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ABSTRACT 

 

Thermocatalytic Decomposition of  

Vulcanized Rubber. (May 2004) 

Feng Qin, B.S., Tsinghua University, Beijing China; 

M.S., Tsinghua University, Beijing China 

Chair of Advisory Committee:  Dr. James C. Holste 

 

Used vulcanized rubber tires have caused serious trouble worldwide.  Current 

disposal and recycling methods all have undesirable side effects, and they generally do 

not produce maximum benefits.  

A thermocatalytic process using aluminum chloride as the main catalyst was 

demonstrated previously from 1992 to 1995 in our laboratory to convert used rubber tire 

to branched and ringed hydrocarbons.  Products fell in the range of C4 to C8.  Little to no 

gaseous products or fuel oil hydrocarbons of lower value were present.  

This project extended the previous experiments to accumulate laboratory data, and 

provide fundamental understanding of the thermocatalytic decomposition reaction of the 

model compounds including styrene-butadiene copolymers (SBR), butyl, and natural 

rubber.   

The liquid product yields of SBR and natural rubber consistently represented 20 to 

30% of the original feedstock by weight.  Generally, approximately 1 to 3% of the 

feedstock was converted to naphtha, while the remainder was liquefied petroleum gas.  
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The liquid yields for butyl rubber were significantly higher than for SBR and natural 

rubber, generally ranging from 30 to 40% of the feedstock. 

Experiments were conducted to separate the catalyst from the residue by evaporation.  

Temperatures between 400 °C and 500 °C range are required to drive off significant 

amounts of catalyst.  Decomposition of the catalyst also occurred in the recovery 

process.  Reports in the literature and our observations strongly suggest that the AlCl3 

forms an organometallic complex with the decomposing hydrocarbons so that it becomes 

integrated into the residue.   

Catalyst mixtures also were tested.  Both AlCl3/NaCl and AlCl3/KCl mixtures had 

very small AlCl3 partial pressures at temperatures as high as 250 °C, unlike pure AlCl3 

and AlCl3/MgCl2 mixtures.  With the AlCl3/NaCl mixtures, decomposition of the rubber 

was observed at temperatures as low as 150 °C, although the reaction rates were 

considerably slower at lower temperatures.  The amount of naphtha produced by the 

reaction also increased markedly, as did the yields of aromatics and cyclic paraffin. 

Recommendations are made for future research to definitively determine the 

economic and technical feasibility of the proposed thermocatalytic depolymerization 

process.
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CHAPTER I 

INTRODUCTION 

 

Scrap tires are one of several special wastes that pose difficulties for municipalities.  

Whole tires are difficult to landfill because they float to the surface a few years later.  

Stockpiles of scrap tires are found in many communities, resulting in public health, 

environmental, and aesthetic problems.  Outbreaks of encephalitis, a mosquito-carried 

disease, have been attributed to scrap tire piles in the United States (1).  Large tire piles 

also are potential fire hazards.  In September, 1999, lightning ignited a pile of 5 million 

scrap tires near Westley, CA.  Costs incurred in fighting and extinguishing the fire, and 

for subsequent clean-up of site, are estimated at more than $20 million (2).  In the United 

States alone, nearly 253 million tires were scrapped in 1997 (3), and more than 3 billion 

tires had accumulated in stockpiles awaiting permanent disposal (4).  Today, the number 

of tires in stockpiles is reduced to around 300 million due to the market rise of recycling 

business (5, 6).   

The disposal of scrap tires is very difficult due to their properties.  The very 

characteristics that make them desirable as tires, long life and durability, also make 

disposal almost impossible.  The fact that tires are thermal-set polymers means that they 

cannot be melted easily or separated into their chemical components.  Tires also are 

virtually immune to biological degradation. 

Landfilling  scrap  tires  is not  considered  as a good choice for several  reasons.  One 
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reason is that they tend to collect gases and rise to the surface (7).  More land will be 

needed to sustain growing populations and our society cannot afford land just for 

landfilling scrap tires.  One of the early disposal methods is burning, which is not 

environment-friendly (8).  In 1990, about 25.9 million tires (only 10.7% of total 

generation) were burned for energy (7).  Some recycling alternatives use whole tires 

(like burning for energy), thus requiring no extensive processing, other alternatives 

require that tires be split or punched to make products (for instance, rubber swings), and 

still other alternatives involve tires that are finely ground enabling the manufacture of 

crumb rubber products (typically mulch).  Such physical applications of scrap tires also 

have shortcomings partly because they cannot consume sufficient quantities of the scrap 

tires to significantly reduce the scrap tire stockpiles.  Besides, after their service lifespan, 

they will definitely have to be disposed of or recycled.  Facing these facts, many 

companies and research and development firms are searching for new, innovative ways 

to use scrap tires. 
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CHAPTER II 

BACKGROUND 

 

2.1 Information of rubber tires 

Modern transportation systems, such as cars, trucks, and airplanes, use rubber tires.  

Tires are made of vulcanized (i.e., cross-linked polymer chains) rubber and various 

reinforcing materials.  The most commonly used rubber compounds include the co-

polymer styrene-butadiene (SBR), natural rubber (NR), and butyl rubber (BR).  Natural 

rubber is known for its high mechanical strength, outstanding resilience, excellent 

elasticity, abrasion resistance, good low-temperature resistance, and very good dynamic 

mechanical properties, so it is used extensively in the tire industry (9, 10).  SBR is by far 

the world’s foremost synthetic rubber and it is easily available world-wide.  Practically 

all automobile tires use SBR, especially in the tread.  Butyl rubber also is used in the tire 

industry because of its low permeability to gases.  Butyl rubber can be halogenated, and 

chlorobutyl and bromobutyl rubbers are available.  These rubbers are widely used as tire 

inner liners due to their properties (11). 

 

2.1.1 Natural rubber 

Natural rubber (NR) supplies more than one third of the world demand for elastomers 

and it is the standard by which the performance of synthetic rubbers is evaluated.  The 

original source of natural rubber is from latex, a milky rubber-bearing fluid, obtained by 

tapping rubber trees (12). 
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Chemically, natural rubber is cis-1,4-polyisoprene, a linear, long-chain polymer with 

repeating units of isoprene C5H8 (Figure 2.1).  As an unsaturated hydrocarbon, the 

monomer isoprene can exist in various isomeric forms:  trans, and cis.  Natural rubber 

consists largely of cis-1,4-polyisoprene (13).  
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 Figure 2.1 Natural rubber. 

 

Pure crude natural rubber is white or colorless with a density of approximately 915 

kg/m3.  At the temperature of liquid air, which is about –195 °C, crude rubber is a hard, 

transparent solid, and extremely brittle.  At 0 °C to 10 °C, natural rubber is brittle and 

opaque, above 20 °C it is soft, resilient, and translucent, and above 60 °C, it is plastic 

and sticky (14). 

Natural rubber is insoluble in water, alcohol, and acetone.  It is soluble in gasoline, 

benzene, chloroform, carbon tetrachloride, carbon disulfide, and turpentine.  It is also 

slightly soluble in ether. 

Because of the double bond, natural rubber reacts to form various compounds.  For 

example, natural rubber has little inherent resistance to environmental damage due to the 

effects of oxygen and ozone in the atmosphere at high temperatures (15).  To increase 

the weathering resistance, natural rubber can be modified in many ways to achieve this 
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purpose.  Deproteinized rubber (DPNR) is a very useful modified natural rubber.  

Normal natural rubber has 0.25% to 0.50% nitrogen as protein, while DPNR has only 

0.07% (11).  Oil-extended natural rubber (OENR) is another useful modified natural 

rubber.  About 65 parts of oil, both aromatic and naphthenic, can be incorporated into 

100 parts of natural rubber to make OENR.  A new modification of natural rubber 

produced in commercial quantities is epoxidized natural rubber (ENR).  The rubber 

molecule is partially epoxidized with the epoxy groups randomly distributed along the 

molecular chain (11).  This modified natural rubber has some unique properties, such as 

better oil resistance and lower gas permeability than natural rubber.  

NR has been used in a large variety of applications such as hoses, conveyor belts, 

rubber linings, gaskets, seals, rubber rolls, rubberized fabrics, etc.  Superior fatigue 

resistance and low heat build-up characteristics make NR a special rubber component 

used in tires.  

 

2.1.2 Styrene-butadiene rubber 

The fact that isoprene is the basis of natural rubber led to the investigation of the 

polymerization of not only isoprene but also other similar monomers.  The possibility of 

producing a synthetic rubber from a combination of different monomers has also been 

realized.  Styrene-butadiene rubber (SBR) has become the world’s foremost synthetic 

rubber today, and it will probably retain its leading position in the near future.  The 

volume of production is about 60% of the total world production of synthetic rubbers.  

SBR has been used widely in all automotive tires, especially in the tread.  
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SBR is a copolymer of styrene, 256 CHCHHC = , and butadiene, 

22 CHCHCHCH =−= .  The repeating unit in SBR is shown in Figure 2.2.   

 

( ) −−−−=−− 2322 CHH

|

CCHCHCHCH

 

 

Figure 2.2 Styrene-butadiene rubber. 

 

 The typical production reaction and structure for SBR can be depicted as shown in 

Figure 2.3 (16):  
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      Styrene    
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22222 CHCHCH

|
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75% butadiene + 25% styrene 

Figure 2.3 Production and structure of styrene butadiene rubber. 
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Most SBR is produced by emulsion polymerization at decreased temperature, 5 oC.  

This type of emulsion SBR is called cold SBR and almost all the emulsion SBR 

produced in the world at present falls into this category.  Emulsion SBR also can be 

produced at higher temperature (e.g., 55 oC) (11).  The polymerization temperature 

affects at least one of the main properties of SBR, i.e., the tensile strength.  The tensile 

strength increases almost linearly as the temperature decreases.  Increased tensile 

strength leads to improved abrasion resistance and flex cracking resistance, which are 

important properties in tires. 

SBR also can be produced by solution polymerization and much interest has been 

demonstrated recently in the use of the products from this method.  Solution SBR offers 

promise in meeting the demands by automotive manufacturers for tires with low rolling 

resistance, high wet and dry traction, and excellent wear.  

SBR has fewer unsaturated bonds than natural rubber, which suggests that SBR has 

some properties that natural rubber does not have.  Mixture compounds of natural rubber 

and SBR can be used in a variety of products, the choice may well depend on the 

properties and relative prices of these two rubbers.  Blends of SBR and natural rubber 

are also widely used in industry today, primarily in the tire industry.  It has been reported 

that blends of SBR and NR exhibit improved oxidative stability compared to either pure 

component (17), and the fatigue and the strain energy vary linearly with the blend 

composition (18). 
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2.1.3 Butyl rubber  

Butyl rubber is a copolymer of isobutylene with small amounts of isoprene as shown 

in Figure 2.4.  The copolymer normally contains about 97-98% by weight poly-

isobutylene and 2-3% isoprene.  During manufacturing, isoprene can be added to the 

growing chain in three ways:  1,2-, 3,4- or 1,4- addition.  Investigations into various 

methods have established that it is the 1,4- addition that occurs (11). 

 

( )( ) ( ) −−=−−−− 232n232 CHCHCHCCHCHCCH  

        isobutylene     isoprene 

Figure 2.4 Butyl rubber. 

 

Butyl rubber has an outstanding property:  its low permeability to gases.  Before the 

introduction of the tubeless tire in the 1960s, butyl rubber had almost entirely displaced 

natural rubber in passenger tire inner tubes.  Butyl rubber also has excellent resistance to 

heat, ozone, and chemical attack.  Furthermore, it has a high degree of resistance to 

water and mineral acids.  Butyl rubber will swell in hydrocarbon solvents and oils, but it 

resists polar liquids, vegetable oils, and synthetic hydraulic fluids.  Finally, butyl rubber 

has good low-temperature flexibility and high rotational flexibility.  Butyl rubber is 

completely soluble in solvents like benzene or hexane.  

Butyl rubber polymerization differs from other synthetic rubber polymerizations 

because the reaction temperature can be very low (–90 to –100 oC).  The reaction can be 

very fast with the introduction of a Friedel-Craft catalyst like AlCl3 (always 
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accompanied by co-catalyst) even at low temperatures (11).  This fact greatly 

contributed to the idea of utilizing AlCl3 as the decomposition catalyst for vulcanized 

rubber. 

Butyl rubber still is used in the small market for inner tubes, but extensive additional 

uses have been found in such items as hoses, pharmaceutical closures, mechanical 

rubber goods, and wire and cable insulations. 

 

2.1.4 Reinforcing fillers  

Tire rubber is a complex mixture of rubber and additives that provide its unique 

properties.  The typical composition for a synthetic rubber tire compound is shown in 

Table 2.1. 

 

Table 2.1 Rubber Compounding Composition (19) 
 

component weight % 

 

styrene butadiene rubber 62.1 
carbon black 31.0 

extender oil   1.9 

zinc oxide   1.9 

stearic acid   1.2 

sulfur   1.1 

accelerator   0.7 

total 99.9 

 

Typical additives to the rubber compound in tires, as indicated in Table 2.1, are 

Reinforcing fillers  – carbon black is used to strengthen the rubber and aid abrasion 

resistance.  It is a very important part in the tires.  More detailed information about 
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carbon black, such as manufacturing methods, properties, functions, grading, etc., are 

given by Liang (20).  

Reinforcing fibers  – textile or steel fibers provide reinforcing strength or tensile 

component in tires.  By the mid 1990’s the use of steel tire cord increased substantially, 

occupying about 50% of the reinforcing fiber market (21). 

Extenders  – petroleum oils control viscosity, reduce internal friction during 

processing, and improve low temperature flexibility in the vulcanized product. 

Vulcanizing agents – organo-sulfur compounds are used as catalysts for the 

vulcanization process, and zinc oxide and stearic acid are used to activate the curing 

(cross-linking) system and to preserve cured properties. 

Because tires are composed of such valuable constituents, many researches have been 

extensively focused on recovering valuable products from waste tires. 

 

2.1.5 Vulcanization of rubber 

Rubbers, especially pure natural rubbers, are soft and tacky.  The pure rubber polymer 

chains are nearly perfectly uniform and symmetrical, thus, the molecular attraction 

between them will reduce flexibility and even lead to crystal formation (22).  A 

treatment, called vulcanization, is applied to improve the usability of rubbers.  Usually 

during the vulcanization process, the rubbers are heated in the presence of sulfur.  The 

heating promotes reactions of sulfur with double bonds contained in the polymer, 

forming cross-links between the polymer chains.  The resulted cross-linked products 

become less plastic and more resistant to swelling by organic liquids and heating.  The 
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uniqueness of sulfur as a vulcanizing (or curing) agent stems from the chemistry of S-S 

bonds.  Sulfur systems are still the most commonly used vulcanizing methods by far.  

Besides sulfur, some new vulcanizing agents are peroxides, phenolic resin, and metallic 

oxides. 

The vulcanizing reactions are very complex and almost all rubber products are 

vulcanized by one or more of the following six methods (11):  1) press curing (including 

injection and transfer molding), 2) open steam curing, 3) dry heat curing, 4) lead press 

curing, 5) fluidized-bed curing, and 6) salt bath curing.  There are a great number of 

studies concerned with the mechanism of accelerated sulfur vulcanization (13, 23-26).  

Some of the proposed mechanisms are based on ionic or radical formation.  Some 

structural features that generally are accepted as occurring in sulfur-vulcanized rubber 

are shown in Figure 2.5 (27). 

 

2.2 Literature review of tire recycling 

The state of the technology for scrap tire disposal was summarized by Clark et al. (7) 

in 1993, and little significant progress has been reported since.  The strategies can be 

divided into three major categories:  (1) recycling in whole or by grinding the rubber into 

small particles for use directly in that form, (2) combustion as fuel or tire-derived fuel 

(TDF), and (3) decomposition to chemical constituents. 
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Figure 2.5 Structures of sulfur-vulcanized rubber (27). 
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Category (1) is the best developed application to date, but many applications of the 

crumb rubber (e.g., use as bedding for farm animals, mulch for garden applications) are 

not attractive because they represent waste of a valuable chemical resource.  

Furthermore, the crumb product usually is sufficiently fine that it poses a serious fire 

hazard, both during the grinding process and during the lifetime of the application.  On 

January 23, 2002, a confined space fire involving hundreds of tons of shredded rubber 

tires occurred at a tire recycling facility owned by EnTire recycling, Inc., Nebraska City, 

NE (28).  It took several agencies 11 days to extinguish the fire.  The U.S. 

Environmental Protection Agency (EPA) estimated that the cost of extinguishment and 

debris cleanup exceeded $1,500,000.  However, the damage to the environment, and 

surrounding area residents’ health is inestimable. 

The oldest market for scrap tires is burning as a fuel (29).  Actually, for the period 

from 1979 to 1992, Tire-derived fuel (TDF) was the only market for scrap tires.  Now 

TDF is being used in a variety of combustion technologies:  cement kilns, pulp and 

paper mill boilers, utility and industrial boilers, and dedicated energy facilities.  Several 

factors greatly affect the future of TDF.  First, to be economically viable, the waste 

rubber as fuel must compete with ordinary fuels, such as natural gas, wood, and coal.  

Should the cost of energy continue to rise, there likely will be an increased interest in 

using TDF.  Unfortunately the coal price is expected to fall to $22.17 per ton by 2025 

(1.0056 ¢ per pound), an annual decline of 0.5%, according to what the Energy 

Information Administration (EIA) published in its Annual Energy Outlook 2003 (30).  

Another reason why TDF dominated in the late 1970s to early 1990s is that a number of 
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states set up funds and programs to clean up stockpiles of scrap tires and stimulate 

markets by offering reimbursements to various end users.  Recently some states 

(Wisconsin, Texas, Washington, Oregon, and Idaho) ended their support because most 

of these states found other ways to keep up with the additional scrap tires being 

generated (estimated at one disposed tire/(person•year) (31)).  After the subsidies ended 

on December 31, 1996, six of the nine plants in Wisconsin using TDF, reportedly 

decided that it was no longer economical to burn TDF, even though TDF still cost 50 

percent less than other fuels.  The other three plants that continued burning TDF started 

buying tires from out-of-state suppliers as they were less expensive and more 

importantly, these other states and Canada still employed subsidy programs. 

Concerning Category (3), most attempts to convert tire rubber into chemicals have 

involved pyrolysis, the thermal decomposition of rubber at high temperature, or 

catalysis-assisted pyrolysis.  In the last 30 years, many kinds of processes have been 

designed to pyrolyze tires to valuable components (32-37).  A variety of reactors, such 

as, stirred tanks, rotary kilns, fixed beds, fluidized beds, and tray systems are applied in 

these pyrolysis processes.  Several of these processes are claimed to be successful on a 

pilot or industrial scale (38).  Basically, three fractions are derived from thermal 

decomposition of tires:  gases, liquid oils, and solid residues.  Although the precise 

product spectrum depends upon the reaction conditions, most pyrolysis processes at the 

temperature range of 500-900 ºC typically yield (39):  10-30% gases, 38-55% oils and 

33-38% char by weight.  The oils are condensable aromatic hydrocarbon liquids, such as 

benzene or toluene, and the fuel gases formed are mainly H2, CO, CO2, and lighter 
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hydrocarbons, such as CH4 and C2H6.  The chars produced by pyrolysis, basically with 

yields of over 30% in weight, have a high calorific value, but also a relatively high sulfur 

content.  The tough reaction conditions of pyrolysis tend to produce lighter hydrocarbons 

and low grade carbon black of limited market value (8).  Some methods for improving 

the quality of the char have been proposed (40), but at the expense of considerable 

additional process equipment.  There are no reports in the literature of successful 

production of commercial carbon blacks by pyrolysis.  This is in part because of the little 

known fact that process temperatures above 350 °C transform existing carbon black into 

a form of graphite that does not have the reinforcing properties needed for the majority 

of carbon black applications (8).  Therefore, direct thermal pyrolysis does not appear to 

be a viable method for converting scrap tires to chemicals. 

Another approach to the production of chemicals is catalytic degradation of the 

polymer at lower temperatures (non-pyrolysis conditions).  Studies by Larsen et al. (41, 

42) demonstrated that molten salt catalysts with Lewis acid properties, such as zinc 

chloride, tin chloride, and antimony iodide, can decompose tire rubbers.  The 

decomposition occurs at temperatures between 380 ºC and 500 ºC to yield gases, oil, and 

a residue.  Similarly, Ivanova et al. (43) investigated the catalytic degradation of butyl 

rubber using various metal chlorides as catalysts.  Both Larson and Ivanova et al. 

showed that the choice of catalyst and operating temperature have significant effects 

upon the nature of the products.  Wingfield et al. (44) have patented a process for the 

catalytic treatment of rubber and plastic waste by reaction with Zn and Cu salts 

(chlorides or carbonates).  In another patent (45), the authors claim that plastic and 
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rubber wastes also can be degraded in the presence of basic salt catalysts, such as 

sodium carbonate.  Butcher (46) has reported on the degradation of polymeric materials 

over molten mixtures of a basic salt (NaOH or KOH) and a Cu source, mainly metallic 

Cu and CuO.  Processes using solid acid as catalysts have also been patented.  According 

to Chen and Yan (47) preprocessed clean plastic and/or rubber wastes are dissolved or 

dispersed in a petroleum oil, with a high content of polycyclic aromatic compounds at 

300 ºC, and catalytically transformed in a Fluid Catalytic Cracking (FCC) reactor at 

temperature of about 500 ºC.   

There is at least one company that claims to have built low-temperature catalytic 

plants to process 100 tons of scrap tires per day into gaseous and liquid hydrocarbons, 

steel, and carbon black (4).  However, there is no referenced technical information 

describing this process developed by Adherent Technologies, Inc., Albuquerque, NM.  

To date, researchers are still attempting to build truly commercial plants concerning 

Category (3). 

 

2.3 Review of thermocatalytic decomposition mechanism 

 Relatively few publications have been reported on the catalytic decomposition of 

vulcanized rubber and even fewer have discussed the mechanism involved.  A catalytic 

mechanism for the decomposition of vulcanized rubber using aluminum chloride will be 

discussed in detail in Chapter V. 
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2.4 Previous studies at Texas A&M University 

It is not a novel idea to employ low-temperature catalytic processes to degrade waste 

tire rubbers.  Previous studies at Texas A&M University emphasized, upon finding a 

catalyst, a unique set of reactor operating conditions.  Almost complete conversion of the 

tire rubbers is possible by the approaches proposed by Platz (48-50).  Aluminum 

chloride was exclusively utilized as a catalyst during the previous studies.  Aluminum 

chloride was selected as the catalyst for the reasons described in the following 

paragraphs. 

Aluminum chloride, AlCl3, is a strong Lewis acid that can accept an electron pair 

acting as an acid during reaction (51).  It is a hygroscopic white solid that reacts 

vigorously with moisture in air at room temperature (52).  It is an unusual substance in 

that its triple point pressure 0.229 MPa (33.2 psi) is greater than 1 atmosphere so that it 

has a sublimation point rather a normal boiling point.  The sublimation and triple point 

temperatures are low, 180.2 ºC and 192.5 ºC, respectively (53).  Vapor pressure 

measurements reported by Smits et al. (54) are shown in Figure 2.6.  The elevated vapor 

pressures of AlCl3 in the range of 180 ºC to 300 ºC introduce significant challenges to 

the experimental work and to the commercial process. 

As an organic synthesis catalyst, AlCl3 is used in a wide variety of manufacturing 

processes, such as the polymerization of low-molecular-weight hydrocarbons in the 

manufacture of hydrocarbon resins.  The well-known Friedel-Crafts reactions that 

employ this catalyst are used extensively in the synthesis of agricultural chemicals, 

pharmaceuticals, detergents, and dyes (55).  In the manufacture of butyl rubber, which is 
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extensively used for tire rubbers, the monomers isoprene and isobutylene are treated 

with a catalyst like AlCl3, often with a co-catalyst at the temperature of –90 ºC to –100 

ºC.  Even at such low temperatures, the reaction is very fast (11).  Because 

depolymerization is the reverse of polymerization, it is reasonable to expect that the 

same catalyst will work on both reactions.  Moreover, AlCl3 is abundant and its price is 

reasonably low.  Based upon the above information, aluminum chloride appears to be a 

suitable catalyst for depolymerizing tire rubbers and therefore has been the preferred and 

confirmed choice since the beginning of the project.  

 

 

Figure 2.6 Vapor pressure of aluminum chloride (54). 
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During the summer of 1992, studies on the depolymerization of tire rubber were 

begun at Texas A&M University.  Three initial depolymerization experiments with a 1:2 

mole ratio mixture of AlCl3 and MgCl2 as the catalyst in a 300-cm3 glass reactor at 

atmospheric pressure indicated promising results.  The temperature was controlled at 

300 ºC to 320 ºC, which is among the lowest reported working temperatures for tire 

rubber recovering processes.  At that time, the catalyst concentration was 1 unit catalyst 

per 1 unit rubber by weight.  

 

 

 

 Figure 2.7 Schematic diagram of previous experiment. 
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Another 25 depolymerization runs were conducted during August, 1993.  A more 

complex experimental system was implemented, and the size was scaled up from 70 to 

80 grams of mixture of rubber and catalyst to almost 1 kg.  A carbon steel reactor with a 

volume of 10 L and rated for operation at 6.5 MPa (1,000 psia) was used for most of 

these experiments.  A rubber feeder was attached to the reactor top plate as shown in 

Figure 2.7 (56).  A reflux condenser was placed directly on the top of the reactor to 

improve the product quality and keep the catalyst from exiting the reactor to the 

downstream units.  The reflux condenser was followed by one liquid knockout trap.  A 

set of gas sampling tubes was used to collect products for analysis by off-line gas 

chromatography.  Both pure and mixed salt catalysts with lower concentration were 

studied.  Reaction temperatures as low as 220 ºC were employed successfully.  

These experiments demonstrated that essentially no light gases (CH4, C2H6, CO, or 

CO2) were produced.  The fluid products at room temperature generally fell in C4 to C8 

range, with very few, if any, heavier hydrocarbons or heavy oil products present.  The 

product composition from one experiment is shown in Table 2.2.  The hydrocarbon 

composition varied with reactor operating conditions, but always was predominantly 

branched and ring hydrocarbon molecules.  These products are attractive because they 

have greater market value than the fuel gases and fuel oils that are recovered from 

pyrolysis processes (8). 
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Table 2.2. Representative Hydrocarbon Product Distribution (wt%) (8)  
 

carbon number n- paraffins iso-paraffins olefins naphthenes  aromatics 
      

  1,2 0.00   0.00 0.00 0.00 0.00 

     3 0.82   0.00 0.00 0.00 0.00 

    4 4.24 23.58 1.20 0.00 0.00 

    5 0.95 23.40 1.42 0.22 0.00 

    6 0.21 30.35 0.66 2.06 0.40 

    7 0.06   4.46 0.41 1.24 0.24 

    8 0.05   2.15 0.11 0.87 0.04 

    9 0.07   0.10 0.00 0.12 0.20 

  10 0.00   0.00 0.09 0.00 0.18 

11+ 0.00   0.00 0.00 0.00 0.00 
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CHAPTER III 

SPECIFIC OBJECTIVES 
 

Previous experiments and analyses mainly focused on material balances, tire rubber 

characterization, depolymerization, and black solid residue workup.  The specific 

objectives of this research are to address the key issues related to commercial viability of 

recycling tire rubber through conversion to chemical feedstocks.  These issues lead to 

the following specific objectives for this research: 

1. To determine the effect of reactor operating conditions such as temperature, and 

choice of blanket gas upon the nature of the solid reactor residue and the fluid 

hydrocarbon products using pure anhydrous aluminum chloride and its mixtures 

with certain salts as catalyst. 

2. To evaluate the extent of depolymerization of natural, styrene butadiene, and 

butyl rubber achieved using a Lewis acid catalyst as described above.  

3. To create a general understanding of the depolymerization decomposition 

mechanism. 

4. To evaluate processes for recovering and recycling of the catalysts.  This issue is 

also dealt with by Liang (20). 

This research expands our understanding of the reaction mechanics for the 

thermocatalytic decomposition of rubber tires using aluminum chloride and its mixtures 

as catalysts.  The results of this work represent progress toward developing an 

economically viable thermocatalytic process that converts scrap tires to chemical 

feedstocks. 
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CHAPTER IV 

EXPERIMENTAL 

 
4.1 General apparatus and setup 

The existing 10 L reactor from previous experiments (see Figure 2.5) was 

reconditioned for use in this research.  The tire rubber feeding system, temperature 

measurement and control system, and pressure measurement and control system were 

redesigned.  The new system used a simple setup for capturing all gaseous and liquid 

hydrocarbon products.  The catalyst and the reaction residue were kept in the reactor 

upon completion of experiment for further analysis.  The evaluation and characterization 

of the solid residue are described elsewhere (20).  The experimental variables were the 

catalyst composition, the reflux condenser temperature, the reactor temperature, and the 

composition of the blanket gas.  The system pressure was maintained constant 

throughout the runs unless indicated otherwise. 

 

4.1.1 Reactor system 

After recondition and redesign, the carbon steel 10 L reactor was used in this 

research.  Although the reactor was rated for operation at 6.5 MPa (1,000 psia), the 

highest working pressure was set at 0.7 MPa (100 psig) by a relief valve.  On the top of 

the reactor, various openings were adapted for different applications (Figure 4.1).  They 

are 

1. Rubber feeder opening 

2. Catalyst-loading opening 
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3. Hot condenser opening 

4. Relief valve opening 

5. Two openings for temperature measurement and blanket gas feeding 

6. Two spare openings that are plugged when not used 

7. The center opening is for a stirrer shaft.  The shaft is driven by a motor and 

sealed by a commercial packing gland assembly supplied by Parr.  The packing 

gland was cooled by circulating a refrigerated mixture of ethylene glycol and 

water through it (Figure 4.2). 

 

Opening for top thermocouple and blanket gas 

Extra openings (plugged) 

 

 

 

                          Hot condenser opening 

 Center shaft opening 

Rubber feeder opening                    Relieve valve opening 

Bottom thermocouple opening                  Catalyst-loading opening 

 

Figure 4.1 Top view of the reactor top plate. 

 

The reactor was heated by four individual heating bands.  The outside of the reactor 

vessel was covered  with insulating  material.  The four heating  bands were divided  into 
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two heating zones, a top heating bundle and bottom heating bundle (Figure 4.2).  

Various thermocouples were used to monitor and control the system temperatures. 

 

 

         

  

  

  

  

  

  

  

 

 

Figure 4.2 Side view of reactor system. 

 

4.1.2 Feeding system 

The feed hopper, which had a volume of 7 L, was constructed of clear acrylic plastic 

to allow observation of the feeding of rubber samples.  Visual observation was necessary 

because bridging of the rubber particles in the feed hopper caused significant difficulties 

during feeding operations in the previous experiments.  The feed hopper was at the same 

pressure as the reaction  vessel  during an  experiment.  The two-auger  system  shown in  

Coolant in at 0o C 

Coolant out 

Top thermocouple 

Bottom thermocouple 

Top heating bundle 

Bottom heating bundle 

Blanket gas inlet 

Stirrer shaft 

Impeller (stirrer) 
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Figure 4.3 provided a reliable and consistent feed of the rubber samples.  The vertical 

auger was needed to minimize and compensate for deposition of solid catalyst in the 

feeder from the overhead vapors in the reactor.  The manual horizontal auger was used 

to propel the rubber samples from the feeder hopper to the reactor.  The use of the 

manual stirrer was very important to break the bridging inside the hopper and ensured a 

complete feeding of rubber samples. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Rubber feeding system. 

Vertical auger driven by a motor 

Manual horizontal auger 

Manual stirrer 

Reactor 
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4.1.3 Condenser system 

Various condensers designs were tested during the start-up experiment.  Eventually, 

two customized tube-in-tube stainless steel condensers were arranged as shown in Figure 

4.4.  The reflux condenser was connected directly to the top plate of the reactor and 

maintained at temperature (70 oC to 100 oC) by circulating mineral oil through the outer 

tube.  The liquid condenser was positioned down-stream of the main condenser, above 

the liquid product collector, and cooled (usually to 0 oC) by circulating a liquid mixture 

of ethylene glycol and water through the outer tube. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Arrangement of reflux and liquid condensers. 

From reactor To collector 

Simple connection 

Reflux condenser Liquid condenser 
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4.1.4 The manual plunger and scraper system 

 The manual plunger and scraper device (Figure 4.5) was placed in the reflux 

condenser. Due to the heavy plugging of aluminum chloride in the reflux condenser, we 

had to push this device through the reflux condenser and rotate it at least once per 

minute to remove catalyst condensing on the lower wall of the condenser. This small 

device made the research possible with pure AlCl3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 The manual plunger and scraper system. 

 

Reflux condenser 

Manual plunger 

Reactor 

Scraper 
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4.1.5 Liquid collector 

For safety reasons, the glass liquid collector used in the previous experiments was 

replaced with a 1 L stainless steel container.  This liquid collector was pressure tested up 

to 0.7 MPa (100 psig), which is the allowed working pressure of the reactor.  Although 

the collector often was operated at ambient temperature, it could be cooled by circulating 

a mixture of ethylene glycol and water through cooling coils clamped to the exterior.  

The collector assembly was covered with insulating material. 

 

4.1.6 Acid gas scrubbing system 

After leaving the liquid product collector, the vapor products were expanded to 

atmospheric pressure and passed through two traps, as shown in Figure 4.6.  The sodium 

hydroxide trap (25% aqueous solution by weight) removed acid compounds, principally 

hydrogen chloride, from the gas stream and the cadmium acetate trap (25% aqueous 

solution by weight) removed sulfur compounds, principally hydrogen sulfide.  The 

scrubbed vapor was collected as a whole over water, vented to atmosphere, or passed 

through a sample valve to a gas chromatograph for online analysis. 
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4.1.7 Heating and cooling system 

Various heating and cooling systems were utilized to control the temperature of 

reaction system during the experiment. 

a. Heating bands were used to control the reactor temperature. 

b. A circulating bath was used to control the temperature of the mineral oil 

circulated through the reflux condenser.  

c. Low temperature liquid circulating bath was used to maintain the 

temperature of the ethylene glycol + water mixture circulated through the 

liquid condenser, liquid collector coils, and the packing gland cooling 

jacket. 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Acid gas scrubbing system. 

 

Sodium hydroxide trap Cadmium acetate trap 

From collector To GC/vent/gas collector 
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4.1.8 Temperature monitoring and control system 

 The temperatures inside the reactor were monitored and controlled at two points, top 

and bottom by using thermocouples.  The reactor temperature was controlled by using 

two band heaters located on the side walls of the reactor and a set of thermal couples 

outside of the reactor connected with a feedback control loop.   

The following temperatures were measured and displayed continuously on the control 

panel:  1) reactor vessel:  at two points inside the vessel, one near the top and the other 

near the bottom, and two points on the outside for controlling the band heaters 

(controllers);  2) reflux condenser:  this was inferred by measuring the temperature of the 

circulating oil;  3) liquid condenser:  this was measured by using a thermocouple located 

inside the condenser; 4) liquid collector, and 5) ambient temperature.  All readings were 

recorded manually at 5-minute intervals during an experimental run. 

 

4.1.9 Pressure monitoring and control system 

A relief valve (burst disk with a pressure rating of 0.7 MPa (100 psi)) was mounted 

on the reactor top plate to prevent excessive pressures within the reactor.  The outlet of 

the relief valve was connected directly into an exhaust fan intake manifold.  Initially, a 

solenoid-controlled safety cut-off valve was located between the reflux and liquid 

condensers, however it was removed later because solid catalyst condensing in the small 

orifice obstructed the flow and prevented proper operation of the valve.  The reactor 

pressure was controlled by adjusting the down stream flow-rate using the pressure 

control valve located immediately after the liquid collector. 
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The following pressures were measured by either pressure transducers or mechanical 

pressure indicators, and displayed continuously on the control panel:  1) blanket gas 

supply line;  2) reactor pressure:  this inferred by measuring the pressure between the 

reflux and liquid condensers;  3) directly downstream of the pressure control valve;  and 

4) at the inlet to the gas flow meter.  All readings are recorded manually at 5-minute 

intervals.  The control panel also was equipped with an “Emergency” button that could 

shut off all electricity to the apparatus when activated. 

 

4.1.10 Analysis 

1. Liquid product analysis 

After completing the experiment, the liquid product was removed from the room-

temperature collector, weighed, and kept for further analysis.  Liquid product samples 

were analyzed quantitatively by gas chromatography, or qualitatively by mass 

spectrometry.  The mass spectrometry analysis was performed by Dr. Shane Tichy of the 

Department of Chemistry, Texas A&M University. 

Six samples were submitted to Core Lab – Petroleum Services, Houston, Texas, for 

detailed characterization of the liquid fractions generated during the depolymerization 

experiments. 

 

2. Liquefied petroleum gas (LPG) product analysis 

The LPG product (typically C3 to C6) was analyzed during the experiment using a gas 

chromatograph.  The gas chromatograph was set up so that the LPG could be sampled 
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online during the experiment.  Before each experiment, the gas chromatograph was 

calibrated using a standard gas containing CH4, C2H6, C3H8, i-C4H10, n-C4H10, i-C5H12, 

and n-C5H12.  

 

4.1.11 Carbon black and catalyst recovery system 

Carbon black and catalyst recovery directly impacts the economic viability of the 

thermocatalytic decomposition process for vulcanized rubber.  The experimental 

equipment and procedures for catalyst recovery are described by Liang (20). 

 

4.2 Experimental materials 

4.2.1 Rubber samples 

Several model compounds were prepared for this work.  Three compounds, each 

containing a single rubber and a single grade of carbon black, were designed to 

understand the effect of the process upon individual rubbers and carbon blacks that are 

significant ingredients in tires.  Three model composites were designed to represent all 

ingredients present in black sidewall tires, white sidewall tires, and tires containing silica 

as a reinforcing agent.  The model compounds and composites were prepared by the 

Cooper Tire Company, a Division of Cooper Tire & Rubber Co. 

 

1. Model rubber compounds 

The three vulcanized model rubber compounds were:  a styrene butadiene rubber 

containing N234 grade carbon black (SBR/N234), a butyl rubber sample containing 
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N550 grade carbon black (BR/N550), and a natural rubber sample containing N121 

grade carbon black (NR/N121).  The model rubber compounds also contained zinc 

oxide, sulfur, and other chemical constituents in minor quantities.  

 

2. Model tire composites 

The model tire composites were silica rubber (Silica), white side wall rubber (WSW), 

and black side wall rubber (BSW).  All rubber samples were supplied as particles 

approximately 5 – 10 mm in diameter. 

 

4.2.2 Catalyst 

The salts used as catalysts in this work were AlCl3, and mixtures of AlCl3 with 

MgCl2, NaCl or KCl. 

AlCl3 is unstable in air and decomposes on contact with water vapor to form 

hydrochloric gas and aluminum oxide by reaction 1 (57): 

 

                          AlCl3 (solid) + 3 H2O (gas) → 6 HCl (gas) + Al2O3 (solid)                   (1) 

 

The atmosphere contains sufficient water vapor to induce this reaction.  

Consequently, the catalyst must be handled in a controlled-atmosphere glove box 

containing a dry inert gas, while using rubber gloves and appropriate respiratory 

protection.  Exposure to liquid phase water results in a violent, exothermic reaction.  The 



 

 

35

reaction proceeds according to reaction 2, producing a hydrochloric acid solution that 

also contains aluminum ion complexes (58): 

 

                                2 AlCl3 + 10 H2O → [Al2H18O10]+4 + 2 H+ + 6 Cl–                         (2) 

Therefore, the aqueous solutions resulting from this reaction become quite acidic in 

nature.  AlCl3 catalyst poses additional challenges during the experiments, because its 

vapor pressure exceeds atmospheric pressure at the reaction temperatures.  The elevated 

partial pressure of the catalyst causes considerable transport of catalyst vapor throughout 

the apparatus during the experimental walk. 

Anhydrous AlCl3 (Grade 0025) was purchased from Gulbrandsen Chemicals, La 

Porte, Texas.  The catalyst was supplied in a 5-gallon bucket with a PVC liner.  

Anhydrous  MgCl2 (H2O content < 5%) was purchased from VWR Scientific Products 

(catalog number is 20,833-7).  It was manufactured by Aldrich Chemical Company, Inc., 

and shipped in a brown glass container containing 1 kg.  The NaCl was purchased from 

the local grocery store. 

Anhydrous  MgCl2 is deliquescent and tends to adsorb moisture on long time 

exposure to a wet atmosphere.  It also needs to be handled in a controlled-atmosphere 

glove box containing a dry inert gas, while using rubber gloves and appropriate 

respiratory protection.  The NaCl is considered stable at short time contact with the open 

surroundings and does not need specific handling procedures. 
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4.3 Experimental procedure 

In all cases, a known amount of rubber was loaded into the feed hopper during 

equipment assembly.  The mass of rubber was typically around 1 kg, mainly depending 

on the amount of residue material needed for further analysis and characterization.  

During the startup, the circulation baths were brought to operational conditions while the 

reactor was pressure tested at a pressure higher than the expected operating pressure 

using an inner gas, such as nitrogen or argon.  In most cases the reflux condenser was 

controlled at 100 oC, the liquid condenser at 0 oC, and the liquid collector at ambient 

temperature, 25 oC.  After reducing the reactor pressure to atmospheric pressure, catalyst 

was loaded into the reactor through a port in the top plate, while providing an inert flow 

of argon or nitrogen to maintain a water-free environment (see Figure 4.7).  The stirrer 

was operated continuously at approximately 50 rpm.  Then the catalyst feed port was 

closed and the system pressurized to approximately 0.4 MPa (45 psig) for a final 

pressure test.  The pressure test criterion was that the rate of decrease in internal pressure 

was less than 2 kPa (0.4 psi) over 15 min.  The depolymerization runs were performed at 

a lower pressure, typically 275 kPa to 310 kPa (25 psig to 30 psig).  Then the reactor 

was increased to the desired reaction temperature, typically 220 oC, while carefully 

noting any changes to the system pressure and bed temperature profile.  All experimental 
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variables, such as temperatures, pressures, and flow rates, were recorded at 5-min 

intervals.  Upon reaching the desired reaction conditions, the rubber was added by 

operating the horizontal rubber feeder auger manually, again noting any changes in 

temperature and pressure.  After adding all of the rubber feedstock, the reactor 

conditions were maintained at reaction temperature and pressure for at least 2 more 

hours to ensure complete decomposition of the rubber.  During one run (Run III-07), this 

period was extended to 6 hours, except that there was no decomposition more than 2 

hours after the last rubber fed.  Once the reaction was completed, the reactor heaters and 

the circulating baths were shut down.  In most cases, the stirrer was kept running until 

the reactor temperature dropped to approximately 50 oC. 

The procedures for catalyst recovery, carbon black recovery, and residue workup are 

given by Liang (20). 
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CHAPTER V 

RESULTS AND DISCUSSION 

 

The study (Phase III) began in June 2001 with the intention of verifying the 

performance of the proposed process with aluminum chloride, evaluating the economic 

potential of the process, and obtaining sufficient information to allow design of a pilot- 

or commercial-scale unit.  The study was performed in two stages.  The first stage used 

model rubber compounds containing a single rubber and a single grade of carbon black.  

The second stage used model tire rubber composites representing black side wall tires, 

white side wall tires, and silica-reinforced tires (see also Sections 4.2.1).  Some 

experiments were performed to evaluate the effect of co-catalyst system in reducing 

catalyst costs for the process.  Six naphtha samples from the current study were 

submitted to a commercial laboratory (Core Lab – Petroleum Services, Houston, Texas) 

for detailed analysis of the composition of the naphtha fraction generated during the 

depolymerization runs.  The information from this and previous work was used to 

develop a possible mechanism for the thermocatalytic depolymerization of vulcanized 

rubber using aluminum chloride as a pure or co-catalyst.  The experimental results and 

the resulting hypothesis are discussed in the following sections.  

 

5.1 Model rubber compounds 

Approximately 30 runs were completed on model rubber compounds between 

December 27, 2001 and May 31, 2002.  Fifteen runs (III-00A to III-00N and III-0S1) 
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were performed during equipment set-up and verification.  These runs will not be 

discussed in detail, but the information gained from these runs was used in the 

interpretation of the runs performed for the Phase III program (III-1, III-1A, III-1B, III-

1C, III-1D, III-2, III-2A, III-2B, III-3, III-3A, III-4, III-5, III-6, III-7).  In this notation, 

the numerals 1, 2, 3, etc. denote different experimental conditions and the suffixes A, B, 

C, etc. denote replications of a particular set of experimental conditions. 

 

5.1.1 Process related issues  

1. Catalyst plugging problem 

The Phase III start-up experiments, after modification of the Phase II equipment, 

revealed some unexpected operational difficulties.  The following changes were made to 

eliminate glassware from the reaction system:  the glass rubber feeder was replaced by a 

brass and acrylic assembly, glass condensers were replaced by stainless steel units, and 

more heating power was supplied to the reactor vessel.  Those changes provided more 

efficient condensation of catalyst as a solid from the vapor phase, resulting in repeated 

plugging of the downstream equipment.  Similar problems initially were encountered in 

the rubber feeder section.  The upstream problems were eliminated by providing 

adequate torque to drive the vertical feeder auger.  The blockages observed in the 

downstream equipment were more difficult to prevent.  All the solenoid valves 

introduced to provide emergency shut-off capability had to be removed.  They contained 

small orifices that plugged with catalyst during the run, even though the condensers 

removed most of the catalyst from the vapor stream. 
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Many of the earliest Phase III start-up experiments were terminated prematurely due 

to blockage by condensed catalyst.  The catalyst condensation effect was cumulative, so 

the probability of blockage increased as time elapsed during an experiment.  Several 

runs were terminated after only 5 to 60 min on-line because of blockages.  To avoid 

plugging, high rubber feed rates were employed to complete the experiments as quickly 

as possible.  However, high rubber feeding rates also had a disadvantage.  Early in the 

run, while the catalyst vapor pressure was still high, the vapor products carried the 

catalyst into the condensers.  Runs typically lasted for approximately 1 h before the 

bottom section of the reflux condenser would plug completely, requiring termination of 

the run.  In an effort to inhibit catalyst vaporization, the reactor vessel was filled with 

argon and heated while maintaining an internal pressure of approximately 140 kPa (20 

psig).  However, once the feeding of the rubber began, the pressure was allowed to rise 

to approximately 180 kPa (26 psig) under the assumption that the vapor expelled from 

the reactor initially was predominantly argon.  It now is clear that, once the catalyst was 

heated past its melting point, most of the argon already had been expelled from the 

reactor and the vapor phase was composed mostly of catalyst. 

In the later runs, plugging of the reflux condenser was avoided by manually pushing a 

combination plunger and scraper device through the reflux condenser at least once per 

minute to remove catalyst condensing on the lower wall of the condenser.  After 

approximately 200 to 300 grams of rubber was fed, catalyst condensation became less 

problematic, so that during most runs, the plunger operation was stopped after the rubber 

was fed.  It was observed that the tendency of the catalyst to leave the reactor vessel 
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decreased as the accumulated amount of rubber fed increased.  In addition, for the 

current equipment, the severity of the plugging problem increases with the amount of 

catalyst initially loaded into the reaction vessel.  These observations are consistent with 

the results of previous experimental programs. 

The improvements made to the reactor heater in this project contributed to the 

severity of the plugging.  In previous work, the 2 L reactor clearly had several cold 

spots, especially at the top plate.  Such cold spots also were present to some extent in a 

10 L reactor.  When significant cold spots are present, catalyst condenses on the cold 

surfaces, thereby lowering the partial pressure of catalyst in the vapor phase and 

minimizing the condenser blockages.  Also, the glass condensers used previously were 

less efficient, so that more catalyst could pass through the condenser, and, because glass 

is less porous than steel, the condensed catalyst did not adhere as strongly to the glass 

surfaces. 

 

2. Heating profiles in reactor  

The heater bands around the reactor were driven with PID controllers and SCR power 

packs.  Experiments with no catalyst and rubber in the reactor vessel revealed that the 

bottom and top of the reactor could be heated and maintained within 20 oC of each other 

with no difficulty.  The empty reactor also could be heated easily to a temperature of 300 

oC.  The heating profile for the empty vessel is shown in Figure 5.1.  However, when the 

vessel initially was loaded with catalyst and the rubber added later, the heating profile 

changed significantly.  Figure 5.2 shows the heating profiles for a loaded reactor. 
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Figure 5.1 Temperature profile as a function of time for empty reactor vessel. 
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Figure 5.2 Temperature profile as a function of time 
                    for the reactor vessel charged with catalyst. 
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It is clear from the reactor bed profile that the heating pattern deviates from its linear 

heating pattern upon reaching a temperature of 180 oC to 185 oC where catalyst 

vaporization and melting become significant.  (The triple point temperature and pressure 

of AlCl3 are approximately 192.5 oC and 230 kPa (34 psia) respectively).  The 

temperature profiles tend to flatten until the reactor contents reach an approximate 

temperature of 194 oC to 195 oC.  Above 195 °C, the temperature increase is again 

linear, but at a much slower rate, to at least 210 oC.  Above 210 °C, the heating profiles 

differed significantly from run to run, in some cases easily reaching 220 oC, but in most 

cases laboring to get to 215 oC.  Although the thermocouple around the feed auger base 

failed in the middle of testing, its temperature profile showed the same trend as that 

around condenser base before the termination of this experiment.  

The phase diagram of the catalyst, including the temperature dependence of the 

sublimation and vapor pressure curves, provides insight for interpreting the heating 

profiles and other observations of reactor operation.  Figure 2.6 shows the sublimation 

and vapor pressure curves for AlCl3.  Clearly, the catalyst becomes more difficult to 

contain as the reactor temperature increases.  For an isothermal reactor (no cold spots), 

the vapor pressure would be approximately 70 kPa (10 psia) at 175 oC, rising 

exponentially to 410 kPa (60 psia) at ~225 oC (the temperature at which most of the 

experiments were performed).  Elevated vapor pressures clearly contribute to the 

difficulties caused by catalyst transport in the current apparatus, especially at 250 oC 

(aborted Run III-05).  The operating pressures maintained in the reactor during 

experiments corresponded to AlCl3 vapor pressures between 210 °C and 215 °C.  The 
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catalyst vapor pressure is a significant design consideration for the reactor configuration, 

especially for operation at temperatures above 225 °C. 

The observation in this work strongly suggest that the runs performed successfully in 

the previous 2 L reactor at 300 oC were possible only because cold surface areas 

sufficient to suppress the catalyst vapor pressure existed in the reactor unit.  The reduced 

size and scale of the runs at that time, and the reactor geometry, also contributed to their 

successful completion.  It also is likely that heat transfer effects associated with 

refluxing within the reactor, i.e., liquid catalyst condensing on the top of the reactor and 

then falling to the bottom, contributed significantly to the slow increases in reactor 

temperature when the upper surfaces exceeded 195 °C.  The current experimental 

equipment probably better represents the behavior and dynamics of the catalyst in a 

larger scale reactor.   

The reactor loaded with catalyst exhibits the heating profiles shown in Figure 5.2 

when heated from room temperature to the reaction temperature.  Upon the first addition 

of rubber, the temperature typically, although not always, dropped sharply, with the 

magnitude of the drop consistent with the thermal effect of the amount of rubber fed.  At 

the same time, the reflux condenser and feeder assembly temperatures rose sharply, 

probably as the result of an exothermic reaction between the catalyst and the 

hydrocarbon products initially present in the vapor phase. 
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3. Recovery of catalyst 

Because of the high vapor pressure of the catalyst, the conceptual design of the 

process assumed that the catalyst could be separated from the nonvolatile reaction 

products by evaporation.  However, the experiment showed the catalyst does not 

evaporate from the residue as expected.  A complete discussion of the observations and 

implications for catalyst recovery is given by Liang (20). 

 

5.1.2 Experimental result analysis 

We completed depolymerization studies on three different kinds of rubber 

compounds:  synthetic (SBR), natural, and butyl rubber, each containing a different 

grade of carbon black.  All of these samples are model compounds prepared by Cooper 

Tire.  The compositions of the samples are given in Table 5.1, both in terms of parts per 

hundred parts of rubber and as an overall weight fraction.  The experimental results are 

summarized in Table 5.2.  The runs were performed at a nominal reactor temperature of 

225 oC and a reflux condenser temperature of 70 oC, except for one run (III-04) with the 

reactor at 250 °C and another (III-06) with the reflux condenser at 100 °C.  We did not 

observe any indication of unreacted rubber remaining in the reactor after these 

experiments. 

 

1. Terminology 

In this section, we define the terminology to be used in the discussion of the results 

through the following discussions to avoid ambiguity and misinterpretation.  There are 
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two classes of products formed by the depolymerization reaction:  volatile hydrocarbons 

(VHC) and nonvolatile hydrocarbons (NVHC).  The volatile hydrocarbons are mostly 

saturated compounds with vapor pressures sufficiently high that they leave the reactor as 

a vapor upon formation.  The nonvolatile hydrocarbons with sufficiently low vapor 

pressures remain in the reactor, probably trapped on the surface of the carbon black 

particles present in the feedstock rubber.  The rubber samples also contain carbon black 

and zinc oxide, which are not expected to participate in the reaction.  These will be 

referred to as nonreactables (NR) in the discussion. 

 

Table 5.1 Compositions of Model Rubber Samples 
 
Cooper sample designation 402 403 404 
shorthand sample designation SBR natural butyl 

ingredients PHR a wt. % PHR wt. % PHR wt. % 
       
natural rubber 0.0 0.0 0.0 0.0 100.0 57.7 
SBR rubber, cold emulsion, 23.5% styrene 137.5 54.7 0.0 0.0 0.0 0.0 
isobutylene isoprene rubber 0.0 0.0 100.0 55.9 0.0 0.0 
N234 carbon black b 90.0 35.8 0.0 0.0 0.0 0.0 
N650 carbon clack b 0.0 0.0 60.0 33.5 0.0 0.0 
N121 carbon black b 0.0 0.0 0.0 0.0 52.0 30.0 
zinc oxide b 3.0 1.2 5.0 2.8 5.0 2.9 
stearic acid 2.0 0.8 2.0 1.1 2.0 1.2 
dimethylbutyl p-phenylene diamine 3.0 1.2 0.0 0.0 3.0 1.7 
wax 1.5 0.6 0.0 0.0 1.5 0.9 
diaryl-p-phenylendiamine 0.5 0.2 0.0 0.0 0.5 0.3 
aromatic petroleum oil 10.0 4.0 0.0 0.0 6.0 3.5 
napthenic petroleum oil 0.0 0.0 10.0 5.6 0.0 0.0 
elemental sulfur 1.8 0.7 0.5 0.3 2.0 1.2 
tert, butyl benzthiazole sulfenamide (TBBS) 1.8 0.7 0.0 0.0 1.2 0.7 
2,2 benzothiazyl disulfide 0.0 0.0 1.5 0.8 0.0 0.0 
tetramethyl thiuram disulfide (TMTD) 0.2 0.1 0.0 0.0 0.0 0.0 
total 251.3 100.0 179.0 100.0 173.2 100.0 
total assumed nonreactable  93.0 37.0 65.0 36.3 57.0 32.9 
       
  a sample compositions in parts per hundred parts of rubber 
  b defined as nonreactables 
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The volatile hydrocarbons fall into two classes, which are defined by the operating 

procedure.  The portion that condenses at 0 °C and remains as liquid in a room 

temperature trap at atmospheric pressure will be denoted as naphtha, and the remainder 

will be denoted as LPG, liquefied petroleum gas.  The split between these fractions is 

somewhat arbitrary, but the total of these represents the liquid products of the reaction.  

Equations 3 to 5 are useful for design considerations, because they represent the 

proportion of feedstock converted to this product: 

 

                          
feedstock of Mass

produced nshydrocarbo  volatileof Mass
yield Liquid =                       (3) 

                                    
feedstock of Mass

produced naphtha of Mass
yield Naphtha =                               (4) 

                                         
feedstock of Mass

producedLPG  of Mass
yieldLPG =                                      (5) 

 

The yield of liquid can never be 100% because of the presence of the nonreactable 

materials in the feedstock.  However, a useful measurement of the effectiveness of the 

process can be obtained by calculating the fraction of reactable material converted to the 

volatile hydrocarbon product as shown in equation 6: 

 

             







×

=
lesnonreactab offraction   1feedstock of Mass

produced nshydrocarbo  volatileof Mass
conversion Liquid         (6) 
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Because there is insufficient hydrogen present to convert all rubber to saturated 

hydrocarbons, the reaction stoichiometry prevents 100% liquid conversion rates. 

The depolymerization reaction also produces a solid residue product that includes 

both the nonvolatile hydrocarbons formed and the nonreactable material in the 

feedstock.  At the end of the experiment, the reactor contains both the solid residue and 

catalyst, and the condensers contain some evaporated catalyst.  All catalyst, solid 

residue, and liquid products must be accounted for to complete the material balance.  

The calculation of the liquid product mass is demonstrated in Appendix A.  The 

calculation of the solid residue yield was done in two ways, one of which assumed that 

all catalyst was recovered (ideal residue yield, equation 7) and the other was based upon 

the solid residue remaining after washing with acid and drying (actual residue yield, 

equation 8).   

 

                       
feedstock of Mass

chargecatalyst  initialmass solid Total

yield residue Ideal =                  (7) 

                      
feedstock of Mass

residue dried and  washedof Mass
yield residue Actual =                  (8) 

 

Differences between the two values have two principal sources:  less than 100% 

recovery of the catalyst, which means that oxidation (or combustion) of the solid residue 

product during drying, or incomplete drying so that significant amounts of water remain 

in the residue. 
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2. Mass balance 

The mass balances, product yields, and conversions of the reactable materials to 

liquid products obtained in these experiments are shown in Table 5.3.  Because the total 

mass balances are based upon measurements made before any post-treatment of the solid 

residue, they provide an internal consistency test of the gas flow meter calibration.  In 

general, the mass balances are satisfactory, although the last two runs support our 

suspicions from other observations that the gas flow meter performance had deteriorated 

over time.  We since have replaced the flow meter for subsequent experiments, but the 

flow meter readings for experiments III-06 and III-07 may be too high.   

 

3. Consistency test of solid residue treatment 

Comparison of ideal residue yield with actual residue yield provides a consistency 

test for the solid residue treatment procedure.  There are two primary effects in the 

residue treatment:  1) oxidation or combustion of sample during the drying procedure, 

and 2) incomplete removal of water during the drying procedure.  Losses due to 

oxidation cause the actual residue yield to be lowered, whereas incomplete removal of 

water causes the opposite effect.  In early runs, we had not expected significant 

oxidation to occur at temperatures as low as 100 to 120 °C, because these temperatures 

are below  the ignition  temperatures of most  hydrocarbons.  For  experiments III-06 and  
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Table 5.3 Mass Balances and Conversions  
        

run number  III-01D III-02B III-03 III-03A III-04 III-06 III-07 
         
run date  05/15/02 04/29/02 05/01/02 05/22/02 05/03/02 05/17/02 05/24/02 
feedstock rubber SBR natural butyl butyl SBR SBR SBR 
carbon black type  N234 N121 N650 N650 N234 N234 N234 
carbon black content (wt %) 35.8 30.0 33.5 33.5 35.8 35.8 35.8 
blanket gas  argon Argon argon argon argon argon argon 
nominal reactor temperature (°C) 225 225 225 225 250 225 225 
reflux condenser temperture (°C) 70 70 70 70 70 100 70 
pressure (kPa) 270 270 270 270 270 270 270 
time on line after last feed (h) 2 2 2 2 2 2 6 
rubber in  (g) 682.0 675.0 609.0 609.0 664.0 691.0 621.0 
catalyst in (g) 837.8 851.3 839.8 827.1 850.5 848.3 842.6 
ratio (catalyst : rubber)   1.23 1.26 1.38 1.36 1.23 1.23 1.23 
rubber feed rate (g/min) 13.6 9.0 24.36 30.5 11.1 15.4 12.4 
total mass balance (%) 100.0 98.9 100.8 101.3 99.9 103.0 105.8 
feedstock/products mass balance(wt %) 70.6 86.1 80.3 92.9 82.3 103.9 114.2 
nonreactables (wt %) 37.0 32.9 36.3 36.3 37.0 37.0 37.0 
ideal residue yield (wt %) 78.6 74.6 65.6 62.1 77.6 80.4 76.7 
actual residue yield (wt %) 47.3 63.2 44.0 51.9 60.2 77.8 77.3 
liquid yield (wt %) 23.2 22.8 36.2 41.0 22.1 26.1 36.9 
liquid conversion (%) 36.9 34.0 56.9 64.4 35.1 41.5 58.5 
naphtha yield (wt %) 1.3 1.8 2.7 2.3 1.9 1.3 0.6 
naphtha density (g/cm3) --- --- --- 0.79 0.74 0.72 --- 
LPG yield (wt %) 21.9 21.1 33.5 38.8 20.2 24.8 36.2 
LPG component yield  SBR natural butyl butyl SBR SBR SBR 
C1 (wt %) 0.02 0.00 0.00 0.00 0.00 0.00 0.03 
C2 (wt %) 0.00 0.02 0.00 0.00 0.05 0.02 0.04 
C3 (wt %) 6.30 3.25 1.68 1.94 7.89 8.81 11.91 
i-C4 (wt %) 10.49 12.56 29.13 33.72 7.08 9.18 11.06 
n-C4 (wt %) 2.58 3.81 0.37 0.43 2.62 3.88 6.75 
i-C5 (wt %) 1.91 1.16 2.16 2.50 1.80 1.98 3.62 
n-C5 (wt %) 0.38 0.20 0.00 0.00 0.30 0.43 1.32 
un-C5 a (wt %) 0.00 0.00 0.00 0.00 0.08 0.05 0.21 
i-C6 (wt %) 0.20 0.05 0.13 0.15 0.23 0.21 0.63 
n-C6 (wt %) 0.00 0.00 0.00 0.00 0.09 0.07 0.23 
un-C6

 a (wt %) 0.00 0.00 0.00 0.00 0.00 0.07 0.22 
i-C7 (wt %) 0.00 0.00 0.02 0.02 0.11 0.10 0.21 
n-C7 (wt %) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
un-C7

 a (wt %) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
C8

+ (wt %) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
        

     a  The prefix un- denotes unidentified isomers of Cn 
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III-07, the drying procedure was monitored very carefully in an attempt to avoid 

significant oxidation, and the ideal and actual residue yields are in much closer 

agreement.  The recovery, treatment and characterization of the solid residue are 

discussed in detail by Liang (20). 

 

4. Total liquid product yields 

The data in Table 5.3 show that the liquid product yields are significantly higher for 

the butyl rubbers than for the SBR and natural rubber samples.  The liquid yields for the 

butyl rubber samples ranged from 36 to 40% by weight of feedstock, whereas the SBR 

and natural rubber samples generally fell between 23 and 27%.  (The liquid yield shown 

for experiment III-07 may be erroneously high due to deteriorating flow meter 

performance.)  When considered in terms of the amount of potentially reactable material 

present, the conversions to liquid ranged from 35 to 40% for the SBR and natural rubber 

samples and from 57 to 64% for the butyl rubber samples.  Experiment III-03 was 

replicated (experiment III-03A) to verify that the significantly different behavior of the 

butyl rubber was real.  These experiments show that the depolymerization reaction of the 

rubber produces a significant amount of nonvolatile hydrocarbons.  The nonvolatile 

hydrocarbons formed most likely remain on the surface of the carbon black after the 

reaction because removal of catalyst by acid washing produce a fine powder. 

 



 

 

55

5. Naphtha yield 

The naphtha yields are of the same order of magnitude as those obtained during 

Phase II.  The yield was the highest for the butyl rubber at 2.3 to 2.7% and similar for 

the natural and SBR rubber at 1.3 to 1.9%.  The naphtha products in Experiments III-

03A, III-04 and III-06 had densities ranging from 720.0 kg/m3 to 790.0 kg/m3.  As 

shown in Table 5.4, one sample analyzed by mass spectrometry indicates that the major 

constituents of the naphtha fraction are similar to those obtained during the Phase II 

work, consisting mainly of C5, C6, C7 and C8 isomers, benzene and some saturated cyclic 

hydrocarbons.  The Phase II experiments and a Phase III startup experiment with normal 

decane, observed to depolymerize vigorously at 80 °C, suggest that the naphtha 

components are formed primarily from the extender oil in the rubber. 

We believe that the longer chain hydrocarbon products are reduced to the observed 

propane, butane, and pentane products observed in the LPG fraction by reactions with 

AlCl3 in both the liquid and vapor phases.  This reaction is so effective that minimal 

naphtha products emerge from the reactor.  The fact that little naphtha is observed may 

be as much a result of secondary depolymerization as of primary depolymerization.  This 

hypothesis is consistent with the behavior observed when n-decane was observed to 

depolymerize vigorously at 80 °C during the start-up runs. 
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Table 5.4 Comparison of Principal Constituents for Naphtha Products Produced 
by Phase II and Phase III Experiments 
   
 III-01A  II-03 b 

component a relative peak % volume % 
   
iso-butane     6.7   0.46 
pentane 13.13   7.19 
not identified   5.33   
hexane 13.13   0.21 
pentane, 2-methyl    4.26 
pentane, 3-methyl   8.24   2.53 
cyclo-pentane, methyl  6.511 
cyclo-propane, 1-ethyl-1-methyl   6.90  
1-pentene, 4-methyl 11.10  
benzene 14.58  2.48 
toluene   7.57 
hexane, 2-ethyl   7.21 
not identified   5.78  
cyclo-hexane, methyl- 13.95  8.64 
not identified   0.43  
not identified   0.25  
unidentified C22H18 compound   0.42 - 
heptane, 2-methyl   1.03 
hexane, 3-ethyl   7.21 
cyclo-pentane, 1c, 2t, 3-tri-metyl   2.67 
   
    a only those constituents that appear in significant quantity in one or the other sample are listed. 
    b Phase II study performed by Dawid J. Duvenhage during 1994-1995. 56 

 

No evidence of carbon-bonded sulfur or chloride compounds was found in the mass 

spectrometry analysis of the naphtha sample.  However, the two scrubber units 

employed downstream before the tail gas is vented provide evidence of chloride 

transport through the reflux and liquid condensers to the liquid trap, probably as 

hydrogen chloride gas.  The 25% NaOH solution typically changes in pH from >14 to as 

low as 2 during an experiment.  The cadmium acetate solution normally showed a slight 

color change indicating the presence of some sulfur compounds, most likely H2S.  The 

sulfur and chloride levels were not quantified. 
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6. Production of LPG 

The liquefied petroleum gas (LPG) fractions exhibit a pattern similar to that of the 

naphtha fractions, with similar yields from the SBR and natural rubber samples (22 to 

26%), and significantly larger yields (36 to 41%) from the butyl rubber samples.  It is 

clear that significantly more volatile hydrocarbons are produced from the butyl rubber 

than from SBR or natural rubber.  The LPG fraction was similar in composition for the 

SBR and natural rubber samples, containing mostly propane and butane, with small 

amounts of heavier hydrocarbons present.  Isobutane is the most abundant isomer in all 

cases.  The butyl rubber experiments produced significantly larger fractions of isobutane 

and pentanes than the natural and SBR rubbers. 

 

5.1.3 Process parameters  

1. Reflux condenser temperature  

The reflux condenser was included in the process design to accomplish two purposes:  

1) to tailor the overhead products by recycling some heavier hydrocarbons into the 

reactor, and 2) to flush condensing solid catalyst back into the reactor to prevent 

plugging of the condenser.  All of the experiments except one (III-06) were run with the 

condenser at 70 °C.  (The temperature of 70 °C was chosen to be sufficiently low that 

reaction of n-decane with the catalyst would not occur.)  There is no significant 

difference in results between the product spectrum for Run III-06 and the other 

experiments.  Because the product distributions for these experiments are such that 
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essentially none of the product condenses at 70 °C, increasing the reflux condenser 

temperature has no effect.  In addition, because no condensation of hydrocarbons occurs, 

flushing of catalyst does not occur, resulting in accumulation of solid catalyst within the 

condenser and subsequent blockage of flow.  The depolymerization reaction appears to 

reduce the molecular size so rapidly that the volatile hydrocarbons are reduced to the 

LPG constituents before they leave the reactor.  Some condensation of hydrocarbons in 

the reflux condenser was observed in the early experiments in smaller reactors where the 

experimental conditions probably produced lower partial pressures of AlCl3 in the vapor 

phase. 

 

2. Duration of experiment 

During most Phase II and Phase III experiments, the sample generally was fed over a 

period of approximately 1 h, and the reactor maintained at experimental conditions for 

approximately 2 h after the last rubber was fed.  To test whether 2 h was sufficient to 

achieve complete conversion, experiment III-07 was maintained at reaction temperature 

for 6 h after the last sample was fed.  The yields were essentially the same, except that 

the propane content of the LPG was elevated slightly.  The overall mass balance is 

105.8%, and we suspect that the discrepancy results from erroneously high gas flow 

meter readings.  Because of this, the slightly higher yields shown in Table 5.3 for 

Experiment III-07 probably are not significant.  Also, during this run the rubber 

feedstock was added over approximately 1 h, compared with 30 to 45 min for many of 

the experiments.  The slower feed rate may have increased the residence time of 
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products in the reactor, resulting in smaller product molecules.  In addition, less liquid 

product was collected in the accumulator because the relatively volatile naphtha 

constituents evaporate into the LPG product as the sweep gas continues to pass through 

the liquid accumulator.  Rubber feed rates and the effect thereof on the product spectrum 

also should be investigated in more detail. 

 

3. Reactor temperature  

For all experiments except one, the rubber was fed while the reactor temperature 

ranged from 210 to 225 °C.  In Experiment III-04, the rubber was fed with the reactor 

temperatures between 225 °C and 250 °C, with approximately half of the rubber fed at 

the higher temperature.  The differences do not appear to be significant, although the 

propane fraction in the LPG product is increased slightly and the naphtha fraction is 

slightly larger. 

 

4. Reactor loading 

For the experiments reported here, ratios of catalyst to rubber were slightly greater 

than unity, ranging from 1.1 to 1.4.  These ratios were chosen to ensure that there was 

sufficient catalyst available to decompose the rubber.  The rubber charges varied from 

600 to 700 g, and the catalyst charges from 827 to 850 g.  During the startup 

experiments, we found that catalyst charges in excess of 900 g introduced such severe 

problems with catalyst transport and downstream blockages that the experiments could 

not be completed. 
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5.2 Model tire rubber composites 

5.2.1 Introduction 

This section describes the results of thermocatalytic depolymerization experiments 

performed on three model tire composite samples.  The samples were formulated to 

represent specific parts of typical tires.  The model composites represented tires 

reinforced with silica (Silica), white side wall tires (WSW), and black side wall tires 

(BSW).  The samples were fed as particles approximately 5 mm to 10 mm in diameter.  

The experiments were also performed at 225 °C, using pure aluminum chloride as the 

catalyst.  The rubber generally was fed over a period of 40 to 50 min, and the reactor 

held at temperature for about 2 h after the last rubber was fed.  As discussed before, 

there are two primary products of the reaction:  volatile hydrocarbons that leave the 

reactor as vapors and nonvolatile hydrocarbons that remain in the reactor.  The reactor 

residue was washed with water to remove the catalyst, yielding a fine black powder that 

contained both the carbon black and the nonvolatile products.  The volatile hydrocarbons 

were divided into two fractions, those collected in an accumulator as a liquid at ambient 

conditions (naphtha) and those leaving the accumulator as vapor (LPG).   

In general, the products from experimental tire rubber mixtures are consistent with 

those observed from thermocatalytic depolymerization on model compounds of SBR and 

natural rubber.  

The WSW and BSW rubber samples yielded 18 and 21% by weight of the feedstock 

as liquid products (about 0.8% as naphtha and the remainder as LPG), respectively.  The 

liquid yield from Silica was similar at 17% (about 1.8% naphtha) of the feed.  The LPG 
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products generally had a composition that would qualify them as isobutane in the market 

place. 

The results of four runs performed on the model tire composite are described below. 

 

5.2.2 Reactor operating procedure, and reaction  

The laboratory depolymerization equipment, reaction, catalyst, and product work up 

are similar to the previous experiments before and will not be discussed in detail here.  

The equipment was modified to allow for capture of the entire vapor product over water 

in six 20 L water containers equipped with the necessary valve and manifolds.  The 

procedure followed here is exactly the same as before, with an additional benefit, which 

allowed LPG fractions from three runs to be transferred into gas containers for further 

analysis at a later stage.  Helium also replaced argon as the carrier gas.  

 

5.2.3 Results and discussion 

Four experiments were completed between September 23, 2002, and October 4, 2002.  

The resulst are discussed in detail below (III-9, III-9A, III-10, and III-11).  In this 

notation, the numerals 1, 2, 3, … denote different experimental conditions and suffixes 

A, B, C, … denote replications of a particular set of conditions.  An additional run, Run 

III-8, was performed on July 7, 2002 to obtain residue for a study to evaluate the 

removal of catalyst from the residue material.  The results from Run III-9 are not 

considered for this discussion, as a leak in the downstream equipment resulted in a loss 

of large amount of LPG. 
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1. Process related issues  

 The reactor start-up and runs proceeded pretty much like the runs during Phase III 

Stage I.  The condenser still blocked with catalyst during the run and had to be rammed 

clean.  As discussed before, the catalyst progressively accumulated as the run proceeded, 

blocking the reflux condenser inlet section.  As before, manual manipulation was 

required to prevent blockage of the reflux condenser by condensing solid catalyst. 

 

2. Depolymerization results 

The results of the depolymerization experiments on the model tire rubber composites 

are discussed below.  The terminology, definitions and calculations are the same and 

covered in previous part. 

These experiments investigated the thermo-catalytic depolymerization of three model 

tire rubber composites, Silica, WSW, and BSW, which represent typical automobile 

tires.  Detailed compositions of the composite samples are not available.  The 

experimental results are summarized in Table 5.5.  The runs were performed at a 

nominal reactor temperature of 225 oC and a reflux condenser temperature of 70 oC.  We 

did not observe any indication of unreacted rubber remaining in the reactor after these 

experiments. 
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The experimental results are shown in Table 5.6.  In general, the mass balances are 

satisfactory with an improvement from the poor observations that the gas flow meter 

gave during the previous experiments.  Comparison of the ideal residue yield with the 

actual residue yield provides a consistency test for the solid residue treatment procedure.  

There are still two primary effects in the residue treatment:  1) oxidation (combustion) of 

the sample during the drying procedure, and 2) incomplete removal of water during the 

drying procedure.  Losses due to oxidation (20) cause the actual residue yield to be 

lowered, while incomplete removal of water causes the opposite effect.  In the early 

runs, we had not expected that significant oxidation could occur at temperatures as low 

as 100 to 120 °C, because these temperatures are well below the ignition temperatures of 

most hydrocarbons.  In an attempt to avoid oxidation, the drying sequence was changed 

to 70 oC (±5 oC) over night (approximately 18 h), followed by 50 oC (±5 oC) for an 

additional 48 h.  The resulting material was a soft dull black powder and the ideal and 

actual residue yields are in much closer agreement. 
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The data in Table 5.6 show that the liquid product (LPG + naphtha) yields are 

relatively low.  The liquid yields for the Silica rubber sample is approximately 17% by 

weight of feedstock, whereas the WSW and BSW rubber samples measured 18 and 21% 

respectively.  When considered in terms of the amount of potentially reactable material 

present, the conversions to liquid ranged from 27 to 33% for the three rubber samples 

under discussion.  These experiments again show that the depolymerization reaction of 

the rubber produces a significant amount of nonvolatile hydrocarbons.  As previously 

indicated, the nonvolatile hydrocarbons formed most likely remain on the surface of the 

carbon black after the reaction. 

The naphtha yields were low, but of the same order of magnitude as those obtained 

before.  The highest yield was at 1.8% for Silica rubber and at 0.8% for the WSW and 

BSW rubber.  The naphtha had densities ranging from 690.0 kg/m3 to 750.0 kg/m3.  

The two scrubber units employed downstream after the liquid collector provide 

evidence of hydrogen chloride transport through the reflux and liquid condensers to the 

liquid trap.  The 25% (wt) NaOH solution typically changed in pH from >14 to as low as 

2 during an experiment.  The cadmium acetate solution normally showed a slight color 

change indicating the presence of some sulfur compounds, most likely H2S.  The sulfur 

and hydrogen chloride levels were not quantified.  Solid materials (1 to 2 g) were also 

present in the naphtha products recovered. (This is an estimation and as a result also 

influences the actual naphtha yield which should be lower by the amount of catalyst 

present.) 
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The liquid petroleum gas (LPG) fractions varied slightly with composite type 

according to BSW > WSW > Silica rubber.  These results also resemble those for the 

SBR and natural rubbers evaluated before.  The LPG fraction also was similar in 

composition, mainly containing propane, butane, and pentane.  Small amounts of heavier 

hydrocarbons were present.  Isobutane was the most abundant isomer in all cases.  The 

BSW rubber produced slightly larger fractions of isobutane and pentane, whereas the 

WSW also appeared to produce more isobutane and pentane when compared to the 

Silica rubber. 

 

5.3 Dual catalyst study 

This section describes the results of thermocatalytic depolymerization on a SBR 

rubber/carbon black sample provided by Cooper Tire.  The catalysts used were 

aluminum chloride as the primary catalyst and sodium chloride as the co-catalyst.  The 

experiments were performed at 225 °C, 35 kPa (5 psig).  The rubber was fed over a 

period of approximately 50 min, and the reactor held at temperature for about 2 h after 

the last rubber was fed.  As in the single catalyst experiments, there are two primary 

products of the reaction:  volatile hydrocarbons which leave the reactor as vapor and 

nonvolatile hydrocarbons that remain in the reactor.  The reactor residue was washed 

with water to remove the catalyst, yielding a fine black powder that contained both the 

carbon black and the nonvolatile products.  The volatile hydrocarbons were divided into 

two fractions:  naphtha, the liquid collected in an accumulator at ambient conditions, and 

liquefied petroleum gas (LPG), the product leaving the accumulator as vapor.  During 
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this study, a significant shift in the product selectivity from light petroleum gas to liquid 

naphtha was observed.  The total hydrocarbon selectivity however remained unchanged.  

Significant amounts of gaseous hydrochloric acid also were produced. 

The SBR rubber sample depolymerized with the mixed catalyst system yielded 

approximately 20% by weight of the feedstock as liquid products (approximately 10% as 

naphtha and 10% as LPG, respectively).  The naphtha fraction contained significant 

amounts of naphthene and aromatic components.  The LPG products indicated a shift to 

a heavier hydrocarbon distribution when compared with earlier investigations and the 

composition indicated a significant amount of isobutene, isopentane, and isohexhane. 

The solid residue samples were washed with acidic water followed by distilled water 

to remove the catalyst, and then dried in air in an oven at approximately 50 to 80 °C.  

The main sample, i.e., from Run III-13, however indicated coarser material than that 

reported during earlier studies.  The particle sizes of the dried powder were characterized 

by sieving and were similar to particles recovered from the depolymerization of butyl 

rubber studied earlier.  For detailed information, please refer to the discussions by Liang 

(20). 
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5.3.1 Introduction 

Recent studies suggest that a chemical complex forms between aluminum chloride 

and the carbon-like residue product resulting from the depolymerization reaction of tire 

rubber.  The presence of this complex is consistent with reports of similar complexes 

that result from various reactions catalyzed by aluminum chloride (53).  Although these 

complexes are stable, they are easily hydrolyzed in the presence of water, consequently 

destroying the complex structure. 

Economic viability for the current process relies heavily on the successful recovery of 

the aluminum chloride catalyst.  The catalyst is expensive because this process requires 

large quantities of aluminum chloride.  It is therefore imperative that the catalyst be 

recovered in an active state for reuse.  Another possible choice is to lower the expenses 

of catalyst by finding viable co-catalyst systems.  The use of a dual catalyst system will 

lower significantly the working pressure and hence will improve the equipment 

operation condition.  Another perceived benefit is that the use of dual catalyst will also 

dramatically reduce secondary decomposition in the vapor phase and then improve the 

product selectivity.   

At least three mixed salt catalytic systems were found to operate within the current 

reaction regime.  These systems are AlCl3/MgCl2, AlCl3/NaCl, and AlCl3/KCl.  Using 

MgCl2 as co-catalyst already had been investigated extensively during Phase II 

(1994/1995) and was operated at exactly the same reaction conditions as currently 

employed for the Phase III study.  The use of MgCl2 as co-catalyst to aluminum chloride 

at the time was ruled out once it was realized that it would be difficult to recover MgCl2 
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from the residue product after depolymerization.  The fact that AlCl3 readily sublimes at 

temperatures below 190 oC opened the possibility to separate the catalyst in-situ by 

vaporization.  However, the experiments showed that evaporation did not occur as 

expected, strongly suggesting the formation of the complex.  Because the expected 

advantage of the single catalyst for separation was not realized, additional work was 

done with dual-catalyst systems.  Two mixed salt systems with interesting properties 

were identified.  Both mixtures form homogeneous molten salt liquids at temperatures 

significantly below the triple point temperature (~193 oC) of aluminum chloride.  

This section presents the results of the dual salts studies. 

 

5.3.2 Reactor operating procedure, and reaction  

The process for the thermocatalytic decomposition of rubber using a molten salt 

catalyst (typically aluminum chloride) is an exothermic process if saturated 

hydrocarbons are formed from rubbers containing unsaturated bonds (e.g., styrene 

rubber).  The catalytic reaction between the rubber and the AlCl3 produces short-chain 

hydrocarbon products (typically C4 to C10, but usually predominantly saturated C3 to C5 

compounds) as well as a blackish, carbon-rich residue that contains the carbon black 

originally in the tire and some heavy products of the depolymerization reaction. 

The laboratory depolymerization equipment, reaction, catalyst, and product work up 

are discussed in detail in Chapter IV and Section 5.2.2 and will not be repeated here.  
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5.3.3 Solid residue workup 

After the depolymerization run was completed and the reactor cooled to 140 oC, a 

hydrochloric acid solution with a pH of approximately 3 was added to the reactor to 

remove the catalyst from the solid residue.  The temperature of resulted slurry could be 

elevated up to 70 oC due to the exothermic reaction of the catalyst with water.  The 

slurry suspension was stirred over night after it was transferred from the reactor to a 

plastic container.  The residue then was washed with copious amounts of water to 

remove the acid solution and dried in an oven at 80 oC (± 5 oC) overnight and for an 

additional 48 h at 50 oC (± 5 oC).  After drying, the residue was passed through a set of 

sieves, with the aid of a brush, to obtain the size distribution of the particles.  More 

details of the residue treatment are provided by Liang (20). 

 

5.3.4 Results and discussion 

This study was divided into two sections.  The first is a qualitative small-scale 

investigation evaluating the physical behavior of the mixed salts mentioned above and 

the second one large-scale depolymerization run that was completed on October 29, 

2002.  This run will be discussed in detail below (Run III-13).  An additional run, Run 

III-12, was performed on October 23, 2002 to obtain residue for a study to test the 

removal of catalyst from the residue material employing solvent extraction procedures 

with xylene, benzene and THF, which was not successful. 



 

 

74

 

1. Small scale bench investigation 

As indicated above, two mixed-salt systems, AlCl3/NaCl and AlCl3/KCl were 

identified that form homogeneous molten salt liquids at temperature significantly below 

the sublimation temperature (180.2 oC) of aluminum chloride (see Figure 5.3). 

The phase diagram information in Figure 5.3 is from Kendall et al. (59) who discuss 

the factors influencing “compound formation” and “solubility” in fused salt mixtures.  It 

is clear from Figure 5.3 that both AlCl3/NaCl and AlCl3/KCl mixtures form eutectic 

points at temperatures significantly lower than that of AlCl3/MgCl2.  The eutectic point 

is below 150 oC for the AlCl3/NaCl system and just over 150 oC for the AlCl3/KCl 

system.  This is in comparison to a temperature near 190 oC for AlCl3/MgCl2 mixtures, 

which is very close to the triple point temperature of pure AlCl3.   
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Figure 5.3 Phase diagrams for selected salt mixtures containing AlCl3 as a constituent. 

 

A series of small scale tests were performed to observe the physical behavior of the 

AlCl3/MgCl2, AlCl3/KCl, and AlCl3/NaCl as they are heated to the reaction temperatures 

for depolymerization.  The tests were carried out by placing approximately 100 g of salt 

in a round-bottom glass flask that was open to the atmosphere through a reflux 

condenser and then heating the flask gently.  A thermocouple was used to measure the 

temperature.  The mixtures containing NaCl and KCl formed homogeneous liquids at 

temperatures of 130 to 150 oC and 145 to 165 oC, respectively.  The viscosity of these 

solutions appears to be only slightly greater than that of water.  The mixtures containing 

MgCl2 system formed a slurry at 195 oC and never formed a completely homogeneous 

liquid, even at a temperature as high as 250 oC. 
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When pure AlCl3 and AlCl3/MgCl2 mixtures were heated, a vapor cloud began to 

appear at temperatures as low as 100 °C and the cloud became denser as the temperature 

increased.  In addition, strong odors of chlorine and hydrogen chloride were present.  

These observations suggest than an appreciable partial pressure of AlCl3 vapor was 

present over the mixture, which is not surprising because of the significant vapor 

pressure of pure AlCl3 in this temperature range.  In contrast, there is no evidence, either 

visual or olfactory, of significant partial pressures of AlCl3 over the AlCl3/NaCl or 

AlCl3/KCl mixtures, even at temperatures as high as 300 °C. 

After observing the attractive “qualitative” physical behavior with the AlCl3/NaCl 

system, aluminum hexahydrate (AlCl3·6H2O) also was tested as a potential co-salt, 

because it is much less expensive and much more benign to handle than anhydrous 

AlCl3.  The first test observed behavior upon heating of the hexahydrate salt only, and 

the second test observed a mixture of the hexahydrate with sodium chloride (70 : 30 by 

weight). 

All of the studies mentioned above are summarized below.  The observations were 

obtained by heating approximately 100 g (total amount) of salt in a round-bottom flask 

equipped with a thermocouple and fitted with a cold reflux condenser.  The main 

observations can be summarized as follows: 

AlCl3 only:  This substance has a sublimation point at approximately 180.2 oC and 

that the vapor pressure increases dramatically (exponentially) above this temperature.  

These observations were confirmed during the small-scale heating of pure aluminum 

chloride. 
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AlCl3/MgCl2:  At approximately 190 to 200 oC, the glass in contact with the salt 

mixture began to wet with molten salt;  however, the molten salt mixture never formed a 

homogeneous liquid, even at temperatures between 200 and 250 oC.  Three distinct 

phases were visible.  First, a white vapor cloud with distinct chlorine smell started to 

appear at 100 oC and the denseness of this cloud kept on increasing until a quasi-liquid 

solid state was formed.  Thereafter, the vapor cloud visibility decreases significantly, but 

it always was present.  AlCl3 was deposited as a white solid on the colder top sections of 

the glass flask and in the opening to the cold condenser.  With no purge gas flow present, 

the driving force from the vapor was strong enough to have blocked the condenser 

opening after completing of the study.  The material at the bottom of the flask was a 

solid-liquid slurry. 

AlCl3/NaCl:  No or little vapor was present at 100 oC.  No chlorine odor was 

prominent.  When the reactor contents reached 150 oC, the solid salt mixture 

disappeared, exhibiting a homogeneous water-clear liquid.  This liquid persisted, with no 

evidence of significant amounts of AlCl3 in the gas phase, up to temperatures of 250 oC.  

The dramatic lowering in vapor pressure suggests that depolymerization of the tire 

rubber at pressures near atmospheric is a possibility.  The lower eutectic temperature 

also increases the likelihood of further decreasing the reaction temperature. 

AlCl3/KCl:  This system exhibited behavior similar to that of the AlCl3/NaCl system, 

with the difference that the homogeneous water-clear liquid appeared at a somewhat 

higher temperature, i.e., 150 – 160 oC.  During this evaluation, the system temperature 
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was increased to approximately 350 oC and no evidence of AlCl3 was observed in the 

vapor phase. 

AlCl3·6H2O:  As expected from literature descriptions, this salt gave no evidence of 

transforming (melting) into the liquid phase and it started losing water vapor around 100 

oC.  A distinct chlorine odor was present, suggesting that the salt was also decomposing 

upon increasing temperature up to temperature of 250 oC. 

AlCl3·6H2O/NaCl:  This mixture was tested with the hope that the presence of NaCl 

might mitigate the decomposition of the hexahydrate, but the results were similar to 

those for the pure aluminum hexahydrate. 

 

2. Large scale depolymerization runs 

The reactor start-up and run proceeded with significant differences when compared to 

previous runs.  The run proceeded with ease at low pressure 30 to 35 kPa (4-5 psig).  No 

blockage of condensers occurred during the run.  In fact no catalyst deposition was 

observed in down-stream equipment. 

The terminology, definitions, and calculations are covered in Section 5.1.2.1. 

This section evaluates the thermo-catalytic depolymerization of a SBR rubber sample 

in the presence of a mixed AlCl3-NaCl catalyst mixture.  The rubber sample is a model 

rubber compound prepared by Cooper Tire.  The composition of the sample is given in 

Table 5.1, both in terms of parts per hundred of rubber and as an overall weight fraction.  

The slats were added to the reactor as a 60% AlCl3 and 40% NaCl mixture (by weight).  

The result was a liquid pool at the depolymerization temperature of 150 to 220 oC.  The 
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run was performed at 225 oC and a reflux condenser temperature of 120 oC.  Due to a 

significant reduction in the partial pressure of the AlCl3, the system pressure was 

maintained between 30 to 35 kPa (4 – 5 psig) through out the run.  The down-stream 

flow was maintained at a high level throughout the run in an effort to remove any 

resulting hydrocarbon products before secondary cracking or depolymerization could 

occur.  The experimental results are summarized in Table 5.5.  We did not observe any 

indication of unreacted rubber remaining in the reactor after the experiment. 

The experimental mass balances, product yields, and conversions of the potentially 

reactable materials to liquid products are shown in Table 5.6.  The mass balance is 

satisfactory and an improvement from the poor observations that the gas flow meter gave 

during the latter experiments of Phase III Stage 1.  The solid residue treatment 

procedures and results are presented elsewhere (20).   

The data in Table 5.6 indicate that the total liquid product yield agrees well with that 

of Runs III-1D, III-04, and III-08 for SBR rubber.  When considered in terms of the 

amount of potentially reactable material present, the conversion to liquid is slightly 

lower, but still consistent with the mentioned runs at 31%.  These experiments again 

show that the depolymerization reaction of the rubber produces a significant amount of 

nonvolatile hydrocarbons.  These products more than likely result from a hydrogen-

deficient environment because the hydrogen-to-carbon ratio in the rubber is smaller than 

that in the liquid hydrocarbon products.  Therefore it may be possible to increase the 

hydrocarbon product yield through the addition of hydrogen from a source, such as H2 or 

CH4.  
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The naphtha yield increased from 1 to 2% to 10% when compared with other Phase 

III runs.  This yield increased at the expense of the LPG fraction, which decreased from 

20 to 10%, indicating a selectivity shift from the lighter gas phase products to the 

heavier naphtha products.  The naphtha density increased to about 900 kg/m3 from the 

690 to 750 kg/m3 densities observed in earlier runs.  An analysis of the naphtha break-

down by gas chromatography and simulated distillation indicated a shift towards C8
+, 

naphthene, and aromatic products.  Table 5.7 compares the naphtha fractions obtained in 

the various Phase III experiments.  The paraffin and isoparaffin content decreased 

significantly from 18.0% to 3.0% and from 60.0% to 20.0% respectively, and the 

naphthene and aromatic content increased from 18.0 to 45.0% and 6.0 to 18.0% 

respectively.  An organic micro-coulomb meter analysis performed by Core Lab, 

Houston, Texas indicated 178 ppm of organic chloride compounds in one particular 

sample.  No inorganic chlorides were present in this naphtha sample. 

 

Table 5.7 Comparison of Naphtha Product Fractions from Phase III Studies 
       

run number III-1D III-2B III-3A III-9 III-11 III-13 
 (wt %) (wt %) (wt %) (wt %) (wt %) (wt %) 

       
paraffin 17.57 18.12    3.70 13.01 11.46      3.20 
iso-paraffin 56.93 60.27 95.13 49.49 58.98   21.56 
olefin   0.00   0.00   0.00   0.00   0.00     0.00 
naphthene 18.49 20.52   0.32 27.09 26.65   45.28 
aromatic   6.41   0.73   0.00   9.78   2.42   18.58 
oxygenates   0.00   0.00   0.00   0.00   0.00     0.00 
unidentified   0.60   0.36   0.85   0.23    0.50   11.35 
average MW 79.47 79.99 86.11 80.97 82.38 111.61 
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The number of unidentified products also increased from about 1.0% to 11.0% with 

the NaCl-AlCl3 mixture.  The average molecular weight for the hydrocarbon product 

also increased from 80.0 to 112.0 g/mol (as calculated by Core Lab from gas 

chromatography analysis).  The shift in the properties and composition of the naphtha 

fraction strongly suggest that reactions in the vapor phase were suppressed significantly, 

and gives further indication that no or little catalyst was present in the vapor phase.  

The fact that the total amount of liquid hydrocarbons did not change and only a shift 

from the LPG fraction to the naphtha fraction was observed suggests that there is still 

potential to improve the total liquid hydrocarbon yield by effecting a more complete 

depolymerization of the hydrogen-lean structures remaining in the residue material.  The 

low depolymerization conversion of ~30% of reactable material observed to date suggest 

that hydrogen is the limiting species for the depolymerization reaction.  All experiments 

to date have been performed with no hydrogen addition and an approximate catalyst-to-

rubber ratio of 1.2.  Hence the “reaction stoichiometry” was very similar for each of the 

deploymerization studies and therefore the results indicate comparable depolymerization 

conversions.  This scenario probably can be improved by adding a hydrogen source such 

as hydrogen or methane. 

An additional water scrubber unit was employed downstream before the tail gas 

reached sodium hydroxide and cadmium acetate scrubbers, which provided evidence of 

hydrogen chloride products.  A titration of the trapped water contents with a NaOH 

solution indicated acidic products (presumed to be HCl) equal in weight to 

approximately 10.0% of the product feed.  The literature indicates that HCl is produced 
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in significant quantities during alkylation reactions, of the order of 1 mole per mole 

hydrocarbon reacted.  Our results are consistent with that observation.  No proof of 

chloride transport through the reflux and liquid condensers to the liquid trap could be 

found.  The 25.0% (wt) sodium hydroxide solution typically changes in pH from >14 to 

as low as 2 during an experiment.  The solution changes color from clear to dark brown 

during the run and a small layer of hydrocarbon product is visible on top of this solution.  

The cadmium acetate solution showed a color change from clear to light yellow, 

indicating the presence of some sulfur compounds, assumed to be H2S.  The sulfur levels 

were not quantified.  

The liquid petroleum gas (LPG) fractions indicated a significant shift in composition 

towards heavier compounds.  This result supports the higher naphtha yield observed and 

it is clear that this result is different from any other run evaluated during Phase III.  

Although some difficulties were experienced with the gas chromatograph during this 

experiment, the general trend is a significant shift towards the C6 – C8 fraction.  The LPG 

fraction was also found to contain mainly iso-derivatives of C4, C5, C6, and C7 and to 

contain small percentages of propane, n-butane, and n-pentane.  Larger amounts of 

heavier hydrocarbons (>C8) were present than in the earlier Phase III runs.   
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The solid residues obtained from the depolymerization runs were recovered and 

stored until they could be characterized.  The solid residue characterization is discussed 

elsewhere (20). 

 

5.4 Naphtha product analysis 

Six naphtha fraction samples were submitted to Core Lab – Petroleum Services, 

Houston, Texas for detailed composition analysis.  The six samples represented one each 

for SBR, natural rubber, butyl rubber, silica rubber, and black side wall rubber, as well 

as SBR rubber decomposed with NaCl/AlCl3.  The detailed analysis results are listed in 

Appendix B.  A comparison of the significant constituents appear in Table 5.8.  

It is clear from Table 5.8 that iso-pentane is by far the most abundant species present 

in the first five samples.  The next more abundant species are 2-methylpentane and n-

pentane for SBR and natural rubber, and 3-methylpentane for butyl rubber.  SBR rubber 

produced by far the most benzene and toluene.  SBR and natural rubber produced similar 

product distributions that differed from butyl rubber in that 95.0% of the total product 

spectrum is isoparaffins for butyl rubber whereas SBR and natural rubber produced 

57.0% and 60.0% respectively.  SBR and natural rubber also formed large quantities of 

naphthene (18.5% and 20.5% respectively) and paraffin (17.6% and 18.1% respectively).  

SBR rubber forms the only significant quantities of aromatic products at approximately 

6.4%.  The NaCl/AlCl3 catalyst mixtures gave significantly different results than pure 

AlCl3 for SBR rubber in that more aromatics and naphthene were produced. 
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The results are consistent with our knowledge of the base rubber materials.  For 

instance, SBR rubber contains butyl and styrene groups in a ratio of 3:1 in mole, hence 

the explanation for the presence of aromatic products, whereas butyl rubber, which 

consists mainly of butyl monomers linked together, primarily breaks down to isobutane 

(see Table 5.9).  Some cyclic-constituents are also present in some cases.  Under no 

circumstances were any olefin products formed.  The lack of olefins and the presence of 

only a small percentage of ring compounds may be indicate the aggressiveness of the 

catalytic scission of the hydrocarbon chains. 

The density of the three samples, as determined from gas chromatography analysis, is 

similar but decreasing in the order SBR (722 kg/m3) > natural rubber (704 kg/m3) > 

butyl rubber (686 kg/m3) and is in line with that determined and reported at 720 kg/m3 

for SBR.  However, our estimation for the butyl rubber naphtha density is unexplainably 

high at 790 kg/m3.  The result for the dual catalyst system gives a denser product (~900 

kg/m3). 
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Simulated distillation curves were obtained for the three naphtha samples using a 

constant heating profile gas chromatography technique.  The initial boiling points were 

 –13.8 oC, –13.8 oC, and –15.6 oC and the final boiling points were 192.8 oC, 201.1 oC, 

and 200.5 oC respectively for SBR, natural, and butyl rubbers.  The distillation curves of 

the samples are very similar.  Even the profiles of the heating curves, i.e., percentage of 

product removed as a function of temperature (see Figure 5.4) are identical.  However, 

the distillation curve for the SBR depolymerized by the dual catalyst system indicates a 

much heavier product spectrum. 

Qualitative mass spectroscopy scans for molecular weights are in agreement with the 

previously mentioned results and only for a depolymerization run with SBR rubber we 

have a compound with molecular weight in the order of 281 g/mol.  For a butyl sample 

two molecular weights above 100 g/mol were noted.  The intensity is however 

reasonably low indicating low concentrations.  The spectrum for a natural rubber, like 

the other two samples, mainly indicates molecular weights lower than 100 g/mol.  If one 

therefore considers the carbon weight in a C6 straight or ring structure to have a mass of 

72, hydrogen = 1, and a methyl group = 15, one can get a clear indication that the largest 

components present are that in the C6 range.  A detailed GC-MS analysis, to identify the 

products associated with the molecular weights, was performed on the SBR sample only.  

The results agree with the Core Lab GC analysis. 
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Figure 5.4 Simulated distillation curves for naphtha fractions from various rubbers.  
(SBR-NaCl denotes the sample from the NaCl/AlCl3 mixture.) 

 

5.5 Result comparison 

The results of the Phase III experiments are consistent with those of Phase II, 

especially Experiments II-21 through II-28.  There appears to be no significant 

differences between the results obtained in Phase II using catalyst mixtures 

(AlCl3/MgCl2) and in Phase III using pure AlCl3 and its salt mixtures as the catalyst.  

The most relevant work reported in the literature is that of Ivanova, et al. (43), who 

studied the decomposition of butyl rubbers at 300 oC using several molten salt catalysts, 

including pure AlCl3 and mixtures of AlCl3 with other salts.  Figure 5.5 shows the results 



 

 

91

reported for AlCl3/MgCl2 mixtures.  For pure AlCl3, our conversions of approximately 

60% of the butyl rubber in the feedstock are larger than the 40% obtained by Ivanova et 

al. (shown in Figure 5.5).  The volatile hydrocarbon compositions differ slightly, in that 

our experiments produced more isobutane and less C5
+ components. 

 

 

Figure 5.5 Results for butyl rubber and AlCl3/MgCl2 catalysts at 300 oC. (43) 
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The study of Ivanova, et al. is limited because the work was performed on neat butyl 

rubber on very small scale (utilizing 20 cm3
 glass reactors) and focused on the degree of 

conversion to volatile hydrocarbons.  No information was provided on the residue 

remaining in the reactor or catalyst recovery.  Our results indicate that the butyl rubber 

responds differently than the natural and the synthetic rubbers that also are present in 

automobile tires.  Furthermore, our samples also contain extender oil, carbon black, and 

other materials.  The most significant information contained in the paper of Ivanova, et 

al. is that higher conversion rates are obtained using mixtures containing both AlCl3 and 

MgCl2.  Mixtures of AlCl3 and NaCl proved to be equally effective. 

 

5.6 Catalytic depolymerization mechanism 

Few discussions of possible catalytic mechanisms for rubber depolymerization have 

been published.  However, the model organic synthesis mechanisms of aluminum 

chloride and classical organic chemistry knowledge can be used to formulate a possible 

reaction mechanism.  The resulting mechanism is discussed in the following sections. 

 

5.6.1 Aluminum chloride chemistry 

Aluminum chloride, AlCl3, is a strong Lewis acid that can accept an electron pair (the 

electron pair being the acid, and the donor of the electron pair the Lewis base) during a 

reaction.  A covalent bond is formed when the electron pair is accepted.  This happens 

because the central aluminum ion has only a sextet of electrons and are, therefore, 

electron deficient.  By accepting the electron pair, aluminum chloride is, in the Lewis 
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definition, acting as an acid.  Thus any electron-deficient atom can act as a Lewis acid 

(typically Group IIIA elements).  Other compounds that have atoms with vacant orbits 

also may act as Lewis acids. 

The active “species” of aluminum chloride is viewed to be the tetrahedral coordinated 

AlCl4-, which is typically produced in the following reactions 9 to 11 (51): 

 

                                                 +− +→+ ClAlClClAlCl 423                                            (9) 

                                                 +− +→+ HAlClHClAlCl 43                                          (10) 

                                  ++→+→+ RMgAlXAlClRMgXMgRX
_

3                        (11) 

where X = Cl, Br, or I, and R = ethyl, methyl, phenyl, etc. 

 

The formation of AlCl4-
 is essential to the functioning of Al2Cl6 as a Friedel-Crafts 

catalyst.  This way, the necessary carbonium ions (when a positive charge is carried on a 

carbon atom ready for reaction) are formed simultaneously.  Sykes (51) illustrates in 

Figure 5.6 how aluminum bromide interacts with propane.  A cyclo-propane 

intermediate is formed that rearranges back to form propane again, i.e., shifting the 

position of a carbon 13 labeled species (1-propyl cation rearrange to the 2-propyl cation 

through the migration of a hydrogen atom): 
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          CH2                                         CH2                                     CH2                                       CH3 
     13 /   \                                      13 /   \ δ + +                  δ − −            13 /δ + +    \       HAlBr3

-  -            13 /  
 H3C      CH3   +   AlBr3   ↔   H3C      CH2AlHBr3     ↔    H2C….. CH2          ↔         H2C - CH3   +   AlBr3 

 
 
     Propane                                                                                    H                              Propane 
 

Figure 5.6 The behavior of 13CH3CH2CH3 with AlBr3. 

 

One of the most important aspects of the chemistry of the Group III elements is that 

they form 1:1 adducts within a great variety of Lewis acids.  They also, as shown below, 

react with themselves to form dimers of distorted tetrahedral coordination.  AlCl3 also 

forms a 1:1 adduct with THF which is molecular, but the 1:2 adduct is ionic, 

[AlCl2(THF)4]+AlCl4- . 

 According to Cotton and Wilkinson (58) AlCl3/NaCl gives rise to the following 

equilibria 12 to 14: 

 

                                        2AlCl3 (l)  ↔  Al2Cl6   K = 2.86 x 107                                   (12) 

                                   AlCl4-  + AlCl3  ↔  Al2Cl7-    K = 2.40 x 104                              (13) 

                                    Al2Cl7-  + Cl-   ↔  2AlCl4-    K = 9.43 x 106                               (14) 

 

Also, AlCl3 is planar, and the only Group III metal to react directly with nitrogen 

(58).  On reaction with nitrogen it is postulated to form a pyramidal species, N2/AlCl3 

complex.  It forms 1:1 compounds with Group V elements, and this is frequently 
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referred to as the III-V compounds.  In the vapor phase aluminum chloride is also 

dimeric, Al2Cl6 (Figure 5.7), so there is a radical change of coordination number.  These 

are covalent structures (there is a dative bond from the two chlorines to the two 

aluminum atoms) that persist in the vapor phase and are the result of the tendency of the 

metal atom to complete its octet.   

 

         Cl       Cl       Cl 
                                                            \      /   î    / 

              Al        Al 
            /    ë   /     \ 
          Cl       Cl      Cl 
 

Figure 5.7 Al2Cl6 dimer. 

 

Most reactions (remember these would be polymerization or addition reactions) with 

aluminum chloride require 0.1 – 0.5 mole of catalyst per mole of reactant.  The general 

mechanism in these cases involves the formation of carbonium ions, which are used to 

attach a benzene nucleus.  The result, amongst others, is the addition of an acyl group 

(R-C*=O), activation of condensation of olefins and importantly the cracking of 

naphthenic compounds (52).  The exception is found with acylation reactions, where 

higher quantities of catalyst are needed.  Acid chlorides (R-(C=O)-Cl) [1.1 mol/mol] and 

acid anhydrides [2.2 mol/mol] form stable oxonium salts (R2-O+-H) with aluminum 

chloride.   
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5.6.2 Basic catalytic behavior of AlCl3 

The use of AlCl3 as an organic synthesis catalyst is well known and proven, as 

described for AlBr3 above.  One can typically explain the mechanism of reactions 

employing AlCl3 as the catalyst, through the acylation reaction of benzene, where an 

acyl group is coupled to a benzene ring.  In this case, an organic chloride is necessary to 

initiate the AlCl4-  species and at the same time the reactive carbonium ion is created to 

which the reactant, in this case an acyl group, can connect.  HCl is a typical by product 

to such reactions.  See the reaction scheme shown in Figure 5.8 (51). 

 
    

Step 1:      R-C=O    +   AlCl3        à  R-C+=O     +   AlCl4-  

                        
                      Cl 
 
                                                                                                         R 
                                                                                                          
                                                                                                  H    C+=O 
                                                                             \/ 
Step 2:                              +  R-C+=O        à    +        
 
 
 

 
 
 R 
                                         

                               H   C+=O                            R – C = O 
                            \/                                          
Step 3:  

                              +   AlCl4-    à                       +   AlCl3   +   HCl 

 
 
 
 
 

Figure 5.8 Acylation reaction of benzene. 
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5.6.3 Related industrial processes 

Thermal cracking, or pyrolysis reactions (60) of alkanes occur between 400 and 900 

oC and yield short-chain alkanes, alkenes, and some hydrogen.  A modification of this 

process is steam cracking where the hydrocarbon is diluted in a stream of steam and 

cracked at approximately 700 – 900 oC to ethylene, propylene, butadiene, isoprene, and 

cyclopentadiene.  Hydro-cracking is yet another process where the feed is cracked in the 

presence of hydrogen and a catalyst at high pressure, but at much lower temperatures, 

250 to 450 oC.  Hydro-cracking combines the effect of cracking and hydrogenation to 

yield low-molecular-weight products to be used as feedstock in large-scale synthesis 

operations.  Another development in this field is that of catalytic cracking and reforming. 

Catalytic cracking (CC) and catalytic reforming (CR) reactions are well-known and used 

industrially to produce high-octane fuels (n-heptane octane rating = zero, iso-octane 

rating = 100) processes.  Both processes employ catalysts at high temperature (450 oC – 

550 oC) and slight pressure, but the CR process produces a product with a high octane 

number.  The mechanisms proposed for cracking reactions may be similar to the current 

thermocatalytic decomposition process in that acid catalysis breaks down the 

hydrocarbon chains through the formation of either free radical mechanisms or 

carbonium ion chemistry, as discussed below.  The mechanism to these processes is well 

documented (60).  

For catalytic cracking, the mechanism can be explained using the scheme depicted 

below,  
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First, small amounts of alkenes are formed by dehydrogenation shown in reaction 15: 

 

                                          R1CH2-CH2R2 à R1CH=CHR2 + H2                                   (15) 

 

Second, reaction 16 shows the alkenes react with the protons (in the presence of an 

acidic catalyst) to give carbonium ions: 

 

                                        R1CH=CHR2 + H+ à R1CH2-C+ HR2                                    (16) 

 

The sequence of stability for these ions is:  primary < secondary < tertiary.  Reaction 

17 shows the movement of a hydride ion (H- ) changes a primary to a secondary ion,  

 

       R1CH2-C+ HR2 + R3C+ H2(CH3)-CH2R4 à R1CH2-CH2R2 + R3C+ (CH3)-CH2R4  (17) 

 

whereas reaction 18 shows the migration of a methyl group (-CH3) forms the tertiary ion. 

 

                       CH3-CH2-C+ HR6 à C+ H2-CH(CH3)R6 à CH3-C+ (CH3)R6                (18) 
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Third, long-chain carbonium ions are unstable (with respect to shorter ones) and the 

carbon-carbon bonds are broken by β-scission (at carbons next to the α-carbon in the 

chain structure) to give an alkene and a primary carbonium ion as reaction 19 indicates. 

 

 

                           R3C+ (CH3)-CH2-CH2R5 à R3C(CH3)=CH2 + C+ H2R5                     (19) 

 

Xiao et al. (61) also describe the mechanism of breaking down poly-propylene by an 

acid catalyst via β-scission.  The resulting species can go through addition or 

rearrangements to more stable organic species.  See the scheme below, Figure 5.9. 

 

5.6.4 Hypothesis to current process mechanism 

The depolymerization reaction is perceived to initialize via classical chemistry as 

reaction 20 indicates.  First aluminum chloride [I] forms a Lewis acid [III] by acquiring 

a chlorine atom from a suitable chlorine donor or co-catalyst [II] (FeCl3, AlCl3, Cl2, HCl, 

or NaCl).  

 

                                                 ++→+ H-AlClHClAlCl 43                                         (20) 

                                                   [I]        [II]       [III] 
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Figure 5.9 Mechanism proposed by Xiao et al. (61) 
 

   

Once the Lewis acid [III] has been formed the catalyst can attack the polymer [V] at a 

saturated position (or the double bond) and creates two intermediate species [VI] and 

[IX] as reaction 21 indicates.  

 

                                  |          + AlCl4-  →AlCl4-  Rx+ + - CH=C-R’                      (21) 
                                                                                              | 
 

 

                        [V]                     [III]          [VI]                 [IX] 

 Rx – CH = C – R’ 

Acid catalyst 

ß-scission 
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The mechanism to form these two species is not clear.  The creation of such unstable 

long-chain carbonium ions gives rise to bond breakage.  If the mentioned intermediate 

species form, the resulting organic metallic intermediate [VI] then would form a primary 

product Rx-Cl and hence releases the catalyst [I] through reaction 22 to take part in 

subsequent cycles of depolymerization.  The alkyl halide is necessary to form the 

ionized complex of aluminum chloride to make this reaction continue. 

 

                                                 AlCl4-  Rx+ → AlCl3 + RxCl                                          (22) 

                                         [VI] 

 

Parallel to the described regeneration of catalyst, the species [VI] can react with 

hydrogen-rich resources to yield a polymeric product Rx-H shorter than the original 

species.  In such a case, the chlorine ion is released to either satisfy the production of the 

ionized complex of aluminum chloride or to attach to a hydrogen ion to form HCl.  

The species [IX] can undergo hydrogenation (reaction 23) to yield another polymeric 

product [IIX] shorter than when the cycle commenced.  

 

                                                                       - CH=C-R’ + H+ → CH2=C-R’                                        (23) 
                                             |                               | 
 
 
 

                                        [IX]                         [IIX] 
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The intermediate products, Rx-H or [IIX] will go into the reaction cycle again under 

suitable conditions.  

The cycle described above repeats until no reactable material is present, and only 

carbon black remains in the reactor.  However, if the reaction system should become 

hydrogen deficient, the catalyst renewal cycle will break down and will not continue.  

Consequently, the catalyst cannot be refreshed or released from the organometallic 

complex [VI].  Hence, any further depolymerization is terminated. 

The presence of the strong Lewis acid also may produce undesirable low-molecular-

weight hydrocarbon products, like propane and butane, and the hydrogen deficiency will 

result in the carbon-rich residues.  The catalyst can be removed from the residue species 

only through hydrolysis, a process that destroys the initial activity of the catalyst.  

However, if adequate amounts of hydrogen are available, the catalyst renewal cycle may 

be able to continue.  To obtain long-chain hydrocarbon products in the carbon range C6 

to C12, it is imperative that the formed products be removed as soon as they come into 

existence.  If not, the aggressive Lewis acid will attack these products and produce short-

chain hydrocarbon products in the range C3 to C6.  It is believed that some degree of 

secondary depolymerization will always be present and one must therefore aim at 

minimizing the occurrence thereof.  Hence, vapor phase catalysis reactions must be 

inhibited in so far as possible and the products also must be removed from the reactor as 

quickly as possible. 
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The foregoing schemes suggest the mechanisms through which the Lewis acid forms 

and the depolymerization reactions occur.  Our own experimental observations are 

consistent with these mechanisms. 

 

5.6.5 Organo metallic complex formation 

The experimental results and the chemistry described in the previous section suggest 

that hydrolyzable organo-metallic complexes form when tire rubber is decomposed 

using AlCl3 in a hydrogen-deficient environment.  Aluminum chloride can form 1:1 

adducts and complexes with compounds such as the depolymerization residue, and 

AlCl4-  acts as the reactive catalytic species.  The current studies and the literature (53) 

suggest that AlCl3 forms metal-carbon complexes in the residue that make it nearly 

impossible to separate the catalyst from the residue without destroying the catalyst.  The 

existence of such complexes and the extreme difficult recovery of AlCl3 in its original 

(or any active form) from the complex are well documented in patents (and other 

literature).  This metal-carbon complex easily hydrolyses, but the catalyst is destroyed 

by the reaction.  The observations from the patent literature are summarized by a 

position paper (62), which states,  

(1) "Strictly speaking the Lewis acids (typically AlCl3, TiCl4) used are not true 

catalysts as they are used in more than stoichiometric amounts.  This is because they 

form more strongly bonded complexes with the product compounds than with the 

reagents.  A destructive method (aqueous hydrolysis) is necessary to retrieve the 

product, and so the Lewis acids are non-recoverable." 
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(2) It is mentioned that any new solution for acylation catalysis should be cost 

competitive and it asks for a reaction that is "truly" catalytic, and that the catalyst should 

not be forming strong complexes with the product, must be recyclable, etc. 

It may however still be possible to recover the catalyst from the complex.  A 

procedure for the recovery of AlCl3 from such residues is described in a recent patent 

(63), by which 100 % AlCl3 recovery is possible from a metal-carbon complex which 

appears to be similar to that obtained form the S-P process.  This is the only patent found 

for a process that recovers the catalyst as an active entity and not destroy it.  One of the 

future areas of research will be focused on the recovery of the active catalyst. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

 

The results described above lead to the following conclusions.   

1.  The rubber depolymerization reaction occurs rapidly for all catalysts tested, and 

the hydrocarbon product distribution is significantly different from other reported rubber 

decomposition methods, such as pyrolysis and catalytic degradation.  The products 

appear to be of better commercial values, in that there are no fuel gas or fuel oil 

products. 

2.  Separation of the AlCl3 by evaporation from the residue does not appear to be 

feasible because of the formation of an organometallic complex, therefore an alternate 

separation method must be developed. 

3.  NaCl/AlCl3 catalyst mixtures eliminate many operational difficulties resulting 

from the high vapor pressure of AlCl3.  Methods for recovering the dual catalyst from 

the solid residue remain to be developed.  

4.  Stoichiometric hydrogen deficiency seems to promote the formation of carbon-rich 

residues.  The addition of a hydrogen-rich source may inhibit this reaction. 

Finally, the depolymerization process appears to be commercial viable if a few 

important issues can be addressed and solved.  The critical issues follow: 

• Separation of the catalyst from the solid residue without destroying the activity 

of the catalyst. 
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• The preservation of catalyst activity by preventing the formation of the 

organometallic complexes. 

• Compensating for the stoichiometric deficiency of hydrogen 

• Suppression of hydrogen chloride formation. 

Additional research is required to obtain a definitive conclusion about the economic 

feasibility of this process.  The additional research should address the following: 

• Use of NaCl-AlCl3 and AlCl3-KCl mixtures as catalysts. 

• Separation of catalyst from residue, most likely by filtration. 

• Compensation for the hydrogen deficiency by introducing H2, CH4, C3H8, and 

C4H10 into the reactor vessel.  Elevated pressures most likely will be required to 

accomplish the hydrogen addition. 
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APPENDIX A 

MASS BALANCE CALCULATIONS 
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Run III-06 is used as the example for mass balance calculations. 

Input Weights:  Rubber:    691.0 g 

 Catalyst: 848.3 g 

Output Weights: Reactor Residue: 1338.9 g 

 Evaporated Catalyst: 65.2 g  

 Naphtha products: 9.3 g 

 LPG products: 171.3g 

Solid Residue Recovered (washed & dried):  537.4 g 

Total Mass Balance (pre-acid wash): 

Mass in =  rubber +  catalyst = 691.0 + 848.3 =1539.3g 

Mass out =  reactor residue +  evaporated catalyst( ) +  naphtha +  LPG

=1338.9 + 65.2 + 9.30 + 171.3 =1584.7g
 

%9.102
1539.3

1584.7
 100 

in mass

out mass
 100  (%) Balance Mass Total =





=





=  

Feedstock/Products Mass Balance: 

Product mass =  acid washed solid residue +  naphtha +  LPG

= 537.4 + 9.30 + 171.3= 718.0g
 

%9.103
0.691

0.718

feedstock of mass

massproduct 
balance massproduct Feedstock/ ===  
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Reactor Residue: 

This material contains both catalyst and solid residue product.  The amount of reactor 

residue is determined by weighing. 

Evaporated Catalyst: 

The amount of evaporated catalyst is determined by weighing the two condensers and 

the liquid accumulator vessel after the naphtha product has been removed.  The net 

increase in weight is caused by catalyst vapor flow and condensation. 

Naphtha Product: 

The amount of naphtha product is determined by weighing the liquid in the 

accumulator at the end of the experiment. 

LPG Products: 

This product is evolved as gas.  The volume of gas evolved from the reactor is 

measured at atmospheric pressure and ambient temperature using an electronic flow 

meter operating in the totalizer mode.  However, the flow meter reading is not the 

volume of LPG product formed because sweep gas is added during the experiment and 

the final conditions in the reactor differ from the initial conditions.  (The pressure in the 

system changes from the starting pressure of 140 kPa (20 psig) at the beginning of the 

experiment to 0 kPa (0 psig) at the end of the experiment, and the temperature changes 

from the reactor operating temperature to approximately 77 °C.) 

The unsteady state molar material balance for the apparatus is 

 

n2 − n1 = nsg − n fm + nLPG    ⇒    n LPG  = n fm − nsg + n 2 − n1 
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where, n1 and n2 are the number of moles of gas in the apparatus at the beginning and the 

end of the experiment respectively, nsg is the number of moles of sweep gas added 

during the experiment, nfm is the number of moles passing through the flow meter, and 

nLPG is the number of moles of LPG product formed during the experiment. 

The flow meter contribution is calculated using the ideal gas law: 

 

nfm =
P0V fm

RT0
 

 

where, P0 is the atmospheric pressure 0.1 MPa (approximately 14.7 psia) and T0 is 

ambient temperature at approximately 294 K (21 °C), and Vfm is the totalized flow meter 

reading. 

The sweep gas contribution is calculated as follows, using the volumetric flow rate of 

the sweep gas, Q, the elapsed time of the experiment, t, and the ideal gas law: 

 

nsg =
QtP0

RT0
 

 

The flow rate is approximately 0.02 L/min, and the elapsed time is approximately 1 h 

longer than the time after the last rubber is fed. 

For the unsteady state contribution, there are three general regions of the apparatus 

that must be considered separately:  the feeder assembly, the reactor vessel, and 
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downstream components (condensers and liquid accumulator).  The number of moles of 

gas in the apparatus is given by 

 

n = nf + nr + nds =
PVf

RTf
+

PVr

RTr
+

PVds

RTds
 

 

where the subscripts f, r, and ds denote the feeder assembly, the reactor vessel, and the 

downstream components respectively.  The feeder assembly and the downstream 

components are at ambient temperature, so that the previous expression becomes 

 

n =
P

RT0
Vf + Vds + Vr

T0
Tr

 
  

 
  

 

 

and the unsteady state contribution is 

 

n2 − n1 =
P2 − P1( )V f + Vds( )

RT0
+ Vr

R
P2

Tr2
− P1

Tr1

 
  

 
   

 

where the initial reactor temperature, Tr1, is the reactor operating pressure, and the final 

reactor temperature, Tr2, is approximately 77 °C. 

The expression for the number of moles of LPG product then is:  
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nLPG =
P0 V fm − Qt( )

RT0
+

P2 − P1( )V f + Vds( )
RT0

+ Vr

R
P2

Tr2
− P1

Tr1

 
  

 
   

 

The mass of LPG product is calculated from the number of moles and the average 

molecular weight 

mLPG = nLPGMave  

Mave = xi Mi∑  

 

where xi is the mole fraction and Mi is the molecular weight of substance i in the LPG 

product.  The volume fractions given in Table 5.2 are used as the mole fractions in this 

calculation. 

Physical parameters used for calculations:  

The values used for the calculations are shown in Table A.1:  

 

Table A.1 Physical Parameters Used for Calculations 
   

variable value physical significance 
   

T0 21 °C (294 K) standard temperature 
P0 0.10 mPa (14.7 psia) standard pressure 
Q 20 cm3/min sweep gas flow rate 
t variable time after last rubber fed + 1 h 
Vfm variable totalized flow meter reading 
P1 0.24 mPa (34.7 psia) initial reactor pressure 
P2 0.10 mPa (14.7 psia) ending pressure 
Vf 7 L feeder assembly volume 
Vr 10 L reactor vessel volume 
Vds 2 L downstream components volumes 
Tr1 variable reactor operating temperature 
Tr2 77 °C (350 K) final reactor temperature 
R 1.2058 l-psia/(mol·K) universal gas constant 
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APPENDIX B 

CORE LAB NAPHTHA ANALYSIS 
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 Six naphtha fraction samples were submitted to Core Lab – Petroleum Services, 

Houston, Texas for detailed composition analysis.  The six samples represented one each 

for SBR, natural rubber, butyl rubber, silica rubber, and black side wall rubber, as well 

as SBR rubber decomposed with NaCl-AlCl3.  The detailed analysis results are listed 

below. 

 

Table B.1 SBR Rubber – Gas Chromatography Analysis 
    

component name wt % lv % mole % 
     
propane 0.09 0.12 0.16 
iso-butane 4.02 4.83 5.50 
n-butane 4.33 5.01 5.92 
iso-pentane                 22.52            24.36              24.82 
n-pentane 7.30 7.82 8.04 
2,2-dimethylbutane 2.83 2.93 2.61 
cyclopentane 2.12 1.91 2.40 
2,3-dimethylbutane 3.61 3.66 3.33 
2-methylpentane                 12.36            12.68              11.40 
3-methylpentane 7.38 7.45 6.81 
n-hexane 4.21 4.29 3.88 
2,2-dimethylpentane 0.05 0.05 0.04 
methylcyclopentane 4.75 4.26 4.49 
2,4-dimethylpentane 0.10 0.10 0.08 
2,2,3-trimethylbutane 0.03 0.03 0.02 
benzene 5.45 4.16 5.54 
3,3-dimethylpentane 0.04 0.04 0.03 
cyclohexane 2.08 1.79 1.96 
2-methylhexane 0.29 0.29 0.23 
2,3-dimethylpentane 0.09 0.09 0.07 
1,1-dimethylcyclopentane 0.45 0.40 0.36 
3-methylhexane 0.26 0.25 0.21 
cis-1,3-dimethylcyclopentane 0.66 0.59 0.53 
trans-1,3-dimethylcyclopentane 0.57 0.51 0.46 
trans-1,2-dimethylcyclopentane 0.90 0.80 0.73 
n-heptane 0.12 0.12 0.10 
methylcyclohexane 5.92 5.17 4.79 
1,1,3-trimethylcyclopentane 0.17 0.15 0.12 
ethylcyclopentane 0.07 0.06 0.06 
2,5-dimethylhexane 0.02 0.02 0.01 
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Table B.1 SBR Rubber – Gas Chromatography Analysis (continued) 
    

component name wt % lv % mole % 
     
2,4-dimethylhexane 0.02 0.02 0.01 
trans,cis-1,2,4-trimethylcyclopentane 0.13 0.12 0.09 
trans,cis-1,2,3-trimethylcyclopentane 0.11 0.10 0.08 
toluene 2.46 1.91 2.12 
2,3-dimethylhexane 0.04 0.04 0.03 
2-methylheptane 0.03 0.03 0.02 
4-methylheptane 0.01 0.01 0.01 
cis-1,3 dimethylcyclohexane 1.19 1.04 0.84 
3-methylheptane 0.02 0.02 0.01 
trans-1,4-dimethylcyclohexane 0.58 0.51 0.41 
1,1-dimethylcyclohexane 0.15 0.13 0.11 
trans-1-ethyl-3-methylcyclopentane 0.01 0.01 0.01 
trans-1-ethyl-2-methylcyclopentane 0.02 0.02 0.01 
1-ethyl-1-methylcyclopentane 0.02 0.02 0.01 
trans-1,2,dimethylcyclohexane 0.30 0.26 0.21 
n-octane 0.22 0.21 0.15 
cis-1,2-dimethylcyclohexane 0.03 0.03 0.02 
ethylcyclohexane 0.21 0.18 0.15 
1,1,3-trimethylcyclohexane 0.11 0.09 0.07 
C9 naphthenes  0.08 0.07 0.05 
ethylbenzene 0.25 0.19 0.19 
trans,trans-,1,2,4-trimethylcyclohexane 0.17 0.15 0.11 
cis,trans-,1,3,5-trimethylcyclohexane 0.02 0.02 0.01 
meta-xylene 0.09 0.07 0.07 
para-xylene 0.02 0.02 0.01 
3-ethylheptane 0.01 0.01 0.01 
3-methyloctane 0.02 0.02 0.01 
ortho-xylene 0.01 0.01 0.01 
trans-1-ethyl-4-methylcyclohexane 0.05 0.04 0.03 
isobutylcyclopentane 0.03 0.03 0.02 
trans,trans,1,2,3,trimethylcyclohexane 0.01 0.01 0.01 
trans-1-ethyl-3-methylcyclohexane 0.02 0.02 0.01 
n-propylbenzene 0.01 0.01 0.01 
1-methyl-3-ethylbenzene 0.04 0.03 0.03 
1-methyl-4-ethylbenzene 0.01 0.01 0.01 
unidentified C10 compound 0.35 0.30 0.20 
C11 unidentified 0.01 0.01 0.00 
dodecanes  0.19 0.15 0.09 
tetradecanes 0.08 0.07 0.03 
hexadecanes 0.05 0.04 0.02 
heptadecanes 0.02 0.02 0.01 
octadecanes 0.01 0.01 0.00 
total               100.00          100.00            100.00 
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Table B.1 SBR Rubber – Gas Chromatography Analysis (continued) 
    

composite by carbon 
 

C# olefin naphthene aromatic 
    

C2    
C3    
C4 0.00   
C5 0.00 1.91  
C6 0.00 6.05 4.16 
C7 0.00 7.53 1.91 
C8 0.00 2.57 0.29 
C9 0.00 0.43 0.05 
C10 0.00 0.00 0.00 
C11   0.00 
C12    
C13    
C14    
total lv % 0.00            18.49 6.41 
unidentified=    
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Table B.2 Natural Rubber – Gas Chromatography Analysis 
    

component name wt % lv % mol % 
     
propane 0.11 0.14 0.20 
isobutane 4.10 4.85 5.64 
n-butane 4.46 5.08 6.14 
2,2-dimethylpropane 0.01 0.01 0.01 
isopentane                 22.84            24.33                25.31 
n-pentane 7.52 7.93 8.34 
2,2-dimethylbutane 2.85 2.90 2.65 
cyclopentane 1.45 1.29 1.65 
2,3-dimethylbutane 4.14 4.14 3.84 
2-methylpentane                 14.29            14.45                13.26 
3-methylpentane 8.25 8.21 7.66 
n-hexane 4.56 4.57 4.23 
2,2-dimethylpentane 0.05 0.05 0.04 
methylcyclopentane 5.02 4.43 4.77 
2,4-dimethylpentane 0.16 0.16 0.13 
2,2,3-trimethylbutane 0.04 0.04 0.03 
benzene 0.22 0.17 0.23 
3,3-dimethylpentane 0.05 0.05 0.04 
cyclohexane 2.46 2.09 2.34 
2-methylhexane 0.42 0.41 0.34 
2,3-dimethylpentane 0.12 0.11 0.10 
1,1-dimethylcyclopentane 0.47 0.41 0.38 
3-methylhexane 0.36 0.35 0.29 
cis-1,3-dimethylcyclopentane 0.63 0.56 0.51 
trans-1,3-dimethylcyclopentane 0.55 0.49 0.45 
trans-1,2-dimethylcyclopentane 0.88 0.77 0.72 
n-heptane 0.13 0.13 0.10 
methylcyclohexane 7.47 6.42 6.09 
1,1,3-trimethylcyclopentane 0.17 0.15 0.12 
ethylcyclopentane 0.05 0.04 0.04 
2,5-dimethylhexane 0.03 0.03 0.02 
2,4-dimethylhexane 0.03 0.03 0.02 
trans,cis-1,2,4-trimethylcyclopentane 0.13 0.12 0.09 
trans,cis-1,2,3-trimethylcyclopentane 0.11 0.10 0.08 
toluene 0.66 0.50 0.57 
2,3-dimethylhexane 0.04 0.04 0.03 
2-methylheptane 0.04 0.04 0.03 
4-methylheptane 0.01 0.01 0.01 
cis-1,3 dimethylcyclohexane 1.70 1.47 1.21 
3-methylheptane 0.03 0.03 0.02 
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Table B.2 Natural Rubber – Gas Chromatography Analysis (continued) 
    

component name wt % lv % mol % 
     
trans-1,4-dimethylcyclohexane 0.83 0.72 0.59 
1,1-dimethylcyclohexane 0.21 0.18 0.15 
trans-1-ethyl-3-methylcyclopentane 0.01 0.01 0.01 
trans-1-ethyl-2-methylcyclopentane 0.01 0.01 0.01 
1-ethyl-1-methylcyclopentane 0.02 0.02 0.01 
trans-1,2,dimethylcyclohexane 0.39 0.33 0.28 
n-octane 0.29 0.27 0.20 
cis-1,2-dimethylcyclohexane 0.04 0.03 0.03 
ethylcyclohexane 0.30 0.25 0.21 
1,1,3-trimethylcyclohexane 0.17 0.14 0.11 
C9 naphthenes  0.11 0.09 0.07 
ethylbenzene 0.03 0.02 0.02 
trans,trans,1,2,4-trimethylcyclohexane 0.26 0.22 0.16 
cis,trans,1,3,5-trimethylcyclohexane 0.03 0.03 0.02 
meta-xylene 0.03 0.02 0.02 
para-xylene 0.01 0.01 0.01 
3-ethylheptane 0.01 0.01 0.01 
3-methyloctane 0.02 0.02 0.01 
ortho-xylene 0.01 0.01 0.01 
cis-1-ethyl-3-methylcyclohexane 0.01 0.01 0.01 
trans-1-ethyl-4-methylcyclohexane 0.08 0.07 0.05 
isobutylcyclopentane 0.04 0.03 0.03 
trans,trans,1,2,3,trimethylcyclohexane 0.01 0.01 0.01 
trans-1-ethyl-3-methylcyclohexane 0.02 0.02 0.01 
trans-1-ethyl-2-methylcyclohexane 0.01 0.01 0.01 
unidentified C10 compound 0.14 0.12 0.08 
C11 unidentified 0.01 0.01 0.00 
dodecanes  0.20 0.15 0.10 
tridecanes 0.02 0.02 0.01 
tetradecanes 0.04 0.03 0.02 
hexadecanes 0.02 0.02 0.01 
heptadecanes 0.01 0.01 0.00 
total              100.00          100.00              100.00 
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Table B.2 Natural Rubber – Gas Chromatography Analysis (continued) 
    

composite by carbon 
 

C# olefin naphthene aromatic 
    

C2    
C3    
C4 0.00   
C5 0.00 1.29  
C6 0.00 6.52 0.17 
C7 0.00 8.69 0.50 
C8 0.00 3.39 0.06 
C9 0.00 0.63 0.00 
C10 0.00 0.00 0.00 
C11  0.00 0.00 
C12    
C13    
C14    
total lv % 0.00            20.52 0.73 
unidentified=    
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Table B.3 Butyl Rubber – Gas Chromatography Analysis 
    

component name wt % lv % mol % 
     
propane 0.09 0.12 0.18 
isobutane 4.77 5.59 7.07 
n-butane 1.22 1.38 1.81 
isopentane                 26.16            27.59                31.21 
n-pentane 1.48 1.55 1.77 
2,2-dimethylbutane 0.60 0.60 0.60 
2,3-dimethylbutane 9.76 9.66 9.75 
2-methylpentane                 11.57            11.58               11.56 
3-methylpentane 6.03 5.94 6.03 
n-hexane 0.51 0.51 0.51 
2,2-dimethylpentane 0.07 0.07 0.06 
methylcyclopentane 0.03 0.03 0.03 
2,4-dimethylpentane 6.05 5.89 5.20 
2,2,3-trimethylbutane 1.56 1.48 1.34 
3,3-dimethylpentane 0.08 0.08 0.07 
cyclohexane 0.03 0.03 0.03 
2-methylhexane 3.71 3.58 3.19 
2,3-dimethylpentane 3.89 3.67 3.34 
1,1-dimethylcyclopentane 0.01 0.01 0.01 
3-methylhexane 2.96 2.82 2.54 
cis-1,3-dimethylcyclopentane 0.01 0.01 0.01 
3-ethylpentane 0.13 0.12 0.11 
2,2,4-trimethylpentane 3.72 3.52 2.80 
n-heptane 0.11 0.11 0.09 
methylcyclohexane 0.12 0.10 0.11 
1,1,3-trimethylcyclopentane 0.05 0.04 0.04 
2,5-dimethylhexane 2.11 1.99 1.59 
2,4-dimethylhexane 1.78 1.66 1.34 
3,3-dimethylhexane 0.02 0.02 0.02 
2,3,4-trimethylpentane 0.74 0.67 0.56 
2,3,3-trimethylpentane 0.70 0.64 0.53 
2,3-dimethylhexane 0.65 0.60 0.49 
2-methyl-3-ethylpentane 0.04 0.04 0.03 
2-methylheptane 0.68 0.64 0.51 
4-methylheptane 0.31 0.29 0.23 
3,4-dimethylhexane 0.12 0.11 0.09 
3-methylheptane 0.71 0.66 0.54 
trans-1,4-dimethylcyclohexane 0.03 0.03 0.02 
2,2,5-trimethylhexane 2.03 1.88 1.36 
trans-1,2,dimethylcyclohexane 0.02 0.02 0.02 
2,2,4-trimethylhexane 0.13 0.12 0.09 
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Table B.3 Butyl Rubber – Gas Chromatography Analysis (continued) 
    

component name wt % lv % mol % 
     
n-octane 0.03 0.03 0.02 
2,4,4-trimethylhexane 0.22 0.20 0.15 
2,3,5-trimethylhexane 0.38 0.34 0.26 
2,4-dimethylheptane 0.18 0.16 0.12 
ethylcyclohexane 0.03 0.02 0.02 
2,6-dimethylheptane 0.20 0.18 0.13 
1,1,3-trimethylcyclohexane 0.03 0.03 0.02 
2,5-dimethylheptane 0.41 0.37 0.28 
3,5-dimethylheptane 0.04 0.04 0.03 
2,3,3,trimethylhexane 0.04 0.04 0.03 
2,3,4,trimethylhexane 0.07 0.06 0.05 
2,3-dimethylheptane 0.08 0.07 0.05 
3,4-dimethylheptane d/l 0.02 0.02 0.01 
3,4-dimethylheptane l/d 0.02 0.02 0.01 
4-ethylheptane 0.01 0.01 0.01 
4-methyloctane 0.06 0.05 0.04 
2-methyloctane 0.08 0.07 0.05 
3-ethylheptane 0.01 0.01 0.01 
3-methyloctane 0.08 0.07 0.05 
2,2,6-trimethylheptane 0.27 0.23 0.16 
2,4-dimethyloctane 0.06 0.05 0.04 
2,6-dimethyloctane 0.05 0.05 0.03 
2,5-dimethyloctane 0.02 0.02 0.01 
2,7-dimethyloctane 0.01 0.01 0.01 
4-methylnonane 0.22 0.20 0.13 
2-methylnonane 0.01 0.01 0.01 
3-methylnonane 0.02 0.02 0.01 
C10 paraffin 1.50 1.32 0.83 
unidentified C10 compound 0.03 0.03 0.02 
C11 unidentified 0.56 0.46 0.30 
dodecanes  0.34 0.26 0.18 
tridecanes 0.09 0.07 0.04 
tetradecanes 0.02 0.02 0.01 
pentadecanes 0.01 0.01 0.00 
unidentified 0.00 0.00 0.00 
total               100.00         100.00             100.00 
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Table B.3 Butyl Rubber – Gas Chromatography Analysis (continued) 
    

composite by carbon 
 

C# olefin naphthene aromatic 
    

C2    
C3    
C4 0.00   
C5 0.00 0.00  
C6 0.00 0.06 0.00 
C7 0.00 0.12 0.00 
C8 0.00 0.11 0.00 
C9 0.00 0.03 0.00 
C10 0.00 0.00 0.00 
C11  0.00 0.00 
C12    
C13    
C14    
total lv % 0.00 0.32 0.00 
unidentified=    
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Table B.4 Silica Rubber – Gas Chromatography Analysis 
     

component name wt % lv % mol % 
     
propane    0.22 0.30 0.40 
isobutane    3.47 4.24 4.83 
n-butane    3.16 3.72 4.40 
isopentane   18.81            20.71            21.11 
n-pentane    5.50 5.99 6.17 
2,2-dimethylbutane    1.95 2.05 1.83 
cyclopentane    2.21 2.03 2.55 
2,3-dimethylbutane    3.68 3.80 3.46 
2-methylpentane   12.76            13.33            11.99 
3-methylpentane    7.67 7.88 7.21 
n-hexane    3.96 4.10 3.72 
2,2-dimethylpentane    0.04 0.04 0.03 
methylcyclopentane    6.40 5.84 6.16 
2,4-dimethylpentane    0.17 0.17 0.14 
2,2,3-trimethylbutane    0.05 0.05 0.04 
benzene    6.73 5.23 6.98 
3,3-dimethylpentane    0.05 0.05 0.04 
cyclohexane    2.76 2.42 2.66 
2-methylhexane    0.47 0.47 0.38 
2,3-dimethylpentane    0.14 0.14 0.11 
1,1-dimethylcyclopentane    0.54 0.49 0.45 
3-methylhexane    0.42 0.42 0.34 
cis-1,3-dimethylcyclopentane    0.88 0.81 0.73 
trans-1,3-dimethylcyclopentane    0.76 0.69 0.63 
trans-1,2-dimethylcyclopentane    1.20 1.09 0.99 
n-heptane    0.15 0.15 0.12 
methylcyclohexane    7.53 6.69 6.21 
1,1,3-trimethylcyclopentane    0.22 0.20 0.16 
ethylcyclopentane    0.08 0.07 0.07 
2,5-dimethylhexane    0.03 0.03 0.02 
2,4-dimethylhexane    0.03 0.03 0.02 
trans,cis-1,2,4-trimethylcyclopentane   0.17 0.16 0.12 
trans,cis-1,2,3-trimethylcyclopentane   0.13 0.12 0.09 
toluene    2.59 2.04 2.28 
1,1,2-trimethylcyclopentane    0.06 0.05 0.04 
2-methylheptane    0.04 0.04 0.03 
4-methylheptane    0.02 0.02 0.01 
cis-1,3 dimethylcyclohexane    1.42 1.27 1.02 
3-methylheptane    0.06 0.06 0.04 
trans-1,4-dimethylcyclohexane    0.71 0.64 0.51 
1,1-dimethylcyclohexane    0.19 0.17 0.14 
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Table B.4 Silica Rubber – Gas Chromatography Analysis (continued) 
     

component name wt % lv % mol % 
     
trans-1-ethyl-3-methylcyclopentane     0.01     0.01     0.01 
trans-1-ethyl-2-methylcyclopentane     0.01     0.01     0.01 
1-ethyl-1-methylcyclopentane      0.02     0.02     0.01 
trans-1,2,dimethylcyclohexane      0.66     0.58     0.48 
cis-1,4-dimethylcyclohexane      0.24     0.21     0.17 
n-octane      0.02     0.02     0.01 
cis-1,2-dimethylcyclohexane      0.04     0.03     0.03 
ethylcyclohexane      0.25     0.22     0.18 
1,1,3-trimethylcyclohexane      0.14     0.12     0.09 
C9 naphthenes       0.11     0.10     0.07 
ethylbenzene      0.25     0.20     0.19 
trans,trans,1,2,4-trimethylcyclohexane     0.20     0.17     0.13 
cis,trans,1,3,5-trimethylcyclohexane     0.02     0.02     0.01 
meta-xylene      0.10     0.08     0.08 
para-xylene      0.01     0.01     0.01 
3-ethylheptane      0.01     0.01     0.01 
3-methyloctane      0.02     0.02     0.01 
trans-1-ethyl-4-methylcyclohexane     0.06     0.05     0.04 
isobutylcyclopentane      0.04     0.04     0.03 
trans-1-ethyl-3-methylcyclohexane     0.01     0.01     0.01 
1-methyl-3-ethylbenzene      0.05     0.04     0.03 
1-methyl-4-ethylbenzene      0.01     0.01     0.01 
1,2,3,4 tet-methylcyclohexane      0.02     0.02     0.01 
1,3-dimethyl-2-ethylbenzene      0.01     0.01     0.01 
1,2,3,4-tetramethylbenzene       0.01     0.01     0.01 
4-methylundecane      0.01     0.01     0.00 
C11 aromatic      0.02     0.01     0.01 
unidentified      0.22     0.16     0.11 
total  100.00 100.00 100.00 
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Table B.4 Silica Rubber – Gas Chromatography Analysis (continued) 
   

summary by group 
 

group  %wt % vol 
    

paraffin  13.01 14.28 
isoparafin  49.89 53.56 
olefin    0.00   0.00 
naphthene  27.09 24.35 
aromatic    9.78   7.64 
unidentified    0.23   0.17 

 
summary by carbon 

    
group  %wt % vol 

    
C2    0.00   0.00 
C3    0.22   0.30 
C4    6.63   7.96 
C5  26.52 28.73 
C6  45.91 44.65 
C7  15.07 13.37 
C8    4.69   4.18 
C9    0.67   0.59 
C10    0.04   0.04 
C11    0.02   0.01 

 
composite by carbon 

    
group C# %wt % vol 

    
paraffin C2 0.00 0.00 
 C3 0.22 0.30 
 C4 3.16 3.72 
 C5 5.50 5.99 
 C6 3.96 4.10 
 C7 0.15 0.15 

 C8 0.02 0.02 
 C9 0.00 0.00 
 C10 0.00 0.00 
 C11 0.00 0.00 
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Table B.4 Silica Rubber – Gas Chromatography Analysis (continued) 
   

composite by carbon 
 

group C# %wt % vol 
    
isoparaffin C4   3.47   4.24 
 C5 18.81 20.71 
 C6 26.06 27.06 
 C7   1.34   1.34 
 C8   0.18   0.18 
 C9   0.03   0.03 
   C10   0.00   0.00 
   C11   0.00   0.00 
    
olefin C4   0.00   0.00 
 C5   0.00   0.00 
 C6   0.00   0.00 
 C7   0.00   0.00 
 C8   0.00   0.00 
 C9   0.00   0.00 
   C10   0.00   0.00 
     
naphthene C5   2.21   2.03 
 C6   9.16   8.26 
 C7 10.99   9.84 
 C8   4.13   3.69 
 C9   0.58   0.51 
   C10   0.02   0.02 
   C11   0.00   0.00 
     
aromatic C6   6.73   5.23 
 C7   2.59   2.04 
 C8   0.36   0.29 
 C9   0.06   0.05 
   C10   0.02   0.02 
   C11   0.02   0.01 
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Table B.5 Black Side Wall Rubber – Gas Chromatography Analysis 
     

component name  wt % lv % mol % 
     
propane    0.08   0.11   0.15 
isobutane    2.55   3.07   3.61 
n-butane    1.80   2.09   2.55 
isopentane  23.13 25.03 26.40 
n-pentane    5.49   5.89   6.27 
2,2-dimethylbutane    2.05   2.12   1.96 
cyclopentane    1.16   1.05   1.36 
2,3-dimethylbutane    4.39   4.46   4.20 
2-methylpentane  14.65 15.02 14.01 
3-methylpentane    8.79   8.89   8.40 
n-hexane    3.75   3.82   3.58 
2,2-dimethylpentane    0.06   0.06   0.05 
methylcyclopentane    6.02   5.40   5.89 
2,4-dimethylpentane    0.36   0.36   0.30 
2,2,3-trimethylbutane    0.10   0.10   0.08 
benzene    1.22   0.93   1.29 
3,3-dimethylpentane    0.07   0.07   0.06 
cyclohexane    2.44   2.11   2.39 
2-methylhexane    0.96   0.95   0.79 
2,3-dimethylpentane    0.31   0.30   0.25 
1,1-dimethylcyclopentane    0.46   0.41   0.39 
3-methylhexane    0.86   0.84   0.71 
cis-1,3-dimethylcyclopentane    0.98   0.88   0.82 
trans-1,3-dimethylcyclopentane    0.86   0.77   0.72 
3-ethylpentane    0.04   0.04   0.03 
trans-1,2-dimethylcyclopentane    1.33   1.19   1.12 
2,2,4-trimethylpentane    0.02   0.02   0.01 
n-heptane    0.22   0.22   0.18 
methylcyclohexane    8.08   7.06   6.78 
1,1,3-trimethylcyclopentane    0.26   0.23   0.19 
ethylcyclopentane    0.13   0.11   0.11 
2,5-dimethylhexane    0.08   0.08   0.06 
2,4-dimethylhexane    0.09   0.09   0.06 
trans,cis-1,2,4-trimethylcyclopentane   0.20   0.18   0.15 
3,3-dimethylhexane    0.01   0.01   0.01 
trans,cis-1,2,3-trimethylcyclopentane   0.16   0.14   0.12 
toluene    0.90   0.70   0.80 
1,1,2-trimethylcyclopentane    0.08   0.07   0.06 
2-methylheptane    0.12   0.12   0.09 
4-methylheptane    0.04   0.04   0.03 
cis,trans,1,2,4-trimethylcyclopentane   0.02   0.02   0.01 
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Table B.5 Black Side Wall Rubber – Gas Chromatography Analysis (continued) 
     

component name  wt % lv % mol % 
     
cis-1,3 dimethylcyclohexane  1.50 1.32 1.10 
3-methylheptane  0.17 0.16 0.12 
trans-1,4-dimethylcyclohexane  0.75 0.66 0.55 
1,1-dimethylcyclohexane  0.19 0.16 0.14 
trans-1-ethyl-3-methylcyclopentane 0.02 0.02 0.01 
cis-1-ethyl-3-methylcyclopentane  0.02 0.02 0.01 
trans-1-ethyl-2-methylcyclopentane 0.02 0.02 0.01 
1-ethyl-1-methylcyclopentane  0.02 0.02 0.01 
trans-1,2,dimethylcyclohexane  0.41 0.36 0.30 
cis-1,4-dimethylcyclohexane  0.21 0.18 0.15 
n-octane  0.11 0.10 0.08 
cis-1,2-dimethylcyclohexane  0.05 0.04 0.04 
ethylcyclohexane  0.32 0.27 0.23 
1,1,3-trimethylcyclohexane  0.19 0.16 0.12 
C9 naphthenes   0.15 0.13 0.10 
ethylbenzene  0.08 0.06 0.06 
trans,trans,1,2,4-trimethylcyclohexane 0.30 0.26 0.20 
cis,trans,1,3,5-trimethylcyclohexane 0.03 0.03 0.02 
meta-xylene  0.07 0.05 0.05 
para-xylene  0.02 0.02 0.02 
3,4-dimethylheptane l/d  0.01 0.01 0.01 
4-methyloctane  0.01 0.01 0.01 
2-methyloctane  0.02 0.02 0.01 
3-ethylheptane  0.02 0.02 0.01 
3-methyloctane  0.04 0.04 0.03 
cis,cis,1,2,4,trimethylcyclohexane  0.02 0.02 0.01 
ortho-xylene  0.03 0.02 0.02 
cis-1-ethyl-3-methylcyclohexane  0.02 0.02 0.01 
trans-1-ethyl-4-methylcyclohexane 0.10 0.08 0.07 
isobutylcyclopentane  0.06 0.05 0.04 
trans,trans,1,2,3,trimethylcyclohexane 0.02 0.02 0.01 
n-nonane  0.01 0.01 0.01 
trans-1-ethyl-3-methylcyclohexane 0.03 0.03 0.02 
trans-1-ethyl-2-methylcyclohexane 0.01 0.01 0.01 
sec-butylcyclopentane  0.01 0.01 0.01 
2,4-dimethyloctane  0.01 0.01 0.01 
n-propylcyclohexane  0.01 0.01 0.01 
1-methyl-3-ethylbenzene  0.01 0.01 0.01 
1-methyl-4-ethylbenzene  0.01 0.01 0.01 
1,2,3,4 tet-methylcyclohexane  0.01 0.01 0.01 
C11 paraffins  0.02 0.02 0.01 
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Table B.5 Black Side Wall Rubber – Gas Chromatography Analysis (continued) 
     

component name  wt % lv % mol % 
     
C11 unidentified      0.02     0.02     0.01 
1,2,3,4-tetramethylbenzene       0.06     0.04     0.04 
2-methylundecane      0.01     0.01     0.00 
C11 aromatic      0.02     0.02     0.01 
n-dodecane      0.01     0.01     0.00 
dodecanes       0.35     0.27     0.18 
tridecanes      0.04     0.03     0.02 
tetradecanes      0.02     0.02     0.01 
hexadecanes      0.02     0.02     0.01 
heptadecanes      0.02     0.02     0.01 
unidentified      0.01     0.01     0.01 
total  100.00 100.00 100.00 
 

summary by group 
     

group %wt % vol  
    

paraffin 11.46 12.24  
isoparaffin 58.98 61.96  
olefin   0.00   0.00  
naphthene 26.65 23.53  
aromatic   2.42   1.86  
unidentified   0.50   0.41  
     

summary by carbon 
     
 group %wt % vol  
     
 C2   0.00   0.00  
 C3   0.08   0.11  
 C4   4.35   5.16  
 C5 29.78 31.97  
 C6 43.31 42.75  
 C7 15.72 14.06  
 C8   5.06   4.48  
 C9   1.08   0.96  
 C10   0.08   0.06  
 C11   0.04   0.04  
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Table B.5 Black Side Wall Rubber – Gas Chromatography Analysis (continued) 
 

composite by carbon 
     

group C# %wt % vol  
       

paraffin C2   0.00   0.00  
 C3   0.08   0.11  
 C4   1.80   2.09  
 C5   5.49   5.89  
 C6   3.75   3.82  
 C7   0.22   0.22  
 C8   0.11   0.10  
 C9   0.01   0.01  
   C10   0.00   0.00  
   C11   0.00   0.00  
     
isoparaffin C4   2.55   3.07  
 C5 23.13 25.03  
 C6 29.88 30.49  
 C7   2.76   2.72  
 C8   0.53   0.52  
 C9   0.10   0.10  
   C10   0.01   0.01  
   C11   0.02   0.02  
      
olefin C4   0.00   0.00  
 C5   0.00   0.00  
 C6   0.00   0.00  
 C7   0.00   0.00  
 C8   0.00   0.00  
 C9   0.00   0.00  
   C10   0.00   0.00  
     
naphthene C5   1.16   1.05  
 C6   8.46   7.51  
 C7 11.84 10.42  
 C8   4.23   3.71  
 C9   0.95   0.83  
   C10   0.01   0.01  
   C11   0.00   0.00  
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Table B.5 Black Side Wall Rubber – Gas Chromatography Analysis (continued) 
 

composite by carbon 
     

group C# %wt % vol  
     
aromatic C6 1.22 0.93  
 C7 0.90 0.70  
 C8 0.20 0.15  
 C9 0.02 0.02  
   C10 0.06 0.04  
   C11 0.02 0.02  
     

additional group information 
     
                               molecular weight of sample   82.38    
                               molecular weight of C6 plus   90.41    
                               density of sample 0.6768    
                               density C6 plus 0.7103    
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Table B.6 SBR Rubber (NaCl: AlCl3) – Gas Chromatography Analysis 
    

component name wt % lv % mol % 
    
propane 0.11 0.17 0.28 
isobutane 1.26 1.73 2.42 
n-butane 0.27 0.36 0.52 
isopentane 3.54 4.37 5.48 
n-pentane 0.04 0.05 0.06 
cyclopentane 0.13 0.13 0.21 
2,3-dimethylbutane 0.65 0.75 0.84 
2-methylpentane 2.82 3.30 3.65 
3-methylpentane 1.72 1.98 2.23 
n-hexane 0.04 0.05 0.05 
methylcyclopentane 4.63 4.74 6.14 
2,4-dimethylpentane 0.32 0.36 0.36 
2,2,3-trimethylbutane 0.02 0.02 0.02 
benzene 2.67 2.33 3.81 
cyclohexane 0.13 0.13 0.17 
2-methylhexane 1.50 1.69 1.67 
2,3-dimethylpentane 0.45 0.50 0.50 
1,1-dimethylcyclopentane 0.01 0.01 0.01 
3-methylhexane 1.25 1.39 1.39 
cis-1,3-dimethylcyclopentane 1.31 1.35 1.49 
trans-1,3-dimethylcyclopentane 1.19 1.22 1.35 
3-ethylpentane 0.06 0.07 0.07 
trans-1,2-dimethylcyclopentane 1.11 1.13 1.26 
n-heptane 0.02 0.02 0.02 
methylcyclohexane 6.35 6.33 7.22 
1,1,3-trimethylcyclopentane 0.70 0.72 0.70 
ethylcyclopentane 0.48 0.48 0.55 
2,5-dimethylhexane 0.37 0.41 0.36 
2,4-dimethylhexane 0.31 0.34 0.30 
trans,cis-1,2,4-trimethylcyclopentane 1.03 1.06 1.02 
trans,cis-1,2,3-trimethylcyclopentane 0.55 0.56 0.55 
toluene 1.15 1.02 1.39 
2,3-dimethylhexane 0.36 0.39 0.35 
2-methyl-3-ethylpentane 0.02 0.02 0.02 
2-methylheptane 0.73 0.80 0.71 
4-methylheptane 0.26 0.28 0.25 
3,4-dimethylhexane 0.03 0.03 0.03 
cis,trans,1,2,4-trimethylcyclopentane 0.23 0.23 0.23 
cis-1,3 dimethylcyclohexane 4.32 4.32 4.30 
3-methylheptane 0.58 0.63 0.57 
trans-1,4-dimethylcyclohexane 2.08 2.09 2.07 
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Table B.6 SBR Rubber (NaCl: AlCl3) – Gas Chromatography Analysis (continued) 
    

component name wt % lv % mol % 
    
1,1-dimethylcyclohexane 0.03 0.03 0.03 
trans-1-ethyl-3-methylcyclopentane 0.48 0.48 0.48 
cis-1-ethyl-3-methylcyclopentane 0.41 0.41 0.41 
trans-1-ethyl-2-methylcyclopentane 0.23 0.23 0.23 
trans-1,2,dimethylcyclohexane 0.98 0.97 0.97 
trans-1,3,dimethylcyclohexane 0.03 0.03 0.03 
n-octane 2.45 2.67 2.39 
2,3,5-trimethylhexane 0.01 0.01 0.01 
cis-1-ethyl-2-methylcyclopentane 0.08 0.08 0.08 
cis-1,2-dimethylcyclohexane 0.51 0.49 0.51 
2,4-dimethylheptane 0.22 0.24 0.19 
4,4-dimethylheptane 0.06 0.06 0.05 
ethylcyclohexane 1.70 1.65 1.69 
cis,cis,1-3-5,trimethylcyclohexane 0.14 0.14 0.12 
2,6-dimethylheptane 0.16 0.17 0.14 
1,1,3-trimethylcyclohexane 0.80 0.79 0.71 
C9 naphthenes  2.56 2.51 2.26 
2,5-dimethylheptane 0.31 0.33 0.27 
3,5-dimethylheptane 0.03 0.03 0.03 
ethylbenzene 0.61 0.54 0.64 
trans,trans,1,2,4-trimethylcyclohexane 1.93 1.88 1.71 
cis,trans,1,3,5-trimethylcyclohexane 0.53 0.52 0.47 
meta-xylene 0.88 0.78 0.93 
para-xylene 0.29 0.26 0.30 
2,3-dimethylheptane 0.09 0.10 0.08 
3,4-dimethylheptane d/l 0.02 0.02 0.02 
3,4-dimethylheptane l/d 0.07 0.07 0.06 
4-ethylheptane 0.07 0.07 0.06 
4-methyloctane 0.22 0.23 0.19 
2-methyloctane 0.33 0.35 0.29 
cis,cis,1,2,3,trimethylcyclohexane 0.10 0.10 0.09 
3-ethylheptane 0.24 0.26 0.21 
3-methyloctane 0.85 0.90 0.74 
cis,trans,1,2,4,trimethylcyclohexane 0.05 0.05 0.04 
cis,cis,1,2,4,trimethylcyclohexane 0.44 0.43 0.39 
ortho-xylene 0.60 0.52 0.63 
cis-1-ethyl-3-methylcyclohexane 0.24 0.23 0.21 
trans-1-ethyl-4-methylcyclohexane 1.16 1.11 1.03 
isobutylcyclopentane 0.63 0.62 0.56 
1-ethyl-1-methylcyclohexane 0.13 0.13 0.11 
cis,trans,1,2,3,trimethylcyclohexane 0.07 0.07 0.06 
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Table B.6 SBR Rubber (NaCl/AlCl3) – Gas Chromatography Analysis (continued) 
    

component name wt % lv % mol % 
    
trans,trans,1,2,3,trimethylcyclohexane 0.03 0.03 0.03 
n-nonane 0.18 0.19 0.16 
trans-1-ethyl-3-methylcyclohexane 0.67 0.66 0.59 
trans-1-ethyl-2-methylcyclohexane 0.23 0.23 0.20 
cis-1-ethyl-4-methylcyclohexane 0.01 0.01 0.01 
isopropylbenzene 0.28 0.25 0.26 
2,2-dimethyloctane 0.30 0.32 0.24 
isopropylcyclohexane 0.11 0.11 0.10 
cis-1-ethyl-2-methylcyclohexane 0.05 0.05 0.04 
2,4-dimethyloctane 0.19 0.20 0.15 
2,6-dimethyloctane 0.23 0.24 0.18 
n-propylcyclohexane 0.29 0.28 0.26 
n-butylcyclopentane 0.10 0.10 0.09 
n-propylbenzene 0.45 0.40 0.42 
3,6-dimethyloctane 0.04 0.04 0.03 
1-methyl-3-ethylbenzene 0.61 0.54 0.57 
1-methyl-4-ethylbenzene 0.56 0.50 0.52 
1,3,5-trimethylbenzene 0.39 0.35 0.36 
4-methylnonane 0.11 0.12 0.09 
1-methyl-2-ethylbenzene 0.42 0.37 0.39 
3-ethyloctane 0.14 0.15 0.11 
1,2,3,5 tet-methylcyclohexane 0.16 0.16 0.13 
3-methylnonane 0.41 0.43 0.32 
1-methyl-trans-4-isopropylcyclohexane 0.14 0.14 0.11 
1,2,3,4 tet-methylcyclohexane 0.17 0.17 0.14 
1,4 dimethyl-2-ethylcyclohexane 0.06 0.06 0.05 
C10 naphthenes  2.65 2.59 2.11 
C10 paraffin 0.63 0.65 0.45 
1,2,4-trimethylbenzene 0.73 0.64 0.68 
cis-1-methyl-3-propylcyclohexane 0.38 0.37 0.30 
trans 1,4 diethylcyclohexane 0.29 0.28 0.23 
trans-1-methyl-3-propylcyclohexane 0.17 0.17 0.14 
1-ethyl-2,3-dimethylcyclohexane 0.11 0.11 0.09 
isobutylbenzene 0.12 0.11 0.10 
cis-1-methyl-4-propylcyclohexane 0.11 0.11 0.09 
1,2,3,4 tet-methylcyclohexane 0.24 0.23 0.19 
trans 1,3 diethylcyclohexane 0.15 0.15 0.12 
1,2,3-trimethylbenzene 0.12 0.10 0.11 
1-methyl-3-isopropylbenzene 0.17 0.15 0.14 
indan (2,3-dihydroindene) 0.27 0.22 0.25 
sec-butylcyclohexane 0.20 0.20 0.16 
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Table B.6 SBR Rubber (NaCl/AlCl3) – Gas Chromatography Analysis (continued) 
    

component name wt % lv % mol % 
    
butylcyclohexane 0.13 0.12 0.10 
1,3-diethylbenzene 0.28 0.25 0.23 
C11 naphthenes  0.78 0.75 0.56 
1-methyl-3-n-propylbenzene 0.32 0.29 0.27 
1-methyl-4-n-propylbenzene 0.12 0.11 0.10 
1,4-diethylbenzene 0.25 0.22 0.21 
1,3-dimethyl-5-ethylbenzene 0.31 0.27 0.26 
1,2-diethylbenzene 0.10 0.09 0.08 
1-methyl-2-n-propylbenzene 0.10 0.09 0.08 
cis 1-methyl 4-ter-butylcyclohexane 0.13 0.12 0.09 
5-methyldecane 0.11 0.11 0.08 
4-methyldecane 0.09 0.09 0.06 
C11 paraffins 0.21 0.22 0.15 
1,4-dimethyl-2-ethylbenzene 0.40 0.35 0.33 
1,3-dimethyl-4-ethylbenzene 0.21 0.18 0.17 
3-methyldecane 0.09 0.09 0.06 
1,2-dimethyl-4-ethylbenzene 0.44 0.39 0.37 
1,3-dimethyl-2-ethylbenzene 0.12 0.10 0.10 
tricyclodecane 0.18 0.17 0.15 
1-methylindan 0.10 0.08 0.08 
1,2-dimethyl-3-ethylbenzene 0.25 0.22 0.21 
n-undecane 0.09 0.09 0.06 
1,2,4,5-tetramethylbenzene 0.11 0.10 0.09 
1,2,3,5-tetramethylbenzene  0.10 0.09 0.08 
C11 unidentified 0.55 0.53 0.38 
4-methylindan 0.23 0.19 0.19 
5-methylindan 0.38 0.31 0.32 
1,2,3,4-tetramethylbenzene  0.21 0.18 0.17 
6-methylundecane 0.11 0.11 0.07 
5-methylundecane 0.12 0.12 0.08 
4-methylundecane 0.04 0.04 0.03 
naphthalene 0.22 0.17 0.19 
C11 aromatic 3.35 2.97 2.52 
dodecanes  4.27 3.78 2.94 
pentamethylbenzene 0.13 0.11 0.10 
2-methylnaphthalene 0.36 0.29 0.28 
1-methylnaphthalene 0.17 0.13 0.13 
tridecanes 2.18 2.06 1.40 
n-tridecane 0.12 0.12 0.07 
tetradecanes 1.41 1.31 0.83 
pentadecanes 0.91 0.83 0.49 
hexadecanes 0.70 0.64 0.35 
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Table B.6 SBR Rubber (NaCl/AlCl3) – Gas Chromatography Analysis (continued) 
    

component name wt % lv % mol % 
    
heptadecanes     0.57     0.52     0.27 
octadecanes     0.29     0.26     0.13 
nonadecanes      0.06     0.05     0.03 
eicosanes     0.03     0.03     0.01 
heneicosanes     0.03     0.03     0.01 
docosanes      0.02     0.02     0.01 
tricosanes     0.02     0.02     0.01 
tetracosanes     0.02     0.02     0.01 
pentacosanes      0.01     0.01     0.00 
total 100.00 100.00 100.00 
    

summary by group 
 
 group  %wt % vol 
     
 paraffin    3.20   3.60 
 isoparaf.  21.59 24.67 
 olefin    0.00   0.00 
 naphthene  45.28 45.08 
 aromatic  18.58 16.26 
 unidentified  11.35 10.39 
     

summary by carbon 
     
 group  %wt % vol 
     
 C2    0.00   0.00 
 C3    0.11   0.17 
 C4    1.53   2.09 
 C5    3.71   4.55 
 C6  12.66 13.28 
 C7  15.22 15.59 
 C8  21.11 21.28 
 C9  16.96 16.45 
 C10  11.73 11.12 
 C11    5.62   5.08 
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Table B.6 SBR Rubber (NaCl/AlCl3) – Gas Chromatography Analysis (continued) 
    

composite by carbon 
     

group C#  %wt % vol 
     
paraffin C2    0.00   0.00 
 C3    0.11   0.17 
 C4    0.27   0.36 
 C5    0.04   0.05 
 C6    0.04   0.05 
 C7    0.02   0.02 
 C8    2.45   2.67 
 C9    0.18   0.19 
   C10    0.00   0.00 
   C11    0.09   0.09 
     
isoparaffin C4    1.26   1.73 
 C5    3.54   4.37 
 C6    5.19   6.03 
 C7    3.60   4.03 
 C8    2.66   2.90 
 C9    2.68   2.84 
   C10    2.05   2.15 
   C11    0.61   0.62 
     
olefin C4    0.00   0.00 
 C5    0.00   0.00 
 C6    0.00   0.00 
 C7    0.00   0.00 
 C8    0.00   0.00 
 C9    0.00   0.00 
   C10    0.00   0.00 
     
naphthene C5    0.13   0.13 
 C6    4.76   4.87 
 C7  10.45 10.52 
 C8  13.62 13.61 
 C9  10.27 10.05 
   C10    5.14   5.03 
   C11    0.91   0.87 
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Table B.6 SBR Rubber (NaCl/AlCl3) – Gas Chromatography Analysis (continued) 
    

composite by carbon 
     

group C#  %wt % vol 
     
aromatic C6  2.67 2.33 
 C7  1.15 1.02 
 C8  2.38 2.10 
 C9  3.83 3.37 
 C10  4.54 3.94 
 C11  4.01 3.50 
     

additional group information 
 

                                           molecular weight of sample 111.61    
                                           molecular weight of C6 plus 115.93    
                                           density of sample 0.7714    
                                           density C6 plus 0.7834    
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