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ABSTRACT 

 

 

Circular Sensor Array and Nonlinear Analysis  

of Homopolar Magnetic Bearings.  (December 2006) 

Robert Kyle Wiesenborn, B.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Alan B. Palazzolo 

 

Magnetic bearings use variable attractive forces generated by electromagnetic 

control coils to support rotating shafts with low friction and no material wear while 

providing variable stiffness and damping.  Rotor deflections are stabilized by position 

feedback control along two axes using non-contacting displacement sensors.  These 

sensor signals contain sensor runout error which can be represented by a Fourier series 

composed of harmonics of the spin frequency.  While many methods have been 

proposed to compensate for these runout harmonics, most are computationally intensive 

and can destabilize the feedback loop.  One attractive alternative is to increase the 

number of displacement sensors and map individual probe voltages to the two 

independent control signals.  This approach is implemented using a circular sensor array 

and single weighting gain matrix in the present work.  Analysis and simulations show 

that this method eliminates runout harmonics from 2 to n-2 when all sensors in an ideal 

n-sensor array are operational.  Sensor failures result in reduced synchronous amplitude 

and increased harmonic amplitudes after failure.  These amplitudes are predicted using 

derived expressions and synchronous measurement error can be corrected using an 

adjustment factor for single failures.  A prototype 8-sensor array shows substantial 

runout reduction and bandwidth and sensitivity comparable to commercial systems. 

Nonlinear behavior in homopolar magnetic bearings is caused primarily by the 

quadratic relationship between coil currents and magnetic support forces.  Governing 

equations for a permanent magnet biased homopolar magnetic bearing are derived using 

magnetic circuit equations and linearized using voltage and position stiffness terms.  

Nonlinear hardening and softening spring behavior is achieved by varying proportional 
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control gain and frequency response is determined for one case using numerical 

integration and a shooting algorithm.  Maximum amplitudes and phase reversal for this 

nonlinear system occur at lower frequencies than the linearized system.  Rotor 

oscillations exhibit amplitude jumps by cyclic fold bifurcations, creating a region of 

hysteresis where multiple stable equilibrium states exist.  One of these equilibrium states 

contains subharmonic frequency components resulting in quasiperiodic rotor motion.  

This nonlinear analysis shows how nonlinear rotor oscillations can be avoided for a wide 

range of operation by careful selection of design parameters and operating conditions. 
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CHAPTER I 

INTRODUCTION
*
 

1.1  OVERVIEW 

Active magnetic bearings (AMBs) provide an opportunity to address many 

classical rotordynamics problems in novel ways not possible with conventional roller or 

fluid film bearings.  Frictionless, wear-free operation and the ability to vary stiffness and 

damping coefficients for different operating conditions make magnetic bearings 

attractive alternatives for many challenging applications.  Magnetic bearings have been 

utilized in turbomachinery such as turbines and compressors, aircraft engines, flywheel 

energy storage systems and even for attitude control of satellites.  Application in such 

sensitive rotordynamic systems necessitates extensive research into AMB control 

systems and nonlinear behavior to reliably levitate spinning rotors and control unbalance 

vibrations. 

Magnetic bearings use forces generated by coil-wound electromagnets to support 

static rotor weight and control dynamic rotor oscillations due to mass unbalance.  

Magnetic forces are actively varied using currents determined by position feedback 

control.  Due to the quadratic nature of these magnetic forces, magnetic bearings are 

inherently nonlinear systems.  These nonlinearities result in bifurcation behavior as 

system parameters are varied, sensitivity to initial conditions, and steady state response 

with subharmonic frequency components.  There are two types of magnetic bearings 

which are classified by the flux path of electromagnetic poles.  In heteropolar magnetic 

bearings pole pairs are arranged circumferentially around the rotor so that flux paths are 

primarily radial in nature.  In homopolar magnetic bearings pole pairs are aligned axially 

along the shaft so that flux paths have both radial and axial components.  For the 

homopolar configuration magnetic polarities of circumferential tracks around the rotor 

do not change during rotation, reducing parasitic drag effects.  While extensive research 
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has been performed on the nonlinear characteristics of heteropolar magnetic bearings, 

nonlinearities in homopolar magnetic bearings have not yet been fully studied.   

Behavior of active magnetic bearings is strongly influenced by the sensor 

feedback signal used by the controller to determine control currents.  Magnetic bearings 

are particularly susceptible to sensor disturbance due to high speed applications 

requiring extreme precision.  In AMB control systems, an accurate measurement of the 

shaft centerline displacement is vital to maintain stability and to avoid unnecessary 

control currents.  However, non-contacting transducers commonly used to measure 

centerline displacement of rotating shafts are subject to measurement errors due to 

sensor runout.  Although a direct measurement of geometric axis position is desired, 

these sensors measure the gap distance between a reference position and the shaft 

surface and are subject to errors caused by surface defects within the target area.   

 This thesis investigates the behavior of AMB control systems by nonlinear 

analysis and evaluates a novel position sensor to improve bearing performance by 

reducing runout error in the position signal.  In Chapter II, sensor runout reduction is 

evaluated for a circular array of eddy current transducers by numerical simulation and by 

testing on a prototype 8-sensor array.  Equations are developed to predict runout and 

synchronous measurement error in the position signal after individual sensor failures.  In 

Chapter III, nonlinear frequency response behavior of a homopolar radial magnetic 

bearing is studied using numerical integration to identify stable orbital equilibrium states 

and a shooting algorithm is used to determine unstable rotor orbits and Floquet 

multipliers.  Poincaré maps and bifurcation diagrams are used to characterize 

quasiperiodic rotor oscillations near nonlinear resonance.  The information gathered in 

this study will help improve magnetic bearing performance through a better 

understanding of nonlinear magnetic bearing frequency response and provides a method 

to improve controllability by removing runout disturbances from the feedback path. 
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1.2  LITERATURE REVIEW 

Rejection of periodic disturbances in magnetic bearing position sensor systems 

has been studied for both unbalance compensation and sensor runout reduction.  While 

unbalance compensation requires filtering the sensor signal at the spin frequency, runout 

reduction requires filtration of both synchronous components and higher harmonics of 

running speed.  Unbalance compensation techniques were developed to allow the rotor 

to spin about its inertial axis rather than its geometric axis if sufficient clearance is 

allowed.  This capability provides an advantage over traditional roller bearings since 

unbalance vibrations are not transmitted to the housing.  Runout reduction techniques 

were developed to provide a clean displacement signal representative of actual rotor 

position alone.  In AMB control systems, sensor runout noise present in the feedback 

loop is passed on to the controller, causing unnecessary control currents and undesirable 

high frequency rotor motion.  This closed-loop problem makes many open-loop 

designed runout reduction techniques insufficient for magnetic bearing applications.  

Although the intended goals of unbalance compensation and runout reduction differ, 

similar techniques have been used to solve both problems. 

Elimination of synchronous displacement signal components has been 

accomplished by many researches using various methods.  Knospe [1] examined the 

performance of notch filters installed between the sensor and controller for rejection of 

synchronous signals.  To address the problems of phase-induced instability caused by 

these open-loop filters, Herzog [2] proposed a generalized notch filter which allowed 

arbitrary pole placement for decentralized operation.  These filtering methods were 

effective only for a narrow speed range and examined only unbalance excitation at the 

spin frequency. 

Alternative approaches to disturbance rejection involve adaptive feedforward 

techniques in which compensation signals are injected into the control loop to cancel or 

reduce the effect of the disturbance.  These adaptive methods are categorized by the 

techniques used to determine the appropriate compensation signal.  Adaptive runout 

compensation was first documented by Bently Nevada Corporation [3] by storing a 
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measured waveform recorded during slow-roll operation to characterize total runout 

without the contribution of inertial vibration.  Useful displacement data results from 

subtracting the stored waveform from measured vibration signals.  This method relied on 

the assumption that total runout is invariant for all operating conditions.  To identify in-

situ runout, Kim and Lee [4] used an extension of the influence coefficient method for 

two-plane rotor balancing to determine Fourier coefficients of the disturbance signal for 

a perfectly balanced rotor.  Setiawan et. al. [5,6,7] used an adaptive approach based on 

the Lyapunov stability criterion to characterize the disturbance for both unbalance and 

sensor runout compensation.  In this method, the disturbance is estimated and 

automatically updated using a feedback scheme until the estimate converges.  Two 

algorithms were considered, one for runout cancellation alone and another for 

cancellation of both runout and mass unbalance. 

Separation of unbalance vibration and synchronous runout signals is necessary 

because both disturbances occur at the same frequency.  The extended influence 

coefficient method circumvented this problem by assuming a perfectly balanced rotor so 

that synchronous disturbances were due solely to runout.  Other researchers developed 

ways to isolate synchronous runout from mass unbalance.  To identify the contribution 

of unbalance, Setiawan et. al. characterized the displacement signal at two different rotor 

speeds [6] and later isolated unbalance disturbance by bias current excitation [7].  By 

removing unbalance effects from the runout compensation signal, the rotor can be spun 

about its geometric rather than its inertial axis. 

Although adaptive compensation of periodic disturbances has been proven to 

successfully remove runout from the sensor signal, such methods are computationally 

intensive.  Calculation time for adaptive algorithms introduces potentially destabilizing 

phase lag into the feedback loop.  Two novel sensing systems have been proposed that 

utilize multiple sensors to reduce runout disturbances at the sensor level rather than in 

the controller.  These sensing systems require amplification and summation of individual 

sensor outputs to produce independent position signals.  Chapman [8] introduced a 

cylindrical capacitive sensor that eliminates even runout harmonics by geometric 
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averaging.  Ahn and Han [9] altered the angular size of each capacitive sensor segment 

to remove the third harmonic and showed that a capacitive sensor having n equal sensing 

pairs could remove all but the (2kn-1) and (2kn+1) harmonics of runout.  In a similar 

study of a circular array of multiple eddy current probe-type transducers, Li [10] showed 

that the weighted sum of n individual sensor outputs could eliminate harmonics from 2 

to n-2 of the fundamental set.  Li’s sensor array is robust to individual sensor failures 

after modification of the weighting matrix.  The sensor array is described in greater 

detail in Chapter II of this thesis. 

 Nonlinearities in rotordynamic systems have been studied extensively by many 

researchers.  In rotordynamics, nonlinear response is often caused by shaft support 

structures such as fluid-film, roller, journal and magnetic bearings used to control 

unbalance vibrations.  Magnetic bearings are nonlinear supports due to the quadratic 

relationship between coil current and magnetic forces.  Maslen et al. [11] showed that 

magnetic bearings can produce rotor forces in an arbitrary direction using bias 

linearization.  With this technique, linear control of the nonlinear AMB system is 

achieved by bias flux supplied either by permanent magnets or by biased coil currents.  

While such linear control techniques are able to stabilize the rotor and control unbalance 

vibrations, magnetic bearings exhibit nonlinear response characteristics that must be 

understood to improve performance and extend operating limits. 

 Extensive research has been performed to understand the nonlinear behavior of 

heteropolar magnetic bearings.  Chinta and Palazzolo [12,13] used numerical integration 

and trigonometric collocation to locate periodic orbits and applied Floquet theory to 

determine their local stability and bifurcation behavior.  Jumps and subharmonic 

response were investigated by varying rotor speed, imbalance and weight in this study.  

Ji and Hansen [14] used the method of multiple scales to determine steady state 

amplitude and phase relationships of nonlinear vibrations.  Here, jumps to stable 

periodic orbits by saddle node bifurcation were illustrated by frequency response curves.  

Amplitude modulated response was obtained for increased forcing amplitudes by Hopf 

bifurcations. 
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 Homopolar magnetic bearings are a more recent development in AMB 

technology.  While nonlinearities in homopolar bearings have not been fully addressed 

in the literature, several researchers have studied other characteristics of their operation.  

Kasarda et. al. [15] investigated the reduced power losses of homopolar bearings due to 

hysteresis, eddy currents and windage by theory and experimentation.  Kim [16] 

furthered these results by detailed magnetic field modeling of flux paths to characterize 

eddy current losses.  Na [17] and Li [10] developed fault tolerant homopolar magnetic 

bearings using a current distribution matrix that was reconfigurable upon pole failure.  

The only nonlinear study of homopolar bearings by Kenny [18] focused on methods to 

reduce power losses due to electromagnetic nonlinearities.  The present research 

develops governing nonlinear equations for a radial homopolar magnetic bearing and for 

a linearized magnetic bearing model using bias linearization principles.  Frequency 

response curves for the nonlinear magnetic support force are compared to the linearized 

model.  Bifurcations near nonlinear resonance frequencies are analyzed by Floquet 

theory and subsequent rotor behavior.  These bifurcations result in sudden amplitude 

jumps and quasiperiodic rotor oscillations.   

 

1.3  RESEARCH OBJECTIVES 

 The purpose of the present work is to improve understanding and performance of 

active magnetic bearing control systems.  This thesis focuses on two different aspects of 

magnetic bearings that require further analysis.  The first involves reduction of periodic 

disturbances caused by sensor runout in the position feedback signal.  The method 

investigated attempts to remove runout harmonics from the sensor signal while adding 

fault tolerance of individual sensor failures.  Second, nonlinear response of homopolar 

magnetic bearings is studied to identify locally stable and unstable periodic orbits and to 

characterize the effects of rotor speed changes on steady state response.  Results 

obtained through these investigations can be used to operate magnetic bearings at greater 

speeds and to support larger and more imbalanced rotors. 
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1.4 ORGANIZATION 

 Chapter II analyzes the performance of the circular sensor array for reduction of 

runout disturbance in the magnetic bearing position sensor system.  The sensor array is 

described in detail and two approaches for fault tolerance are explained.  For one of 

these approaches, numerical simulations are used to simulate individual sensor failures 

and the amplitudes of signal harmonics are compared to analytical predictions for 

different failure configurations.  A prototype drive circuit is developed to verify 

operational theory and an 8-sensor array is tested to compare performance to a 

commercial position transducer system. 

 Chapter III explores the nonlinear behavior of homopolar magnetic bearings 

using numerical methods.  Nonlinear equations of motion are developed to model a 6 

pole homopolar magnetic bearing configuration.  These equations are used to form a 

linear model based on bias linearization principles.  Orbital equilibrium amplitudes of 

the nonlinear system are determined using direct numerical integration for stable orbits 

and using a shooting algorithm for unstable rotor orbits.  These results are compiled as 

frequency response curves that are contrasted with the linear model for increasing and 

decreasing rotor speeds.  At frequencies near nonlinear resonance, quasiperiodic rotor 

orbits are characterized using bifurcation diagrams and Poincaré maps. 

 Chapter IV summarizes the results from the sensor array analysis and nonlinear 

study.  These results are used to support conclusions that can be used to improve 

performance of magnetic bearing control systems and to select optimal operating 

conditions.  Future research in these areas is suggested for further study. 
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1.5 ORIGINAL CONTRIBUTIONS 

• Simulate output of an n-sensor array for a rotor with a defined runout pattern in the 

time and frequency domains.  Determine amplitude attenuation of runout harmonics 

achieved by the ideal sensor array.  Characterize effects of single and opposing pair 

sensor failures on array outputs. 

• Test a prototype 8-sensor array to determine actual sensitivity, linearity, noise 

amplitude, bandwidth, and runout reduction performance. 

• Determine stable and unstable orbital equilibrium states of a homopolar radial 

magnetic bearing using numerical integration and shooting.   

• Develop amplitude and phase frequency response curves for a homopolar radial 

magnetic bearing with proportional control gains that result in softening spring 

behavior. 

• Analyze bifurcations of stable equilibrium orbits by Floquet theory using 

numerically determined Floquet multipliers, Poincaré maps and bifurcation 

diagrams. 
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CHAPTER II  

CIRCULAR SENSOR ARRAY 

2.1  INTRODUCTION 

A vital yet often overlooked component of magnetic bearing control systems is 

the sensor used to monitor rotor position.  Sensor signals are used by the AMB controller 

to determine the control currents required to improve performance or stabilize the rotor.  

Ideally, signals generated by the sensing system should provide an exact measurement of 

system states.  In practice, noise enters the control system through the sensors in various 

forms that degrade controller performance and can lead to instability.  In rotordynamic 

applications, sensor noise disturbance can often be attributed to runout.  This chapter 

describes the development of a fault-tolerant circular array of eddy current proximity 

probes to measure rotating shaft deflection with reduced runout error.  The objective of 

the sensor array is to reduce runout noise in the sensor signal and provide fault tolerance 

of individual sensor failures. 

The sensors commonly used to measure displacement of a rotating shaft are non-

contacting transducers that use eddy currents to measure the air gap between the rotor 

surface and probe tip.  Since the shaft centerline is not measured directly, the sensor 

signal includes measurement error called sensor runout.  There are many causes of 

sensor runout that can arise from differences in shaft geometry, alignment, and material 

inhomogeneity.  Runout can be divided into two categories: mechanical runout and 

electrical runout.  Mechanical runout is the result of changes in the distance between the 

probe tip and rotor surface not caused by inertial vibratory forces.  This error is caused 

by shaft imperfections such as non-circular cross-sections, rotor alignment problems, 

and surface roughness.  Electrical runout results from changes in the measured 

displacement signal due to inhomogeneous electromagnetic properties around the shaft 

circumference.  These effects become more pronounced the closer defects are to the 

sensing surface.  Shaft coatings and surface treatments can significantly alter material 

inductance, limiting the ability to form eddy currents. Other common causes of electrical 
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runout are material defects such as voids, inclusions or residual magnetic fields near the 

shaft surface.  Both mechanical runout and electrical runout are detected by eddy current 

transducers.  This total runout error results in sensor signals that can be represented by a 

Fourier series expansion composed of harmonics of the running speed.  

[ ]∑
∞
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++=
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k
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The total sensor signal is the summation of vibration response to rotor unbalance, 

environmental noise and runout disturbance.  Synchronous vibration control using 

magnetic bearings commonly employs PD gains applied to the combined sensor signal, 

resulting in unnecessary control currents at harmonics of spin frequency.  Filtering 

methods to remove runout from the sensor signal are not effective in many AMB control 

systems due to phase lag and limited speed range.  Adaptive methods require potentially 

destabilizing computation time and additional hardware to remove runout.  One 

attractive alternative to these approaches is to use a weighted sum of individual sensor 

outputs from a circular sensor array to remove certain runout harmonics.  

This chapter explores the sensor array method of runout reduction by analysis, 

numerical simulation and by testing of a prototype system.  Amplitude attenuation of 

runout harmonics is predicted using an analytical expression.  Actual amplitudes of array 

output harmonics are verified by idealized simulations of an unfailed 8-sensor array and 

16-sensor array.  Fault tolerance of individual sensor failures is investigated using 

numerical simulations of the 8-sensor and 16-sensor arrays for certain single and double 

probe failures.  To evaluate actual sensor array performance for the unfailed case, a 

prototype 8-sensor array is built and tested.  Design considerations for development of 

the prototype 8-sensor array are explained by analysis of the working principles of eddy 

current transducers.  Finally, testing of the prototype sensor array is performed on two 

different test fixtures and compared to a similar commercial transducer system using 

only two probes. 
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2.2  DESCRIPTION OF SENSOR ARRAY 

 The sensor array analyzed in this thesis is made up of an even number of 

identical eddy-current proximity probes equally spaced around the rotor diameter.  All 

probes are in the same plane whose normal is parallel to the target rotor axis of rotation.  

This ensures that individual probes measure the same circumferential track at different 

angular positions.  Each probe is set to the same nominal gap distance when the rotor is 

at geometric center.  In this way, any one point on a perfectly balanced rotating shaft 

produces the same output at each probe location.  Probes are aligned so that their axes 

intersect at a point coincident with the geometric center of the magnetic bearing 

assembly.  This configuration is shown using 8 equally-spaced probes in Figure 2.1. 

 

    

 

Figure 2.1  Circular 8-sensor array [10] 

 

Within its operating range, probe voltage is a linear function of the air gap 

between the probe tip and the target surface.  Sensor sensitivity (ξ) describes this 

proportional change in sensor voltage with gap distance.  For commercial eddy current 

transducers, sensitivity is nearly constant for air gaps from 10 to 90 mils [19].  It is 

assumed that gap distance always falls within these limits so that the voltage output of 

each probe in an n-sensor array can be described by 
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gaps
dV ⋅= ξ            (1) 

where Vs and dgap represent n-by-1 vectors of individual sensor voltages and gap 

distances, respectively. 

 Radial magnetic bearing control systems require two independent displacement 

signals for the two orthogonal control directions.  When more than two sensors are used 

to measure rotor displacement, individual sensor outputs must be manipulated to provide 

these two independent signals.  Li [10] showed that n individual sensor voltages can be 

used to determine these two displacement signals using an appropriate linear mapping 

called the weighting gain matrix (WGM).  This mapping can be written 

TFd

v

v

V

x

x

SA
ξ=








=

2

1
                (2) 

where T is the WGM and F describes the failure state of the sensors in the array.  The   

2-by-n WGM is determined by solving a set of linear constraint equations for the failure 

state of the sensor array.  Failure state is indicated by an n-by-n diagonal matrix of ones 

and zeros with zero entries corresponding to the failed sensors.  Simulation results 

showed that an n-sensor array using the appropriate WGM can successfully remove 

runout harmonics from 2 to n-2 of the fundamental harmonic set when all sensors are 

operational. 

The sensor array provides an additional benefit in the form of fault-tolerance of 

sensor failures.  Fault-tolerance is desirable in magnetic bearing control systems because 

component failures can be catastrophic at high speeds.  Recently, magnetic bearings 

have been considered for flywheel energy storage systems used in satellites, where 

component loss can cause mission failure.  Traditional approaches to position sensing in 

magnetic bearings cannot accommodate individual sensor failures.  The sensor array 

improves on these approaches by maintaining reliability in the presence of certain sensor 

failure states.   

There exist 2
n
-1 possible sensor failure combinations, each with a unique WGM 

that may be used to eliminate runout harmonics.  These WGMs can be stored in a look-

up table and the appropriate WGM swapped in when a failure occurs.  Li examined this 
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swap-in approach (SIA) and showed that reliability of the sensor array increases with the 

number of sensors.  This reliability analysis considered two criteria for failure of the 

sensor array in the presence of individual sensor faults.  The sensor array was considered 

successful if both the error in output invariance and magnitude of the k
th

 harmonic of 

runout fall within tolerances dictated by the robustness of the controller.  The error in 

output invariance was described in [10] by the 2-by-2 matrix 

ITFE −Θ=            (3) 

where Θ is an n-by-2 transformation matrix from rotor position to probe gap distances.  

This error describes the relationship between actual and measured rotor position at any 

instant in time.  The magnitude of the k
th

 harmonic sensed along the j
th

 control direction 

was described in [10] by 
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where θi represents the angle from the positive x1 control direction to the i
th

 sensor 

location.  This expression reduces to unity for k = 1 and k = n-1 and to zero for    k = 2 to 

k = n-2 when all sensors are operational.  This magnitude represents the relative 

amplitude of signal harmonics in the sensor array outputs as compared to the frequency 

content of a single sensor signal. 

 The swap-in approach requires extensive hardware to detect sensor failures, store 

WGMs, and load the proper WGM after failure occurs.  The present analysis is intended 

to determine the effectiveness of using the no-swap-in approach (NSIA), where a single 

WGM is used regardless of the failure state.  The WGM chosen for this study 

corresponds to the no-failure state of an n-sensor array.  Using this strategy, the 

contribution of each sensor in the 8-sensor array to x1 (j=1) and x2 (j=2) array output 

signals can be shown by the unfailed WGM  

 










−−−

−−−
=

1768.02500.01768.001768.02500.01768.00

1768.001768.02500.01768.001768.02500.0
8T  

(5) 
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regardless of the failure state of the sensors in the array.  Similarly, the 16-sensor array 

possesses a unique WGM for the unfailed state shown by 

 






−−−−−−−

−−−−




 −−−
=
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1155.00884.00478.000478.00884.01155.01250.0
16T

(6) 

to scale individual sensor voltages for all failure configurations.  The weighting gain 

matrix can easily be determined for any generalized n-sensor array using the expressions 

ii
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n

T

n

T

θ

θ
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2

cos
2

,2

,1

=

=

           (7) 

for each row when all sensors are operational.  In the swap-in approach, individual 

WGM entries must be adjusted from this ideal case to compensate for sensor failures.  

However, additional hardware and memory requirements make this approach difficult to 

implement.  The no-swap-in approach studied in this thesis requires less hardware 

support, but results in measurement errors when individual sensors fail.  This analysis 

quantifies the NSIA measurement error resulting from sensor runout for different failure 

configurations. 

Performance of the sensor array using the NSIA is studied by analysis and 

numerical simulation of various sensor failures and by prototype testing on a spinning 

rotor.  This research shows that the sensor array can reduce runout error for both ideal 

and actual conditions.  Runout error is judged by the amplitude of displacement signal 

harmonics with and without the sensor array in different failure modes.  Measurement 

error as a result of sensor failures using the NSIA is judged by the amplitude of 

synchronous and DC harmonics compared to the unfailed case.  It will be shown that this 

measurement error can be predicted if the failure location is known and then corrected 

by applying an amplitude adjustment factor.    
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2.3  NUMERICAL SIMULATION AND RESULTS 

 The runout reduction performance of an ideal sensor array is evaluated by 

numerical simulation for selected possible failure configurations.  This simulation uses 

an arbitrary runout profile to generate individual sensor voltages with frequency-rich 

runout disturbance.  Array output voltages are obtained from individual sensor voltages 

using the NSIA by applying the no-failure WGM for all failure combinations.  

Performance of the sensor array for each case is judged by the amplitudes of the first n 

harmonics of each sensor array output in comparison to the signal from only one sensor.  

The effect of sensor failure on the DC component of array output is analyzed to prevent 

DC shifts.  Next, an expression is derived to predict the amplitudes of output harmonics 

after sensor failure.  Simulations of single sensor failures at different angular positions 

are performed and compared to analytical predictions for an 8-sensor array and for a 16-

sensor array.  Finally, failure of opposing sensor pairs is simulated and compared to 

analytical results for both the 8-sensor and 16-sensor arrays.  

 Several assumptions must be made to facilitate analysis and simulation and to 

isolate runout effects.  The model sensor array studied here is perfectly constructed 

according to the above description using ideal components.  The assumption of ideal 

components results in identical sensitivity, bandwidth, and behavior of all sensors in the 

array.  Sensor failure is assumed open-circuit so that failed probe voltage is identically 

zero.  Ideal construction means that all sensors record the same voltage when a perfect 

rotor is centered in the array.  For small assumed motions, curvature effects of the 

sensing surface are not considered.  In addition, measurement noise due to 

electromagnetic interference, sensor cross-talk and material reluctance is neglected in 

this simulation.  In the model, rigid probe mounting to an isolated support structure is 

assumed so that measurements may be considered as absolute rather than relative 

displacements.  Furthermore, it is assumed that the rotor is perfectly balanced and 

experiences no lateral vibration so that signal variations are due solely to runout. 

 To evaluate disturbance rejection by the sensor array, a sample runout signal 

containing known harmonics is generated by the simulation software.  A desirable test 
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pattern contains equal amplitude harmonics so that the relative attenuation of each 

harmonic can be verified.  A rotational frequency of 10 Hz is assumed for generation of 

these harmonics, though this frequency has no other effect on the idealized array since 

bandwidth effects are neglected.  To generate such a signal, n sinusoidal functions with 

integer multiples of the fundamental frequency are summed using MATLAB to simulate 

the runout sensed by a single probe.  Each sinusoid is assumed to have an amplitude of 

2.0 mils and is phase-shifted to create a smooth signal when all harmonics are combined.  

Each probe is assumed to have a constant sensitivity of 200 mV/mil.  A simulation of the 

8-harmonic runout signal as recorded by a single sensor is shown with its frequency 

spectrum in Figure 2.2.  Runout reduction performance of the sensor array is compared 

to this single sensor signal in all numerical simulations. 
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Figure 2.2  Runout signal used for numerical simulation in time and frequency domains 

 

 Since the simulation assumes a perfectly centered and balanced rotor, the signal 

observed by each sensor in the array is simply a phase shifted version of this runout 

pattern.  These n sensor signals are stored in an n-by-t array of probe voltages where t is 

the length of the time record.  This array is multiplied with the WGM according to (2) 
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for every possible combination of one and two-sensor failures to produce sensor array 

outputs for the x1 and x2 control directions at each time step.  Frequency content of 

sensor array output signals is determined using a discrete Fourier Transform (DFT) for 

each failure case. 

To simplify the DFT algorithm, the number of samples in the time record is 

selected as a power of 2.  The total number of samples in the time record is dictated by 

the desired frequencies to be observed.  In the simulation, these desired frequencies are 

exactly known since the signal was generated by summing individual harmonics.  To 

observe the synchronous component of runout, the period of the time record must be at 

least twice the fundamental period of rotation.  To observe the n
th

 harmonic of runout, 

the number of samples in the time record must be at least 2n.  This simulation considers 

n full rotations with 2
12

 samples per rotation to exceed the frequency limits and ensure 

sufficient resolution in the time domain for the 8-sensor and 16-sensor arrays. 

 The effect of various sensor failures is examined for both an 8-sensor and a 16-

sensor array.  These configurations are selected because equal probe spacing results in 

two probes located along each measurement direction (on-axis) with additional probes 

located between the two orthogonal measurement axes (off-axis).  This allows both 

direct and indirect measurements of rotor position and provides redundancy in case of 

failure.  For rotor diameters less than 3 inches, more than 16 standard eddy-current 

probes will not easily fit in a circular array with the required gap distances.  A 

numbering convention is adopted to reference each sensor in the generalized array.  The 

sensors are numbered counter-clockwise from 1 to n, beginning with the sensor along 

the positive x1-direction as shown in Figure 2.1. 

 This analysis considers the no-swap-in approach (NSIA) in which a single WGM 

is used for all failure states.  This WGM is optimized for best performance during the 

no-failure state using (7).  As predicted by Li [10], simulation results show that the 

unfailed sensor array will successfully remove runout harmonics 2 to n-2 of the 

fundamental set using this WGM.  Simulated single axis output of the unfailed 8-sensor 
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array is shown with its frequency spectrum in Figure 2.3 when the WGM in (5) is 

applied to individual sensor signals. 
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Figure 2.3  Attenuation of runout harmonics using 8-sensor array, no failures 

 

In comparison to Figure 2.2, the runout-compensated output harmonics of the unfailed  

8-sensor array represent a vast improvement over the total runout signal as sensed by a 

single sensor.  Harmonics 2 to 6 are substantially reduced for this case below 10
-12 

mV.  

By eliminating these intermediate harmonics at the sensor level, magnetic forces 

generated by the AMB system may approach the pure synchronous response necessary 

to efficiently control unbalance vibration.  This simulation is later confirmed by 

experimentation on a prototype sensor array with no sensor failures. 

 As described previously, a fundamental advantage of the sensor array for runout 

reduction is fault-tolerance to individual sensor failures.  The swap-in approach (SIA) 

accommodates sensor failures by updating the WGM used to map individual sensor 

outputs to two independent control signals.  The present analysis (NSIA) explores the 

effects of single sensor failures on array outputs when the original WGM is applied for 

all failure states.  Desirable features of the total sensor signal after failure include 

maximum attenuation of super-synchronous harmonic amplitudes and invariance of the 

synchronous and DC signal components.  While these desired signal attributes are easily 

attained using the SIA, probe failures limit array performance using the NSIA.  Sensor 
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array performance in meeting these competing requirements is evaluated in relation to 

single sensor output by the metrics of runout error and measurement error, respectively. 

 Sensor failures limit runout reduction ability of the sensor array when the WGM 

is not swapped to compensate for individual probe loss.  In this analysis, runout error is 

measured by the amplitude of super-synchronous harmonics of sensor array outputs 

relative to single sensor measurements without runout compensation.  The goal of the 

sensor array is to reduce runout error to negligible levels for all signal harmonics.  As 

shown previously, a fully functioning sensor array can completely remove harmonics 2 

to n-2 of the fundamental set to give zero runout error for these harmonics.  Sensor 

failure analysis will show that the sensor array can reduce runout error even with some 

sensors failed.  Runout error is shown for each fundamental harmonic in each output 

signal in the following analysis of sensor failures. 

Synchronous signal components should not be altered by the sensor array 

because the array is unable to differentiate between synchronous runout and useful 

vibration data without using adaptive methods.  In addition, the DC component of sensor 

array output provides a measure of average rotor position that must be maintained near 

the magnetic bearing center to ensure symmetric magnetic forces.  With the NSIA sensor 

array, sensor failure alters these lower signal harmonics as well.  This change in 

synchronous and DC signal harmonics after sensor failure is termed measurement error.  

Measurement error is quantified by the amplitude of synchronous and DC signal 

components of sensor array output relative to single sensor signals.  This error is 

assumed to be zero for the ideal unfailed sensor array but must remain within allowable 

tolerances after individual sensor failures.  These allowable tolerances are dictated by the 

robustness of the AMB controller and by permissible rotor motion.  In the following 

sensor failure analysis, measurement error is shown for synchronous and DC harmonics 

in each output signal.  It will be shown that DC measurement error can be lowered by 

controlling probe bias voltage and that synchronous amplitude can be preserved after 

sensor failures by application of an amplitude adjustment factor that varies with failure 

location.   
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 The DC measurement error after sensor failure can be reduced by minimizing the 

difference between nominal gap voltage and failed probe voltage.  Commercial eddy-

current transducers are biased to a non-zero negative voltage at the nominal gap 

distance.  This negative bias is sufficient for single sensor measurements, but becomes 

problematic in the sensor array.  When a sensor fails by open-circuit fault, its output 

becomes zero rather than the nominal gap bias voltage.  It is assumed that all probe 

failures can be classified as open-circuit or that probe voltage can be zeroed upon failure.  

The resulting difference in individual probe voltages results in a large DC shift of the 

array output after failure as shown in Figure 2.4. 
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Figure 2.4  DC shift using 8-sensor array, sensor 1 failed, non-zero bias 

 

This problem can be circumvented by ensuring that failed sensor voltage is close to the 

nominal gap voltage of an individual sensor.  In this way, failed sensors have less impact 

on the DC component of array outputs when the actual position of the rotor is near the 

bearing center.  This gap bias can be accomplished either by biasing all probes to zero at 

the nominal gap distance or by introducing circuitry to substitute nominal gap voltage 

upon probe failure.  The former method is used for the following simulations of sensor 

failures to prevent large DC measurement errors. 

In this analysis of sensor failure effects using the NSIA, runout error and 

measurement error are shown for single and double probe failures in various failure 

configurations.  Sensor failures are shown to cause a reduction in sensor array 

performance for all failure configurations.  For each harmonic, the magnitude of the 

error terms is related to failed probe location and the number of sensors in the array.  

The 8-sensor array is studied first to characterize the effect of failed probe location on 
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array outputs for single failures.  Next, the 16-sensor array is studied to show the effect 

of increasing the number of sensors in the array.  Finally, selected double probe failures 

are simulated for both the 8-sensor and 16-sensor arrays.  This analysis will show how 

runout error and measurement error are affected by sensor failures and provides a means 

to correct measurement error if it exceeds allowable tolerances. 

In the ideal conditions of this simulation, the relative amplitude performance 

metrics of runout error and measurement error can be predicted using the k
th

 harmonic 

magnitude 
kj ,γ  described by (4).  This magnitude reduces to zero for harmonics 2 to n-2 

and equals one for harmonics 1 and n-1 when all probes are operational.  After probe 

failures, the new magnitude of the k
th

 harmonic F

kj ,γ  is found by subtracting the 

contribution of each failed sensor from the no-failure magnitude NF

kj ,γ .  Substituting the 

expression for the i
th

 WGM entry given in (7) into this difference for each control 

direction gives 
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where n
F
 denotes the number of failed sensors.  Expanding the sine and cosine products 

using trigonometric identities, these expressions can be greatly simplified for single 

sensor failures as 

( )

( )θγγ

θγγ

2cos22
1

2cos22
1

,2

,1

−−=

+−=

n

n

NF

k

F

k

NF

k

F

k

              (9) 

where the second term represents single failure measurement error for k = 1 and runout 

error for  k > 1. These magnitudes can be used to predict synchronous measurement error 

and runout error for any failure combination for an arbitrary n-sensor array using the 
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NSIA.  This is verified by numerical simulation of selected sensor failure configurations 

on the 8-sensor and 16-sensor arrays for both single and double probe failures. 

SINGLE SENSOR FAILURES 

 

 Single sensor failures result in lower synchronous amplitudes and less 

attenuation of runout harmonics in comparison to the unfailed array.  Failure of the i
th

 

sensor is simulated by setting the i
th

 diagonal entry in the F matrix to zero.  Sensor array 

output voltages for the x1 and x2 control axes are determined according to (2) for all 

possible failure states.  Frequency content of these independent position signals is 

determined by taking the DFT of each simulated voltage over n full shaft rotations using 

the runout profile previously described.  The resulting fundamental harmonic amplitudes 

contained in each position signal are shown in Table 2.1 for sensor 1 failure in the         

8-sensor array.  Corresponding amplitudes for the no-failure case and predicted single 

failure amplitudes using (9) are also shown for reference. 

 

Table 2.1  Harmonic amplitudes for 8-sensor array, sensor 1 failed 

k simulation simulation

1 1.0 0.7498 0.7500 0.9998 1.0000

2 0 0.2499 0.2500 0.0000 0.0000

3 0 0.2501 0.2500 0.0000 0.0000

4 0 0.2499 0.2500 0.0000 0.0000

5 0 0.2501 0.2500 0.0000 0.0000

6 0 0.2501 0.2500 0.0000 0.0000

7 1.0 0.7493 0.7500 0.9990 1.0000

j=1 j=2

F

k1γ F

k2γNF

k
γ

 

 

This data shows good correlation between predicted harmonic amplitudes and simulation 

results for sensor 1 failure.  Differences between simulation results and calculated 

amplitudes can be attributed to the discrete representation of sensor voltages and 

truncation errors in the DFT algorithm.  Note that failure of sensor 1 has no effect on the 
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x2 array output signal since the T2,1 entry in the 8-sensor WGM is zero.  Physically, the 

failed sensor is located at an angular position for which motion in the x2-direction 

cannot be detected.  To show how certain sensor failures can affect both array outputs, 

harmonic amplitudes for the 8-sensor array are shown in Table 2.2 for sensor 2 failed. 

 

Table 2.2  Harmonic amplitudes for 8-sensor array, sensor 2 failed 

k simulation simulation

1 1.0 0.8837 0.8232 0.8837 0.8232

2 0 0.1767 0.1768 0.1767 0.1768

3 0 0.1769 0.1768 0.1769 0.1768

4 0 0.1767 0.1768 0.1767 0.1768

5 0 0.1769 0.1768 0.1769 0.1768

6 0 0.1768 0.1768 0.1768 0.1768

7 1.0 0.8830 0.8232 0.8830 0.8232

j=1 j=2

F

k1γ F

k2γ
NF

k
γ

 

 

According to this simulation, failure of either sensor 1 or sensor 2 results in increased 

runout error and increased synchronous measurement error.  In fact, failure of any one 

sensor has a similar effect on sensor array performance to differing degrees.  These 

results can be generalized for single failure of any one sensor in an n-sensor array.  

Failure of any one sensor that lies along the x1 or x2 measurement axis will alter the 

position signal for that axis but will not affect the other array output signal.  Failure of 

any one sensor that does not lie directly on a measurement axis will affect both array 

output signals.  In order to understand how these off-axis sensor failures affect each 

array output signal, simulations of single sensor failures are performed for the 16-sensor 

array. 

 The 16-sensor array is useful for analysis of sensor failures that do not lie along a 

measurement axis because multiple probes are located between the x1 and x2 directions.  

This allows simulation of single sensor failures that have unequal effects on each array 

output signal.  For this simulation, the runout signal is modified to include 16 equal 
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amplitude harmonics.  As before, runout harmonics are modeled with 400 mV 

amplitudes and the rotor is assumed to spin at a frequency of 10 Hz.  Single axis output 

of the unfailed 16-sensor array with this modified runout profile is shown with its 

frequency spectrum in Figure 2.5. 
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Figure 2.5  Attenuation of runout harmonics using 16-sensor array, no failures 

 

This shows that the 16-sensor array also removes harmonics of runout from 2 to n-2 

when all sensors are operational.  Elimination of additional harmonics from the sensor 

signal is one benefit of increasing the number of sensors in the array.  Other advantages 

of increasing the quantity of sensors are found by examination of array outputs after 

single sensor failure.   

As shown by (9), the change in harmonic amplitudes after single sensor failure is 

inversely proportional to the number of sensors in the array, resulting in less 

measurement and runout error for the 16-sensor array compared to the 8-sensor array.  

This is shown for failure of sensor 1 of the 16-sensor array in Table 2.3. 
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Table 2.3  Harmonic amplitudes for 16-sensor array, sensor 1 failed 

k simulation simulation

1 1.0 0.8744 0.8750 0.9994 1.000

2 0 0.1249 0.1250 0.0000 0.000

3 0 0.1250 0.1250 0.0000 0.000

4 0 0.1250 0.1250 0.0000 0.000

5 0 0.1251 0.1250 0.0000 0.000

6 0 0.1251 0.1250 0.0000 0.000

7 0 0.1248 0.1250 0.0000 0.000

8 0 0.1249 0.1250 0.0000 0.000

9 0 0.1249 0.1250 0.0000 0.000

10 0 0.1250 0.1250 0.0000 0.000

11 0 0.1253 0.1250 0.0000 0.000

12 0 0.1249 0.1250 0.0000 0.000

13 0 0.1251 0.1250 0.0000 0.000

14 0 0.1250 0.1250 0.0000 0.000

15 1.0 0.8735 0.8750 0.9983 1.000

j=1 j=2

F

k1γ F

k2γNF

k
γ

 

 

For sensor 1 failure in the 16-sensor array, simulation results agree well with predicted 

values for each harmonic.  As expected, the synchronous measurement error is lower for 

the 16-sensor array than for the 8-sensor array when the same sensor is failed.  Similarly, 

runout error is reduced for single sensor failure in the 16-sensor array.  Since sensor 1 is 

located along the x1 measurement axis, failure of this sensor does not affect the x2 

position signal.  To study failure effects on both array output signals, an off-axis sensor 

must be failed. 

In contrast to the 8-sensor array, there are 3 off-axis sensors between each on-

axis sensor of the 16-sensor array.  After failure of one of these off-axis sensors, the 

change in harmonic amplitudes contained in each array output signal is related to the 

location of the failed sensor.  This is shown for sensor 2 failure in the 16-sensor array in 

Table 2.4.  Note that sensor 2 is in a different location for the 16-sensor array than for 

the 8-sensor array. 
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Table 2.4  Harmonic amplitudes for 16-sensor array, sensor 2 failed 

k simulation simulation

1 1.0 0.8938 0.8845 0.9821 0.952

2 0 0.1154 0.1155 0.0478 0.048

3 0 0.1155 0.1155 0.0478 0.048

4 0 0.1155 0.1155 0.0478 0.048

5 0 0.1156 0.1155 0.0479 0.048

6 0 0.1155 0.1155 0.0479 0.048

7 0 0.1153 0.1155 0.0478 0.048

8 0 0.1154 0.1155 0.0478 0.048

9 0 0.1154 0.1155 0.0478 0.048

10 0 0.1155 0.1155 0.0478 0.048

11 0 0.1158 0.1155 0.0480 0.048

12 0 0.1154 0.1155 0.0478 0.048

13 0 0.1156 0.1155 0.0479 0.048

14 0 0.1155 0.1155 0.0478 0.048

15 1.0 0.8929 0.8845 0.9810 0.952

j=1 j=2

F

k1γ F

k2γNF

k
γ

 

 

Since sensor 2 in the 16-sensor array is located near the x1 measurement axis, failure of 

this sensor has a greater effect on runout and measurement error in the x1 direction.  In 

fact, failure of sensor 4 in the 16-sensor array has the same effect on the x2 signal 

harmonics as sensor 2 failure has on the x1 signal harmonics.  Failure of sensor 3 in the 

16-sensor array impacts both array outputs equally because this sensor is located at the 

same angle from each measurement axis. 

 These simulations show good correlation between predicted values of the k
th 

signal harmonic and ideal sensor array operation for single sensor failures.  Such failures 

result in increased runout and measurement error for all failure configurations.  The 

magnitude of these error terms in each array output signal is related to failure location 

and the number of sensors in the array.  Although sensor failure location cannot be 

selected in practice, errors can be reduced by increasing the number of sensors.  If single 

sensor failure still results in measurement error that exceeds allowable tolerances, 



 

 

27 

synchronous amplitude can be adjusted after sensor failure to provide a better 

measurement of actual rotor vibrations. 

 Since single sensor failures result in lower measured amplitudes of synchronous 

vibration, actual rotor vibration may be larger than the sensor array indicates.  In 

applications where this difference cannot be tolerated, synchronous amplitude can be 

adjusted to correct measurement error if the failure location is known.  This amplitude 

adjustment factor is applied to the erroneous array outputs as 
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where 
jx

v′  is the erroneous sensor array position signal.  For the synchronous k = 1 

harmonic, this amplitude adjustment factor becomes 
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for the x1 and x2 measurement directions.  To calculate this adjustment factor, failure 

detection circuitry is required to locate the failed sensor.  Although the primary 

advantage of using the NSIA for sensor failures is reduced hardware and memory 

requirements, the memory space needed to store these adjustment factors is less than the 

size of the different WGMs used in the SIA.  In addition, implementing the amplitude 

adjustment factor would only require replacement of 2 values rather than the 2n values 

that would make up a new WGM.  Other than this additional circuitry, the major 

drawback to synchronous amplitude adjustment is increased runout error compared to 

the unadjusted array output signals.  This is shown for the 8-sensor array with sensor 2 

failure after amplitude adjustment in Table 2.5. 

 

 

 

 



 

 

28 

Table 2.5  Harmonic amplitudes for 8-sensor array, sensor 2 failed, amplitude adjusted 

k unadjusted adjusted

1 1.0 0.8837 0.8232 1.0735

2 0 0.1767 0.1768 0.2147

3 0 0.1769 0.1768 0.2148

4 0 0.1767 0.1768 0.2147

5 0 0.1769 0.1768 0.2149

6 0 0.1768 0.1768 0.2148

7 1.0 0.8830 0.8232 1.0727

NF

k
γ NF

k
γ F

k

F

k 21 γγ =

 

 

This simulation shows a small increase in runout error and a decrease in measurement 

error after synchronous amplitude is adjusted for sensor 2 failure.  Relative amplitude of 

the synchronous sensor signal is not exactly unity due to slight differences in the 

predicted and actual values.  Despite this difference, the amplitude-adjusted sensor array 

output provides a much better indication of actual rotor vibration than the unadjusted 

output after single sensor failure.   

DOUBLE  SENSOR FAILURES 

 

The concepts shown for single sensor failures can be extended to describe the 

effects of multiple sensor failures.  Two sensor failures result in runout harmonics that 

depend on the location of each failed sensor.  This analysis only considers failure of 

opposing pairs of sensors because the prototype 8-sensor array is designed for this 

failure configuration to reduce common-mode noise and provide better thermal stability.  

The effect of opposing sensor pair failure and other two-sensor failure geometries can be 

predicted using (8).  To study the effect of failed sensor pairs that lie along a 

measurement axis, simulation results are shown in Table 2.6 for sensors 1 and 5 failed 

using the 8-sensor array.  These two sensors lie along the x1 measurement axis in the    

8-sensor array.  The increase in runout and measurement error caused by failure of an 

additional on-axis sensor can be seen by comparison of these results to single sensor 1 

failure shown previously in Table 2.1. 
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Table 2.6  Harmonic amplitudes for 8-sensor array, sensors 1 & 5 failed 

k simulation simulation

1 1.0 0.4999 0.5000 0.9998 1.000

2 0 0.0000 0.0000 0.0000 0.000

3 0 0.5003 0.5000 0.0000 0.000

4 0 0.0000 0.0000 0.0000 0.000

5 0 0.5003 0.5000 0.0000 0.000

6 0 0.0000 0.0000 0.0000 0.000

7 1.0 0.4995 0.5000 0.9990 1.000

j=1 j=2

F

k1γ F

k2γ
NF

k
γ

 

 

This simulation shows good agreement with harmonic magnitude predictions for each 

measurement axis.  The x1 sensor signal contains significant runout and measurement 

error for odd harmonics but completely eliminates even harmonics.  If synchronous 

amplitude was adjusted using an expression similar to (10), the x1 sensor signal would 

act like an unfailed 4-sensor array.  The x2 sensor signal is unaffected by this failure 

configuration because both T2,1 and T2,5 entries in the 8-sensor WGM are zero.  Similar 

results are obtained for opposing sensor pair failure along the x2 direction, where even 

harmonics are eliminated in the x2 sensor signal and the x1 sensor signal is unaffected.  

These results support the generalized findings from single sensor failure analysis for   

on-axis sensor failures. 

 According to single sensor failure results for off-axis failures, loss of an opposing 

pair of sensors that do not lie directly on a measurement axis should alter both sensor 

array output signals.  To show this effect, simulation results for failure of sensor 2 and 

sensor 6 in the 8-sensor array are shown with predicted harmonic amplitudes in Table 

2.7.  Since these two sensors are located at equal angles from the two perpendicular 

measurement directions, failure of this off-axis pair should produce equal attenuation of 

signal harmonics in each array output signal.  Additional runout and measurement error 

caused by failure of the opposing off-axis sensor can be seen by comparison to single 

sensor 2 failure shown previously in Table 2.2. 
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Table 2.7  Harmonic amplitudes for 8-sensor array, sensors 2 & 6 failed 

k simulation simulation

1 1.0 0.7904 0.6464 0.7904 0.646

2 0 0.0000 0.0000 0.0000 0.000

3 0 0.3537 0.3536 0.3537 0.354

4 0 0.0000 0.0000 0.0000 0.000

5 0 0.3537 0.3536 0.3537 0.354

6 0 0.0000 0.0000 0.0000 0.000

7 1.0 0.7898 0.6464 0.7898 0.646

j=1 j=2

F

k1γ F

k2γ
NF

k
γ

 

 

This simulation shows less runout and measurement error for off-axis sensor pair failure 

as compared to failed sensor pairs that lie directly on a measurement axis.  While only 

one array output signal is affected by loss of an on-axis sensor pair, both array output 

signals are affected by off-axis sensor pair failure.  For both opposing sensor pair failure 

scenarios, even harmonics are eliminated in sensor array outputs as predicted using (8).  

However, simulation results show that synchronous measurement error is less than 

expected and runout error for the 7
th

 harmonic is greater than expected.  This suggests 

that synchronous amplitude cannot be accurately predicted and adjusted to correct 

measurement error after failure of two opposing sensors. 

 The results from single sensor failures in the 16-sensor array showed that the 

effect of off-axis sensor failure is related to the location of the failed sensor.  To extend 

these results to failure of opposing sensor pairs, simulation results for failure of sensor 2 

and sensor 10 of the 16-sensor array are shown in Table 2.8.  This sensor pair is located 

nearer the x1 measurement axis and can be expected to affect the x1 array output signal 

to a greater degree.  The change in runout and measurement error caused by failure of 

the opposing sensor in this larger array can be seen by comparison to single sensor 2 

failure in the 16-sensor array shown previously in Table 2.3. 
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Table 2.8  Harmonic amplitudes for 16-sensor array, sensors 2 & 10 failed 

k simulation simulation

1 1.0 0.7911 0.7690 0.9668 0.904

2 0 0.0000 0.0000 0.0000 0.000

3 0 0.2310 0.2310 0.0957 0.096

4 0 0.0000 0.0000 0.0000 0.000

5 0 0.2312 0.2310 0.0958 0.096

6 0 0.0000 0.0000 0.0000 0.000

7 0 0.2307 0.2310 0.0955 0.096

8 0 0.0000 0.0000 0.0000 0.000

9 0 0.2308 0.2310 0.0956 0.096

10 0 0.0000 0.0000 0.0000 0.000

11 0 0.2316 0.2310 0.0959 0.096

12 0 0.0000 0.0000 0.0000 0.000

13 0 0.2312 0.2310 0.0958 0.096

14 0 0.0000 0.0000 0.0000 0.000

15 1.0 0.7902 0.7690 0.9658 0.904

j=1 j=2

F

k1γ F

k2γNF

k
γ

 

 

These results also show complete elimination of even runout harmonics for each array 

output signal.  Runout error in the remaining odd harmonics is lower for sensor pair 

failure when the total number of sensors is increased.  Simulation results for 

intermediate runout harmonics agree well with prediction, but synchronous amplitude 

and the magnitude of the 15
th

 harmonic still do not match. 

Loss of more than two sensors from the 8-sensor array was shown by Li to result 

in array failure even when using the SIA.  Since the approach used here does not update 

the WGM for different failure scenarios, additional sensor failures are not studied.  This 

failure analysis shows that runout and measurement error can be predicted using (9) for 

single sensor failures.  In addition, synchronous measurement error can be reduced for 

single failures by applying an amplitude adjustment factor when allowable tolerances are 

exceeded.  In general, sensor failure effects can be classified by their effect on array 

outputs according to their location with respect to each measurement axis. 
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 2.4  DESIGN OF SENSOR ARRAY PROTOTYPE 

 Although simulation results show that the sensor array can successfully remove 

selected runout harmonics in certain failure cases, testing on a real system is required for 

verification.  While many simplifying assumptions were made during simulation, signal 

accuracy on the real system depends on many factors that can degrade signal quality.  

These detrimental effects can be attributed to various sources that must be identified 

before proceeding with system design.  In this way, the sensor array can be designed to 

optimize signal quality throughout the design process.  This approach offers greater 

flexibility than do design modifications once problems are identified in later design 

stages.  The effects of circuit design parameters, rotor speed, and environmental noise 

are discussed. 

To evaluate performance improvements of the sensor array, a common 

commercial position transducer system is used for comparison.  The sensor selected is 

the 3300 XL 8mm Proximity Transducer System manufactured by Bently-Nevada [19].  

This system consists of one eddy-current proximity probe, one shielded extension cable, 

and one Proximitor Sensor.  The sensor array uses the same probes and extension cables 

as the commercial system, but the Proximitor Sensor is replaced with a different circuit.  

The new circuit is responsible for generation of the carrier signal, demodulation of the 

return signal, and processing of all individual sensor voltages into a single array output 

signal for each control direction.  In this way, improvements in signal processing can be 

measured rather than differences in probe or cable construction.  Design objectives are to 

meet or exceed performance of the commercial system while providing a signal similar 

in magnitude and linearity.  This requirement allows integration of the new sensor array 

into existing control systems.  

Design of the new oscillator-demodulator circuit requires an understanding of the 

operating principles behind eddy current transducers [20].  These sensors measure gap 

distance without rotor contact by sensing changes in complex impedance with target 

motion.  Each probe emits a high frequency magnetic field from an internal coil that 

induces eddy currents in the target material.  These eddy currents set up an opposing 
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magnetic field that reduces the inductance of the primary circuit in proportion to target 

distance.  A typical sensor circuit can be modeled as an air-gap transformer with the 

secondary coil shorted within the target material.  This model can be conveniently 

represented by a variable resistor and inductor in series. 

 As the air-gap between the coil and target is varied, the inductance and resistance 

of the equivalent circuit changes.  The accuracy and thermal stability of the oscillator 

circuit depend on the quality factor, Q calculated as  

)(

)(

xR

xL

Q

ω
=        (12) 

where ω is the sensor excitation frequency.  Attractive sensors have a high quality factor 

that can be achieved by large inductance, small resistance, and high frequency 

excitation.  Inductance of the coil changes with air gap for target distances less than the 

coil radius, limiting maximum sensing range to this dimension.  The choice of excitation 

frequency depends on many competing factors explained in the following discussion. 

 The probe cable and interwinding capacitance causes internal resonance of the 

oscillator circuit at the self-resonant frequency (SRF).  When the circuit is excited at its 

SRF, gain increases in a manner similar to a single degree of freedom mechanical 

oscillator.  The SRF changes with target distance as a result of variations in coil 

inductance according to 

total
LC

SRF

π2

1
=             (13) 

where the total capacitance includes contributions from the cable and coil windings.  

Excitation frequency is selected at least a factor of 3 below the SRF and coincides with a 

separate resonant frequency caused by a parallel capacitor to maximize amplitude of the 

carrier signal.  At this excitation frequency, changes in the SRF with gap distance result 

in variations in signal amplitude.  The amplitude modulated carrier signal is 

demodulated by an envelope detection circuit to produce a voltage corresponding to 

target offset.  Changes in this output voltage with gap distance are described by sensor 

sensitivity.  Attractive sensors have linear sensitivity for a useful operating range, 
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commonly 10 to 90 mils.  This linear range and the magnitude of sensor sensitivity are 

determined by many factors including maximum coil inductance, parallel capacitance, 

and excitation frequency and amplitude. 

 Rotor speed can also greatly affect sensor array output amplitude due to 

bandwidth limitations.  For each sensor, target motion in the sensing direction is 

synchronous with rotor speed.  As rotor spin speed increases, the frequency of rotor 

vibration may exceed the bandwidth of the sensing system.  This causes attenuation in 

measured vibration amplitude and could lead to poor controller performance.  To prevent 

this problem, the bandwidth of the sensor array drive circuit should be greater than the 

maximum frequency encountered in operation.  Typical bandwidth of a commercial 

eddy current oscillator-demodulator circuit is on the order of 10 kHz [19]. 

 Other than sensor runout disturbance, undesirable signal components are 

introduced into the feedback loop by environmental noise.  Sources of environmental 

noise include electromagnetic interference from magnetic bearing power amplifiers, 

sensor crosstalk, imperfect components and adjacent wiring.  While many of these noise 

sources are not addressed in this thesis, other researchers have studied them in depth.  

Jansen et. al. [21] provide a thorough analysis on the effects of PWM switching 

frequency and magnetic field noise near the carrier frequency.  Environmental noise 

radiated into the probe cables can be minimized by using the same shielded cables as 

commercial systems.  These environmental disturbances can be effectively reduced by 

proper circuit design.  

A common problem encountered when using multiple eddy-current probes in 

close proximity is caused by mutual interference known as crosstalk.  This phenomenon 

results from interaction of the magnetic fields induced by adjacent probes.  When the 

rotor is displaced these magnetic fields load the oscillation circuit of each probe, slightly 

altering the frequency of the carrier signal.  When adjacent probes are loaded unequally, 

the difference in their carrier frequencies causes beat modulation of each signal known 

as sensor crosstalk.  This interference can be particularly troublesome in a sensor array 

such as the one described in this thesis.  As the number of sensors in the array increases, 
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the distance between sensors is reduced and the effect of the induced magnetic fields on 

adjacent probes becomes more pronounced.  Thus, a means to combat sensor crosstalk 

must be designed into the system.  Dever et. al. [22] addressed this problem by 

preloading adjacent sensors using capacitors.  This provided enough difference in carrier 

frequency to significantly reduce crosstalk effects in the control band.  However, 

utilization of a single oscillation circuit for all sensors in an array allows for a very 

simple solution to crosstalk problems.  By using a single carrier signal to drive all 

sensors in the array, any change in carrier signal frequency is shared by all probes and no 

frequency difference exists.  This common carrier frequency eliminates sensor crosstalk 

effects for all sensors in the 8-sensor array drive circuit and can also be used to remove 

common-mode noise. 

The prototype circuit is simplified by taking advantage of WGM anti-symmetry 

for opposing sensor gains.  By driving opposing sensors exactly 180˚ out of phase using 

the same carrier wave, voltage signals from opposing sensor pairs can be summed to 

create a difference signal.  After demodulation, the 2
n  difference signals are amplified 

according to the WGM and then summed to produce array output signals corresponding 

to rotor displacements.  Additional circuitry is added to bias each output voltage to zero 

at the nominal gap distance.  The differential signal approach results in lower circuit 

cost, better thermal stability and reduced common-mode noise.  However, fault tolerance 

to single sensor failures is lost. 

When a single sensor fails, the difference signal approaches the unfailed voltage 

signal from its opposing counterpart.  This voltage signal is very large in comparison to 

the original difference signal and dominates sensor array output.  To maintain usable 

sensor array outputs using this differential approach, single sensor failure requires that 

the opposing sensor also be removed to drive the difference to zero.  For this reason, the 

prototype sensor array drive circuit described here is not tolerant of single sensor 

failures.  This prototype is designed to verify sensor array operation for the unfailed case 

only, with sensor failure effects analyzed by theory and simulation as shown previously.   
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Consideration of these effects allows construction of an oscillator-demodulator 

circuit that provides a useful rotor position signal while minimizing signal-to-noise ratio.  

The prototype circuit allows verification of sensor array performance when all sensors 

are operational.  Variable components are used in the prototype to allow adjustments 

during the design stage.  Potentiometers are used to vary op-amp gains for WGM 

implementation.  Variable parallel capacitors allow adjustment of the internal resonance 

frequency to optimize individual sensor sensitivity and linearity.  Although these 

components allow flexibility during initial design, slight differences in capacitance and 

individual amplifier gains result in different sensitivity for each axis and less than ideal 

attenuation of runout harmonics as shown by testing results. 

Future revisions of the sensor array demodulation circuit should allow 

independent failure of individual probes.  This modification would sacrifice the benefits 

of simplified construction, reduced thermal effects and lower noise amplitudes for fault 

tolerance to sensor failures.  These revisions include separate amplification and voltage 

biasing of individual sensor signals to allow single sensor failures and to avoid DC shifts 

as determined by simulation results.  However, the current prototype circuit can be tested 

to characterize performance for the unfailed case.  Performance characteristics for the 

unfailed 8-sensor array prototype as built are described in the following section. 

 

2.5  TESTING OF SENSOR ARRAY PROTOTYPE 

 To verify theoretical performance capabilities of the unfailed 8-sensor array, 

several tests are conducted on the prototype system.  These tests are intended to quantify 

the runout reduction achieved by the sensor array and to confirm the performance limits 

identified previously.  Testing requires additional hardware designed to evaluate sensor 

performance in a controlled environment.  Two different fixtures are used to quantify 

sensor performance for both rotating and non-rotating rotors.  These fixtures require two 

different rotors to simulate low and high runout amplitude conditions. 

 A device with the ability to adjust gap distance is used during construction of the 

sensor drive circuit.  This positioning fixture is used to measure sensor sensitivity, linear 
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range and noise levels for a non-rotating shaft.  Since this fixture is used for gap 

adjustment with a stationary shaft, the target rotor does not introduce any significant 

levels of runout.  Precision adjustment of shaft position within the sensor array is 

accomplished using a dual-axis micrometer stage.  This stage is attached to the lower of 

two parallel plates separated by lock-nuts on threaded columns. The circular probe array 

is mounted to a cylindrical aluminum shell attached to the upper plate.  To set nominal 

gap distances and center the steel shaft, an acetal sleeve is inserted into the aluminum 

shell.  The outer diameter of the sleeve is used to adjust the probe gaps while the internal 

diameter of this sleeve allows a sliding fit over the shaft when centered.  Actual shaft 

motion is measured mechanically using dial indicators on each axis. The positioning 

fixture is shown in Figure 2.6. 

 

 

Figure 2.6  Positioning fixture used for stationary gap measurements 

 

 To experimentally evaluate bandwidth and runout reduction capabilities of the 

sensor array, a rotor with a known runout pattern is used as the target in a rotating test 

fixture.  This fixture uses precision ball bearings rather than magnetic bearings to 

support the rotor.  The ball bearings are mounted on O-rings inside an aluminum housing 
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that contains the 8-sensor array.  This housing is rigidly attached to a plate that slides 

into a large steel containment vessel for safety reasons.  Rotor speed is controlled by a 

small AC motor coupled to the shaft using a short rigid spline so that torsional vibrations 

can be neglected.  Gap distances for each probe are set by tightening locknuts at the 

proper location using a calibration fixture with precision steel shims.  The rotating test 

fixture is shown in Figure 2.7. 

 

 

 

Figure 2.7  Rotating test fixture used for runout evaluation 

 

To compare actual disturbance rejection to theoretical performance, a runout 

pattern similar to that used for numerical simulation is created on the target rotor.  The 

amplitude of each harmonic is adjusted to obtain a smooth signal with a nearly-zero 

mean value to simplify machining.  This signal is then summed with a circular profile to 

generate a curve that represents the target rotor outer diameter.  Using CNC machine 

tools, this pattern can be reproduced on the target rotor with sufficient accuracy.  The 

desired experimental runout signal generated using MATLAB is shown with the 

measured profile of the machined rotor in Figure 2.8.  Comparisons to theoretical 

performance use this modified runout signal rather than the equal amplitude harmonic 
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signal used for numerical simulation alone.  Harmonic amplitudes of the desired runout 

pattern are shown in Figure 2.9, though it should be noted that actual total runout differs 

slightly from this intended signal due to uncontrolled electronic runout and limitations of 

the machining process. 
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Figure 2.8  Runout signal used to evaluate reduction of harmonic amplitudes 
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Figure 2.9  Fourier amplitudes of modified runout signal 

 

 Additional equipment used for testing of the prototype sensor array include 1 

function generator, 2 power supplies, 1 digital oscilloscope and 1 dynamic signal 

analyzer.  The function generator supplies a 6.7 Volt, 1.09 MHz sine wave to the drive 

circuit to create the carrier signal as described in the design section.  The power supplies 

deliver ± 15 VDC to the drive circuit.  Rotor speed is measured using the oscilloscope 
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connected to a once-per-revolution hall probe signal used for motor control.  Outputs of 

the sensor array are monitored using the dynamic signal analyzer in both the time and 

frequency domains.  Runout reduction is evaluated by the frequency spectrum for the 

unfailed case in the following section. 

2.6  TESTING RESULTS 

 The two different test fixtures used to evaluate sensor array performance assess 

different design objectives.  These objectives require that the sensor array meet or 

exceed performance of commercially available individual eddy-current proximity 

transducers.  Performance metrics are identified as sensitivity, linearity, noise amplitude 

and runout reduction.  Sensitivity, linear range and noise levels are measured using the 

positioning fixture shown in Figure 2.6.  Runout reduction is evaluated using the rotating 

test fixture shown in Figure 2.7.  All tests on the sensor array consider the unfailed state 

only.  Testing methods and results are described here for evaluation of the 8-sensor array 

prototype and the commercial transducer system. 

 Sensitivity and linearity of the 8-sensor array prototype are determined by 

moving the target in small increments using the positioning device.  Actual 

displacements are measured with dial indicators and compared to sensor outputs.  This 

test is performed for motion along each axis with both the sensor array and commercial 

systems.  Sensitivity for each test is determined by the slope of a best-fit line obtained 

from the data points using linear regression.  Linearity is evaluated by the coefficient of 

determination (R
2
) value for each regression analysis.  Test range is limited by the 

micrometer stage to [-20, 35] mils on the x1-axis and [-35, 35] mils on the x2-axis.  Data 

for the sensor array prototype is shown for each axis with best-fit trendlines in Figures 

2.10 and 2.11. 
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Figure 2.10  Sensor array voltage vs position for x1-axis 
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Figure 2.11  Sensor array voltage vs position for x2-axis 
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Sensor array sensitivity is not the same for each axis as shown by the slope of the 

best-fit trendline.  This difference can be attributed the variable potentiometers and 

capacitors used for construction of the drive circuit.  In theory, if all components are 

equal-valued and excited using the same signal then sensitivity is the same for each axis.  

This speculation is not validated in this thesis since it would require construction of a 

new drive circuit for the sensor array.  However, this test shows that the prototype sensor 

array can match the 200
mil

mV  sensitivity of commercial sensor systems on each axis 

independently.  Future testing should be performed to verify symmetric sensitivity of an 

array that uses more stable electronic components. 

Linearity of the relationship between voltage and target offset is required so that 

rotor displacement can be easily determined from the sensor signal without using look-

up tables or complex operations.  These tests show acceptable linearity in the test range 

with approximate equivalent displacement errors of 0.5 mil along the x1-axis and 0.1 mil 

along the x2-axis.  In comparison, identical testing on the commercial system yielded an 

R
2
 value of 0.9999, corresponding to approximately 0.01 mil displacement error.  

Deviations of sensor array voltage from the linear trendline become more pronounced 

near the limits of the test range.  To properly validate linearity within reasonable 

operating limits of the sensor array, a precision positioning stage with greater range 

should be employed.  Additional experiments on the array drive circuitry should also 

examine linearity at different excitation frequencies or parallel capacitance values. 

 Noise levels are evaluated for a stationary shaft centered in the 8-sensor array 

prototype.  In this test, no magnetic actuators are present so that noise can be attributed 

solely to component imperfections and interference radiated into the cables and wiring.  

Broadband noise is evaluated by its maximum amplitude for the two array outputs 

measured on the x1-x2 plane using a digital oscilloscope.  Noise levels for the sensor 

array are compared to the Bently Nevada Proximitor transducer system using 2 

orthogonal probes targeting the same shaft.  The sampled data from the digital 

oscilloscope for both sensor systems are shown in Figure 2.12. 
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Sensor Array Noise
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(a) 

Bently Nevada Proximitor Noise
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(b) 

Figure 2.12  Broadband noise amplitude for 8-sensor array (a)  

and Bently Nevada Proximitor (b) 

 

 Noise data for the stationary shaft shows that the 8-sensor array prototype 

introduces less broadband noise into the sensor signal that the commercial system used 

for comparison.  This is expected since the prototype drive circuit used the differential 
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approach to reduce common-mode noise.  It is also interesting to note the phase 

relationships between x1 and x2 noise signals for each sensor system.  While the 

commercial system signals are out of phase, the sensor array noise signals are in phase.  

Since all probes in the sensor array use a common carrier signal, noise disturbances in 

array outputs will always be in phase.  The phase relationship for the commercial system 

may be arbitrary since carrier signals are generated independently.  Approximate 

maximum noise amplitudes for both x1 and x2 signals are listed for the sensor array and 

the commercial system in Table 2.9.  Displacement uncertainty resulting from sensor 

noise is shown assuming ideal sensor sensitivity of 200
mil

mV  on each axis. 

 

Table 2.9  Noise amplitudes for sensor array prototype and commercial system 

Signal Noise (Vpp) Equivalent Uncertainty

Sensor Array  x1-axis 30 mV 0.15 mil

Sensor Array  x2-axis 20 mV 0.10 mil

Proximitor   x1-axis 35 mV 0.18 mil

Proximitor   x2-axis 35 mV 0.18 mil
 

 

  

The above tests are intended to verify basic functionality of the sensor array for 

position measurement of a non-rotating shaft.  Improvements in runout reduction for the 

unfailed 8-sensor array can only be shown by testing on a rotating shaft with a known 

runout profile.  Performance of the 8-sensor array is evaluated by runout and 

measurement error for the unfailed case using the rotating test fixture.  Testing is 

performed first using a single commercial sensor to confirm testing methods and 

equipment and to measure the actual total runout harmonics present in the test rotor.  A 

frequency spectrum of the single sensor measurement with the machined test runout 

pattern is shown in Figure 2.13.  This frequency spectrum shows the instantaneous 

amplitudes of rotor vibration and runout harmonics for a rotational frequency of 55 Hz.  
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Figure 2.13  Frequency spectrum of vibration and runout measured by a single sensor 

 

Harmonic amplitudes shown in this frequency spectrum do not exactly match the 

intended runout profile due to machining errors and electronic runout.   Despite these 

differences, this signal can be used to effectively determine sensor array runout 

reduction.   

 According to theory and numerical simulation, the unfailed 8-sensor array should 

completely remove runout harmonics k = 2 to k = 6 while preserving the synchronous 

signal component.  Runout reduction for the 8-sensor array is measured by the 

amplitudes of runout harmonics relative to single sensor runout.  Assuming the single 

sensor accurately detects rotor vibration, synchronous measurement error in the 

prototype sensor array is the ratio of the k = 1 array output harmonic to single sensor 

data.  While complete attenuation of runout harmonics is not expected for the real 

system, significant reduction is achieved.  Harmonic amplitudes are shown for a single 

sensor and the sensor array in Table 2.10, where T

k
γ  represents runout and measurement 

error from testing.  To effectively compare sensor array output harmonics to single 

sensor measurements, amplitudes are averaged to account for transient variations. 
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Table 2.10  Harmonic amplitudes measured using a single sensor (Actual)  

and  8-sensor array (Measured) with runout and measurement error 

k Actual amplitude (mV) Measured amplitude (mV)

1 1.0 277 282.0 1.0181

2 0 270 17.6 0.0652

3 0 248 34.6 0.1395

4 0 312 20.7 0.0663

5 0 298 37.0 0.1242

6 0 323 11.9 0.0368

7 1.0 325 272.0 0.8369

NF

k
γ T

k
γ

 

 

These results show that the prototype 8-sensor array with no sensor failures can 

significantly reduce runout errors as predicted by theory and simulations.  Synchronous 

amplitude is only slightly altered by the sensor array, although small deviations from 

single sensor measurements can be caused by differences in actual rotor vibration.  

Runout harmonics are reduced unequally due to the adjustable components used in the 

prototype drive circuit.  A frequency spectrum of the x1 array output in Figure 2.14 

shows how the 8-sensor array reduces the effect of sensor runout as compared to the 

frequency spectrum in Figure 2.13.  The x2 array output contains signal harmonics 

similar to the x1 sensor array signal 
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Figure 2.14  Frequency spectrum of test rotor runout measured by 8-sensor array 

 

 While the runout reduction test is performed at relatively low rotor speeds, it is 

useful to know the maximum frequency that can be accurately measured by the sensor 

array.  This maximum frequency is defined as bandwidth of the sensor array, but is 

difficult to measure experimentally.  Direct measurement of 2dB signal amplitude 

attenuation at high speeds would require a perfectly balanced shaft with a known runout 

pattern.  If this were possible, synchronous signal amplitude could be attributed entirely 

to runout which is largely independent of speed.  Real rotors always have some 

imbalance that results in speed-dependent vibration.  As a result, the relationship 

between vibration amplitude and sensor limitations cannot be distinguished without a 

true measurement of instantaneous shaft position during operation.  Since design 

requirements only stipulate that the sensor array meet performance of commercial 

systems, measured vibration amplitude at higher speeds can be evaluated relative to the 

commercial system.  This is accomplished by peak-hold signal analysis of the sensor 

array and commercial sensor signals for rotor speeds from 0 to 5 kHz.  The peak-hold 

frequency spectrums of the two sensor systems are shown in Figure 2.15. 
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(a) 

 

(b) 

Figure 2.15  Peak-hold frequency spectrum of commercial sensor (a)  

and 8-sensor array prototype (b) 
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Comparison of the peak-hold frequency spectrums obtained using each sensor 

system reveal some interesting results.  Both sensors recorded a resonant peak near 300 

Hz, but the commercial sensor measured additional low frequency vibrations.  Since the 

bandwidth test requires slow speed variation, it is possible that these low frequency 

signals are the result of rotor speed changes in the time record.  Another possibility is 

that the sensor array removes subharmonic in addition to superharmonic signal 

components.  This latter possibility is investigated using (8) and is not possible 

according to present theory. 

The peak-hold frequency spectrums also show a difference between measured 

amplitudes after resonance for each sensor.  This difference results from the greater 

amplitude of higher harmonics in the sample runout pattern.  Since the sensor array 

significantly reduces these harmonics, they do not contribute to recorded peak 

amplitudes.  Thus, the peak-hold frequency spectrum of the commercial sensor is 

actually a measurement of one of these higher harmonics rather than the synchronous 

signal.  However, comparison of signal trends with increasing speed can still be used to 

indirectly evaluate bandwidth of the prototype sensor array.  Assuming that the steady 

drop in peak-hold amplitude of the sensor array is not caused by a reduction in 

synchronous vibration, the bandwidth of the sensor array is estimated at around 4.8 kHz. 

 Testing on the prototype 8-sensor array supports theory and simulation results for 

runout reduction with no sensor failures.  Sensitivity and linearity tests on the 

positioning fixture confirm compatibility of the sensor array with existing magnetic 

bearing control systems.  Total measurement errors due to environmental noise and 

deviations from the linear correlation with gap distance do not exceed 1 mil across the 

sensing range.  These results show that the circular sensor array is an effective method of 

monitoring rotor position.   
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 2.7  SUMMARY AND FUTURE WORK 

This research shows that the circular sensor array can effectively remove certain 

harmonics of runout from the rotor position signal.  This is proven using analytical 

expressions that describe the magnitude of each runout harmonic and supported using 

numerical simulations and testing of a prototype system for the unfailed case.  

Performance of the sensor array is affected by sensor failures when using the NSIA by 

an increase in sensor runout and measurement error.  When measurement error exceeds 

allowable tolerances, synchronous amplitude can be corrected for single sensor failures 

using an amplitude adjustment factor.  This adjustment significantly reduces 

measurement error with a slight increase in runout.  Simulations of two sensor failures 

for opposing sensor pairs show complete elimination of even runout harmonics.  Sensor 

failure analysis shows that failure effects on each sensor array output are related to the 

angular location of the failed sensors.  This is shown for on-axis and off-axis sensor 

failures for the 8-sensor and 16-sensor arrays. 

Further research should be performed on the sensor array before integration in a 

magnetic bearing control loop.  Symmetric sensitivity for each measurement direction 

should be achieved through construction using stable electronic components.  Phase lag 

caused by signal processing should be evaluated and compared to commercial systems.  

The revised drive circuit should be altered as described to allow single sensor failures.  

For these single failure cases, measurements of harmonic amplitudes should be made to 

test synchronous amplitude adjustment factors.  In addition, the effect of fluctuating 

magnetic field interference should be examined.  After successful completion of these 

tests, the NSIA sensor array may be utilized in a magnetic bearing control system with 

confidence in its ability to supply an accurate position signal with reduced runout even 

in the presence of single sensor failures. 

 



 

 

51 

CHAPTER III 

NONLINEAR ANALYSIS OF  

HOMOPOLAR MAGNETIC BEARINGS 

3.1  INTRODUCTION 

Active magnetic bearings (AMBs) are inherently nonlinear dynamic systems due 

to the quadratic relationship between magnetic force and control current.  This 

nonlinearity results in behavior that cannot be explained by linear vibration theory such 

as orbital equilibrium state sensitivity to initial conditions and bifurcation behavior 

resulting in jump phenomena and subharmonic steady state response.  Nonlinear system 

response can often be approximated using an assumption of small motions about an 

equilibrium state.  This characteristic allows linear control of the AMB system through 

bias linearization, where bias flux is supplied either by permanent magnets or a biasing 

current.  As rotor motions become larger, nonlinearities begin to dominate magnetic 

bearing control forces.  This chapter analyzes such nonlinearities in homopolar magnetic 

bearings using numerical techniques to simulate a simplified rotor-bearing system.  

Frequency response curves for the nonlinear magnetic bearing are compared to a similar 

linearized bearing model to illustrate the effect of the nonlinear terms and unusual rotor 

oscillations near nonlinear resonance are analyzed to characterize bifurcation behavior. 

Many different techniques have been developed to study the behavior of non-

autonomous nonlinear systems.  Analytical methods such as harmonic balance, 

trigonometric collocation, Floquet theory and multiple scales provide useful insight into 

the stability and bifurcation behavior of orbital equilibrium states and their domains of 

attraction.  These methods require a deterministic relationship between control currents 

and magnetic control forces.  Numerical methods such as shooting or direct numerical 

integration can be used to understand nonlinear behavior when analytical techniques 

cannot be applied.  While current numerical techniques are not as powerful as analytical 

methods, they can be used to determine locally stable and unstable periodic orbital 

equilibrium states, generate frequency response curves, and locate and characterize 
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various bifurcations.  While nonlinearities in heteropolar magnetic bearings have been 

studied using analytical tools, nonlinear analysis of homopolar magnetic bearings 

requires the use of numerical methods due to complex flux path equations that decouple 

control currents and magnetic flux at each pole. 

Homopolar magnetic bearings provide several advantages over traditional 

heteropolar configurations.  In heteropolar bearings, opposing magnetic poles are 

arranged in a single plane around the rotor circumference.  This arrangement causes 

magnetic flux to continuously alternate direction into and out of the rotor.  Each time the 

flux path reverses direction, energy is lost due to hysteresis.  This reversal causes 

increased control effort and results in inductive heating of the rotor.  Homopolar 

magnetic bearings reduce these effects by arranging opposing poles in two parallel 

planes separated axially along the rotor.  While parasitic losses are reduced in homopolar 

bearings, magnetic flux paths become more complicated functions of all air gap 

reluctances.  Rotor displacements from magnetic center reduce reluctance of air gaps in 

the displacement direction, resulting in an increase of corresponding magnetic flux.  

Magnetic forces at each pole are proportional to the square of magnetic flux, giving rise 

to the nonlinear effects under analysis.  Although the AMB controller stabilizes both 

magnetic pole configurations by directing current to poles away from rotor deflection, 

analysis of the homopolar bearing requires modeling these complex flux paths through 

the rotor.  This model necessitates simultaneous solution of n independent magnetic 

circuit equations for an n-pole homopolar bearing, excluding many analytical methods 

for nonlinear study.   

In this thesis, magnetic flux equations are solved by linear matrix algebra within 

a fourth-order Runge-Kutta numerical integration routine.  Governing equations for the 

homopolar magnetic bearing are developed in the following section for the nonlinear and 

linearized systems.  These equations are numerically integrated using strict tolerances to 

obtain accurate results for small rotor motions.  Stable nonlinear response to a periodic 

unbalance force is investigated and compared to the linearized system using frequency 

response curves.  From these stable frequency response plots, locally unstable orbital 
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equilibrium states are determined by the shooting method.  As a byproduct of shooting, 

eigenvalues of a numeric monodromy matrix are used to characterize bifurcations as 

rotor speed is varied.  These frequency-dependent bifurcations are shown to progress 

toward quasiperiodic behavior classified by the periodicity of steady state response as 

shown using Poincaré maps.  These tools allow better understanding of nonlinear 

response in homopolar magnetic bearings and illustrate deviations from linear model 

predictions.  Results obtained from this study can be used to select desirable magnetic 

bearing operating conditions for higher rotor speeds and safer operation. 

 

3.2  SYSTEM MODEL 

This thesis uses a simplified model of a single homopolar radial AMB for 

nonlinear analysis.  In this model, only cylindrical rigid body motion is considered so 

that shaft rotations about axes perpendicular to the spin axis and resulting rotordynamic 

effects are neglected.  Torsional vibrations are also not considered in this analysis since 

magnetic bearings do not directly control rotor torques.  The homopolar magnetic 

bearing provides magnetic bias flux using permanent magnets and control flux using 6 

identical poles equally spaced around the rotor.  Control currents are computed using a 

PD controller and an idealized current distribution matrix where inductance effects are 

neglected.  The rigid rotor is modeled as a lumped mass with two degrees of freedom, X 

and Y as shown in Figure 3.1.  Instantaneous rotor position along these axes is measured 

by ideal proximity probes biased to zero at the magnetic center.  The homopolar 

magnetic bearing is assumed to be perfectly constructed so that the magnetic center is 

coincident with the geometric center. 
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Figure 3.1  Rigid rotor-bearing model used for analysis 

 

 

 Forces acting on the rigid rotor consist of control forces from the magnetic 

actuators and periodic inertial forces from unbalance vibration.  Rotor weight due to 

gravity is neglected in this analysis.  These forces are assumed to act entirely in 

directions that can be described by the two rotor degrees of freedom.  Magnetic forces 

are determined by solving a set of magnetic circuit equations for magnetic flux using 

control voltages supplied by a proportional-derivative (PD) controller.  Unbalance 

vibration results from an assumed eccentricity between the center of mass and the center 

of rotation.  This eccentricity is varied to magnify nonlinear response characteristics, but 

is independent of rotor speed for each analysis.  Assumed mass properties used for this 

analysis are shown in Table 3.1. 

 

Table 3.1  Mass properties of model rotor-bearing system 

Property Value Units

Mass of rotor 20 kg

Eccentricity 2.5 mils

Clearance 20 mils
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The governing equations of motion for this rotor supported by a homopolar magnetic 

bearing result from Newton’s third law for each degree of freedom as 
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Ftmeym
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ωω
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&&

&&

         (14) 

where Fm,j  represents the magnetic force acting on the rotor in the j
th

 control direction.  

This magnetic force is calculated using both the nonlinear bearing model and the 

linearized bearing model.  Derivation of the magnetic force term for each model is 

shown in the following sections. 

 

NONLINEAR MODEL 

 

 The radial magnetic bearing is modeled using an equivalent magnetic circuit for 

the flux path through the control coils, air gaps and rotor cross-section.  This analysis 

considers a 6-pole homopolar radial magnetic bearing biased using permanent magnets.  

Magnetic flux acting on the rotor consists of both bias flux supplied by the permanent 

magnets and control flux supplied by the 6 control coils.  For the development of 

governing equations, all permanent magnets are lumped into a single source element 

with internal reluctance.  It is assumed that the rotor, coils and wiring have negligible 

reluctance so that all magnetic flux is contained in the permanent magnets and air gaps 

between poles and the rotor surface.  Core loss due to eddy currents, flux saturation, and 

hysteresis and other secondary effects are neglected.  The equivalent magnetic circuit for 

this model is shown in Figure 3.2 with assumed flux directions. 
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Figure 3.2  Magnetic circuit used to solve for coil currents and magnetic field strength 

 

Application of Ampere’s Law to each loop in the magnetic circuit results in a set of 6 

coupled differential equations for magnetic fluxes and coil currents.  Assuming uniform 

magnetic fields within each air gap and negligible fringing and leakage effects, these 

differential equations become one-dimensional linear algebraic equations that relate coil 

currents to gap fluxes.  One additional independent equation needed to eliminate 

permanent magnet flux is found using flux conservation.  The resulting set of coupled 

linear equations is  
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where ℜi describes the reluctance of the i
th  

pole air gap defined as 

pole

i

i

A

d

0µ
=ℜ             (16) 

and di represents the length of the i
th

 air gap.  In analogy to Ohm’s law, these equations 

can be arranged in matrix form as 
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HiNR +=Φ             (17) 

where the right hand side represents total magnetic field strength supplied by both 

permanent magnets (Ni) and electromagnetic coils (H) in opposing directions.  In 

general, magnetic field strength is related to flux density by the definition 

HB µ=        (18) 

where µ represents magnetic permeability of the medium, usually air.  Flux density is 

related to magnetic flux by 

A

B

ϕ
=        (19) 

Along with Ampere’s Law, these equations form the foundation from which all other 

governing equations are derived.  This approach has been used in analysis of many other 

electromagnetic systems with similar results [10,18]. 

In the presence of a non-zero external magnetic control field, permanent 

magnetic flux is reduced as described by the second quadrant of the magnetization 

hysteresis loop known as the demagnetization curve.  This curve represents the normal 

operating range of many electromagnetic devices that use permanent magnets acting 

against an externally applied magnetic field.  In magnetic bearings, the external 

magnetic field is supplied by the control coils with a direction opposite the flux path of 

the permanent magnet.  The demagnetization curve shows how flux density from the 

permanent magnet is reduced by this external control field and can be approximated by a 

linear relationship between external magnetic field strength (Hext) and permanent 

magnetic flux density (B
PM 

) as shown in Figure 3.3.  
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Figure 3.3  Permanent magnet demagnetization curve 

 

The points at which this line intersects each axis are performance characteristics of 

permanent magnets known as remanence and coercivity.  Remanence (Bsat) is the flux 

density supplied by the permanent magnet when no external demagnetizing force is 

present.  Coercivity (H
C
) describes the strength of an external demagnetizing field 

required to reduce permanent magnetic flux to zero.  The slope of the line connecting 

these two points is equal to the permanent magnet permeability ( µ
PM 

), which is close to 

the permeability of air.  Using this linear relationship, the reduced flux density from the 

permanent magnet can be approximated as 

extPMsatPM
HBB µ−=                (20) 

Dividing by µ
PM 

, and substituting (18,19) for the external magnetic field strength, 

PMPM

PM

CPM

A

HH

µ

φ
−=               (21) 

This expression is substituted into the matrix H in (15) and the second term is moved to 

the left-hand side of the magnetic circuit flux equation.  Using flux conservation, this 

term can be treated as permanent magnet reluctance shown by 

PMPM

PM

PM

A

l

µ
=ℜ             (22) 

Hc 

Bsat 

H 

B 

Hext 

B
PM
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Replacing the unknown permanent magnetic field strength in (15) with the flux-

dependent terms derived from the demagnetization curve results in the complete 

magnetic circuit equations 
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(23) 

 

These equations allow computation of the total magnetic flux at the rotor surface for 

each air gap.  Air gap fluxes are used to determine the magnetic control force 

contribution from each pole as a function of coil currents.   

Magnetic air gap fluxes for each pole location can be calculated from (23) by 

premultiplication of the inverse reluctance matrix.  These gap fluxes are the summation 

of control flux from the electromagnetic coils and demagnetized bias flux from the 

permanent magnets, represented by the terms 

HR

iNR

bias

control

1

1

−

−

=Φ

=Φ
           (24) 

Control flux is dictated by control currents from the position feedback controller 

described below.  Using the demagnetized form of the magnetic circuit equations, bias 

flux can be considered constant.  The assumptions of zero flux leakage and fringing 

effects simplify analysis of magnetic bearing operation, but are not accurate in practice.  

Leakage results from flux circulation between poles of the permanent magnets, while 

fringing describes nonparallel flux paths within the air gaps.  To model these effects, 

permanent magnet bias flux is de-rated according to a leakage factor and total magnetic 

flux is de-rated to account for fringing.  These factors are derived from detailed 3-D 
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finite element models [10] and are given in Table 3.2 with other magnetic properties of 

the homopolar bearing used for this analysis. 

 

Table 3.2  Properties of magnetic bearing poles and permanent magnets used in analysis 

Property Value Units

Area of one pole face 4.750E-04 m
2

Area of PM cross-section 2.563E-03 m
2

Length of all PMs 1.011E-02 m

Coercivity of PMs 9.500E+05 A m
-1

Permeability of air 4π E-07 ---

Relative permeability of PM 1.055 ---

Number of turns on each coil 24 ---

Leakage Factor 0.596 ---

Fringing Factor 0.900 ---
 

 

Coil currents are generated by two independent control voltages determined by 

separate PD controllers for each axis using feedback position signals.  In practice, 

instantaneous rotor position is measured by eddy current transducers and rotor velocity 

is found from these measurements by numerical differentiation.  For the present 

simulations of rotor motion, rotor position and velocity at finite time steps are 

determined by numerical integration of the second order governing equations of motion 

in (14).  Sensor runout and other sources of measurement noise are not considered in this 

analysis of nonlinear effects.  Voltage from these ideal sensors is biased to zero when the 

shaft is perfectly centered and increases linearly with a sensitivity of 200 mV/mil as gap 

length is increased. 

Control voltages for each axis are passed through a 2-by-6 current distribution 

matrix (CDM) designed for fault tolerance capability before entering the power 

amplifiers.  In this model, power amplifier gains are included in the CDM.  The resulting 

CDM used in this analysis for a 6-pole homopolar radial bearing with no pole failures is  
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This matrix maps two independent control voltage signals into 6 separate currents that 

pass through the electromagnetic control coils.  Actual magnetic bearings require a 

decoupling choke to remove singularities in the inductance matrix.  This analysis 

assumes ideal power amplifiers so that inductance effects can be neglected.   

Using this control strategy, rotor position is sensed and fed back the controller, 

where control voltages for each axis are computed using PD control gains.  These two 

control voltages are distributed to each pole using the CDM.  Power amplifiers for each 

pole pass the appropriate current through the coils to generate electromagnetic control 

forces.  This approach is illustrated by the block diagram in Figure 3.4. 
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Figure 3.4  Control strategy used in the homopolar magnetic bearing 
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Nonlinear behavior in this magnetic bearing model results from nonlinearities in 

the magnetic forces used to support the rotor.  The magnitude of each magnetic pole 

force is related to the i
th

 pole magnetic flux by the one-dimensional Maxwell stress 

tensor 

pole

i

i

A

F

0

2

2µ

Φ
=             (26) 

This quadratic relationship between magnetomotive force and magnetic flux produces 

the nonlinear characteristics of magnetic bearings.  The magnetic force contribution 

from each pole to the magnetic force acting on the rotor in each control direction is a 

function of pole location.  Total magnetic force in the horizontal (x) and vertical (y) 

directions for the nonlinear model is given by 
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where θi indicates the angle between each pole and the positive x-axis.  These nonlinear 

magnetic force terms are substituted into (14) to determine nonlinear rotor response. 

 Additional assumptions are utilized in this analysis for model simplification.  

Sensor dynamics accounting for runout, bandwidth and phase lag are not modeled.  

Also, in practice the rotor must be coupled to some device to impart or extract rotational 

energy.  Torsional effects and drag caused by this coupling are not considered.  The 

required magnetic support forces and speeds in this model are assumed low enough that 

flux saturation and slew rate limitations can be neglected.  Curvature of pole faces and 

the rotor surface and small amounts of rotational damping present in the real system due 

to air drag, eddy currents and other effects are also neglected in this analysis.  Despite 

such simplifying assumptions, these equations provide a good indication of nonlinear 

effects in homopolar magnetic bearings.   
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LINEAR MODEL 

 

Linearization of magnetic forces in homopolar magnetic bearings is commonly 

employed to allow linear control of the nonlinear system.  This process requires bias flux 

supplied by permanent magnets or biasing currents to allow a Taylor series expansion of 

magnetomotive force about the equilibrium point at magnetic center.  Bias linearization 

of magnetic forces yields an accurate approximation of nonlinear magnetic forces for 

small control inputs.  As rotor displacements approach the bearing clearance, nonlinear 

magnetic forces diverge from the linearized prediction.  This process has been 

extensively described by other researchers [11] and is not repeated here.  Using bias 

linearization, magnetic forces can be approximated as 

xvpxm
VkxkF +=,         (28) 

where the terms kp and kv represent the position stiffness and voltage stiffness of the 

magnetic bearing, respectively.  In heteropolar bearings, the values of these stiffnesses 

can be derived analytically.  For homopolar bearings, these values must be determined 

experimentally.  In this analysis, position stiffness and voltage stiffness are determined 

using numerical simulations of the full nonlinear system. 

 The two stiffness terms of the linearized magnetic force equation result from 

separation of the two different magnetic flux sources in permanent magnet biased 

magnetic bearings.  Position stiffness is the ratio of magnetic force to lateral 

displacement of a non-rotating shaft when the feedback control gains are identically 

zero.  In this state, magnetic forces acting on the rotor surface are the result of bias flux 

from the permanent magnets alone.  Voltage stiffness is the ratio of magnetic force to 

control voltage for a non-rotating shaft fixed at the bearing center.  Magnetic forces for 

this measurement result from the combined contribution of bias flux and control flux for 

a constant gap distance.  Simulations of the full nonlinear magnetic bearing model are 

conducted with the appropriate constraints to determine the values of position stiffness 

and voltage stiffness as shown in Figures 3.5 and 3.6, respectively. 
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Figure 3.5  Nonlinear magnetic force vs rotor position for linearized position stiffness 

 

For the simplified bearing model considered in this research, the relationship between 

magnetic force and rotor position with no feedback control is linear for small rotor 

motions and becomes nonlinear as rotor deflection approaches the bearing clearance.  If 

the effects of flux saturation are considered, magnetic force cannot exceed a limiting 

value as shown by the dashed line in Figure 3.5.  For small rotor motions below 0.2 mm 

in this case, flux saturation effects do not alter steady state rotor oscillations.  Position 

stiffness is found by the ratio of magnetic force to displacement in the linear range close 

to the bearing center.  For the magnetic bearing parameters in Table 3.2, position 

stiffness is measured as -751.3 
mm

N  from simulation results.  Since magnetic force 

increases as the rotor is displaced in the positive direction, position stiffness from the 

permanent magnets alone results in a destabilizing force.  This negative stiffness causes 

an unstable equilibrium point at the bearing center.  The rotor is stabilized by adding 

feedback control that can be approximated by the linear voltage stiffness term. 
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Figure 3.6  Nonlinear magnetic force vs control voltage for linearized voltage stiffness 

 

By fixing all gap lengths with the rotor centered, bias flux from the permanent magnets 

is constant and total magnetic force increases linearly with control voltage as shown in 

Figure 3.6.  The simplified bearing model studied here does not deviate from the model 

that includes flux saturation for the voltage range considered.  For the magnetic bearing 

parameters used in this analysis, voltage stiffness is measured as +54.15 
V

N  from these 

simulation results.  Voltage stiffness results in a positive restoring force that stabilizes 

the rotor about a stable equilibrium point at the bearing center.  Once the values of 

voltage and position stiffness are known, the linearized magnetic force term can be 

substituted into (14) to determine transient rotor response by direct numerical 

integration.    

The linearized governing equations for the homopolar magnetic bearing describe 

a linear, time invariant (LTI) system characterized by special relationships between 

excitation force input and rotor response.  After transient solution components have died 

out, response of LTI systems is synchronous with excitation frequency at a different 

amplitude and shift in phase.  In such systems, only one solution exists whose stability is 
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independent of excitation input.  Steady state amplitude of this stable solution can easily 

be determined using an assumed solution approach known as complex variable analysis.  

This method takes advantage of LTI system properties and the simplicity of exponential 

function derivatives by using complex exponentials to represent the periodic steady state 

solution as 

ti

eXtx
ω~

)( =         (29) 

where the variable X

~
 is a complex number.  Complex variable analysis of LTI systems 

requires that the governing equations be expressed only in terms of this assumed solution 

and its derivatives.  Expanding the linearized magnetic force equation using a PD 

controller for the control voltage yields 
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where ξ represents the sensor sensitivity.  This representation of magnetic control force 

is substituted into the governing equations of motion to give 
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Substituting the assumed solution and its derivatives into the governing equation of 

motion gives 

)
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Solving (32) for X

~
 and taking the magnitude of the complex result yields an expression 

for the steady state amplitude of periodic vibrations about the rotor static equilibrium 

position, 
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This expression is plotted versus excitation frequency to obtain the frequency response 

characteristics of the linearized homopolar magnetic bearing.  This linearized system 

prediction is compared to the full nonlinear system frequency response in the following 

section to determine the effect of the nonlinear terms. 
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3.3  FREQUENCY RESPONSE 

 Analysis of dynamic systems requires an understanding of steady state system 

response at different excitation frequencies.  In rotordynamics, periodic excitation force 

caused by rotor unbalance is synchronous with rotor speed and increases in amplitude 

with the square of spin frequency.  Linear vibrating systems respond at the same 

frequency as the excitation force with amplitude and phase lag that vary with excitation 

frequency.  Nonlinear systems respond differently to periodic excitation, exhibiting 

resonance over a range of frequencies, sudden jumps in amplitude and subharmonic 

steady state response.  In this section, nonlinear amplitude and phase frequency response 

curves for the homopolar magnetic bearing described above are compared to the 

frequency response curves for the linear magnetic force derived by bias linearization. 

Nonlinear rotordynamic systems can possess multiple orbital equilibrium states 

whose local stability is influenced by the direction of changes in frequency.  Stable 

equilibrium states may become unstable with a small change in excitation frequency, 

causing jumps to another stable solution.  These jumps occur at different frequencies for 

each stable solution.  For this reason, steady state amplitudes of oscillation while the 

rotor is accelerating may be different than amplitudes when decelerating.  To fully 

describe frequency response of the nonlinear homopolar bearing, steady state amplitude 

must be determined for both increasing and decreasing rotor speeds.  This requires a 

slowly time-varying excitation frequency expressed as 

tt αωω += 0)(           (34) 

where the parameter α is sufficiently small to produce quasi-steady state response at a 

given frequency.  The sign of this parameter is reversed to model rotor deceleration.  In 

frequency response analysis, the magnitude of α = 0.0001 2
s

rad  is selected to limit 

transient response while ensuring reasonable computation times. 

The proportional and derivative control gains applied to the feedback position 

signal have a significant effect on rotor-bearing frequency response.  For linear systems, 

derivative controller gain affects the maximum amplitude of rotor vibration and the 
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phase reversal at resonance.  Proportional controller gain affects the linearized natural 

frequency of rotor oscillation according to 

m

k
eff

Ln
=,ω      (35) 

where the effective stiffness for the linearized magnetic bearing is 

ξ
pvpeff

Gkkk +=         (36) 

Since position stiffness is negative, it can be shown that proportional control gain must 

be at least 

ξ
v

p

p

k

k

G ≥       (37) 

to overcome permanent magnet bias flux and stabilize the system.  This minimum value 

of proportional control gain is approximately Gp =1.76 for the linearized stiffness terms 

that characterize the homopolar magnetic bearing in this analysis.  With the nonlinear 

magnetic bearing force, variations in proportional control gain can result in very 

different stiffness characteristics.  For small rotor displacements from static equilibrium, 

nonlinear bearing stiffness can be closely approximated by the linearized model.  As 

rotor displacements become larger, nonlinear magnetic force terms result in hardening or 

softening spring behavior depending on the magnitude of proportional controller gain.  

This behavior is shown in Figure 3.7 where both linear and nonlinear magnetic forces 

are plotted versus rotor displacement up to the bearing clearance for various values of 

proportional gain. 
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Figure 3.7  Effect of proportional control gain on magnetic bearing stiffness 

 

This simulation shows that linearized magnetic force closely matches the 

nonlinear magnetic force up to approximately half the bearing clearance in this case.  As 

predicted by linear analysis, proportional gains less than 1.76 do not provide enough 

control flux to stabilize rotor oscillations.  For proportional control gains around 2.0, 

nonlinear magnetic force is greater than the linearized model prediction, resulting in 

hardening spring behavior near the bearing clearance.  As proportional gain is increased 

to about 3.0, bearing stiffness decreases rapidly after diverging from the linearized force.  

This extreme softening spring behavior is limited in practice due to flux saturation which 

is not considered further in this analysis.   

Both hardening and softening spring behavior result in deviations from the linear 

model frequency response curve such as tilting of the resonant peak, multiple orbital 

equilibrium states at a single frequency and sudden jumps in steady state vibration 

amplitude.  These characteristics resemble the nonlinear behavior of the Duffing 

oscillator for cubic stiffness terms.  As seen in Figure 3.7, nonlinearities are more 
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pronounced for proportional control gains that result in nonlinear softening spring 

stiffness.  Careful selection of rotor mass properties and controller gains can limit 

magnetic support forces so that nonlinearities do not significantly affect rotor 

oscillations near resonance.  However, for large or highly imbalanced rotors homopolar 

magnetic bearings must operate with proportional control gains in the nonlinear 

softening spring range.  For this reason, only softening spring behavior is examined in 

this thesis.  Rotor mass properties as shown in Table 3.1 and control gains as shown in 

Table 3.3 are selected to magnify nonlinear frequency response characteristics.   

 

Table 3.3  Control gains used to analyze softening spring behavior 

Proportional Control Gain 12

Derivative Control Gain 0.004
 

 

Frequency response for the nonlinear magnetic bearing force is determined by 

direct numerical integration at equally spaced frequency intervals for both accelerating 

and decelerating rotor spin speeds.  Rotor acceleration is modeled using the slow time-

varying excitation frequency in (34).  At each frequency, integration is carried out for 

exactly 60 forcing cycles using a continuation method to ensure quasi-steady state 

response.  This continuation routine uses the state values at the beginning of each forcing 

period to define initial conditions at the next frequency iteration to minimize transient 

behavior. After integrating the nonlinear governing equations at each frequency, local 

maxima and minima are determined by searching for sign changes in the velocity 

coordinates for each rotor degree of freedom.  Vibration amplitude at each frequency is 

defined as half the maximum difference between these peaks to avoid errors caused by 

phase effects.  The resulting frequency response curve is overlaid on the linear model 

complex variable prediction in Figure 3.8 for X-axis rotor vibration amplitudes.  

Vibration amplitudes along the Y-axis are nearly identical with slightly larger 

amplitudes due to pole geometry.  For this reason, frequency response is not discussed 

separately for each axis. 
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Figure 3.8  X-axis amplitude frequency response for softening spring behavior 

 

 Amplitudes of rotor oscillations show good agreement between the nonlinear and 

the linearized magnetic bearing model at rotor excitation frequencies away from the 

linearized natural frequency.  Resonance behavior for the nonlinear model exhibits 

tilting to the left characteristic of nonlinear softening springs.   At frequencies near this 

nonlinear resonance two stable orbital equilibrium states exist whose stability depends 

on the direction of rotor angular acceleration.  For increasing spin speeds the stable rotor 

orbit experiences an upward jump at 374
s

rad  to another stable equilibrium state.  For 

decreasing rotor spin speeds the jump occurs at 342
s

rad  creating a region of hysteresis in 

which multiple orbital equilibrium states exist at a single frequency.  This behavior is 

also observed in the well-known Duffing oscillator which possesses a third orbital 

equilibrium state in this hysteresis region that is unstable for all cases.  The locus of 
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these unstable orbital equilibrium states are determined in Section 3.4 using the shooting 

method.  In addition to these sudden amplitude jumps, Figure 3.8 shows rotor 

oscillations in the hysteresis region with maximum amplitudes that do not follow the 

smooth trend observed elsewhere in the frequency response curve.  It will be shown that 

rotor obits in the frequency region near nonlinear resonance experience a series of 

bifurcations leading to steady state oscillations containing subharmonic frequency 

components.  This sequence is discussed in Section 3.5 using Poincaré maps and 

bifurcation diagrams. 

 As rotor speed is varied, rotor oscillations also undergo a change in phase with 

respect to the periodic unbalance excitation force.  To estimate this phase shift, the 

governing equations for the homopolar magnetic bearing can be expressed in the 

frequency domain by taking the Laplace transform.  In this way, the linearized 

homopolar magnetic bearing model can be expressed in the frequency domain by the 

transfer function 

( ) ( )ξξ
pvpdv

GkksGkssF

sX

+++
=

2

1

)(

)(
   (38) 

Phase frequency response of the second-order linearized magnetic bearing model is 

determined from this transfer function using Bode plot rules.  To illustrate the phase 

relationship between excitation input and rotor response using the nonlinear magnetic 

bearing force, an algorithm similar to that used to generate the amplitude frequency 

response curve is employed.  By choosing the number of integration time steps to result 

in a constant number of samples per forcing cycle, the beginning of each forcing period 

is exactly known.  For each degree of freedom, local maxima in rotor orbits are located 

by searching for sign changes in the velocity when position coordinates are positive.  

After a sufficient number of cycles to ensure steady state behavior, phase lag at each 

frequency can be approximated by the number of time steps between local maxima and 

the beginning of each forcing period.  Dividing this difference by the number of samples 

per forcing cycle and multiplying the result by 360° provides a reasonable 

approximation of nonlinear phase lag at each frequency.  The approximate nonlinear 



 

 

73 

phase angle is shown with the linearized transfer function approximation in Figure 3.9 as 

a function of excitation frequency for increasing and decreasing spin speeds.  
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Figure 3.9  X-axis phase frequency response for softening spring behavior 

 

At frequencies below the linear natural frequency, both linear and nonlinear system 

responses are in phase with the excitation input.  Above the linear natural frequency, 

each system approaches a phase lag of -180° from the excitation input.  This phase 

reversal causes the characteristic reduction in rotor oscillation amplitude at higher 

frequencies.  For the softening spring  proportional gains selected for this analysis, 

nonlinear phase reversal occurs at a lower frequency than the linearized system.  The 

frequencies at which phase lag equals -90° closely match the jump frequencies for both 

increasing and decreasing rotor spin speeds. 
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3.4  SHOOTING METHOD 

Since pole gap fluxes for the homopolar magnetic bearing must be computed by 

solving a set of linear magnetic circuit equations, analytical methods cannot be used to 

determine orbital equilibrium states and their stability.  Fortunately, several numerical 

methods exist that do not require an analytical solution.  Direct numerical integration can 

be carried out until stable steady state behavior is obtained.  The stable frequency 

response curves shown in Figure 3.8 are generated using this direct method.  However, 

direct numerical integration is unable to locate unstable orbital equilibrium states unless 

initial conditions lie exactly on an unstable orbit.  Nonlinear magnetic bearing sensitivity 

to initial conditions makes it difficult to locate these unstable equilibrium states by 

arbitrary selection of initial conditions.  A modified numerical integration routine known 

as the shooting method addresses this difficulty using an iterative algorithm to select 

initial conditions that lie exactly on orbital equilibrium paths regardless of their stability.  

Numerical integration from these initial conditions yields steady state rotor response 

without transient terms.  This method is used to identify unstable orbits in the hysteresis 

region between amplitude jumps.  The shooting method requires calculation of a 

numeric Jacobian that approaches the monodromy matrix when initial conditions lie on 

equilibrium paths.  The eigenvalues of this monodromy matrix are called Floquet 

multipliers that can be used to determine local orbital equilibrium stability and classify 

bifurcation behavior.  The iterative shooting algorithm is shown in Appendix A for 

reference.  

 The shooting method uses incremental initial state adjustments to step from an 

initial condition guess to an initial state resulting in steady state orbital equilibrium.  

With the shooting algorithm, orbital equilibrium states with an integer multiple, γ of the 

forcing period can be located within a specified error tolerance.  For each iteration, the 

state adjustment η is computed from a numerically determined Jacobian J and the 

difference between the initial condition vector and the system state after γ forcing 

periods.  This difference approaches zero along orbital equilibrium paths.  The 

adjustment is calculated using 
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where I is the identity matrix.  Convergence to orbital equilibrium requires modification 

of the state adjustment using a Newton-Raphson relaxation factor β.  The value of β is 

decreased to locate highly unstable orbits and is increased to accelerate convergence to 

stable and moderately unstable orbital equilibrium paths.  Convergence is considered 

achieved when the relative error falls below a defined error tolerance.  This error 

represents the relative change for the next initial state guess and is determined by 
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where the subscript indices represent the initial state for the current and next iterations. 

Shooting parameters used in this analysis and their values are shown in Table 3.4 for 

reference. 

Table 3.4  Shooting algorithm parameters and values 

Parameter Symbol Value

Periodicity of Response γ 1

Relative Error Tolerance e
max

10
-6

State Perturbation Magnitude ε
j

10
-9

Relaxation Factor β 0.2 to 0.5
 

 

To complete the amplitude frequency response curve in Figure 3.8, initial state 

guesses are determined by approximating the locus of unstable orbital amplitudes as a 

straight line between the data points before jumps in the stable frequency response 

curve.  Since oscillation amplitudes recorded for stable frequency response analysis are 

phase-shifted from the periodic excitation force, these assumed initial conditions are 

modified so that they coincide with the beginning of a forcing period.  This method 

allows computation of unstable synchronous orbital equilibrium paths by minimization 

of the relative error.  It is assumed that unstable rotor orbits in the hysteresis region are 

synchronous with excitation frequency.  In theory, initial conditions that lie exactly on 

an unstable equilibrium path will remain on the unstable orbit unless the system is 
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perturbed.  In real simulations, truncation and roundoff errors can cause divergence from 

the desired orbit for highly unstable equilibrium paths.  Local stability of orbital 

equilibrium states in non-autonomous nonlinear systems can be inferred from the 

stability of the linearized system near the equilibrium state.  The shooting method is a 

useful tool for this nonlinear analysis because it yields multiple orbital equilibrium paths 

whose local stability can be determined using Floquet theory.   

As the initial conditions approach an orbital equilibrium path, the numerically 

determined Jacobian approaches the monodromy matrix.  With shooting, the Jacobian is 

formed one column at a time by integrating the governing equations for small 

perturbations, εj of each state from the assumed initial state.  In Floquet theory, the 

monodromy matrix represents the nonlinear system solution with the identity matrix as 

the initial state vector.  Eigenvalues of the monodromy matrix, known as Floquet 

multipliers are used to infer local stability of the nonlinear system.  Since Floquet theory 

is based on a Taylor series expansion about the equilibrium state, it cannot be used to 

infer global stability.  If the magnitudes of all Floquet multipliers are less than one, the 

orbital equilibrium state is a locally stable periodic attractor.  If the magnitudes of all 

Floquet multipliers are greater than one, the equilibrium state is a locally unstable 

periodic repellor.  When some eigenvalues have magnitude less than one and others have 

magnitude greater than one, the equilibrium state is classified as a saddle.  The locus of 

unstable orbital equilibrium states that complete the amplitude frequency response curve 

have only one Floquet multiplier outside the unit circle and are therefore considered 

unstable saddles.  The amplitudes of these unstable orbital equilibrium states are shown 

in Figure 3.10 for the hysteresis region near nonlinear resonance. 
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Figure 3.10  X-amplitude frequency response for stable and unstable equilibrium states 

 

This locus of unstable orbital equilibrium states shows that the frequency response curve 

for softening-spring proportional control gains resembles the linearized model frequency 

response curve tilted to the left.  While three orbital equilibrium states exist in the 

hysteresis region, only the center periodic orbit is unstable for all cases.  Amplitude 

jumps between stable periodic orbits occur at vertical points of tangency of the 

composite frequency response curve.  This behavior is analogous to frequency response 

of the well-known cubic Duffing oscillator.  Extending this likeness to proportional 

control gains that result in nonlinear hardening spring behavior implies a resonant peak 

tilted to the right.  As shown previously in Figure 3.7, nonlinear magnetic forces in 

hardening magnetic bearings do not deviate considerably from linear approximations so 

that the effect of this tilting would not be as significant as the softening magnetic bearing 

shown above. 
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As a system parameter such as rotor speed is varied, Floquet multipliers can 

migrate out of the unit circle along the positive real axis, along the negative real axis, or 

as complex conjugates.  When these eigenvalues leave the unit circle the corresponding 

orbital equilibrium state transitions from locally stable to locally unstable periodic 

behavior.  These changes in the local stability of an equilibrium state are known as 

bifurcations and the manner in which the Floquet multipliers exit the unit circle can be 

used to infer subsequent system behavior.  This fact is exploited in Section 3.5 to 

classify bifurcations as cyclic-fold, period-doubling, or Neimark bifurcations. 

 

3.5  BIFURCATION ANALYSIS 

Nonlinearities in homopolar magnetic bearings result in rotor oscillations that 

may be attracted to one of several stable orbital equilibrium states.  As shown by 

frequency response analysis, stable periodic rotor orbits may lose their stability or 

unstable orbits may become stable as a system parameter is varied.  In addition, new 

frequency components may be introduced in stable periodic orbits that may or may not 

be commensurate with the original oscillation frequency.  Such qualitative changes in 

nonlinear system response are called bifurcations.  Different types of bifurcations are 

characterized by resulting dynamic behavior which can either evolve continuously from 

the original equilibrium state or may suddenly be attracted to another stable equilibrium 

state in a discontinuous manner [23].  This behavior is illustrated using iterated map 

functions such as bifurcation diagrams or Poincaré maps in which individual points 

represent instantaneous system states separated in time by multiples of the forcing 

period.  Bifurcations can also be classified as described in Section 3.4 by the manner in 

which Floquet multipliers leave the unit circle.  In the present bifurcation analysis, 

qualitative changes in nonlinear magnetic bearing response are explored using these 

tools for the region of the frequency response curve near nonlinear resonance where 

nonlinear effects are most apparent. 

Two readily apparent bifurcation points in the nonlinear frequency response 

amplitude curve are the sudden amplitude jumps near 374 and 342
s

rad .  These points 
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represent discontinuous bifurcations in which a locally stable orbital equilibrium state 

becomes unstable and the rotor is attracted to another stable orbit some distance away.  

Such bifurcations are called catastrophic or dangerous because oscillation amplitude 

may suddenly increase beyond allowable limits.  The type of bifurcation responsible for 

these amplitude jumps is determined by the path of Floquet multipliers as rotor speed 

approaches the critical value.  Real and imaginary parts of the Floquet multiplier that 

exits the unit circle are shown versus rotor speed in Figure 3.11a and on the complex 

plane in Figure 3.11b as rotor speed nears the upward jump bifurcation point. 
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(a) 

Figure 3.11  Migration of Floquet multiplier near upward jump bifurcation 
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(b) 

                       Figure 3.11 (continued)  

 

As rotor speed is increased beyond the local stability limit, an eigenvalue of the 

monodromy matrix exits the unit circle along the positive real axis.  This path indicates a 

saddle-node bifurcation such as transcritical, symmetry-breaking, or cyclic-fold [23].  

Subsequent system behavior and corresponding vertical points of tangency in the 

bifurcation diagram reveal that this amplitude jump occurs by cyclic-fold bifurcation.  

Similar analysis of Floquet multipliers across the downward jump frequency is not 

feasible by numerical analysis because the period of stable rotor motion before the 

bifurcation is not an integer multiple of the forcing period. 

 Examination of the frequency response curves in Section 3.3 also reveals 

unpredictable rotor behavior in the frequency region near nonlinear resonance.  These 

frequency response plots depict only one data point at each frequency corresponding to 

maximum rotor amplitude.  However, this simplified portrayal is not complete for rotor 

orbits that are not periodic or contain asynchronous frequency components.  To include 

these effects a bifurcation diagram is constructed by sampling the steady state rotor orbit 
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at multiples of the forcing period for different values of excitation frequency.  

Bifurcation diagrams show how equilibrium states respond as a control parameter such 

as rotor spin speed is varied.  Each point in this bifurcation diagram represents 

instantaneous rotor position after an integer number of forcing periods for stable steady 

state oscillations.  A bifurcation diagram is shown in Figure 3.12 for decreasing rotor 

spin speed to show the effect of sub-synchronous frequency components near resonance.  

Bifurcation behavior for increasing rotor spin speeds is not shown here because 

oscillations for the lower-amplitude orbital equilibrium states do not contain 

asynchronous frequency components.  This linear behavior results from the close 

correlation between the linearized and non-linearized magnetic force for small rotor 

motions.  For this reason, all subsequent bifurcation analysis only considers decelerating 

rotor spin speeds. 
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Figure 3.12  Bifurcation diagram for decreasing speed 
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Like linear systems, oscillations at rotor spin frequencies away from nonlinear resonance 

are synchronous with the excitation frequency.  This is shown by the appearance of only 

one point at each frequency in the bifurcation diagram.  As the rotor slows below 

400
s

rad  the stable synchronous orbit begins to exhibit steady state response containing 

subharmonic frequency components.  This could occur either by a secondary-Hopf 

(Neimark) bifurcation or through a series of period-doubling bifurcations at closely 

spaced frequency intervals.  A closer view of the bifurcation diagram near nonlinear 

resonance is provided in Figure 3.13 where oscillations deviate from pure synchronous 

response. 
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Figure 3.13  Bifurcation diagram for decreasing speeds near nonlinear resonance 

 

The region near the first bifurcation point at ω=394
s

rad  is magnified in Figure 3.14 to 

show how incommensurate frequencies are suddenly introduced. 
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Figure 3.14  Bifurcation diagram for decreasing speeds near ω=394
s

rad  

 

The particular bifurcations responsible for introducing these new frequency components 

are difficult to determine using the paths of Floquet multipliers since changes occur over 

such a small frequency range.  Instead, periodicity of the resulting steady state response 

can be visualized using Poincaré maps.  In contrast to bifurcation diagrams, this iterated 

mapping shows instantaneous rotor orbital position at multiples of the forcing period for 

just a single frequency.  The Poincaré map in Figure 3.15 is used to identify steady state 

periodicity after the initial bifurcation by the number of visibly separate points.  This 

map is constructed using one point for each of 300 forcing periods after transients have 

dissipated. 
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Figure 3.15  Poincaré map at  ω=393
s

rad  showing quasiperiodic response 

 

The closed curve in the Poincaré map consists of a large number of points at irregular 

intervals.  This implies that incommensurate frequencies are introduced by a Neimark 

bifurcation.  It is possible that period-doubling is also occurring simultaneously but the 

definite existence of non-integer subharmonic frequency components is evident from 

this mapping.  Frequency content of the rotor vibration time signal for the X-direction is 

obtained by taking the 2
19

-point DFT to ensure sufficient frequency resolution as shown 

in Figure 3.16.  A hanning-type windowing function is applied to steady state response 

data to reduce leakage effects. 
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Figure 3.16  Frequency spectrum for quasiperiodic response at 392
s

rad  

 

Analysis of this frequency spectrum reveals the existence a ½ subharmonic frequency 

component and several smaller sideband frequencies near this subharmonic which are 

incommensurate with the dominant frequency components.  Nonzero amplitudes of the 

other frequencies near these spikes may be actually present but may also be due to 

residual leakage or truncation errors.  The combined effect of these frequency 

components results in amplitude modulated, period-two steady state response as shown 

by the X-axis time signal in Figure 3.17 after transients have died out. 
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Figure 3.17  X-position time signal for quasiperiodic oscillations 

 

As the rotor continues to slow, quasiperiodic oscillation amplitude increases uniformly 

until incommensurate frequency components suddenly disappear near 391
s

rad  in Figure 

3.13.  For a range of frequencies after this bifurcation between 391 and 383
s

rad  the rotor 

enters a stable period-two orbital equilibrium state with no amplitude modulation.  For 

rotor speeds in this range only synchronous and ½ subharmonic frequency components 

remain.  Rotor orbits for these frequencies consist of intersecting loops as shown in 

Figure 3.18. 
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Figure 3.18  Rotor orbit for stable period-two equilibrium state at 387
s

rad  

 

Continuing deceleration, these stable period-two orbits bifurcate again in a manner 

similar to the initial Neimark bifurcation at approximately 383
s

rad .  Oscillation 

amplitudes continue to smoothly increase after incommensurate frequencies are 

reintroduced until the upward jump frequency near 374
s

rad  where a slight yet abrupt 

amplitude increase occurs.  After this, rotor oscillations in the hysteresis frequency range 

contain incommensurate subharmonic frequencies with amplitudes that remain relatively 

constant until the downward amplitude jump. 
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3.6 SUMMARY 

This analysis reveals several differences between nonlinear rotor response and 

linearized model predictions for homopolar magnetic bearings.  Governing equations are 

developed for both linear and nonlinear magnetic force terms using magnetic circuit 

equations and bias linearization.  Bearing stiffness for each system is related to 

proportional control gain to define values that result in hardening spring, softening 

spring and unstable behavior.  This shows that nonlinear magnetic force is closely 

approximated by the linear model for rotor deflections up to almost half the bearing 

clearance.  Softening spring proportional control gains are selected to magnify 

nonlinearities for frequency response analysis. 

Bifurcation behavior of the homopolar magnetic bearing is studied using 

numerical methods to generate frequency response curves and bifurcation diagrams.  

These plots show behavior similar to the cubic softening Duffing oscillator such as 

tilting of the resonant peak to lower excitation frequencies and amplitude jumps 

resulting in multiple stable orbital equilibrium states.  Amplitude jumps are shown to 

occur by cyclic-fold bifurcations using the paths of Floquet multipliers and vertical 

points of tangency of the composite frequency response curve.  At frequencies near 

nonlinear resonance during rotor deceleration, rotor oscillations experience period-

doubling and Neimark bifurcations resulting in subharmonic frequency content.  This 

analysis can be used to operate homopolar magnetic bearings at higher spin speeds or to 

support larger, more imbalanced rotors with increased knowledge of excitation 

frequency effects on nonlinear rotor oscillations. 
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CHAPTER IV 

CONCLUSIONS 

4.1  CIRCULAR SENSOR ARRAY 

 The circular sensor can effectively remove certain harmonics of runout from the 

rotor position signal when all sensors in the array are operational.  This is achieved by 

weighting individual eddy-current probe voltages using a weighting gain matrix (WGM) 

to produce two independent array output signals.  Runout reduction performance of the 

unfailed sensor array is shown using analytical expressions for the magnitude of 

individual harmonics, by numerical simulations on a sample runout pattern, and by 

actual testing on a prototype 8-sensor array.  The ideal n-sensor array with no sensor 

failures successfully removes signal harmonics k = 2 to k = n-2 to deliver an improved 

position measurement to the AMB controller with reduced runout error.  The prototype 

sensor array significantly reduces these runout harmonics but does not achieve complete 

elimination due to electronic component imperfections in the drive circuit.   

Two approaches are available for mapping individual sensor voltages to array 

outputs in the presence of sensor failures.  The swap-in-approach (SIA) replaces the 

WGM to account for the particular sensors lost, requiring additional fault-detection 

hardware and increased memory space.  The no-swap-in approach (NSIA) maintains the 

unfailed WGM for all failure states but results in incomplete runout reduction and 

synchronous measurement error after individual sensor failures.  The NSIA is employed 

for this analysis and runout and measurement error are evaluated for selected failure 

configurations.  Single sensor failures of on-axis and off-axis sensors are investigated by 

numerical simulations using an 8-sensor and a 16-sensor array.  Single failure of sensors 

that are located on a measurement axis are shown to increase runout and measurement 

error in only one array output as predicted using analytical expressions.  Single failure of 

sensors that are not located directly on a measurement axis are shown to increase runout 

and measurement error in each array output.  The effect of single sensor failures can be 

accurately predicted using (9) for the ideal sensor array.  If the location of the failed 
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sensor is known, synchronous measurement error can be corrected for single failures 

using the amplitude adjustment factors in (11).  Failure of opposing sensor pairs is also 

investigated by numerical simulations of an 8-sensor and a 16-sensor array.  In these 

failure configurations, even harmonics of runout are eliminated while the magnitudes of 

odd harmonics depend on failed sensor pair location.  While odd harmonic amplitudes 

for sensor pair failures follow similar trends as single sensor failures, analytical 

expressions to predict these amplitudes are not as accurate.  For the failure 

configurations studied here, loss of an opposing pair of on-axis sensors has the greatest 

effect on sensor array output signals.  In this worst-case scenario, the ratio of runout 

harmonics present in the failed array to those in the unfailed array is 0.500 and 

synchronous amplitude detected by the failed array is exactly ½ the amplitude of actual 

target motion. 

The prototype drive circuit used to operate individual sensors and implement the 

WGM is constructed using variable components to optimize sensor array sensitivity and 

linearity during the design stage.  Variations in individual capacitances and resistances 

due to this flexibility result in incomplete runout reduction and slight differences in 

sensitivity for each measurement axis.  Despite these imperfections, linearity and 

sensitivity are comparable to commercial eddy-current position measurement systems.  

The drive circuit is also designed to reduce sources of measurement noise.  Sensor 

crosstalk is avoided by driving all eddy-current probes using a common carrier signal.  

Thermal drift and common-mode noise radiated into the cables is reduced by driving 

opposing probes differentially due to anti-symmetry in the unfailed WGM.  This design 

results in less measurement noise than commercial systems but precludes sensor array 

operation in the presence of sensor failures.  Design revisions are suggested to allow 

fault-tolerance in future circuit models as intended.  These revisions require separate 

amplification and demodulation of individual probe voltages and use of stable electronic 

components for symmetric sensitivity and improved runout reduction.  Rotational testing 

of the prototype 8-sensor array reveals significant reduction of runout harmonics present 

in the test rotor.  While the prototype sensor array does not perform as well as idealized 
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simulations, synchronous vibration components in sensor array output signals are much 

more apparent than in single sensor measurements.  These improvements in the rotor 

position measurement system translate into more efficient control of synchronous 

vibrations and reduced heating of power amplifiers in the AMB control system. 

 

4.2  NONLINEAR ANALYSIS OF HOMOPOLAR MAGNETIC BEARINGS 

 Nonlinearities in homopolar magnetic bearings are studied using numerical 

methods to identify orbital equilibrium states and their behavior as excitation frequency 

is varied.  Governing equations for rotor motions in a simplified radial homopolar 

magnetic bearing are derived from magnetic circuit equations.  Bias linearization is used 

to determine position and voltage stiffness terms from the nonlinear model.  Using PD 

feedback control, a minimum value of proportional control gain exists above which the 

magnetic bearing provides a stabilizing stiffness force.  This minimum control gain is 

equivalent for the nonlinear and linearized magnetic bearing models.  Nonlinear 

magnetic stiffness is closely approximated by the linear model for small rotor 

deflections.  As rotor position nears the bearing clearance, nonlinear magnetic force 

deviates from the linear model in a manner influenced by the value of proportional 

control gain.  The homopolar magnetic bearing behaves as a hardening spring for 

intermediate values and as a softening spring for higher values of proportional control 

gain.  While hardening spring behavior is desirable, proportional gains that result in 

softening spring behavior must be selected for high speeds and large or highly 

imbalanced rotors due to maximum force limitations. For the values of proportional 

control gain used in this analysis, nonlinear effects become significant when the ratio of 

rotor oscillation amplitudes to bearing clearance approaches 0.47.   

Frequency response curves for the nonlinear magnetic force term are generated 

by direct numerical integration and are compared to linear model predictions.  Rotor 

oscillation amplitude and phase closely match the linear model for frequencies well 

below and above the linearized natural frequency but differ in their behavior near 

resonance.  Maximum rotor amplitude for proportional control gains that result in 
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nonlinear softening spring characteristics occurs at a lower frequency than the linearized 

model prediction.  The amplitude frequency response curve appears tilted to the left and 

includes a hysteresis region in which three orbital equilibrium states exist at the same 

frequency.  Local stability of the upper and lower equilibrium orbits depends on the 

direction of rotor angular acceleration while the middle equilibrium orbit is unstable for 

all cases and cannot be determined by direct numerical integration alone.  The locus of 

unstable orbital equilibrium states in the hysteresis region of the frequency response 

curve is determined using the shooting method with assumed initial conditions.  The 

composite frequency response curve for the homopolar magnetic bearing resembles 

behavior of the cubic Duffing oscillator.  At vertical points of tangency in the composite 

amplitude curve, a locally stable orbital equilibrium state becomes unstable through a 

cyclic-fold bifurcation and the response is attracted to the other stable orbit.  Nonlinear 

system phase lag curves also include a region of hysteresis where steady state response 

is different for increasing and decreasing rotor speeds.  Phase angles at the jump 

frequencies are approximately -90° for both locally stable orbital equilibrium states. 

Several frequency-dependent bifurcations occur at frequencies near nonlinear 

resonance.  Amplitude jumps observed in frequency response curves are caused by 

cyclic-fold bifurcations as shown by the migration of numerically determined Floquet 

multipliers along the positive real axis.  While the lower-amplitude orbital equilibrium 

state consists of pure synchronous response, the higher-amplitude orbit contains 

incommensurate frequency components resulting in quasiperiodic response.  This 

difference in stable orbital equilibrium behavior is attributed to the divergence of 

nonlinear magnetic stiffness from the linearized stiffness for larger rotor deflections.  

Quasiperiodic motion is thought to be caused by simultaneous period-doubling and 

Neimark bifurcations.  Frequency content of the amplitude modulated rotor orbit reveals 

a ½ subharmonic and multiple sideband frequency components.  For a narrow range of 

frequencies, incommensurate frequency components disappear and only the synchronous 

and ½ subharmonic remain.  This stable period-two motion increases in amplitude until 

it experiences another simultaneous period-doubling and Neimark bifurcation in which 
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incommensurate frequencies appear again and persist until the downward amplitude 

jump where stable synchronous motion resumes.  For the magnetic bearing model 

studied here, the most significant nonlinear effects are quasiperiodic motion and sudden 

amplitude jumps that occur at predictable frequencies if model parameters are known.  

While chaotic rotor oscillations are not observed in this model, consideration of flux 

saturation may reveal different results. 

Nonlinear rotor oscillations in homopolar magnetic bearings can be avoided by 

minimizing rotor mass and eccentricity and by operation at low spin speeds.  For these 

conditions the nonlinear magnetic force is very nearly linear with respect to rotor 

position.  The critical amplitude for which nonlinear magnetic force effects become 

more pronounced in rotor response is influenced by bearing clearance and by 

proportional control gain.  Simulations such as those used in this analysis can be used to 

determine safe operating speeds for existing rotor-bearing systems or to aid in the design 

of new magnetic bearings for specified operating conditions. 

 

4.3 FUTURE WORK 

While the circular sensor array and analysis of nonlinearities in homopolar 

magnetic bearings presented here provide many opportunities to improve magnetic 

bearing performance, this work may be continued by the interested researcher.  Fault 

tolerance of the circular sensor array is evaluated here using simulations of an ideally 

constructed array, but the prototype system tested does not allow individual sensor 

failures.  Design modifications to the prototype drive circuit are provided in Section 2.7 

to allow this capability and to improve measurement accuracy and runout reduction.  

Additionally, the possibility of using a 12-sensor array may be worth pursuing to 

increase the number of runout harmonics eliminated and decrease the effect of single 

sensor failures.  To allow fault tolerance to single sensor failures using the NSIA, 

implementation of the amplitude adjustment factors should also be investigated. 

To further understand nonlinear effects in homopolar magnetic bearings, an 

analytical approach is best.  The author does not currently possess the mathematical 
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skills to perform conventional nonlinear analysis of second-order differential equations 

with embedded systems of coupled equations.  If these equations could be 

nondimensionalized and decoupled, the results obtained here could be generalized for an 

arbitrary homopolar magnetic bearing using harmonic balance, trigonometric 

collocation, Floquet theory, or the method of multiple scales.  Numerical analysis 

performed in this work could also be extended to investigate the effects of gravity, rotor 

mass, unbalance eccentricity, flux saturation or flexible rotor models.  This would 

require modification of the governing equations but makes results more applicable to 

real world scenarios. 

Whether by the suggested continuation of this work or through alternate means, 

research will doubtless continue to extend the performance limits of magnetic bearings.  

These electromechanical devices transcend conventional constraints of mechanical roller 

supports through minimal friction, zero wear and the ability to control rotor motions and 

transmitted vibration forces.  While magnetic bearings create unique problems in their 

design and implementation, they offer unique opportunities for the future. 
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APPENDIX A   SHOOTING ALGORITHM 

 

1. Define magnetic bearing parameters  

a. Mass properties (m, e, c, Apole, APM) 

b. Magnetic properties (N, H, Bsat, FF, FL, µ0, µPM) 

c. Controller parameters (Gp, Gd, CDM) 

d. Operating parameters  (ω, Tf) 

2. Define shooting variables (emax, εj, γ, α) 

3. Initialize shooting parameters (error, rmax, vmax) 

4. For n different initial condition guesses 

a. Generate random initial state guess xguess,i 

i. Check that   |xguess,i| < rmax 

ii. Check that   |vguess,i| < vmax 

b. While error < emax 

i. Integrate governing equations from 0  to  γTf  using initial guess 

ii. Extract final state values xi(γTf) 

iii. For each state k 

1. Perturb initial conditions by εj 

2. Integrate governing equations from 0 to γTf  using 

perturbed initial conditions 

3. Extract final values xe(γTf) 

4. Form the k
th

 column of the Jacobian 
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iv. Assemble Jacobian 

v. Adjust nth guess by  η using relaxation factor α 
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vi. Calculate new error in xguess  
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