNR in our proposed

dirty-paper code designs based on TCQ and IRA codes, assuming the pack-

ing loss ∆SNRp from IRA codes is 0.34 dB and a target rate of C∗=0.25

bit/sample.

# of states g(Λ) ∆SNRm ∆SNRp ∆SNR

in TCQ (dB) (dB) (dB) (dB)

28=256 1.33 0.65 0.34 0.99

29=512 1.36 0.56 0.34 0.90

210=1024 1.38 0.49 0.34 0.83

211=2048 1.40 0.43 0.34 0.77

212=4096 1.42 0.37 0.34 0.71

213=8192 1.43 0.34 0.34 0.68

214=16384 1.44 0.31 0.34 0.65

• Decoder: The decoder receives Y = X +S +Z and finds the codeword û closest to

Y ′ = αY +D = u+N ′, (4.7)

where N ′ , (1−α)(−X)+αZ is the equivalent channel noise. Note that the “mod Λ”

operation is implicitly implemented in TCQ. Finally the index of the bin containing

û is identified as the decoded message.

The aim of our code design is to use the strongest possible TCQ to achieve most

of the 1.53 dB granular gain while employing IRA codes to approach the capacity,

and thus to match the predicted performance in Table III.
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1. Proposed TCQ Plus Non-systematic IRA Code Designs

We first present our dirty-paper code design based on a 256-state TCQ (with 1.33

dB granular gain) and non-systematic IRA codes. The encoder is shown in Fig. 31.

Each bit of the accumulator (ACC) output sequence is repeated log2M times and the

first two resulting bits are combined with the TCQ output bits (via modulo sum)

before being used to index an M-PAM constellation. The constellation size M=16 is

experimentally chosen among {4, 8, 16, 32} so that the EXIT chart [94] of TCQ starts

obviously above the origin (see Fig. 32 for the EXIT chart of TCQ with different

constellation schemes). From Fig. 31, it is easy to see that the embedding rate is

K/N bit/sample.
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Fig. 31. Block diagram of our proposed dirty-paper encoder based on TCQ and

non-systematic IRA code.

For the CND profile, we introduce bi-regularity to the non-systematic IRA code

as done in [47]. That is, part of the check nodes are of degree 1, which helps move

the CND EXIT chart up from the origin. Denote the percentage of edges associated

with degree-1 check nodes as a1. For various values of a1 and the other check node

degree, we examine the CND&ACC&TCQ EXIT charts and select the CND profile

as: degree 1: 60% and degree 2: 40%.
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The variable node decoding (VND) EXIT chart starts from the origin, so there

is a small vertical opening between the starting points of the CND and VND EXIT

charts for practical IRA code design.

The decoder is schematically shown in Fig. 33, which consists of an inner BCJR

decoder based on TCQ and ACC, an inner CND, and an outer VND. The BCJR

decoder computes the extrinsic information IE,ACC over the joint trellis of TCQ and

ACC. Then IE,ACC is forwarded to the inner CND as the a priori information. The

CND generates the extrinsic information IE,CND that are forwarded through the edge

de-interleaver Π−1 to the outer VND. The VND generates the extrinsic information

IE,V ND that is fed back through the edge interleaver Π to the CND. Finally, one

decoding iteration is completed by feeding back the extrinsic information generated
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Fig. 33. Block diagram of the proposed decoder for TCQ and non-systematic IRA

code.

by the CND to the BCJR decoder.

Based on the VND EXIT charts (dashed lines in Fig. 34) with different vari-

able node degrees, we design the VND profile by matching the EXIT chart of the

CND&ACC&TCQ part. To achieve the 0.25 bit/sample embedding rate, we set

K/N = 1/4 with K = 60, 000 and N = 240, 000. The resulting VND profile is:

degree 2: 61.29%, degree 3: 22%, degree 10: 14.86%, and degree 120: 1.857%. From

Fig. 35, we see a tunnel between the CND&ACC&TCQ and VND EXIT charts,

which enables convergence.
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Fig. 35. EXIT charts of the non-systematic IRA code at SNR=-2.844dB with

K = 60, 000 and N = 240, 000. TCQ has 256 states.
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2. Proposed TCQ Plus Systematic IRA Code Designs

We now examine dirty-paper code design based on TCQ and systematic IRA codes.

As advocated by Jin et al. in their original IRA code paper [52], we use a systematic

IRA code to move the starting point of the VND EXIT chart to the right of the

origin. This way, the horizontal opening between the starting points of the CND

and VND EXIT charts will allow practical IRA code design. However, we discover

that whereas the right shift of the VND EXIT chart from using systematic IRA

codes is relatively large for pure channel coding problems, this shift is very small in

dirty-paper coding (see the solid lines of Fig. 34), which involves both source coding

and channel coding. We thus additionally employ bi-regularity in CND, which has

demonstrated its effectiveness in moving the CND EXIT chart up from the origin in

our non-systematic IRA code design. This way, the VND EXIT chart is moved to the

right of the origin while the CND EXIT chart moved up from the origin to facilitate

IRA code design.

Our proposed encoder is shown in Fig. 36. Its “parity part” is the same as in

the non-systematic IRA code of Fig. 31. We compare the CND&ACC&TCQ1 EXIT

charts and select the CND profile as: degree 1: 73.33% and degree 4: 26.67%. TCQ2

shown in the “systematic part” of Fig. 36 is the same as TCQ1 (256 states with 1.33

dB granular gain). So the overall granular gain of our source code is 1.33 dB. The

embedding rate is K/(K +N) bit/sample.

The decoder is schematically shown in Fig. 37, where two BCJR decoders are

used. For the “systematic part”, we compute the a priori information IA,TCQ2 based

on the extrinsic information from the VND. Then the output extrinsic information

IE,TCQ2 is fed back to the VND. The decoder for the “parity part” resembles that in

our non-systematic IRA code design.
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Fig. 36. Block diagram of the proposed dirty-paper encoder based on TCQ and sys-

tematic IRA code.

Due to the presence of the BCJR decoder corresponding to the “systematic part”,

we evaluate the VND&TCQ2 EXIT charts via simulations, in which we set K/N =

1/3 with K = 60, 000 bits and N = 180, 000 bits to achieve the 0.25 bit/sample

embedding rate. We design the VND profile by matching the EXIT chart of the

CND&ACC&TCQ1 part. The resulting VND profile is: degree 2: 58.45%, degree

3: 23.38%, degree 10: 16.94%, and degree 150: 1.223%. From Fig. 38, we see a

convergence enabling tunnel between the CND&ACC&TCQ1 and VND&TCQ2 EXIT

charts.
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Fig. 38. EXIT charts of the systematic IRA code at SNR=-2.844dB with K = 60, 000

and N = 180, 000. Both TCQ1 and TCQ2 have 256 states.
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E. Numerical Results

1. Nested Turbo Code Construction

We simulated our code design for embedding rates of 2.0, 1.0, and 0.5 bit/sample. A

specific embedding rate is realized by appropriately choosing the code rate parameters

(n, k,m). For all embedding rates, both convolutional codes C1 and C2 were chosen

as the constraint-length four Ungerboeck code [93]. C2 has to be systematic to fit

the turbo algorithm. If C1 is also systematic, there exists error propagation when

recovering the original message sequence by calculating the syndromes, since the

parity-check polynomials have infinite weights. Therefore, non-systematic C1 should

be used.

The code C2 is mapped to a finite constellation, which we call the basic con-

stellation. The side information can have an arbitrary large magnitude, therefore we

replicate the basic constellation infinitely so that the side information never lies in

the overload region of the quantizer (so that the power constraint is satisfied). The

quanitzer thus selects a copy of the basic constellation codeword which lies nearest

to the side information.

We evaluate the system performance by its BER at a certain SNR. First we

look at the effect of varying ∆ on the code performance. Our experiments indicate

little performance improvement by selecting optimal ∆, and this is true for different

T ’s and embedding rates. Thus, in the following simulations, ∆ is set to 1.0 for all

embedding rates. In addition, all results are based on 256-state TCQ and a BER of

10−5.
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a. Simulation Results at 2.0 bit/sample

For an embedding rate of 2.0 bit/sample, the rate k/n of code C1 has to be chosen such

that n−k = 2. Hence C1 is chosen as a non-systematic rate 1/3 code. The polynomials

are found using a computer search over all possible rate 1/3 codes [93]. The generator

polynomials for C1 are g0(D) = 23, g1(D) = 4 and g2(D) = 2 in octal notation. Code

C2 is chosen as a systematic rate 3/4 code with parity check polynomials h0(D) =

23, h1(D) = 10, h2(D) = 0, and h3(D) = 0. The codewords of C2 are thus mapped

to a 16-PAM constellation. Fig. 39 shows the effect of dimensionality balancing for

the SOTCQ/TTCM scheme at an embedding rate of 2.0 bit/sample.

Our best results indicate a performance gap to capacity of only 0.94 dB. As seen

in the plot, the source coding loss of (4.2) decreases as T increases, but is offset by an

increase in the channel coding loss. This clearly illustrates the source-channel coding

tradeoff in our nested turbo code design.

We applied the same dimensionality balancing procedure to the TCQ/TTCM

scheme of [43, 44]. A summary of these results is provided in Table IV; the perfor-

mance of a simple TCQ/TCM scheme of [91] are given as a benchmark. Table IV

indicates the huge performance gain in performance as compared to the performance

of the work in [91].

Dimensionality balancing only shows a small performance gain at this embedding

rate. Indeed, as shown in the table, our SOTCQ/TTCM scheme performs slightly

better than the TCQ/TTCM scheme of [43, 44].
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Fig. 39. Effect of dimensionality balancing on the performance of our proposed nested

turbo scheme when the rate is 2.0 bit/sample and interleaver length is

L=50,000.

Table IV. Performance gap (in dB) from the capacity for different code designs when

the rate is 2.0 bit/sample. A rate-1/3/4 concatenated code and a 1-D lattice

with step size ∆ = 1.0 was used.

L = 10,000 L = 50,000

TCQ/TCM TCQ/TTCM SOTCQ/TTCM TCQ/TTCM SOTCQ/TTCM

T (T ∗) - 50% 72.5% 50% 70% 50% 73 % 50% 70.5%

g(Λ) 1.36 0.99 1.12 1.07 1.15 0.99 1.12 1.07 1.15
∆SNRm 0.18 0.58 0.44 0.49 0.41 0.58 0.44 0.49 0.41
∆SNRp 3.57 0.64 0.65 0.60 0.61 0.56 0.58 0.52 0.53

∆SNR 3.75 [91] 1.22 1.09 1.09 1.02 1.14 1.02 1.01 0.94
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b. Simulation Results at 1.0 bit/sample

Fig. 40 shows the performance of our nested scheme SOTCQ/TTCM at an embedding

rate of 1.0 bit/sample. C1 is chosen as a non-systematic rate 1/2 code with generator

polynomials g0(D) = 23 and g1(D) = 10 in octal notation. Code C2 on the other

hand is a rate 2/3 systematic code with parity check polynomials h0(D) = 23, h1(D)

= 10, and h2(D) = 0. The codewords of C2 are mapped to an 8-PAM constellation.

Compared to even-odd multiplexing (T = 50%), our dimensionality balancing

procedure is able to gain more than 0.3 dB in performance. Moreover, as indicated

by Table V, at T=50%, our proposed scheme SOTCQ/TTCM performs more than 0.2

dB better than the TCQ/TTCM scheme [43, 44]. These observations indicate that

the dimensionality balancing is more effective at lower rates. A comparison of the

source coding losses in Figs. 39 and 40 reveals that the source coding loss at T=50%

is much higher in the case of 1.0 bit/sample than for 2.0 bit/sample. Therefore, the

underlying source and channel codes are inherently more unbalanced in terms of their

dimensionality at lower rates, and hence there exists a larger room for improvement.

Also note that optimal dimensionality balancing for TCQ/TTCM is achieved at a

higher value of T ∗ than with SOTCQ/TTCM, which is intuitive since the source

code in the latter scheme is of higher dimensions.
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Fig. 40. Effect of dimensionality balancing on the performance of our proposed nested

turbo scheme when the rate is 1.0 bit/sample and interleaver length is

L=50,000.

Table V. Performance gap (in dB) from the capacity for different code designs when

the rate is 1.0 bit/sample. A rate-1/2/3 concatenated code and a 1-D lattice

with step size ∆ = 1.0 was used.

L = 10,000 L = 50,000

TCQ/TCM TCQ/TTCM SOTCQ/TTCM TCQ/TTCM SOTCQ/TTCM

T (T ∗) - 50% 82.5% 50% 80% 50% 83.5% 50% 81.25%

g(Λ) 1.33 0.406 0.95 0.67 1.04 0.406 0.97 0.67 1.04
∆SNRm 0.28 1.45 0.76 1.12 0.65 1.45 0.74 1.12 0.65
∆SNRp 4.95 0.62 0.87 0.71 0.88 0.57 0.79 0.67 0.77

∆SNR 5.23 [44] 2.07 [44] 1.63 1.86 1.53 2.02 1.53 1.79 1.42
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c. Simulation Results at 0.5 bit/sample

In order to get a fractional embedding rate, we use a 2-D QAM constellation. C1 is

chosen to be Ungerboeck’s systematic rate 2/3 code for a QAM constellation, with

the feedback polynomial being h0(D) = 23 and the feedforward polynomials being

h1(D) = 4 and h2(D) = 16. In order to avoid its infinite weights, the parity check

matrix of C1 used for calculating the syndromes is pre-multiplied by h0(D). Code C2

is chosen as a rate 3/4 with h0(D) = 23, h1(D) = 4, h2(D) = 16, and h3(D) = 2.

The mapping from the codewords of C2 to the constellation is based on Ungerboeck’s

partitioning of a 16-QAM constellation [93].

Fig. 41 shows the effectiveness of the dimensionality balancing procedure at this

low rate. Compared to the even-odd multiplexing (T = 50%) we attain a performance

gain of more than 0.5 dB. Moreover, as seen from Table VI, our proposed nested turbo

scheme (SOTCQ/TTCM) outperforms TCQ/TTCM [43, 44] by more than 0.6 dB.

Thus the dimensionality balancing is clearly more effective at lower rates. Another

interesting observation from the figure is that T ∗ for both schemes is close to 100%;

hence at low rates a low level of interleaving suffices to attain large performance gains.
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Fig. 41. Effect of dimensionality balancing on the performance of our proposed nested

turbo scheme when the rate is 0.5 bit/sample and interleaver length is

L=50,000.

Table VI. Performance gap (in dB) from the capacity for different code designs when

the rate is 0.5 bit/sample. A rate-2/3/4 concatenated code and a 2-D lattice

with step size ∆ = 1.0 was used.

L = 10,000 L = 50,000

TCQ/TCM TCQ/TTCM SOTCQ/TTCM TCQ/TTCM SOTCQ/TTCM

T (T ∗) - 50% 90% 50% 82.5% 50% 92.5 % 50% 85%

g(Λ) 1.32 -0.35 0.96 0.09 0.85 -0.35 1.05 0.09 0.92
∆SNRm 0.42 3.19 1.08 2.52 1.27 3.19 0.92 2.52 1.15
∆SNRp 5.58 0.81 1.86 0.86 1.53 0.73 1.87 0.77 1.50

∆SNR 6.00 [44] 4.00 2.94 3.38 2.80 3.92 2.79 3.29 2.65
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2. Dirty-paper Code Design Based on TCQ and IRA Codes

For the Costa coding based on TCQ and IRA codes, we provide the simulation re-

sults at embedding rates of 0.25 and 0.5 bit/sample with TCQ of various memories.

For each case, we compute the granular gain via TCQ and design the IRA code to

achieve the predicted performance in Table III. The code design process is fulfilled

by matching the CND and VND EXIT charts, as discuss in Section D. The ad-

justable parameters are the constellation size, the bi-regular check node profile, and

the variable node profile.

We evaluate the code design via the BER performance at the target SNR (from

Table III), and its efficiency is confirmed when the BER is in the order of 10−5.

Then we give a detailed comparison of our TCQ/IRA scheme with the nested turbo

approach and the current code design in [47].

a. Code Designs at 0.25 bit/sample

At the embedding rate of 0.25 bit/sample, five code designs are studied given various

numbers of states in TCQ and non-systematic/systematic IRA codes.

1) Code design based on 256-state TCQ and non-systematic IRA code

The code design procedure together with the IRA profiles have been given in Section

D.1. After simulating 100 blocks of transmission, we obtain a BER of 1.50×10−5

when SNR=-2.844 dB, which is 0.984 dB away from the SNR∗ for C∗=0.25 bit/sample

embedding rate. This performance is slightly better than the predicted 0.99 dB gap

shown in Table III when the granular gain of TCQ is 1.33 dB (again the 0.34 dB

packing loss is due to practical IRA coding). The maximal number of decoding

iterations is set to be 150 and the actual number to achieve convergence is between

40 and 110.
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2) Code design based on 512-state TCQ and non-systematic IRA code

We have also designed a 512-state TCQ (with 1.36 dB granular gain) together with a

non-systematic IRA code with K = 30, 000 and N = 120, 000. 16PAM constellation

is applied. The CND profile is: degree 1: 80% and degree 3: 20%, and the VND

profile is: degree 1: 46.17%, degree 2: 38.39%, degree 10: 13.92%, and degree 140:

1.523%. After simulating 100 blocks of transmission, we obtain a BER of 1.56×10−5

when SNR=-2.9258 dB, which is 0.90 dB away from the SNR∗ at 0.25 bit/sample,

matching the predicted performance in Table III. The maximal number of decoding

iterations is set to be 150 and the actual number to achieve convergence is between

50 and 115.

3) Code design based on 1024-state TCQ and non-systematic IRA code

For this case, we set K/N = 1/4 with K = 22, 500 and N = 90, 000. The resulting

VND profile is: degree 2: 64.88%, degree 3: 24.33%, degree 13: 10.17%, and de-

gree 360: 0.627%. After simulating 100 blocks of transmission, we obtain a BER of

4.76×10−5 when SNR=-2.993 dB, which is 0.83 dB away from the capacity in (1.2) at

0.25 b/s embedding rate. This performance matches the predicted 0.49+0.34=0.83

dB gap in Table III when the granular gain of TCQ is 1.38 dB (with 0.34 dB packing

loss due to practical IRA coding). The maximal number of decoding iterations is set

to be 150 and the actual number to achieve convergence is between 44 and 105.

4) Code design based on 256-state TCQ1/256-state TCQ2 and system-

atic IRA code

In Section D.2, we reach a code design based on the systematic IRA code. Both

TCQ1 in the “parity part” and TCQ2 in the “systematic part” have 256 states. Sim-

ilar to the case with non-systematic IRA code (and 256-state TCQ), 50 blocks of

transmission are simulated at 0.25 bit/sample embedding rate. We obtain a BER of

2.08×10−5 at the same 0.984 dB gap from SNR∗. The maximal number of decoding
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iterations is again 150 and the actual number to achieve convergence is between 50

and 115.

5) Code design based on 512-state TCQ1/1024-state TCQ2 and sys-

tematic IRA code

In general, TCQ2 can be different from TCQ1 as long as they are designed such that

both satisfy the same power constraint PX . This way, they can be used interchange-

ably from a power consumption point of view. However, the difference between them

lies in their granular gain. Since the decoding complexity for TCQ2 is lower than

that for TCQ1, within the same complexity limit, the potential offered by two TCQs

in achieving higher granular gains than a single TCQ can (with non-systematic IRA

codes) is our main impetus for studying code designs based on systematic IRA codes.

We have constructed a systematic IRA code (K = 30, 000 and N = 90, 000) together

with a 512-state TCQ1 (with 1.36 dB granular gain) and a 1024-state TCQ2 (with

1.38 dB granular gain) for an overall granular gain of 1.3662dB in source coding,

which leads to a 0.55 dB modulo loss. Together with the assumed 0.34 dB packing

loss, the estimated overall gap to capacity will be 0.89 dB. We reach an IRA design

with the CND profile as: degree 1: 73.33% and degree 4: 26.67%, and the VND

profile as: degree 1: 57.24%, degree 2: 31.23%, degree 10: 9.98%, and degree 150:

1.55%. After simulating 20 blocks of transmission, we obtain a BER of 5×10−5 when

SNR=-2.945 dB, which is 0.883 dB away from the SNR∗ at 0.25 bit/sample. The

maximal number of decoding iterations is set to be 150 and the actual number to

achieve convergence is between 40 and 100.

For clear comparisons, we summarize the above code designs in Table VII and

see that all of them can work well at the predicted performances based on (4.2) and

(4.3).
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Table VII. Performance gap (in dB) from the capacity for dirty-paper code designs

based on TCQ and (non-systematic and systematic) IRA codes at 0.25

bit/sample

# of states in TCQ(s) Predicted ∆SNR Simulated ∆SNR

Non-sys. 256-state TCQ 0.99 0.98
IRA 512-state TCQ 0.90 0.90
design 1024-state TCQ 0.83 0.83

Sys. IRA 256-state TCQ1/256-state TCQ2 0.99 0.98
design 512-state TCQ1/1024-state TCQ2 0.89 0.88

b. Code Design at 0.5 bit/sample and Comparisons with Nested Turbo Approach

To compare to the nested turbo code construction, we provide a code design based on

256-state TCQ and non-systematic IRA code at the embedding rate of 0.5 bit/sample.

Given the 1.33dB granular gain, we evaluate the modulo loss ∆SNRm = 0.40dB based

on (4.2). For the channel code, rate-1/2 IRA code is required, and thus a larger

packing loss can be expected. We assume ∆SNRm = 0.40dB and design the IRA code

at SNR=0.80dB (At 0.5 bit/sample, the SNR to achieve the capacity limit is 0dB).

Following the procedure described in Section D.1, we select 8-PAM constellation and

determine the bi-regular CND profile: degree 1: 10%, degree 3 90%, and the VND

profile: degree 2: 31.33%, degree 3: 59.45%, degree 28: 9%, degree 300: 0.223%.

We constructed a rate-1/2 non-systematic IRA code with K = 60, 000, N =

120, 000 and simulated the system at SNR=0.81dB. After 100 blocks of transmission,

the BER is as low as 4.5× 10−6 with 75-180 iterations.

Fig. 42 gives an explicit comparison between the scheme based on TCQ and

IRA codes and the nested turbo code construction. The former works better in both

source coding and channel coding, and thus outperforms the latter by 1.84dB!

Besides the employed powerful source and channel codes, our TCQ/IRA design
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exhibits no coupling between source coding and channel coding. While in the nested

approach of Fig. 30, a strong coupling exists since the TTCM channel code is part of

the whole SOTCQ source coding. Hence, any gain in the performance of the source

code results in a loss in the performance of the channel code and vice versa. This

inherent source-channel coding performance tradeoff, as demonstrated in Figs. 39-41,

is the main weakness responsible for the sub-par performance of our nested turbo

code design at low rates.

On the other hand, for high embedding rates, it is still not clear how the

TCQ/IRA design and other constructions geared towards low rates [47, 48] would

operate and what would be the performance. Thus our proposed two practical Costa

code designs are complementary to each other and offer the best performance so far

in the whole embedding rate region (from low rates to high rates).
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c. Comparisons with ten Brink and Erez’s Scheme

A clear performance comparison between our TCQ/IRA design with ten Brink and

Erez’s scheme [47] is shown in Fig. 43. We assume a 256-state TCQ in our design

and a memory-8 VQ in [47]. The achieved granular gains are 1.33dB and 1.28dB,

respectively, and thus the modulo losses ∆SNRm can be computed by (4.2) as 0.65dB

and 0.81dB at 0.25 bit/sample. By assuming the same packing loss ∆SNRp = 0.34dB,

the performance gain over ten Brink and Erez’s scheme should be 0.16dB, which has

been confirmed by our simulation results in Fig. 43. Note that larger gain can be

expected at lower embedding rates.

We then compare the two schemes in their complexities. Because the main com-

putational complexity of our dirty-paper codes lies in BCJR decoding, we provide a

quantitative complexity comparison in terms of the number of loop operations needed

for each BCJR decoding iteration.

For the design in [47], K = 60, 000 and N = 360, 000. The ACC takes three-

bit inputs with systematic doping applied to the second and third bits, so the ef-

fective block length of TCQ is N/3 = 120, 000. The number of input bits in the

trellis is 1(VQ)+3(ACC)=4. Thus the number of loop operations is 2(8+1)(# of

states)×24(input bits)×120,000(length)=512 × 4 × 480, 000 per BCJR decoding it-

eration.

In our design based on non-systematic IRA code and 256-state TCQ, K =

60, 000, N = 240, 000, the number of input bits is 1(TCQ)+1(ACC)=2. The BCJR

decoder thus needs to run 2(8+1) × 22 × 240, 000 = 512 × 4 × 240, 000 loop opera-

tions per iteration. This design is thus only half as complex as that in [47]. We see

that, although systematic (or unsigned bit) doping in [47] reduces the effective block

length of TCQ, it exponentially increases the complexity of the BCJR decoder due
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to increased number of input bits to the ACC. Furthermore, when it is coupled with

VQ in [47], as manifested by the non-Gaussian pdf of the quantization error in Fig.

44(a), the source coding performance is degraded. In contrast, the pdf in Fig. 44(b)

of the quantization error with 256-state TCQ in our code design without systematic

doping is very close to be Gaussian. This explains why our design performs better (at

lower complexity).

In our design based on systematic IRA code and 256-state TCQs, K = 60, 000

and N = 180, 000, the number of input bits is 1(TCQ2)+1(systematic bit)=2 for the

“systematic part” and 1(TCQ1)+1(ACC)=2 for the “parity part”. In the “systematic

part”, the total number of loop operations is 28 × 22 × 60, 000 = 256 × 4 × 60, 000.

In the “parity part”, the number is 2(8+1) × 22 × 180, 000 = 512× 4× 180, 000. The

combined number of loop operations is thus 512× 4× 210, 000 per iteration, which is

7
8
of the complexity of our design based on non-systematic IRA code.

Finally, the total number of loop operations in our code designs using 512-state

TCQ and non-systematic IRA code (with K = 30, 000 and N = 120, 000) and using

512-state TCQ1, 1024-state TCQ2 and systematic IRA code (with K = 30, 000 and

N = 90, 000) is the same at 512× 4× 240, 000 per BCJR decoding iteration.
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F. Conclusions and Future Work

We have addressed the hard problem of practical dirty-paper code designs and pro-

posed two approaches based on the philosophy of source-channel coding.

Compared with the TCQ/TTCM scheme of [43, 44], where TCQ is weakened by

the employment of TTCM, our nested SOTCQ/TTCM scheme improves the interac-

tion between the source code and the channel code. This is achieved by improving

source coding using SOTCQ and via a novel dimensionality balancing procedure that

optimizes the percentage of samples between parallel branches in our nested turbo

code design. The effectiveness of our SOTCQ/TTCM scheme and the dimension-

ality balancing procedure is confirmed by simulations. Compared to the even odd

multiplexing of [43, 44], the dimensionality balancing approach promises significant

performance gains especially at low to moderate embedding rates. The underlying

nested TCQ/TTCM and SOTCQ/TTCM scheme, however, are not suitable for low

embedding rates.

At low embedding rates, the combined source-channel coding approach we take

enables us to seamless combine TCQ and IRA codes in the best performing dirty-

paper code and see a separate modulo loss due to source coding and the packing

loss due to channel coding. Compared to the nested coding approach in [47] that

necessitates systematic doping and tailor-designed generator polynomials for shaping

codes, our source-channel coding philosophy is much simpler with standard TCQ

[35] and no systematic doping, leading to better performance at lower complexity.

Compared to the superposition coding approach in [48], our main contributions are

the explicit and better code designs with performance matching those predicted in

Table III.

Our nested turbo scheme provides the best performs so far at medium-to-high
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rates (e.g., ≥ 1.0 bit/sample), while our TCQ/IRA approach works the best at the

low rate regime (e.g., < 1.0 bit/sample). Thus our two practical Costa code designs

are complementary to each other.

Now we are trying to improve our approach based on TCQ and IRA codes (see

Table III) with TCQ of higher memories at 0.25 bit/sample, while addressing applica-

tions of dirty-paper coding in data hiding, coding for broadcast channels, precoding for

interference channels, and transmitter cooperation in wireless networks. We note that

several Costa code designs have recently been applied to data-hiding/watermarking

[95, 45, 96, 97, 98] and digital broadcasting [99]. Exploring the proposed code designs

for these applications is our next step. One preliminary work on image data hiding

is reported in [100] and some promising results have been presented.
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CHAPTER V

CONCLUSIONS

The two basic components of information theory, source coding and channel coding,

have been investigated separately since the birth of Shannon’s information separation

theorem [1, 2]. In these years, the research on their combination, i.e., source-channel

coding, has attracted great interests. One direction is inspired by the invalidation

of the separation theorem in practical scenario without assuming infinite codeword

lengths. In this case, JSCC is required to tradeoff source and channel coding for better

performance over separate coding. On the other hand, for some hottest problems,

e.g., coding with side information [101, 102, 31, 30], their nature characterized by

source-channel coding has been discovered [33], which will indicate a source-channel

coding approach for their practical code designs.

The above discussions motivate the two problems studied in this dissertation: 1)

wireless image transmission and 2) dirty-paper code design.

In the first part of the dissertation, we consider a progressive image transmission

system over wireless channels by combining JSCC, STC and OFDM. To simplify the

analysis, we assume coherent detection with perfect CSI at the receivers. Its BER

performance is evaluated theoretically based on a newly built broadband MIMO fad-

ing model, which involves both time-domain fading correlation due to Doppler shift

and spatial-domain fading correlation among different receive antennas induced by

those environmental parameters. Then for a given average SNR (hence BER), a

fast local search algorithm is applied to optimize UEP in JSCC, subjected to fixed

total transmitted energy for various constellation sizes. This design allows the mea-

surement of the expected reconstructed image quality. With this end-to-end system
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performance evaluation, an adaptive modulation scheme is proposed to pick the con-

stellation size that offers the best reconstructed image quality for each average SNR.

Simulation results of practical image transmissions confirm the effectiveness of our

proposed adaptive modulation scheme.

A more practical scenario is also considered without the assumption of perfect

CSI. We employ low-complexity decision-feedback decoding for differentially space-

time coded OFDM systems to exploit the transmit diversity. For JSCC, we adopt a

product channel code structure that is proven to provide powerful error protection

and good bursty error robustness. A fast product code optimization algorithm is

applied in the JSCC/UEP design. Compared to another non-coherent detection al-

gorithm, i.e., the iterative receiver based on expectation-maximization algorithm for

the space-time coded OFDM systems, differentially space-time coded OFDM systems

suffer some quality loss in reconstructed images. With the efficiency and simplicity

of decision-feedback differential decoding, differentially space-time coded OFDM is

thus a feasible modulation scheme for practical applications such as wireless image

over mobile devices (e.g., cell phones). Motivated by the employment of more pow-

erful channel codes for further performance improvement, we apply iterative (turbo)

decoding techniques developed for serially concatenated coding systems to improve

the performance in successive decoding iterations. We also treat the product code

structure as one means of MD coding realized by embedded image coding plus UEP.

That is, we propose the iterative decoding of differentially space-time coded MDs of

Images by using MD coding as the outer constituent code and a differential space-

time code as the inner constituent code. Experimental results show that our iterative

scheme can effectively improve the system performance. Furthermore, most of the

gain in PSNR is achieved with only one iteration in the low SNR range, e.g., 0-20 dB.
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The second part of the dissertation deals with practical code designs for dirty-

paper coding, the Gaussian case of Gelfand-Pinsker coding or coding with side in-

formation at the encoder. We first invoke an information-theoretical interpretation

of algebraic binning and point out that the total performance loss (in SNR) can be

broken into the sum of the packing loss from channel coding and a modulo loss, which

depends on the granular loss from source coding and the target dirty-paper coding

rate (or SNR). These observations motivate we the code design guidelines in terms of

source-channel coding: one needs powerful source codes to achieve almost all the 1.53

dB granular gain and near-capacity channel codes to realize as much packing gain as

possible.

Following these guidelines based on source-channel coding, two dirty-paper code

designs have been proposed to target at different embedding rate regions.

We first address practical code design based on nested lattice codes and pro-

pose a nested turbo construction using SOTCQ for source coding and TTCM for

channel coding. A novel procedure is devised to balance the dimensionalities of the

equivalent lattice codes corresponding to SOTCQ and TTCM. Our code construction

significantly outperforms existing TCQ/TCM and TCQ/TTCM designs and exhibits

a gap of 0.94, 1.42 and 2.65 dB to the Costa capacity at 2.0, 1.0, and 0.5 bit/sample,

respectively. Despite the effectiveness of our dimensionality balancing procedure, the

gap to capacity at the embedding rate of 0.5 bit/sample remains at 2.65 dB, which

shows its non-efficiency at low rates. This is because a strong coupling between the

source and channel codes exists in our nested design, where the TTCM channel code

is part of the whole SOTCQ source coding. Hence, any gain in the performance

of the source code results in a loss in the performance of the channel code and vice

versa. This inherent source-channel coding performance tradeoff is the main weakness

responsible for the sub-par performance of our nested turbo approach at low rates.
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We then examine practical designs by combining TCQ with both systematic and

non-systematic IRA codes. Like previous approaches, we exploit the EXIT chart

technique for capacity-approaching IRA channel code design; but unlike previous

approaches, we emphasize the role of strong source coding and endeavor to achieve

as much granular gain as possible by using TCQ. More importantly, our novel code

designs enable TCQ and IRA codes to work as well in a combined source-channel

coding setup as they do individually. At 0.25 bit/sample, our design using 1024-state

TCQ and IRA codes performs 0.83 dB away from the capacity, which is the best

performance so far. We are thus approaching the theoretical limit of dirty-paper

coding. Moreover, when compared to the recent scheme in [47], our design operates

at only half complexity.

Our TCQ/IRA approach targets at low rates (e.g., <1.0 bit/sample), while our

nested SOTCQ/TTCM scheme provides the best performs so far at medium-to-high

rates (e.g., ≥ 1.0 bit/sample). Thus our two proposed practical dirty-paper code

designs are complementary to each other.
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[33] Z. Xiong, V. Stanković, S. Cheng, A. Liveris, and Y. Sun, “Source-channel coding

for algebraic multiterminal binning,” Proc. ITW’04, San Antonio, TX, Oct. 2004.



130

[34] R. Zamir, S. Shamai, and U. Erez, “Nested linear/lattice codes for structured

multiterminal binning,” IEEE Trans. Inform. Theory, vol. 48, pp. 1250-1276,

June 2002.

[35] M. W. Marcellin and T. R. Fischer, “Trellis-coded quantization of memoryless

and Gauss-Markov sources,” IEEE Trans. Communications, vol. 38, pp. 82-93,

January 1990.

[36] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding:

turbo-codes,” IEEE Trans. Communications, vol. 44, pp. 1261-1271, October

1996.

[37] R. Gallager, Low Density Parity Check Codes, Cambridge: MIT Press, 1963.

[38] D. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE

Trans. Inform. Theory, vol. 45, pp. 399-431, March 1999.

[39] I. Cox, M. Miller, and A. McKellips, “Watermarking as communications with

side information,” Proc. of the IEEE, vol. 87, pp. 1127-1141, July 1999.

[40] U. Erez, S. Shamai, and R. Zamir, “Capacity and lattice-strategies for can-

celling known interferences,” IEEE Trans. Inform. Theory, vol. 51, pp. 3820-

3833, November 2005.

[41] G. Caire and S. Shamai, “On the achievable throughput of a multi-antenna

Gaussian broadcast channel,” IEEE Trans. Inform. Theory, vol. 49, pp. 1691-

1706, July 2003.

[42] H. Weingarten, U. Steinberg, and S. Shamai, “The capacity region of the Gaus-

sian MIMO broadcast channel,” Proc. ISIT’04, pp. 174, Chicago, IL, June 2004.



131

[43] J. Chou, S. Pradhan, and K. Ramchandran, “Turbo coded trellis-based con-

structions for data embedding: channel coding with side information ,” Proc. of

Asilomar Conf. Signals, Systems and Computers, vol. 1, pp. 305-309, November

2001.

[44] J. Chou, Channel Coding with Side Information: Theory, Practice and Appli-

cations, Ph.D. dissertation, University of California at Berkeley, Berkeley, CA,

2002.
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APPENDIX A

PERFORMANCE ANALYSIS OF STC-OFDM-BASED MIMO SYSTEM WITH

SPATIAL FADING CORRELATION

Consider the cost function in (2.15), we have

X̂ = argmin
X
‖Y−XH‖2

= argmin
X

NR−1∑

j=0

K−1∑

n=0

{∣∣Yj(0, n)−
(
Hn

0,jX0[n] +Hn
1,jX1[n]

)∣∣2

+
∣∣Yj(1, n)−

(
Hn

0,j(−X∗
1 [n]) +Hn

1,jX
∗
0 [n]

)∣∣2
}

=
K−1∑

n=0

arg min
{Xi[n],i=0,1}

NR−1∑

j=0

{∣∣Yj(0, n)−
(
Hn

0,jX0[n] +Hn
1,jX1[n]

)∣∣2

+
∣∣Yj(1, n)−

(
Hn

0,j(−X∗
1 [n]) +Hn

1,jX
∗
0 [n]

)∣∣2
}

︸ ︷︷ ︸
µ(Xi[n],i=0,1)

, (A.1)

where Hn
i,j denotes the frequency-domain fading coefficient of the n-th sub-carrier

associated with the i-th transmit antenna and the j-th receive antenna.

From (A.1), we see that the estimation can be decoupled into K independent

minimization problems, which results in the significant reduction in computing com-

plexity.

Then we study the metric µ(Xi[n], i = 0, 1) in (A.1). After some algebra, we

obtain

µ(Xi[n], i = 0, 1) = µ0(X0[n]) + µ1(X1[n])−
NR−1∑

j=0

{
|Yj(0, n)|2 + |Yj(1, n)|2

}
,
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where

µ0(X0[n]) =

NR−1∑

j=0

{∣∣Yj(0, n)−Hn
0,jX0[n]

∣∣2 +
∣∣Y ∗

j (1, n)−Hn∗
1,jX0[n]

∣∣2
}

µ1(X1[n]) =

NR−1∑

j=0

{∣∣Y ∗
j (1, n) +Hn∗

0,jX1[n]
∣∣2 +

∣∣Yj(0, n)−Hn
1,jX1[n]

∣∣2
}

Note that the last term is independent of the detection so that the metric is

divided into two parts as µ0(X0[n]) and µ1(X1[n]). That is, we can detect X0[n] and

X1[n] separately.

Furthermore, µ0(X0[n]) and µ1(X1[n]) are actually maximal ratio combining

(MRC) metrics with combined symbols as

υ0[n] =

NR−1∑

j=0

{
Hn∗

0,jYj(0, n) +Hn
1,jY

∗
j (1, n)

}

=

NR−1∑

j=0

{(∣∣Hn
0,j

∣∣2 +
∣∣Hn

1,j

∣∣2
)
X0[n] +Hn∗

0,jZ0,j [n] +Hn
1,jZ

∗
1,j [n]

}
;

υ1[n] =

NR−1∑

j=0

{
Hn∗

1,jYj(0, n)−Hn
0,jY

∗
j (1, n)

}

=

NR−1∑

j=0

{(∣∣Hn
0,j

∣∣2 +
∣∣Hn

1,j

∣∣2
)
X1[n]−H0,jZ

∗
1,j [n] +Hn∗

1,jZ0,j [n]
}
,

where Zi,j [n], i, j = 0, 1, is the AWGN at the n-th sub-carrier associated with the i-th

transmit antenna and the j-th receive antenna.

For each metric, it combines 2NR = 4 diversity branches and the instantaneous

SNR is γs =
∑NR−1

j=0 {|Hn
0,j|2+|Hn

1,j|2}/(2σ2z). Based on (2.11), the correlation between

any pair of Hn
i,j, i, j = 0, 1 is obtained as

E{Hn
i,jH

n∗
i′,j′} =





0, for i 6= i′

∑L−1
l=0 σ

2
l , for i = i′; j = j ′

∑L−1
l=0 σ

2
l ρl(∆, θ̄l, σθl), for i = i′; j 6= j ′
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After some algebra, we can compute the pdf of γs as

pγs(x) =
1

4ρ3(γ̄c)2
{(
ρx+ γ̄c(1− ρ2)

)
e−x/(γ̄c(1−ρ)) +

(
ρx− γ̄c(1− ρ2)

)
e−x/(γ̄c(1+ρ))

}
,

where ρ =
∣∣∣
∑L−1

l=0 σ2l ρl(∆,θ̄l,σθl )∑L−1
l=0 σ2

l

∣∣∣, and γ̄c is the average SNR of each branch, which can be

shown to be half of the average SNR of the MIMO system (denoted by γ̄s) with two

transmit antennas. If we also consider the penalty on SNR by inserting G ≥ L − 1

guard intervals in the OFDM system, we have γ̄c =
K

K+G
· γ̄s

2
.

Then the average BER of the MIMO system is given by

Pb =

∫ ∞

0

Pb(x)pγs(x)dx, (A.2)

where Pb(x) is the BER performance over AWGN channel with SNR x. For M -PSK

modulation, Pb(x) is computed by

Pb(x) ∼=
Nm

log2M
Q

(√
2x sin2

π

M

)
with Nm =





1, M = 2

2, M > 2
. (A.3)

Note that (A.3) is an exact close-form expression of BER for BPSK and QPSK. When

M > 4, it is also a good approximation if Gray mapping is applied.

By substituting (A.3) into (A.2), we obtain the average BER as

Pb ∼= Nm

log2M
· 1

16ρ3

{
8ρ3 + f(1 + ρ)(2− ρ− 8ρ2 − 5ρ3) + f(1− ρ)(−2− ρ+ 8ρ2 − 5ρ3)

+ f3(1 + ρ)(ρ+ 2ρ2 + ρ3) + f3(1− ρ)(ρ− 2ρ2 + ρ3)
}

with Nm =





1, M = 2

2, M > 2
, f(ξ) =

√
K

K+G
· γ̄s
2
sin2 π

M
·ξ

K
K+G

· γ̄s
2
sin2 π

M
·ξ+1

.



141

APPENDIX B

PERFORMANCE ANALYSIS OF STC-OFDM-BASED MIMO SYSTEM WITH

TIME VARIANCE

Model (2.14) is only built upon frequency-domain symbols. To study the effect

of time variance in OFDM systems, we need to examine the data transform and

transmission in both time domain and frequency domain.

We still consider the STC-OFDM-based MIMO system with K sub-carriers,

NT = 2 transmit antennas and NR = 2 receive antennas, signalling through an L-tap

frequency-selective fading channel. Let {Xi[n]}K−1
n=0 , i = 0, 1, denote the frequency-

domain transmitted symbol sequence from the i-th transmit antenna. These two

sequences go through an STC encoder and then IFFT blocks to obtain the four time-

domain transmitted sequences as

x0[0, q] =
1√
K

K−1∑

n=0

X0[n]e
j 2πqn

K ; x1[0, q] =
1√
K

K−1∑

n=0

X1[n]e
j 2πqn

K ;

x0[1, q] =
1√
K

K−1∑

n=0

(−X∗
1 [n])e

j 2πqn
K ; x1[1, q] =

1√
K

K−1∑

n=0

X∗
0 [n]e

j 2πqn
K , (B.1)

where {xi[p, q]}K−1
q=0 , i = 0, 1; p = 0, 1, is the time-domain symbol sequence trans-

mitted through the i-th antenna during the p-th OFDM slot in one STC-OFDM

codeword.

To mitigate the effect of inter-symbol interference (ISI), we insert guard intervals

by adding a cyclic suffix to each transmitted sequence. Then the transmitted sequence

with guard interval is xgi [p, q] = xi[p, q mod K], i = 0, 1; p = 0, 1; q = 0, 1, . . . , K +

G− 1, where G is the length of guard interval and it must satisfy G ≥ L− 1.
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At the j-th receiver, the received time-domain sequences during the two consec-

utive OFDM slots are given respectively by

ygj (0, q) =
L−1∑

l=0

hl0,j [0, q]x
g
0[0, q − l] +

L−1∑

l=0

hl1,j[0, q]x
g
1[0, q − l] + zj[0, q];

ygj (1, q) =
L−1∑

l=0

hl0,j [1, q]x
g
0[1, q − l] +

L−1∑

l=0

hl1,j[1, q]x
g
1[1, q − l] + zj[1, n],

q = 0, 1, . . . , K +G− 1; j = 0, 1, (B.2)

where ygj (p, q) is the time-domain received symbol in the q-th time slot during the

p-th OFDM slot at the j-th receive antenna; zj[p, n] is the AWGN with variance

σ2z ; h
l
i,j[p, q] is the time-domain fading coefficient of the l-th tap at the q-th time

slot in the p-th OFDM slot associated with the i-th transmit antenna and the j-th

receive antenna. Each fading coefficient is independent of other taps and has the same

normalized correlation function with average power σ2
l , l = 0, 1, . . . , L − 1. Since we

transmit the symbol sequences during two consecutive OFDM slots, hi,j [p, n, l] can

be denoted by hi,j[k, l] with k = p(K +G) + n, p = 0, 1, the fading coefficient of the

l-th tap at the (p(K+G)+n)-th time slot in one STC-OFDM codeword. We assume

Jakes’ fading channel model [66] with correlation function as (2.2).

When a symbol sequence is received, the first G symbols in the sequence are

assumed to be corrupted by ISI from the previous sequence. We remove the ISI

by replacing these symbols with the cyclic suffix, i.e., yj(p, q) = ygj (p,G + (q −

G) mod K), p = 0, 1; q = 0, 1, . . . , K − 1.
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By performing FFT to these symbol sequences, we obtain the frequency-domain

received sequences as

Yj(0, n) =
1√
K

K+G−1∑

q=G

{
L−1∑

l=0

hl0,j [0, q]x0[0, q − l]

+
L−1∑

l=0

hl1,j [0, q]x1[0, q − l] + zj[0, q]

}
e−j

2πnq
K ;

Yj(1, n) =
1√
K

K+G−1∑

q=G

{
L−1∑

l=0

hl0,j [1, q]x0[1, q − l]

+
L−1∑

l=0

hl1,j [1, q]x1[1, q − l] + zj[1, q]

}
e−j

2πnq
K ,

n = 0, 1, . . . , K − 1; j = 0, 1. (B.3)

Now we substitute (B.1) into (B.3) to carry on the derivation.

Yj(0, n) = X0[n]

{
1

K

K+G−1∑

q=G

Hn
0,j [0, q]

}
+X1[n]

{
1

K

K+G−1∑

q=G

Hn
1,j[0, q]

}

+
1∑

p=0

K−1∑

m=0,m6=n
Xp[m]

{
1

K

K+G−1∑

q=G

Hm
p,j[0, q]e

−j 2π(n−m)q
K

}

︸ ︷︷ ︸
ωj [0,n]

+
1√
K

K−1∑

q=0

zj[0, q]e
−j 2πnq

K ;

Yj(1, n) = (−X∗
1 [n])

{
1

K

K+G−1∑

q=G

Hn
0,j [1, q]

}
+X∗

0 [n]

{
1

K

K+G−1∑

q=G

Hn
1,j[1, q]

}

+
1∑

p=0

K−1∑

m=0,m6=n
(−1)(1−p)X∗

1−p[m]

{
1

K

K+G−1∑

q=G

Hm
p,j[1, q]e

−j 2π(n−m)q
K

}

︸ ︷︷ ︸
ωj [1,n]

+
1√
K

K−1∑

q=0

zj[1, q]e
−j 2πnq

K , n = 0, 1, . . . , K − 1; j = 0, 1, (B.4)

where Hm
i,j[p, q] =

∑L−1
l=0 h

l
i,j [p, q]e

−j 2πlm
K is the frequency-domain fading coefficient as-
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sociated with the m-th sub-carrier; ωj[0, n] and ωj[1, n] are inter-channel interferences

(ICI) from other sub-carriers due to a loss of sub-carrier orthogonality.

In model (2.14), the ICIs are ignored. And constant fading channels within an

STC-OFDM codeword are also assumed. However, this assumption does not hold in

(B.4) since the practical channels are time-varying. One straightforward solution is

to take the mean of all fading coefficients during one STC-OFDM codeword as a new

common fading coefficient, i.e.,

Yj(0, n) = X0[n]H̄
n
0,j +X1[n]H̄

n
1,j︸ ︷︷ ︸

βj [0,n]

+ωj[0, n] +X0[n]H̃
n
0,j +X1[n]H̃

n
1,j︸ ︷︷ ︸

νj [0,n]

+
1√
K

K−1∑

q=0

zj[0, q]e
−j 2πnq

K

︸ ︷︷ ︸
Zj [0,n]

;

Yj[1, n] = (−X∗
1 [n]H̄

n
0,j +X∗

0 [n]H̄
n
1,j︸ ︷︷ ︸

βj [1,n]

+ωj[1, n] +X∗
1 [n]H̃

n
0,j −X∗

0 [n]H̃
n
1,j︸ ︷︷ ︸

νj [1,n]

+
1√
K

K−1∑

q=0

zj[1, q]e
−j 2πnq

K

︸ ︷︷ ︸
Zj [1,n]

,

n = 0, 1, . . . , K − 1; j = 0, 1, (B.5)

where H̄n
i,j = 1

K

∑K+G−1
q=G

Hn
i,j [0,q]+H

n
i,j [1,q]

2
is the constant fading coefficient within one

STC-OFDM symbol associated with the n-th sub-carrier between the i-th transmit

antenna and the j-th receive antenna; and H̃n
i,j = 1

K

∑K+G−1
q=G

Hn
i,j [0,q]−Hn

i,j [1,q]

2
is the

remainder after compensating the modelling mismatch from the time-varying fading

channels.

In this way each received symbol is divided into four parts. Specifically, βj[p, n] is

the combined transmitted symbol; ωj[p, n] is the ICI from other sub-carriers; νj[p, n]

is the interference within the n-th sub-carrier caused by modelling mismatch. To
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distinguish this interference with the ICI above, we call it intra-channel interference

(IACI); Zj[p, n] is the AWGN in frequency domain.

Since E {Xi[n]X
∗
i′ [n

′]} = 1
2
δii′δnn′ , we show that βj[p, n], ωj[p, n], νj[p, n] and

Zj[p, n] are independent complex Gaussian random variables with their own variances

as

E
{
βj[p, n]β

∗
j [p, n]

}
=

∑L−1
l=0 σ

2
l

K2

K−1∑

m=0

K−1∑

m′=0

{
J0(2πfD(m−m′)T )

+ J0(2πfD(m−m′ +K +G)T )
}
;

E
{
ωj[p, n]ω

∗
j [p, n]

}
=

2
∑L−1

l=0 σ
2
l

K2

{
(K − 1)K − 2

K−1∑

m=1

(K −m)J0(2πfDmT )
}
;

E
{
νj[p, n]ν

∗
j [p, n]

}
=

∑L−1
l=0 σ

2
l

K2

K−1∑

m=0

K−1∑

m′=0

{
J0(2πfD(m−m′)T )

− J0(2πfD(m−m′ +K +G)T )
}
;

E
{
Zj[p, n]Z

∗
j [p, n]

}
= 2σ2z .

By regarding both ICI and IACI as additive Gaussian noise terms, we can also

compute the BER performance by (2.16), but with a new function f(ξ) as

f(ξ) =

√√√√
K

K+G ·
γ̄TVs
2 sin2 π

M · ξ
K

K+G ·
γ̄TVs
2 sin2 π

M · ξ + 1
,

with γ̄TVs =
E
{
βj [p, n]β

∗
j [p, n]

}

E
{
ωj [p, n]ω∗

j [p, n]
}
+ E

{
νj [p, n]ν∗j [p, n]

}
+ E

{
Zj [p, n]Z∗

j [p, n]
}

=
γ̄s · ψ(fD, T,K,G)

γ̄s (1− ψ(fD, T,K,G)) + 1
,

ψ(fD, T,K,G) =
1

2K2

K−1∑

m=0

K−1∑

m′=0

{
J0(2πfD(m−m′)T ) + J0(2πfD(m−m′ +K +G)T )

}
.

where γ̄s is the average SNR of the MIMO system; The factor K
K+G

is the penalty on

SNR by inserting guard intervals.
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