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ABSTRACT 

 

Sequence Stratigraphy of Niger Delta, Robertkiri Field, Onshore Nigeria. 

  (December 2005) 

Olusola Akintayo Magbagbeola, B.Sc. (Honors);  

University of Ilorin, Ilorin, Nigeria; 

M.Sc., University of Ibadan, Ibadan, Nigeria 

Chair of Advisory Committee: Dr. Brian J. Willis 

 
 
 
Deposits of Robertkiri field, in the central offshore area of Niger Delta, comprise a 4 km 

thick succession of Pliocene to Miocene non-marine and shallow marine deposits. A 

sequence stratigraphic framework for Robertkiri field strata was constructed by 

combining data from 20 well logs and a seismic volume spanning 1400 km2. Major 

sequences, hundreds of meters thick, define layers of reservoir and sealing strata formed 

during episodic progradation and retrogradation of deltaic shorelines. These deposits 

progress upward from fine-grained prodelta and deep water shales of the Akata 

Formation through paralic sandstone-shale units of the Agbada Formation and finally to 

sandy non-marine deposits of the Benin Formation. The Agbada Formation is divided 

into six third-order sequences starting at the first seismic reflection that can be mapped 

across the seismic volume. The Agbada Formation under Robertkiri field is complexly 

deformed across a succession of major, cuspate, offshore-dipping, normal faults, and 

associated antithetic faults and rollover anticlines within down-dropped blocks. 
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Thickening of intervals between some reflections across major faults and away from the 

crests of adjacent rollover anticlines suggest syndepositional displacement. Relationships 

between major faults and the thickness of transparent seismic facies that comprise lower 

parts of the seismic record suggest faulting was associated with movement of 

undercompacted shales within the Akata and lower Agbada Formations. 

Robertkiri field is located along the proximal margin of the Coastal Swamp I 

depobelt, a subbasin within the Niger Delta clastic wedge formed by margin collapse 

into underlying undercompacted shale. Accommodation and sequence development in 

this setting is controlled by both structural faulting and sea level fluctuations. Upsection, 

sequences become thinner, more laterally uniform in thickness, less structurally 

deformed and contain less growth strata. Erosion along sequence boundaries becomes 

progressively shallower and broader, as accommodation under Robertkiri field declined 

and more sediment was bypassed basinward. Incisions along the base of older sequences 

(>100 m) is greater than 3rd order sea level falls reported to occur during the Miocene, 

which suggests that there were local areas of tectonic uplift within this dominantly 

extensional setting. 
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INTRODUCTION 

Sequence stratigraphic concepts defining sediment accumulation and preservation trends 

within basin fills have become a highly successful exploration technique in the search for 

natural resources. Classical sequence stratigraphy for deltaic successions assumes that 

depositional processes across linked system tracts produces an equilibrium offshore 

depositional gradient, that shifts in position as sediments fill accommodation generated 

by gradual subsidence and sea-level variations. Sequence stratigraphic analysis of these 

successions define key stratal surfaces at abrupt dislocations of system tracts to delineate 

broad-scale facies trends formed by along-basin shifts in depositional environments and 

changes in preservation within system tracts (Vail et al., 1977; Posamentier et al., 1988; 

Postma, 1995). Higher-frequency progradation and transgression of deltaic systems tracts 

has been related to both random autocyclic channel avulsion and associated delta lobe 

switching, and to allocyclic processes like sea-level fluctuations and climate changes 

(Thorne and Swift, 1991). The internal architecture of deltaic successions that prograde 

onto mobile shale substrates can be significantly complicated by structural collapse of the 

delta front. Despite extensive literature on large delta deposits, little attention has been 

focused on influence of mobile substrates on the resulting sequence stratigraphy. 

The Niger Delta has a distinctive structural and stratigraphic zonation. Regional 

 and counter-regional growth faults, developed in an outer-shelf and upper-slope setting,  
 
are linked via a translational zone containing shale diapirs to a contractional zone  

 
 
 
_________________ 
This thesis follows the style and format of the American Association of Petroleum 
Geologists Bulletin. 
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defined by a fold-thrust belt developed in a toe-of-slope setting (Hooper, 2002). Damuth 
 
 (1994) considered Neogene gravity tectonics and depositional processes on the modern 

deep Niger Delta continental margin. He recognized three regional structural styles; (1) 

an upper extensional zone of listric growth faults beneath the outer shelf, (2) a 

translational zone of diapirs and shale ridges beneath the upper slope; and (3) a lower 

compressional zone of imbricate thrust structures (toe thrusts) beneath the lower slope 

and rise. He suggested these areas with different structural style are linked together on a 

regional scale and that these variations in style suggest that large portions of this thick 

sediment prism are slowly moving downslope by gravity collapse. Cohen and Ken 

McClay (1994) discussed sedimentation and shale tectonics of the northwestern Niger 

Delta front. Morgan (2004) examined relationships between mobile shale structure and 

channel formation above the compressional toe of Niger Delta and highlighted the 

importance of transfer zones within the toe thrust belt as a control on the underlying 

structural framework. Adeogba et al. (2005) discussed transient fan architecture and 

depositional controls from near-surface 3-D seismic data of Niger Delta continental 

slope. Corredor et al. (2005) related structural styles in the deep-water fold and thrust 

belts of the Niger Delta and concluded that there are two complex, imbricate fold and 

thrust belt systems (the inner and outer fold and thrust belts) that are the product of 

contraction caused by gravity-driven extension on the shelf. Hoover et al., (2001) 

explained the role of deformation in controlling depositional patterns in the south-central 

Niger Delta, their work was however focused mainly at the compressional toe of the 

delta, and they concluded that structural elements are the primary control of 

accommodation changes on the slope and toe of the delta.  
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Other examples of deltaic systems that rapidly prograded onto mobile substrates 

include: the Baram delta, offshore Brunei (Rensbergen et al., 1999), Caspian Sea 

(Khalivov and Kerimov 1983), and Alboran Sea (Morley 1992). Daily (1976) synthesized 

relationships between progradation, subsidence, basal undercompacted shale wedge, 

growth faulting, shale diapirism and overthrusting within the Mississippi, Niger and 

Mackenzie Delta systems. Morley et al. (1998) related shale tectonics to deformation 

associated with active diapirism within the Jerudong anticline, Brunei Darussalam. They 

established that shale diapirs and associated growth faults exerted an important influence 

on large- and small-scale bedding geometries and facies changes of syntectonic shallow-

marine, shoreface and tidal strata for the area. Edwards (2000) reviewed the origin and 

significance of failed shelf margins of Tertiary northern Gulf of Mexico basin and 

recognized the role of slumping in forming unconformities of regional extent along 

retrograde failed shelf margins. Rensbergen and Morley (2000) discussed a 3D Seismic 

study of a shale expulsion syncline at the base of the Champion delta, offshore Brunei 

and its implications for the early structural evolution of large delta systems.  

Most work on depositional sequences above mobile substrates has focused on 

slope and deep water environments. Robertkiri field lies in a shelfal depositional setting 

and the focus of this study is to investigate the effect of mobile shale substrate on the 

nature of depositional sequence developed within this shallow water setting. The Niger 

Delta clastic wedge is complicated by listric normal faults that formed as prograding 

deltaic sediments loaded underlying undercompacted prodelta and deeper marine shales. 

Overpressured shale has been related to some combination of burial compaction, 

diagenesis of clays, kerogen maturation, and compressive tectonics. The active fluid 
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migration necessary to maintain shale movement can form vents for hydrocarbon 

migration from deeply buried source rocks to shallower reservoirs and traps (Rensbergen 

et al., 1999). Movement of undercompacted mobile shale beneath prograding deltaic 

successions can cause delta margins to collapse, altering depositional slopes and 

complicating sediment transport paths and patterns of deposition.  

One of the poorly understood features of Agbada Formation stratigraphy is the 

occurrence of deep incision surfaces into these prograding deltaic successions that locally 

cut hundreds of meters into underlying deposits. Such incision depths are significantly 

greater than estimates of Miocene-aged fluctuations in sea level (Talling, 1998; 

Posamentier and Vail, 1988; Van Wagoner et al., 1990), which suggests they could not 

have formed by eustatic sea level falls alone. The rise of underlying shale and associated 

structural faulting of overlying strata can alter depositional sequences by increasing rates 

of local sediment accumulation above down dropped fault blocks as footwall blocks are 

eroded. A sequence stratigraphic framework is developed for Robertkiri field (Figure 1) 

to interpret long-term patterns of deposition along this deltaic margin. This framework is 

used to examine relationships between sequence boundary erosion, spatial changes in 

sequence thickness and internal facies trends, and patterns of syndepositional 

deformation. 
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THE NIGER DELTA 

REGIONAL SETTING 

Niger Delta covers a 70,000 square kilometer area within the Gulf of Guinea, 

West Africa, Nigeria (Figure 1). Although the modern Niger Delta formed in the early 

Tertiary, sediments began to accumulate in this region during Mesozoic rifting associated 

with the separation of the African and South American continents (Weber and Daukoru, 

1975; Evamy et al., 1978; Doust and Omatsola, 1990). Synrift marine clastics and 

carbonates accumulated during a series of transgressive-regressive phases between the 

Cretaceous to early Tertiary; the oldest dated sediments are Albian age (Doust and 

Omatsola, 1989). These synrift phases ended with basin inversion in the Late Cretaceous 

(Santonian). Proto-Niger Delta regression continued as continental margin subsidence 

resumed at the end of the Cretaceous (Maastritchian). Niger Delta progradation into the 

Gulf of Guinea accelerated from the Miocene onward in response to evolving drainages 

of the Niger, Benue and Cross rivers and continued continental margin subsidence.  

Tertiary Niger Delta deposits are characterized by a series of depobelts that strike 

northwest-southeast, sub-parallel to the present day shoreline (Figure 2). Depobelts 

become successively younger basinward, ranging in age from Eocene in the north to 

Pliocene offshore of the present shoreline. Depobelts, tens of kilometers wide, are 

bounded by a growth fault to the north and a counter-regional fault seaward. Each sub-

basin contains a distinct shallowing-upward depositional cycle with its own tripartite 

assemblage of marine, paralic, and continental deposits. Depobelts define a series of 

punctuations in the progradation of this deltaic system. As deltaic sediment loads 
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increase, underlying delta front and prodelta marine shale begin to move upward and 

basinward. Mobilization of basal shale caused structural collapse along normal faults, and 

created accommodation for additional deltaic sediment accumulation. As shale 

withdrawal nears completion, subsidence slows dramatically, leaving little room for 

further sedimentation. As declining accommodation forces a basinward progradation of 

sediment, a new depocenter develops basinward. Most Niger Delta faulting is due to 

extensional deformation. The exception is in the distal section, where overthrust faults 

form in the toe of the proto-Niger Delta. These extensional faults are normal and 

generally listric, comprising syndepositional growth faults and crestal tensional relief 

faults. These faults are synthetic or antithetic, running sub-parallel to the strike of the 

sub-basins. These synsedimentary faults exhibit growth strata above the downthrown 

block, as well as anticlinal (rollover) closures. Most hydrocarbon bearing structures in 

Niger Delta deposits are close to these structure-building faults, in complexly collapsed 

crest and faulted anticlinal structures. Growth faults and antithetic faults play an essential 

role in trap configuration. Growth faults exhibit significant throw (up to several hundred 

meters), are arcuate in plan view, concave basinward and may be several tens of 

kilometers in length. Antithetic faults have less throw (generally less than a hundred 

meters), can be linear or arcuate in plan view and they rarely exceed ten kilometers in 

length (Cathles et al., 2003). 
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FORMATIONS AND DEPOSITIONAL ENVIRONMENTS 

The morphology of the Niger Delta changed from an early stage, spanning the Paleocene 

to early Eocene, to a later stage of delta development beginning in Miocene time. Early 

coastlines were concave to the sea and depositional patterns were strongly influenced by 

basement topography (Doust and Omatsola, 1989). Delta progradation occurred along 

two major axes. The first paralleled the Niger River, where sediment supply exceeded 

subsidence rate. The second, smaller than the first, became active basinward of the Cross 

River during the Eocene to early Oligocene. Late stages of deposition began in the early 

to middle Miocene, as these separate eastern and western depocenters merged. In late 

Miocene the delta prograded far enough that shorelines became broadly concave into the 

basin. Accelerated loading by this rapid delta progradation mobilized underlying unstable 

shales. These shales rose into diapiric walls, deforming overlying strata. The resulting 

complex deformation structures caused local uplift, which resulted in major erosion 

events into the leading progradational edge of the Niger Delta. Several deep canyons, 

now clay filled, cut into the shelf are commonly interpreted to have formed during sea 

level lowstands. The best known are the Afam, Opuama, and Qua Iboe Canyon fills 

(Figure 3; Reijers, et al., 1999 and Tuttle, et al., 1999).  

Short and Stauble (1967) defined formations within the Niger Delta clastic wedge 

based on sand/shale ratios estimated from subsurface well logs. The three major 

lithostratigraphic units defined in the subsurface of Niger Delta (Akata, Agbada and 

Benin formations, Figure 4; Lawrence, et al., 2002) reflect a gross upward-coarsening 

clastic wedge. These Formations were deposited in dominantly marine, deltaic 
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and fluvial environments, respectively (Weber and Daukoru, 1975; Weber, 1986). 

Stratigraphically equivalent units to these three formations are exposed in southern 

Nigeria (Table 1; Short and Stauble, 1967).  

The Akata Formation, dark gray shales and silts with rare streaks of sand of 

probable turbidite flow origin, is estimated to be 6,400 m thick in the central part of this 

clastic wedge (Doust and Omatsola, 1989). Marine planktonic foraminifera suggest a 

shallow marine shelf depositional setting ranging from Paleocene to Recent in age (Doust 

and Omatsola, 1989). These shales are exposed onshore in the northeastern part of the 

delta, where they are referred to as the Imo Shale. This formation also crops out offshore 

in diapirs along the continental slopes. Where deeply buried, Akata shales are typically 

overpressured. Akata shales have been interpreted to be prodelta and deeper water 

deposits that shoal vertically into the Agbada Formation (Stacher, 1995, Doust and 

Omatsola, 1989).  

The Agbada Formation occurs throughout the Niger Delta clastic wedge, has a 

maximum thickness of about 3,900 m and ranges in age from Eocene to Pleistocene 

(Doust and Omatsola, 1989). It crops out in southern Nigeria, where it is called the 

Ogwashi-Asaba Formation. The lithologies consist largely of alternating sands, silts and 

shales with progressive upward changes in grain size and bed thickness. The strata are 

generally interpreted to have formed in fluvial-deltaic environments (Stacher, 1995, 

Doust and Omatsola, 1989).  
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Table 1: Stratigraphic units of Niger Delta area, Nigeria. Modified from Short and 
Stauble (1967). 
 

Subsurface     Surface Outcrops     
Youngest 

known Age   
Oldest known 

Age Youngest Known Age   
Oldest 

Known Age 

Recent 

Benin 

Formation 

(Afam clay 

member) Oligocene Plio/Pleistocene 
Benin 

Formation   

Recent 
Agbada 

Formation Eocene 
Miocene                 

Eocene 

Ogwashi-Asaba 

Formation             

Ameki 

Formation 
Oligocene       

Eocene 

Recent 
Akata 

Formation Eocene lower Eocene 
Imo shale 

Formation Paleocene 

  Unknown   Paleocene 
Nsukka 

Formation Maestrichtian 
    Maestrichtian Ajali Formation Maestrichtian 

    Campanian 
Mamu 

Formation Campanian 
    Campanian/Maestrichtian Nkporo Shale Santonian 
    Coniacian/Santonia Awgu Shale Turonian 
    Turonian Eze Aku Shale Turonian 

    Albian 
Asu River 

Group Albian 
            

 
 
 
 

The Benin Formation comprises the top part of the Niger Delta clastic wedge, 

from the Benin-Onitsha area in the north to beyond the present coastline (Short and 

Stauble, 1967). The top of the formation is the current subaerially-exposed delta top 

surface and its base, defined by the top of the youngest underlying marine shales, extends 

to a depth of about 1400m. The age of the formation is thought to range from Oligocene 

to Recent (Short and Stauble, 1967). Shallow parts of the formation are composed 

entirely of non-marine sands deposited in alluvial or upper coastal plain environments 
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during progradation of the delta (Doust and Omatsola, 1989). The formation thins 

basinward and ends near the shelf edge.  

The modern Niger Delta is a mixed wave, tide and fluvial deltaic system. The 

delta is reworked by wave action along an arcuate coast with barrier islands, back-barrier 

lagoons, and chennier ridges. Thick mangroves border the coastline of the lower Niger 

Delta plain. Incised into this coastline are numerous tide-dominated coastal estuaries that 

have gradually been infilled with sediment following the Holocene sea level highstand 

(Figure 5). The modern delta front and continental slope is characterized by localized 

slumps and canyons that bypass sediments into deeper waters. Although details of deltaic 

features are difficult to decipher within reservoir intervals of Niger Delta deposits, the 

modern distribution of distributary channels, estuary fills, shoreface, back barrier 

lagoonal sediments, and delta plain deposits are assumed to be a good analog. 
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DATA AND METHODOLOGY 

DATA 

Robertkiri oil field is located southeast of Port Harcourt, Nigeria, at the eastern end of the 

Niger Delta (Figure 1). It covers 1400 km2 within the proximal part of the Coastal 

Swamp I depobelt (Figure 2). The field was discovered in 1964 by Gulf Oil Company 

well Robertkiri-01 and is currently operated by Chevron Nigeria Limited. The data used 

for this research include 20 wireline logs, a biostratigraphic interpretation of samples 

from the Robertkiri-01 well, and a 3-D seismic volume that covers 1400 km2. 

LOG DESCRIPTION 

The 20 wells of Robertkiri field are all located in the southwest corner of the seismic 

volume (Figure 6). A typical gamma ray well log through the Agbada Formation in 

Robertkiri field has higher average values near the base of the Formation and values 

increase upward on average over 2.7 km to the base of the Benin Formation (Figure 7a). 

Within the Benin Formation gamma ray values are uniformly low. This vertical trend 

reflects a large-scale coarsening of the clastic wedge. Within the Agbada Formation four 

general log signatures are defined over stratigraphic intervals ranging from several tens to 

hundreds of meters thick: (1) Intervals that start with an abrupt decrease of gamma ray 

values and then gradually increase upward, interpreted to indicate an abrupt coarsening 

followed by a gradual fining-upward trend (Figure 7b, a), (2) Intervals with decreasing 

gamma ray values that end where values abruptly increase, interpreted to indicate an 

upward-coarsening trend (Figure 7b, b), (3) Symmetric patterns defined by initial gradual 

decrease and then increase in gamma ray values interpreted to record a gradual 
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coarsening and then gradual fining of deposits (Figure 7b, 3) and (4) “Blocky” intervals 

defined by abrupt decrease in gamma ray value overlain by an interval with uniformly 

low values, (Figure 7b, 4). Transitions between these characteristic log patterns are often 

abrupt; defined by a pronounced decrease of values at their base or increase of values at 

their top. 
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BIOSTRATIGRAPHY 

Chevron’s in-house biostratigraphic report of samples from Robetkiri-01 provides broad 

constraints on the age and depositional environments of the Agbada Formation (Figure 

7a). Nano-fossil samples were related to the N4 to N8 biozones, and Foram samples to 

the P650 – 740 biozones. These biozones suggest deposits ranged from early to late 

Miocene in age. Depositional environments were interpreted to range from dominantly 

inner through middle neritic lower within the section and outer neritic through non-

marine higher within the section.  

SEISMIC VOLUME 

Seismic data of the regional around Robertkiri field acquired by Western Geophysical has 

a dominant frequency of 60 Hz, and crossline and inline spacing of 12.5 meters. The 

seismic volume presented here extends to 3.5 seconds two way travel time (s twt), below 

which reflection continuity is generally poor. The seismic volume is characterized by a 

series of parallel reflections offset and deformed by major listric normal faults. The 

character of the seismic record changes with depth. 

The basal part of the record (below 3 s twt) is disrupted by several zones with 

transparent to highly-discontinuous reflection patterns, which extend higher within the 

seismic volume under footwalls of major faults. This study focuses on reflections 

between 3.2 and 1.7 s twt, inferred based on regional studies to be from the Agbada 

Formation (Short and Stauble, 1967; Doust and Omatsola, 1990; Morgan, 2004). This 

interval corresponds to about 3 km of section. Reflections within this interval have 

moderate to good continuity and high amplitude variations. Reflections in the shallowest 

1.7 s twt of the seismic volume are parallel, nearly horizontal, and less continuous. 
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Although few wells of Robertkiri field include logs of this interval, those that do show 

uniformly low gamma ray values characteristic of the fluvial Benin Formation. 

The study interval is defined by the first and last continuous reflections that could be 

traced throughout the seismic volume. The seismic volume within this interval is divided 

into two interlayered seismic facies based on seismic reflection frequency and amplitude 

continuity (Figure 8; see also criteria used by Weimer et al., 1998). Facies 1 comprise 

several millisecond-thick intervals with lower-amplitude chaotic, discontinuous or 

inclined internal reflections (Figure 8). Facies 2 comprises higher-frequency, more 

continuous, parallel reflections. The vertical alternation of seismic facies defines thicker 

stratigraphic units (Figure 8).  

Seismic facies 1 and 2 can be related in a general way to characteristic log trends 

described above (Figure 7a). The base of an interval of seismic facies 1 is defined by an 

abrupt change to relatively low-value gamma ray upward-fining or blocky log signatures; 

interpreted to reflect an abrupt coarsening. Seismic facies 2 deposits are generally finer-

grained, and commonly comprise the basal parts of upward-coarsening or the upper parts 

of upward-fining well log successions. Particularly high amplitude and continuous 

reflections within facies 2 are commonly associated with relatively thick intervals with 

uniformly high gamma ray values, inferred to record thick shales. 

SEQUENCE STRATIGRAPHIC DIVISION 

Six stratigraphic sequences are defined within the Agbada Formation of Robertkiri field 

based on one or more of the following criteria: 1) Evidence in the seismic record of a 

surface that erosionally truncates underlying continuous reflections; 2) Abrupt change 

lower parts based on one of more of the following criteria: 1) Abrupt change from 
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seismic facies 1 to 2; 2) A very high-amplitude or particularly continuous reflection 

within an interval of facies 2; 3) A thick interval with uniformly high gamma ray log 

values. Analysis of well logs suggests that lower parts of these sequences generally fine 

upward, whereas upper parts generally coarsen upward. Sequence boundaries and internal 

surfaces delineating lower and upper parts of sequences are interpreted to define 

stratigraphic discontinuities. 

Erosion surfaces that define the base of sequences are interpreted to record abrupt 

basinward shifts in systems tracts. This definition of sequence boundaries is comparable 

with that of standard Exxon nomenclature (Posamentier et al., 1988, 1988, b; Van 

Wagoner et al., 1990; Mitchum and Van Wagoner, 1991). Parallel reflections of seismic 

facies 2 are inferred to record surfaces that were nearly horizontal following deposition 

(based on the small area covered by this seismic volume relative to the scale of 

depositional systems inferred from the modern Niger Delta). Abrupt vertical 

displacement of these reflections across the seismic volume are inferred to define faults 

and thickening of intervals between reflections across these faults are interpreted to 

record growth strata developed during syndepositional fault displacement and associated 

structural folding. Surfaces within sequences that divide lower and upper parts, defined 

by a pronounced increase in well log gamma ray values, are interpreted to record abrupt 

landward shifts in systems tracts. This division of sequences is compatible with the 

definition of “maximum flooding surfaces” (Posamentier and Vail, 1988; Posamentier et 

al., 1988; Van Wagoner et al., 1990; Mitchum and Van Wagoner, 1991). Thus deposits in 

lower parts of sequences are interpreted to be lowstand and transgressive system tracts 

and those in upper parts of sequences are inferred to be highstand system tracts. Spatial 
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changes in sequence thickness, the magnitude of basal incision, and the proportion of 

seismic facies are related in the discussion that follows to patterns of erosion and 

deposition during sequence development and observed patterns of structural deformation. 

Sequence boundaries and maximum flooding surfaces were correlated between 

the wells of Robertkiri field by relating well log patterns to specific seismic reflections 

and vertical changes in seismic facies that could be traced between wells and by matching 

similar well log patterns within adjacent wells. The location of representative dip and 

strike oriented cross sections that show the correlation of these surfaces across sets of 

correlated well logs (Figures 9a, 9b, 9c and 9d) and through of the seismic volume 

(Figures 10a to 10l) is presented in Figure 6. 
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STRUCTURE AND STRATIGRAPHY OF ROBERTKIRI FIELD 

STRUCTURE 

Structure in the area of Robertkiri field is dominated by three major normal faults that 

trend east-west and dip basinward (southward). These faults, each with broad convex 

basinward cuspate plain view geometry, are labeled V, W, and X on Figure 6 and seismic 

cross section (Figures 10a – 10l). Fault dips decline from 78-86 degrees in shallow parts 

of the section to less than 30 degrees in deeper parts. They become less apparent as the 

seismic record becomes obscured by larger transparent zones at depths greater than 2.5 

seconds. Fault V divides into two distinct faults at shallow depths. Down-dropped blocks 

of major faults are deformed into broad anticlines, with double-plunging axes parallel to 

the adjacent cuspate fault trends. Small-scale synthetic and antithetic faults radiate from 

anticline crests, further complicating these structures. Although several hundred smaller-

scale faults were delineated within the seismic volume, only those with greatest offset are 

shown in the seismic cross sections (Figures 10a – 10l). 

Folding of reflections across anticlines and displacement of seismic facies across 

faults increase deeper in the seismic record. Within down-dropped blocks, reflections fan 

apart toward major faults, which is interpreted to record deposition of syndeformation 

growth strata. Reflections also fan apart basinward of anticline crests. Most depositional-

dip oriented seismic cross sections traverse major faults V and X, and associated 

anticlines on down dropped blocks (Figures 10e – 10l). The cross section through the 

western edge of the field traverses fault W and associated anticline (Figure 10e). The one 

through the eastern edge of the field crosses a series of smaller faults, which 
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successively down drop reflections basinward with comparatively little evidence for 

folding of down-dropped blocks (Figure 10l). 

Lateral transitions from transparent seismic zones to more continuous reflections 

in basal parts of the seismic record occur at shallow levels under footwall blocks adjacent 

to major faults relative to under down-dropped blocks. Because these low-amplitude-

discontinuous to transparent reflection zones can have variably abrupt or diffuse-

gradational boundaries, they are interpreted to reflect deposits that have been fractured by 

overpressures and perhaps have moved upward under the weight of overlying strata 

during fault displacement. The occurrence of these transparent seismic patterns at 

shallower depths just landward of major faults may reflect isostatic rebound of footwall 

blocks as down-dropped blocks detached and shifted basinward. 

Seismic cross sections perpendicular to depositional strike (Figures 10e – 10j) 

show reflections within anticlines are broadly horizontal parallel to fold axes. In the 

proximal (northern) part of the seismic volume, anticlines are separated by zones of 

folded reflections adjacent to the cuspate edges of major faults and by zones where 

transparent seismic patterns extend upward to shallow depth. Cross sections through 

more distal (southern) parts of the seismic volume are basinward of major anticlinal 

structures and these less deformed parallel seismic reflections extend to greater depths. 

Because maximum flooding surfaces within the Agbada Formation are inferred to define 

relatively flat depositional surfaces, top structure maps of these surfaces are used to 

define broad patterns of displacement across faults and deformation of fault blocks at 

different stratigraphic levels (Figures 11a and b). There is a regional basinward tilt 

of these surfaces, particularly pronounced for surfaces at deeper stratigraphic intervals. 
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Displacement across faults is greatest near apex of cuspate normal fault traces and is  

greater along older stratigraphic horizons. Anticlinal fold limbs are steeper near the 

center of fault traces and for older stratigraphic horizons. 

STRATIGRAPHY 

Vertical and lateral variations of seismic facies and well log patterns within the six 

sequences identified in the Agbada Formation of Robertkiri field are discussed separately 

in this section, before these variations are related to changes in erosion and depositional 

patterns across syndepositional structural topography. Sequence boundaries are directly 

overlain in most locations by chaotic reflection patterns of seismic facies 1 and they pass 

upward into more continuous, higher-amplitude, parallel reflections that comprise 

seismic facies 2. Wells of Robertkiri field are confined to the southwestern rollover 

anticline (Figure 6), which is the main structural play in the field. Although these well 

logs provide critical information relating lithic trends to seismic facies, they do not 

provide wide coverage of the area documented in the seismic record. The thickness of 

deposits between a sequence boundary and subsequent maximum flooding surface appear 

to mostly reflect the extent of incision along the base of the sequence (Figures 12a and b). 

The thickness of deposits between maximum flooding surfaces within successive 

sequences are inferred to mostly record variations in structurally generated 

accommodation and to a lesser extent the larger-scale progradation of the delta into the 

basin (Figures 13a and b). Seismic amplitude variation patterns examined in horizontal 

time slices or extracted along paths that parallel sequence boundaries or maximum 

flooding surface to generate “stratigraphic slices” provide additional information about 

lithic variations within sequences (Figures 14a – 14r). 
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Below Sequence Boundary 1 

The interval below sequence boundary 1 is dominated by higher-frequency seismic facies 

2 in basal parts of footwall blocks and broad diffuse transparent seismic patterns under 

footwall blocks. Although thicker chaotic seismic facies 1 interval are rare and can be 

difficult to distinguish from the diffuse edges of broader transparent zones, they occur 

locally above some surfaces that also show shallow incision into underlying reflections 

(e.g., Figure 10g, in the crest of the anticline basinward of Fault X). Logs of Robertkiri 

field penetrate only upper parts of this interval (Figure 9a), and record generally high 

gamma ray values and rarer low-value gamma ray intervals. The lower value intervals 

can be tens of meters thick, and generally have upward fining or blocky trends. Although 

vertical seismic facies variations and well log variations suggest there are additional 

sequences within these basal deposits, they are not addressed here. Tight folding and 

disruption of reflection continuity by the extensive transparent reflection zones did not 

allow the mapping of these variations across the seismic volume (Figures 14a and b). 

Sequence 1 

Sequence 1 (above sequence boundary 1) has an erosional base and averages 450 m 

thick. Areas of deeper incision are overlain by thicker belts of seismic facies 1. There, 

belts occur along two elongate trends, each a few kilometers wide. One belt extends  

Southeastward across the crest of the anticline on the down-dropped block of fault V to 

the block down dropped at fault X (Figure 12a, a). Erosion along this trend truncates 

about 110 m of underlying reflections at the anticline crest (Figures 10j and k). The 

second trend extends along fault W and then merges with the first along the western 

margin of fault X (including the area of Robertkiri field; Figure 14d). Reflection patterns 
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observed in horizontal time slices of the seismic volume dominantly record structural 

folding along anticlines (Fig. 14c and d). An amplitude extraction along a surface parallel 

to the sequence boundary more clearly shows the distribution of seismic facies 1 and 2 

along the basal part of the sequence (Figure 14e). Belts of seismic facies 1 are narrower 

lower in the sequence and become wider stratigraphically higher within the sequence 

(Figures 10 a, b and j; also cf. horizontal slices in Figures 14c and d). Upward within the 

sequence, seismic reflections gradually become higher frequency, defining a transition 

into seismic facies 2.  

Logs from Robertkiri field record vertical trends in the area where the two belts of 

facies 1 join down dip of fault X (c.f., Figures 6 and 9b). Gamma ray values abruptly 

decrease at the base of the sequence, and overlying deposits have low-gamma-ray-value, 

tens-of-meters-thick, blocky patterns (recording an abrupt coarsening). A 10 m thick 

internal with uniformly high gamma ray values occurs near the vertical transition from 

seismic facies 1 to 2. Gamma ray values initially gradually increase above this high 

gamma ray interval and then abruptly increase into several tens of meters thick blocky 

patterns (Figure 9c). Gamma ray patterns become thinner and more variable in the upper 

most part of the sequence, just below sequence boundary 2 (Figure 9d). The 10 m thick 

shale bed at the transition from seismic facies 1 and 2 defines a particularly high 

amplitude reflection, and is interpreted to be a maximum flooding surface. A structure 

map of this surface shows folding over anticlines and pronounced regional basinward dip 

(Figure 11a, a). Reflections within seismic facies 2 fan apart past the anticline crest on 

the footwall block of fault V (Figure 10i), but not past the crest of the anticline down dip 

of fault X. The thickness of deposits between a prominent reflection within an interval of 
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seismic facies 2 below sequence boundary 1 (labeled maximum flooding surface 0) and 

the maximum flooding surface within sequence 1 (labeled maximum flooding surface 1) 

show that deposits are thicker along belts of seismic facies 1 but do not thicken abruptly 

across major faults.  

Sequence 2 

Sequence 2 averages about 550 m thick. It has geometry and internal character similar to 

sequence 1. Although areas of deeper incision, overlain by thicker intervals of seismic 

facies 1, follow broadly similar elongate trends as those in sequence 1 (Figure 12a, b), the 

erosional trend along fault W is somewhat deeper (up to 130 m of erosion into underlying 

reflections; Figure 10e) and the erosional trend across the down-dropped block of fault V 

shifted to the western edge of the associated anticline (Figure 12a, b). Basal parts of 

seismic facies 1 belt are wider than shallower parts (c.f., Figures 14f and g). Like 

sequence 1, gamma ray logs show an abrupt decrease (coarsening) to blocky patterns in 

the basal part of the sequence, and a 25 m thick high-value interval near the vertical 

transition from seismic facies 1 and 2 (Figure 9a). Seismic facies 2, in the upper part of 

the sequence, is more uniform in thickness than the lower interval of facies 1. 

Like in sequence 1, the high-value interval near the middle of the sequence is 

interpreted to record maximum flooding. It similarly changes in dip across anticlines 

above down dropped blocks and dips on average significantly offshore (Figure 11a, b). 

Fanning of reflections within seismic facies 2 is observed across the anticline crest down 

dip of fault V (Figure 10f, g, h). Although the interval between maximum flooding 

surfaces 1 and 2 thickens somewhat across all major faults, these changes are more 

prominent across the apex region of fault X than across faults W and Y (Figure 13a, b). 
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Sequence 3 

Sequence 3 is about 330 m thick (Figures 10 a, j, h and k). A trend of deeper incision and 

associated belt of thicker seismic facies 1 is most pronounced across the crest of the 

anticline down dip of fault V (Figure 10f, g, h; Figure 12a, c). This erosional trend, 

locally cutting 300 m into underlying reflections, bifurcates onto the block down dropped 

across fault X (Figures 14h, i, j). In some locations this seismic facies 1 incision fill 

contains smaller-scale nested internal incision fills (Figure 14k). Where most deeply 

eroded, along the anticline crest below fault V, the incision fill comprises a several 

hundred meter thick set of inclined reflections that dip basinward toward fault X (Figure 

10k).  

Like the underlying sequences, gamma ray values abruptly decrease at the base of 

the sequence, and basal deposits have low-value blocky patterns. The basal interval with 

low gamma ray values is vertically divided by several 5 to 10 m thick intervals with high 

gamma ray values (Figure 9b). Gamma ray values increase abruptly in the middle of the 

sequence, at an interval interpreted to define the maximum flooding surface. The interval 

of seismic facies 2 above this maximum flooding surface is really thin. Fanning of 

reflections within facies 2 across anticline crests is less pronounced than that observed in 

earlier sequences. The maximum flooding surface has lower regional dip toward the 

basin and folding of this surface across anticline crests is more gentle (Figure 11a, c). 

Although thickening of the interval between maximum flooding surfaces 2 and 3 across 

fault V is also less pronounced than observed in older sequences, there is significant 

thickening of this interval across fault X. (Figures 11a, c and 12a, c).  
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Sequence 4 

Sequence 4 averages 250 m thick. Although the base of this sequence is defined by an 

abrupt coarsening, basal erosion and associated seismic facies 1 are restricted to a few 

localized areas along the hanging wall of faults V and X (Figure 12b, a). Reflections 

within seismic facies 2 in the upper part of this sequence are nearly parallel across 

anticlines. Intervals between these reflections have little offset across faults relative to 

that observed in sequences below (Figure 14d). The basal deposits fine upward from the 

sequence boundary to a thick interval with high gamma ray values, interpreted to be the 

maximum flooding surface. Gamma ray values abruptly change above this maximum 

flooding surface to a succession with low-value blocky patterns. 

Sequence 5 

Sequence 5 averages 250 m thick. Several widespread shallow incisions (< 50 m of 

erosion into underlying reflections) along north-south elongate trends define the base of 

the sequence: 1) across fault W to the west side of the seismic volume; 2) along the block 

down dropped at fault V to the apex of fault X; 3) through the eastern part of seismic 

volume across faults Y, and Z (Figure 12b, b). There are multiple laterally connected 

shallow incisions cutting into the footwall of fault X (Figure 11b, b; Figure 12b, b). 

Seismic facies 1 are confined mainly to the southeastern part of the field (Figure 14n), 

and thus most of the sequence is composed of seismic facies 2. Logs through sequence 5 

show an abrupt coarsening at the base of the sequence and basal deposits have low-

gamma-ray-value, blocky patterns separated by thinner (<3 m) high-gamma-ray intervals. 

The maximum flooding surface, defined by a 20 m thick interval with uniformly high 
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gamma ray values, occurs within the interval of seismic facies 2. The maximum flooding 

surface shows low regional dip into the basin (Figure 11b, b).  

Sequence 6 

Sequence 6 is about 130 thick. Two elongate areas of deeper incision are recognized 

across the anticline down dip of fault X; One along its eastern limb and the other nearly 

directly across its crest (Figure 11b, c). Both are overlain by thick successions of seismic 

facies 1. Belts of seismic facies 1 within these incisions locally contain nested internal 

incised fills (Figure 14p) and elsewhere 100 m thick sets of inclined reflections (Figures 

10, e; 14o). Wider, shallow inclusions define this surface elsewhere within the seismic 

volume (Figures 10c, d and l). The maximum flooding surface was defined by a 

pronounced reflection within the gradual upward transition from seismic facies 1 to 2 and 

by high gamma ray emissions recorded by well logs. Facies 2 reflections in upper parts of 

this sequence fan apart across the area between faults V and X, but not across the block 

down dropped across fault X. There are only minor variations in the thickness of the 

interval between maximum flooding surfaces 5 and 6 across the seismic volume (Figure 

13b, b). 

INTERPRETATION OF STRATIGRAPHIC TRENDS 

Truncation of reflections under sequence boundaries records fluvial incision during 

relative sea level lowstands. Seismic facies 1, associated with low-value blocky gamma 

ray well log patterns, records accumulation of sandy fluvial channel deposits within 

incised valley fills. High gamma ray spikes within these intervals may record 

preservation of overbank deposits within valleys or estuarine deposits preserved as the 

valley was transgressed. The high gamma ray intervals, commonly associated with 
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vertical transitions from seismic facies 1 to 2, are interpreted to have formed during 

maximum flooding following sea level rise. Upward coarsening patterns through seismic 

facies 2 intervals record progradation of shorelines following maximum flooding. Blocky 

patterns lower within these successions may indicate sharp-based shoreface deposits 

formed as relative sea levels began to fall, whereas those higher in successions probably 

record distributary or fluvial channel deposits. The fining of deposits recognized in the 

upper most part of some sequences may be paralic deposits formed along tide-influenced 

coastlines. These depositional interpretations suggest that seismic facies 1 mostly 

comprise lowstand and transgressive system tracts and seismic facies 2 comprise 

highstand system tracts. 

Two distinct drainages in the oldest sequences 1 and 2 (the western one following 

the trend of fault W and the eastern crossing the apex of fault V) each appear to be 

influenced by structural movements. Deeper incisions across faults V and W suggest 

these features were associated with syndepositional topography. The path of the eastern 

drainage directly across the crest of the anticline basinward of fault V suggests this 

feature was not a structural high during highstand. Deeper incision across the crest of this 

anticline at the base of sequences, however, suggests that it became a topographic high 

when most sediment was being bypassed farther basinward during lowstand. Fanning 

apart of reflections away from the anticline crest within overlying facies 2 intervals 

records the filling of topography and accumulation of growth strata during subsequent 

highstand progradations. Basinward tilts of all stratigraphic surfaces within this interval 

reflects the longer term seaward collapse of this basin margin (figure 10f).  
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Sequence 3 does not record evidence for a western drainage along fault W, 

suggesting that this sediment source avulsed elsewhere during the intervening highstand: 

It may have joined the eastern drainage up dip or avulsed laterally out of the study area. 

Although this sequence is thinner than the previous two, suggesting lower average 

accommodation, deeper incision suggests the greatest relative sea level fall. The fill 

directly above the sequence boundary show distinct smaller reflection truncation, 

interpreted to image individual river channels with size near the lower limit of seismic 

resolution. Local thicker sets of inclined reflections, nearly 100 m thick, may be bayhead 

delta deposits formed where more incised areas of valleys were rapidly flooded. Relative 

to previous sequences, mean sediment accumulation clearly shifted basinward to the 

down dropped side of fault X.  

Sequence 4, with no obvious basal erosion, is interpreted to be a progradational 

interval formed when relative sea level never fell faster than regional subsidence (a “type 

2” sequence boundary, using standard Exxon terminology; Mitchum and Van Wagoner, 

1991). Limited seismic facies 1 and uniform thickness also suggest that deposition was 

spread widely along the basin margin. Progressive thinning of younger sequences, 

associated with less offset across major faults, suggests accommodation development 

slowed as deformation ceased. 

A broadening of incisions under the final two sequences (5 and 6), the blocky 

nature of their well log signatures, and very-thin, local seismic facies 2 intervals suggest 

they dominantly record fluvial bypass of sediment to basinward areas with more 

accommodation remaining. These nearly horizontal sequences, truncating tilted 

reflections of underlying sequences and major faults, record deposition after structural 
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deformation had greatly slowed or stopped within the study area. Deeper incisions along 

sequence boundary 6 in the most distal parts of the seismic volume suggest that patterns 

of episodic incision and fill observed within the older sequences in this study area 

continue in areas more basinward. Overlying deposits with more transparent, 

discontinuous reflections (upper 1.5 s twt in the seismic record), interpreted earlier to be 

fluvial deposits of the Benin Formation, record continued bypass of sediment to more 

basinward areas within the basin. 
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DISCUSSION  

Syndepositional structural collapse of the Niger Delta clastic wedge significantly 

complicates development of internal stratigraphic sequences. As discussed previously, 

Niger Delta progradation is punctuated at the regional scale by the development of 

depobelts formed as sediment loads underlying shales, which in turn become 

overpressured and unstable. Normal faults along the proximal edge of a depobelt displace 

prograding delta deposits downward and basinward into underlying mobile shales, which 

in turn move upward in more distal areas along a counter-regional fault (Figure 15). The 

character of sequence development and depositional facies of sediments preserved 

depend on relative rates and patterns of regional structural collapse across depobelts in 

response to accumulating sediments, as well as shifts in the position of deposition 

produced by relative sea level changes.  

Knox and Omatsola (1989) presented an “escalator” model of regional regression 

to describe depositional patterns within Niger Delta depobelts (Figure 16). In this model, 

rates of structural collapse and associated rise of diapirs in more basinward areas closely 

balanced rates of sediment supply. The depobelt is thus filled by relatively horizontal 

sheets of shallow marine deltaic, paralic and fluvial strata, which are successively 

displaced downward after deposition during continued structural collapse. Delta 

regression stalls behind rising shale structures along the distal edge of the depobelt, as the 

thick succession of shallow water sediments accumulate. This pattern continues until 

underlying overpressured mobile shales are depleted, structural subsidence under the 

depobelt slows, and the delta front again progrades basinward. As the delta front moves 
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past the shale diapirs along the distal edge of the depobelt, more distal areas are loaded, 

and a new depobelt begins to form. 

Robertkiri field is located within the proximal edge of the Coastal Swamp I 

depobelt (Figure 2), fairly near the area of maximum progradation of the modern Niger 

Delta. This presumably was an area of continuous relatively high sediment supply, where 

depositional pattern across the depobelt should be similar to those predicted by the 

“escalator” model. Sequences observed within Robertkiri field record smaller-scale 

stratigraphic variations within this depobelt, which might reflect shorter-term 

displacement across faults or sea level variations. 
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Structure under Robertkiri field indicates that the proximal edge of the Coastal 

Swamp I depobelt is defined by a succession of major cuspate normal faults. Thickness 

changes between stratigraphic surfaces lower within the formation (Sequences 1-3) show 

greater structural influence, with layers clearly thickening directly adjacent to faults along 

basinward tilted fault blocks and thinning over the crests of rollover anticlines. Stratal 

patterns across down-dropped fault blocks have broad similarities with larger-scale 

depobelts. Strata are clearly displaced downward and basinward across these faults. 

Transparent seismic zones mark distal ends of a down-dropped block, in the footwall of a 

succeeding major fault. Locally abrupt contacts between areas with coherent reflections 

within a down-dropped block and adjacent transparent zones basinward may indicate 

counter-regional faults underlain by shale diapirs. Unlike larger-scale depobelts, 

however, transparent zones rise upward through only the basal most stratigraphic 

interval. Although there is evidence for a progressive basinward shift in areas of thickest 

sediment accumulation within sequences (Figures 12 and b; 13a and b) and evidence for 

greater sediment bypass during deposition of successive sequences, for the most part 

reflection patterns can be traced across multiple fault blocks. This suggests that several 

adjacent blocks were being buried simultaneously, and thus any upward movement of 

basal shales along the footwalls of faults did not create major bathymetric barriers to 

sediment transport basinward. This pattern is different from minibasins that form on 

slopes over mobile salt layers, which tend to more completely restrict sediment bypass 

until they are nearly completely filled, producing more pronounced “fill and spill” 

histories of basin-filling. Deeper narrower incisions and course-grained facies belts along 

boundaries of lower sequences, relative to broader, less deeply incised surfaces that 
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characterize upper sequence boundaries, probably also reflect more rapid rates of 

structural deformation early in the history of depobelt filling. 

The broadly-defined upward-coarsening trend, less evident for significant 

accumulation of growth strata up section, and thinning of successive sequences suggest 

that rates of tectonic subsidence relative to sediment supply decreased over time. It may 

be that structural collapse was more rapid during initial stages of depobelt development 

or that sediment supply was initially restricted to more proximal areas and loading effects 

on subsidence were more widespread. Despite the decrease in shale upward, blocky and 

upward-fining log patterns in basal deposits (below sequence boundary 1), and evidence 

for fluvial incision at the base of even the oldest sequences suggest shallow water to 

fluvial deposition. Thus, the vertical succession may indicate decreasing rates of 

aggradation rather than progradation of systems tracts and associated depositional 

environments. 

Separating structural and stratigraphic controls on sequence development can be 

difficult in this setting, where sediment loading controls rates of local subsidence of fault 

blocks, which in turn control sediment transport pathways into the basin. Depobelts 

nearly filled with sediment, as predicted by Knox and Omatsola (1989), might be rapidly 

flooded when rising sea levels flood extensive, shallow, delta-top areas. Maximum 

flooding surfaces that can be traced across multiple fault blocks, like those traced across 

Robertkiri field, might indicate a similar sequence stratigraphic setting. Mechanisms that 

produced incisions along sequence basal erosion surfaces are more difficult to constrain, 

as these surfaces vary significantly in character across individual fault blocks and 

associated down dropped blocks; In general, erosion along sequence boundaries is greater 
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into footwalls and crests of roll over anticlines. Brown et al. (2004) recently proposed a 

model to explain sequence erosion within deltaic successions that prograded onto mobile 

shale substrates off the northern Gulf of Mexico shelf. They suggested that falling sea 

level would force deposition to rapidly shift basinward, initiating a new area of sediment 

loading. Build up of a lowstand wedge initiates the development of a new fault and 

associated concentration of growth strata above the adjacent down dropped block. Stratal 

relationships observed within Robertkiri field, specifically relatively gradual changes in 

sequence thickness across several fault blocks, does not support this mechanism for the 

development of sequences on Niger Delta; at least not at the scale that we examined. The 

depth of incisions at the base of sequences (>100-200 m) is difficult to explain in terms of 

sea level falls alone, as 3rd order eustatically driven variations during the Miocene are 

generally reported to be only several tens of meters (Posamentier and Vail 1988; Van 

Wagoner et al. 1990; Talling,1998). Deepest incisions, in the footwalls of major faults 

and over crests of rollover anticlines suggests local structural uplift, even within the areas 

dominated by clastic wedge collapse along normal faults. Footwall blocks may 

isostatically rebound under rising mobile shales as the weight of adjacent hanging wall 

blocks is shifted basinward. Fluvial incision over anticline crests many be enhanced even 

in areas above down dropped fault blocks. 
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CONCLUSIONS 

Sequence stratigraphic framework for a growth faulted delta deposit was constructed 

using a 3D seismic volume and well logs through the Agbada Formation within 

Robertkiri field, offshore Nigeria. The main conclusions are: 

1. Six major 3rd order sequence boundaries and intervening maximum flooding surfaces 

were mapped. The sequences developed above a succession of basinward-dipping 

normal faults, where hanging walls were displaced basinward during deposition.  

2. Upsection the deposits broadly coarsen, but depositional environments appear to have 

been consistently fluvial to shallow marine. Blocky sandstones that occur abruptly 

within intervals above maximum flooding surfaces may indicate falling stage 

“forced” regression. Sequences become thinner and contain less evidence for the 

accumulation of growth strata down dip of major faults and away from rollover 

anticline crests.  

3. Sequences lower within the succession are defined by narrower and deeper incisions 

(hundreds of meters deep), whereas boundaries of those higher within the succession 

are broader and less deeply incised. The youngest two sequences are largely 

horizontal and truncate underling faulted and deformed strata below, suggesting they 

were deposited after structural collapse in this area had ended. 

4. Incisions along sequence boundaries can be hundreds of meters deep, which exceed 

expected 3rd order eustatic falls in sea level during the Miocene. Thus, these incisions 

must have been structurally enhanced, despite the overall extensional nature of 

deformation along this shelf margin. 
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5. Robertkiri field strata were deposited along the proximal side of the Coastal Swamp I 

depobelt, in an area that received relatively high rates of sediment supply. Rates of 

structural collapse decreased over time, as more sediment was bypassed seaward. 

Interpretation of mechanisms that formed high-frequency sequences is difficult in this 

setting, where rates of sediment loading control structurally generated 

accommodation, which in turn controls paths of sediment transport into the basin.  
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