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ABSTRACT 

 

Characterization of Asphalt Concrete Using Anisotropic Damage Viscoelastic-

Viscoplastic Model. (December 2005) 

Shadi Abdel-Rahman Saadeh, B.S., University of Jordan; 

M.S., Washington State University 

Chair of Advisory Committee: Dr. Eyad Masad 

This dissertation presents the integration of a damage viscoelastic constitutive 

relationship with a viscoplastic relationship in order to develop a comprehensive 

anisotropic damage viscoelastic-viscoplastic model that is capable of capturing hot mix 

asphalt (HMA) response and performance under a wide range of temperatures, loading 

rates, and stress states.  The damage viscoelasticity model developed by Schapery (1969) is 

employed to present the recoverable response, and the viscoplasticity model developed at 

the Texas Transportation Institute (TTI) is improved and used to model the irrecoverable 

strain component.  The influence of the anisotropic aggregate distribution is accounted for 

in both the viscoelastic and viscoplastic responses.    

A comprehensive material identification experimental program is developed in 

this study. The experimental program is designed such that the quantification and 

decomposition of the response into viscoelastic and viscoplastic components can be 

achieved. The developed experimental program and theoretical framework are used to 

analyze repeated creep tests conducted on three mixes that include aggregates with 

different characteristics.   



 iv

An experiment was conducted to capture and characterize the three-dimensional 

distribution of aggregate orientation and air voids in HMA specimens.  X-ray computed 

tomography (CT) and image analysis techniques were used to analyze the microstructure in 

specimens before and after being subjected to triaxial repeated creep and recovery tests as 

well as monotonic constant strain rate tests.  The results indicate that the different loading 

conditions and stress states induce different microstructure distributions at the same 

macroscopic strain level.  Also, stress-induced anisotropy is shown to develop in HMA 

specimens.   
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CHAPTER I 

INTRODUCTION 

PROBLEM STATEMENT 

Hot mix asphalt (HMA) is a particulate composite material and its behavior is 

influenced by the properties and interaction of the mix constituents.  HMA performance 

is known to be influenced by loading rate, pressure, and temperature.  There is an 

increasing demand to develop models and associated experimental methods that can be 

used to predict HMA performance.  

Researchers adopted different modeling approaches and performed different 

experimental programs to identify the HMA response under various loading and 

environmental conditions.  Strain decomposition to recoverable and irrecoverable 

components is the first step toward the development of a theoretical framework for the 

analysis of HMA behavior and performance.  This step can be achieved through 

adopting an experimental program that is capable of measuring the recoverable and 

irrecoverable strain components and also monitoring any damage associated with these 

components.   

Probably the approach that has received the most application to HMA is the one 

based on theory of damage viscoelasticity, which was initiated and further developed at 

the Texas Transportation Institute (TTI).  The researchers who worked on this approach 

used Schapery’s viscoelastic correspondence principle (Schapery 1984).   

 
________ 
This dissertation follows the style and format of the Journal of Engineering Mechanics 
(ASCE). 
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In this approach, the correspondence principle and the work potential theory 

were used to model the accumulated damage and microdamage healing. This approach 

has been mainly used to analyze fatigue damage in HMA. 

Recent research at TTI has focused on developing a damage viscoplasticity 

model.  Tashman (2003) developed a model that is based on Perzyna’s formulation with 

the Drucker-Prager yield function modified to account for the material anisotropy and 

microstructure damage. The material parameters were determined based on the 

assumption that work hardening is the dominant deformation mechanism between the 

flow stress and the damage threshold; thereafter, the damage mechanism becomes 

dominant and deformation is primarily influenced by void growth. Including the damage 

parameter in the model enabled capturing the softening behavior of HMA.   

Dessouky (2005) further developed the TTI elasto-viscoplastic continuum model to 

predict HMA response and performance.  A Drucker-Prager yield surface that is modified 

to capture the influence of stress path direction on the material response was adopted by 

Dessouky (2005).  The model was implemented in a finite element program and was used 

to predict the performance of different HMA mixtures that included aggregates with 

various characteristics.   

The TTI model did not include the viscoelastic response of the material. Also, the 

monotonic compressive strength tests used in the previous studies were limited in 

providing a methodology for identifying the different material responses (viscoelastic 

versus viscoplastic).   However, a comprehensive model needs to include both damage 

viscoelastic response and viscoplastic response in order to capture HMA response at 
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various temperatures and loading rates.  The recent findings that the temperature-time 

superposition can be applied for HMA well into the damage state would significantly 

facilitate determining the model’s parameters using a reasonable number of tests 

(Chehab et al. 2003, and Schwartz et al. 2004). 

 

OBJECTIVES 

The objectives of this study are to: 

1. Decompose and quantify the recoverable and irrecoverable responses of HMA, 

which will be achieved through: 

a. Adopting an experimental methodology within a theoretical framework to 

decompose the HMA response, and  

b. Carrying out the experimental program on mixes that incorporate 

aggregates with various characteristics. 

2. Develop a comprehensive anisotropic damage viscoelastic-viscoplastic model for 

HMA, which will be achieved through:  

a. Adding a damage viscoelastic component to the TTI viscoplastic model.  

This is considered a major improvement, as it allows the model to capture 

the response at low temperatures and high strain rates where damage 

viscoelasticity dominates the material response and captures the response 

at high temperatures and low strain rates where damage viscoplastic 

deformation is significant.   
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b. Accounting for the anisotropic behavior of the mix in both the viscoelastic 

and viscoplastic components. 

3. Study the influence of loading conditions and stress states (repeated creep tests 

versus monotonic tests) on microstructure distribution in terms of the percent and size of 

voids (air voids and cracks) and three-dimensional aggregate orientation.  The implications 

of the relationship between loading condition and microstructure distribution on modeling 

HMA are also discussed in this dissertation. 

 

OUTLINE OF THE DISSERTATION 

 This dissertation is written according to Texas A&M University Thesis Manual 

standards. The dissertation follows the style and format of the Journal of Engineering 

Mechanics (ASCE). The dissertation consists of six chapters organized as follows: 

 Chapter I is an introduction. The problem statement is presented followed by the 

objective and the outline of the dissertation. 

 Chapter II presents a literature review that begins by offering preliminaries on 

the different material responses that cover elastic, viscoelastic, plastic, and viscoplastic 

behaviors.  This is followed by discussion on the different approaches for analyzing and 

modeling the response of HMA.  The models are divided into empirical, damage 

viscoelastic, damage viscoplastic, damage elasto-viscoplastic, and anisotropic damage 

elasto-viscoplastic models. 

 Chapter III presents the experimental measurements, data analysis, and the 

approach for the analysis of the irrecoverable and recoverable strain components.  
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 Chapter IV presents the integration of a damage viscoelastic constitutive 

relationship with a viscoplastic relationship in order to develop a comprehensive 

anisotropic damage viscoelastic-viscoplastic model that is capable of capturing HMA 

response and performance under a wide range of temperatures, loading rates, and stress 

states. 

Chapter V presents an experiment to study the influence of loading conditions and 

stress states on microstructure distribution and its implications on modeling HMA response.   

Chapter VI presents the conclusions and recommendations of this study.  
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CHAPTER II 

LITERATURE REVIEW 

 
 
INTRODUCTION 

The literature review starts by offering preliminaries on the different material 

responses that cover elastic, viscoelastic, plastic and viscoplastic behaviors.  This is 

followed by discussion on the different approaches for modeling the response of asphalt 

mixes.  The focus will be on the experimental methods used in these approaches to 

extract the model’s parameters. The models are divided into empirical models, damage 

viscoelastic, damage viscoplastic, damage elasto-viscoplastic, and anisotropic damage 

elasto-viscoplastic models.  

 

PRELIMINARIES ON MATERIAL RESPONSE 

The elastic behavior is described by the response at which the strain is recovered 

upon unloading instantaneously. For a linear elastic response, the stress and strain are 

related using Hooke’s law, which has the form in Eq. (2-1) for a uniaxial condition: 

εσ E=       (2-1) 

where σ  is stress, ε  is strain, and E is modulus of elasticity or Young’s modulus. It can 

be seen that for a material to be linear elastic, stress should be proportional to strain.  

Moreover, it should adhere to the compatibility conditions or the superposition principle.  

Slaughter (2002) describes elastic behavior as “the material in which the change 

in the stress at a material point in a body, between two arbitrary configurations of the 
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body, is independent of the time taken in going from on configuration to the other and to 

the path followed in the space of all possible configurations.” 

Fig. 2.1 presents the response of the material within its linear range under loading 

and unloading conditions. Poisson’s ratio is the ratio of instantaneous lateral strain to 

axial strain (direction of loading) during a uniaxial tensile or compressive test. Fig. 2.2 

illustrates different material responses that do not obey linear elastic behavior under 

loading and unloading conditions.   

 
 
 

 

Fig. 2.1. Stress-Strain Diagram for Linear Elastic Material 

 
 
 
In Fig. 2.2A, the loading and unloading paths coincide and the strain is 

recoverable; however, the stress and strain are not proportional, which is typical for 

nonlinear elastic material.  If some of the strain ceases to recover upon unloading, then 

the material is described as elasto-plastic, as shown in Fig. 2.2B. On the other hand, if all 

strain continues to recover upon unloading even when the stress is reduced to zero, then 

the material is called viscoelastic, as in Fig. 2.2C. 

Loading  

Unloading  

Strain  

Stress 
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Fig. 2.2. Illustration of Different Material Responses A) Nonlinear Elastic, B) 
Elasto-Plastic, C) Viscoelastic, and D) Elasto-viscoplastic (after Boresi and Schmidt 
1993)  
  
 
 

As described later, this behavior is usually associated with solid-like viscoelastic 

materials, while liquid-like viscoelastic material can be modeled to retain some 

permanent deformation after the load is removed.  In the viscoelastic response, the 

Strain 

Stress 

Loading and 
unloading  

Strain 

Stress 

Permanent    
 Strain 

Loading  

Unloading  

Strain 

Stress 

Loading  
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elastic portion, theoretically speaking, recovers immediately upon the removal of stress.  

The strain that recovers as a function of time at zero stress is referred to as viscoelastic 

or, sometimes, delayed elastic.  Fig. 2.2D depicts the behavior of an elasto-viscoplastic 

material.  The elastic strain is recovered immediately upon unloading; the viscoelastic 

strain is recovered with time, while the viscoplastic strain remains unrecovered even 

after the removal of the stress.   

 A viscoelastic material exhibits some properties of viscous fluid and some of 

elastic solid.  Hooke’s law is used to describe the linear elastic behavior in which the 

stress is proportional to strain and independent of strain rate. Newton’s law is used to 

describe the Newtonian viscous material in which the stress is proportional to strain rate 

and independent of strain (Moore 1993).  

 The response under creep loading (constant load) offers explanation of the 

different material responses as shown in Fig. 2.3. It can be seen that the elastic material 

has instantaneous response and the strain is fully recovered upon the removal of the load 

(Fig. 2.3A). However, the viscous material develops increasing strain with time and the 

strain does not recover upon unloading (Fig. 2.3B).  The behavior of a viscoelastic 

material combines aspects of the elastic and viscous responses.  There is an 

instantaneously recoverable part which reflects the elastic response and another part that 

recovers strain as a function of time.  The rate at which the viscoelastic material recovers 

strain and whether all strain is recovered or some permanent strain remains varies among 

viscoelastic materials (Young et al. 1998). The plastic response is not time-dependent as 

shown in Fig. 2.3B, and strain is not recovered upon the removal of stress Fig. (2.3).   
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The elasto-viscoplastic response in depicted in Fig 2.3D.  In this response, it is 

assumed that all the viscoelastic response is recovered if sufficient time is allowed, and 

permanent strain is caused by the plastic and viscoplastic responses.  It can be seen that 

the strain has an instantaneous part, εe, and a viscoelastic component that develops with 

time, εve. The plastic part can be distinguished directly since upon unloading the 

recoverable strain is not equal to the instantaneous strain developed upon loading. The 

recovered strain with time after unloading is termed viscoelastic εve; this part is time-

dependent. The unrecovered part is divided into two parts, the first is plastic, εp, as 

described above, and another is viscoplastic, εvp, which is the unrecoverable strain that 

develops as a function of time.  
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Fig. 2.3. Response to Time Load A) Elastic, B) Viscous, C) Plastic, and D) 
Viscoelastic and Viscoplastic 
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It is noted that some viscoelastic response can be modeled such that permanent 

strain remains after unloading as shown in Fig. 2.4A or all strain is recovered as shown 

in Fig. 2.4B. The choice of a viscoelastic model versus an elasto-viscoplastic model to 

describe the material behavior is dependent on the mechanisms (sliding, binder 

deformation, and rate of permanent strain accumulation) that govern the material 

behavior, and whether these mechanisms can be described by viscoelastic behavior or 

viscoplastic behavior.   

 
 
 

 

A) 

Fig. 2.4. A) Shear Creep and Creep Compliance for Viscoelastic Liquid, B) Shear 
Creep and Creep Recovery for Viscoelastic Solid (Ferry 1980) 
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B) 

Fig. 2.4. Continued  

 
 
 
In general, there are three stages of creep, as illustrated in Fig. 2.5. Each of these 

stages could happen at different load-temperature combinations. The first stage is called 

primary and is expected to happen at relatively low stress and temperature at which the 

creep rate for the later stage is zero. If an intermediate stress-temperature combination is 

achieved, the second stage will proceed and the creep rate will be constant. At relatively 

high stress-temperature level, the third stage, which is called tertiary, will take over and 

will end in failure.  
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Fig. 2.5. Creep Curve and Its Stages  

 
 
 
IDENTIFYING MATERIAL RESPONSE  

The literature review in this section focuses on the HMA mechanical response 

and approaches used to define the different components of the response.  The approaches 

are divided into empirical damage viscoelastic, damage viscoplastic, damage elasto-

viscoplastic, and anisotropic damage elasto-viscoplastic models. 

 
 
 
Empirical Relationships  

 The term “empirical relationships” is used here to refer to studies in which the 

main objective was to define the different strain components from experimental 

measurements without focusing on developing mechanistic models to describe these 

strains.  The development of an approach for decomposing the material response into the 

Primary Secondary Tertiary 

Strain 

  Time 

Elastic 
Strain 
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different components is valuable and necessary as it constitutes the first step towards 

developing models for these strain components. 

   

Perl et al. (1983) 

The experimental observations made by Perl et al. (1983) and Sides et al. (1985), 

and later by other researchers, suggest that the total strain for an asphalt mix can be 

described by recoverable and irrecoverable components, some of which are time-

dependent and some of which are time-independent. The total elasto-viscoplastic strain 

can be separated into four components, as shown earlier in Fig. 2.3D, for the first cycle 

of a creep test as follows: 

vppvee εεεεε +++=      (2-2) 

where ε is the total strain; εe is the elastic strain, which is recoverable and time-

independent; εve is the viscoelastic strain, which is recoverable and time-dependent; εp is 

the plastic strain, which is irrecoverable and time-independent; and εvp is the viscoplastic 

strain, which is irrecoverable and time-dependent. Upon removal of the load, the 

instantaneous response includes only the elastic response and the time-dependent 

response after unloading is due to viscoelasticity only. After some time, the response of 

the material tends to be asymptotic to the sum of the plastic and viscoplastic, which are 

irrecoverable components (Lytton et al. 1993). It is noteworthy that Fig. 2.3D and Eq. 

(2-2) form the basis of modeling the response of HMA in most of the studies available in 

the literature. 

 Perl et al. (1983) developed relationships that describe the strain components as 
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follows: 
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( ) a
p NH ⋅= σε     (2-4) 

[ ] [ ]
⎭
⎬
⎫

⎩
⎨
⎧

−−−−−= ∑
=

N

i
LLve TitTitAt

1
)12()22()(),( αασσε   (2-5) 

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞⎜

⎝
⎛+−= )(1)1()(),,( bN

b
T

tNTBNt
L

nb
Lnvp

β
βσσε   (2-6) 

where E  is Young’s modulus, H is the slope of the stress versus plastic strain, N is 

number of loading cycles, a ,b , α , and β are material constants, t  is time, )(σA and 

)(σB are material functions of stress, nt is the time elapsed from the beginning of the Nth 

cycle, and LT is the loading period.  

Experimental limitations could make it very difficult to separate the time-

dependent from the time-independent components.  For example, it is difficult to totally 

remove the load within a very short time that would allow the deformation measurement 

devices to record the instantaneous response.  In fact, one has to assume a small time at 

which the response is considered instantaneous.  Therefore, for the sake of simplicity, 

some of the strain components are sometimes lumped into one component.  Abdulshafi 

and Majidzadeh (1984) and Bonnier (1993) combined the irrecoverable components into 

one viscoplastic strain and the recoverable components into a viscoelastic strain. 
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Uzan  (1996) 

Uzan (1996) used the same approach used by Sides et al. (1985) to analyze the 

strain response under creep loading and a wide range of temperatures.  Uzan (1996) 

showed that the irrecoverable components make up most of the axial and residual strain 

for HMA at relatively high temperatures, as shown in Fig. 2.6. Therefore, it was noted 

by Uzan (1996) that rutting, which usually occurs during a very hot summer combined 

with heavy traffic loads, is mainly due to the viscoplastic (including plastic) 

deformation, whereas the viscoelastic component contributes very little to such a 

phenomenon. These findings were also supported by a previous study by Sides et al. 

(1985) for sand-asphalt mixtures. 

 
 
 

Damage Viscoelastic Models 

Kim and Little (1990) and Kim et al.  (1997) 

Probably the approach that has received the most significant attention in HMA 

modeling is the one based on theory of damage viscoelasticity.  The researchers who 

worked on this approach used Schapery’s viscoelastic correspondence principle 

(Schapery 1969).  In this approach, the correspondence principle and the work potential 

theory were used to model the accumulated damage and microdamage healing.  

Two testing protocols need to be performed in these models.  The first test has to 

be done at small stress or strain levels such that no damage occurs.  This test is used to 

measure the linear viscoelastic properties that define the intact undamaged material.  The 

linear viscoelastic properties are used to calculate the pseudo-strain (Schapery 1984).   
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Fig.  2.6. Components of Axial and Residual Strain versus Number of Repetitions at 
105 °F (Uzan 1996) 
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The second test is supposed to be conducted at higher stresses that induce 

damage in the material.  The difference between the responses at the low and high 

stresses is quantified by the dissipated pseudo-strain energy, or a damage function. 

Kim et al. (1997) used a constant strain rate tensile monotonic test at different 

strain rates to validate the application of the correspondence principle at variable strain 

rates, and obtain the viscoelastic properties. Then, a tensile cyclic loading with constant 

stress/strain amplitudes without a rest periods was conducted to account for the damage 

growth of the material.  In addition, Kim et al. (1997) conducted tensile cyclic loading 

with constant stress/strain amplitudes with rest periods to account for the material 

healing.  The effect of the rest period was reflected in an increase in the pseudo-stiffness 

(applied stress/pseudo-strain) and compared with the no rest period stiffness.    It should 

be mentioned that this approach was mainly applied to the fatigue of asphalt mixes, and 

it was not used for rutting.     

 

Si et al. (2002) 

Si et al. (2002) developed a nonlinear damage viscoelastic model that utilized the 

pseudo-strain energy and the pseudo-stiffness to characterize the fatigue microdamage 

and healing in asphalt concrete. They applied a loading pattern that consisted of a strain-

controlled relaxation test, a strain-controlled haversine repeated loading at low strain 

level to characterize the viscoelastic response.  Then they conducted haversine repeated 

loading at higher strain values to induce damage and calculated the dissipated pseudo-

strain energy. They were able to monitor the material healing by introducing rest periods 
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after loading periods. The loading period was 0.1 second the rest period was 0.9 second. 

Fig. 2.7 presents the pattern of loading used by Si et al. (2002). The test temperature was 

25 °C, as the interest was fatigue damage.   

The main contribution of this study is detecting the nonlinear viscoelastic 

response of the material and developing an approach to normalize with respect to this 

nonlinear response when the dissipated energy responsible for damage is calculated.  

 
 
 

 

Fig. 2.7. Graphical Illustration of the Input Wave Form (Si et al. 2002) 

 
 
 
Sousa et al. (1993) 

 Sousa et al. (1993) developed a damage viscoelastic model to predict permanent 

deformation of HMA. The developed model was intended to capture important 

phenomena that influence permanent deformation of HMA including the dilatancy under 

shear loading, the effect of confining pressure on the shear modulus, the temperature and 

rate of loading dependency, and the residual accumulation of permanent deformation 
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under repetitive loading. Sousa et al. (1993) emphasized that a valid constitutive model 

for HMA cannot assume the material as isotropic and linear elastic. In addition, it is 

important to develop standardized test procedures to determine the material parameters 

for a constitutive model. 

  The model consisted of a number of three-dimensional Maxwell elements in 

parallel. Each Maxwell element was composed of a nonlinear spring and dashpot. The 

dilatancy effect and the increase in effective shear modulus under confining pressure are 

due to the aggregate skeleton, whereas temperature and rate dependency are associated 

with the asphalt binder (Sousa et al. 1993). The hardening was associated with the 

spring, and temperature and rate dependency were associated with the dashpot. Damage 

was accounted for by including a damage parameter in the equilibrium equation for the 

dashpot. 

 Simple shear at constant height, uniaxial strain and volumetric tests were used to 

determine the nonlinear elastic material parameters. The viscous parameters were 

determined from the simple shear frequency sweep test, and the damage parameters were 

determined from the simple shear strain sweep test at constant height. Damage was 

found to follow an S-curve shape ranging between no damage at very low shear strain 

and almost complete failure at relatively high values of shear strain, as shown in Fig. 2.8. 

Adding a damage component in their model significantly improved the ability to 

simulate test measurements.  
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Fig.  2.8. Shape of the Damage Function Obtained from Shear Strain Sweeps and 
Shear Creep Tests (Sousa et al. 1993) 
 
 
 
Damage Viscoplastic Models 

Scarpas et al. (1997) 

Scarpas et al. (1997) presented a damage viscoplastic model.  They utilized 

Perzyna’s theory of viscoplasticity with Desai’s yield surface (Desai et al. 1986, Desai 

and Zhang 1987, Desai 1990) as follows: 
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where I1, J2, and J3 are the first invariant of the stress tensor, the second invariant of the 

deviatoric stress tensor, and the third invariant of the deviatoric stress tensor, 

respectively; Pa is the atmospheric pressure; R is the triaxial tensile strength; and α, β, γ, 

and n are material parameters defining the yield surface.  

 Scarpas et al. (1997) also included an additional strain component, εcr, to account 

for damage due to crack formation as follows: 

   crclw ε⋅=       (2-11) 

where w is the crack opening and lc is a characteristic length scale. 

 Monotonic triaxial compression and tension tests were used to determine 

material parameters related to stress path and rate dependency.  In addition, incremental 

creep tests were used to determine material parameters related to hardening and 

viscosity. The model was implemented in a dynamic nonlinear Finite Element (FE) 

system to simulate flexible pavement response. The FE simulation showed that all 

elements in the vicinity of the load were subjected to intense shearing deformation and 

that the shear stresses (compression and tension) comprised the major domain of the 

pavement top layer response. Scarpas et al. (1997) noted that shear compression can be 

applied by a standard triaxial testing apparatus, whereas shear tension is not easy to 

apply.  

 

 

 

 



 

 

24

Damage Elasto-Viscoplastic Models 

Schwartz et al. (2004) 

The researchers developed a model that accounts for viscoelastic, viscoplastic, 

and damage behavior of HMA. The damage viscoelastic part of the model is similar to 

that by Kim et al. (1997).  The testing regime was designed to calibrate the viscoplastic 

model and to evaluate the applicability of low-strain time-temperature superposition for 

large-strain viscoplastic response.  They performed two series of uniaxial compression 

creep and recovery tests. The tests were divided into two groups, uniform load tests and 

uniform time tests. The uniform load tests were designed such that the stress remains the 

same and the duration of loading and recovery increases from one cycle to another. The 

uniform time tests were designed such that the duration of the loading and recovery 

period are fixed from one cycle to another and the stress increases.  

The focus of the authors in this paper was limited to the viscoplastic response 

component at intermediate and high temperatures.   The viscoplastic model has the form: 
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where vpε is the viscoplastic strain, p and D are material properties, σ is uniaxial stress, 

and t is time. 

The viscoplastic strains were determined from the recovery period after each 

loading cycle from both series of uniform load and uniform stress. Nonlinear least 

square optimization was used to fit the data to the results and find the model parameters. 

Fig. 2.9 presents the viscoplastic model fitting. 
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Fig. 2.9. Measured versus Predicted Viscoplastic Strain (Schwartz et al. 2004) 
 
 
 
Chehab et al. (2003) 

Chehab et al. (2003) developed a model that accounts for elastic, viscoelastic, 

plastic, and viscoplastic responses of asphalt concrete. This model includes a viscoelastic 

relationship to characterize the elastic and viscoelastic responses and a viscoplastic 

relationship to characterize the plastic and viscoplastic responses.  

The viscoelastic model is based on the Schapery’s continuum damage approach, 

similar to Kim et al. (1997). The viscoelastic strain is determined by evaluating the 

inverse to the integral: 
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where veε is the viscoelastic strain, RE is the reference modulus, )'(ξD  is uniaxial creep 

compliance, ξ is the reduced time, 'ξ is an integration constant, C is the pseudo-stiffness, 

and S* is damage parameter.  

Chehab et al. (2003) used monotonic constant strain rate test in tension at low 

temperatures of -10 °C and 5 °C to determine the parameters and validate the 

viscoelastic model. Fig. 2.10 presents the experimental and predicted viscoelastic strain. 

 
 
 

 

Fig. 2.10. Predicted versus Experimental Strain at -10 °C (Chehab et al. 2003) 
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The developed viscoplastic strain rate was based on relationships proposed by 

Uzan (1996) and Schapery (1999). The model has a form similar to the one discussed 

previously by Schwartz et al. (2004). 

Chehab et al. (2003) used constant cross head rate tests in uniaxial tension at 

temperatures of (-30 °C to 40 °C) to model the viscoplastic component of the strain. The 

monotonic tests were used as input to the developed viscoelastic strain to predict the 

viscoelastic strain. The predicted viscoelastic strain is subtracted from the total measured 

strain, and the resulting strain was attributed to viscoplasticity. Fig. 2.11 presents the 

predicted viscoplastic and viscoelastic of total strain at 40 °C. 

 
 
 

 

Fig. 2.11. Predicted Viscoplastic, Viscoelastic, and Total Strain at 40 °C (Chehab et 
al. 2003) 
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The model was verified under a single stress path, which is a monotonic testing 

in tension. Experimental measurements as well as numerical simulations have shown 

that rutting in asphalt mixes takes place close to the surface where the stress path is 

dominated mainly by shear stresses (Sousa et al. 1993), which is not well captured in 

monotonic tension test. 

 
 
 

Anisotropic Damage Elasto-Viscoplastic Models 

Tashman (2003) 

Tashman (2003) developed a model that is based on Perzyna’s formulation with the 

Drucker-Prager yield function modified to account for the material anisotropy and 

microstructure damage. The material anisotropy is captured through microstructural 

analysis of two-dimensional sections of HMA in terms of aggregate distribution.  

Furthermore, a damage parameter is included in the model in order to quantify the 

nucleation of cracks and growth of air voids and cracks (voids). 

The model is based on Perzyna’s theory on time rate flow rule where the 

viscoplastic strain rate is defined using the flow rule as follows: 

σ
φε

∂
∂

⋅><⋅Γ=
gfvp )(&      (2-14) 

where, Γ is the fluidity parameter, which establishes the relative rate of viscoplastic strain 

and is experimentally determined; and 
σ∂

∂g  is a measure of the direction of viscoplastic 

strain. 
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Triaxial compressive strength tests conducted at five strain rates and three 

confining pressures were used to systematically determine important material parameters 

that represent different phenomena influencing the permanent deformation of HMA. 

These phenomena include the aggregate structure friction, aggregate structure dilation, 

confining pressure dependency, strain rate dependency, anisotropy, and damage.  

The material parameters were determined based on the assumption that work 

hardening is the dominant deformation mechanism between the flow stress and a 

damage threshold; thereafter, the damage mechanism becomes dominant and 

deformation is primarily influenced by void growth. The anisotropy parameter (vector 

magnitude) provided the capability to account for aggregate structure distribution in the 

model. 

Including the damage parameter in the model enabled capturing the softening 

behavior of HMA, which occurs as soon as the damage mechanism overcomes work 

hardening resulting in a drop in the load-carrying capacity of the material.  The model 

was found to be in good agreement with the experimental data.  

The developed model did not include the viscoelastic response of the material. 

The monotonic compressive strength tests were limited in providing a methodology for 

identifying the different material responses (viscoelastic versus viscoplastic). An 

assumption was made that the elastic response can be defined by the linear portion of the 

stress-strain relationship.   
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Dessouky (2005) 

Dessouky (2005) developed an elasto-viscoplastic continuum model to predict 

HMA response and performance.  The model incorporates a Drucker-Prager yield surface 

that is modified to capture the influence of stress path direction on the material response.  

Parameters that reflect the directional distribution of aggregates and damage density in the 

microstructure are included in the model.  The elasto-viscoplastic model is converted into a 

numerical formulation and is implemented in FE analysis using a user-defined material 

subroutine (UMAT). A fully implicit algorithm in time-step control is used to enhance the 

efficiency of the FE analysis.  The FE model was used to simulate permanent deformation 

of pavement sections. 

The developed model decomposes the total strain rate ε&  into:  

vp
ij

e
ijij ε+ε=ε &&&       (2-15) 

where the superscript (e) refers to the elastic part and (vp) refers to the viscoplastic part. 

The elastic strain component can be defined according to Hook’s law as follows: 

e
klijklij D ε=σ &&       (2-16) 

where σ&  is the stress rate tensor and ijklD  is the fourth-order elastic stiffness tensor.  

The viscoplastic component dominates the response for the material at higher magnitudes 

of stress and higher temperatures.  The viscoplastic strain rate component is based on 

Perzyna’s theory as described earlier in Tashman (2003). 

The model builds upon the formulation developed by Tashman (2003), but it is 

expanded to include the elastic response of the material and to account for the influence of 
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stress path direction.  In addition, the procedure to account for anisotropy in the constitutive 

relationship is simplified.  The new model accounted for the following phenomena: elastic 

response prior to reaching the yielding stress threshold; shear as the dominant stress causing 

permanent deformation; dilation and hydrostatic pressure dependency of the material; stress 

path dependency of the viscoplastic response; work hardening/softening of the material; 

aggregate directional distribution in the microstructure; and damage in terms of cracks and 

air voids. 

Triaxial compression and extension strength tests on granite, gravel, and limestone 

mixes were used to determine model parameters. These tests were conducted at different 

loading rates and confining pressures. 

The developed model did not include the damage in the elastic response of the 

material. Similar to the model by Tashman (2003), the monotonic triaxial strength tests 

are limited in their ability to identify the different material responses.  

 

CHARACTERIZING DAMAGE USING X-RAY COMPUTED TOMOGRAPHY 

X-ray computed tomography (CT) is fast becoming a powerful nondestructive 

tool in characterizing the microstructure of many engineering materials such as concrete, 

soil, rocks, metals, and HMA. Although some of these materials vary significantly in 

their microstructural composition and distribution, the motivation behind using this new 

technology has been the same, and that is the nondestructive nature of X-ray CT, its 

accuracy, and the need to characterize the material microstructure.  A review of the 

application of X-ray CT to the characterization of asphalt mixes is provided by Masad 
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(2004). 

Synolakis et al. (1996) presented a new method for computing the microscopic 

internal displacement fields associated with permanent deformation of three-dimensional 

HMA cores while satisfying the small gradient approximation of continuum mechanics. 

They computed the displacement field associated with diametral loading of a cylindrical 

asphalt core using X-ray CT to collect three-dimensional images from sequences of two-

dimensional images scanned before and after loading. The pair of three-dimensional 

images was then used to compute the displacement field by comparing their three-

dimensional representation before and after the deformation. 

Shi et al. (1999) used X-ray CT to monitor the evolution of internal failure in 

different soils, particularly the formation of shear bands. They used an apparatus that can 

be fitted into the chamber of a medical CT. CT images were then taken on different 

cross-sections inside the specimens at different loading stages to monitor soil 

deformation continuously. They showed that X-ray CT is a powerful nondestructive tool 

for studying the deformation patterns and capturing the formation of cracks and shear 

bands in soils. 

Landis and Keane (1999) used high resolution X-ray microtomography to measure 

internal damage and crack growth in small mortar cylinders loaded in uniaxial 

compression.  In their experiment, small mortar cylinders were inserted into a small loading 

frame that could be mounted directly on the X-ray rotation table. This was done in order to 

scan the specimens at varying strain values so that internal damage could be quantified and 

correlated with load deformation information. Aluminum was chosen for the loading frame 
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because of its relatively low X-ray absorption, leading to better X-ray absorption resolution 

in the specimens. Multiple tomographic scans were made of the same specimen at different 

levels of deformation applied through a custom-built loading frame, and image analysis of 

the scanned images was used to measure the internal crack growth during each deformation 

increment. 

 Landis and Keane (1999) used X-ray CT to characterize damage in cement 

concrete.  They showed that beyond 30% of ultimate strength, cracking occurred at the 

cement-aggregate interface. At about 70% of the peak load, these distributed cracks started 

to localize and matrix cracking occurred, which macroscopically became large-scale axial 

splitting. Post-peak response was characterized by additional matrix cracking and frictional 

mechanisms in a relatively narrow band. However, measured post-peak behavior was found 

to be highly dependent on the testing setup and specimen geometry.  

Masad et al. (2002a) used X-ray CT along with image analysis technique (IAT) to 

characterize the statistical distribution of air void sizes at different depths in HMA 

specimens. They found that air void size distribution follows a Weibull distribution, which 

was used to quantify the effect of compaction effort, method of compaction, and aggregate 

size distribution on air voids. They also found that air void size distribution in Superpave 

gyratory compacted specimens exhibit a “bath-tub” shape, where larger air voids were 

present at the top and bottom parts of a specimen. This shape was more pronounced at 

higher compaction efforts. Specimens prepared with different aggregate sizes were found to 

have noticeably different air void sizes. Specifically, larger air voids were present in 

specimens that consisted of smaller aggregate particles. 
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Tashman et al. (2004) used X-ray CT to characterize damage evolution in HMA at 

relatively high temperatures. HMA specimens were loaded using a triaxial compression 

setup to four predefined strain levels at three confining pressures. X-ray CT was used to 

capture the microstructure of the HMA specimens before and after they were deformed, 

and IAT was used to characterize the evolution of air voids and cracks (voids) in the 

deformed specimens. IAT was developed to distinguish between air void growth and crack 

evolution.  

Damage in HMA was shown to initiate following a period of microstructure 

hardening. The damage was found to be a localized phenomenon in the sense that there 

exists a critical section in a specimen that is mainly responsible for failure. Growth and 

propagation of cracks in this critical section were significantly larger than in the rest of the 

specimen. Tashman et al. (2004) found that the top part of the specimens exhibited 

significant cracking, the middle part exhibited significant dilation, and minor 

microstructural changes occurred in the bottom part.  They have attributed the variations 

within a specimen to the heterogeneity of the HMA microstructure. 
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CHAPTER III 

AN EXPERIMENTAL PROGRAM TO IDENTIFY ASPHALT CONCRETE 

RESPONSES FOR CONSTITUTIVE MODELING 

 

OVERVIEW 

 The response of hot mix asphalt (HMA) to different loading paths has long been 

investigated by researchers. Researchers adopted different modeling approaches and 

performed different experimental programs to identify the different responses (elastic, 

viscoelastic, plastic, and viscoplastic) of HMA. In this chapter a comprehensive material 

identification experimental program is proposed. The experimental program is designed 

such that it is able to quantify and decompose the response to its components including 

elastic, plastic, viscoelastic, and viscoplastic. This experimental program is adopted 

within a theoretical framework that is capable of modeling the different HMA responses.  

The damage viscoelastic model, based on Schapery’s model, is employed in identifying 

the damage viscoelastic response and separating it from the viscoplastic response.    

The developed experimental program and theoretical framework were used to 

analyze repeated creep tests conducted on three mixes that include aggregates with 

different characteristics.   

 
 
INTRODUCTION 

Researchers have adopted different models to describe the HMA response, and 

followed different experimental approaches to determine the models’ parameters. Park et 
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al. (1996) used a uniaxial tension test under different strain rates at a temperature of 25 

°C to evaluate the parameters of a viscoelastic continuum damage model. Lee and Kim 

(1998) used tensile uniaxial cyclic tests in controlled-strain mode at different strain 

amplitudes to determine their damage viscoelastic model’s parameters.  Scarpas et al. 

(1997) used monotonic compression and tension tests coupled with incremental creep 

tests at temperatures ranging between 10 °C and 40 °C in order to extract the parameters 

of a damage elasto-viscoplastic model.  

Chehab et al. (2003) developed a damaged viscoelastic relationship to 

characterize the elastic and viscoelastic responses and a viscoplastic relationship to 

characterize the plastic and viscoplastic responses. The viscoelastic model is based on 

Schapery’s continuum damage approach. The developed viscoplastic model is based on 

a one-dimensional relationship proposed by Uzan (1996). They used dynamic testing at 

small strains to model and characterize the linear viscoelastic response. They also used 

monotonic tests at relatively low temperatures to determine the damage viscoelastic 

response.  The predicted damage viscoelastic strain was then subtracted from the total 

strain measured using constant cross head rate tests in uniaxial tension at temperatures of 

-30 °C to 40 °C to model the viscoplastic component of the strain.  The experimental 

measurements presented by Chehab et al. (2003) were all conducted using tension tests.    

 Schwartz et al. (2004) adopted the same model as Chehab et al. (2003), but they 

conducted compression uniaxial and triaxial tests.  Schwartz et al. (2004) used uniform 

time and uniform load creep and recovery tests, at temperatures ranging from 25 °C to 

45 °C, to extract their viscoplastic model parameters. The viscoplastic strains were 
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determined from the recovery period after each loading cycle from both series of 

uniform time and uniform load. Both Chehab et al. (2003) and Schwartz et al. (2004) 

showed that HMA is a thermologically simple material even at high viscoplastic strains 

at high temperatures.  

 

OBJECTIVES  

Many researchers have been working on modeling the response of HMA. The 

response of HMA consists of four components namely elastic, plastic, viscoelastic, and 

viscoplastic. Decomposition and quantification of these responses for HMA is the main 

purpose of this chapter. Once these responses are identified, constitutive models can be 

developed to describe them. The objective of this chapter is to develop and perform an 

experimental program that is capable of decomposition and identification of the 

constitutive HMA response. 

 
 
 
MIX DESIGN AND MATERIALS PROPERTIES 

Mix Design 

Four-inch diameter (101.6 mm) HMA specimens of three mixes with different 

aggregate types were compacted using a Servo Pac gyratory compactor to a target air void 

content of 7.0 %. The three aggregate types were gravel, limestone, and granite. These 

aggregate types were selected because they represent a wide range of aggregate properties. 

Mix volumetrics and laboratory data of these three mixes are tabulated in Table 3.1. All 

three mixes were prepared according to the Superpave specifications for high traffic roads 
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(10 to 30 million equivalent single axle loads (ESAL’s). Fig. 3.1 shows the gradations of 

the aggregates used in the three mixes.  

 
 
 
Table 3.1.   Mix Design Factors for the Three Mixes 

Mix Gravel Limestone Granite
Avg. Measured Air void, % 7.04 6.7 6.89
SD of AV 0.48 0.25 0.30
Binder Type PG 64-22 PG 64-22 PG 64-22 
Binder Content, % 3.6 4.85 4.86
Maximum Specific Gravity 2.484 2.47 2.471
Specimen Height, mm 155 157.5 157.5

Sieve Size, mm
12.5 100 98.8 98.8
9.5 91.748 79.5 79.5
4.75 48.22 46.2 46.2
2.36 32.71 31.6 31.6
1.18 27.96 24.5 24.5
0.6 22.26 17.8 17.8
0.3 9.75 11.2 11.2
0.15 3.94 6.3 6.3
0.075 2.95 1.5 1.5
Pan 0 0 0

Percent Passing
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B) Limestone Mix 

Fig. 3.1.  0.45 Power Gradation Charts of the Three Mixes A) Gravel, B) Limestone, 
and C) Granite 
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C) Granite Mix 

 
Fig. 3.1. Continued 

 
 
 
Material Properties 

The shape characteristics of the three aggregates used in this study were 

characterized by Masad et al. (2005).  Aggregate images were captured using the 

Aggregate Imaging System (AIMS) that was developed to capture images of both fine 

and coarse aggregate (Masad 2003).  AIMS uses eigenvector analysis to identify the 

longest and shortest dimensions of a black and white image of a particle projection.  It is 

also capable of measuring the depth of a particle.  The three lengths are used to calculate 

the sphericity index (SP), which is a measure of the particle form as follows: 

 3
2
L

IS

d
dd

IndexSphericity
⋅

=     (3-1) 
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where dL is the longest dimension, dI is the intermediate dimension, and dS is the shortest 

dimension.  The sphericity values for coarse aggregates are shown in Table 3.2. A 

particle with equal dimensions will have a sphericity value of 1.0.   

AIMS also provides an angularity index which increases as particle angularity 

increases.  Texture analysis is conducted on gray scale images using wavelet theory.  

The texture index increases with an increase in surface texture (Masad 2003).   

The angularity and texture results are reported in Table 3.2.  As reported by 

Masad et al. (2005), among the fine aggregates tested, the granite was the most angular 

while the uncrushed gravel was the least angular.  Both fine limestone and granite 

possessed higher texture values compared to gravel, and the limestone aggregate had the 

highest texture values.  Image analysis of coarse aggregates showed that the granite 

exhibited the highest angularity and texture levels, whereas the gravel had the lowest 

texture and angularity values.  According to the sphericity results, limestone was the 

most elongated while gravel was the least elongated.  

 
 
 

Table 3.2.  Aggregate Shape Parameters 
Type Size Angularity Texture Form 

(Sphericity) 
Fine 2652.38 192.00 N/A Limestone 
Coarse 3041.00 245.50 0.69 
Fine 2044.5 93.00 N/A Gravel 
Coarse 1936.26 150.00 0.78 
Fine 4401.40 145.00 N/A Granite 
Coarse 3347.32 422.00 0.71 
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ANISOTROPY OF HMA AGGREGATE STRUCTURE 

The vector magnitude Δ introduced by Curray (1956) can be used for the purpose 

of quantifying the material anisotropy in terms of aggregate distribution within the 

microstructure: 

1
2 2 2

1 1

1 cos 2 sin 2
M M

k k

k kM
θ θ

= =

⎡ ⎤⎛ ⎞ ⎛ ⎞
Δ = +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∑ ∑     (3-2) 

where θk is the orientation of an individual aggregate on a two-dimensional image of 

HMA cut section ranging from -90o to +90o and M is the total number of aggregates 

analyzed in the image. Theoretically, the value of Δ ranges between zero and unity. Zero 

value indicates the aggregates are completely randomly distributed, which is analogous 

to isotropic materials, and a unity value indicates the aggregates are all oriented in one 

direction (Tashman 2003).  

Aggregate structure anisotropy is included in the constitutive model through 

introducing a modified stress tensor ( ijσ ) that is as a function of stress tensor σij and 

fabric tensor Fij as shown in Eq. (3-3) (Tobita and Yanagisawa 1988, Masad et al. 2003):  

ij ik kj ik kj
3 F F
2

σ σ σ⎡ ⎤= +⎣ ⎦      (3-3) 

The anisotropic tensor Fij is a function of Δ, which is measured using image 

analysis of two-dimensional vertical sections of HMA specimens. The 

Δ  value in ΗΜΑ was found to vary between zero and 0.5 for HMA (Masad et al. 1999, 

Tashman 2003). Accordingly, the deviatoric stress in a triaxial creep test is modified as 
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in Eq. (3-4) to account for the aggregate distribution as follows: 

31 σσσ −=       (3-4) 

Δ+
Δ−

=
3

)1(3 1
1

σ
σ      (3-5) 

Δ+
Δ+

=
3

)1(3 3
3

σ
σ      (3-6) 

where 1σ  is the axial creep stress and 3σ  is the associated creep confinement.  In 

essence, the applied stress is replaced with a modified stress tensor that reflects the effect 

of anisotropic distribution of aggregate structure on the anisotropic mechanical response 

(Masad et al. 2005).  As will be shown in this chapter and the following chapter, this 

approach simplifies the procedure to account for anisotropy in the constitutive model. 

 

 

EXPERIMENTS TO IDENTIFY STRAIN COMPONENTS  

The strain components as described earlier in Chapter II are defined as: 

vppvee εεεεε +++=     (3-7) 

where ε is the total strain; εe is the elastic strain, which is recoverable and time-

independent; εve is the viscoelastic strain, which is recoverable and time-dependent; εp is 

the plastic strain, which is irrecoverable and time-independent; and εvp is the viscoplastic 

strain, which is irrecoverable and time-dependent. In creep test the elastic component is 

defined by setting a time limit that would identify the difference between the elastic and 

viscoelastic components. This time limit varies with the type of the material and it is 
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controlled by the accuracy of the measuring devices and usually identified based on the 

experimental results. Therefore, motivated by practicality and for the sake of simplicity, 

recoverable components (elastic and viscoelastic) will be referred to herein as 

viscoelastic response.  Similarly, the irrecoverable components (plastic and viscoplastic) 

will be combined and referred to as a viscoplastic component.  This approach has 

already been adopted in several studies in the past (Abdulshafi and Majidzadeh 1984, 

Bonnier 1993, Chehab et al. 2003, Schwartz et al. 2004).  

In this chapter the damage viscoelastic strain, dveε , will be identified by first 

measuring the linear viscoelastic response. Then, damaged viscoelasticity theory will be 

employed to characterize the damage parameters. Once dveε  is identified, it can be 

subtracted from the total strain to quantify the viscoplastic strain. Accordingly, the 

components of the strain in this study are governed by the following equation: 

vpdve εεε +=       (3-8) 

 

Linear Viscoelastic Response 

 The linear viscoelastic response is quantified by performing a dynamic 

frequency sweep compression test. The data were analyzed to solve for the creep 

compliance, which describes the linear viscoelastic behavior of HMA.  

HMA specimens were tested using frequency sweep dynamic compression tests 

at five different frequencies and one temperature (130 °F).  The dynamic testing was 

performed in stress-controlled mode that would generate peak-to-peak strain ranging 

between 50 and 150 microstrains with no confinement. At this strain level, HMA is 
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typically assumed to exhibit linear viscoelastic response (Chehab et al. 2003).  Two 

replicates from each of the gravel, limestone, and granite were tested.  Table 3.3 presents 

the loads applied on each of the mixes. 

 
 
 
Table 3.3. Dynamic Testing Loads for Each Mix 

 Granite Limestone Gravel 
Frequency, 

Hz 
Load, 

lb 
25 900 900 500 
10 800 800 450 
5 600 600 350 
1 350 350 175 

0.5 300 300 150 
0.1 250 250 125 

 
 
 
The procedure described in National Cooperative Highway Research Program 

(NCHRP) 9-19 was followed in performing this test (Witczak and Pellinen 2000). The 

equations used for fitting the stress and strain functions have the following forms, 

respectively: 

( ) ( )tft o πσσσ 2sin1+=      (3-9) 

( ) )2(sin1 δπεεε −+= tft o      (3-10) 

where oσ  and oε are the peak-to-peak stress and strain added to the bedding stress and 

strain, 1σ and 1ε  are peak-to-peak stress and strain, respectively, f is the frequency of 

loading in Hz, t is time, and δ is the phase angle in radians.  
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After fitting the data to these functions, the dynamic creep compliance and the 

phase angle were calculated as follows: 

1 1

1
1

(3 )* _ 3(1 )
D ε ε

σ
σ

+ Δ
= =

− Δ
    (3-11) 

δ = ω Δt     (3-12) 

The above two properties were calculated at each frequency for the two replicates.  

Then the average compliance and average phase angle were calculated for each mix. The 

result from applying the dynamic compression test on the granite mix is shown in Table 

3.4.  To keep the notations simple, the symbol “ ” around the creep compliance was 

removed. 

 
 
 
Table 3.4. Dynamic Compression Results for Granite Mix 

Frequency *D  δ 

Hz 1/ psi Degrees 
25 1.08E-06 56 
10 3.42E-06 49 
5 8.55E-06 48 
1 1.22E-05 53 

0.5 1.29E-05 34 
0.1 1.20E-05 29 

 
 
 
 
The creep compliance and the phase angle values of the three mixes are 

presented in the Fig. 3.2. One of the performance parameters recommended by NCHRP 
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9-19, E*/sin δ, is calculated and graphed in Fig. 3.3.  However, it should be kept in mind 

the E* parameter presented here differs from the typical modulus, and the one used here 

accounts for material anisotropy. The E*/sin δ parameter ranks the mixes in descending 

order as limestone, gravel, and then granite. It can be seen that the difference between 

the gravel and granite mixes is insignificant.  These results do not agree with the shape 

characteristics in Table 3.2 that show granite to exhibit more angularity and texture than 

gravel.  As such, granite is expected to have much better resistance to permanent 

deformation than the gravel mix.  The superior resistance of the granite mix to 

permanent deformation compared with the gravel mix will be supported later with the 

permanent deformation measurements from the creep and recovery tests.  Consequently, 

the viscoelastic parameter E*/sin δ failed to rank the three mixes in terms of their 

resistance to permanent deformation.  This might be due to the reliance of this parameter 

on energy dissipated in viscoelastic deformation, while as will be shown later, the 

viscoelastic response is small compared to the damage viscoelastic response and 

viscoplastic response at the test temperature.   

In order to determine the creep compliance D(t) as a function of time from the 

dynamic creep compliance as a function of frequency, three different methods were 

used. The first is according to the procedure by Schapery as documented by Chehab et 

al. (2003), the second is an interconversion relationship for linear viscoelastic functions 

(Ferry 1980), and the third is by using the phenomenological theory of linear viscoelastic 

behavior (Tschoegl 1989). 
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Fig. 3.2. A) Creep Compliance and B) Phase Angle for the Three Mixes  

A) 

B) 



 

 

49

0.0E+00
5.0E+05
1.0E+06
1.5E+06
2.0E+06
2.5E+06
3.0E+06
3.5E+06

0 5 10 15 20 25 30

Frequency, Hz

E*
/S

in
 δ

 , 
ps

i
(E*/Sin δ), Gravel (E*/Sin δ), Limestone (E*/Sin δ), Granite

 

Fig. 3.3. Linear Viscoelastic Parameter, E*/Sin δ, for the Three Mixes 

 
 
 
Chehab et al. (2003) followed Eq. (3-13) to convert the dynamic relaxation 

modulus to relaxation modulus as a function of time: 

t
f

fEtE 1)(1)(
=

≅
λ

     (3-13) 

where 

λ= Γ(1 - n) cos (nπ/2)     (3-14) 

Γ is the Gamma function, n is the log-log slope of the dynamic modulus-frequency 

relationship:  

fd
fEdn

log
)(log

=       (3-15) 

Now that the relaxation modulus is determined it can be fitted to a Prony series, 
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∞ +=
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1

/)( ρ      (3-16) 

where ∞E , mρ , and mE  are long-time equilibrium modulus, relaxation time, and regression 

coefficient of Prony series, respectively.  Then, the relaxation modulus can be converted to 

creep compliance by using the relation in Eq. (3-17): 

π
π

n
ntDtE sin)()( =       (3-17) 

from which the creep compliance is obtained and fitted to a Prony series in the form: 

[ ]∑
=

−−+=
M

m

mt
m eDDtD

1

/
0 1)( τ       (3-18) 

where τm is the retardation time, Dm is the regression coefficient, and D0 is the initial creep 

compliance at time zero. 

  The second method used is an interconversion relationship which has the following 

form (Ferry 1980): 

t
DDDtD 1)10("014.0)4.0("4.0)(')(

=
−+=

ω
ωωω    (3-19) 

where  

δωω cos)(*)(' DD =      (3-20) 

δωω sin)(*)(" DD =      (3-21) 

whereω  is the frequency in radians.  The creep compliance is then fitted to a Prony series 

as in Eq. (3-18). 

 The third method to convert D* to D(t) uses the phenomenological theory of linear 

viscoelastic behavior (Tschoegl 1989).  In this method, the storage and loss components of 
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the dynamic creep compliance are fitted to Eqs. (3-22 and 3-23) that represent the 

Generalized Maxwell model (generalized Prony series):  

 ∑
= +

+=
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m m
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w
D

DwD
1

220 1
)('
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     (3-22) 
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221
)("
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τ

      (3-23) 

where 0D , mD  , and mτ  are material constants and w  is the frequency in radians/ sec. 

These parameters were used to determine the creep compliance as described by the Prony 

series in Eq. (3-18). 

 The three methods were applied to the three mixes and Fig. 3.4 presents the creep 

compliance from the three methods. 
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A) Gravel Mix 

Fig. 3.4. Creep Compliance for A) Gravel, B) Limestone, and C) Granite Mixes 
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B) Limestone Mix 
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Fig. 3.4. Continued 

 
 
 
 
It can be seen that the compliance calculated from the phenomenological theory of 

linear viscoelastic behavior, Eqs. (3.22 and 3.23) and the interconversion among linear 

viscoelastic functions, Eq. (3-19), are closer to each other from Eq. (3-13).  It is interesting 

to note that the linear viscoelastic properties in Fig. 3.4 were not sensitive to aggregate type 
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used in mixes. This can be attributed to the low strain amplitudes applied in these tests. The 

Prony series coefficients for the three mixes based on Ferry’s (1980) equation are presented 

in Tables 3.5 to 3.7. 

 
 
 

Table 3.5. Prony Series Coefficients for Gravel Mix by Ferry (1980) 
Prony series coefficients for Gravel by Ferry’s (1980) 

D0 -9.95E-07     
D1 3.29E-03 τ1 6.58E-02 
D2 -1.88E-03 τ2 6.59E-02 
D3 8.72E-04 τ3 6.35E-02 
D4 8.72E-04 τ4 6.35E-02 
D5 3.35E-04 τ5 5.22E-02 
D6 -1.88E-03 τ6 6.59E-02 
D7 -5.28E-04 τ7 6.04E-02 
D8 -5.28E-04 τ8 6.04E-02 
D9 -5.28E-04 τ9 6.04E-02 

 
 

Table 3.6. Prony Series Coefficients for Limestone Mix by Ferry (1980) 
Prony series coefficients for Limestone by Ferry’s (1980) 
D0 -3.11E-07     
D1 7.89E-06 τ1 4.34E-02 
D2 9.69E-03 τ2 1.49E-01 
D3 -5.55E-04 τ3 1.31E-01 
D4 5.81E-03 τ4 1.52E-01 
D5 -4.51E-03 τ5 1.43E-01 
D6 -5.17E-03 τ6 1.50E-01 
D7 5.62E-04 τ7 1.49E-01 
D8 1.14E-02 τ8 1.43E-01 
D9 -1.72E-02 τ9 1.48E-01 
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Table 3.7. Prony Series Coefficients for Granite Mix by Ferry (1980) 

Prony series coefficients for Granite by Ferry’s (1980) 
D0 -1.66E-06     
D1 4.71E-03 τ1 6.57E-02 
D2 -2.03E-03 τ2 6.65E-02 
D3 6.69E-04 τ3 6.32E-02 
D4 6.69E-04 τ4 6.32E-02 
D5 5.18E-04 τ5 5.13E-02 
D6 -2.03E-03 τ6 6.65E-02 
D7 -8.27E-04 τ7 6.03E-02 
D8 -8.27E-04 τ8 6.03E-02 
D9 -8.27E-04 τ9 6.03E-02 

 
 
 
Experimental Setup to Identify Damage Viscoelastic and Viscoplastic Responses 

Repeated creep tests were conducted to characterize the damage viscoelastic and 

viscoplastic responses. This test was selected as it allows for the separation of the 

different responses.  The testing included three confinement levels of 0, 15, and 30 psi, 

three levels of axial loading for each confinement, and two replicates for each stress 

level.  The main considerations in the development of the testing program were to: 

1) Select multiple stress levels such that some of stress levels cause hardening only 

while other levels cause damage. This is considered important in order to determine the 

hardening and damage parameters of the model presented in the following chapter. 

2) Reach maximum strain during loading within each cycle (strain rate is almost zero).  

This condition is necessary to capture all the plastic strain in each cycle, and to facilitate 

the determination of the viscoplastic model parameters.  
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3) Use stress levels that are equal or at least close in values in loading all materials.     

It was a challenge to achieve all the above three factors given the difference in 

materials in strength and response to different loading rates.  Preliminary testing was 

conducted to determine the appropriate stress levels for each mix.  Since the gravel mix 

had the least strength, it was considered the limiting case, and it was used to determine 

the appropriate stress levels.  The load was chosen such that the mixes would reach 

similar strain levels after about 15 cycles in favor of reducing the testing time. Table 3.8 

presents a breakdown of the creep tests performed on the gravel mix. Similar testing but 

different deviatoric stresses were performed for the granite and limestone mixes.  

 All experiments were performed at a temperature of 130 °F (58 °C). Dual 

lubricated latex sheets were used to minimize the end effect at the bottom and top of the 

specimen.  Two vertical linear variable differential transformers (LVDT’s) were fixed 

180° apart to measure the vertical deformation with a vertical gage length of 3 in. Radial 

deformation was measured using a radial LVDT that was fixed around the specimen’s 

circumference. The LVDT is capable of measuring deformations of up to 4 mm. This 

corresponded to an axial strain of about 1.5%, after which there was no experimental 

measurements of the radial deformation.  A load cell of 5 kip capacity was used to 

measure the applied loads.  

Figs. 3.5 to 3.7 present the experimental results of the repeated creep tests for the 

three mixes at 0, 15, and 30 psi confinements and three stress levels.  The tests show that 

some stress levels went through hardening (reduction is strain rate with an increase in 

number of cycles), while other tests exhibited damage (increase in strain rate).  Most of the 
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tests reached the maximum strain (strain rate = 0) within each cycle during the hardening 

behavior.  As will be discussed later, this condition facilitated capturing the viscoplastic 

strain and determining the models parameters. 

By examining Figs. 3.5 to 3.7 it can be seen that at zero confinement the gravel mix 

needed lower stress levels in order to develop comparable strain levels to the other two 

mixes. The difference is stress levels among the three mixes decreased in the confined tests.   

 
 
 

Table 3.8. Breakdown of Creep Tests for the Gravel Mix 
  Compression 

Confinement, psi 0 15 30 
Specimen 00A 15A 30A 

Deviatoric Stress, psi 71 471 982 
Specimen 00B 15B 30B 

Deviatoric Stress, psi  55 393 884 
Specimen 00C 15C 30C 

Deviatoric Stress, psi 39 314 785 
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Fig. 3.5. Repeated Creep Test Results on Gravel Mix at A) 0, B) 15, and C) 30 psi 
Confinement 
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Fig. 3.6. Repeated Creep Test Results on Limestone Mix at A) 0, B) 15, and C) 30 psi 
Confinement 
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Fig. 3.7. Repeated Creep Test Results on Granite Mix at A) 0, B) 15, and C) 30 psi 
Confinement 
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One important factor that needs to be considered is the effect of the unloading time 

(t1 in Fig. 3.8) on the decomposition of the damage viscoelastic (DVE) and viscoplastic 

(VP) strain components.  Viscoplastic strain increases as a function of time causing 

permanent changes in the internal structure. Therefore, it is expected that the unloading 

response will depend on the time t1 at which the material is unloaded.  This raises the 

concern that the viscoelastic response might not be unique, as it depends on the viscoplastic 

strain accumulating at t1.  Consequently, it was decided to establish a criterion for t1, which 

is the time at which the strain reaches or very close to a “saturation” limit. This saturation 

limit is defined in this study for a strain rate less than 5 10-05 %/Sec.  The preliminary 

testing conducted in this study showed that a loading time of 10 minutes and unloading 

time of 5 minutes could achieve this criterion for most of the test specimens within the 

hardening behavior. 

 
 
STRAIN DECOMPOSITION APPROACH 

Theoretical Framework 

It is important to conduct the strain decomposition within theoretical framework.  

Such a framework is needed to understand the influence of the strain decomposition on 

the model development and to clearly link the assumptions employed in the 

decomposition to the model response.  To this end, a constitutive model for damage 

viscoelasticity model is introduced for the purpose of decomposing the total strain to its 

damage viscoelastic and viscoplastic components.   

For a linear viscoelastic material under a constant deviatoric stress, the 
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compliance can be calculated as: 

σ
ε )()( ttD

dve

=       (3-24) 

Solving for strain, the equation is rearranged as follows: 

σε )()( tDtdve =       (3-25) 

where  

)()( tDDtD o Δ+=       (3-26) 

)(tDΔ  is the transient component of the compliance, and oD  is the initial value of the 

compliance. 

The damage viscoelastic response developed by Schapery (1969) can be 

described as in Eq. (3-27): 
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σ∫==      (3-29) 

og , 1g , 2g , and σa are material constants. og , 1g , 2g  are nonlinear or damage 

parameters, and σa  is a time-temperature shift factor, and it is considered by Schapery 

(1969) to include the effect of confinement. The distinction between nonlinear and 

damage viscoelastic behaviors is discussed in the following chapter. 

The nonlinear or damage creep compliance can be calculated as follows: 
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As all tests were performed at one temperature, so σa is not influenced by 

temperature in these tests.  The approach followed here differs slightly from that by 

Schapery (1969) by considering one parameter G2 which equals to ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

σa
g 2  that captures 

the influence of confinement σa and damage viscoelasticity g2.  As the elastic response 

has already been included in the viscoelastic component, the first term in the equation 

vanishes and Eq. (3-30) reduces to: 

( )tDGgtdve

21
)(

=
σ

ε      (3-31) 

Now we can evaluate the terms εdve1 ,εdve2, and εdve3 in Fig. 3.8, which illustrates a 

schematic of a creep test response: 

[ ]σε )()()( 12
3 ttDtDGtdve −−=     (3-32) 

( ) ( )σσε 12121
1 )( tDGgtDGgtdve −=     (3-33) 

=)(2 tdveε ( ) ( ) ( )σσσ 122121 ttDGtDGtDGg −+−    (3-34) 

( ) ( ) ( )σσσεε 12221
21 )()( ttDGtDGtDGgtt dvedve −+−=+    (3-35) 

( )σε 1211 )( ttDGgttdve −=−      (3-36) 
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Fig. 3.8. Response to Creep Loading  

 
 
 
In damaged viscoelastic materials, the loading part gives g1 and G2, as shown in Eq. 

(3-31), and the unloading part can be used to determine G2 as shown in Eq.  

(3-32). However, in this experiment the loading part consists of both damaged viscoelastic 

and viscoplastic deformations. Hence, the loading portion cannot be used to determine the 

g1.  It was assumed in this study that g1 is equal to unity. This assumption translates to 

assuming g1 not to be a function of stress. This assumption makes it possible to use the 

unloading part to calculate G2 given the creep compliance from the linear viscoelastic 

analysis.  Once the G2 value is determined, it can be used in Eq. (3-36) to calculate the 

damage viscoelastic part during loading.  Consequently, damage viscoelastic part can also 

be determined as function of loading time by subtracting the damaged viscoelastic part 

from the total strain. Examples of the results are shown in Figs. 3.9 and 3.10.  
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Fig. 3.9. Total, Viscoplastic, and Damaged Viscoelastic Strain at Low Stress Level 
Test 
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Fig. 3.10. Total, Viscoplastic, and Damaged Viscoelastic Strain at High Stress Level 
Test 
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Experimental Observations 

Figs. 3.9 and 3.10 present a sample of the repeated creep tests at low and high stress 

levels with the strain response separated into its components. It is worth noticing that the 

behavior of the viscoelastic response has changed from low stress level to high stress level 

from a load cycle to another. The low stress showed that the viscoelastic response 

decreased with increasing number of cycles, which indicates that the material hardening 

phenomenon overcame the damage phenomenon.  One the other hand, the high stress case 

showed that the viscoelastic response increased with increasing number of load cycles, 

which indicates that the material damage phenomenon overcame the hardening 

phenomenon. 

The material response becomes unstable when damage evolution increases rapidly. 

The onset of unstable behavior should be identified in order to avoid using experimental 

measurements beyond this point in data analysis. The error beyond this point can be 

attributed to several factors, such as slippage of experimental devices, or loss of full contact 

between the specimen and the load cell.  As such, the response beyond the failure point 

might not represent the global material behavior. Therefore, a graphical approach was 

implemented here to identify this point based on the work by Bhairampally et al. (2000). 

As shown in the example results in Fig. 3.11A, the material experiences different 

behavior as the stress level increases. At low and medium stress levels the material 

hardening could overcome the damage evolution. On the other hand, at high stress level the 

material showed that the damage was overcoming the hardening occurring to the material. 

This behavior was verified using the graphical technique proposed by Bhairampally et al. 
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(2000) as shown in Fig. 3.11B.  This technique relies on fitting a power function as shown 

in Eq. (3-37) to the accumulated permanent strain:  

N
n

vp

ln)ln(
)][ln(
)][ln(ln ββρε β −=

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂     (3-37) 

Bhairampally et al. (2000) suggested plotting the relationship shown in Fig. 3.11B 

to identify the damage development of an asphalt mix under repeated loading.  A curvature 

reverse and positive slope of the function in Fig. 3.11B indicate that the material is in a 

tertiary creep state and the material is damaged. This technique is used to separate 

experiments in which hardening is overcoming the damage (which will be hereafter called 

hardening experiments) from others where the damage is overcoming the hardening (which 

will be hereafter called damage experiments).  This information will be valuable in 

modeling the viscoplastic response as will be shown in the following chapter. 

The effect of the repeated cycles compared to a single cycle creep test is presented 

in Fig. 3.12.  It can be seen that the repeated loading generates more deformation compared 

with a single cycle creep test.   This can be attributed to the differences in the 

microstructure in terms of aggregate orientation and air void size evolution between the two 

tests.  Loading induces anisotropic aggregate distribution of particles where more contacts 

build up in the vertical direction, and particles’ longest dimensions become more oriented 

in the horizontal direction. 
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B)  

Fig. 3.11. A) Sample Creep Test at Three Different Stress Levels, B) the 
Corresponding Damage Identification Technique Proposed  
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  This distribution causes a specimen to be stiffer in the direction of the vertical load 

and assists in reducing deformation (Masad et al. 2005).  However, unloading allows 

particles to “lose” some of the anisotropic distribution microstructure, reducing the stiffness 

in the vertical direction and promoting more permanent deformation.  The reorientation of 

particles during unloading could also induce some damage (growth of air voids and cracks) 

that promotes more permanent deformation once load is reapplied.  
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Fig. 3.12. Single Cycle and Repeated Cycles Total Creep Strain 

 

CONCLUSIONS 

This chapter presented an experimental approach within a theoretical framework to 

analyze the HMA response and calculate the damage viscoelastic and viscoplastic 

responses.  The dynamic compression test was used to identify the material response at low 
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strain level, from which the linear viscoelastic response of the material was determined. 

The linear viscoelastic properties of the three mixes (gravel, granite, and limestone) were 

not consistent with the permanent strain measurements using repeated creep tests. 

The repeated creep and recovery tests provided a precise response of the material at 

successive stages of loading and unloading. A damage viscoelasticity theory was employed 

to analyze the experimental measurements and calculate the damage viscoelastic 

parameters.  This theory was used to calculate the damage viscoelastic response from the 

unloading response.  Once the damage viscoelastic was identified, it was subtracted from 

the total strain during loading to calculate the viscoplastic strain as a function of loading 

time.   

The damage viscoelastic response can be used as an indication of the material 

damage condition with increasing number of load cycles. A damage state was associated 

with an increase in the damage viscoelastic response with increasing number of load cycles, 

whereas hardening state was identified by a decrease or stabilization in the viscoelastic 

response with increasing number of load cycles.  
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CHAPTER IV 

DETERMINATION OF DAMAGE VISCOELASTIC-VISCOPLASTIC MODEL 

PARAMETERS 

OVERVIEW 

This chapter presents the integration of a damage viscoelastic constitutive 

relationship with a viscoplastic relationship in order to develop a comprehensive 

anisotropic damage viscoelastic-viscoplastic model that is capable of capturing HMA 

response and performance under a wide range of temperatures, loading rates, and stress 

states.  The damage viscoelasticity model developed by Schapery (1969) was used to 

present the viscoelastic response, and the viscoplasticity model developed at the Texas 

Transportation Institute (TTI) in the past few years was improved and used to model the 

viscoplastic and plastic components.  The influence of the anisotropic aggregate 

distribution is accounted for in both the viscoelastic and viscoplastic responses.   In 

addition, this chapter presents a methodology to determine the model’s parameters using 

the repeated creep tests presented in Chapter  III.   

 

INTRODUCTION 

Several approaches have been adopted for continuum constitutive modeling of 

HMA.  Kim and Little (1990), Kim et al. (1997), and Si et al. (2002) are examples of 

studies on modeling HMA response using damage viscoelasticity.  This approach relies on 

the characterization of the linear viscoelastic properties and energy dissipated in HMA 

damage.  The linear viscoelastic properties are obtained using monotonic or cyclic tests 
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using small stress or strain loads that do not induce damage.  Then, viscoelastic damage is 

measured through applying stresses or strains that are high enough to induce damage.  This 

approach has mostly been employed in the characterization of HMA fatigue behavior. 

Scarpas et al. (1997) presented a viscoplastic damage model based on Perzyna’s 

formulation and Desai’s yield surface to capture the macroscopic response of HMA under 

different loading conditions.  Scarpas et al. (1997) used monotonic compression and tension 

tests coupled with incremental creep tests at temperatures ranging between 10 °C and 40 °C 

to determine the model’s parameters.   

Chehab et al. (2003) and Schwartz et al. (2004) developed a damage elasto-

viscoplastic model for the characterization the HMA response at a wide range of 

temperatures (-30 °C to 40 °C).  Chehab et al. (2003) used low-stress dynamic testing to 

determine the linear viscoelastic properties, constant head rate tests at low temperatures 

where viscoplastic strain is negligible to determine the damage viscoelastic parameters, and 

constant head rate tests at higher temperatures to determine the viscoplastic parameters.  

Schwartz et al. (2004) focused on using uniform time and uniform load creep and recovery 

tests, at temperatures ranging from 25 °C to 45 °C, to extract the viscoplastic model 

parameters. Both Chehab et al. (2003) and Schwartz et al. (2004) showed that HMA is a 

thermologically simple material even at high viscoplastic strains and high temperatures.  

Recent efforts at the Texas Transportation Institute have focused on the 

development of comprehensive damage elasto-viscoplastic model (Tashman 2003, 

Dessouky 2005).  This model was developed to account for the various factors associated 

with permanent deformation.  These factors include friction between the aggregates coated 
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with binder and interlocking between aggregates, which are responsible for the dilation 

behavior of some mixes under shear stresses.   The amount of dilation is dependent on the 

aggregate gradation, angularity, and form (flat-elongation) (e.g., Lytton et al. 1993, Sousa 

et al. 1993, Kaloush 2001).  Another important factor that influences permanent 

deformation is bonding between the binder elements (cohesion) and between the binder and 

aggregates (adhesion).  Microcracks and damage could be caused by stresses that exceed 

the cohesive and adhesive bonds in the mix.  Lytton (2000) referred to microcracks 

associated with permanent deformation by stating “If an asphalt concrete work-hardens 

under repeated loads with accumulating plastic strain but does not have microcracks 

arresters and does not heal rapidly, it will reach a point at which it is stiff enough for 

microcracks to initiate and grow.  This energy that is used up with each load is then 

parceled out to the growth of microcracks which soften the mix, and to increasing the rate 

of plastic strain.”  

 

OBJECTIVES 

 The objective of the research documented in this chapter is to further develop the 

TTI elasto-viscoplastic model.  The new developments include: 

1. Introducing an anisotropic damage viscoelastic-viscoplastic model.  This is 

considered a major improvement as it allows the model to capture the response 

at low temperatures and high strain rates where damage viscoelasticity 

dominates the material response, and to capture the response at high 

temperature small strain rates where viscoplasticity is significant.   
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2. Accounting for the anisotropic behavior of the mix in both the viscoelastic and 

viscoplastic components. 

3. Extracting the model’s parameters from repeated creep tests, which allow the 

separation of viscoelastic deformation from viscoplastic deformation.  

 
VISCOELASTIC MODEL 

The model that is used to predict the viscoelastic properties is based on 

Schapery’s (1969) theory as described in the previous chapter.  The viscoelastic 

nonlinearity damage parameter G2 is determined from Eq. (4-1), while g1 is assumed to 

be equal to unity as discussed in Chapter III:  

( )σε 1211 )( ttDGgttdve −=−      (4-1) 

where D(t - t1) is the viscoelastic compliance function determined from dynamic testing 

of HMA at small strain levels (see Fig. 3.4 ) and σ is the deviatoric stress that is 

modified to account for the material anisotropy (see Eq. [3-18]).  

Fig. 4.1 presents the experimental results and the model prediction for the 

viscoelastic damage response of the three mixes at intermediate stress level and 

confinement of 30 psi.  The results at the other confinement levels (15 psi and 30 psi) are 

presented in the Appendix.  Eq. (4-1) was solved for each loading-unloading cycle to 

determine G2. Fig. 4.2 presents example of G2 values used to fit the model for the limestone 

mix at zero confinement. The fitting of the damage viscoelastic model to all experimental 

measured and the calculated G2 are presented in the Appendix. 
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The G2 results in the Appendix show some cases that G2 increased with time while 

G2 was almost constant in some other cases. An increase in G2 value is an indication of 

damage. However, a G2 value that stabilized with loading or reaches a constant value is an 

indication of nonlinear response without damage. Nonlinear response indicates the 

compliance from the creep test is different from that determined at small strain under 

dynamic loading. The constant G2 clearly shows that the material did not experience 

damage that would change the microstructure, and G2. 

It is interesting to note that G2 had a value less than 1 in some cases (see Fig. A. 

8C). This can be explained by the linear viscoelastic response being a function of 

confinement. Recall that the linear viscoelastic compliance was determined with no 

confinement while some of the creep tests were conducted with confinement. Therefore, 

the G2, or ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

σa
g 2 , less than one could be due to the effect of the σa  parameter.  

 

 

 

 

 

 

 

 

 



 

 

75

0.00

0.20

0.40

0.60

0.80

1.00

0 1000 2000 3000 4000 5000

Time, Sec. 

St
ra

in
, %

Model DVE DVE, 30B

 

0.00

0.05

0.10

0.15

0.20

0 1000 2000 3000 4000 5000

Time, Sec. 

St
ra

in
, %

Model DVED DVE, 30B

 

0.00

0.05
0.10

0.15

0.20
0.25

0.30

0 1000 2000 3000 4000 5000

Time, Sec. 

St
ra

in
, %

Model DVE DVE, 30B

 
Fig. 4.1. Experimental and Modeled Damage Viscoelastic Strain at 30 psi 
Confinement and Medium Stress Level for A) Gravel, B) Limestone, and C) 
Granite Mixes  
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Fig. 4.2. Nonlinearity Damage Parameter for the Limestone Mix at 0 psi Confinement 
 
 
 

The results in the Appendix indicate the G2 value for each mix was much less 

affected by the applied deviatoric stress compared with the confinement level.  

Therefore, it was decided to average the G2 values for the three deviatoric stress levels at 

each confinement.  This averaging approach was followed to allow investigating the 

influence of confinement on viscoelastic damage.  As discussed in Chapter III, the 

damage parameter G2 is taken to include the effect of confinement on the material 

response. A high G2 value of 55 associated with gravel mix at zero confinement. The 

increase in confinement reduced the damage parameters for three mixes.  This is more 

pronounced in the gravel mix where the damage parameter values dropped significantly 

with an increase in confinement.  
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Fig. 4.3. Damage Parameter G2 at N = 13 for the Three Mixes  

  
 
 
The relation between the damage viscoelastic model parameters and the coarse 

aggregate angularity is presented in Fig. 4.4. It can be seen that at 0 psi confinement 

gravel that has the lowest angularity had the highest damage parameter value and granite 

that has the highest angularity had the lowest damage parameter.  There is very good 

correlation between coarse aggregate angularity and G2 at zero confinement, while there 

is almost no correlation at the confined tests.  This may suggest that the influence of 

coarse angularity on reducing damage might be less under confined conditions. The 

coarse aggregate texture showed a similar behavior to the angularity at 0 psi confinement 

level. As shown in Fig. 4.5, the fine aggregate texture did not correlate to the damage 

parameter at low confinement level, but it did correlate to the damage parameter at the 

15 and 30 psi confinement levels. This suggests that the role of the fine aggregate is 

more important at higher confinement levels. 
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Fig. 4.4. Relation between Nonlinearity Damage Viscoelastic Model Parameter and 
Coarse Aggregate Angularity and Texture 
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Fig. 4.5. Relation between Nonlinearity Damage Viscoelastic Model Parameter and 
Fine Aggregate Angularity and Texture 
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VISCOPLASTIC MODEL 

There are several constitutive continuum models that have been established to 

describe HMA response. However, most of these models do not consider the influence of 

the microstructure distribution on the material response. Dessouky (2005) addressed this 

issue by including microstructural characteristics of HMA in a viscoplastic continuum 

model.  This model was further developed in this study, and the model’s parameters were 

determined using the repeated creep test results. The viscoplastic strain rate is defined using 

the flow rule as follows: 

σ
φε

∂
∂

⋅><⋅Γ=
gfvp )(&      (4-2) 

 

where Γ is the fluidity parameter, which establishes the relative rate of viscoplastic 

straining, f  is the yield function, g is the plastic potential function, g
σ

∂
∂

 is a deviatoric 

vector in stress space which defines the direction of the viscoplastic flow, and φ(f) is 

taken as a power law function of the viscous flow. 

The Macauley brackets, < >, are used to indicate the following: 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

>φ=φ

≤φ
=>φ<

0

0          0

)f(,f)f(

)f(,
)f( N      (4-3) 

The yield function is taken to have the form in Eq. (4-4): 

0321 =κ−ξΔ= ),,d,J,J,I(Ff      (4-4) 
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where I1 is the first stress invariant, J2 is the second deviatoric stress invariant, J3 is the third 

deviatoric stress invariant, d is the ratio of yield stress in uniaxial tension to that in uniaxial 

compression, Δ is an internal parameter that accounts for the effect of the material 

anisotropy, ξ is an internal parameter that accounts for material softening, and κ is a 

hardening parameter that describes the growth of the viscoplastic yield surface. 

  The invariants, I1, J2, and J3 account for the effect of confinement, the dominant 

shear stress causing the viscoplastic deformation, and the direction of stress. N is a 

parameter characterizing the material rate sensitivity.  

A modified formulation of the Drucker-Prager yield function is adopted here with 

the following form: 

01 =−−= κατ ee If        (4-5) 
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The bar ‘¯’ indicates that stresses are modified to account for material anisotropy as 

defined in Eqs. (3-4, 3-5, and 3-6). σij and Sij are the stress tensor and the corresponding 

deviatoric tensor, respectively, and they are related as: 

ijkkijijS δσσ
3
1

−=      (4-10) 

δij is kronecker delta, where its components are 1 if   i = j and 0 if i ≠  j. ξ is a softening 

parameter that account for the effect loading and unloading on changing the 

microstructure distribution, and for the effect of damage caused by the presence of voids 

(air voids and cracks). Damage can be measured using X-ray computed tomography of 

HMA specimens loaded to different strain levels as was done by Masad et al. (2003).  

The d value is taken to be equal to 0.778 as discussed by Dessouky (2005) to ensure that 

the yield surface convexity condition is maintained.  α is a parameter that reflects the 

material frictional properties.  The hardening parameter κ  reflects the combined effect 

of the cohesion and frictional properties of the material.  The plastic potential function, 

g, is assumed to have the same form as the yield function but with a slope of β, which 

influences the proportions of the volumetric and deviatoric strains.  

  

 Model Calibration 

The developed model can be written in an extended form for the creep test as: 
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As discussed in Chapter III, the viscoplastic strain can be separated from the total strain 

and, hence, can be used in Eq. (4-11) to determine the model’s parameters.   

The applied stress levels were selected such that viscoplastic strain rate is very 

small and is almost equal to zero at the end of the loading cycle.  Therefore, the end 

points of the loading cycles at the hardening experiments will be used to determine the 

hardening parameters )( vpk ε , α , and )( vpεξ   by substituting 0=vpε&  in Eq. (4-11) to 

obtain Eq. (4-12): 
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  The α value was determined by plotting the modified Drucker-Prager yield surface 

at different strain levels.  Statistical analysis including least-squares method and nonlinear 

regression using least-squares in Statistical Package for the Social Sciences (SPSS 11) was 

used to find the )( vpk ε , α , and )( vpεξ  functions.  It was found that the α value is almost 

constant, which is similar to the finding by Dessouky (2005) for monotonic tests.  All the 

experimental results showed that )( vpk ε  evolved with loading cycles.  Fig. 4.6 presents the 

experimental fitting of the data.   

The evolution law for κ is postulated based on the experimental measurements 

presented by Masad et al. (2003), and motivated by the work of Dafalias (1990): 

( )[ ]vp
o εκκκκ 21 exp1 −−+=      (4-13) 
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 where vpε  is the effective viscoplastic strain, κo defines the initial yield surface, and κ1 and 

κ2 are hardening coefficients.  The fitting at the end of all cycles using Eq. (4.12) gave 

initial estimates of the softening (ξ) function.  However, this function was further refined 

based on fitting the measurements within all cycles. 

 The fluidity parameter Γ, the rate sensitivity parameter N and the refined softening 

function )( vpεξ  were determined by fitting Eq. (4-11) to all experimental measurements 

within all cycles.  At this point an iterative solution was followed to refine the softening 

function determined from Eqs. (4-11 and 4-12) until convergence was satisfied according to 

minimizing square error technique and nonlinear regression analysis in SPSS 11 software. 

The softening evolution function in Eq. (4-14) was found to fit the experimental 

measurements, while all the model’s parameters are shown in Table 4.1.   

 
[ ] )3(*ln*)3(* 02010 II vpεξξξξ ++=     (4-14) 

where 0ξ , 1ξ , and 2ξ are material constants and (Ιο/3) is the initial confining pressure. Fig. 

4.7 presents the softening parameter ξ for the three mixes. 

The model is then taken a further step to extract the dilation parameter for each 

of the mixes )( vpεβ .  The plastic strain rate ratio (PSRR) can be shown to be equal to 

Eq. (4-15):   
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Fig. 4.6. Presentation of the Hardening Function Fitting for A) Gravel, B) Limestone, 
and C) Granite Mixes 
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Table 4.1. Model Parameters for the Three Mixes 
  Gravel Limestone Granite 
Δ 0.261 0.436 0.28 
α 0.169 0.169 0.169 
κ1 2 2 2 
κ2 363 280 362 
κ3 0.112 0.3 0.3 
d 0.778 0.778 0.778 
β1 6.037 -0.10 -0.84 
β2 7.163 2.00 0.74 
β3 0.068 5.00 6.44 
Г 0.0024 0.0001 0.0001 
N 2.8 1 1 
ξ0 0.03842 -0.0198 -0.0142 
ξ1 -0.00150 0.0004 0.0017 
ξ2 0.00019 0.0036 0.0022 
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Fig. 4.7. The Softening Parameter ξ for the Gravel Mix at A) 0, B) 15, and C) 30 psi 
Confinement 
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Fig. 4.8 presents the PSRR for the gravel, limestone, and granite mixes. It can be 

seen that gravel and granite mixes exhibited mostly contractive behavior (PSRR < 0.5), 

whereas the limestone mix was mostly dilating.    

It is noted that these mixes were also tested in previous studies by the author of 

this dissertation using monotonic compression triaxial tests, and the PSRR values (Fig. 

4.9) were very different than those obtained under repeated creep loading, as shown in 

Fig. 4.8. Monotonic tests do not include unloading or rest periods, and consequently, the 

aggregate structure is under continuous loading.  This type of loading could force 

aggregates to interlock and dilate.  However, unloading in creep tests allows the 

aggregate structure to relax and redistribute itself, which would reduce the interlocking 

among aggregates and the associated dilation.  This observation emphasizes that 

different loading conditions and stress states could mobilize different deformation 

mechanisms in HMA mixes.   
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Fig. 4.8. Plastic Strain Rate Ratio for A) Gravel, B) Limestone, and C) Granite 
Mixes from Repeated Creep Test 
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Fig. 4.9. Plastic Strain Rate Ratio for A) Gravel, B) Limestone, and C) Granite 
Mixes from Monotonic Constant Strain Test 
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Fig.  4.9.   Continued 

 

The PSRR measurements from the creep tests were substituted in Eq. (4-15), and 

the dilation function )( vpεβ was calculated and fitted using the form: 

vp

evp εβββεβ 3
21)( −−=      (4-16) 

 Fig. 4.10 presents the fitted dilative potential for the gravel, limestone, and granite 

mixes. A summary of the model parameters for the three mixes was shown earlier in Table 

4.1. 
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Fig. 4.10. The Dilative Potential )( vpεβ for A) Gravel, B) Limestone, and C) Granite 
Mixes 
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Relationship of Viscoplastic Model’s Parameters to Material Properties 

Figs. 4.11 and 4.12 present the experimental strain rate and the model strain rate for 

the gravel and limestone mixes at different confinement levels and high stress levels. The 

entire experimental strain rate and the model strain rate figures are presented in the 

Appendix.  

As shown in Figs. 4.11 and 4.12, in some tests hardening was more pronounced 

than damage. In these tests, the strain rate decreased with increasing number of cycles. 

However, in cases where damage was more pronounced than hardening, the strain rate 

increased with increasing number of cycles.  In few cases, specimens failed permanently 

after a few cycles without developing an increasing strain rate.  This might be associated 

with the heterogeneity of these specimens that caused highly localized strains early during 

the loading process. 

 

 

 

 

 

 

 

 

 

 



 

 

94

0.0E+00

5.0E-04

1.0E-03

1.5E-03

0 2000 4000 6000 8000 10000

Time, Sec.

St
ra

in
 R

at
e 

%
 / 

Se
c

AVG 00A,  έ11 AVG 00A, Model έ11

0.0E+00
5.0E-04

1.0E-03
1.5E-03
2.0E-03

2.5E-03
3.0E-03

0 2000 4000 6000 8000 10000

Time, Sec.

St
ra

in
 R

at
e 

%
 / 

Se
c

AVG 15A έ11 AVG 15A, Model έ11

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

0 2000 4000 6000 8000 10000

Time, Sec.

St
ra

in
 R

at
e 

%
 / 

Se
c

AVG 30A έ11 AVG 30A, Model έ11

 
Fig. 4.11. Experimental Strain Rate and Model Strain Rate for the Gravel Mix at A) 
0, B) 15, and C) 30 psi Confinement and High Stress Level 
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Fig. 4.12. Experimental Strain Rate and Model Strain Rate for the Limestone Mix at 
A) 0, B) 15, and C) 30 psi Confinement and High Stress Level 
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The effect of confinement on hardening was more pronounced in the gravel mix. 

The gravel mix showed significant increases in hardening with increasing confinement 

(Fig. 4.6).  The limestone and granite mixes showed an increase in hardening with 

increasing confinement but not as significant as that in the gravel mix. The aggregates of 

these mixes are more angular and textured than the gravel, which might have given these 

mixes higher hardening properties that is less affected by confinement.  This finding is 

consistent with the results of the analysis of damage viscoelasticity.  

Fig. 4.13 presents the hardening function for the three mixes. It can be seen that 

the granite has the greatest hardening values, whereas the gravel has the lowest 

hardening values. This can be justified by recognizing that the gravel aggregate is less 

angular and less textured than the other two mixes, whereas the granite is more angular 

and more textured than the other two mixes. This is consistent with the results of 

Dessouky (2005).  

The plastic strain rate ratio showed that the material either contracts for a number 

of loading cycles then starts dilating (PSRR > 0.5) or the material keeps contracting 

(PSRR < 0.5) (Figs. 4.8 and 4.9).  It was found that the cases where the material 

contracted were associated with mixes that hardened and where the state of the material 

did not go beyond the secondary creep zone. The other cases where specimens exhibited 

some dilation were associated with mixes and stress states experiments in which the 

material exceeded the secondary creep zone to damage.  
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Fig. 4.13. The Hardening Function for the Three Mixes 

 
 
 
The softening parameter was found to increase as the confinement decreased in 

most cases, as shown in Fig. 4.14.  In general, within the same confinement, the higher 

the stress level the higher the softening parameter (Fig. 4.7). The gravel had highest 

softening parameter values at the zero confinement.  

Fig. 4.15 presents the relation between the softening viscoplastic parameter and 

coarse aggregate angularity. It can be seen that for gravel mix was more affected by 

confinement than the other two mixes.  Also, the correlation between coarse aggregate 

angularity and softening parameter decreased with an increase in confinement. This 

suggests that the influence of angularity on reducing softening decreased as confinement 

increases. The fine texture showed a better correlation with the softening parameter 

values at higher confinement levels as shown in Fig. 4.16. This suggests that as the 
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confinement increases the fine aggregate role becomes more significant.  
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Fig. 4.14. Softening Parameter at N = 13 for the Three Mixes  
 
 
  
CONCLUSIONS 

 An anisotropic damage viscoelastic-viscoplastic model was developed in this 

chapter.  This model is capable of describing the damage viscoelastic response of the 

mix, which becomes more significant in describing response as temperature decreases 

and strain rate increases.  Also, the model has a viscoplastic component to describe 

permanent deformation that becomes more significant as temperature increases and 

strain rate decreases. 
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Fig. 4.15. Relation between Viscoplastic Model Softening Parameter and Coarse 
Aggregate Angularity and Texture 
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Fig. 4.16. Relation between Viscoplastic Model Softening Parameter and Fine 
Aggregate Angularity and Texture 
 
 
 

The anisotropic damage viscoelastic-viscoplastic model offers a theoretical 

framework to analyze experimental measurements and characterize the HMA 

viscoelastic and viscoplastic responses.  The deviation of HMA response from linear 
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viscoelasticity was quantified using the damage viscoelastic parameter G2. The damage 

viscoelastic response in the repeated creep test could be used as indicator of the material 

damage state.  An increase in viscoelastic strain rate is an indication of damage.  The 

damage viscoelastic parameter G2 of the gravel mix was more influenced by 

confinement than the G2 of the other two mixes.  Also, the correlation of coarse 

aggregate angularity and texture to G2 was evident at low confinement while the 

correlation of fine aggregate texture to G2 was evident at high confinement.   

The experimental program offered a unique identification of the material 

viscoelastic response that helped calibrating the viscoplastic part of the model. The 

effect of aggregate properties used in each mix had clear influence on in the viscoplastic 

model’s parameters. This has been well pronounced in the case of the hardening, 

dilation, and softening parameters of the viscoplastic model.  As the angularity and 

texture increased, the effect of confinement on hardening, dilation, and softening 

decreased.  The relationships between the model’s parameters and aggregate 

characteristics offer the potential to predict these parameters based on characterization of 

aggregate characteristics. 
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CHAPTER V 

MICROSTRUCTURE CHARACTERIZATION OF HOT MIX ASPHALT IN 

REPEATED CREEP TEST USING X-RAY COMPUTED TOMOGRAPHY 

 

OVERVIEW 

This chapter presents the results of an experiment aimed at capturing and 

characterizing the three-dimensional distribution of aggregate orientation and air voids in 

hot mix asphalt (HMA) specimens.  The objective is to compare the microstructure 

distribution in specimens loaded to similar average strain but using different loading 

conditions and stress states.  Specimens were scanned using X-ray computed tomography 

(CT) before and after being subjected to triaxial repeated creep and recovery tests as well as 

monotonic constant strain rate tests.  The image analysis techniques (IAT) introduced by 

Tashman (2003) were used to characterize the distribution of voids (air voids and cracks).  

In addition, three-dimensional X-ray CT images were constructed using the Blob 3D 

program and the orientations of the maximum length axes of aggregates were quantified.   

 

INTRODUCTION  

HMA microstructure distribution is a manifestation of material properties, mix 

design, compaction method, and loading conditions.  The microstructure distribution in this 

chapter focuses on voids distribution and aggregate orientation due to their significant 

influence on HMA performance.  Voids distribution has been linked to damage in HMA, 

which is believed to begin with the nucleation of microcracks that later propagate, grow, 



 

 

103

and coalesce to form macrocracks as the material is subjected to loading (Kim et al. 1997).  

It is noted that the term voids is used herein to refer to both air voids that exist in the 

specimen prior to loading and cracks that develop during loading.   

The topic of damage and its influence on HMA response has been addressed by 

many researchers (Sousa et al. 1993, Park et al. 1996, Kim et al. 1997, Little et al. 1999, 

and Lytton 2000).  Damage in these approaches has been characterized through quantifying 

changes in mechanical properties with respect to a damage-free reference state.  It was not 

until recently that researchers developed experimental and analytical methods to 

characterize voids distribution and their influence on HMA mechanical properties and 

performance (Wang et al. 2001, Masad et al. 1999, Tashman et al. 2004).     

Aggregate directional distribution is also analyzed in this chapter due to its 

influence on HMA anisotropic behavior.  Masad et al. (2001) demonstrated the influence of 

aggregate orientation on HMA mechanical properties through theoretical modeling and 

finite element simulations.  Tashman et al. (2001) and Saadeh (2002) presented 

experimental measurements illustrating the effect of aggregate orientation in HMA on 

mechanical properties. 

 The objective of this chapter is to experimentally capture and characterize the 

microstructure distribution in HMA as the material undergoes permanent deformation 

under different loading conditions.  This objective is achieved by measuring changes in 

the microstructure in three mixes before and after testing and by studying the effect of 

stress state (repeated creep versus monotonic constant strain rate) on the microstructure 

distribution.  The analysis results have implications on modeling HMA as it offers 
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understanding of the effect of loading conditions, used to determine models’ parameters, 

on microstructure distribution.  It also examines the extent of induced anisotropy that 

develops under loading compared with inherent anisotropy that develops after 

compaction of HMA.  X-ray CT, three-dimensional image analysis software (Blob 3D), 

and IAT were used to capture and characterize the HMA microstructure.  

 

EXPERIMENT 

Three specimens from each of the limestone, granite, and gravel mixes were 

compacted to about 7% air voids using a Superpave gyratory compactor.  Each specimen 

had a diameter of about 100 mm and a height of around 156 mm.  Two specimens from 

each mix were then loaded to about 1% permanent strain using creep recovery tests.   One 

specimen was loaded using no confinement, while the second specimen was loaded using 

30 psi confinement.  A summary of the specimens analyzed is presented in Table 5.1. The 

mix design, aggregate, and binder properties for these specimens are presented in Chapter 

III. 

Another three specimens from the limestone mix were tested using a triaxial 

compression setup at a constant displacement rate of 2.5 mm/min.  Two replicates were 

loaded to about 1% strain level under a constant confining pressure of 30 psi. The other 

limestone specimen was loaded to about 1% strain level under 0 psi confining pressure. All 

tests were conducted at a temperature of 130 °F. 

All 12 specimens were scanned using the X-ray CT system. The system had a 

420 kV X-ray source and a linear detector. X-ray CT offers a nondestructive method to 
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obtain digital information on the microstructure of the specimens while the specimens 

are still intact and capable of being subjected to further mechanical testing (Tashman 

2003).  

Directing planar X-rays that pass through the specimen along several different 

paths in several different directions produces a set of two-dimensional images along the 

specimen’s height.  These generated CT images are typically referred to as slices. The 

intensity of X-rays is measured before they enter the specimen and after they pass 

through it. Scanning of a slice is complete after collecting the intensity measurements for 

a full rotation through the specimen. The specimen is then shifted vertically by a fixed 

amount (the slice thickness), and the entire procedure is repeated to generate another 

segment of slices (Tashman 2003). 

In this study, the image horizontal resolution was around 200 μm per pixel, while 

two-dimensional images (slices) of the microstructure of the HMA specimens were 

captured every 1 mm across the height of a specimen with a slice thickness of 1 mm.  

 
 

IMAGE ANALYSIS AND RESULTS 

Three-Dimensional Orientation of Aggregates  

 Researchers at the X-ray CT center at The University of Texas at Austin developed 

the Blob 3D program, which is capable of extracting basic morphological information 

about aggregate particles constructed from CT images (Ketcham and Shashidhar 2001). 

The program was written using interactive data language (IDL). Blob 3D consists of three 

modules: segmentation, separation, and extracting. The segmentation module identifies the 
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voxels belonging to each aggregate. However, the user is allowed to make manual 

adjustments to the three-dimensional visualization in order to make sure that the aggregates 

are separated in the separation module. 

 
 
 
Table 5.1. Summary of Analyzed Specimens 

 Specimen ID Mix Deviatoric 
Stress Confinement Initial Air 

Voids 
  psi psi % 
G00A Gravel 7 0 6.58 
G30A Gravel 126 30 7.33 
G-Undeformed Gravel N/A N/A 6.81 
L30A Limestone  130 30 6.21 
L30B Limestone 118 30 6.21 
L-Undeformed Limestone N/A N/A 6.46 
T00B Granite 15 0 7.12 
T30C Granite 131 30 7.02 
T-Undeformed Granite N/A N/A 6.90 

LMD1 Limestone N/A (Constant 
Strain Rate) 0 7.40 

LMD17 Limestone N/A (Constant 
Strain Rate) 30 7.17 

LMD18 Limestone N/A (Constant 
Strain Rate) 30 6.68 

 
 
 
    The data are extracted in the extracting module. The software is capable of providing 

data on the microstructure components such as center position, volume, surface area, 

maximum axis length, maximum axis orientation, minimum axis length, minimum axis 

orientation, and the length of the three axes of the best-fit ellipse.  In this study, Blob 3D 

was used to measure the maximum aggregate orientation. Fig. 5.1 presents sample of 

three-dimensional reconstruction of limestone mix specimen by the Blob 3D program. 



 

 

107

 
A) 

 
B) 
 
Fig. 5.1. Blob 3D Reconstructed Aggregates A) Subvolume B) Separated 
Aggregates 
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 Three limestone specimens (L30A, L30B, and L-Undeformed) were analyzed 

using the Blob 3D program. The maximum axis orientation was measured for the three 

specimens. The maximum axis orientation was identified in terms of its directional 

cosines. The analysis results confirmed the transversally anisotropic distribution of 

aggregate orientation, as there were very small differences in the preferred orientation in 

the horizontal plane.  The directional cosine with the vertical axis (since compacted 

HMA exhibits transversally anisotropic distribution) was obtained.  Fig. 5.2 presents the 

percentages of limestone aggregate particles with their longest dimensions oriented from 

the vertical axis at the angles shown in this figure. 

It can be seen that the angle with the vertical direction tended to increase after 

deformation, indicating that the aggregates’ maximum axis orientation became closer to 

the horizontal axis. This can be seen by observing the difference (Angle [Deformed] – 

Angle [Undeformed]) between the deformed and undeformed specimens is mostly 

negative at small angles and mostly positive at higher angles.  It is evident that stress-

induced anisotropy developed for the limestone mix under creep loading. 

Fig. 5.3 presents the percentages of aggregate particles with their longest 

dimensions oriented from the vertical axis at the angles shown in this figure for the 

limestone specimen loaded using monotonic test (LMD1). It can be seen that there is a 

slight change depicted for specimens from repeated creep tests. The LMD1 specimen 

showed the highest percentages of particles for the undeformed specimen oriented at 90° 

indicating the inherent anisotropy. However, the distribution stayed similar or exhibited 

less anisotropic distribution after loading.   
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Fig. 5.2. The Percentage of Aggregate Particles with Different Orientations from 
the Vertical Direction Clustered at Increments of 5° for A) Comparison between 
Specimen L30A and L-Undeformed, B) Comparison between L30B and L-
Undeformed, C) Difference in Angles (the Undeformed Subtracted from L30A 
Percentages), D) Difference in Angles (the Undeformed Subtracted from L30B 
Percentages) 
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Fig. 5.3. The Percentage of Aggregate Particles with Different Orientations from 
the Vertical Direction Clustered at Increments of 5° for A) Comparison between 
Specimen LMD1 and L-Undeformed and B) Difference in Angles (the Undeformed 
Subtracted from LMD1 Percentages) 
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 The gravel and granite specimens exhibited different behavior than the limestone 

mix. The particles did not show a clear increase in the percentage of particles oriented 

toward the horizontal direction with loading as shown in Fig. 5.4 and Fig. 5.5. This 

might be due to the fact that the gravel and granite aggregate are less flat and elongated 

than the limestone aggregate, as confirmed by the form indices in Table 3.2. For the 

granite mix, the high angularity and texture of this aggregate could have contributed to 

the resistance to re-orientation.  

 The model presented in this dissertation considers the inherent anisotropy only.  

However, the experimental measurements during the creep recovery tests gave evidence 

of aggregate orientation.  As was discussed in Chapter III, the viscoplastic strain rate 

increased after each unloading period.  It is possible that particles tend to become more 

oriented toward the horizontal direction during the loading period.  This induced 

anisotropy increased the mix stiffness in the vertical direction (Masad et al. 2005).  

However, the level of anisotropy could decrease during the unloading period and the 

recovery of the viscoelastic strain.  This reduction in anisotropy is associated with 

reduction in vertical stiffness.  Consequently, the following loading cycle would 

experience less stiffness in the vertical direction compared with the stiffness at the end 

of the previous loading period.  As such, the viscoplastic strain rate would be higher at 

the beginning of the loading cycle than at the end of the previous cycle. 
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Fig. 5.4. The Percentage of Aggregate Particles with Different Orientations from 
the Vertical Direction Clustered at Increments of 5° for A) Comparison between 
Specimen G00A and G-Undeformed, B) Comparison between G30A and G-
Undeformed, C) Difference in Angles (the Undeformed Subtracted from G00A 
Percentages), D) Difference in Angles (the Undeformed Subtracted from G30A 
Percentages) 
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Fig. 5.5. The Percentage of Aggregate Particles with Different Orientations from 
the Vertical Direction Clustered at Increments of 5° for A) Comparison between 
Specimen T00B and T-Undeformed, B) Comparison between T30C and T-
Undeformed, C) Difference in Angles (the Undeformed Subtracted from T00B 
Percentages), D) Difference in Angles (the Undeformed Subtracted from T30C 
Percentages) 
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Image Analysis Technique 

The digital images (two-dimensional slices) were analyzed using IAT to 

characterize different aspects of the void properties including the void content and size 

(void surface area), 

A

V
ContentVoid M

∑
=                        (5-1) 

     

where V is the area of a void in an image (slice); M is the total number of voids in a 

slice; and A is the slice cross-sectional area. The void content gives the ratio of the total 

voids in a slice to the cross-sectional area of that slice. The surface area is measured by 

calculating the perimeter of the void multiplied by the thickness of the slice.  

Image analysis techniques were used to calculate the void content and the surface 

area of voids for all the specimens in Table 5.1.  Fig. 5.6 shows that the very first and 

last few slices possessed high void contents due mainly to the direct contact with the 

gyratory plates causing restriction in the mobility of the aggregates and reducing the 

efficiency of the kneading action there (Tashman et al. 2001).  As pointed out by 

Tashman et al. (2004), the distribution in Fig. 5.6 is remarkably different than the 

distribution reported in a number of previous studies for 150 mm diameter and 100 mm 

height specimens, where the middle of the specimen was more compacted than the top 

and bottom portions (Masad et al. 1999, Tashman et al. 2001). 

 



 

 

115

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 5% 10% 15% 20%

Void Content

H
ei

gh
t R

at
io

 

Fig. 5.6. Illustration of the Void Content in the X-ray CT Images with the 
Measured Air Void Content 
 
 
 

Fig. 5.7 presents the void content and the void surface area of the gravel 

specimens. The height ratio along the y-axis is defined as the ratio of the vertical 

distance of a slice from the top of the specimen to the total height of the specimen. It was 

decided to use the height ratio instead of the actual depth because the deformed 

specimens had varying heights. It can be noticed that the void content and the void 

surface area are higher for the deformed tested specimens, indicating an increase in 
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voids content. This is in agreement with the plastic strain rate ratio as shown for the 

G00A specimen presented in Fig. 5.8, since the gravel would start to dilate (increase in 

voids volume) at a PSSR higher than 0.5, which corresponds to a viscoplastic strain of 

approximately 0.5.   The void content in the deformed specimen at 30 psi confinement 

was higher than the dilation in the unconfined specimen.  

 Fig. 5.9 presents the void content and the void surface area for the limestone 

specimens tested using creep and monotonic tests. It can be seen that specimens that 

were tested by repeated creep test had less dilation than the one tested using monotonic 

constant strain rate test. This might be justified by the stress states in these two tests. The 

monotonic constant strain rate tests stays in contact with the specimen throughout the 

test, not allowing the developed cracks to heal, which results in higher dilation. Also, 

this test applied higher deviatoric stress compared to the repeated creep test. A higher 

deviatoric stress could also be responsible for dilation. The repeated creep test included 

rest periods were the developed cracks were allowed to heal during the rest periods.  

Also, monotonic tests induce continuous deformation, which causes aggregates to roll, 

passing each other, and encourage dilation on increase in volume.  However, the rest or 

unloading periods in creep tests promote aggregate rearrangement and reduce aggregate 

structure dilation. 

Fig. 5.10 presents the void content and the void surface area for the granite 

specimens. The deformed unconfined specimen had voids distribution similar to the 

undeformed specimen.  In regard to the specimen deformed at 30 psi, it can be seen that 

the air void content behaved differently through the height of the specimen. For a height 
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ratio up to 0.25, there was void contraction and then it showed dilation throughout the 

remaining height. The PSRR presented in Chapter IV indicated that a PSSR value of 0.5 

corresponded to a strain of 0.5%. This indicates that the specimens should be starting to 

dilate. This might be the reason why the upper height showed contraction while the 

lower showed contraction.  

 

SUMMARY 

This chapter utilized X-ray CT, three-dimensional image analysis software (Blob 

3D), and image analysis techniques to capture and characterize the microstructure 

distribution.   

The three-dimensional distribution of aggregate orientation was analyzed by 

quantifying changes in the percentage of particles oriented in different directions.  As 

HMA specimens deformed, particles tended to have their orientation closer to the 

horizontal direction.  This result supported that stress-induced anisotropy occurs in 

HMA.  Particles became more oriented toward the horizontal direction with loading in 

the creep tests.   

 The change in the aggregate orientation varied for specimens tested by 

repeated creep from those tested by monotonic constant strain test. This evidences that 

the change in the internal microstructure is affected by the stress state. 
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Fig. 5.7. A) Void Content and B) Void Surface Area for the Gravel Specimens 
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Fig. 5.8. PSRR for the G00A Specimen 

 

The measured stress-induced anisotropy can be supported by experimental 

observations during creep and recovery tests.  The model presented in this dissertation 

considers only the inherent anisotropy.  As discussed in Chapter III, the viscoplastic 

strain rate increased after each unloading period.  This was explained by the increase in 

anisotropy during the loading period, and consequently, an increase in mix stiffness in 

the vertical direction.  During the unloading period, the level of anisotropy could 

decrease due to the recovery of the viscoelastic strain and decrease the vertical stiffness.  

As such, the beginning of a loading cycle would experience less stiffness and higher 

viscoplastic strain rate in the vertical direction compared with the stiffness at the end of 

the previous loading period.   
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Fig. 5.9. A) Void Content and B) Void Surface Area for the Limestone Specimens 
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Fig. 5.10. A) Void Content and B) Void Surface Area for the Granite Specimens 
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 The analysis of void content involved measuring percent air voids and size of air 

voids across a specimen thickness.  Gravel specimens from repeated creep tests showed 

dilation at a strain level of 1%. Limestone specimens also exhibited dilation, but the 

dilation under repeated creep recovery tests was less than under monotonic constant 

strain rate tests. This indicates that the microstructure distribution is not only affected by 

the viscoplastic deformation but also by the stress path associated with this viscoplastic 

deformation.  The monotonic tests do not allow for particle rearrangement and this test 

could induce more dilation than the creep tests that allow for particle rearrangement, 

during the rest period.  The granite specimens exhibited contraction in the top 25% 

height of a specimen, while the remaining portion exhibited dilation behavior.   
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS  

 

CONCLUSIONS 

The main outcome of this study is the development of an anisotropic damage 

viscoelastic-viscoplastic model.  This model was developed through the integration of a 

damage viscoelastic constitutive relationship with a viscoplastic relationship in order to 

capture hot mix asphalt (HMA) response and performance under a wide range of 

temperatures, loading rates, and stress states.  The nonlinear/damage viscoelasticity model 

developed by Schapery (1969) was employed to present the recoverable response, and the 

viscoplasticity model developed at the Texas Transportation Institute (TTI) (Tashman 

2003, Dessouky 2005) was improved and used to model the irrecoverable component.   

This study also included the development of an experimental program capable of 

quantifying and decomposing HMA response.  This experimental approach was used to 

analyze the response of HMA mixtures with different aggregate characteristics.  The 

dynamic compression test was used to identify the material response at low strain level, 

from which the linear viscoelastic response of the material was determined. The linear 

viscoelastic properties of the three mixes (gravel, granite, and limestone) were not able to 

rank the three mixes based on their resistance to permanent deformation.   

The repeated creep and recovery tests provided a precise response of the material 

at successive stages of loading and unloading.  The parameters of the damage 

viscoelasticity component of the model were obtained from the mix response during the 
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unloading period.    The deviation of HMA response from linear viscoelasticity was 

quantified using the nonlinear damage viscoelastic parameter G2. The damage 

viscoelastic response in the repeated creep test could be used as an indicator of the 

material damage state.  An increase in G2 value is an indication of damage, while a 

constant G2 value higher than 1 is an indication of the nonlinear response. The 

nonlinearity damage viscoelastic response was found to be more influenced by 

confinement for the mix with the gravel aggregates that have low angularity and texture.  

Also, the relationship of angularity and texture to G2 was evident at low confinement and 

degraded at higher confinement levels.   

The nonlinear viscoelastic response was subtracted from the total strain during 

loading to calculate the viscoplastic strain as a function of loading time.    The effects of 

aggregate properties used in each mix were reflected in the viscoplastic model’s 

parameters. This has been well pronounced in the case of the hardening, dilation, and 

softening parameters of the viscoplastic model.  As the angularity and texture increased, 

the effect of confinement on hardening, dilation, and softening decreased.  The 

relationships between the model’s parameters and aggregate characteristics offer the 

potential to predict these parameters based on characterization of aggregate 

characteristics. 

X-ray computed tomography (CT), three-dimensional image analysis software 

(Blob 3D), and image analysis techniques were shown to be powerful tools to capture and 

characterize HMA microstructure distribution. The characterization focused on voids 
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distribution and aggregate orientation due to their significant influence on HMA damage 

and anisotropic behavior.   

The three-dimensional distribution of aggregate orientation was analyzed by 

quantifying changes in the percentage of particles oriented in different directions.  As 

HMA specimens deformed, particles in the limestone mix tended to have their 

orientation closer to the horizontal direction. However, there was no evidence of stress 

induced anisotropy for the gravel and granite mixes. This result supported that stress-

induced anisotropy occurs in some HMA mixes.   

The measured stress-induced anisotropy can be supported by experimental 

observations during creep and recovery tests.  The model presented in this dissertation 

considers only the inherent anisotropy.  The viscoplastic strain rate increased after each 

unloading period.  This was explained by the increase in anisotropy during the loading 

period, and consequently, an increase in mix stiffness in the vertical direction.  During 

the unloading period, the level of anisotropy could decrease due to the recovery of the 

viscoelastic strain and decrease in vertical stiffness.  As such, the beginning of a loading 

cycle would experience less stiffness and higher viscoplastic strain rate in the vertical 

direction compared with the stiffness at the end of the previous loading period.   

 The analysis of void content involved measuring percent air voids and size of air 

voids across a specimen thickness.  It was found that mix dilation under creep and 

recovery tests was less than under monotonic constant strain rate tests. This indicates 

that the microstructure distribution is not only affected by the viscoplastic deformation 

but also by the stress state associated with this viscoplastic deformation.  



 

 

126

RECOMMENDATIONS  

The presented model included an anisotropic parameter to account for the 

directional distribution of the microstructure. The vector magnitude, which is a measure 

of anisotropy of the HMA, is introduced in the model to modify the stresses to reflect the 

influence of the direction of loading on material response. As well, its definition explains 

the different mixes’ behaviors according to their anisotropy level. The internal 

microstructure analysis presented in Chapter V showed that as some HMA specimens 

deformed, particles tended to have their orientation closer to the horizontal direction. As 

a result, the stiffness in the vertical direction increased. Therefore, it is suggested to 

quantify the evolution of this parameter by performing an experiment in which the HMA 

specimens are scanned by X-ray CT before and after testing at different strain levels. 

Consequently, the evolution of the parameter can be incorporated in the model.   

The repeated creep test provided a very good experimental method for HMA 

response identification. The model is calibrated in this study using the results from this 

test. However, the model reliability would increase if it shown that it is capable of 

predicting the response from different loading conditions. It is suggested to use the 

model parameters obtained from repeated creep tests to predict its performance under 

different loading conditions.  

The experimental program relies on the assumption that the viscoelastic response 

is recovered with the same rate as it developed. This was reflected on the damage 

viscoelastic model by taking the g1 parameter to be equal to unity. It is suggested to 

perform an experiment that would verify the validity of this assumption. This is done by 
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performing a creep test on HMA specimens at increasing loading intervals. Then, the 

viscoelastic response at each interval can be recorded and compared to the viscoelastic 

response of a specimen tested until the maximum strain is achieved.   

The continuum model developed in this study can be easily implemented in finite 

element (FE). Implementing the model in FE would allow predicting the performance of 

pavement sections constructed using different materials and structures. In addition, it 

would be interesting to study the effect of the HMA material properties at the 

microstructural level on continuum model response at the macrostructural level.  
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Fig. A.1. Experimental and Modeled Damage Viscoelastic Strain for Gravel Mix at A) 
High, B) Medium, and C) Low Axial Stress Level and 0 psi Confinement 
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Fig. A.2. Experimental and Modeled Damage Viscoelastic Strain for Gravel Mix at A) 
High, B) Medium, and C) Low Axial Stress Level and 15 psi Confinement 
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Fig. A.3. Experimental and Modeled Damage Viscoelastic Strain for Gravel Mix at A) 
High, B) Medium, and C) Low Axial Stress Level and 30 psi Confinement 
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Fig. A.4. Nonlinearity Damage Parameter for the Gravel Mix at A) 0, B) 15, and C) 30 
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Fig. A.5. Experimental and Modeled Damage Viscoelastic Strain for Limestone Mix at 
A) High, B) Medium, and C) Low Axial Stress Level and 0 psi Confinement 
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Fig. A.6. Experimental and Modeled Damage Viscoelastic Strain for Limestone Mix at 
A) High, B) Medium, and C) Low Axial Stress Level and 15 psi Confinement 
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Fig. A.7. Experimental and Modeled Damage Viscoelastic Strain for Limestone Mix at 
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Fig. A.8. Nonlinearity Damage Parameter for the Limestone Mix at A) 0, B) 15, and 
C) 30 psi Confinement 
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Fig. A.9. Experimental and Modeled Damage Viscoelastic Strain for Granite Mix at 
A) High, B) Medium, and C) Low Axial Stress Level and 0 psi Confinement 
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Fig. A.10. Experimental and Modeled Damage Viscoelastic Strain for Granite Mix at 
A) High, B) Medium, and C) Low Axial Stress Level and 15 psi Confinement 
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Fig. A.11. Experimental and Modeled Damage Viscoelastic Strain for Granite Mix at 
A) High, B) Medium, and C) Low Axial Stress Level and 30 psi Confinement 
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Fig. A.12. Nonlinearity Damage Parameter for the Granite Mix at A) 0, B) 15, and C) 
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Fig. A.13. Experimental Strain Rate and Model Strain Rate for the Gravel Mix at A) 
High, B) Medium, and C) Low Stress Levels and 0 psi Confinement 
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Fig. A.14. Experimental Strain Rate and Model Strain Rate for the Gravel Mix at A) 
High, B) Medium, and C) Low Stress Levels and 15 psi Confinement 
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Fig. A.15. Experimental Strain Rate and Model Strain Rate for the Gravel Mix at A) 
High, B) Medium, and C) Low Stress Levels and 30 psi Confinement 
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Fig. A.16. Experimental Strain Rate and Model Strain Rate for the Limestone Mix at 
A) High, B) Medium, and C) Low Stress Levels and 0 psi Confinement 
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Fig. A.17. Experimental Strain Rate and Model Strain Rate for the Limestone Mix at 
A) High, B) Medium, and C) Low Stress Levels and 15 psi Confinement 
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Fig. A.18. Experimental Strain Rate and Model Strain Rate for the Limestone Mix at 
A) High, B) Medium, and C) Low Stress Levels and 30 psi Confinement 
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Fig. A.19. Experimental Strain Rate and Model Strain Rate for the Granite Mix at A) 
High, B) Medium, and C) Low Stress Levels and 0 psi Confinement 
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Fig. A.20. Experimental Strain Rate and Model Strain Rate for the Granite Mix at A) 
High, B) Medium, and C) Low Stress Levels and 15 psi Confinement 

A) 

B) 
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Fig. A.21. Experimental Strain Rate and Model Strain Rate for the Granite Mix at A) 
High, B) Medium, and C) Low Stress Levels and 30 psi Confinement 
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Fig. A.22. The Softening Parameter ξ for the Limestone Mix at A) 0, B) 15, and C) 
30 psi Confinement 

A) 

B) 
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Fig. A.23. The Softening Parameter ξ for the Granite Mix at A) 0, B) 15, and C) 30 
psi Confinement 

A) 

B) 
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