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ABSTRACT 
 

The G1 Cyclin Cln3p Regulates Vacuole Homeostasis through Phosphorylation of a 

Scaffold Protein, Bem1p, in Saccharomyces cerevisiae. (December 2005) 

Bong Kwan Han, B.S., Seoul National University; 

M.S., Korea Advanced Institute of Science and Technology 

Chair of Advisory Committee: Dr. Michael Polymenis 

 
 

How proliferating cells maintain the copy number and overall size of their organelles is 

not clear. In the budding yeast Saccharomyces cerevisiae the G1 cyclins Cln1,2,3p 

control initiation of cell division by regulating the activity of the cyclin-dependent 

kinase (Cdk) Cdc28p. We show that Cln3p controls vacuolar (lysosomal) biogenesis and 

segregation. First, loss of Cln3p, but not Cln1p or Cln2p, resulted in vacuolar 

fragmentation. Although the vacuoles of cln3Δ cells were fragmented, together they 

occupied a large space, which accounted for a significant fraction of the overall cell size 

increase in cln3Δ cells. Second, cytosol prepared from cells lacking Cln3p had reduced 

vacuolar homotypic fusion activity in cell-free assays. Third, vacuolar segregation was 

perturbed in cln3Δ cells. Our findings reveal a novel role for a eukaryotic G1 cyclin in 

cytoplasmic organelle biogenesis and segregation. 

Furthermore we show that the scaffold protein Bem1p, a critical regulator of 

Cdc42p activity, is a downstream effector of Cln3p/Cdc28p complex. The Cdc42p 

GTPase is known to be required for vacuole fusion. Our results suggest that Ser72 on 

Bem1p is phosphorylated by Cdc28p in a Cln3p-dependent manner to promote vacuole 
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fusion. Replacing Ser72 with Asp, to mimic phosphorylation at an optimal Cdk-

consensus site located in the first SH3 domain of Bem1p, suppressed vacuolar 

fragmentation in cells lacking Cln3p. Using in vivo and in vitro assays, we found that 

Cln3p was unable to promote vacuole fusion in the absence of Bem1p or in the presence 

of a non-phosphorylatable Bem1p-Ser72Ala mutant. Furthermore, activation of Cdc42p 

also suppressed vacuolar fragmentation in the absence of Cln3p. Our results provide a 

mechanism that links cyclin-dependent kinase activity with vacuole fusion through 

Bem1p and the Cdc42p GTPase cycle. 
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CHAPTER I 

INTRODUCTION 

 

The cell cycle 

 
The mitotic cell cycle of eukaryotic cells is divided into four distinct phases; G1, S, G2 

and M phase. S phase is a period when DNA is replicated. M phase is when the 

duplicated chromosomes are divided into two daughter cells. G1 and G2 are gap phases 

between the S and M phases. 

Yeast cells have played crucial roles in unraveling molecular mechanisms of the 

cell cycle. The foundation for the molecular understanding of the cell cycle occurred in 

the early 1970’s, when Lee Hartwell and his colleagues screened for mutants of genes 

regulating the cell cycle in Saccharomyces cerevisiae, which they baptized cdc (cell-

division cycle) mutants (Pringle and Hartwell, 1981). Paul Nurse and his colleagues 

collected cdc mutants of Schizosaccharomyces pombe by a similar approach to 

Hartwell’s (Nurse, 2002). These collections of cdc mutants have been invaluable 

resources for the cloning and characterization of each CDC gene and the molecular 

understanding of the cell cycle. Another breakthrough was the discovery by Tim Hunt 

and his colleagues of a protein, cyclin, which was observed to oscillate during cell cycle 

progression. This temporal oscillation of cyclins is crucial for driving the cell cycle 

(Nasmyth, 1996; Wittenberg et al., 1990). 

 

This dissertation follows the style and format of Cell. 
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A key regulator in the yeast cell cycle is a cyclin-dependent kinase (CDK) 

encoded by CDC28 in Saccharomyces cerevisiae and cdc2 in Schizosaccharomyces 

pombe. Cyclins are primary regulators of the activity and probably the specificity of 

CDKs. Protein phosphorylation by the multiple cyclin-CDK complexes leads to events 

required at various cell cycle stages. 

 

Cell size and G1 regulation 

 
Cell size has been an important phenotype exploited in unraveling molecular 

mechanisms of the cell cycle. The reason was that the relative rate of progression 

through the cell cycle could be reflected through this easily measurable parameter. If the 

cell cycle progresses faster relative to cell growth, the cell will have a smaller size and 

vice versa. Therefore, measurement of size of cells with variant genotypes or 

environments would give important information on cell cycle progression in the 

corresponding condition. In fact, for a given condition, cell size remains unchanged after 

successive cell proliferations. Therefore, it was assumed that a mechanism existed 

whereby cell growth was coordinated with the cell cycle. Observations from earlier days 

showed that most eukaryotic cells spend a majority of time in G1 phase during the 

mitotic cell cycle and continue to grow until a commitment point for the initiation of 

DNA replication, which was named as “restriction point” for mammalian cells by Arthur 

Pardee (Pardee, 1974) and “Start” for Saccharomyces cerevisiae by Lee Hartwell 

(Hartwell and Unger, 1977). 
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A generally accepted model for cell size control states that the control of cell 

growth is performed at the point of the G1 to S transition. Understanding how cells 

decide to enter S phase has been one of the primary goals in the cell cycle field, 

especially because this research pertains to the better understanding of cancer cells, 

whose uncontrolled proliferation is thought to be due to their loss of tight regulation of 

the G1 to S transition. This essentially requires understanding of how complex signaling 

networks are processed from input signaling of extra-cellular growth factors and 

nutrients to give rise to the outcome of commitment to enter S phase. Because of this, 

biologists in the cell cycle field paid much attention to cell size control. In the 1970’s, 

small cell size (wee) mutants were identified in Schizosaccharomyces pombe and 

similarly whi mutants from Saccharomyces cerevisiae (Sudbery et al., 1980; Thuriaux et 

al., 1978). One of the wee mutants mapped to the cdc2 locus (Nurse and Thuriaux, 1980) 

and wee2 is a kinase inhibiting cdc2 function by phosphorylating cdc2 on tyrosine15 

(Parker et al., 1992). Several WHI genes turned out to be involved in the regulation of 

the G1 to S transition, which is consistent with the notion that the major cell size control 

point of Saccharomyces cerevisiae occurs at the G1 to S transition. For example, the 

WHI1-1 mutant is a gain-of-function mutant of a G1 cyclin, which was later re-named as 

CLN3 (Nash et al., 1988; Richardson et al., 1989). WHI3 is a negative regulator of 

Cln3p.  

 The other G1 cyclins of Saccharomyces cerevisiae, CLN1 and CLN2, were 

isolated as high copy suppressors of G1 arrest in a cdc28 mutant by Steven Reed and his 
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colleagues (Hadwiger et al., 1989). Cells removed all three G1 cyclins are non-viable but 

cells with any single G1 cyclin can proliferate (Richardson et al., 1989). 

 

Cyclins and cyclin-dependent kinases 

 
Saccharomyces cerevisiae has five CDKs, CDC28, PHO85, KIN28, SSN3, and CTK1, 

but only CDC28 is essential (Mendenhall and Hodge, 1998). The analogous gene in 

Schizosaccharomyces pombe is cdc2 (Doree and Hunt, 2002). CDKs are serine/threonine 

protein kinases. The CDK full consensus phosphorylation site is S/T-P-x-K/R and its 

minimum consensus site is S/T-P. Crystallographic study of Cdk2p by Sung-Ho Kim 

and his colleagues provides an important insight into a structural basis of CDK action 

(De Bondt et al., 1993). It has an active site cleft surrounded by two lobes formed by the 

N-terminus and the C-terminus. The N-terminal lobe contains the conserved PSTAIRE 

helix. The position of the T-loop, located in the C-terminus lobe, plays a crucial role in 

CDK activity. Without cyclin binding, the T-loop prevents access of a substrate to the 

active site cleft of CDK. Upon binding with cyclin it dislocates and the cleft is accessible 

to CDK’s substrates. CDK activity is regulated by four main mechanisms: cyclin 

binding, CDK inhibitors (CKIs) binding, activation by phosphorylation by CDK 

activating kinase (CAK), and inhibition by phosphorylation (Mendenhall and Hodge, 

1998). 

Cyclins are defined as proteins containing the cyclin box, which is a 100-amino 

acid residue region required for Cdk binding and activation. They are a family consisting 

of very diverse proteins, whose size ranges from 35 to 90 kD. The conserved cyclin box 
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forms the cyclin fold composed of a 5-helix bundle (De Bondt et al., 1993). Helices 3 

and 5 of the cyclin fold interact with the PSTAIRE helix of the active site cleft of CDKs. 

Such cyclin binding appears to influence significantly the conformation of the active site 

of CDKs. 

Cdc28p associates with 9 cyclins, of which three are G1 cyclins (Cln) and six are 

B-type cyclins (Clb). All the cyclins except for Cln3p temporally oscillate during the cell 

cycle (Nasmyth 1996). Two mechanisms are crucial for cyclin oscillation, transcriptional 

regulation and proteasome-mediated proteolysis. The abundance of Cln1p, 2p and 

Clb5p, 6p peaks in late G1, while that of Clb3p, 4p peaks at G2/M, and that of Clb1p, 2p 

peaks at M. G1 cyclins are very unstable because they contain a PEST region at their C-

termini, which is required for their proteasome-mediated proteolysis (Mendenhall and 

Hodge, 1998; Tyers et al., 1992). CLN3-1 and CLN3-2 alleles produce stable forms of 

Cln3p because they lack the PEST region. Clbs have a destruction box at the N-termini, 

which is required for their proteasome-mediated proteolysis (Mendenhall and Hodge, 

1998). 

Although it was long presumed that Cdc28p might directly phosphorylate many 

key components of cell cycle machinery, attempts to find the targets of Cdc28p were not 

very successful. Only a dozen proteins were identified as Cdc28p targets including H1 

histone (Langan et al., 1989), Far1p (Peter et al., 1993), Ste20p (Leeuw et al., 1998), and 

Sic1p (Verma et al., 1997). However, the recent development of many toolkits for yeast 

genetics and molecular biology facilitated the identification of Cdc28p substrates. The 

Cdc28as mutant protein, which can utilize a bulky ATP analogue, N6-(benzyl) ATP, 
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made it possible to follow the labeled proteins from 32P-N6-(benzyl) ATP because the 

other cellular kinases cannot use the analogue. This allowed proteins phosphorylated by 

Cdc28as protein to be discernible from proteins phosphorylated by other kinases. David 

Morgan and his colleagues performed genome-wide studies for putative Cdc28p 

substrates (Loog and Morgan, 2005; Ubersax et al., 2003). It was estimated that as many 

as 8% of yeast genes might encode putative substrates of the Clb2p/Cdc28p kinase 

complex. These results will provide a valuable resource for further detailed molecular 

studies. 

Cdc28p plays a crucial role in almost every point during the cell cycle. Different 

substrates seem to be phosphorylated by a different cyclin-Cdc28p kinase complex at 

various time points during the cell cycle. For example, Gin4p is phosphorylated in a 

Clb2p/Cdc28p-dependent manner, while Ste20p is phosphorylated by Cln2p/Cdc28p 

(Altman and Kellogg, 1997; Leeuw et al., 1998). However there seems to be substantial 

redundancy between cyclins because deletion of one cyclin gene often does not give rise 

to any discernible phenotypes. How Cdc28p’s substrate specificity is achieved has long 

been an issue of debate. Different spatial distributions and different temporal oscillations 

of individual cyclins may contribute to the Cdc28p’s substrate specificity (Edgington 

and Futcher, 2001; Miller and Cross, 2000). In fact, the abundance of Cdc28p does not 

oscillate and is relatively much higher than that of cyclins at a given time and space. As 

a consequence, presumably the identity and activity of cyclin will be a dominant 

determining factor for the activity and specificity of Cdc28p. Another possible 
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mechanism to accomplish substrate specificity of Cdc28p is by different spatial 

distribution and different temporal oscillation of its substrates. 

A mechanistic understanding of cell cycle regulation by cyclin/Cdc28p kinases 

provides an important insight into how CDKs execute cell cycle transitions in higher 

organisms because most key regulators of the cell cycle are evolutionary conserved. This 

premise was for example the basis of how Paul Nurse and his colleagues succeeded in 

cloning human Cdk1p by complementation using a Schizosacchomyces pombe cdc2 

mutant (Lee and Nurse, 1987). Steven Reed and his colleagues cloned human cyclins 

(cyclins C, D, and E) using Saccharomyces cerevisiae cyclin mutants (Lew et al., 1991). 

Similarly, Stephen Elledge and Matthew Spottswood cloned human Cdk2p using a 

Saccharomyces cerevisiae cdc28 mutant (Elledge and Spottswood, 1991).   

 

G1 to S transition (START) 

 

In early G1 phase the activity of Cdc28p remains low, as low Cdc28p kinase activity is 

necessary for anaphase to take place. However, the commitment to initiate DNA 

replication requires high activity of Cdc28p. Before this commitment point, cells grow 

and the process of ribosome biogenesis actively takes place. Accordingly, a cell’s 

protein synthesis capability increases and this leads to an increase of Cln3p/Cdc28p 

activity, which is an upstream regulator of G1 to S transition (Polymenis and Schmidt, 

1997; Jorgensen and Tyers, 2004). 
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A protein kinase, TOR (target of rapamycin), plays a key role in integrating 

nutrient-dependent signaling pathways to regulate translation and as a result cell size 

control (Raught et al., 2001). S6 kinase (S6K) and 4E-BP are two important effectors of 

TOR signaling. S6K phosphorylates ribosomal S6 protein and consequently positively 

regulates translation. 4E-BP is a negative regulator of the translation initiation factor, 

eIF4E, and is inhibited by TOR-mediated phosphorylation. The ultimate effect of this 

TOR action is thought to increase the abundance of Cln3p in late G1. Michael Polymenis 

and Emmett Schmidt found that abundance of Cln3p is regulated by translation in G1 

(Polymenis and Schmidt, 1997). 

Extensive molecular studies of the yeast cell cycle have revealed key features of 

the G1 to S transition regulation. A key event for the G1 to S transition is the activation 

of the G1 transcription program, which leads to a burst expression of more than 200 

genes including Cln1p, Cln2p, Clb5p and Clb6p (Spellman et al., 1998). These gene 

products play crucial roles in S phase processes such as DNA replication and bud 

formation. At the center of G1 transcription are two transcription factors, SBF (SCB 

(Swi4-Swi6-dependent cell cycle box) binding factor) and MBF (MCB (MluI cell cycle 

box) binding factor). SBF is a complex comprised of Swi4p and Swi6p, and MBF is a 

complex of Mbp1p and Swi6p. Swi4p and Mbp1p each bind specific DNA sequences. 

SBF and MBF remain bound to their promoters but in association with their inhibitor, 

Whi5p, until late G1 phase. The transcription of the target genes stays in a repressed 

state in this period. 
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Cln3p/Cdc28p and Bck2p positively regulate SBF and MBF by independent 

pathways (Wijnen and Futcher, 1999). Curt Wittenberg and his colleagues finally 

identified the long-pursued target of Cln3p/Cdc28p kinase in G1 transcription regulation 

(de Bruin et al., 2004). At late G1 when the activity of Cln3p/Cdc28p in the nucleus is 

thought to reach a critical threshold, Cln3p/Cdc28p phosphorylates Whi5p and 

dissociates it from SBF and MBF, leading to de-repression of the target genes (Costanzo 

et al., 2004; de Bruin et al., 2004). Whi5p then re-localizes from the nucleus into the 

cytoplasm. In mammals, the tumor suppressor protein Rb binds to and inhibits E2Fs, 

which are transcription activators for the genes required for the G1 to S transition. In 

many cancer cells, the function of Rb as a gate keeper of cell cycle entrance is lost (Chau 

and Wang, 2003). Whi5p appears to play an analogous role in Sacchromyces cerevisiae 

(Schaefer and Breeden, 2004). Whi5p and Rb have homology not in structure but in 

logic of function. How Bck2p activates SBF and MBF is currently unknown. 

Abundance and activity of Cln3p do not oscillate as the other cyclins do during 

cell cycle progression (Nasmyth, 1996). Cell growth appears to be required for Cln3p’s 

activation and the sub-cellular localization of Cln3p appears to be important in its 

positive regulation role for SBF and MBF (Edgington and Futcher, 2001; Wang et al., 

2004). Whi3p regulates Cln3p’s sub-cellular localization (Wang et al., 2004). 

At START, three prominent cell cycle events take place: DNA replication, bud 

formation and spindle pole body duplication. Cln1, 2p/Cdc28p trigger initiation of bud 

emergence (Gulli et al., 2000). Cln1, 2p/Cdc28p also phosphorylate Sic1p and Cdh1p 

and inactivate them through proteasome-mediated proteolysis (Nasmyth, 1996). 
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Degradation of Sic1p and Cdh1p, which are inhibitors of Clb-Cdc28p, leads to activation 

of Clb5, 6p/Cdc28p. This in turn initiates DNA replication and S phase starts. 

In addition to the transcriptional regulation mediated by SBF and MBF, there are 

multiple layers of regulation in G1 so that a cell does not enter S phase prematurely. 

CDK inhibitor proteins (CKIs) play a crucial role in S phase entrance. They prevent 

Cdc28p from being activated in G1 phase. The action of three CKIs, Sic1p, Far1p and 

Cdh1p, is well understood about how they antagonize Cdc28p activity. Far1p is 

expressed only in haploid cells and is a specific inhibitor of Cln/Cdc28p whereas Sic1p 

is a specific inhibitor of Clb/Cdc28p (Mendenhall and Hodge, 1998). Both Far1p and 

Sic1p are capable to exclude substrates from the Cdc28p active site. During late 

anaphase and G1, Cdh1p binds to the APC/C (anaphase-promoting complex/cyclosome), 

an E3 ubiquitin ligase. APC/C-Cdh1p complex recognizes Clbs for ubiquitination and 

then their proteolysis. The ultimate effect of these inhibitory pathways is to ensure that 

overall activity of Cdc28p remains low until late G1. G1 to S transition requires 

accumulated Cln/Cdc28p activity, which can override the multiple inhibitory actions and 

which can only be obtained in late G1. Cln/Cdc28p phosphorylates and inactivates Far1p 

through proteasome-mediated degradation (Henchoz et al., 1997). Similarly, Sic1p is 

phosphorylated by Cln/Cdc28p and marked for proteasome-mediated proteolysis (Nash 

et al., 2001). Intriguingly multiple phosphorylation of Sic1p provides molecular 

information of its switch-like degradation (Nash et al., 2001). Cdh1p is phosphorylated 

by Clb/Cdk1p and then dissociated from the APC/C complex, which then cannot 

recognize Clbs anymore for proteolysis (Zachariae et al., 1998). 
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Bud emergence and polarized growth 

 
For bud emergence to take place in the G1 to S transition, cells must re-organize the 

structure of the actin cytoskeleton. Saccharomyces cerevisiae has at least four distinct 

structures of actin cytoskeleton: actin cables, cortical patches, a cytokinetic ring, and the 

cap (Adams and Pringle, 1984). In late G1, cortical patches assemble to an area where 

the bud tip is to form, and actin cables orient from the patches. The assembled actin 

structures guide the delivery of secretory vesicles, which are required for bud emergence 

and growth (Pruyne et al., 2004). 

In late G1, Bud1p/Rsr1p GTPases seem to play a key role in the determination of 

incipient bud site (Casamayor and Snyder, 2002). Around Bud1p/Rsr1p, a large protein 

complex, composed of Bem1p, Cdc24p, Cdc42p, Cla4p, and Ste20p, is formed (Bose et 

al., 2001). Cln1, 2p/Cdc28p are thought to play an important role in this process by 

regulating Cdc24p phosphorylation (Gulli et al., 2000). BEM1 was identified as a gene 

required for bud emergence. It is a scaffold protein containing two SH3 domains, a PX 

domain and a PB domain from N- to C-termini (Irazoqui et al., 2003). The second SH3 

domain interacts with Cla4p, Ste20p, Boi1p and Boi2p. The PX domain interacts with 

phosphoinositides and the PB domain interacts with Cdc24p. Bem1p also interacts with 

Cdc42p through its N-terminal region. Formation of a complex including Bem1p, 

Cdc42p, Cla4p, and Ste20p appears to be important to the establishment of a polarized 

actin cytoskeleton. Actin cables formed toward the bud tip provide a road for the 

secretory vesicles to migrate to the bud, supplying materials required for the growth of 

bud. 
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Organelle inheritance 

 
In a eukaryotic cell, organelles are not de novo synthesized but instead are inherited from 

the mother cell (Warren and Wickner, 1996; Weisman, 2003). Inheritance processes of 

some organelles such as the Golgi apparatus are quite contrasting between 

Saccharomyces cerevisiae and mammalian cells (Warren and Wickner, 1996). 

Inheritance of human Golgi apparatus takes place in M phase through Golgi 

fragmentation into many smaller vesicles, which partition into two daughter cells. The 

vesicles from mitotic Golgi fragmentation then fuse in G1 phase to form a new copy of 

Golgi. In Saccharomyces cerevisiae, organelle inheritance usually starts in S phase when 

the bud grows. A part of the mother cell’s organelles moves along actin cables into the 

bud, where they form new organelles by homotypic fusion. 

Homotypic fusion is defined as membrane fusion between the same 

compartments. During the whole process of organelle inheritance, the organelle is first 

fragmented in the mother cell to smaller vesicles, which are then translocated to the 

daughter cell and finally fused to form a new copy of the organelle. All of these 

processes will be closely related with homotypic fusion. To coordinate organelle 

inheritance with the cell cycle, homotypic fusion may somehow be linked to the cell 

cycle machinery.  In fact, a human Golgi’s tethering factor, GM130, was shown to be 

phosphorylated in vitro by cyclinB/Cdk1p and its phosphorylation disrupts trans-

interaction with another tethering factor, p115, on other membrane (Lowe et al., 1998). 

This phosphorylation was proposed to be crucial for mitotic Golgi fragmentation. 
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At present we do not have an established molecular picture of organelle 

inheritance. Studies on yeast vacuole inheritance have provided some important insights 

into molecular mechanisms of organelle inheritance. 

 

Vacuole/lysosome 

 
The yeast vacuole is an organelle equivalent to the mammalian lysosome and the most 

extensively studied organelle in Saccharomyces cerevisiae. The main function of the 

vacuole is to maintain cellular homeostasis. Vacuole serves as a reservoir of small 

molecules such as amino acids, small ions, and polyphosphates, and so it has a lower 

density than other organelles (Wiemken and Durr, 1974). It also contains a large 

amounts of various hydrolases, including carboxypeptidase Y (CPY), alkaline 

phosphatase (ALP), proteinase A (PrA), proteinase B (PrB), and aminopeptidase I (API) 

(Bryant and Stevens, 1998). The vacuole is the main site for degradation of proteins, 

lipids and even of whole organelles, and is also involved in the regulation of receptor-

mediated signaling pathways. 

The vacuole is a large organelle, occupying about 25% of total cell volume 

(Wiemken and Durr, 1974), and has a low copy number, 1-5 vacuoles per cell (Wickner, 

2002). There are several vacuole-specific dyes which are commercially available. In 

particular, CDCFDA and FM4-64 are very useful (Vida and Emr, 1995). They facilitate 

molecular and cellular studies on the vacuole. CDCFDA diffuses into the cytoplasm and 

is hydrolyzed by vacuolar hydrolases in the vacuolar lumen (Breeuwer et al., 1995). The 

cleaved product becomes fluorescent in the acidic vacuole lumen. It becomes charged 
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after cleavage and is thus retained in the vacuole. FM4-64 is a lipophilic fluorescent 

compound which can stain the vacuolar membranes. It is internalized from the plasma 

membrane by endocytosis and then targeted into the vacuolar membrane. 

Wild-type vacuoles have a round-shaped morphology. Genes required for the 

normal morphology were identified and termed as VAM (vacuole morphology). Vacuole 

morphology is categorized into five classes (Class A, B, C, D, and E) (Catlett and 

Weisman, 2000). Class A is wild-type vacuole morphology. Class B is vacuole 

morphology of multiple small vacuoles. Class C is highly fragmented vacuoles. Class D 

is a single, enlarged vacuole morphology. Class E vacuoles have a large vacuole 

compartment surrounded by many membrane vesicles. Vacuolar pH is about 6.2 in wild-

type cells. VPH (vacuole pH) genes were identified, which are required for acidic 

vacuolar pH (Preston et al., 1989). 

There are five targeting pathways to the vacuole (Bryant and Stevens, 1998; Burd 

et al., 1998). Two pathways, the ALP pathway and the CPY pathway, share the ER to 

late Golgi pathway along the secretory pathway. The ALP pathway takes a route from 

the late Golgi to the vacuoles. The CPY pathway takes a route from the late Golgi 

through the prevacuolar endosome to the vacuoles. The other vacuole targeting pathways 

are the cytoplasm-to-vacuole pathway, the autophagy pathway, and the endocytosis 

pathway. API takes the cytoplasm-to-vacuole pathway, in which a soluble protein in the 

cytoplasm is surrounded by a membrane to form a vesicle, which is finally fused with 

vacuolar membrane. The autophagy pathway recently received much attention because 

dysfunction of human homologs of some genes involved in the pathway is known to be 
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linked to some diseases (Shintani and Klionsky, 2004). Autophagy involves the 

formation of an autophagosome, a double-layered membrane-bound structure engulfing 

cytoplasmic composites. The autophagosome fuses with vacuolar membrane and a single 

membrane-bound structure enters into the vacuole lumen, where it is degraded by 

vacuolar hydrolases. In the endocytosis pathway, small vesicles formed by invagination 

of plasma membrane, which are first delivered to early endosomes, then to 

multivesicular late endosomes, and finally to vacuoles. The vesicles in the 

lysosome/vacuole are degraded by vacuolar hydrolases. This, also called multi-vesicular 

body (MVB) pathway, is one pathway that extra-cellular stimuli use to reach the 

cytoplasm to execute cellular effects. This pathway is thought to down-regulate the 

growth factor/pheromone signaling. This pathway is especially important for signal 

transduction pathways involved in the control of cell growth and development 

(Katzmann et al., 2002). The genes involved in each pathway are well characterized. 46 

complementation groups of VPS (vacuolar protein sorting) genes have been identified 

(Jones et al., 1997). Some of these genes are involved in the Golgi-to-endosome, the 

endosome-to-vacuole, or the retrograde endosome-to-Golgi pathway (Jones et al., 1997). 

 

Membrane fusion 

 
Membrane fusion is a reaction of fundamental importance in eukaryotic cells, essential 

for membrane trafficking, protein targeting and organelle inheritance. James Rothman 

and his colleagues identified key players of the membrane fusion machinery in the 

1980’s. Using in vitro membrane fusion assays, they identified NSF (N-ethyl maleimide-
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sensitive factor), SNAP (soluble NSF attachment protein) and SNARE (SNAP receptor), 

all of which play crucial roles in membrane fusion (Rothman, 1994). Randy Schekman 

and his colleagues identified 23 genes required for protein targeting along the yeast 

secretory pathways (sec genes), some of which are involved in membrane fusion 

(Bonifacino and Glick, 2004; Novick et al., 1981; Novick et al., 1980). 

NSF is an ATPase, a founding member of the AAA protein family (ATPases 

associated with diverse cellular activities) and forms a hexameric ring (Bonifacino and 

Glick, 2004). SNAP is required for NSF to bind to the membrane. SNAREs are 

membrane-associated receptors of SNAP. Rothman and his colleagues proposed the 

SNARE hypothesis that the specificity of membrane fusion between two compartments 

is determined by trans-SNARE interaction (Sollner et al., 1993). It asserts that the 

interaction between a SNARE on the vesicle membrane (v-SNARE) and a SNARE on 

the target membrane (t-SNARE) is a determining factor for the specificity of two 

membranes. The trans-SNARE complex has a four-helix bundle structure comprised of 

three t-SNAREs and one v-SNARE (Sutton et al., 1998). The SNARE hypothesis 

triggered extensive studies on molecular mechanisms of membrane fusion and its 

specificity (Chen and Scheller, 2001; Guo et al., 2000; Pfeffer, 1996; Rothman, 2002). 

The trans-SNARE complex was shown to be the minimal machinery (SNAREpin) 

required for membrane fusion (Weber et al., 1998) and a determining factor for 

compartmental specificity of membrane fusion at least in artificial liposomes (McNew et 

al., 2000). Furthermore, each membrane compartment appears to have unique SNAREs 

(Hay and Scheller, 1997; Pelham, 1999). All these support the SNARE hypothesis. 



 

 

17  
 
 
 
However, the SNARE complex is probably not the only factor that determines 

compartmental specificity in vivo because specific inhibition of the SNAREs does not 

block vesicle docking (Guo et al., 2000; Pfeffer, 1999). In addition, t-SNAREs are 

distributed uniformly over the plasma membrane rather than on a limited area of vesicle 

fusion in Drosophila and the squid giant synapse. 

Membrane fusion is a multi-step process which can be defined as a sequence of 

distinct steps, such as priming, tethering, docking and fusion (Pfeffer, 1999). In priming, 

NSF disassembles cis-SNARE complex on the same membrane. Tethering was proposed 

as a loose interaction state in which the associations extend over distances of more than 

about half the diameter of a vesicle from a given membrane surface (>25 nm). 

Remarkably, a tethering factor Uso1p has a coiled-coil structure of 150 nm long, which 

is suited for a tethering function. Docking was proposed as a tighter and more stable 

state, in which two membranes are within a bilayer’s distance (<5-10 nm), and the trans-

SNARE complex is established between two membrane compartments. Fusion is a stage 

where two membrane bilayers become one continuing membrane bilayer. All these 

processes are driven by protein-protein interactions. Membranes of each compartment 

have different tethering and docking factors (Guo et al., 2000; Pfeffer, 1999). Tethering 

and docking factors probably play an important role in determining compartment 

specificity. 
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Vacuolar inheritance and vacuolar homotypic fusion 

 
Vacuoles, like other organelles, are not de novo synthesized in a daughter cell but 

inherited from the mother cell (Warren and Wickner, 1996; Weisman, 2003). Vacuolar 

inheritance is thought to be coordinated with cell cycle progression. In S phase, a tubular 

vesicle structure is formed from the mother cell’s vacuoles and moves along an actin 

cable toward the bud, where they fuse to form a new copy of vacuoles by vacuolar 

homotypic fusion. Genes involved in vacuolar inheritance (VAC) have been identified. 

Key players in vacuolar inheritance are Myo2p, Vac8p and Vac17p (Tang et al., 2003). 

Vac17p is a component of the vacuole-specific Myo2p receptor. Vac8p is a vacuolar 

membrane protein, which interacts with Vac17p. Myo2p is a motor protein, capable of 

moving along actin cables. Myo2p/Vac17p/Vac8p complex connects a vacuole vesicle to 

the actin cable. The motoring action of Myo2p produces the driving force for the vesicle 

movement. Transported vesicles are deposited in the bud by dissociating the 

Myo2p/Vac17p/Vac8p complex through degradation of the PEST domain of Vac17p 

(Tang et al., 2003). 

A current molecular picture of vacuolar homotypic fusion is shaped by the 

extensive studies performed by Bill Wickner and his colleagues (Wickner and Haas, 

2000). They established an in vitro fusion assay, which is an important tool for the 

biochemical study of the fusion reaction. Like other analogous in vitro membrane fusion 

assays, this assay exploits biochemical complementation. Vacuole liposomes are 

prepared from two strains of pho8Δ cells and pep4Δ/prb1Δ cells. They are mixed with 

cytosol, ATP, and salts and incubated to allow for vacuole fusion to take place. PHO8 
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encodes alkaline phosphatase (ALP). PEP4 and PRB1 encode vacuolar hydrolases, 

which are required for the processing of pro-ALP to mature active ALP. Only when two 

vacuole membranes fuse and their components are mixed, can fully matured active ALP 

form. ALP activity can be measured by spectrophotometry. Alternatively, vacuole fusion 

can be directly evaluated by microscopy after vacuole staining. 

Using this biochemical assay, combined with genetics, Bill Wickner and his 

colleagues identified many players involved in the fusion reaction. Vam3p and Vam7p 

are vacuolar t-SNAREs (Wickner, 2002). Nyv1p, Vti1p and Ykt6p are vacuolar v-

SNAREs. HOPS (homotypic fusion protein sorting) complex is composed of tethering 

factors of vacuolar homotypic fusion. It is composed of Vps 11, 16, 18, 33, 39, 41p. 

Sec17p is yeast SNAP and Sec18p is yeast NSF, both of which are involved in vacuolar 

homotypic fusion (Haas and Wickner, 1996). Several small GTPases such as Ypt7p, 

Cdc42p, and Rho1p are known to play a key role in the vacuole membrane fusion. 

Phosphoinositides also play a crucial role in vacuolar membrane trafficking and 

fusion (Burd et al., 1998). Saccharomyces cerevisiae has phosphoinositol (PI), 

phosphoinositol 3-phosphate (PI(3)P), phosphoinositol 4- phosphate (PI(4)P), and 

phosphoinositol 3, 5-diphosphate (PI(3,5)P2). Membranes of different organelles have 

characteristic distribution of PI or PIPs of their own. The Golgi membrane has PI(3)P 

and PI(4)P while the endosome has PI(3)P and PI(3,5)P2. Vps34p is a PI 3-kinase 

converting PI to PI(3)P on the Golgi and endosome membranes. Pik1p is a PI 4-kinase 

catalyzing PI to PI(4)P on Golgi membrane. Fab1p is a PI(3)P 5-kinase catalyzing the 

conversion of PI(3)P to PI(3,5)P2  on the endosome and vacuole membranes. PI or PIPs 
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interact with specific protein domains. PI(3)P interacts with the FYVE (Fab1p, Ygl023p, 

Vac1p, Eea1p) domain. PH (Pleckstrin homology) domain interacts with various PI or 

PIPs (Maffucci and Falasca, 2001). The different distributions of PI or PIPs endow 

identity to individual organelles by recruiting different proteins. The importance of 

phosphoinositides in vacuolar physiology is well exemplified by fab1Δ mutant cells, 

which have a very enlarged single vacuole filling almost the entire cell volume (Efe et 

al., 2005). The cells are very sick, probably because of vacuolar dysfunction. In fact, 

phosphoinositides play an important role in the regulation of human cell proliferation 

(Mayo and Donner, 2002). 

Bill Wickner and his colleagues proposed that vacuolar homotypic fusion is 

composed of four sequential steps named priming, tethering, docking and fusion (Mayer 

et al., 1996). They characterized a temporal sequence of the vacuolar homotypic fusion 

reaction using several inhibitors and antibodies, which were known to block a specific 

step. In the priming step, the cis-SNARE complex is first disassembled, which is 

dependent on Sec18p (yeast NSF) and Sec17p (yeast SNAP). Then, the tethering factor 

HOPS complexes on the opposing membranes interact, this interaction being dependent 

on Ypt7p. The trans-SNARE complex then forms and finally Ca++ triggers the 

membrane fusion.  

Overall, vacuolar homotypic fusion appears to be a very complex reaction, which 

is a multi-step reaction involving many proteins. Several lines of evidence favor this 

notion. First, a genome-wide study showed that more than 100 genes are involved in the 

vacuolar homotypic fusion reaction (Seeley et al., 2002). Second, cis-SNAREs exist in a 
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large 65S complex before the priming step. It seems that large complex 

assembly/disassembly takes place during the entire fusion reaction from the priming step 

to final membrane fusion. Third, at least three GTPases are known to be involved in the 

vacuolar homotypic fusion. This adds an additional layer to an already complex 

regulatory network because the activity of each GTPase is regulated by a specific 

GTPase activing protein (GAP), GTP exchange factor (GEF) and GTPase dissociation 

inhibitor (GDI) in each case. A GTPase, Ypt7p, is required for the tethering step. Rho1p 

and Cdc42p act after Ypt7p to regulate vacuole docking (Eitzen et al., 2001; Muller et 

al., 2001).  

Cdc42p appears to be involved in vacuolar homotypic fusion through the 

regulation of actin polymerization. The reports on how actin regulates membrane fusion 

are quite contradictory (Eitzen, 2003). Actin was generally thought to be a negative 

regulator of membrane fusion because it seemed to act as a barrier to formation of trans-

SNARE complex. However, after the docking stage, in which trans-SNARE complex 

forms, it might facilitate membrane fusion. Therefore, the role of actin in membrane 

fusion seems quite complicated, and it can facilitate or inhibit membrane fusion 

depending on at which step it acts.  
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Membrane traffic, cell size control and CLN3 

 

A feature of eukaryotic cells is that they have many intracellular membrane-bound 

organelles. These intracellular membrane-bound structures were observed as early as the 

late nineteenth century by Camillo Golgi and Elie Metchnikoff (Mellman and Warren, 

2000). In the middle of the twentieth century, George Palade and his colleagues showed 

the existence of biochemically and physically distinct organelles using cell fractionation 

and enzymatic assays combined with electron microscopy (Palade, 1975). They 

elucidated the basic principles of the secretory pathway using EM autoradiography. 

Proteins were pulse-labeled and after various chase periods, the cell was observed by 

EM to follow the labeled proteins’ pathway. They found that secretory proteins are 

synthesized in the endoplasmic reticulum (ER), translocated into the Golgi complex and 

secreted across the plasma membrane by exocytosis. Proteins are translocated between 

distinct organelle compartments via transport vesicles, which bud from one organelle 

and fuse into another. 

Another important pathway in membrane traffic is endocytosis. This is the 

pathway for extracellular materials to enter the cell. After binding to a cognate receptor 

on the plasma membrane, the extracellular material is internalized into the cell as a 

vesicle and targeted to late endosomes. 

There are numerous, dynamic fluxes of vesicles between the plasma membrane 

and organelles as well as between organelles.  For Sacchromyces cerevisiae to grow, 

continuous expansion of the cell wall and plasma membrane is required. Materials 
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should be continuously carried by secretory vesicles and supplied to the area of the cell 

wall and plasma membrane from intracellular compartments by exocytosis. Membrane 

trafficking may be closely involved in the regulation of cell size and morphogenesis. 

Cell size and morphogenesis will be altered as a result of a net change of the vesicle 

fluxes between compartments. However, most, if not all, mechanistic explanations of 

cell size control were provided in terms of molecule-to-molecule interactions, and 

without taking into account the compartmentalization of eukaryotic cells. 

CLN3 is a well-known cell size regulator. Mutations in CLN3 give rise to 

significant cell size changes. Hypermorphic alleles, CLN3-1 and CLN3-2, make a cell 

small, whereas CLN3 deletion leads to an enlarged cell. A generally accepted molecular 

explanation is that Cln3p/Cdc28p regulates the G1 transcription program and as a 

consequence temporally controls the G1 to S transition. According to this model, gain-

of-function mutations in CLN3 will activate the transcriptional program at an earlier 

point. Cells can enter S phase at a smaller cell size, and as a consequence, the overall 

cell size of this mutant will be diminished. As for loss-of-function CLN3 mutants, the 

opposite effect will occur for the opposite reason. This model seems to be well suited for 

explaining the cell size phenotypes of CLN3 mutants because the role of CLN3 to 

activate the G1 transcription program is well established. Furthermore, this model is 

consistent with the recent observation of the genome-wide study by Mike Tyers and his 

colleagues that cell size deregulation was observed among gene deletion mutants of the 

ribosome biosynthesis pathways, which impact on the regulation of G1 to S transition 

(Jorgensen et al., 2002). 
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However it should be mentioned that they also observed that most of the cell size 

mutant genes do not control G1 to S transition. Therefore, although the G1 to S 

transition is an important point for the coordination of the cell cycle with cell growth, the 

possibility should not be overlooked that overall cell size may be determined by diverse 

ways at various points during cell cycle progression. In fact, cells continue to grow after 

the G1 to S transition. Though ribosome biogenesis and translation efficiency were 

proposed as the main theme for cell size control, the broad diversity of the genes 

involved in cell size control may reflect that cell size is determined at multiple levels 

during cell division and cell growth. 

Another scenario is that the size of individual organelles is autonomously 

controlled by the genetic program and the environment, and that the size of individual 

organelles disproportionately contributes to overall cell size in different genetic and 

environmental conditions. However, this possibility was almost out of consideration 

until recently, when we showed that there is a disproportional change in vacuole size 

compared to overall cell size change in cln3Δ cells of Saccharomyces cerevisiae (Han et 

al., 2003). To our surprise Cln3p/Cdc28p directly regulates vacuolar homotypic fusion 

and vacuolar copy number by a post-translational mechanism. This reveals a novel role 

of Cln3p independent of its well-established function in the activation of G1 

transcription. It is the first demonstration in yeast that a cell cycle regulator directly 

regulates an organelle’s membrane fusion. I will describe these exciting findings in 

CHAPTER III. 
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Remarkably we succeeded in identifying the target of Cln3p/Cdc28p in vacuole 

fusion. A scaffold protein, Bem1p, is required for the vacuolar function of Cln3p. 

Furthermore we succeeded in pinpointing the target site (Ser72) of Cln3p/Cdc28p on 

Bem1p, whose phosphorylation gives rise to a crucial biological consequence in vacuole 

fusion. In CHAPTER IV, I will describe these surprising and exciting findings. 
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CHAPTER II 

MATERIALS AND METHODS 

 

Strains and DNAs 

 

Cell cultivation, media and yeast molecular biology techniques were performed as 

described by Kaiser et al (Kaiser et al., 1994), unless otherwise indicated. Most of the 

strains and plasmids used in this study are listed in Tables 2.1 and 2.2, respectively. The 

YEp-VAC8 and YEp-CLN2 plasmids were gifts from L. Weismanm (Wang et al., 2001) 

and B. Andrews (Ogas et al., 1991), respectively. The plasmid used to disrupt CLN3 in 

vac8Δ cells (BY4741 background) has been described previously (Polymenis and 

Schmidt, 1997). 

 The CLN3-2 strains were generated by transformation of the corresponding wild-

type strains with a URA3+ low-copy-number centromeric plasmid carrying the CLN3-2 

allele (Cross, 1990). In the cln2Δ strain (BY4741 background), we disrupted CLN1 

(cln1Δ::URA3) by  PCR-based single-step gene replacement (Kaiser et al., 1994). The 

PCR-product was generated by amplification of URA3 sequences with the following 

oligonucleotide primers: 5’-

CCACCACTCCACTGCTCGTTAGCTATTTCTGTAAAATAAATAAAAAGATCAT

GTCGAAAGCTACATATAAGGAACG –3’, and 5’-

TAGTATTCCGTTATTAATTAAGTATATATGTAGGCTTGATGAGAAAATGGTC

AGTTTTGCTGGCCGCATCTTCTC-3’. 
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Table 2.1 Saccharomyces cerevisiae strains and their relevant genotypes 

Strain Relevant genotype Source 

BY4741 MATa his3Δ leu2Δ met15Δ ura3Δ Res. Genetics 

BY4742 MATα his3Δ leu2Δ met15Δ ura3Δ Res. Genetics 

BY4743 BY4741/BY4742 Res. Genetics 

W303a MATa ade2 trp1 leu2 his3 ura3 can1 B. Futcher 

A364A MATa ade1 ade2 ura1 his7 lys2 tyr1 gal1 SUC mal ATCC 

185-3-4g cdc28::cdc28-1 (A364A otherwise) ATCC 

GT106 cln3Δ::URA3 (W303a otherwise) B. Futcher 

GT108 CLN3-3HA::URA3 (W303a otherwise)  B. Futcher 

MT240 CLN2-3HA::URA3 (W303a otherwise) B. Futcher 

7503198 CLN2-TAP::his3MX (BY4741 otherwise) Open Biosystems 

7499374 BEM1-TAP::his3MX (BY4741 otherwise) Open Biosystems 

33340 bem1Δ::kanMX/bem1Δ::kanMX (BY4743 otherwise) Res. Genetics 

DKY6281 MATa lys2 trp1 ura3 his3 leu2 suc2 pho8Δ::TRP1 W. Wickner 

BJ3505 MATa lys2 trp1 ura3 his3 gal2 can prb1 pep4Δ::HIS3 W. Wickner 

13340 bem1Δ::kanMX (BY4742 otherwise) Res. Genetics 

SCMSP47 cln1Δ::KanMX cln2Δ::URA3 (BY4741 otherwise) (Han et al., 2003) 

SMY01 bem1Δ::KanMX cln3Δ::URA3 (BY4741 otherwise) This study 

30366 cln3Δ::kanMX/cln3Δ::kanMX (BY4743 otherwise) Res. Genetics 

366 cln3Δ::kanMX (BY4741 otherwise) Res. Genetics 

1036 cln2Δ::kanMX (BY4741 otherwise) Res. Genetics 

4105 pep3Δ::kanMX (BY4741 otherwise) Res. Genetics 

253 vac8Δ::kanMX (BY4741 otherwise) Res. Genetics 

4738 clb1Δ::kanMX (BY4741 otherwise) Res. Genetics 

5534 clb2Δ::kanMX (BY4741 otherwise) Res. Genetics 
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Table 2.1 continued. 
Strain Relevant genotype Source 

3853 clb3Δ::kanMX (BY4741 otherwise) Res. Genetics 

4159 clb4Δ::kanMX (BY4741 otherwise) Res. Genetics 

5535 clb5Δ::kanMX (BY4741 otherwise) Res. Genetics 

4739 clb6Δ::kanMX (BY4741 otherwise) Res. Genetics 

DOM90 bar1::HisG (W303a otherwise) D. Morgan 

DOM30 cdc28::cdc28-as1 (DOM90 otherwise) D. Morgan 
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Table 2.2 Plasmids and their relevant characteristics 

Plasmid Relevant characteristic Source 

p205 CEN [CLN3-2D] URA3 F. Cross 

PDLB2226 CEN [BEM1-12MYC] LEU2 D. Lew 

PDLB2226-S72A CEN [BEM1-S72A-12MYC] LEU2 This study 

PDLB2226-S72D CEN [BEM1-S72D-12MYC] LEU2 This study 

PTH113 2µ [CDC24] LEU2 T. Höfken 

PTH114 2µ [CDC42] LEU2 T. Höfken 

PDLB2374 2µ [BEM1-12MYC] LEU2 D. Lew 

PDLB2375 2µ [BEM1-P208L-12MYC] LEU2 D. Lew 

PDLB2377 2µ [BEM1-P355A-12MYC] LEU2 D. Lew 

PDLB2378 2µ [BEM1-R369A-12MYC] LEU2 D. Lew 

PDLB2379 2µ [BEM1-K482A-12MYC] LEU2 D. Lew 

pBAD-DCR2 [PBAD-DCR2-TAG]  This study 

pBAD-CLN3 [PBAD-CLN3-TAG]  This study 

pBAD-BEM1 [PBAD-BEM1-TAG]  This study 

pBAD-BEM1-S72A [PBAD-BEM1-S72A-TAG]  This study 

pBAD-BEM1-S72D [PBAD-BEM1-S72D-TAG]  This study 

pBAD-CDC42 [PBAD-CDC42-TAG]  This study 

BG1805-DCR2 2µ [PGAL1-DCR2-TAG] URA3 Open Biosystems 

BG1805-CLN3 2µ [PGAL1-CLN3-TAG] URA3 Open Biosystems 

BG1805-BEM1 2µ [PGAL1-BEM1-TAG] URA3 Open Biosystems 

BG1805-BEM1-S72A 2µ [PGAL1-BEM1-S72A-TAG] URA3 Open Biosystems 

BG1805-BEM1-S72D 2µ [PGAL1-BEM1-S72D-TAG] URA3 Open Biosystems 

BG1805-CDC42 2µ [PGAL1-CDC42-TAG] URA3 Open Biosystems 
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To generate the bem1Δ cln3Δ strain (SMY01) we disrupted one CLN3 copy in 

diploid bem1Δ cells as described previously (Polymenis and Schmidt, 1997). The 

resulting heterozygote was sporulated, and the segregants were obtained by random 

spore analysis (Kaiser et al., 1994). All the single cyclin deletions and the bem1Δ strain 

in the BY4741 background were obtained by sporulation of the corresponding 

homozygous diploid deletion strains distributed from Research Genetics. The 

phenotypes reported for each strain were obtained after examining several independent 

transformants or segregants for the strain in question. 

 The putative phosphorylation site amino acid substitutions were introduced in the 

BEM1-12MYC low copy centromeric plasmid pDLB2226 (Irazoqui et al., 2003). We 

first PCR-amplified BEM1 sequences from pDLB2226 using forward primers that 

encoded the desired mutation (BEM1-S72A-FWD: 5’- 

CCAAAAAACAGACATAATTCTAAAGATATTACTGCTCCAGAGAAAGTTATA

AAAGCCAAATAC-3’; BEM1-S72D-FWD: 5’-

CCAAAAAACAGACATAATTCTAAAGATATTACTGATCCAGAGAAAGTTATA

AAAGCCAAATAC-3’), and a reverse primer corresponding to sequences up to position 

+574 of the BEM1 ORF (BEM1-(+574)-REV: 5’-

CGACCAATTGGCTTAGCAATGAACC-3’). The PCR products were purified by 

agarose gel electrophoresis and used as primers in a second PCR reaction with 

pDLB2226 as template and a forward primer corresponding to BEM1 sequences up to 

position –186 (BEM1-(-186)-FWD: 5’-ATTACCCTAAACGGACAAATG-3’). The 

PCR product of this reaction was also purified by agarose gel electrophoresis and co-
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transformed into yeast cells together with plasmid pDLB2226, which was previously 

linearized with SmaI and HindIII digestion (cutting at positions -166 to +330 of the 

BEM1 ORF, respectively). The gap-repaired plasmid derivatives were then recovered 

from yeast transformants by standard methods (Kaiser et al., 1994).  

 To construct plasmids for bacterial expression, we digested the BG1805-based 

plasmids (purchased from Open Biosystems, CA; see Table 2.2) with AgeI, which cuts 

once in the GAL1 promoter all the BG1805 plasmids used here. The digested plasmids 

were then transformed into a Ura- yeast strain for gap-repair together with an 

oligonucleotide that encodes the arabinose PBAD promoter and ribosome binding site 

(Guzman et al., 1995) (GAL1-PBAD-FWD: 5'-

CGGGAACGGATTAGAAGCCGCCGAGCGGGTGACGCTTTTTATCGCAACTCTC

TACTGTTTCTCCATACCCGTTTTTTTGGATGGAGTGAATATACCTCTATACTT

TAACGTCAAGGAGAA-3'). GAL1-PBAD-FWD at its 5’ end carries sequences 

complementary to GAL1 sequences upstream of the AgeI site, and at its 3’ end 

sequences complementary immediately upstream of the ATG start codon of the ORF in 

the BG1805 plasmids, which correspond to the bacteriophage λ attR1 site. 

The mutant plasmid derivatives were sequenced to verify the introduced 

mutation and the absence of any other mutations at the Genome Technologies 

Laboratory of Texas A&M University. 

 



 

 

32  
 
 
 
Microscopy and flow cytometry 

 

For microscopic examination of vacuolar membranes the cells were stained with FM4-

64, N-(3-triethylammoniumpropyl)-4-(6-(4-diethylamino)phenyl)hexatrienyl)pyridinium 

dibromide, as described by Wang et al (Wang et al., 1996). Briefly, 3x106 cells were 

collected from exponentially growing cells at a cell density of 5x106/ml in YPD and re-

suspended in 0.25ml of YPD. 1 µl of 20mM FM4-64 (Molecular Probes, Eugene, OR) 

was added. It was incubated at 30oC in a shaking incubator for about 1-2 cell population 

doublings. Cells were collected, sonicated and washed with YPD. After re-suspending in 

about 10 µl of YPD, cells were mounted on a glass slide to observe under the 

microscope. For the experiments shown in the figure on p.50 with the temperature-

sensitive cdc28-1 strain, the cells were shifted to their non-permissive temperature (37 

°C) for 3h, stained with FM4-64 for 1 h at 37 °C, cultured in dye-free medium at 37 °C 

for 2 h, and then examined microscopically. 

Cells and purified vacuoles were stained with the vital vacuolar stain CDCFDA, 

as described previously (Roberts et al., 1991). CDCFDA was added at 10 µM in the 

culture media (with 50 mM sodium citrate, pH 5.0) for 20 minutes. The cells were then 

examined either by fluorescence microscopy or flow cytometry. 

For samples analyzed by confocal microscopy, total cellular volume was 

evaluated by staining the exterior of the cells with Rhodamine Red, according to the 

manufacturer’s instructions (Molecular Probes, OR), while vacuoles were visualized 

using CDCFDA as we described above. Data for each strain were obtained from at least 
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3 different microscope fields, and we examined a minimum of 20 planes for each 

microscope field. The fluorescent area per cell was measured using Adobe Photoshop® 

software. The sum of the areas corresponding to each cell was then used as an estimate 

of volume. 

Electron microscopic analysis of ultrathin sections and acid phosphatase 

localization using cerium chloride as a capture agent to visualize the vacuole was carried 

out at the Texas A&M Microscopy and Imaging Center. Cells were fixed in a 2% 

acrolein, 0.1M sodium cacodylate solution (pH 7.4) on ice for 30 min. The cells were 

then washed four times, 15 min each time, in 5% sucrose, 1% DMSO, 0.1M sodium 

cacodylate solution (pH 7.4). The reaction mixture for acid phosphatase localization was 

0.1M sodium acetate (pH 5.0), 5% sucrose, 1mM β-glycerophosphate, 2mM cerium 

chloride, and 0.01% Triton X-100. The cells were first incubated for 30 min at 30ºC in 

reaction mixture lacking the substrate (β-glycerophosphate), followed by a 1h incubation 

in complete reaction medium at 30ºC. The reaction was stopped by two washes in ice-

cold solution of 0.1M sodium acetate (pH 5.0), 5% sucrose, followed by two washes in 

ice-cold 0.1M sodium cacodylate solution (pH 7.4). The cells were then incubated 

overnight at 4ºC in a solution containing 1% OsO4, 5% sucrose and 0.1M sodium 

cacodylate (pH 7.4). The samples were then dehydrated in graded ethanol series, 

embedded in epoxy resin, sectioned and examined without post-staining. 

For flow cytometry for cellular DNA content (the figure on p.61), cells (1x107 

cells/ml) were fixed overnight in an Ethanol-PBS solution (mixed at a 7:3 ratio). They 

were then re-suspended in 50 mM sodium citrate buffer (pH 7.0). The sample was 
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treated with RnaseA (0.25 mg/ml) overnight at 37 °C. Finally, the sample was re-

suspended in a 50 mM sodium citrate buffer (pH 7.0) containing 1 mM Sytox Green 

(Molecular Probes, OR), before it was evaluated by flow cytometry. To generate the 

DNA content histograms (the figure on p.61), the same number of cells (30,000) was 

collected for any given strain. 

 

Vacuole staining with CDCFDA 

 

Vacuole staining with CDCFDA (5-(and-6)-carboxy-2’, 7’-dichlorofluorescein 

diacetate), Molecular Probes) was performed based on the manufacturer’s instruction. 

Cells were grown in SC medium (Kaiser et al., 1994). In the exponential growth phase at 

a cell density of 5x106/ml, 106 cells were taken and re-suspended in 50mM sodium 

citrate buffered-SC medium, pH 5.1 µl of 10mM CDCFDA (in DMSO) was added and 

incubated for about 20 minutes at room temperature. The stained vacuoles were then 

evaluated with microscopy or flow cytometry. 

 

Vacuole purification 

 

Vacuole purification was performed based on the protocols by Roberts et al. and Conradt 

et al (Conradt et al., 1992; Roberts et al., 1991) . DKY6281 (pho8Δ) and BJ3505 (pep4Δ, 

prb1Δ) cells were grown in YPD medium. 4x1010 cells were collected from the 

exponential growth phase and washed with distilled water at room temperature. The cells 
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were pelleted and re-suspended in 100ml of 1M sorbitol, to which 1ml of Zymolyase 

solution (50mM Tri-HCl, pH 7.7, 1mM EDTA, 50% glycerol, 20mg (400 units)/ml 

Zymolyase 20T: ICN Immunobiologicals) was added and incubated with gentle shaking 

at 30oC for 90 minutes. Spheroplasts were collected by centrifugation at 2,200g for 5 

minutes and washed once with 1M sorbitol. The spheroplasts were broken by 

homogenizing (by pipetting) in 25ml buffer A (10mM 2-(MES)/Tris, pH 6.9, 0.1mM 

MgCl2, 12% Ficoll 400). The lysate was centrifuged at 2,200g for 10 minutes at 4oC. 

The supernatant was saved and transferred to Beckman SW 28 rotor and about 13ml of 

buffer A was overlayed. Then it was subjected to centrifugation at 60,000g for 30 

minutes at 4oC. The white wafer floating on top was collected with a spatula and 

homogenized in 6mL of buffer A. It was transferred to Beckman SW 41 Ti rotor and 

overlayed with 6ml buffer B (10mM MES/Tris, pH 6.9, 0.5mM MgCl2, 8% Ficoll 400) 

and centrifuged at 60,000g for 30 minutes at 4oC. Again, the white wafer floating on top 

was collected and re-suspended in 0.3ml of 2X buffer C (20mM MES/Tris, pH 6.9, 

10mM MgCl2, 50mM KCl). After homogenizing by pipetting, an equal volume of 1X 

buffer C was added. Vacuoles were aliquoted and stored at –80oC until use. Protein 

quantification was done to measure the concentration of purified vacuoles after 

solubilizing vacuoles with 2% SDS. 
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Cytosol preparation for in vitro vacuole fusion assay 

 

2 x 109 cells grown in SC medium till exponential growth phase were collected and 

washed with cold 0.25M sorbitol buffer (0.25M sorbitol, 20mM Pipes/KOH, pH 6.8, 

150mM potassium acetate, 5mM magnesium acetate). The cells were collected and re-

suspended in 200 µl of 0.25M sorbitol buffer with 1mM DTT and 0.5mM PMSF. Cell 

lysis was performed by bead beating of 10 cycles of 30 seconds vortex and 30 seconds 

chilling at 4oC. The lysate was clarified by sequential centrifugations at 3,000g for 5 

minutes at 4oC and 14,000g for 10 minutes at 4oC. Finally, the supernatant was 

centrifuged at 150,000g for 30 minutes at 4oC. The cytosol was aliquoted and quick 

frozen in liquid nitrogen and kept at –80oC until use. Protein quantity was measured as 

above. 

 

In vitro vacuole fusion assay 

 

The in vitro vacuole fusion assay was performed based on the procedure by Mayer et al 

(Mayer et al., 1996). The vacuole fusion reaction mixture was composed of 0.01mg/ml 

of purified vacuoles from pho8Δ and pep4Δ prb1Δ cells, 3.2 µl of 10X salt buffer 

(100mM Pipes/KOH. pH 6.8, 1M sorbitol, 50mM MgCl2, 1M KCl, 0.5M K-acetate), 

1.75 µl of 10X ATP-regenerating system (400mM creatine phosphate, 20mg/ml creatine 

phosphokinase, 10mM MgATP), 1~2mg/ml cytosol and 1X reaction buffer (20mM 

Pipes/KOH, pH 6.8, 0.3M sorbitol, 100mM KCl, 50mM K-acetate, 5mM MgCl2), filled 
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to a final overall volume of 33 µl. The reaction mixture was incubated at 27oC for 90 

minutes. To measure alkaline phosphatase (ALP) activity, 465 µl of assay reaction 

solution (250mM Tris/HCl, pH 8.0, 0.4% Triton X-100, 10mM MgCl2, 1mM pNPP (ρ-

nitro-phospho-phenol)) was added and incubated at 30oC for 5 minutes. ALP enzyme 

reaction was stopped by addition of 500 µl of termination solution (1M glycine/KOH, 

pH 11). Absorbance at 400nm was measured. This assay generated reliable results when 

comparing in vitro vacuole fusion activities among fusion reactions prepared from the 

same batch of reaction mixture. However, large deviations occurred when comparing in 

vitro vacuole fusion activities from different batches of reaction mixtures. Therefore, 

most relative fusion activities measured in this study were performed by comparing 

between fusion reactions with adding an inhibitor or buffer to an aliquot from the same 

batch of reaction mixture. In the experiment for the figure on p.71 to measure fusion 

activity the reaction mixture was equally split, and to each aliquot the same volume of 

buffer with inhibitor (or antibody) was added. Buffer-added aliquots were incubated at 

27 °C or on ice, the fusion activities of which were measured after 90 min and set as 

100% or 0% fusion activity, respectively. Inhibitor-added aliquot was incubated at 27 °C 

for the same time and its fusion activity was measured to evaluate the relative fusion 

activity. 

 For the immuno-depletion experiments, cytosolic extracts were incubated for 1 h 

at 4 °C with 60 µg of 12CA5 monoclonal anti-HA antibody prepared from ascites fluid, 

followed by an 1 h incubation at 4 °C with 50 µl of a protein G-Agarose bead solution 

(Pierce, IL). The beads were then removed and the cytosolic extracts were used in 
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vacuole fusion reactions as described above. Mock-depleted cytosols were prepared 

from the same batches of extracts but with the same volume of PBS instead of the anti-

HA antibody. The effects of each immunodepleted Cln (Cln2p or Cln3p) on the fusion 

activity were evaluated by comparing it to its mock-depleted counterpart. 

 

Vacuolar morphology and size 

 

For microscopic examination of vacuolar membranes the cells were stained with N-(3-

triethylammoniumpropyl)-4-(6-(4-diethylamino)phenyl)hexatrienyl)pyridinium 

dibromide, FM4-64 (Molecular Probes, Eugene, OR), and then examined 

microscopically with a Nikon Eclipse TS100 inverted fluorescence microscope. 

Vacuolar size was evaluated by flow cytometry after staining with the vital 

vacuolar stain 5’ (and 6’)- carboxy-2’,7’-dichlorofluorescein diacetate, CDCFDA 

(Molecular Probes, Eugene, OR). 

 

Budding index, DNA content, cell size and doubling time measurements 

 

The percentage of budded cells (budding index) was evaluated as described elsewhere 

(Zettel et al., 2003). DNA content was evaluated by flow cytometry as described 

previously (Bryan et al., 2004). The mean cell volume of live unfixed samples was 

measured using a Beckman Coulter® Z2 Channelyzer. The data were analyzed using the 

manufacturer’s AccuComp software. The geometric mean is indicated in each case. For 
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population doubling (generation) time measurements we used absorbance measurements 

at 600nm (A) at multiple time points (t) during the exponential growth of the culture. 

From the slope of the line obtained after plotting ln(A) vs. t, we got the specific growth 

rate constant of the culture (k). The culture’s doubling time (g) was then calculated from 

the formula g = ln2/k. 

  

Protein analysis 

 

Unless otherwise indicated, the gels for SDS-PAGE (Laemmli, 1970) contained 8% of a 

29:1 acrylamide/bis-acrylamide solution. For the immunoblots shown in the figure on 

p.55, cytosolic extracts were prepared as described above, while total cellular extracts 

were prepared as described previously (Kaiser et al., 1994), separated by SDS-PAGE on 

a 10% acrylamide gel, and transferred onto nitrocellulose. The blots were blocked in 

PBS containing 5% w/v dry non-fat milk and 0.1% v/v Tween-20. Between incubations 

the blots were washed three times 10 min each, in PBS. All the antibodies were added in 

blocking solution. The 12CA5 monoclonal antibody against HA was used at a 1:1,000 

dilution. The primary antibodies against yeast Prc1p (CPY), Pho8p (ALP) and Pgk1p 

were from Molecular Probes (OR), and they were used according to their instructions. 

Secondary antibody horseradish peroxidase conjugates were from Pierce (NJ) and used 

at 1:5,000 dilution. The blots were developed with chemiluminescent peroxidase reagent 

from Sigma, according to their instructions. 
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Immunoprecipitations and TEV cleavage of TAP-tagged Bem1p were performed 

according to the protocols and reagents recommended by Rigaut et al (Rigaut et al., 

1999). Briefly, 5x109 cells of untagged or TAP-tagged BEM1 cells from the exponential 

phase of growth were used. Cell extracts were prepared in the presence of protease and 

phosphatase inhibitor cocktails (Sigma, St. Louis, MO). After the first 

immunoprecipitation with IgG-agarose beads, the beads were washed twice with RIPA 

buffer and once with TEV reaction buffer. 80U of TEV for 30 min at 30 °C was used to 

cleave the protein A domain. The phosphatase experiment shown in the figure on p.77 

was done as described previously (Liakopoulos et al., 2003). For the phosphatase 

experiments in the figure on p.77, Bem1p-CBP on Calmodulin beads was washed three 

times with RIPA buffer and once with λ-phosphatase reaction buffer. Then 500U of λ-

phosphatase and 10x of protease inhibitor cocktail were added and incubated at 30 °C 

for 30 min in the presence or absence of 10x phosphatase inhibitor cocktail. 

For protein surveillance, cell extracts were prepared using a urea extraction 

buffer as described by Ubersax et al (Ubersax et al., 2003). The differences in Bem1p’s 

electrophoretic mobility in 1D SDS-PAGE are better resolved if the samples are desalted 

prior to electrophoresis (using a kit from Pierce (Rockford, IL), according to their 

instructions), and electrophoresis is performed at a constant voltage of 70V (instead of 

the typical 200V applied to mini-gels).  

2D gel electrophoresis was performed using carrier ampholytes (pH 4-6; GE 

Healthcare, UK) in acrylamide tubes according to the method of O’Farrell (O'Farrell, 

1975). 7 cm long tube gels containing 0.5% ampholytes were focused for approximately 
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1,000 volt hours without pre-focusing. The tubes were extruded and soaked, 

sequentially, in SDS sample buffer containing dithiothreitol or iodoacetamide. The tube 

gels containing the reduced and alkylated proteins were subsequently placed on top of 

8% polyacrylamide slab minigels and subjected to SDS PAGE (Laemmli, 1970). Prior to 

immunostaining, the proteins were electroblotted onto PVDF membranes (Immobilon 

Psq ; Millipore, MA) at 100 – 200 mAmps overnight using 10 mM CAPS, 10% methanol, 

pH 11. 

For immunostaining, protein A fusion proteins were detected with the 

Peroxidase-Anti-Peroxidase (PAP) soluble complex reagent from Sigma (St. Louis, 

MO). The anti-Pgk1p antibody was from Molecular Probes (Eugene, OR). The anti-

phospho [ST]P, anti-CBP, anti-HA and anti-Myc antibodies were from Abcam 

(Cambridge, MA). The horseradish peroxidase-conjugated secondary antibodies used for 

immunoblotting were also from Abcam (Cambridge, MA). All antibodies were used at 

the dilutions recommended by the manufacturers. The blots were processed with 

reagents from Pierce (Rockford, IL). 

 

Bacterial expression 

 

The pBAD-based plasmids were transformed into E. coli (strain XL1-Blue). For protein 

expression we followed previously published procedures (Guzman et al., 1995). From 

50-100 ml cultures we obtained soluble protein from all the constructs we describe here. 

The exception was Cln3p, which required larger cultures (0.5l-1l) because the majority 
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of the recombinant protein appeared to be insoluble. We purified the recombinant 

proteins through their 6xHis epitope, using TALON Co2+ affinity beads (BD 

Biosciences, CA), according to their instructions. 

 

Kinase assays 

 

Human Cdc2/cyclin B and Cdk2/cyclin A were from New England Biolabs (Beverly, 

MA), and used at 5U per reaction. Cln3p-associated activity was obtained from yeast 

cells (strain W303a) carrying plasmid BG1805-CLN3 (see Table 2.2), using TALON 

Co2+ affinity beads (BD Biosciences, CA), according to their instructions. The Cln3p-

associated activity was from ~1010 cells initially grown in raffinose, but 4h prior to 

harvesting the culture was induced with 2% galactose. Histone H1 was from Sigma (St. 

Louis, MO), and used as a substrate at 5 µg per reaction. Bem1p was obtained from 

bacteria as described above. The reactions also contained 5 µCi [γ-32P] ATP, 100 µM 

ATP, 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 1mM EGTA, 2mM DTT and 0.01% Brij 

35. All the reactions (30 µl total volume) were performed at room temperature for 20 

min. 

 

Immunofluorescence microscopy 

 

Unless otherwise indicated, we followed the protocols of the Botstein lab as described at 

http://genome-www.stanford.edu/group/botlab/. 4'6-diamidino-2-phenylindole, DAPI, 
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was from Sigma (St. Louis, MO). The anti-tubulin primary antibody and the secondary 

FITC-conjugated antibody were from Abcam (Cambridge, MA). For the experiment 

shown in the figure on p.89, the cells were grown at 37 °C to exacerbate the bud 

emergence defect of bem1Δ cells. The samples were examined with a Nikon Eclipse 

TS100 inverted fluorescence microscope. 
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CHAPTER III 

THE G1 CYCLIN Cln3p CONTROLS VACUOLAR BIOGENESIS IN 

Saccharomyces cerevisiae 

 

Introduction 

 
Overall organelle morphology and copy number in proliferating cells remain constant, 

despite successive cell divisions. In yeast, as in animal cells, the enzymes that catalyze 

cell cycle transitions are complexes of a cyclin-dependent kinase (Cdk) and activating 

regulatory subunits called cyclins. In Saccharomyces cerevisiae, START is thought to 

represent a nodal point in late G1, where various aspects of the cell’s physiology are 

measured or monitored prior to initiation of DNA replication (Pringle and Hartwell, 

1981). START is brought about by the activity of Cdc28p (a Cdk) in association with 

one of the G1 cyclins, Cln1,2,3p (Wittenberg and Reed, 1996). Cells lacking all three 

CLN genes are inviable and cannot complete START (Richardson et al., 1989). During 

vegetative growth the only essential “collective” function of Clns is to promote the 

phosphorylation and subsequent proteolysis of the B-type cyclin kinase inhibitor Sic1p 

(Schneider et al., 1996; Tyers, 1996).  

None of the CLN genes alone, however, is necessary for the cell’s survival. This  

 

Reprinted with permission from “The G1 cyclin Cln3p controls vacuolar biogenesis in 
Saccharomyces cerevisiae” by Han, B.-K., Aramayo, R., and Polymenis, M., 2003, 
Genetics 165, 467-476. Copyright 2003 by the Genetics Society of America. 
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apparent redundancy has been challenged in the last few years, with Cln1,2p and Cln3p 

being functionally distinct. It is now thought that Cln3p functions upstream of Cln1,2p 

activating the G1/S transcription program (Dirick et al., 1995; Levine et al., 1996; Stuart 

and Wittenberg, 1995; Tyers et al., 1993), where >100 genes (CLN1,2 among them) are 

transcribed in a temporal manner at the G1/S transition (Spellman et al., 1998). 

Cln1,2p/Cdc28p complexes may regulate polarized growth during budding (Benton et 

al., 1993; Cvrckova and Nasmyth, 1993). They may also serve as upstream activators of 

the protein kinase C (Pkc1p), which is involved in cell wall biosynthesis (Heinisch et al., 

1999). Thus, it seems that Cln3p controls the correct timing of G1/S transcription, while 

Cln1,2p tethers G1/S progression with the morphogenetic and biosynthetic aspects of 

making a bud. 

The vacuole in Saccharomyces cerevisiae is a large compartment, occupying a 

significant fraction (~25%) of the total cellular volume (Wiemken and Durr, 1974). 

Vacuoles serve as repositories of metabolites and low molecular weight compounds and 

they are analogous to the lysosomes of animal cells, containing numerous hydrolases 

(Jones et al., 1997; Roberts et al., 1991). In all eukaryotic cells, the lysosomes or 

vacuoles play major cellular turnover roles, including autophagy where entire organelles 

are delivered to them for turnover (Klionsky and Emr, 2000). These lysosomal or 

vacuolar functions are evident during responses to stress or nutrient limitation, and also 

impact on developmental processes and human disease states (Klionsky and Emr, 2000). 

Vacuoles, as many other organelles (e.g. the Golgi), are not usually synthesized de novo 

in daughter cells, but instead they are inherited from mother cells. It is possible, 
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however, for a daughter cell to slowly synthesize a new vacuole (the same is true for the 

Golgi) if it did not inherit one (Catlett and Weisman, 2000). Since this is a slow and 

inefficient process, a vacuolar inheritance mechanism is believed to have evolved. 

Vacuolar morphology and inheritance is dynamic and is somehow coordinated with cell 

cycle progression (Catlett and Weisman, 2000). Yeast cells typically contain only one to 

three vacuoles, and their segregation to daughter cells follows an ordered pattern 

(Warren and Wickner, 1996). Beginning at the G1/S transition of the cell cycle, vesicles 

from the vacuole of the mother cell form a tubular structure and are transported into the 

newly formed bud, where they will eventually establish the vacuolar compartment of the 

daughter cell (Bryant and Stevens, 1998; Catlett and Weisman, 2000). However, it is not 

known whether the molecular machinery that regulates cell cycle progression also 

affects vacuolar inheritance and vice versa. 

Here we show that the G1 cyclin Cln3p regulates vacuolar biogenesis and 

segregation. Our findings suggest an unexpected role for a G1 cyclin that is specific to 

Cln3p and it is not shared by other G1 cyclins. 

 

Results 

 

Vacuolar morphology in cln3Δ cells 

To examine vacuolar morphology we first visualized the vacuoles with the vital 

amphiphilic styryl dye FM4-64 (see Materials and Methods), which stains the vacuolar 

membrane (Hill et al., 1996). The vacuolar compartment in about 60-70% of cln3Δ cells  
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FIGURE 3.1. Vacuolar fragmentation in cells lacking CLN3. Diploid cells of the indicated genotype (all 
in the BY4743 background) were exposed to FM4-64, a vital dye that stains the vacuolar membrane (see 
Materials and Methods), and photographed through phase optics (left panels) and by fluorescence 
microscopy with a rhodamine filter (right panels). 
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had a fragmented and multilobular appearance (Fig. 3.1). This was not the case, 

however, for cells lacking Cln1p and Cln2p (Fig. 3.1). The extent of vacuolar 

fragmentation was comparable to that of vac8Δ cells(Fig. 3.1), which are defective in 

vacuolar inheritance (Catlett and Weisman, 2000), and they display extensive vacuolar 

fragmentation (Wang et al., 2001). We also examined cells carrying the CLN3-2 allele, 

which effectively over-express Cln3p because they produce a truncated but stable form 

of the protein (Cross, 1988), but the vacuolar morphology of these cells was 

indistinguishable from wild-type cells (data not shown). Next, we evaluated wild-type 

and cln3Δ cells by electron microscopy (Fig. 3.2). Consistent with the fluorescence data, 

cells lacking Cln3p had more but smaller vacuoles (Fig. 3.2). We also observed 

extensive vacuolar fragmentation of cdc28-1 cells shifted to their non-permissive 

temperature (Fig. 3.3). This is consistent with the known role of Cln3p, as a regulatory 

subunit in a complex with Cdc28p important for the G1/S transition. These observations 

suggest that Cln3p, but not Cln1,2p, may be necessary for the maintenance of vacuolar 

morphology. 

The vacuolar compartment in cln3Δ cells occupied a significant portion of the 

cell (Figs. 3.1 and 3.2), and we decided to address this issue in more detail. We 

examined living cells carrying a wild-type (CLN3+), null (cln3Δ), or a dominant (CLN3-

2) CLN3 allele. The cells were stained with a vacuolar fluorescent probe, 5-carboxy-

2’,7’-dichlorofluorescein diacetate (CDCFDA). CDCFDA is localized in the vacuole by 

diffusion, where it is hydrolyzed into an impermeant fluorescent anionic derivative 

(Preston et al., 1989). The cells were then examined either by fluorescence microscopy 



 

 

49  
 
 
 
 

 

 

 

 

 

FIGURE 3.2. Electron micrographs of wild-type and cln3Δ cells. V indicates the vacuole. 
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FIGURE 3.3. Vacuolar fragmentation in cdc28-1 cells. Wild-type and cdc28-1 cells (in the A364A 
background, see Materials and Methods) were exposed to FM4-64 and photographed through phase optics 
(left panels) and by fluorescence microscopy with a rhodamine filter (right panels). The cells were 
photographed both during growth at room temperature and after they were shifted for 6 h to 37 ºC, the 
non-permissive temperature of the cdc28-1 strain (see Materials and Methods). 
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(Fig. 3.4A) or flow cytometry (Fig. 3.4B). CDCFDA-fluorescence intensity, representing 

vacuolar size, of live cells was quantified by flow cytometry (Fig. 3.4B) from the same 

samples that were used to obtain the forward angle scattering cell size estimates, to 

simultaneously obtain both parameters. Note that this analysis confirmed the expected 

small vacuolar compartment of pep3Δ cells (Table 3.1), which are known to have small 

vacuolar vesicles (Preston et al., 1991). In Table 3.1, we summarize the values of cell 

size and vacuolar size in CLN3+, cln3Δ and CLN3-2 cells in the BY4741 background. 

Importantly, we noticed disparities in vacuolar size that did not correlate with cell size 

differences. For example, cln3Δ cells are 30% larger overall than CLN3+ cells, but their 

vacuole is 80% larger. This disproportional enlargement of the vacuolar compartment in 

cln3Δ cells was evident (P<0.05, based on a Student’s t test) in all strains tested, 

irrespective of ploidy, haploid BY4741 vs. diploid BY4743, and genetic background, 

strains BY4741 vs. W303, (data not shown). Note that the above differences in vacuolar 

volume were not due to intra-vacuolar pH differences which may alter the fluorescence 

of the vacuolar probe we used, for two reasons: First, both cln3Δ and CLN3-2 cells had a 

vacuolar pH in the same range as wild-type cells (≥ 5.98 and ≤ 6.14; data not shown). 

Second, the vacuolar size differences were evident even after the intra-vacuolar pH was 

equilibrated to that of external buffers (data not shown). 

 We also estimated cell size and vacuolar size using confocal microscopy. For 

CLN3+, cln3Δ, and CLN3-2 haploid cells in the BY4741 strain background, cultured in 

defined SC media, the relative cell volume values were 1±0.24 (n=20), 1.35±0.35 
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FIGURE 3.4. Cell and vacuole size in cells carrying different CLN3 alleles. All the strains shown were in 
the haploid BY4741 background. A, Cells were photographed through phase optics (left panels) and by 
fluorescein fluorescence (right panels) to visualize the vacuole of exponentially growing cells in rich 
defined SC media (see Materials and methods). B, Cell volume of the indicated strains was measured 
using a Channelyzer (left panels), or flow cytometry by forward angle scattering (FSC, middle panels). 
Vacuolar fluorescence was measured by flow cytometry (right panels). In every panel, the measured 
parameter is shown on the x-axis, and the number of cells on the y-axis. The geometric mean is shown in 
each case. 
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TABLE 3.I. Loss of Cln3p disproportionately enlarges the vacuole 

              Relative cell sizea Strain 

Channelyzer FSC 

         Relative 

       vacuolar size 

CLN3+ 1±0.06 (4) 1±0.05 (5) 1±0.09 (5) 

Cln3Δ 1.35±0.17 (4) 1.53±0.06 (5) 1.92±0.19 (5) 

CLN3-2  0.68±0.05 (4) 0.63±0.02 (7) 0.51±0.06 (7) 

Cln2Δ 1.07±0.02 (6) 2.13±0.04 (4) 0.96±0.17 (4) 

Cln1,2Δ 1.59±0.16 (6) 1.42±0.06 (3) 0.80±0.06 (3) 

Pep3Δ 0.84±0.06(20) 0.92±0.03 (3) 0.45±0.04 (3) 

 

aMeans and standard deviations of standardized values are shown. The number in parentheses indicates 
independent cultures analyzed in each case. For cell and vacuolar size the geometric mean is used. For the 
CLN3-2 plasmid-transformed strain the cultures examined were from independent transformants and 
compared to the parental strain transformed with an empty low-copy centromeric plasmid. The cellular 
parameters of the parental strain transformed with the empty low-copy vector were similar to those of the 
un-transformed strains (not shown). All the strains were grown in synthetic SC media. 
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(n=23), and 0.71±0.19 (n=20), respectively. In contrast, the vacuolar size of CLN3+, 

cln3Δ, and CLN3-2 cells, relative to the overall cell size of wild-type cells was 

0.25±0.13 (n=40), 0.55±0.17 (n=50), and 0.14±0.07 (n=22), respectively. Our results are 

in very good agreement with earlier estimates of vacuolar size (25% of total cellular 

volume)(Wiemken and Durr, 1974), and our own data regarding the relative vacuolarand 

cell size parameters in cln3Δ cells we reported above (Table 3.1).  

However, the vacuolar size in cells that lack another G1 cyclin, Cln2p, was not 

significantly affected (Table 3.1). Even in cells that lacked both CLN1 and CLN2 and 

were quite large overall, the vacuole was not disproportionately enlarged. Instead, we 

noticed a decrease in vacuolar size in cln1,2Δ cells (Table 3.1). Thus, based on our 

results with the cln1,2Δ strain, we conclude that a decrease in vacuolar size is not 

necessarily accompanied by overall cell size decrease. Specifically in the case of cln3Δ 

cells, however, loss of Cln3p clearly increases the size of the vacuolar compartment to a 

greater extent than what was predicted from cell size differences. 

 

Cells that lack Cln3p are defective in vacuole homotypic fusion 

Given the fragmented vacuolar morphology of cln3Δ cells, we then decided to test 

Cln3p’s effects in an in vitro vacuole homotypic fusion assay developed by Wickner and 

colleagues (Wickner and Haas, 2000). The process of vacuole vesicle fusion is crucial in 

determining the overall vacuole copy number and vacuolar biogenesis in general 

(Wickner and Haas, 2000). Vacuoles were purified and then mixed in the presence of 

cytosol and ATP. To evaluate vacuole fusion microscopically (Fig. 3.5A), the fused  
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FIGURE 3.5. Cln3p regulates vacuole homotypic fusion in vitro. A and B, Purified vacuoles were allowed 
to fuse in the presence of ATP and cytosol and stained with CDCFDA, before they were photographed. A, 
vacuole fusion in the presence of cytosol prepared from the indicated strains, all in the BY4743 
background. To visualize the vacuoles in the absence of ATP and cytosol (lower right panel), we exposed 
for 30 sec, because shorter exposures were insufficient. In contrast, fused vacuoles, in the presence of ATP 
and cytosol, fluoresce much more intensely, so for wild-type cytosol (upper left panel) we exposed for 6 
sec, while for CLN3-2 cytosol (lower-left panel) the fluorescence was so intense that the exposure was 
only 4 sec. For cln3Δ cytosol (upper right panel), or for the no cytosol control (middle right panel), we 
exposed for 10 sec. Aliquots of the vacuole fusion reactions shown were evaluated colorimetrically, based 
on the reconstitution of alkaline phosphatase activity. The average and standard deviations from at least 
seven independent experiments of relative alkaline phosphatase activity, normalized for background (no 
cytosol), obtained from the indicated reactions is shown. B, vacuole fusion in the presence of cytosol from 
untagged, CLN2-HA, or CLN3-HA tagged strains. All the cytosols were immuno-depleted using an anti-
HA monoclonal antibody (see Materials and Methods) before they were used in the vacuole fusion 
reactions. The precipitated (P) and the supernatant (S) fractions were evaluated by immunobloting using 
the anti-HA antibody, to measure the extent of cyclin depletion. (*) indicates non-specific bands. Fusion 
was evaluated microscopically, and the exposure time was the same (10 sec) for all the photographs 
shown. Aliquots of the vacuole fusion reactions shown were also evaluated colorimetrically, based on the 
reconstitution of alkaline phosphatase activity. The average and standard deviation from three independent 
experiments of relative alkaline phosphatase activity, normalized for background (no cytosol), obtained 
from the indicated reactions is shown. C, The intracellular steady-state levels of Pgk1p and the pro- and 
mature (m) forms of CPY and ALP in cells of the indicated genotype were evaluated by immunobloting. 
The pep4Δ, prb1Δ strain was BJ3505 (see Methods), while all the others were in the BY4743 background. 
D, Homotypic fusion reactions using cytosol from CLN3+ and cln3Δ cells (in the BY4743 background) 
transformed with an empty (vector) or CLN2-containing (CLN2) high copy plasmid, were evaluated 
colorimetrically as described above. The average and standard deviations from four independent 
experiments of relative alkaline phosphatase activity, normalized for background (no cytosol), obtained 
from the indicated reactions is shown. 
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vacuoles were stained with CDCFDA. Cytosol from cells lacking Cln3p had 

significantly reduced fusion activity (Fig. 3.5A). The extent of vacuole fusion can also 

vacuoles were stained with CDCFDA. Cytosol from cells lacking Cln3p had 

significantly reduced fusion activity (Fig. 3.5A). The extent of vacuole fusion can also 

be evaluated colorimetrically, because the purified vacuoles in this assay were prepared 

from two different strains, each lacking the ability to produce active alkaline 

phosphatase (encoded by PHO8). One of the strains lacks PHO8, while the other lacks 

vacuolar proteases necessary for Pho8p maturation. In this assay, processed vacuolar 

alkaline phosphatase can be produced only if the vacuolar constituents from the two 

strains mix after fusion (Wickner and Haas, 2000). Although the enzymatic assay was 

not as sensitive as the direct microscopic observation, it was still clear that alkaline 

phosphatase activity, which reflects vacuole fusion, was lower (P<0.05, based on a 

Student’s t-test) in the presence of cytosol from cln3Δ cells (Fig. 3.5A). 

 To more directly test the role of Cln3p in vacuolar homotypic fusion, we 

prepared cytosol from wild-type cells, and from cells carrying epitope-tagged versions of 

Cln2p (CLN2-HA) and Cln3p (CLN3-HA). These epitope-tagged Cln2p and Cln3p are 

fully functional (Tyers et al., 1993; Tyers et al., 1992). Cytosol from the untagged and 

tagged strain was incubated with either an antibody against the epitope for 

immunodepletion, or mock-depleted with PBS, and we then carried out 

immunoprecipitations, to deplete the HA epitope-carrying polypeptides from the 

cytosolic extracts. The extent of immunodepletion was significant (>90%), as shown on 

the immunoblot below the micrographs on Fig. 3.5B. The immuno-depleted or mock-
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depleted cytosolic extracts were then evaluated for vacuole homotypic fusion activity 

(Fig. 3.5B). It is clear that depletion of Cln3p, but not Cln2p, reduced homotypic fusion 

activity (Fig. 3.5B). These results further strengthen the notion that Cln3p is required for 

homotypic fusion activity. 

 To test whether CLN3 deletion or over-expression might somehow affect 

secretory pathways of vacuolar protein sorting (Jones et al., 1997), we evaluated the 

maturation of two vacuolar enzymes, carboxypeptidase Y (CPY) and vacuolar 

membrane alkaline phosphatase (ALP), in CLN3+, cln3Δ and CLN3-2 cells (all in the 

BY4743 background). The CPY precursor, Prc1p, traffics through the ER, Golgi, and 

pre-vacuolar compartments before it is sorted to the vacuole (Jones et al., 1997). ALP 

bypasses the pre-vacuolar compartment. We found that steady-state levels of mature 

CPY and ALP was similar among wild-type, cln3Δ and CLN3-2 cells (Fig. 3.5C). Thus, 

it does not appear that the secretory processes that are involved in CPY and ALP 

maturation are grossly affected in CLN3-2 or cln3Δ cells. 

Finally, increasing the dosage of another G1 cyclin, CLN2, could not suppress 

the defect in homotypic fusion observed in cln3Δ cells (Fig. 3.5D). We also examined 

vacuolar morphology of these cells after staining with the vacuolar membrane stain 

FM4-64, and we found that the vacuolar fragmentation of cln3Δ cells we described 

above (Fig. 3.1), was not rescued by introducing CLN2 on a high-copy plasmid (data not 

shown). 
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Cln3p and vacuolar segregation 

After examining photographs of budded cln3Δ cells we noticed that in several cases the 

signal associated with the vacuolar compartment was not equally distributed between the 

bud and the mother cell (Fig. 3.6A). This is different from wild-type cells, which 

distribute their vacuoles between the mother and the bud. In the known vacuolar 

inheritance mutants the bud fails to receive vacuoles, as was evident in vac8Δ cells (Fig. 

3.6A). Note that the vacuoles stained by FM4-64 do not represent all the vacuoles in the 

cell, because between the time of staining and the time of observation, new vacuoles are 

synthesized in the cell, which are not stained (see Materials and Methods). We were 

particularly surprised to find that there was also a fraction of cln3Δ cells that distributed 

their vacuoles almost exclusively in the bud and not in the mother (Fig. 3.6A and B). 

This has not been observed in known vac mutants. 

 

VAC8 and CLN3  

We next examined vacuolar morphology and cell cycle progression of cells mutant for 

VAC8 and CLN3 (Fig. 3.7). Combined loss of CLN3 and VAC8 does not lead to an 

apparent additive effect and the cells still have visible but fragmented vacuoles. In 

addition, over-expression of CLN3 in vac8Δ cells, and vice versa, does not suppress the 

vacuolar fragmentation defects of the singly mutant strains either (Fig. 3.7). Thus, it does 

not appear that CLN3 and VAC8 function in a simple linear pathway. 
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FIGURE 3.6. Cells lacking CLN3 are defective in vacuolar segregation. Cells of the indicated genotype 
(all in the BY4743 background) were stained with FM4-64 to visualize vacuole membranes. A, Random 
fields of cells were examined for vacuolar segregation, 2 h after vacuolar staining with FM4-64 (see 
Materials and Methods). The number of cells examined is shown in parentheses. The scored cells were 
grouped into two groups based on bud size, and within each group the percentage of cells with the 
indicated vacuolar morphology is shown. B, Unequal vacuolar segregation in homozygous diploid cln3Δ 
cells, stained and photographed as described in the legend of Fig. 3.1. 
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FIGURE 3.7. CLN3 and VAC8 in vacuolar biogenesis and cell cycle progression. Cells of the indicated 
genotype (all in the BY4741 background) were exposed to FM4-64 and photographed through phase 
optics (left panels) and by fluorescence microscopy with a rhodamine filter (middle panels). Their cellular 
DNA content (right panels) was determined by FACS. For each strain, the percentage of cells in G1, 
calculated by the ModFit software, is indicated. Cell numbers are plotted on the y-axis and the x-axis 
represents fluorescence. 
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We also examined cell cycle progression of these strains by flow cytometry (Fig. 

3.7, right panels). Note that vac8Δ cells proliferated at the same rate as wild-type or 

cln3Δ cells (data not shown). Interestingly, in vac8Δ cells there was an increase in  

the percent of cells in the G1 phase of the cell cycle. Thus, as is the case for cln3Δ cells 

(Cross, 1988; Nash et al., 1988), it appears that vac8Δ cells stay longer in G1 but there is 

a compensatory shortening of subsequent cell cycle phases, resulting in no net change in 

doubling time. Over-expression of Vac8p had no effect on cell cycle progression (data 

not shown). Importantly, however, Cln3p over-expression in vac8Δ cells accelerated 

completion of START, without suppressing the vacuolar fragmentation of these cells 

(Fig. 3.7), suggesting that, at least in this case, vacuolar fragmentation is not necessarily 

linked to the timing of START. Taken together, our results indicate that Cln3p’s role in 

vacuolar biogenesis is distinct from that of Vac8p and also separate from Cln3p’s 

established function in G1/S progression. 

 

Discussion 

 

Besides the chromosomes in the nucleus, the size and copy number of all organelles 

must also be maintained during cell proliferation. This work documents a novel role for 

a eukaryotic G1 cyclin in vacuolar (lysosomal) homeostasis, suggesting that the same 

cell cycle machinery that initiates cell division may also perform a separate function in 

the control of vacuolar biogenesis and segregation. 
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There are usually 1-3 vacuoles per cell (Warren and Wickner, 1996). In cln3Δ 

(but not cln1Δ and/or cln2Δ) cells, the vacuolar compartment was fragmented (Fig. 3.1 

and 3.2). Interestingly, the overall vacuolar compartment of cln3Δ cells was 

disproportionately enlarged (Fig. 3.4). Even though vacuole size does not always dictate 

overall cell size (for example, cln3Δ and cln1,2Δ cells are both large but the size of their 

vacuolar compartment differs by 3-4 fold, see Table 3.1), this result underscores the 

complexity of cell size regulation. Organelle contribution to overall cell size is not 

usually taken into consideration in studies of cell size control. How could Cln3p regulate 

vacuolar biogenesis? We provide evidence that Cln3p controls vacuolar homotypic 

fusion activity in vitro (Fig. 3.5). These findings raise the issue of Cln3p’s sub-cellular 

localization. Cln3p is certainly found in the nucleus (Miller and Cross, 2000), but a more 

recent report clearly showed that Cln3p is also found in the cytoplasm (Gari et al., 2001). 

Note also that cytosolic extracts immuno-depleted for Cln3p could not support 

homotypic fusion (Fig. 3.5), arguing for a post-translational mechanism of regulation of 

homotypic fusion by Cln3p. Whether Cln3p needs to exit the nucleus or simply acts on a 

nuclear factor which then exits the nucleus is unclear at present, since our cytosolic 

preparations are not devoid of soluble nuclear proteins. Since forcing Cln3p in the 

cytoplasm leads to cell size enlargement (Edgington and Futcher, 2001), and since we 

show here (Fig. 3.4) that the large size of cln3Δ cells is largely due to vacuolar 

enlargement, it is perhaps likely that Cln3p still functions in the nucleus where it perhaps 

modifies a factor that in turn exits into the cytoplasm and affects vacuolar biogenesis. In 
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any case, it is clear that Cln3p’s function in vacuolar biogenesis is separate from its 

established role in activating the G1/S transcriptional program. 

Self (homotypic) fusion of organelle vesicles is essential for organelle 

homeostasis (Wickner and Haas, 2000). In animal cells, inhibition of Golgi homotypic 

fusion in mitosis results in extensive fragmentation of the Golgi. This is important for 

Golgi inheritance because the resulting Golgi vesicles stochastically disperse in equal 

numbers in both daughter cells where, after completion of mitosis, they will fuse to re-

generate the Golgi (Warren and Wickner, 1996). Warren and colleagues have shown that 

mitotic inhibition of Golgi homotypic fusion is mediated by the cyclin-dependent kinase 

Cdc2 (Lowe et al., 1998; Nelson, 2000). Is it possible that aspects of this established 

paradigm also operate in Cln3p’s role during vacuolar biogenesis? Perhaps. Note that 

while the Cln3p/Cdc28p complex may be necessary for high vacuolar homotypic fusion 

activity, the mammalian Cdc2/cyclinB complex does the opposite, because it inhibits 

Golgi vesicle fusion. Overall, however, we think it is intriguing that, although in each 

case different organelles are affected at different cell cycle points, in both cases 

organelle homotypic fusion may be sensitive to changes in the activity of cyclin/Cdk 

complexes. 

Loss of Cln3p not only affects vacuolar morphology, but it also impacts on 

vacuolar segregation (Fig. 3.6). To our knowledge, this is the first evidence linking a cell 

cycle regulator with vacuolar segregation. Overall, how do the vacuolar phenotypes of 

cln3Δ cells compare to those of other vacuolar mutants? We think that although cln3Δ 

cells share some characteristics with other vacuolar mutants, the combination of these 
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characteristics makes them unique. For example, vacuolar enlargement and a 

concomitant overall cell enlargement are evident in fab1 mutants (Gary et al., 1998; 

Jorgensen et al., 2002). But, in contrast to cln3Δ cells, the vacuole of fab1 cells is not 

fragmented, fab1 cells lose vacuolar acidity, and vacuolar protein sorting is impaired as 

well (Gary et al., 1998). During the course of this work, the fragmented vacuole of cln3Δ 

cells was also mentioned in a genome-wide study of vacuolar morphology (Seeley et al., 

2002). The fragmented vacuolar morphology of cln3Δ cells corresponds to class B 

vacuolar protein sorting (vps) mutants, and is apparently similar to vac8Δ cells (Seeley et 

al., 2002). Furthermore, both Vac8p (Wang et al., 2001) and Cln3p (Fig. 3.5) appear to 

be required in vacuole fusion. However, based on our results, we think there are 

important differences between vac8Δ and cln3Δ cells. For example, note that in vac8Δ 

cells vacuolar fragmentation is not accompanied by overall vacuolar and cellular 

enlargement (see Figs. 3.1 and 3.6). Furthermore, our analysis of double CLN3 and 

VAC8 mutants argues against a simple linear relationship of the two gene products in 

vacuolar biogenesis (Fig. 3.7). In known vac mutants (including vac8Δ cells), it is the 

daughter cells that do not receive enough vacuoles (Catlett and Weisman, 2000). 

However, in cln3Δ cells it appears that at least in some cases the opposite is true (Fig. 

3.6). Although known vac mutants are not defective in vacuolar retention, retention in 

the mother cell can play an important role during organelle partition, and it is an 

established aspect of mitochondria segregation in yeast (Yang et al., 1999). Finally, loss 

of Vac8p apparently delays the G1/S transition (Fig. 3.7), but it is not clear at this point 

whether vacuolar biogenesis can causally alter cell cycle progression. Note that vacuolar 
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fragmentation per se in vac8Δ cells is not blocking acceleration of START in the context 

of the dominant CLN3-2 allele (Fig. 3.7). 

Based on the results we report here, it appears that the seemingly separate events 

of the nuclear cell division cycle and the cytoplasmic processes that control organelle 

segregation might be controlled by separate functions of the same machinery. Our 

finding that Cln3p is involved in vacuolar biogenesis at least provides a handle towards a 

more detailed understanding of these phenomena in yeast. Since regulatory mechanisms 

of cell division and organelle biogenesis are highly conserved between yeast and 

humans, findings from yeast studies should be relevant to these processes in other 

organisms. 
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CHAPTER IV 

Bem1p, A SCAFFOLD SIGNALING PROTEIN, MEDIATES CYCLIN-

DEPENDENT CONTROL OF VACUOLAR HOMEOSTASIS IN Saccharomyces 

cerevisiae 

 

Introduction 

 
Overall cell size and macromolecular composition remain unaffected after successive 

rounds of cell division. This phenomenon also extends to intracellular membrane-bound 

organelles, because the copy number and size of any given organelle compartment 

remain constant in dividing cells (Shorter and Warren, 2002; Warren and Wickner, 

1996). Implicit in this central aspect of cellular physiology is a tight coordination 

between cell division and organelle biogenesis, but in most cases the mechanisms remain 

mysterious (Shorter and Warren, 2002; Warren and Wickner, 1996). 

Vacuoles in Saccharomyces cerevisiae serve as repositories of metabolites and 

low molecular weight compounds and are analogous to the lysosomes of animal cells, 

containing numerous hydrolases (Jones et al., 1997; Roberts et al., 1991). The vacuole is 

a low-copy organelle, and yeast cells typically contain 1-3 vacuoles. The large size of 

the vacuolar compartment {~25% of the total cellular volume (Wiemken and Durr, 

1974)} and the availability of vacuole-specific vital fluorescent dyes facilitate 

observations of overall vacuolar morphology. Defects in self (homotypic) fusion of 

vacuolar vesicles lead to vacuolar fragmentation (Seeley et al., 2002). Thus, homotypic 

fusion is very important for vacuolar homeostasis and it can also be evaluated in vitro 
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(Wickner and Haas, 2000). Although daughter cells of certain vacuolar inheritance 

mutants can be born without a vacuole, they must form a new one before they can pass 

through a point in late G1 called START and initiate DNA replication and a new round 

of cell division (Weisman, 2003). A recent report also suggested that in Candida 

albicans the vacuolar compartment may impact on cell cycle progression and hyphal 

development (Barelle et al., 2003). Nonetheless, it is not known how the molecular 

machinery that regulates cell cycle progression also affects vacuolar biogenesis or vice 

versa. 

In late G1, START completion is mediated by Cdc28p (a cyclin-dependent 

kinase, CDK) in association with one of the G1 cyclins, Cln1,2,3p. Cells lacking all 

three CLN genes are inviable and cannot complete START (Richardson et al., 1989). 

Cln3p functions upstream of Cln1,2p activating the G1/S transcription program (Dirick 

et al., 1995), where ~200 genes (CLN1,2 among them) are transcribed (Spellman et al., 

1998). Cln3p/Cdc28p phosphorylates Whi5p, a repressor of the G1/S transcription factor 

SBF, thereby releasing Whi5p from SBF and activating START transcription (Costanzo 

et al., 2004; de Bruin et al., 2004; Schaefer and Breeden, 2004). In addition, our earlier 

findings provided evidence for a novel function of Cln3p in vacuolar homotypic fusion, 

separate from its role in G1/S transcription and not shared by other G1 cyclins (see 

CHAPTER II). 

A central polarity-establishment factor in a variety of organisms (from yeast to 

humans) is Cdc42p, a Rho-type small GTPase that orchestrates numerous processes 

necessary for polarization, such as septin and actin organization and membrane 
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trafficking, in response to cell cycle transitions and environmental cues (Etienne-

Manneville, 2004; Irazoqui and Lew, 2004). Cdc42p membrane localization is not 

restricted to the plasma membrane but includes internal membranes, notably vacuolar 

membranes (Richman et al., 2004). Furthermore, Cdc42p is one of several GTPases 

required for vacuolar homotypic fusion (Eitzen et al., 2001; Muller et al., 2001). 

Reorganization of vacuole-bound actin is needed for vacuolar homotypic fusion, and 

proteins of the Cdc42p-dependent processes necessary for actin remodeling are enriched 

on vacuolar membranes (Eitzen et al., 2002). Among numerous Cdc42p effectors and 

interacting proteins, the scaffold protein Bem1p is critical for proper Cdc42p activation 

(Irazoqui et al., 2003). After the Cln3p/Cdc28p-mediated initiation of the G1/S 

transcription program, the burst of late G1 phase Cdk activity involving Cln1,2p/Cdc28p 

and Pcl1,2p/Pho85p (another cyclin/Cdk complex) triggers a pathway that leads to 

phosphorylation of Cdc24p. Cdc24p is a Cdc42p guanine nucleotide exchange factor 

(GEF). Once at the bud site, Cdc24p binds Bem1p and Cdc42p-dependent actin 

reorganization necessary for bud emergence takes place (Bose et al., 2001; Gulli et al., 

2000; Moffat and Andrews, 2004). 

In this report, we show that Bem1p is required for vacuolar homotypic fusion and 

that the overall vacuolar compartment in bem1Δ cells is enlarged but fragmented, similar 

to cln3Δ cells. Furthermore, Bem1p is phosphorylated in a Cln3p-dependent manner at 

Ser72. A single S72D substitution in Bem1p (which mimics phosphorylation), or over-

expression of CDC42 or CDC24 suppresses the vacuolar fragmentation of cln3Δ cells. 

Conversely, substituting Ser72 in Bem1p with Ala blocks the ability of Cln3p to 
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promote vacuole fusion, in vivo and in vitro. The results we report here suggest that 

Cln3p impacts on vacuolar homeostasis through Bem1p and Cdc42p. 

 

Results 

 

Cln3p is required for an early step of vacuolar homotypic fusion 

We had previously shown that Cln3p is required for vacuolar homotypic fusion 

(CHAPTER II). Vacuolar homotypic fusion is composed of several distinct sequential 

steps: Priming, docking, and fusion (Wickner and Haas, 2000). To study the kinetics of 

the reaction, order of addition experiments can be done, whereby the fusion reaction 

progressively becomes resistant to the addition of various inhibitors, once the inhibitor-

sensitive step has been completed. For example, placement on ice blocks all steps and 

thus results in a “late-stage” inhibition profile, which is also similar to the GTP-γ-S 

inhibition profile. There are several GTPases involved in more than one step, including 

the last fusion step, which leads to a “late-stage” inhibition profile by GTP-γ-S (Eitzen et 

al., 2001; Eitzen et al., 2000). On the other hand, the ionophore FCCP blocks the 

docking step and it does not significantly inhibit the overall reaction if added late. 

Using this approach, we decided to determine the stage of the overall reaction that 

requires Cln3p for its completion, with cytosol from cells expressing HA-tagged Cln3p. 

We then added an anti-HA antibody as an inhibitor at various time points during the 

reaction, and measured the overall fusion activity at the end of the 90 min incubation 

period (Fig. 4.1). This experiment was done in parallel with several other reactions, to  



 

 

71  
 
 
 

 

 
Figure 4.1. Cln3p is required for an early step during vacuole fusion. A, A schematic of the experimental 
strategy is shown. B, Fusion reactions were incubated at 27°C with cytosol from a CLN3-HA strain. At the 
indicated times of addition (t1) shown on the x-axis, aliquots were removed and added to tubes containing 
anti-HA Ab, FCCP, GTP-γ-S, or buffer and incubated at 27°C. The activity from the buffer-containing 
tube at 27°C was set as 100% fusion activity. Another buffer-containing tube was incubated on ice and its 
activity was set at 0% fusion activity. As a control, aliquots of reactions with cytosol from the untagged 
isogenic strain were also added at various time points to tubes containing the anti-HA Ab (●) or buffer, 
and treated in the same manner as above. Reactions were incubated for a total of 90 min and then assayed 
for alkaline phosphatase, the relative values of which are shown on the y-axis. C, Fusion reactions were 
performed as described in Materials and Methods, using cytosol from cln3Δ cells and recombinant 
proteins from bacteria as indicated. Fusion was evaluated colorimetrically and the average and standard 
deviation of the relative fusion activities from at least three independent experiments is shown. 
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compare the profile of Cln3p withdrawal to the profiles of known fusion inhibitors (Fig. 

4.1). From this analysis, it appears that the reaction becomes resistant to removal of 

Cln3p with kinetics slightly earlier than the kinetics for FCCP addition (Fig. 4.1). Thus, 

once docking is complete, Cln3p is not required for vacuolar homotypic fusion. 

To further test whether the requirement for Cln3p in vacuole fusion is direct, and 

not somehow due to indirect effects resulting from Cln3p’s role in G1/S transcription, 

we performed the in vitro fusion reaction using cytosol from cln3Δ cells, supplemented 

with Cln3p expressed in bacteria (Fig. 4.1C). Addition of recombinant Cln3p, but not of 

the unrelated control protein Dcr2p (Pathak et al., 2004), increased fusion activity (Fig. 

4.1C). These results argue that there is a direct requirement for Cln3p in vacuole fusion.  

 

Bem1p impacts on vacuolar biogenesis, downstream of Cln3p 

To understand Cln3p’s vacuolar function, we reasoned that one of the numerous known 

regulators of homotypic fusion might be targeted by Cln3p. Possible downstream 

effectors of Cln3p/Cdc28p in vacuolar homotypic fusion may display the following 

properties: loss of function mutations should lead to vacuolar and overall cell size 

enlargement; loss of function mutations should lead to vacuolar fragmentation; and the 

putative effectors should be Cdk targets. Recent genome-wide studies focused on these 

properties, namely altered cell size (Jorgensen et al., 2002; Zhang et al., 2002); 

fragmented vacuolar morphology (Seeley et al., 2002); and proteins that are 

phosphorylated by Cdc28p in whole-cell extracts (Ubersax et al., 2003). There are more 

than a hundred gene products in each data set (Fig. 4.2A). For example, there were 181  
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Figure 4.2. Bem1p is required for vacuole fusion and vacuolar size homeostasis. A, Venn diagrams from 
the indicated genome-wide studies, with the number of genes corresponding to different phenotypes in 
each case is shown. B, Vacuole fusion using cytosol from untagged, CLN2-TAP, or BEM1-TAP tagged 
strains (see Table 2.1), carried out in the presence of rabbit IgG antibody. Each measurement was 
evaluated upon addition of rabbit IgG or buffer. The buffer-containing reactions were then incubated at 
27°C or ice (setting the 100% and 0% values of fusion activity). The IgG-containing reactions were 
incubated at 27°C. Fusion was evaluated colorimetrically and the average and standard deviation from at 
least three independent experiments is shown. C, Cell and vacuole size of live CDCFDA-stained BEM1+ 
and bem1Δ cells (in the diploid BY4743 background) was evaluated by flow cytometry. The number of 
cells is shown on the y-axis, and the x-axis indicates forward angle scattering, which is indicative of cell 
size (FSC), or vacuolar fluorescence (FL). The average and standard deviation from five independent 
measurements in each case is shown. 
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proteins that were significantly phosphorylated by Clb2p/Cdc28p (with a P-score ≥2, 

which is the logarithm of the amount of phosphate incorporated per ng of protein). Yet, 

only Cln3p itself and Bem1p were present in all three data sets (Fig. 4.2A). 

Using the in vitro fusion assay, we found that reactions with cytosol from BEM1-

TAP cells in the presence of inhibitory rabbit IgG (which targets the TAP domain) had 

significantly reduced fusion activity (Fig. 4.2B). Loss of Bem1p or Cln3p also leads to 

vacuolar fragmentation in about 40-60% of the cells {see Figs. 4.2-4.3A,B and (Han et 

al., 2003; Seeley et al., 2002)}. Furthermore, cells lacking BEM1 were larger overall 

(~40%, Figs. 4.2, 4.3) than wild-type cells and, importantly, their vacuolar compartment 

was also disproportionately enlarged (about 2-fold, Figs. 4.2, 4.3). Finally, Cdc28p 

readily phosphorylated Bem1p (P-score =4.4) in the phosphorylation assays by Ubersax 

et al (Ubersax et al., 2003). Consequently, we decided to evaluate Bem1p as a putative 

Cln3p/Cdc28p effector in vacuolar biogenesis.  

 To test whether Cln3p might mediate its effects in vacuolar biogenesis through 

Bem1p, we measured the overall cell size and vacuolar size of CLN3 and BEM1 mutant 

combinations, and also microscopically examined their vacuolar morphology. Loss of 

Cln3p or Bem1p leads to cellular and vacuolar enlargement and vacuolar fragmentation 

(Fig. 4.3). Conversely, cells expressing a stabilized form of Cln3p from the dominant 

gain-of-function CLN3-2D allele are smaller overall (Cross, 1988), and their vacuolar 

compartment is also smaller (see Fig. 4.3A and CHAPTER II). However, the CLN3-2D 

allele was unable to reduce cell and vacuole size in the absence of Bem1p (Fig. 4.3A). 

Furthermore, combined loss of Bem1p and Cln3p did not lead to an additive cellular or  
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Figure 4.3. Cln3p requires Bem1p to affect cell and vacuole size and vacuolar morphology. A, The 
relative vacuole size of the indicated strains (all in the diploid BY4743 background) was measured as in 
Fig. 2, and cell size was measured with a channelyzer. The average and standard deviation from four 
independent measurements in each case is shown. The indicated strains were also stained with FM4-64 to 
observe their vacuolar morphology by fluorescence microscopy. The percent of cells with vacuolar 
fragmentation and the number of cells scored in each case (n) is shown. B, The indicated parameters were 
measured as in A, using the strains shown (in the haploid BY4741 background). C, The DNA content of 
the indicated strains (in the diploid BY4743 background) was measured by flow cytometry. The number of 
cells is shown on the y-axis, and the x-axis indicates fluorescence. The percentage of budded cells (%B) is 
also shown. 
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vacuolar enlargement or vacuolar fragmentation (Fig. 4.3B). These results are consistent 

with the idea that Bem1p is required for Cln3p’s effects on cell and vacuole size, and 

that Bem1p and Cln3p do not affect vacuolar biogenesis through separate independent 

pathways. 

 Since Bem1p was required for Cln3p’s effects on cell and vacuole size (Fig. 

4.3A), we then evaluated cell cycle progression in bem1Δ CLN3-2D cells. In synthetic 

complete media at 30°C the population doubling times of bem1Δ and bem1Δ CLN3-2D 

cells were similar to each other (~200 min), but much slower than wild-type cells (~90 

min). The percentage of budded cells (budding index) was similar in bem1Δ and bem1Δ 

CLN3-2D cell populations (Fig. 4.3C). However, based on DNA content analysis by flow 

cytometry, it appears that bem1Δ cells carrying the CLN3-2D allele have a shorter G1 

phase (Fig. 4.3C). Thus, the CLN3-2D allele still accelerated initiation of DNA 

replication in bem1Δ cells, even though the cell and vacuolar size of these cells did not 

decrease. The irregular DNA content profiles of bem1Δ cells (Fig. 4.3C) might be due to 

aneuploidy, which has been previously reported to result from the bud emergence defect 

of bem1Δ cells (Bender and Pringle, 1991). 

 
Bem1p is phosphorylated in a Cdk-dependent manner 

It was mentioned in an earlier report that Bem1p might be a phosphoprotein, because 

phosphatase treatment leads to faster migration of Bem1p during SDS-PAGE (Leeuw et 

al., 1995). Indeed, immunoprecipitated TAP-tagged Bem1p migrated faster upon 

phosphatase treatment (Fig. 4.4A). Bem1p has four potential Cdk phosphorylation sites: 

two [ST]-P-X-[KR] sites at Thr-51 and Ser-72, and two [ST]-P sites at Thr-26 and Ser- 
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Figure 4.4. Bem1p is phosphorylated in a Cdk-dependent manner. A, Schematic of the TAP-tagged 
Bem1p. Bem1p-TAP was isolated from cells carrying a chromosomal TAP-tagged BEM1 copy (BEM1-
TAP, strain 7499374, see Table 2.1) by immunoprecipitation using IgG, and treated with calf intestinal 
phosphatase (CIP) as indicated. The samples were then processed for SDS-PAGE and immunobloting with 
the PAP reagent. B, Bem1p-TAP was isolated by tandem immunoprecipitations using IgG and Calmodulin 
beads. The IgG-immunoprecipitated material was treated with TEV protease as indicated, before 
immunoprecipitations with calmodulin beads. Immunobloting was done using the indicated antibodies. C, 
The immunoprecipitated samples from Bem1p-TAP cell extracts were treated as in B, and in addition with 
λ-phosphatase (λ-PPase) and phosphatase inhibitor (PPase-[I]) as indicated. The antibodies used for 
immunobloting are shown on the right, and the relative ratios of the signal intensities are shown at the 
bottom. D, The samples were processed as in C, but instead of phosphatase treatment, they were incubated 
with cytosolic extracts prepared from cells of the indicated genotype (200 µl in each case, containing 0.75 
mg of total protein). Before addition to the immunoprecipitated Bem1p, the extracts were pre-cleared on 
calmodulin beads. E, Extracts from CDC28+ and cdc28-as1 cells carrying cMyc-tagged Bem1p on a low 
copy plasmid (plasmid pDLB2226; see Table 2.2) were prepared using a urea extraction buffer and 
analyzed by SDS PAGE and immunoblotting with an anti-Myc antibody. The cells were treated with 
DMSO alone or 1 NM-PP1 (at 5 µM) for the indicated times. F, Vacuole fusion activity using cytosol 
from cdc28-as1 cells. DMSO alone or 1 NM-PP1 (at 5 µM for 15 min) was added as indicated. Fusion was 
evaluated colorimetrically and the average and standard deviation of the relative fusion activities from at 
least three independent experiments is shown. G, Extracts from cells of the indicated genotype (in the 
haploid BY4741 background) carrying cMyc-tagged Bem1p on a low copy plasmid (plasmid pDLB2226; 
see Table 2.2) were analyzed as in E. The same blot was sequentially processed first with an anti-Myc 
antibody and then with an anti-Pgk1p antibody. H, Extracts from synchronous cultures of wild-type 
haploid BY4741 cells carrying cMyc-tagged Bem1p on a low copy plasmid were obtained after release 
from a nocodazole block (used at 15 µg/ml for 4 hrs) at the indicated time points, and analyzed as in G. 
The corresponding percentage of budded cells in each case is shown at the bottom. Logarithmically 
growing cells (log) and cells that do not carry a cMyc-tagged copy of Bem1p (untagged) were also 
included in the analysis. 
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60, respectively. As a first step towards establishing possible Cdk-mediated 

phosphorylation events, we asked whether an antibody directed against phosphorylated 

[ST]-P recognized Bem1p immunoprecipitated from cell extracts. From these cell 

extracts, we sequentially immunoprecipitated Bem1p-TAP using IgG and Calmodulin 

beads (Fig. 4.4B). The immunoprecipitated protein was readily recognized by the PAP 

reagent, via the protein A domain (Fig. 4.4B). To use the anti phospho [ST]-P antibody, 

after immunoprecipitations with IgG beads, we cleaved the immunoprecipitated product 

with TEV protease to remove the protein A part of the TAP epitope. Immunoblotting 

with the anti phospho [ST]-P antibody recognized the cleaved Bem1p-CBP (which now 

lacks the protein A part of the TAP tag) (Fig. 4.4B). Recognition by the anti phospho 

[ST]-P antibody was phosphorylation-dependent, because the signal was significantly 

reduced after treatment with phosphatase (Fig. 4.4C). When normalized for Bem1p 

levels using an antibody that recognizes the remaining part of the TAP tag after TEV 

cleavage, treatment with phosphatase removed >70% of the signal (Fig. 4.4C, bottom). 

Furthermore, the Bem1p-associated phospho [ST]-P signal was about two times more 

intense when the immunoprecipitated product was incubated with extracts from cells 

carrying the CLN3-2D allele compared to cln3Δ extracts (Fig. 4.4D). 

 To further evaluate whether Cdc28p activity contributes to Bem1p 

phosphorylation, we used cdc28-as1 cells, which express an engineered version of 

Cdc28p that is inhibited by the ATP analog 1NM-PP1 (Bishop et al., 2000). These cells 

were then transformed with a low-copy centromeric plasmid carrying cMyc-tagged 

Bem1p (Irazoqui et al., 2003). Upon treatment with the inhibitory drug, the mobility of 
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Myc-tagged Bem1p increased on SDS-PAGE, consistent with dephosphorylation (Fig. 

4.4E). No such effects were seen upon treatment with DMSO or in the isogenic strain 

that does not carry the engineered cdc28-as1 allele (Fig. 4.4E). We had previously 

reported that shifting temperature-sensitive cdc28-1 cells to their non-permissive 

temperature led to vacuolar fragmentation (CHAPTER II). To further confirm that 

Cdc28p-associated kinase activity is required for vacuole homotypic fusion, we 

performed the in vitro fusion reaction using cytosol from cdc28-as1 cells, and we found 

that upon treatment with the inhibitory drug, fusion activity was reduced to ~40% of the 

activity when DMSO alone was added (Fig. 4.4F). Together, all of the above results 

support the hypothesis that Bem1p is phosphorylated in a Cdc28p-dependent manner in 

vivo. 

 We then examined the electrophoretic mobility of cMyc-tagged Bem1p in cells 

lacking mitotic or G1 cyclins (Fig. 4.4G). There was a slight mobility increase in cells 

lacking Cln3p (Fig. 4.4G; compare the cln3Δ and clb1Δ lanes that are equally loaded 

and electrophoresed next to each other; and see also Fig. 3.6, for related evidence). 

Finally, the electrophoretic mobility of Bem1p does not vary significantly during the cell 

cycle in synchronous cultures (Fig. 4.4H), but this perhaps is not surprising given that 

Cln3p/Cdc28p activity also does not oscillate during the cell cycle (Tyers et al., 1993; 

Tyers et al., 1992). 
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Ser72 is critical for Bem1p’s role in vacuolar homeostasis 

We then examined whether the Bem1p potential Cdk phosphorylation sites are 

conserved in other Saccharomyces species (Cliften et al., 2003; Kellis et al., 2003) and 

in Candida species for which genome information is available (Fig. 4.5A). Not 

surprisingly, all the sites are conserved in the sensu stricto Saccharomyces species (S. 

mikatae, S. kudriavzevii, S. paradoxus and S. bayanus). S. castellii is a more distantly 

related sensu lato Saccharomyces species, and alignment of Bem1p to its ortholog in this 

species is likely to be more useful (Cliften et al., 2003). In S. castellii only positions 26 

and 72 are conserved, while in the two Candida species positions 51 and 72 are 

conserved (Fig. 4.5A). The extreme N-terminus of the C. albicans Bem1p does not show 

significant conservation with the S. cerevisiae Bem1p, and the highlighted position may 

not correspond to Ser51. Overall, the only conserved site in all of these cases is Ser72 

(Fig. 4.5A), which is a preferred [ST]-P-X-[KR] Cdk consensus site. Ser72 also 

represents the first amino acid residue of the SH3-1 domain, which spans from position 

72 to 132, based on PROSITE software predictions (Gattiker et al., 2002). 

To test whether position 72 might be targeted for Cdk-mediated phosphorylation, 

we replaced Ser72 to Ala (to abolish phosphorylation) or Asp (to mimic 

phosphorylation) and evaluated the vacuolar morphology of bem1Δ or cln3Δ cells 

expressing these Bem1p mutants from low-copy plasmids as C- terminal cMyc fusions 

(Fig. 4.5B). The S72A and S72D mutants were expressed at levels similar to the wild- 
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Figure 4.5. Ser at position 72 in Bem1p is critical for vacuolar morphology. A, Bem1p amino acid 
sequences (positions 24-75) in Saccharomyces and Candida species. The numbering on top refers to S. 
cerevisiae Bem1p. The amino acids putatively targeted for Cdk-dependent phosphorylation are shown in 
bold, and the conserved Ser at position 72 is bracketed in red. B, Homozygous diploid WT, bem1Δ or 
cln3Δ cells (BY4743 background) were transformed with the low-copy empty vector, wild-type or mutant 
cMyc-tagged Bem1p as indicated. The transformants were then stained with FM4-64 to observe their 
vacuolar morphology by fluorescence microscopy. The percent of cells with vacuolar fragmentation and 
the number of cells scored in each case (n) is shown. Where indicated, the P value associated with a x2 
significance test is shown. C, Representative photographs of the indicated strains from B. The arrow 
indicates an example of vacuolar fragmentation. D, Homozygous diploid bem1Δ cells (BY4743 
background) carrying the CLN3-2D allele on a low copy plasmid were also transformed with the low copy 
wild-type or mutant cMyc-tagged Bem1p as indicated. Vacuolar morphology was evaluated as in B, 
above. E, Fusion reactions were performed as described in Materials and Methods, using cytosol from 
cells lacking both CLN3 and BEM1 (strain SMY01; Table 2.1) and recombinant proteins from bacteria as 
indicated. The average of the relative activities from two independent experiments is shown in each case. 
The data from the two experiments had a Pearson correlation value of 0.82, and a paired two-sample t-test 
value of 0.009. 
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type cMyc-tagged Bem1p, and their sub-cellular localization was indistinguishable from 

wild-type (data not shown). We noticed that introduction of the otherwise wild-type 

cMyc-tagged Bem1p on a low-copy centromeric plasmid only partially suppressed the 

vacuolar fragmentation of bem1Δ cells (Fig. 4.5B). The plasmid is clearly functional 

because it does suppress the bud emergence defect of bem1Δ cells {see below and 

(Irazoqui et al., 2003)}. The lack of strong suppression of the vacuolar fragmentation 

might be due to the relative under-expression of cMyc-tagged Bem1p from this plasmid 

compared to endogenous levels (Irazoqui et al., 2003). Consistent with this 

interpretation, cMyc-tagged Bem1p expressed from a high-copy (2µ) plasmid at levels 

no more than 2-fold higher compared to endogenous Bem1p (Irazoqui et al., 2003), 

showed strong suppression of the vacuolar fragmentation of bem1Δ cells (see below). 

Nonetheless, it is important to note that the fact that wild-type cMyc-tagged 

Bem1p from a low-copy plasmid only partially suppressed vacuolar fragmentation 

conveniently allows one to evaluate the effects of the S72D substitution even in bem1Δ 

(but CLN3+) cells. It was clear that S72D Bem1p suppressed vacuolar fragmentation 

better than wild-type Bem1p and, conversely, the S72A Bem1p mutant did not suppress 

at all the vacuolar fragmentation of bem1Δ cells (Fig. 4.5B,C). Because the S72A mutant 

is functional in bud emergence (see below), the lack of suppression in vacuolar 

fragmentation is unlikely to be due to the production of a non-functional unfolded 

protein. Finally, introduction of the S72D, but not the S72A, Bem1p mutant in cln3Δ 

cells also significantly suppressed their vacuolar fragmentation (Fig. 4.5B,C). 
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To further test the role of Ser72, we over-expressed Cln3p in cells carrying wild-

type or Ser72 Bem1p mutants (Fig. 4.5D). We found that cells carrying both the CLN3-

2D and BEM1-S72A alleles had fragmented vacuolar morphology (Fig. 4.5D). Thus, the 

S72A substitution blocks the ability of Cln3p to promote vacuole fusion in vivo. We then 

performed in vitro fusion reactions using cytosol from cells lacking both Cln3p and 

Bem1p, supplemented with various combinations of recombinant Cln3p, Bem1p, 

Bem1p-S72A, and Bem1p-S72D (Fig. 4.5E). The highest activity was observed upon 

addition of Bem1p-S72D with or without Cln3p, and the lowest upon addition of 

Bem1p-S72A. Also, addition of Cln3p alone or with Bem1p-S72A did not increase 

fusion activity (Fig. 4.5E). Therefore, these in vitro results completely support our in 

vivo evidence that Cln3p requires Bem1p to promote fusion. Furthermore, the S72A 

substitution in Bem1p blocks fusion, while the S72D mutation promotes it. Interestingly, 

addition of wild-type Bem1p also increased fusion activity in the absence of Cln3p, 

albeit not to the same level as Bem1p-S72D. Thus, it is possible that in the absence of 

Cln3p, when large amounts of exogenous Bem1p are added, Bem1p can still be modified 

in these extracts perhaps by other cyclin/Cdk complexes. Overall, our results from the in 

vitro fusion assays are in very good agreement with our in vivo evidence, and suggest 

that Cln3p and Bem1p play direct roles in vacuole fusion, with Bem1p acting 

downstream of Cln3p. 

Overall, these results strongly support the notion that the conserved Ser at 

position 72 in the first SH3 domain of Bem1p might be targeted for Cdk-mediated 

phosphorylation, and that the phosphorylated form promotes vacuolar homotypic fusion. 
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It is possible that the other sites may also be phosphorylated. However, because the 

S72D mutant significantly suppressed the vacuolar fragmentation of cln3Δ and bem1Δ 

cells in vivo and in vitro, while the S72A mutant did not, it is reasonable to conclude that 

even if additional sites are phosphorylated, phosphorylation of Ser72 has the most 

significant biological consequences for vacuolar biogenesis. 

 Since the electrophoretic mobility shift of Bem1p using SDS-PAGE was not very 

pronounced in the absence of Cln3p (Figs. 4.4G and 4.6B), we used two-dimensional gel 

electrophoresis to better resolve putative Bem1p isoforms (Fig. 4.6A). Indeed, an acidic 

isoform present in wild-type Bem1p (Fig. 4.6A, top panel) was absent in cells lacking 

Cln3p (Fig. 4.6A, middle panel), or in cells carrying Bem1p-S72A (Fig. 4.6A, bottom 

panel). We also noticed that Bem1p-S72A migrated slightly faster than wild-type Bem1p 

in standard one-dimensional SDS-PAGE (Fig. 4.6B). Together, these results strongly 

suggest that Bem1p is phosphorylated at Ser72 in a Cln3p-dependent manner in vivo. 

 Finally, we examined whether Bem1p expressed in bacteria could be 

phosphorylated in vitro. For this experiment we over-expressed CLN3 from a high-copy 

plasmid carrying epitope-tagged CLN3 under the control of a galactose-inducible 

promoter. It has been previously shown that over-expression of Cln3p allows for the 

recovery of detectable Cln3p-associated kinase activity against histone H1, and that most 

of that activity is Cdc28p-dependent (Tyers et al., 1993; Tyers et al., 1992). Indeed, the 

immunoprecipitated Cln3p had associated kinase activity against recombinant Bem1p, 

albeit to significantly lower levels compared to histone H1 (Fig. 4.6C). We also 

performed similar reactions using commercially available preparations of human  
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Figure 4.6. Gel electrophoresis analysis of Bem1p isoforms. A, Resolution of Bem1p isoforms by 2D gel 
electrophoresis. Extracts from cells of the indicated CLN3 genotype were transformed with the low copy 
wild-type or mutant cMyc-tagged Bem1p as indicated, subjected to 2D gel electrophoresis, and 
immunoblotting with an anti-Myc antibody as described in the Materials and Methods. A degradation 
product is indicated by an asterisk (*). A broken line circles the location of the acidic full-length isoform 
absent from the two lower panels. B, The samples from A were also analyzed by standard one-dimensional 
SDS-PAGE and immunoblotting. C, Phosphorylation of Bem1p in vitro. (Top) autoradiogram of kinase 
reactions using recombinant Bem1p as a substrate and commercial preparations of human Cdk/cyclin 
complexes and Cln3p-associated kinase activity from yeast cells, as indicated. Exposure time was 10 days. 
(Bottom) autoradiogram of kinase reactions using histone H1 as a substrate and the same kinase 
preparations as in the top panel. Exposure time was 4 hrs. 
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Cdc2/cyclinB and Cdk2/cyclinA complexes. Surprisingly, Cdc2/cyclinB apparently 

phosphorylated Bem1p (Fig. 4.6C). Whether this reflects “background” non-specific 

levels of activity of this preparation is unclear at this point. Note that although the Cdc2 

signal appears stronger than the signal from Cln3p (Fig. 4.6C), the commercial Cdc2 

preparation we used was much more active against histone H1 than the Cln3p-associated 

activity we obtained from yeast cells. 

 

Opposing role of Ser72 in bud emergence 

Since Bem1p was originally identified for its role in bud emergence (Bender and 

Pringle, 1991), we next examined whether our Bem1p Ser72 mutants have phenotypes 

associated with bud emergence. To quantify the bud emergence defect we measured the 

frequency of unbudded cells containing spindles. The S72A mutant was fully functional 

in bud emergence (Fig. 4.7), in contrast to its total lack of complementing activity in 

vacuole fusion (Fig. 4.5). Interestingly, the S72D substitution did not fully complement 

the bud emergence defect of bem1Δ cells (Fig. 4.7). Thus, while phosphorylation of 

Ser72 promotes vacuole fusion, it is not required for and it might even negatively affect 

bud emergence. 

 

Over-expression of Cdc42p or Cdc24p suppresses the vacuolar fragmentation of cln3Δ 

cells 

We next examined whether Cln3p’s requirement for vacuolar homotypic fusion might 

reflect perturbations of Cdc42p activity, since Bem1p is a well-established regulator of  
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Figure 4.7. Rescue of bud emergence defect in bem1Δ cells by different BEM1 alleles. Homozygous 
diploid WT or bem1Δ cells (BY4743 background) were transformed with the low copy empty vector, 
wild-type or mutant cMyc-tagged Bem1p as indicated. The cells were grown at 37 °C, fixed and processed 
for immunofluorescence to visualize tubulin. A, The percent of unbudded cells with spindles and the 
number of cells scored in each case (n) is shown. Where indicated, the P value associated with a χ2 
significance test is shown. B, Representative photographs of the indicated strains from A. Examples of 
unbudded cells with spindles are outlined. 
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Cdc42p, and Cdc42p is also required for the docking step of vacuolar homotypic fusion 

(Eitzen et al., 2001; Muller et al., 2001). To perhaps bypass the requirement for Cln3p, 

we activated the Cdc42p GTPase cycle by over-expressing wild-type CDC42, or its 

exchange factor CDC24, in cln3Δ cells and evaluated their vacuolar morphology. 

Remarkably, over-expression of CDC42 or CDC24 completely suppressed the 

fragmented vacuolar morphology of cln3Δ cells (Fig. 4.8A,B). On the other hand, over-

expression of CDC42 did not significantly suppress the vacuolar fragmentation of 

bem1Δ cells (Fig. 4.8B). CDC24 over-expression weakly suppressed the vacuolar 

fragmentation in bem1Δ cells (Fig. 4.8B). Overall, over-expression of Cdc42p, in the 

presence of Bem1p, is sufficient to bypass the requirement for Cln3p in vacuole fusion. 

Furthermore, in the in vitro fusion assay addition of Cdc42p did not rescue the fusion 

defect of bem1Δ cytosolic extracts (Fig. 4.8C), suggesting again that Bem1p is required 

for Cdc42p to promote fusion. Interestingly, when the extracts were supplemented with 

Bem1p-S72A together with Cdc42p there was an increase in fusion activity (~60%; Fig. 

4.8C), but not to the same extent as when the extracts were supplemented with Bem1p-

S72D (see Fig. 4.5E). 

 We next examined several other Bem1p amino acid substitutions at positions that 

are important for Bem1p’s biological roles (Irazoqui et al., 2003), for their ability to 

suppress vacuolar fragmentation of bem1Δ cells (Fig. 4.8D). For example, a P208L 

substitution affects interactions with various effectors and scaffolds; P355A interferes 

with a postulated conformational change of Bem1p; R369A inhibits interactions with 

phosphoinositides; and K482A affects interaction with Cdc24p (Irazoqui et al., 2003).  
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Figure 4.8. CDC42 or CDC24 over-expression suppresses the vacuolar fragmentation of cln3Δ cells. A, 
Diploid cln3Δ cells (BY4743 background) were transformed with high copy plasmids as indicated. The 
transformants were then stained with FM4-64 to observe their vacuolar morphology and photographed 
through phase optics (top panels) and by fluorescence (bottom panels). B, The same analysis as in A was 
also done for bem1Δ and WT cells, and the percent of cells with vacuolar fragmentation and the number of 
cells scored in each case (n) is shown. Where indicated, the P value associated with a χ2 significance test 
is shown. C, Fusion reactions were performed as described in Materials and Methods, using cytosol from 
bem1Δ cells and recombinant proteins from bacteria as indicated. Fusion was evaluated colorimetrically 
and the average and standard deviation of the relative fusion activities from at least three independent 
experiments is shown. D, Homozygous diploid bem1Δ cells (BY4743 background) were transformed with 
the empty high copy vector, or carrying wild-type or mutant cMyc-tagged Bem1p as indicated. The 
transformants were then stained with FM4-64 to observe their vacuolar morphology by fluorescence 
microscopy. The percent of cells with vacuolar fragmentation and the number of cells scored in each case 
(n) is shown. Where indicated, the P value associated with a χ2 significance test is shown. E, Cells lacking 
Bem1p are not defective in vacuolar segregation. Exponentially growing cells of the indicated genotype 
were transferred in medium containing FM4-64 for 1 h, washed, re-suspended in fresh medium and 
allowed to grow for another 4h before they were examined microscopically. The number of cells examined 
is shown in parentheses. The scored cells had a bud diameter less or equal to 0.4 of the mother cell’s 
diameter. The percentage of cells with the indicated vacuolar morphology is shown. 
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The R369A substitution did not have any effect (Fig. 4.8D), suggesting perhaps that 

lipid interactions are not important for Bem1p’s function in vacuolar homotypic fusion. 

To varying degrees, the other Bem1p mutants also significantly suppressed vacuolar 

fragmentation of bem1Δ cells (Fig. 4.8D). Notably, the weakest suppression, albeit still 

significant, was observed with the P208L substitution (Fig. 4.8D), which affects protein-

protein interactions through the SH3-2 domain (Irazoqui et al., 2003). 

 Finally, since the actin cytoskeleton plays a major role in vesicle transport in the 

bud and vacuole inheritance (Pruyne et al., 2004; Weisman, 2003), we decided to 

evaluate vacuolar segregation in bem1Δ cells. When we followed the “old” vacuolar 

compartment synthesized in previous cell divisions, we found that bem1Δ and wild-type 

cells equally distribute their vacuoles between the mother and the bud (Fig. 4.8E), unlike 

cln3Δ cells which have a weak but measurable defect (Fig. 3.8E and CHAPTER II). 

Furthermore, over-expression of CDC42 did not alter the vacuolar segregation of cln3Δ 

cells (data not shown). Overall, these results suggest that it is unlikely that the 

mechanism we describe here linking Cln3p and Bem1p significantly affects vacuole 

segregation. 

 

Discussion 

 

In this study we present experiments that link the G1 cyclin Cln3p with vacuole fusion, 

through Bem1p and the Cdc42p GTPase. We discuss our findings in the context of the 

known roles of these proteins and how they might affect vacuolar homeostasis. 
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 We were initially led to Bem1p because bem1Δ cells are large and their vacuolar 

compartment is also enlarged and fragmented, similar to the situation in cln3Δ cells (Fig. 

4.2 and CHAPTER II). The experiments we report here suggest that Bem1p is 

phosphorylated in a Cdk-dependent manner. The biological significance of Ser72 

phosphorylation is underscored by the fact that a substitution to Asp that probably 

mimics phosphorylation suppresses vacuolar fragmentation, while an Ala substitution 

does not (Fig. 4.5). Our data strongly point to the link between Cln3p and modification 

of Ser72 (Fig. 4.6). In vitro, however, it appears that multiple Cdk complexes can 

phosphorylate Bem1p. Addition of Bem1p from bacteria can still promote vacuole 

fusion in vitro, in the absence of Cln3p (Fig. 4.5E), suggesting that other cyclin/Cdk 

complexes might also be able to phosphorylate this exogenous pool of Bem1p. 

Furthermore, Clb2p/Cdc28p was previously shown to phosphorylate Bem1p (Ubersax et 

al., 2003) in vitro. This result was further extended in a follow-up study, where Loog and 

Morgan found that Clb5p/Cdc28p and Clb2p/Cdc28p phosphorylated Bem1p with equal 

efficiency (Loog and Morgan, 2005). Nonetheless, in living cells Cln3p certainly plays a 

unique role in vacuolar biogenesis because loss of any other cyclin does not lead to 

vacuolar fragmentation (CHAPTER II; Seeley et al., 2002).  

Cln3p abundance and activity does not significantly oscillate in the cell cycle 

(Tyers et al., 1993; Tyers et al., 1992), and the same seems to be true for the 

electrophoretic mobility of Bem1p in synchronously cycling cells (Fig. 4.4H). While it is 

thought that overall vacuolar biogenesis is the result of reciprocal control between 

vacuole fusion and fission (Peters et al., 2004), there is no evidence that either of these 
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processes oscillate in the cell cycle. Vacuolar inheritance is thought to be coordinated 

with the cell cycle and we have previously reported that loss of Cln3p leads to mild 

defects in vacuolar segregation (CHAPTER II and see also Fig. 4.8E), but there are no 

such defects in bem1Δ cells (Fig. 4.8E). Thus, although the mechanism we describe here 

linking Cln3p with Bem1p certainly impacts on the “steady-state” overall vacuolar 

homeostasis, it may not necessarily impart an oscillatory feature to it. 

On the other hand, Cln3p’s vacuolar roles strongly affect the cell size phenotypes 

associated with CLN3 mutations (see Fig. 4.3 and CHAPTER II). As we have discussed 

previously (CHAPTER II), this does not extend to all cell size mutants. Vacuolar 

enlargement is usually accompanied by cellular enlargement (Efe et al., 2005) but the 

converse is not necessarily true and not all large cell size mutants have large vacuoles. 

This is exemplified in double mutant cln1,2Δ cells, which are large overall although they 

have small vacuoles (CHAPTER II). A general correlation between vacuolar 

fragmentation and cell size also does not seem to exist (Fig. 4.2A). Nonetheless, our data 

also show that in bem1Δ cells CLN3 over-expression accelerated initiation of DNA 

replication (Fig. 4.3C), without a concomitant reduction in cell size (Fig. 4.3A). All 

these observations suggest that Cln3p’s role in vacuole fusion is separate from and 

probably does not impact on the other function of Cln3p in accelerating initiation of 

DNA replication. 

 How might cyclin-dependent phosphorylation of Bem1p impact on vacuole 

fusion? Cdc42p is involved in actin dynamics (Etienne-Manneville, 2004; Irazoqui and 

Lew, 2004) and vacuole fusion (Eitzen et al., 2001; Muller et al., 2001). Importantly, the 
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temporal requirement of Cln3p or Cdc42p for fusion appears to be similar. Loss of either 

Cln3p or Cdc42p leads to vacuolar fragmentation, but once the docking step of fusion is 

completed neither Cln3p (Fig. 4.1) nor Cdc42p (Eitzen et al., 2001; Muller et al., 2001) 

are required anymore for fusion. While it is clear that non-cytoskeletal actin is found on 

the surface of vacuoles and remodeling of this actin pool is required for vacuole fusion 

(Eitzen et al., 2002), it is not known how it contributes to fusion. This requirement is 

distinct from the actin cytoskeleton-dependent processes of vacuole segregation (Pruyne 

et al., 2004; Weisman, 2003). Since we find no evidence for a defect in vacuolar 

segregation in bem1Δ cells (Fig. 4.8D), there is no reason to think that the cyclin-

dependent phosphorylation of Bem1p we describe here affects this process. 

Consequently, our data placing Bem1p downstream of Cln3p (Figs. 4.3,4.5), and the 

ability of Cdc42p to suppress vacuole fragmentation in cln3Δ cells (Fig. 4.8), probably 

reflect the non-cytoskeletal role of actin for vacuole fusion that has been proposed by the 

Wickner and Mayer labs (Eitzen et al., 2001; Eitzen et al., 2002; Muller et al., 2001). 

Organelle bound actin could also act as a fusion barrier, which must transiently 

disassemble for vesicles to dock, while later promoting actin assembly is thought to 

somehow help the docked vesicles to finally fuse (Eitzen, 2003). Based on chemical 

inhibition experiments, it appears that the actin depolymerizing drug latrunculin B 

inhibits the last fusion step of vacuole homotypic fusion (Eitzen et al., 2001). 

Interestingly, the F-actin binding and stabilizing drug jasplakinolide inhibited the 

docking step of fusion only, and not the last latrunculin B-sensitive step (Eitzen et al., 

2001). Given that Cln3p (Fig. 4.1) and Cdc42p (Eitzen et al., 2001; Muller et al., 2001) 
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are not required after the docking step of fusion; the fact that Ser72 of Bem1p has 

distinct and even opposing roles in vacuole fusion vs. bud emergence (Figs. 4.5 and 4.7); 

and the fact that other Bem1p mutants that affect bud emergence do not affect vacuole 

fusion (Fig. 4.8), it is possible that the effects we are observing reflect the “actin as a 

barrier” model of fusion (Eitzen, 2003). 

 Does cyclin-dependent phosphorylation of Bem1p affect other Bem1p-regulated 

processes? The S72A substitution is incapable of suppressing vacuolar fragmentation in 

bem1Δ cells, but it is still fully active in bud emergence (Figs. 4.5 and 4.7). On the other 

hand, the S72D substitution fully suppresses vacuole fragmentation but it only partially 

suppresses bud emergence (Figs. 4.5 and 4.7). These results suggest that Bem1p has 

distinct roles in bud emergence and vacuole fusion. While presumably locking Ser72 to 

the phosphorylated state (in the S72D mutant) suffices to suppress vacuolar 

fragmentation (Fig. 4.5), it might adversely affect bud emergence (Fig. 4.7). 

The notion that Bem1p’s roles in vacuole fusion and bud emergence may be 

distinct is also suggested by the fact that other Bem1p mutants (for example the K482A 

mutant) that were shown to be unable to suppress bud emergence defects (Irazoqui et al., 

2003), retain full complementing ability in vacuole fusion (Fig. 4.8D). Even the P208L 

mutant, which cannot complement bud emergence (Irazoqui et al., 2003), partially 

suppressed vacuolar fragmentation (Fig. 4.8D). The P208L mutant affects interactions 

between the SH3-2 domain of Bem1p with various effectors, including the Cla4p kinase. 

Interestingly, loss of Cla4p leads to vacuolar fragmentation (Seeley et al., 2002), and it is 

possible that interactions mediated by the SH3-2 domain of Bem1p might be important 
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for vacuole fusion, explaining the incomplete suppression of vacuolar fragmentation we 

got from the P208L mutant (Fig. 4.8D). 

In any case, since the actin remodeling necessary for vacuole fusion is not the 

same as the rearrangement of the actin cytoskeleton that takes place during bud 

emergence, probably identical mechanisms/effectors do not operate in both processes. It 

should also be noted that while Cln1p and Cln2p have established roles in bud 

emergence (Bose et al., 2001; Gulli et al., 2000; Moffat and Andrews, 2004), they do not 

affect vacuole fusion (CHAPTER II). Finally, although there are no known protein-

protein interactions mediated by the SH3-1 domain of Bem1p, it is possible that Ser72 

might impact on vacuole fusion through interactions with effectors that have specific 

roles in fusion. Given the scaffold role of Bem1p and the fact that addition of Cdc42p in 

the presence of the Bem1p-S72A mutant did not promote fusion as efficiently as the 

Bem1p-S72D mutant alone (compare Figs. 4.8C and 3.5E), it is possible that 

phosphorylation of Ser72 is important for some kind of protein-protein interactions that 

promote vacuole fusion. Future experiments need to address in full detail the 

mechanisms that account for the differences between Bem1p’s roles in vacuole fusion 

and bud emergence. 
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CHAPTER V 

SUMMARY AND PERSPECTIVES 

 

We found a novel role of Cln3p in vacuolar fusion and biogenesis independent of its 

well-established function in the activation of G1 transcription. Cln3p/Cdc28p directly 

regulates vacuolar homotypic fusion and vacuolar copy number by a post-translational 

mechanism. Overall vacuole size disproportionately increases in cln3Δ cells, which 

accounts for most of their cell size increase. 

 Furthermore, we identified a scaffold protein, Bem1p, as the target of 

Cln3p/Cdc28p in vacuolar fusion. Bem1p is required for the vacuolar function of Cln3p 

both in vivo and in vitro. Our results indicate that Ser72 on Bem1p is phosphorylated by 

Cdc28p in a Cln3p-dependent manner and that Cln3p’s vacuolar function is executed by 

the regulation of this phosphorylation. In contrary, bud emergence was promoted by an 

unphosphorylated Ser72 isoform but not by a phosphorylated Ser72 isoform. Over-

expression of Cdc42p GTPase bypasses the requirement of Cln3p for vacuolar 

homotypic fusion only in the presence of Bem1p, suggesting that the Ser 72 

phosphorylation by Cln3p/Cdc28p impacts on the regulation of Bem1p/Cdc42p-

dependent actin polymerization and as a result vacuolar homotypic fusion. 

 Our results are remarkable in several respects. First, they contain the first 

demonstration in yeast that a cell cycle regulator directly regulates an organelle’s 

membrane fusion. Second, they suggest that organelle biogenesis and membrane 

trafficking, rather than the conventional molecule-to molecule interactions, should be 
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taken into account to better understand cell size control. Third, they provide high 

resolution details of a molecular mechanism such that phosphorylation of a single amino 

acid on a protein is exclusively dependent on a specific cyclin in vivo. Fourth, they add 

an important, rare illustration to the currently brief list of examples of how Cdk-

dependent phosphorylation of a single amino acid on a protein gives rise to a distinct and 

significant biological consequence, as seen in the differential effect of Bem1p’s Ser72 

phosphorylation on vacuolar homotypic fusion versus bud emergence. 

 Actin polymerization is of fundamental importance in that it provides the 

structural basis of cytoskeleton and cell morphogenesis and motility, as well as it plays a 

role in vacuolar homotypic fusion and neural signaling. A further mechanistic study on 

how a single phosphorylation on Bem1p results in such a significant impingement on 

Cdc42p activity and actin polymerization will provide an important insight into these 

actin-involving processes. 
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