
 

A HYBRID SYSTEM FOR FAULT DETECTION AND SENSOR FUSION 

BASED ON FUZZY CLUSTERING AND ARTIFICIAL IMMUNE SYSTEMS 

 

 

A Dissertation  

by 

MOHAMMAD ABDEL KAREEM RASHEED JARADAT  

 

 

Submitted to the Office of Graduate Studies of  
Texas A&M University 

in partial fulfillment of the requirements for the degree of  
 

DOCTOR OF PHILOSOPHY 
 
 
 
 
 
 

December 2005 
 
 
 
 
 
 
 

Major Subject: Mechanical Engineering 
 
 



 

 
A HYBRID SYSTEM FOR FAULT DETECTION AND SENSOR FUSION 

BASED ON FUZZY CLUSTERING AND ARTIFICIAL IMMUNE SYSTEMS 

 

A Dissertation  

by 

MOHAMMAD ABDEL KAREEM RASHEED JARADAT  

 
 

Submitted to the Office of Graduate Studies of  
Texas A&M University 

in partial fulfillment of the requirements for the degree of  
 

DOCTOR OF PHILOSOPHY 
 

 
 
 
Approved by: 
 
Chair of Committee,    Reza Langari 
Committee Members,    Alan Palazzolo 

   Won-jong Kim 
   Hamid Toliyat 

Head of Department,      Dennis O’Neal 
 
 

 
December 2005 

 
Major Subject: Mechanical Engineering 



 

 

iii

 

 ABSTRACT 
 

A Hybrid System for Fault Detection and Sensor Fusion Based on Fuzzy Clustering and 

Artificial Immune Systems. (December 2005) 

Mohammad Abdel Kareem Rasheed Jaradat, B.S., Jordan University of Science and 

Technology; M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Reza Langari 
 
 

   In this study, an efficient new hybrid approach for multiple sensors data fusion and 

fault detection is presented, addressing the problem with possible multiple faults, which 

is based on conventional fuzzy soft clustering and artificial immune system (AIS). 

   The proposed hybrid system approach consists of three main phases. In the first phase 

signal separation is performed using the Fuzzy C-Means (FCM) algorithm. Subsequently 

a single (fused) signal based on the information provided from the sensor signals is 

generated by the fusion engine. The information provided from the previous two phases 

is used for fault detection in the third phase based on the Artificial Immune System 

(AIS) negative selection mechanism. 

   The simulations and experiments for multiple sensor systems have confirmed the 

strength of the new approach for online fusing and fault detection. The hybrid system 

gives a fault tolerance by handling different problems such as noisy sensor signals and 

multiple faulty sensors. This makes the new hybrid approach attractive for solving such 

fusion problems and fault detection during real time operations. 
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   This hybrid system is extended for early fault detection in complex mechanical 

systems based on a set of extracted features; these features characterize the collected 

sensors data. The hybrid system is able to detect the onset of fault conditions which can 

lead to critical damage or failure. This early detection of failure signs can provide more 

effective information for any maintenance actions or corrective procedure decisions. 
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CHAPTER I 

INTRODUCTION 

I. INTRODUCTION 

 

   In the last two decades, a notable amount of research has addressed the problem of 

using multiple sensors to achieve better performance in diagnostics as well as feedback 

control systems. 

   The process of combining the provided information from multiple sensors is called 

sensor fusion, and can overcome a number of problems ranging from noise to incipient 

sensor failure.  Even in the absence of these issues, one can increase the system’s 

accuracy and the reliability using sensor fusion [1].     

   Where the main interest in multiple sensor systems springs from the common 

realization of fundamental limitations for the information provided by using a single 

sensor in the system. Whyte and others illustrated these limitations in the following 

points [2, 3]:  

 

• Using a single sensor can provide only partial information about the 

operating conditions and environment. 

•  Using the single sensor systems, cause the resulted systems observations 

uncertain and occasionally it could be incorrect. 

 

This dissertation follows the style and format of IEEE Transactions on Systems, Man, and Cybernetics. 
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• Using multiple sensors allows the incorporation of various type of 

information, where multiple tasks can be achieved by the same system. 

• Using single sensor systems, the system will completely fail with possible 

sensor operational faults, which can lead to critical situations or 

consequences on that system. For instance in feedback control systems, the 

failure of the sensor which provides the output measured values will lead to a 

system failure.    

 

   Due to these reasons, several conventional approaches have been developed for 

multiple sensors fusion as well as fault detection. The most important used approaches 

can be categorized as follows:  

 

• Kalman filtering, the weighted average, Bayesian estimators and 

nonlinear fusion based approaches [4-15]. 

• Fuzzy logic, neural network and soft computing based approaches [1,16-

23]. 

• Hybrid systems approaches formed by a combination of soft computing 

and Kalman filtering, or Bayesian estimators from the first category 

[24,25]. 

 

   For instance the Kalman filter based approaches from the first category, are developed 

for multiple sensor fusion and fault detection based on the statistical characteristics of 
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the measurement model to provide the fusible estimate for the given inputs and residual 

outputs. Taking into consideration the ability to provide a linear model for the addressed 

system and the measurement of the noise, these facts arise from the nature of the Kalman 

filter as an optimal linear estimator, which works in recursive nature to provide the 

future state based on the system transition matrix [4]. 

    The Kalman filter approach can be extended to the Extended Kalman Filtering 

approach, when some of the assumptions are used to provide an approximate linear 

model for the system present potential limitations or numerical instability [4].    

   From the second category several neural network based approaches were developed in 

different layer structures to achieve the addressed objectives. These layers consist of 

simple processing neurons which are fully interconnected with each other providing the 

network output, as shown in figure 1.1.   

 

Fig. 1.1. Structure of three layer neural network.  
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   The neuron output is defined as the weighted sum of the entire inputs applied to the 

neuron activation function. Training or learning phase is required to select the 

appropriate weights for the network, which can be achieved through different learning 

approaches based on a provided training set of known input/output data for the system. 

After that the network will be ready for fault detection and fusion purposes [26, 27]. 

     Hybrid approaches are developed by considering different combinations between the 

first and the second approaches categories. The main idea is to maximize the benefits 

from combining the different approach advantages for sensors fusion and fault detection. 

The hybrid approach presented by Ambrosio and Mort [24] for example, is making use 

of the fuzzy logic inference system capabilities to develop a Fuzzy-adaptive Kalman 

filter, which shows a good performance based on the fuzzy logic ability to deal with 

imprecise information based on the fuzzy membership representation of the variables. 

         As we discussed, the majority of these methods use linear estimation models which 

require a previous knowledge of signal statistics, while others require knowledge of the 

behavior of the system to generate the governing rules of the fusion approach. Other 

approaches could have problems when it is necessary to add new sensors to the system. 

The presence of more than one faulty signal is an essential limitation of some of these 

approaches performances. 

    This study focuses to provide new approach for both multiple sensor fusion and fault 

detection. A preliminary introduction is presented in this section, in the following 

section, the problem statement and methodology outline is covered, while the addressed 

multiple sensors problem architecture is presented in section three. 
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II. PROBLEM STATEMENT AND METHODOLOGY OUTLINE  

 

   Our objective in this study is to presents a new approach for multiple sensor data 

fusion and fault detection. In this approach a new hybrid system is developed, which 

consists of the following three main phases: 

 

• In the first phase, a signal separation is performed using the Fuzzy C-Means 

(FCM) algorithm. 

•  Subsequently, a single (fused) signal based on the information provided from 

the sensor signals is generated by the fusion engine.  

• The information provided from pervious two phases are used for fault 

detection in the third phase based on Artificial Immune System (AIS) 

negative selection mechanism. 

 

   The above approach is detailed in the following chapters with reference to the multiple 

sensors problem architecture which will be discussed shortly. In the next chapter the 

approach development with required backgrounds is discussed. The hybrid system 

performance evaluations are subsequently demonstrated through the simulated results as 

well as the experimental results. In this chapter the hybrid system performance is 

compared to and evaluated to other approaches. In the next chapter an early fault 

detection system is developed based on the hybrid system approach, the experimental 
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results from applying the hybrid system is discussed too. Finally, the last chapter covers 

the concluded remarks from this study and the future work.  

   

III. SENSOR FUSION PROBLEM ARCHITECTURE 

 

   The general multiple-sensor scheme discussed in this study is shown in Figure 1.2. As 

shown in the figure, the system consists of m input signals (from m sensors) and the 

objective is to achieve one fused output Sf based on these inputs.  

 

Fig. 1.2. General fusion block diagram. 
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   If the input sensors try to measure the same type of signal, i.e. light, sound, 

temperature, position or velocity, the value measured by all the sensors at any time 

instant t, should be ideally the same as shown in figure 1.3. Note that in general, a 

tolerance value for the measurements will be used to account for inherent inaccuracy in 

the sensor measurements, leading to an acceptable region for the measured values, as 

shown in figure 1.4. 

     Fig. 1.3. Ideal measured values by the sensors. 

 

Fig. 1.4. Actual measured values by the sensors. 
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   Some of these measured values could drift away from this acceptable region during 

real time operation, due to the fault influence during the sensors operation such as 

parameter changes or changes in the sensors operational characteristics [28], the drifted 

values will be distributed in some manner relative to the acceptable measurements 

region, as shown in Figure 1.5, where the drifted measurements can be noticed in the 

figure. One possibility is that the measured value drifted to the right side of the 

acceptable region, while the other possibility is that the measured values drifted to the 

left side of the acceptable region; it is also possible for the two cases to occur 

simultaneously with some readings drifting to the left and others to the right of the 

acceptable region. 

Fig. 1.5. The drifted measurement directions. 

 

   To perform any useful function using the measured readings (diagnostic or control) a 

single fused signal,  Sf, output is required to represent the correct measured values, as in 
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equation 1.1 [29], and to eliminate the effects of the operational problems of the sensor 

as described above. 

)(SFusionS f =                                                  (1.1) 

   Where Sf is the fused output we are looking for through the implemented fusion 

approach, for a given set of the measured values by the multiple sensors denoted as S = 

{S1 ,…,Sm}∈R1x m , this fused output will be considered for fault detection process 

subsequently. 

   The used sensors in the multiple sensor system scheme shown in figure 1.2, could be 

of the same type or different types providing the same measured information. For 

instance, in some mixing manufacturing processes that are using the same sensors type, 

require adding various additive materials at specific temperatures to finalize the product. 

In such systems several thermocouples are positioned at different locations around the 

mixing tank to provide accurate temperature measurements for the mixed materials, 

where some of these additive processes are sensitive to the changes in the measured 

temperature [30].       

   The mobile robot platforms are another example for multiple sensor systems using 

several sensors mounted at several locations onboard the robot body to provide different 

type of information for obstacle avoidance, navigation, map building, and localization 

[31].  

   These sensors could be from different types, such as laser scanners, cameras, IR 

sensors, and sonar sensors, as shown in figure 1.6 part a [32]. In spite of these sensors 
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are heterogeneous, they provide the same information about the detected obstacles for 

example or the robot surrounding environment as shown in figure 1.6 b.        

   This general multiple-sensor scheme will be addressed in the following chapters based 

on the methodology outline as mentioned before in section II, for both multiple sensor 

fusion and fault detection. 

 

 (a) 

 

(b) 

Fig. 1.6. (a) Mobile robot platform with multiple sensors onboard, (b) the obstacle 

detected by the robot sensors.   
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CHAPTER II 

HYBRID SYSTEM IMPLEMENTATION 

I. INTRODUCTION 

 
   The major objective of this chapter is to introduce main components of the hybrid 

system and algorithm implementation based on the fuzzy clustering and the artificial 

immune system. Additionally, an introductory material and information required for the 

discussion progress through out the chapter sections is provided. 

   Firstly, an introductory discussion about the fuzzy set theory is presented in section 

two, the fuzzy clustering as a fusion mechanism is covered in section three, the fusion 

engine description will follow in section four, in the sequel the cluster selection and the 

algorithm summery is presented in section five and six. Finally, section seven will cover 

the hybrid fault detection system as well as a basic introductory about the artificial 

immune systems. 

 

II. FUZZY SET AND MEMBERSHIP FUNCTION 

 

   The idea of fuzzy set theory was proposed by Lutfi A. Zadieh forty years ago [33] as 

the foundation for computing with words [34]. A fuzzy set theory is a generalization for 

the classical crisp set theory, this set is defined as a set of smooth boundary allowing the 
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variable in a set to have a partially membership degree to belongs to this set. This 

membership degree is expressed by a value between 0 and 1[35,36]. 

   Thus a fuzzy set is defined by a function that maps each element in the universe of 

discourse to its membership value in the set between 0 and 1. This function is called the 

membership function, denoted by μ(x) [35, 36]. Figure 2.1 illustrates the fuzzy set 

membership function definition, while the fuzzy set is defined as follows for a fuzzy set 

A: 

}],1,0[)(|{ XxxxA A ∈⎯→⎯= μ                            (2.1) 

Fig. 2.1. Fuzzy set membership function. 

 

III. FUZZY CLUSTERING AS A FUSION MECHANISM 

 

   A fuzzy (soft) partition for any given data set X ∈R1x m , where xi ∈ X, can be defined 

such as P = {C1, C2,…, Cl} of X, if and only if it satisfies the following conditions [35]: 

1-    .1)(0, ≤≤∈∀∈∀ iCji xPCXx
j

μ  

1 
μ(x) 

X
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2-    .0)(, >∈∃∈∀ iCji xthatsuchPCXx
j

μ  

3-    .,1)( Xxx iiC
J

j
∈∀=∑ μ  

   Where μci (xi) shows the degree to which xi belongs to a given partition Cj  as follows : 

]1,0[:)( ⎯→⎯XxiC j
μ , where .1,1 milj ≤≤≤≤  

   The first condition in the definition above assures that any data point xi ∈ X can 

partially belong to multiple partitions, while the second condition assures the coverage 

of all the data points in the data set X by the resulted partitions P, finally the third 

condition assures the partition is consistent with the intuitive notion that a given  xi  does 

not altogether belong to more than one whole set. 

   Now, let us assume that the available m sensor signals are noisy and subject to 

operation faults such as parameter changes or changes in the sensors operational 

characteristics [28]. A given input set of measurement S = {S1 ,…,Sm}∈R1x m  will not 

contain the same measured values for any measurement at any time instant  t, as follows: 

 

.,...,1,,)()( 1 miifortStS ii =∀≠ +                                        (2.2) 

    The input vector S, could be separated into different partitions by using the fuzzy c-

means (FCM) clustering algorithm, which is one of the most active and widely used 

algorithms in practical data analysis [35,37],  as shown in figure 2.2. One of these 

partitions characterizes the right input values, while the other partitions characterize the 
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faulty readings or measurements. Given the measurements of vector S, the data shown in 

Figure 1.5 could be identified by using the fuzzy c-means clustering algorithm which 

tries to minimize the following objective function for the given vector S  [35,38,39]: 

 

 

Fig. 2.2. Two fuzzy partitions. 
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   Where p is a weighting value which represents the partial membership effects on the 

clustering result. V is the cluster center vector, the vector X= [ST ZT] ∈ R m x 2 is the input 

vector where Z∈R1x m is the zero vector, and Ci is the generated fuzzy partition for the 

input data, when i = 1, 2, 3.  
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   The objective cost function J can be minimized be means of the partial derivative with 

respect to μ and v as follows [40-42]: 

0=
∂
∂
μ
J                                                            (2.4) 

and  

0=
∂
∂

v
J                                                            (2.5) 

   Where the constraints for the fuzzy partitioning are considered more by the following 

Lagrange function, where λ is the Lagrange multiplier [40-42]: 

∑ ∑ ∑
= ∈ ∈

−−−=
k

i Xx Xx
kCik

p
kC

k k

ii
xvxxvJ

1

2
)1)(())((),( μλμμ                     (2.6) 

   By taking the partial derivatives for J with respect to μ and λ which equal to zero, and 

solving for μ we get the following membership function update equation:   

0)1)(( =−=
∂
∂ ∑

∈Xx
kC

k

i
xJ μ

λ
                                                (2.7) 

0))((
21 =−−⋅=

∂
∂ − λμ
μ ik

p
kC vxxpJ

i
                            (2.8) 

Xxki

vx

vx

x

k

j

p

j

i

ci
∈≤≤

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−

=

∑
=

−

,1,1)(

1

1
1

2

2

μ                          (2.9) 

   Considering the partial derivative for the objective cost function J, with respect to v, 

which must equal to zero too, and solving for v, we get the following cluster center 

update equation [40-42]: 
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∑
∈

=−=
∂
∂

Xx
ik

p
kC

i k

i
vxx

v
J 0)())((μ                                      (2.10) 

ki
x

xx
v m

Xx

p
c

Xx

p
c

i

i

i

≤≤
×

=

∑

∑

∈

∈ 1,
))((

))((

μ

μ
                               (2.11) 

   The convergence in the fuzzy c-means is guaranteed using the above membership 

functions μci (xi),  and cluster center Vi, shown in equations 2.9 and 2.11, which are 

updated iteratively [35,38,39]. The iteration process is terminated by performing a 

convergence test, when the following criterion is met: If max {|Vt-Vt-1|} < ε stop, Else 

update the cluster center and membership functions, where ε is a threshold for 

convergence criteria that has been predefined by the user initially. 

       The final fused output depends upon the final cluster centers and their membership 

functions as it will be discussed shortly in the next section. The expected output from the 

FCM clustering for C =3 is shown in Figure 2.3. As it is noticed from the figure it 

models the drifted measured values shown in figure 1.5. 

 

Fig. 2.3. FCM expected output. 
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IV. FUSION ENGINE 

 

      Each cluster membership function is represented as a binary code BCi ∈ 2m   . The 

creation of this code depends upon the membership functions of the clusters and a 

variable threshold level α such that: 

 

⎩
⎨
⎧

≥
<

=
αμ

αμ
)(0

)(1
)(

sif
sif

SBCi                                 (2.12) 

Where α  is given as follows: 

         )(log)(11
1 1

ij

C

j

m

i
ij ss

m
μμα ∑∑

= =

−=                                            (2.13) 

   The first term in the equation above is used for mapping the α values, while the second 

term is an entropy measure for the resulted clustering process from previous section. 

   The fused output will be the cluster center that achieves the following minimization 

argument for the generated binary codes: 

 

),...,(minarg

)(

1
*

*

ii

if

BCBCi

vS

=

= μ
                                                  (2.14) 

    

   The example shown in figure 2.4, demonstrates the code generation process for seven 

measured values by seven sensors. As it can be noticed from the figure, the measured 

values are softly partitioned among three clusters which resulted from the previous step, 
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where the resulted membership functions are denoted as μ1, μ2 and μ3. The three binary 

codes which represent the three membership functions are: 

 

  BC1  0 0 1 1 1 1 1 

 BC2  0 0 0 0 1 1 1 

BC3  0 1 1 1 1 1 1 

 

  BC2 is the binary code which minimize the argument in (2.14) above, accordingly i* is 

equal to 2, as a result the single fused output will be the cluster center V2, for the given 

seven sensor readings. The proposed approach guarantees the right fused output with the 

presence of (m-1)/2 faults.  

 
 

 

 

 

 

 

 

 

Fig. 2.4. Binary code generation process. 

α 

 S1         S3                 S2    S4    S5     S7                    S6 

 
  BC1        0     0     1     1    1     1   1 = (11111)2    = (31) 10   
  BC2        0     0     0     0    1     1   1 = (111)2          = (7) 10 
  BC3        0     1     1     1    1     1   1 = (111111) 2 = (63) 10   

μ1c μ3 μ2 
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V. SELECTION OF THE BEST CLUSTER NUMBER 

 

   During the previous development of the fusion approach, the assumption that the 

measured values drifted in two directions around the acceptable region of measurements 

was adopted, which is the worst case scenario for possible occurring faults. As shown in 

figure 2.5, the drifted values are disrupted in two directions in such manner around the 

acceptable measurement region. In this case, three clusters (C=3) are required to model 

these measurements, where the resulted clustering was shown on figure 2.3.  

   Fig. 2.5. Partitioning for the measurements with two directions for the drifted 

measurements. 

 

   However, there may be only one direction for the drifted measured values to the left or 

to the right of the acceptable measured data, in such cases two clusters are only needed 

in the fusion process (C=2) to model this case. These two drifted direction are 

X2 

Drifted measurements directions                           

X1 
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demonstrated in figure 2.6, where the deviated measurements are drifted to the right in 

part a of the figure, while in part b they are drifted to the left. 

 

Fig. 2.6. Partitioning for the measurements with one direction for the drifted 

measurements, (a) to the right and (b) to the left. 

 

  So, it is very important to know the right cluster numbers at each time instant during 

the real-time system operation. For this purpose non-parametric density estimation is 

used to give the right decision for the cluster number required for the input data at each 

X2 

Drifted measurements directions                          

X1 

X2 

Drifted measurements directions      

X1 

(a) 

(b) 
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time instant, where no parametric assumption required during the estimation process. 

The smooth kernel density estimator (SKDE) given by the following equations is used to 

achieve this goal [42-44]: 
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)(1)(                                              (2.15) 
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                                       (2.16) 

   where h is the length of the estimation window. The result from applying the smooth 

kernel density estimator (SKDE) for a given inputs of measurements is shown in figure 

2.7, where the maximum peak in the figure is denoted as Max and located by the dotted 

lines. 

 

Fig. 2.7. Smooth Kernel Density Estimator (SKDE). 
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Subsequently, the number of clusters is determined according to the following two rules, 

based on the maximum peak location of the kernel estimator: 

- If the maximum peak of the kernel estimator is left or right skewed then C= 2. 

- If the maximum peak of the kernel estimator is centered then C = 3. 

 

VI. FUSION ALGORITHM 

 
   Figure 2.8 shows the block diagram for the presented total fusion approach [45, 46]. 

Initially, the system will collect the input data measured by the m sensors, and then 

clusters the collected data using the fuzzy c-means clustering algorithm. The number of 

the resulted clusters depends on the direction of the drifted measurements which 

provided by the SKDE. After that the system generates the labeling binary codes for 

each resulted cluster. Finally these binary codes are processed by the fusion engine to 

produce the fused output Sf for the given input data. 

 

Fig.2.8. Block diagram for the total fusion process. 
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The fusion algorithm from the previous section and block diagram can be specified in 

the following steps: 

    1- Collect the input values S. 

    2- Compute C, by using (SKDE).  

    3- Initialize cluster centers V,ε. 

    4- Compute the membership function μci using equation 2.9. 

    5- Update the cluster centers V, using equation 2.11. 

    6- Test for convergence: If max {|Vt-Vt-1|} < ε stops, Else go to step 4, where ε is a  

         Threshold for convergence criteria has been initialized in step 3. 

    7- Compute α. 

    8- Generate the binary codes BCi . 

    9- Find the fused output Sf, which minimize the argument 2.14. 

 

VII. HYBRID FAULT DETECTION SYSTEM  

 

   In this section the proposed fault detector based on artificial immune system (AIS) is 

presented. The artificial immune systems have drawn a significant attention recently in 

wide areas of applications, such as:  

- Feature extraction [47]. 

-  Pattern recognition [48,49 ]. 

-  Learning techniques [50, 51]. 
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- System control [52-55].  

- Fault detection [56,57].  

   The artificial immune system main immunological principles are shown on the block 

diagram in figure 2.9 [58], which include the following categories [58-60]: 

- The mechanisms of negative selection. 

- Immune network theory. 

- Clonal selection principle.     

 

Fig.2.9. The Artificial Immune System (AIS) main immunological taxonomy.  

 

   The immune network theory is based on the Jerne’s network theory [59], which 

suggests that the immune system maintains a network of interconnected immune cells 

(B-cells) for antigen recognition [59].  
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   The clonel selection principle is based on the basic immune system adaptive response 

properties to antigens. In this principle only those immune cells which are able to 

recognize the antigens will be proliferated and differentiated into effectors cells [59].  

   The first artificial immune system based on negative selection mechanism was 

proposed by Fosset [59,61], which depends on the immune system ability to recognize 

unknown foreign antigens as a non-self body’s cells from those of the body’s own cells. 

The main principle of this proposed system is based on normal/abnormal discrimination 

of the system behavior which is similar to the immune system self/non-self 

classifications for the body cells.  

    Fig. 2.10. Self/non-self discrimination negative selection mechanisms. 

2. Unknown antigens   1. Body’s own cells  

3. Body’s own cells with unknown 
cells. 

4. Negative selection for the unknown 
cells. 
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   The negative selection main idea is illustrated in figure 2.10 [62]. As it can be noticed 

from the figure, part 1 shows the body’s own cells as gray circles, and the unknown 

antigens are shown in a black circles in part 2. Part 3 shows the instance of time when 

the unknown antigen appears in the body. The immune system negative selection 

approach will be able to recognize those unknown cells from the body’s own cells as 

shown in part 4 of the figure, where the self part or region during this detection process 

is characterized by slanted gray pattern lines, while the non-self part or region is 

characterized with gray horizontal pattern lines. 

   Considering the multiple sensor system as shown in Figure 2.11, we have a multiple 

input, single output system at all time instants. The system output is the correct fusion 

for the normal fault free system behavior, while there could be deviation for some inputs 

from this fused output which can be considered as abnormal behavior for these deviated 

inputs.   

Fig. 2.11. Multiple sensors fusion system block diagram. 
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   A fault detector can be defined based on the artificial immune system negative 

selection mechanism [59, 61, 63, 64], which is based on the immune system ability to 

recognize unknown antigens as non-self state from the body’s own cells as a self state.        

In the proposed fusion system, the single fused output is considered as the self state, 

while the space complement over the detection window or period is considered as the 

non-self states. Figure 2.12 describes the detector implementation for both the self/non-

self state during the detection window, where the detector will match a self state if the 

fused output remains within the detector self range; otherwise a signal will be generated 

to indicate a non-self match case outside the detector self range [64]. As it is noticed 

from figure 2.12, the faulty sensor signal is shown as a dotted line and it matches a non-

self state after the third detection window, as a result a fault is detected at that window. 

 

Fig. 2.12. Self/ non-self detected regions. 
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   According to the previous definition of the negative selection mechanism for fault 

detection, the mapping table 2.1 is adopted for mapping the immune system negative 

selection mechanism to a fault detector [65].   

 

Table 2.1 

Immune system negative selection mechanism to hybrid system for fault detection 
mapping 

 

Immune system Hybrid system 

 Self  Normal operation (fused output) 

 Non-self (antigen)  Faulty operation (faulty measured values) 

 Antibody  Detector and matching conditions 

 Inactivation of antigen  Faulty signal and normal operation for the system.
 

As it is clear from the table, the immune self state is mapped to the system fused 

output, while the deviated or drifted measurements from this fused output are considered 

as the immune non-self state or antigen. The detection process and the matching rules 

are equivalent to the antibody working principle, while the fault detection signal and the 

isolation of the fault effect are equivalent to the inactivation of the antigen effect on the 

immune system. 

So the main steps in the negative selection mechanism for fault detection are: 

defining the self normal system behavior, the detector implementation and matching 

conditions or rules, and finally monitoring faulty matching cases.  
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For the detector implementation, the detector sensitivity depends on the detection 

period such that the smaller the detection period the better is the sensitivity, the detector 

width is defined by the detection period or window. The detector self range or height can 

be determined by the fused output and the input data elements which do not belong to 

the fused binary code. The detector heights defined by the upper and lower self bounds 

are given according to the following equations:  

 

fiifif SssSSboundupperDetector ∉−+= ||,||min__ γ                            (2.17) 

fiifif SssSSboundlowerDetector ∉−−= ||,||min__ γ                            (2.18) 

 

   Where γ is a scaling factor, γ ∈ (0, 1), selected between zero and one according to the 

following; Let ΔD is the difference between the upper and lower detector boundaries as 

follows:  
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                                  (2.19) 

 

Let ΔS is the difference between the fused output Sf and any of the measured values si: 

 

.if sSS −=Δ                                                               (2.20) 
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   This measured value is faulty, if ΔS is greater than half ΔD value, where it will be 

outside the self detection region for the detector:   
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Δ
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γ                                                   (2.21) 

 

   So γ should be less than the relation shown above, if si is the same in the nominator 

and the dominator, γ can be selected to be any value less than one:  

 

1<γ                                                         (2.22) 

 

   Figure 2.13 describes the detector components [64], the self detector region or body is 

shown as gray box, while non-self region is the complement of the self region over the 

detection window is shown as slanted gray pattern lined box for both of the detection 

windows. 
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Fig. 2.13. Detector components. 

 

   The detection process starts by generating a blank detection window, and then the 

fused output from the fusion engine is applied to the detector as well as the input data in 

order to generate the detector upper and lower boundaries. As a result the detector self 

region is created. 

   Once the boundary of the self region is complete, the artificial immune system enters 

the monitoring process to detect any input faults. When any of the input data set fails to 

match the self detector region, a fault is detected at this operating instant and a signal is 

sent to the display panel to visualize the occurring faults.   

   These steps are demonstrated in figure 2.14 [64], where in part a the initial detection 

window was created, while in parts b and c the fused output was applied, as a result the 
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detector self and non-self regions was implemented. Finally in part d the monitoring 

process for fault detection is started.  

 

Fig. 2.14. Illustration for the detector implementation steps. 
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    The final implemented hybrid system is shown in figure 2.15 [66]. The figure shows 

the block diagram for the total presented hybrid approach, starting with the measurement 

process and ending with the fault detection process based on the fused output generated 

by the fusion engine.  

 

Fig. 2.15. Hybrid system block diagram. 

 

   The hybrid system mainly consists of two parts; the first part is the fusion part which 

includes the input part that collects the measured data for the clustering part. Next the 

system will cluster these data and generates the labeling binary codes for each resulted 

cluster. Finally, the fusion engine will produce the fused output for the given inputs. The 
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second part is the fault detection part based on the negative selection mechanism, which 

includes the fault detection unit and the fault display unit. A fault counter can be 

integrated in the final unit to count the number of detected faults during the operation 

process. This counter will generate the required signal for the system administrator to 

take the required maintenance actions when the number exceeds (m-1)/2, where m is the 

number of inputs. 
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CHAPTER III 

PERFORMANCE EVALUATION 

I. INTRODUCTION  

 

   This chapter focuses on the performance evaluation of the hybrid system approach. For 

this purpose, several tests had been conducted based on simulated experimental data and 

real time experiments. In the first test the results from a simulated target tracking or a 

navigation application by multiple sensors is presented. The results from this simulation 

are compared with other fusion and fault detection approaches for the evaluation 

purpose. In the second performance evaluation a mobile robot localization experiment 

was conducted to determine the mobile robot location in a predefined path based on the 

information available from the sensors mounted onboard. A distributed wireless sensor 

network is addressed in the final performance evaluation for measuring indoor light 

intensity through distributed sensing nodes.     

   This chapter is organized as follows; the conducted simulations and results are covered 

in section two. In the sequel an evaluation for the hybrid system performance is 

presented in section three by comparing the hybrid system results with other approaches. 

Finally, in section four and five the conducted mobile robot localization and the 

distributed wireless sensor network experiments and their results are demonstrated.  
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II. PERFORMANCE EVALUATION I 

 

   The proposed approach will be confirmed by using the following simulation for signal 

fusion of a target tracking or a navigation application, which is a modified simulation for 

multiple sensors system that has been used in [19].  

   Here, five input noisy commensurate sensors are used to measure an object motion 

which is assumed to be linear during the simulation time respectively. In fact, some of 

the input sensors are assumed to have non-linear characteristics to agree with the non-

linear characteristics of the navigation sensors [19].The sensors mathematically are 

modeled as follows: 

11 nxS +=                                                                     (3.1) 

2
02.1

2 nxS +=                                                               (3.2) 

33 )3.0sin( nxxS ++=                                                  (3.3) 

4
003.0

4 nexS x +×= −                                                      (3.4) 

5
08.1

5 nxS +=                                                                (3.5) 

   where Si is the sensor real measurement, x is the sensor actual measurement, and ni is 

the normal random zero mean additive noise, i = 1, …, 5. The five sensor outputs are 

shown in figure 3.1. 

   As it can be noticed from the figure the fault free case is plotted, where the five sensors 

track the same target which moves in a linear manner, the non-linear characteristics for 

some of the sensors are clearly seen from the plots. 
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   To evaluate the proposed approach in critical real life situations, some of these sensors 

are subjected to faults at different time instants, respectively. Were the sensors are 

affected with different type of faults which made the measured values deviated from the 

assumed correct measurements. To make the simulation relatively a critical example, we 

assumed that some of those sensors have problems with sensing the real measured value 

which is subjected to 75% drop compared to the correct measurement, while others are 

subjected to parameter changes during the simulation run time. 
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Fig. 3.1. The five sensor outputs with no faults. 

 

   The two sensors that are subjected to these two faults are sensors number four and five 

(S4, S5). S4 is subjected to a 75% drop in the measured value, while S5 is subjected to 
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parameter changes; the other sensors values are not changed. These changes are 

demonstrated in figure 3.2, after comparing this figure with figure 3.1, the resulted 

changes in the measured values of sensors S4 and S5 are clearly noticed.   

   The above sensors models are simulated as input signals to the hybrid system for 

multiple sensor fusion and fault detection. The resulted fused output after applying these 

inputs from the sensors is shown in figure 3.3; the fused output is denoted as Sf shown in 

the plot as solid line, while the detector upper and lower boundary lines are shown in 

dashed lines.  
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Fig. 3.2. The five sensor outputs with two faults at sensors four and five (S4, S5).  
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   When comparing the fused output figure 3.3, with the measured values in figure 3.1, 

and the sensors faulty measured values in figure 3.2, we can see, as expected, that the 

presented approach is able to minimize the effect of the deviated or drifted measured 

values on the final fused output. The hybrid system is able to give the correct fusion for 

the tracked target from the sensors measured values even with more than one faulty 

sensor input in a very satisfactory way.   
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Fig. 3.3. The fused output Sf , the detector upper and lower boundaries.  

 
 

   The figure shows also the fault detector upper and lower bounds which are defined by 

equations 2.16 and 2.17. The bounds are shown as dashed lines above and below the 
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fused output. This figure agrees with the fault detector implementation figure 2.13 

shown in chapter II, where the area between the two lines defines the self region, and the 

complement region outside the two dashed lines is the non-self region. 

   The generated signals for the detected faults are presented in a time progress display 

panel showing the detected faults. The detected faults are presented as a yellow bar, 

which started at the time instance when the fault was detected by the AIS detector and its 

size increases as long as the fault is still detected based on the matching with the non-

self region defined in the figure 3.3. This display panel is presented in figure 3.4. 
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Fig. 3.4. The display panel for the detected faults. 
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   By examining figure 3.4, we can see that two faults were detected during the 

simulation time. This result agrees with the two simulated sensors faults (S4, S5) during 

the run time. After comparing figure 3.4 with the simulated inputs sensor signal in figure 

3.2, we can see that the first fault was early detected at time equals to 2 seconds which 

was caused by S4. This result agrees with the sensor four (S4) measurements faulty trend, 

when it’s started to deviate before t equals to 5 seconds, as it is clear from sensor four 

(S4) plot shown in figure 3.2.  

   From the display panel we can notice the second fault detection process started at  time 

equals to 10 seconds which was caused by sensor number five (S5). This detected fault 

agrees with the measured values trend for this sensor. When comparing the fault free 

case of figure 3.1 and the faulty measured values of figure 3.2 with the fused output in 

figure 3.3, we can notice that the measured values by this sensor tend to deviate rapidly 

above the fused output in a clear manner after a time instant equals to 10 seconds. 

   As it is indicated from the simulation results, the hybrid system is able to give the 

correct fused output for the tracked target in a satisfactory manner during the simulation 

time, even with the presence of two faulty input sensors. The AIS detector was able to 

detect these faults and gave the right indication to the administrated process for any 

required maintains actions afterwards. These indications were presented in the fault 

display panel (figure 3.4). 

   The number of clusters used during the simulation time by the hybrid system is shown 

in the plot figure 3.5. As it can be noticed from the plot, the rules used to determine the 
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right number of clusters during the fusion process according to the deviation direction in 

the sensors measurements are working as good as expected.  

   With referring to the detected faults presented in the display panel in figure 3.4 and the 

faulty sensors plots in figure 3.2, we find that only one direction for the deviated 

measurements from the actual measured value during the first 10 seconds of the 

simulation time is noticed. This deviation was caused by sensor number four (S4), as a 

result two clusters are required to model the input data, and this agrees with the plotted 

result in figure 3.5 for the first part of the simulation. 
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Fig. 3.5. The required number of clusters. 
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   After the first 10 seconds, the first fault was still detected and the second fault can be 

noticed now. This fault is caused by sensor number five (S5), deviated above the actual 

measurements. As a result three clusters are required to model the input data, and this 

also agrees with the clusters number determined by the rules based on the SKDE through 

out the simulation time. As it is presented in figure 3.5 after the first 10 seconds. 

   The calculated α values by equation 2.13, during the simulation time for the binary 

code generation process, are shown in figure 3.6. As it can be noticed from the plot the 

values are less than one which agrees with the membership values definition to be 

between zero and one.  
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Fig. 3.6. α values plot. 
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   The over all resulted plots from the simulation are grouped in one figure for a better 

demonstration, as shown in figure 3.7. The figure shows the five sensors input signals 

(S1 - S5), the fused output (Sf), the detector upper and lowers boundaries, the fault display 

panel, and finally the cluster numbers used through out the simulation time. 
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Fig. 3.7. Demonstration for the simulation results. Shows the five sensors input signals 

(S1 - S5), the fused output (Sf), the detector upper and lowers boundaries, the fault display 

panel, and finally the cluster numbers used through out the simulation time. 
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   As it was expected from the presented approach, the effect of the deviated input 

measurements was minimized in the fused output, which was a very good fusion for the 

correct measured values, even with more than one faulty input which was detected by 

the AIS fault detector in a very reasonable way.    

 

III. PERFORMANCE EVALUATION II 

 

   The main focus of this section is to demonstrate the efficiency of the presented hybrid 

system approach by comparing the performance with other fusion algorithms as well as 

fault detection approaches. 

   For this purpose the new hybrid system approach is compared to one of the popular 

sensor fusion methods, for instance the ordinary linear averaging fusion, and to one of 

the new approaches, i.e. nonlinear attractor fusion [9, 67, 68].  

   For the linear averaging fusion, the fused output xfl is given by the ordinary arithmetic 

mean value for the given set of input sensors data as in equation 3.6. The nonlinear 

attractor fusion is looking to solve the state equation in 3.7 to provide the fused output 

value xfn. 
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   where λ is the sensor estimation relative strength and f is a nonlinear function defines 

the local attraction range for the sensor. This function can be defined for example as a 

Gaussian or Bell-shaped function.  

   The simulated sensors inputs presented in section II (equations 3.1-3.5) are used during 

the performance evaluations to run several combinations of sensors failure scenarios. 

The root mean squared error (RMSE) is used as an evaluation measure for the simulation 

results between these approaches. Three main scenarios are conducted; 

• All five sensors are valid with no faulty sensors.  

• Four sensors are valid and one sensor is faulty.  

• Three sensor measurements are valid while the other two sensors are 

faulty.  

   The resulted root mean squared error (RMSE) values for different simulation scenarios 

are shown in Table 3.1. 

 

Table 3.1  

Root mean squared error (RMSE) values for different simulation scenarios 

RMSE 
Simulated sensors 

scenario  Hybrid system  Linear averaging 
Non-Linear 

averaging 

5 valid sensors 0.0238 0.0886 0.0920 

4 valid & 1 faulty sensors 0.0231 0.0855 0.0941 

3 valid & 2 faulty sensors 0.0478 0.6267 0.6230 
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     By comparing the root mean squared error values in the table for the three fusion 

approaches, the hybrid system, the linear fusion approach, and the nonlinear fusion, we 

can notice that the hybrid system is able to maintain minimum error values compared to 

the other approaches during all the simulation scenarios. In all sensor valid scenario the 

hybrid system fusion got the minimum RMSE value which is 0.0238, while the linear 

fusion approach got 0.0886 and the nonlinear fusion approach got 0.0920. 

   A similar trend is achieved in the other two scenarios for the RMSE values as shown in 

the table. The hybrid system is able to give the best fused output for the given input 

sensors measurement and to maintain minimum RMSE values.  

   In the last simulated scenario addressing the two faulty sensors problem, the hybrid 

system is maintaining the best performance in spite of the RMSE value increase, while 

the other approaches suffer from a remarkable increase in the RMSE values, compared 

to the one faulty sensor case addressed in the second simulation scenario. For instance,   

the linear fusion approach increase from 0.0855 for the one faulty sensor to 0.6267 for 

the two faulty sensors case. As it can be noticed from the demonstrated results in table 

3.1, the appearance of more than one faulty sensor has a remarkable effect over the 

fusion approaches performance. 

   The fused outputs from the three approaches for two sensors faulty scenario are shown 

in figure 3.8. The error plots is generated by taking the difference between the fused 

output and the actual linear target motion which is assumed to be linear through out all 

the simulation times are shown in figure 3.9.  
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   As it can be noticed from the plots, the fused output by the hybrid system (which is 

shown by stars) is able to track the actual measurement values (which are shown by 

dashed straight line) in more acceptable manner than the other approaches.  
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Fig. 3.8. The fused output from the three approaches. 

 

   It can be noticed from the tracked target plots by the linear averaging and non-linear 

approaches fused outputs (denoted by circles and plus signs respectively in the figure), 

had deviated from the actual straight line motion. And this deviation is clearer after the 
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presence of the second faulty sensor measurements towards the end of the simulation 

time.  
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Fig. 3.9. Error plots. 

 

   Also, the error plots shown in figure 3.9, agree that the hybrid system was able to 

reduce the error, while the error in the other approaches increases towards the end of the 

simulation time. In figure 3.9 the error plot for the hybrid system is shown as stars, while 

the error plot for the linear fused output is shown as circles and for the nonlinear fusion 

as plus signs.    
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   In the next part of this section the fault detection process is evaluated by comparing the 

performance with another approach for fault detection. Where a residual generator is 

used to monitor the changes in the sensors measured values based on the mean fused 

value for a given set of inputs [25,69], as shown in figure 3.10. 

 

Fig. 3.10. Residual generator fault detection approach. 

 

   As shown in figure 3.10, five residual signals (R1-R5) are generated for the five input 

sensors during the simulation time. The linear averaging fusion Sfl given by equation 3.6 

is used for the fusion process; as a result the residual signals are given as follows: 

 
.,...,1, miSxR flii =−=                                                    (3.8) 

   Where i is the number of the input sensors, and xi is the measured value by sensor Si. If 

any of the residual signals exceeds a predefined threshold d at fault free conditions a 

fault is detected by the fault decision block as shown in figure 3.10, a fault free 

measured input is defined by the following equation: 

Mean value Fusion 

Residual generator Fault decision 

Sensors 
inputs  

Fault   



 

 

51

 

.,...,1, midRd i =≤≤−                                                (3.9) 

   The five sensor inputs are applied to the fault detector presented in figure 3.10, 

addressing the case of two sensors are faulty; sensors four and five. The resulted residual 

signals are shown in figure 3.11 and the predefined thresholds -d and d are shown as 

dashed lines.  
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Fig. 3.11. Fault detection results with d = 2.5. 

 

   The threshold value is predetermined to be 2.5. As it is demonstrated in figure 3.11 

three faults are detected, two of them agree with the simulated sensor errors of sensors 

four and five (S4 , S5). But there was a third fault detected belongs to sensor number two 



 

 

52

 

(S2) occurring toward the end of the simulation time as indicated from the residual plot 

in the figure. Since sensor two have no faults simulated during the simulation, this 

detection process is considered as a false alarm. 

   This problem is mainly raised from the determination of the predefined threshold d 

value, where increasing the threshold value to 3.5 will overcome this problem as shown 

in figure 3.12. The problem of predefining the threshold value can be solved by running 

the simulation several times addressing all the possible expected faults and finally 

determining the threshold level above which all the faults could be detected 

[25].
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Fig. 3.12. Fault detection results with d = 3.5. 
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   As indicated from the pervious performance evaluation, it is clear that the hybrid 

system is able to detect the right faults as well as the correct fused output during the 

simulation in a very agreeable way compared to the assumed straight line motion for the 

tracked target through out the simulation time in spite of the simulated sensors faults.  

 

IV. PERFORMANCE EVALUATION III 

 

   Multiple sensor fusion is widely employed in mobile robot localization as well as 

navigation for known and unknown robot surrounding environment, where a remarkable 

amount of research addressed such problem based on the collected information by the 

mounted sensors onboard of a mobile robot [70-74]. The mobile robots are commonly 

mounted with a set of sensors so that the robots can achieve the assigned tasks for them 

successfully. Mobile robots received a considerable amount of attention in the last 

decades in wide area of applications [30, 75]. 

   These sensors could be of the same type or different types, but the main objective 

behind using all these sensors is to provide readable information about the robot location 

through out the robot navigation process. Such sensors include: ultrasonic range sensors, 

encoders, cameras, and laser sensors.  

   In this section a mobile robot localization example is addressed, by using the collected 

data from the onboard robot sensors to provide the correct fusion for the robot position 

by the hybrid system, while the robot is navigating in a known indoor environment. 
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    For indoor mobile robot localization it’s required to know the robot location with 

reference to a predefined coordinate system as shown in figure 3.13. According to this 

figure, the robot position is defined by the vector OA, where the head of the vector 

denoted as (xA, yA) represents the robot position in the (X, Y) coordinate. The robot 

position at point A can be determined through measuring the distance between the robot 

and the known environment boundaries in the directions of the four dotted arrows shown 

in the figure and denoted as 1,2,3 and 4, where the known environment bounds in the 

figure are the room’s walls. If the robot moves afterward to point A′ for example, another 

measuring process can determine the new robot position and so on.   

 

Fig. 3.13. Indoor mobile robot localization. 

 

   The robot used during the experiment is the Rug Warrior platform [76], this mobile 

robot is equipped with microcontroller, serial connection interface, three collision 
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detectors, two light sensors, infrared detector, shaft encoder, motor drive chip, and sonar 

rang finding system.    

   The measurement process was conducted by the mobile robot equipped with sonar 

sensor in three directions around the robot vertical axis which correspond to the three 

arrows 1, 2 and 3 in figure 3.13, where the sonar sensor is commonly used for range 

finding tasks [30,75]. After that, the robot updated its position and performed another 

measurement process; this process was repeated by the mobile robot iteratively.  

   The layout for the experiment is shown in figure 3.14. This is a known closed room 

environment for the robot, where the robot travels over a predefined path shown as the 

dotted arrow in the figure.  

 

Fig. 3.14.   The layout for indoor experiment showing the robot path. 

 

   According to the sonar readings and the robot position update, three pairs for the robot 

position are collected: (x1, y1), (x2, y2) and (x3, y3). The right robot position is fused 
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through applying the three robot position pairs to the hybrid system, where the robot 

fused position is denoted as (xf,  yf). 

   As it was mentioned before, the sonar sensor is used to provide the distance 

information due to its ability to measure the time of flight of the detected echo wave. 

This wave results from the reflection of the initially emitted sounds wave from objects 

surrounding the mobile robot ahead the sonar sensor. The distance information is 

provided by the sonar according to the time difference between the emission and 

reception times of the sound wave as follows [30,75]: 

tvd Δ=
2
1                                                      (3.10) 

where:  

  -    d is the distance to the detected object. 

- v the speed of the emitted sound wave, this speed at normal condition air 

medium is defined as 1138 feet per second. v is generally given as follows: 

RTv γ=                                                 (3.11) 

 where γ is the specific heat ratio, R is the gas constant and T the temperature 

in Kelvin. 

- Δt is the time difference between the emitted sound wave and the reception 

times of detected echo. This time difference is defined as the time of flight, 

half of this time is required to measure the distance to the object, so the ½ 

appears in the equation 3.10 above. 
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   The fused robot positions by the hybrid system are shown in figure 3.15 and 3.16, 

where the fused xf values are presented in figure 3.15 by the solid line, while the fused yf 

values are presented in figure 3.16 by the solid line. The upper and lower fault detector 

bounds are shown by the dotted lines above and below the fused position in both figures. 

   As it can be noticed from the figures and compared to the mobile robot path in figure 

3.14, the robot initially is moving parallel to the X axis and after that turns right to 

continue moving down parallel to the Y axis. During the first stage, the robot position 

given by (x, y) will have an increasing x values while the y values will be mostly 

constant, after that the robot turns right where the x values will be almost constant while 

the y values start to increase.   

   This trend for the mobile robot position in the predefined path, agrees with the mobile 

robot fused position (xf,  yf), shown in figures 3.15 and 3.16. To organize the robot’s 

fused position in figures 3.15 and 3.16 so it can be more readily examined, the robot’s 

fused position (xf,  yf) is displayed in two coordinate configuration (X,Y), as shown in 

figure 3.17.   

   In this figure the robot fused positions (xf, yf) shown as a solid line, as well as the three 

pairs for the mobile robot position; (x1, y1) is represented as star signs line, (x2, y2) is 

represented as cross signs line and (x3, y3) is represented as  plus signs line. The room’s 

boundaries are shown as dotted lines which are the room walls, the mobile robot moving 

directions are shown by the arrows signing according to the mobile robot predefined 

path in figure 3.14.  
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Fig. 3.15. The robot xf  fused output location. 
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Fig. 3.16. The robot yf  fused output location. 
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   According to the fused robot position shown in figure 3.17 and as compared to the 

predefined robot path in figure 3.14; we can see that the measured robot position is well 

represented in spite of some faulty measured value for the robot position provided as 

shown in the figure. 
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Fig. 3.17. The robot fused location (xf, yf) shown in solid line. The room layout shown in 

dashed lines, and the arrows show the robot path. 

    

   Examining figure 3.17, we can notice some of the measured values for the robot 

position deviated or drifted from the fused robot position, shown as the solid line in the 

figure, or from the predefined robot path shown in figure 3.14.  
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   These drifted values for the robot position are detected as faulty measurements by 

robot sensors and reported to the display panel as shown in figure 3.18. As we can see 

from this figure, the distance measured values provided by the sonar sensor have three  

groups of faults detected, two of them in the measurement direction number 1, and one 

in the  measurement direction number 3, according to figure 3.13. 
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Fig. 3.18. The display panel for the detected faults shown as a yellow bar. 

 

   For the faults detected in the measurement direction number 1, the first group is 

between measurements numbers 11-14 and the second faulty group is between 

measurements numbers 50-53. While the faults detected in the measurement direction 

number 3 are between measurements numbers 44-48.  

   These detected faults agree with the data demonstrated in figure 3.17, where a set of 

possible measurement faults could be due to the used sonar sensors in mobile robots, 

which ranges from specular reflections of the radiated sounds waves to wide propagation 

angle [74,77].  
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   These two faults are arising from; firstly, the possible reflection of the emitted sound 

waves away from ahead object and fail to be detected by the sonar sensor again, and 

secondly from the fact that the propagated sound waves travel in cone shape in the 

surrounding robot media.  

   As indicated from the previous performance evaluation demonstrated results, it is clear 

that the hybrid system approach is able to provide the right fused mobile robot location 

during the experiment in a very agreeable way compared to the mobile robot predefined 

path through out the experiment time in spite of the detected faulty measurements 

collected by the robot sensors.  

 

V. PERFORMANCE EVALUATION IV 

    

   Recently the desire for distributed wireless sensor networks has increased to solve a 

variety of problems in wide area of applications such as automation, control, monitoring, 

tracking, security, intelligent environments and health monitoring [89-93]. These 

networks have been called wireless sensor networks because they consist of a set of 

sensing nodes and processing elements distributed over the target field area, that are 

capable to communicate with each others with low data rate and low power constraint 

through a communication network [89].  

   Figure 3.19, explains the wireless sensor network structure. As it can be noticed from 

the figure, the sensing nodes can communicate with one or multiple processing elements 

simultaneously. The data collected by each sensing node is transmitted to the associated 
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processing element for processing and fusion. The processing elements can pass the 

collected information to higher processing elements for better cooperation and 

information integration and fusion [90]. The processing elements are shown as gray 

circles in figure 3.19 while the sensing nodes are shown as white circles.  

 

Fig.3.19. Wireless sensor network structure. 

 

   In this section the performance of the hybrid system is evaluated by using the collected 

data from the distributed wireless sensors network to provide the correct fusion and 

monitoring for indoor light intensity. For this purpose a wireless sensor network is 

implemented using TELOS–B experimental wireless sensor network platform which is 

available by Crossbow Technology [94] and runs the TinyOS open-source operating 

system which was developed and published by UC Berkley and supports a lot of sensor 

networks platforms. 

   The TELOS–B kit is a low power research development platform with integrated 

microcontroller, RAM, embedded antenna, radio-chip, onboard sensors, programming 

Processing element 

Sensor node  
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ability through USB connector and IEEE 802.15.4 radio compliant 2.4GHz. The block 

diagram for the TELOS–B platform basic components and the TPR2420 kit are shown in 

figure 3.20 [94]. 

 

Fig. 3.20. TELOS–B platform basic components block diagram.  

 

   The deployed wireless sensor network for measuring the indoor light intensity consists 

of four distributed sensing nodes (TPR2420 kit) provides the light intensity measurement 

through the onboard light sensor to one base element (TPR2400 kit) through the wireless 

link, while the base element  is connected to the computer as a gateway. Figure 3.21 

shows the deployed wireless sensor network structure. 

   A network address is assigned to each sensing node module, and this process is 

required for the wireless communication between the sensing nodes and the gateway. 

Where each data packet will carry its source address which is the same as the network 
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address as a signature for each node, so the gateway can know which packet belongs to 

which sensing node. The data packet format is shown in figure 3.22, where the data 

packet consists of the following fields [95]: 

• Destination address (2 bytes). 

• Active Message handler ID (1 byte)  

• Group ID (1 byte)  

• Message length (1 byte)  

• Source ID (2 bytes)  

• Sample counter (2 bytes)  

• ADC channel (2 bytes)  

• ADC data readings (2 bytes each). 

 

 

Fig.3.21. The deployed wireless sensor network structure. 

 

 

Fig. 3.22. The data packet format. 
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   For this experiment the four sensing nodes were distributed within indoor room 

environment with constant light intensity. These sensing nodes transmit the collected 

data through the wireless network at a 250 Kbps data rate to the sensor network gateway. 

A fault was simulated by changing the light intensity around one of the sensing nodes by 

turning another light source on close to this sensing node after short time. The four 

sensors nodes (S1- S4) measurements plots are shown in figure 3.23. 
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Figure 3.23. The four sensors nodes (S1- S4) measured values. 

 

   As it can be noticed from the figure, the light intensity measured values collected by 

sensor number one and reported to the gateway show a remarkable increase in the 

measured values after data packet number 1000. While the other sensors shows small 
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variability in the  measured values during the experiment time as shown in sensor three 

and four plots, the second sensing node shows a slow variability for the measured light 

intensity. 

   The resulted fused output from the hybrid system for the wireless sensor network is 

shown in figure 3.24, as well as the fault display panel, and the required number of 

clusters plots. 
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Fig. 3.24. The hybrid system resulting plots. The fused output, fault display panel and 

the required number of cluster plots. 
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   The fused output denoted as Sf shown in solid blue line, while the detector upper and 

lower boundaries are shown in dashed lines. When comparing the resulted fused output 

with the collected measured values by the four sensing nodes in figure 3.23, we can see 

that the hybrid system is able to minimize the drifted measured values by sensor node 

number one S1 in the final fused output giving the correct fusion in spite of this fault 

appearance.  

   The generated signals for the detected faults by the hybrid system are reported to the 

fault display panel; again the detected faults are presented as a yellow bar in this 

evaluation. By examining the fault display plot in figure 3.24, a fault is clearly detected 

after packet number 1000 belongs to sensing node number one S1. This agrees with the 

simulated fault for sensor number one, during the experiment time. Comparing sensing 

node number one plot in figure 3.23 with the detected fault in the display panel, we can 

see that the drifted measured values by this sensing node is clearly noticed after packet 

number 1000, so the reported fault signals agree with sensor measurements faulty trend 

started after packet number 1000. 

   The required number of clusters by the hybrid system is shown in the third plot in 

figure 3.24, two clusters are required by the hybrid system as it is noticed from the plot 

and this agrees with the direction of the deviated measured values by sensing node 

number one S1, and the rules used to determine the right number of clusters required by 

the hybrid system. 
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   The α values calculated for the binary code generation process are shown in figure 

3.25, as it can be noticed from the plot the values are less than one which agrees with the 

membership values definition to be between zero and one.  
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Figure 3.25. The α values. 

 

   From the demonstrated results for this experiment, it can be seen, as it was expected,  

the presented hybrid system is able to minimize the deviated measurement values effect 

in the final fused output and detect the fault source through the AIS detector in a reliable 

way.   
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CHAPTER IV 

EARLY FAULT DETECTION SYSTEM  

I. INTRODUCTION  

 

   Our objective on this chapter is to develop a fault detection system for critical dynamic 

components of rotorcraft and in particular for the H-60 Intermediate Gearbox (IGB).  

With this in mind, the presented work discusses this objective based on the algorithm 

utilized by the hybrid system implemented in the previous chapters. 

   This chapter is organized as follows; a preliminary introduction for this topic is 

discussed in section two, the hardware platform that is the subject of this study is briefly 

covered in section three, the developed methodology is demonstrated in section four 

followed by the obtained results in section five which shows the efficiency of the 

developed methodology.  

 

II. PRELIMINARIES 

 

   The majority of diagnostic systems for complex mechanical systems have focused on 

determining the onset of critical conditions requiring maintenance actions [78-84]. 

Detection of early signs of failure, i.e.  incipient fault conditions, however, can lead to 

more effective maintenance procedures.  Moreover, early detection of incipient faults, 

formally called prognostics [85], can help prevent catastrophic failures and enhance 

operational reliability as shown in figure 4.1. 
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   Prognostics generally contain two phases. The first phase focuses on the detection of 

the fault state, while the second phase attempts to determine the remaining useful life of 

the component of the system.  

   With this in mind, we will use the utilized hybrid system implemented in the previous 

chapters for early detection of fault condition based on studying a group of selected 

features to utilize our objective. 

 

 

 

Fig. 4.1. Timeline for component prognostics. 

 

III. HARDWARE PLATFORM 

 
   For the evaluation process an H-60 gearbox is considered. The data in this study is 

collected from the H-60 Intermediate Gear Box (IGB), as shown in Figure 4.2. The data 

set is provided by NAVAIR and includes traces that span from healthy to failure 

conditions. Figure 4.2 shows the tail drive system, where the accelerometers are located 
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at the input/output of the Intermediate Gear Box (IGB) to collect the vibration data, the 

IGB section is shown enlarged in figure 4.2 for more details [78,85,86].  

 

Fig. 4.2.The H-60 intermediate gear box (IGB) [78]. 

 

   The test was run at full tail power, and terminated before the failure has completely 

occurred in the Intermediate Gear Box (IGB). The collected data was planned to be 

collected at the same steady state condition through out the test time. The data was 

collected at 100 KHz, a total of 89 records were collected spanning the test time from 

healthy to failure component conditions, 30 second for each recording time separated by 

15 minute interval between any two subsequent recordings. A five second sample was 

used from each record in the following steps, which will be discussed shortly in the 

methodology section [85,87].  

 
 

 



 

 

72

 

IV. METHODOLOGY 

  

   The hybrid system presented and discussed in the previous chapters will be used to 

detect the possible faults that could occur in H- 60 Intermediate Gearbox (IGB) based on 

the collected accelerometers data. 

 A selected group of features are used to characterize the collected test data, after that 

these extracted features are applied to a hybrid system for fault detection, to get the right 

decision for fault detection, based on the similarity/dissimilarity measures between the 

three extracted features, as illustrated in figure 4.3.  

   Figure 4.3 describes the hybrid system blocks, where the selected features are applied 

to the fuzzy partitioning block where the fused feature trend is generated to the AIS fault 

detection part for fault monitoring process. 

 

Fig. 4.3. Hybrid system block diagram using the extracted features as an input. 
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      In general one or more preprocessing steps on the collected raw sensor data is 

required to extract useful characteristics or features that are necessary to implement the 

fault detection system.   

    In particular, for each data trace or record a time synchronous average is computed, by 

synchronizing the sampling of the vibration signal with the rotation speed of the main 

shaft and evaluating the average over many revolutions framed at the same angular 

position. The resulting signal is called time-synchronous averaging and denoted as TSA. 

This initial step reduces the effect of sources of noise and vibrations [85,88]. 

     Following the computation of the time synchronous average, a residual signal is 

computed for each trace signal by eliminating the normally occurring frequencies and 

computing the inverse Fourier transform. As a result, the Time-Synchronous Averaging 

Residue (TSAR) signal is generated and used as the basis for selecting useful features 

for fault diagnosis [85,88]. 

     Three features are used to characterize the resulting TSAR signal for each sample; the 

features [85-87]:  

 

• RMS value of the signal defined in equation 4.1, this value gives an indication to 

the magnitude of the defect, and it is proportional to the energy contents in the 

signal  : 

N
xRMS ||||

=                                                          (4.1) 
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• The residual peak to peak Xpp, which gives a good indication to the peak 

vibration level changes for the given signal X, and the Xpp value is defined as 

follows: 

 
))(min())(max( tXtXX pp −=                                            (4.2) 

 
• Kurtosis which is the fourth statistical moment of the signal, given as follows: 

 

4

4)(
σ

μ
N
x

K ∑ −
=                                                       (4.3) 

 
Where μ is the mean of the data set, σ is the variance and N is the number of data 

points. Kurtosis is a measure of how outlier-prone a distribution is. 

   A mapping step is required by scaling the other features according to the kurtosis 

feature and the mean difference as follows: 

 
.Δ+= ii featuresclaedfeature                                          (4.4) 

 
   Where Δ is the mean difference between the scaled feature mean value and the kurtosis 

mean value.  

    Next, the three extracted features are applied to a hybrid system for fault detection, to 

get the right decision for fault detection, based on the similarity/dissimilarity measures 

between the three extracted features. The fault detection process is illustrated in the 

block diagram shown in Figure 4.4. 



 

 

75

 

 

Fig. 4.4. Fault detection methodology. 

 

   The hybrid system consists of two main parts. In the first part a single decision is 

derived by monitoring the three extracted features, this decision is generated using the 

fuzzy clustering scheme. While in the second part an Artificial Immune based System 

(AIS) is used to generate the fault detection decision based on the fused output from the 

first part. 

 

Fig. 4.5. The three extracted features trends over runtime. 
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  As illustrated in figure 4.5, at time instant t, due to early fault condition, the normalized 

three extracted features for Time-Synchronous Averaging Residue signals will not be the 

same. The extracted features can have the fuzzy cluster partitioning relation shown in 

figure 4.6. 

 

Fig. 4.6. Soft partitioning for the selected features at time instant t. 

  The fuzzy clustering will be used to extract a fusion trend for the used features in the 

figure above, where the fused features trend is generated by the fusion engine as 

discussed before in chapter II. 

  After that, the Artificial Immune negative selection mechanism is used to monitor the 

system for early fault detection based on self/non-self selection. This is mapped as 

normal fault free system behavior/ faulty abnormal system behavior as we mentioned 

before.    

   A fault detector is defined based on the fused feature trend considered as the self state 

fault free system behavior. The hybrid system will monitor the system through the 

features trends. It will detect any non-self match case outside the detector range to 

indicate a fault condition is detected by generating a fault signal and pass it to the fault 

display panel to present the detected abnormality in the system; the complete process is 

demonstrated in figure 4.7.  
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Fig. 4.7. Fault detection using the hybrid system approach. 

 

V. EXPERIMENTAL RESULTS 

 
   The proposed procedure above is applied to a data set provided by NAVAIR.  Figure 

4.8 shows a five seconds sample taken from three-sample traces in the data set. These 

are identified as Trace or Record number 1, which is from the beginning time of 

collecting the data, Trace or Record number 45 from the middle and Trace or Record 

number 89 at the end time. 

    The time-synchronous averaging signals are shown in Figure 4.9 for the three 

recordings. As it can be noticed from comparing the three plots, a change in the vibration 

pattern is noticed when moving from recording number 1 to recording number 89. Also 
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the plots are more readable than the data demonstrated in figure 4.8, where each plot 

shows only one gear cycle, but these plots still lack a very good vibration pattern 

representation. 
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Fig. 4.8. Five second samples for Traces #1, # 45 and #89. 

 

   The amplitude spectrums of the time-synchronous averaging signals are shown in 

Figure 4.10. For better demonstration; the three plots are zoomed in both axes, where 

notable changes in the amplitude spectrums pattern are getting clearer by moving toward 

record number 89. Figure 4.11 shows the time-synchronous averaging residue signals 

plots for the same three samples. 
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Fig. 4.9. TSA signals for Traces #1, #45 and #89. 
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Fig. 4.10. Amplitude spectra for Traces #1, #45 and #89. 
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Fig. 4.11. TSAR signals for Traces #1, #45 and #89. 

 

   As it is clear from figure 4.11, the vibration pattern changes are clearer in the three 

plots for records number 1, 45 and 89. From the last plot (record number 89), a failure or 

crack damage can be expected according to the notable variability in TSAR amplitude 

values. 

   This detected variability in the amplitude values can give an expectation to the failure 

or the damage location, the time-synchronous averaging residue signals represents one 

revolution of the collected data as mentioned before, so the expected fault can be more 

located in the last (third) part of the tested gears. 
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   The three extracted features plots for the entire sampled recordings are shown in 

Figure 4.12, which characterizes the time-synchronous averaging residue signals. 

Through examining these plots in the figure we can have several remarks for the three 

features RMS, peak to peak, and the Kurtosis trends from the initial recording toward the 

end of the test recordings. 

   By looking at the first fifty records, the same slow variation trend in the three features 

value can be easily noticed until record number 30, after that another level of slow 

variability is taking place until record number 49. In the sequel forty-nine records 

another remarkable increasing pattern with different variability between the features is 

noticed clearly.   

    For instance, if we have a deep examination of the Kurtosis of the TSAR signals plot, 

we found that, initially between records number 1-49, it was almost stable with very 

small variability around the value of 2. After that the Kurtosis started to increase in a 

remarkable way to reach a peak value at about 4.75 between records numbers 50-76 

before it breaks down at record number 77. 

   While the other two features: the RMS feature and the peak to peak feature, shows the 

same stability with a slight variability between records numbers 1 to 29, after that they 

show a slight variability at another level between records numbers 30-50. 

   For the last forty-nine records, after recording number 50, both of the two features 

show a slow response starting at record number 50, where the Kurtosis started to 

increase remarkably, they show a slow increase after that, and ramped up as the fault 

propagated more to failure until record number 89. 
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Fig. 4.12. The three extracted features plots: RMS, peak to peak, and the Kurtosis. 
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   In spite the fact that the  RMS feature and the  peak to peak feature show the same 

slow increase compared to the Kurtosis feature , the  peak to peak feature shows better 

and faster response than the RMS feature at these recordings when they are compared 

together. 

   These trends in the three features before record number 50 and after it are due to the 

changes in the torque values [87]. Initially the torque was increased during the first part 

of the recording process, from record number 1 to record number 49, to accelerate the 

failure or the damage occurring during the test [87].  The load was increased on average 

between the values 2350-2377 ft-lb, until record number 50 where a notable change 

occurred in one of the three features, which is the Kurtosis of the Time-Synchronous 

Averaging Residue (TSAR) signals for each record, as shown in figure 4.12. 

    After this notable change, the load was decreased to take a value between 2022-2045 

ft-lb on average, so that the damage occurred is propagating at a steady state condition as 

it was planned before collecting the data [87]. 

    The results after applying the three normalized features shown in Figure 4.13, to the 

hybrid system are shown in Figure 4.14. The fused feature trend (Ff), the detector upper 

and lowers boundaries are shown in the first plot. The detected faults are displayed in a 

display panel which shows the time progress for the monitored system, displaying the 

instant at which an early fault or damage is detected denoted in yellow over the time 

progress bar, while the green areas in the display panel denote that no fault was detected. 

As it is noticed from the figure the early fault was detected before the final damage or 

failure occurs.  
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   Figure 4.13 shows the three normalized features plots; RMS denoted as F1, peak to 

peak denoted as F2, and the kurtosis denoted as F3. The general trend for the three 

features can be noticed covering the condition from healthy to failure over the time 

progress. The general features trend can be describe as flat regions before record number 

50, which progressed after that to increases rapidly at the failure stages toward the end of 

the of the data samples or records.   
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Fig. 4.13. Three normalized extracted features. 
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Fig. 4.14. Fused feature trend and the Fault display panel. 

 

   The kurtosis feature F3 gives a good indication for early fault conditions before the 

failure occurs, where it started to rise smoothly at early stages of the test as it can be 

noticed after record number 50, more than the other features.   

   The displayed fault output in the display panel figure 4.14, agrees with the early 

changes in the three features discussed before, and gave an early fault signal indicating a 

fault condition was detected. As we can see, the detected faults presented over the time 

progress in figure 4.14 can be separated in two groups, before and after sample or record 

number 50. 

  For the first group, as it was mentioned before the test was planned to run at steady 

state condition constant torque to collect the data, the increase in the torque was required 

Fused feature trend 

Ff 
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to accelerate the early damage occurrence. This torque increase is obvious in the RMS 

plot of the TSAR signals figure 4.13 between records number 30-49, where a step can be 

noticed in this plot at this interval of the samples. Due to this change in the torque, the 

first fault group was detected as demonstrated in figure 4.14.   

  The second group of fault was detected when the damage occurred and propagated to 

failure at a steady state condition as it was planned before for the test conditions. As it 

can be noticed clearly from the time progress bar of the monitoring system, the early 

fault was detected at record number 53 and continues until record number 77, before the 

final failure is detected at record number 88.  

   Comparing these results to the three features used a very good similarity between the 

feature trends and the detected faults are noticed. As a result the hybrid system is able to 

provide a very good mean to detect the early conditions of failure which can propagate 

to component damage or failure over time.  
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CHAPTER V 

CONCLUDING REMARKS AND FUTURE WORK 

I. INTRODUCTION 

 

   This chapter has two main parts, in the first one; a brief summary for the provided 

work is presented, while in the second part the concluding remarks from this study are 

presented as well as the flow for future work. 

 

II. SUMMARY  

 

   In this study, we have presented an efficient new hybrid approach for multiple sensor 

data fusion and fault detection based on the fuzzy c-means (FCM) clustering algorithm 

and the artificial immune systems negative selection mechanism (AIS), addressing the 

case with multiple faults in different directions. 

   In the first part of this study a literature review was provided through the preliminary 

introduction in chapter I, after that the hybrid approach implementation was detailed in 

chapter II and the required backgrounds were discussed too. The hybrid system 

performance evaluations were subsequently demonstrated through the simulated results 

as well as experimental results in chapter III. In this chapter the hybrid system 

performance was compared and evaluated to other fusion and fault detection approaches.  
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   In chapter IV an early fault detection system was developed based on the implemented 

hybrid system approach, where the experimental results from applying the hybrid system 

showed a very good performance. 

 

III. CONCLUDING REMARKS AND FUTURE WORK  

 

   An efficient new hybrid approach for multiple senor data fusion and fault detection 

was presented in this study; this new approach was developed based on the fuzzy C-

means (FCM) clustering algorithm and the artificial immune systems negative selection 

mechanism (AIS), addressing the case with multiple detected faults. 

    For this new hybrid approach, the first part of it provides a multiple sensor data fusion 

passed on the fuzzy logic soft partitioning capabilities to represent the input data. The 

right fused output was generated through the fusion engine according to the clustering 

information provided by the fuzzy c-means clustering algorithm.  

   The rules used to determine the right number of clusters during the fusion process 

according to the drifted measured values direction is working as good as expected from 

the simulated results. 

   In the second part of the hybrid system, a new fault detection based on the artificial 

immune systems negative selection mechanism was presented. The new hybrid approach 

is an unsupervised approach for both multiple sensor data fusion and fault detection 

where no learning or training phases are required.  
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   The presented simulation and the conducted experiments for multiple sensor systems 

have confirmed the strength of the new approach for online fusing and fault detection by 

handling different problems such as noisy sensor signals and multiple faulty sensors, 

where the hybrid system gives a fault tolerance (i.e. the system ability to keep working 

and providing an output in spite of the presented faults). This makes the new hybrid 

approach attractive for solving such fusion problems and detecting faults during real 

time operation. 

   The hybrid system was extended for early fault detection in complex mechanical 

systems as in rotorcraft intermediate gearbox system. The hybrid system was able to 

detect the onset of fault conditions which could lead to critical damages or failures. This 

early detection for the failure signs can provide more effective information for any 

maintenance actions or corrective procedures. 

   From the presented experimental results; we can see that the hybrid system can be 

applied to many systems which open the way for further work to apply the presented 

approach in many areas such as image processing and distributed sensor network for 

monitoring purposes.  

   For the early fault detection more development for the system can be done, so that the 

system can detect the starting of any fault condition and an estimation for the useful 

remaining life time (i.e. prognostics), which can provide more effective information for 

any maintenance decision needed afterwards. 
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