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ABSTRACT

Improving Network Routing Performance in Dynamic Environments.

(December 2006)

Yong Liu, B.S., Peking University;

M.E., Peking University

Chair of Advisory Committee: Dr. A. L. Narasimha Reddy

In this dissertation, we study methods for improving the routing performance

of computer communication networks in dynamic environments. The dynamic en-

vironments we considered in this work include both network topology changes and

traffic demand changes.

In the first part, We propose a novel fast rerouting scheme for link state routing

protocols. Link state routing protocols are widely used by today’s ISPs on their

backbone networks. The global update based rerouting of link state protocols usually

takes seconds to complete which affects real time applications like Voice over IP.

In our scheme, usually, only routers directly connected to failed links are involved

in rerouting. For other cases, only a small number of neighboring routers are also

involved. Since our scheme calculates rerouting paths in advance, rerouting can be

done faster than previous reactive approaches. The computation complexity of our

scheme is less than previous proactive approaches.

In the second part, we study Multihoming Route Control (MRC) that is a tech-

nology used by multihomed stub networks recently. By selecting ISPs with better

quality, MRC can improve routing performance of stub networks significantly.

We first study the stability issue of distributed MRC and propose two methods

to avoid possible oscillations of traditional MRC. The first MRC method is based



iv

on “optimal routing”. The idea is to let the stub networks belonging to a same

organization coordinate their MRC and thus avoid oscillations. The second method

is based on “user-optimal routing”. The idea is to allow MRC devices to use multiple

paths for traffic to one destination network and switch traffic between paths smoothly

when path quality or the traffic matrix changes.

A third MRC method we propose is for MRC of traffic consisting of TCP flows

of different sizes on paths with bottlenecks of limited capacity. Based on analysis of

quality characteristics of bottleneck links, we propose a greedy MRC approach that

works in small timescales. Simulation results show that the proposed MRC method

can greatly improve routing performance for the MRC sites as well as the overall

routing performance of all sites in the network.
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CHAPTER I

INTRODUCTION

As the Internet is becoming the most important communication infrastructure of our

world, Internet routing has drawn increasing research interests. While the Internet

routing performance has been improved greatly as the Internet evolves, the increasing

demands keep bringing new challenges to the networking research community. To-

day’s Internet is expected to provide data, voice and video services at the same time.

Accordingly, the Internet needs to provide higher availability and quality then ever

before.

A challenge to improve Internet routing performance today is to make Internet

routing software respond to dynamic environments more effectively. The dynamic

environments include both topology and routing changes on the Internet, as well as

highly dynamic traffic demand changes. Accidental link failures may cause service

disruption to Internet users [1]. Inter-domain route changes may affect service avail-

ability for some Internet address prefixes [2]. Traffic demand changes may cause

Internet links to be over utilized, thus result in higher delay and loss rate to Internet

traffic. Routing software’s capability to effectively handle such network events is a

key to improve service availability and quality of the Internet.

Current Internet consists of many Autonomous Systems (ASes). An AS is either

a transit network, like an ISP network, or a “stub network”, like a university network

or an enterprise network. ASes interconnect and form the Internet. Internet is hierar-

chical where ISP networks compose the core, while stub networks compose the edge.

See [3] for a formal study of the hierarchy of the Internet. Accordingly, Internet rout-

The journal model is IEEE Transactions on Automatic Control.
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ing is also hierarchical. An AS usually runs one or more Interior Gateway Protocols

(IGPs) to route traffic within its network. This is called intra-domain routing. ASes

use Exterior Gateway Protocols (EGPs) to exchange routing information for traffic

across AS boundaries.

This dissertation aims to solve two important problems for improving Internet

routing performance in dynamic environments. The first contribution of this disser-

tation is a fast rerouting scheme for Internet Service Providers (ISP) networks. It

helps to improve the service availability of ISP networks. The second contribution is a

set of Multihoming Route Control (MRC) methods for multihomed “stub networks”.

These methods allow the stub networks to change their routing in respond to changes

inside the Internet and on the edge of Internet close to the traffic destinations. In the

remaining of this chapter, we will introduce the tow parts of this work.

A. A fast rerouting scheme for ISP networks

The most common IGPs used by ISP networks today are OSPF [4] and IS-IS [5]. Both

of them are link state routing protocols. Since our work applies to both link state

routing protocols, we don’t distinguish them and use “OSPF network” to represent a

network running either of these two link state routing protocols. An OSPF network

is divided into areas. A backbone area is used to connect all other areas. Therefore,

the routing is also done hierarchically: each router just needs to know how to route

a packet to an interior or border router of the same area. In this work, we focus on

the routing of backbone area of intra-domain routing since the backbone area carries

larger amount of traffic and its routing is more challenging.

In an OSPF network, each router knows the topologies of all the areas it be-

longs to. For each area topology, the router uses Dijkstra’s Shortest Path First (SPF)
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algorithm to calculate the shortest path tree from itself to other routers on the topol-

ogy. The tree is called SPF tree. Then the router builds its routing tables from the

calculated SPF tree. When the topology information on all routers in the area is syn-

chronized, routing according to above routing tables guarantees packets are routed

along the shortest path to their destinations.

When network topology changes, e.g. a link fails, the routers connected to the

link send information about the event to all their neighbors. A router in the area,

after receiving this information, will propagate the information to other routers other

than the router from which the information comes from. With proper loop avoidance

mechanisms the information is flooded through the whole area. After getting the

information, every router in the area needs to update its topology database, rerun the

SPF algorithm and update its routing tables and forwarding tables on line cards. The

same procedure occurs, when a failed link is restored or other topology changes occur.

When all the routers finish updating their routing tables after a change in topology,

IGP convergence is said to occur. For a large ISP network, the backbone area can

span the whole country and may consist of more than 100 routers. In such a backbone

network, the convergence of a link state protocol after a link failure usually takes a

few seconds or more. While some recent work shows sub-second IGP convergence

can be achieved by utilizing layer 2 protection timer and fine tuning parameters of

IGP protocols [6], the rerouting latency can still affect many Internet applications,

e.g. real-time applications like voice and video. According to measurement studies

on link failures in a backbone network [7], it is still common to have link failures

on today’s backbone network. Thus, it is desirable to enhance link state routing

protocols in handling link failures.

A number of mechanisms are proposed by researchers to reduce the convergence

latency of link state protocols. Nelakuditi et al [8] propose a pro-active fast rerout-
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ing method. Using this method, a more complex algorithm compared to the SPF

algorithm is used to calculate interface specific forwarding tables. Narváez et al [9]

propose a localized reactive restoration algorithm for link state protocols. The algo-

rithm requires routers on a restoration path to change the weights of links on the path

to zero and recalculate their routing tables after link failures occur. The calculation

of routing table and the update of forwarding tables increase the response time of the

algorithm to link failures.

MPLS based approaches, such as [10], use pre-computed backup paths to route

around failures immediately after the detection of link failures. However, this is

usually done in a centralized manner and is not suitable for protection of all links

in the network. In addition, MPLS is built on top of IGPs and relies on IGPs to

propagate MPLS label information.

In the first part of this dissertation (Chapter II), we propose a hybrid fast rerout-

ing scheme for Link State protocols that includes both pro-active and reactive com-

ponents. Our scheme calculates rerouting path pro-actively, routers use the rerouting

path after a link failure occurs. Since the rerouting path may involve routers not

adjacent to the failed link, a short multi-hop rerouting path may need to be estab-

lished after a link failure. However, no routing table recalculation is needed after a

link failure, thus the response latency can be reduced.

B. Fractional Multihoming Route Control (MRC) for stub networks

“Multihoming” means that a network has more than one external link to one or more

ISPs [11]. In this work, we use “multihoming” to represent the case when the external

links connect to different ISPs since it offers more benefits than multihoming to single

ISP. Multihoming provides Internet connection redundancy to stub networks. When
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the connection to one ISP fails or when one ISP encounters problems, the stub network

can use other ISPs to connect to the Internet.

The current de facto inter-domain routing standard is BGP [12]. Since today’s

Internet is very large and consists of many relatively independent domains, BGP

needs to maintain scalability, stability as well as the business relationship between

different ASes. Studies of BGP performance have shown that the inter-domain routing

protocol may converge slowly after inter-domain route changes [2]. Mis-configuration

of BGP could cause persistent route oscillations [13].

In recent years, Multihoming Route Control (MRC) technology, e.g. [14], has

been used by multihomed stub networks to get around inefficiency of Inter-domain

routing. Because alternate paths via different upstream ISPs may have different

qualities at a given time, route control devices can improve the performance of stub

networks by selecting the best available path according to active or passive measure-

ment results. Measurement experiments on the Internet show that multihoming route

control can significantly improve the routing performance of stub networks [15].

There are two possible causes for the quality diversity of alternate paths: first,

the paths provided by different ISPs may have different “distance” or propagation

delays to a given destination; second, different ISPs and other ASes (Autonomous

Systems) along the alternate paths may experience different degrees of congestion.

While the AS paths are relatively static, the congestion on the Internet is dynamic.

MRC divices can choose paths that have short “distance” and are less congested thus

improve the routing performance of stub networks.

Most current route control devices choose the best path based on their own view

of the qualities of alternate paths and switch traffic to one ISP based on changes in

path quality. This type of distributed route control by a number of stub networks

may interact with each other and cause oscillations, as we will show in Chapter III.
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In the second part of this dissertation (Chapter IV, V and VI), we study advanced

multihoming route control algorithms that can avoid oscillations.

First, we propose a global coordination method for multihoming route control

among a group of multihomed stub networks (Chapter IV). In this method, volume

of traffic demand and measured path delays and loss rates are exchanged among all

stub networks in the group; each stub network calculates the “optimal routing” [16]

solution using the data exchanged and change routing assignment according to the

optimal routing solution. Through coordination, oscillations of traditional MRC can

be avoided.

Second, we propose a “user-optimal” routing based distributed multihoming

route control scheme (Chapter V). This approach avoids exchanging information

about traffic demands and measured path quality and is fully distributed. There-

fore, this scheme can be used by independent multihomed stub networks for general

Internet traffic. In this approach, traffic is switched smoothly during network envi-

ronment changes and tus can avoid oscillations possible with traditional multihoming

route control technologies. We compare performance of this user-optimal routing

based method to network optimal routing method. Through extensive simulations,

we show the user-optimal routing achieves similar performance as network optimal

routing. We also study the dynamic performance of our method under different net-

work events.

Both the coordinated route optimization and the user-optimal routing based

distributed MRC are evaluated using UDP type traffic. The traffic matrices are pre-

determined and do not change as avalable bandwidth of paths changes. This assump-

tion is realistic for Internet traffic when network links are under-utilized. Otherwise,

the results of the simulations do not have direct physical meaning. However, in the

later case, higher loss rates indicate that the throughput of traffic on the path is
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limited by the link capacity and data transfers take more time to complete.

In the Chapter VI, we study MRC for highly dynamic TCP traffic, i.e. TCP

traffic on paths with bottlenecks of limited capacity. The traffic we studied in this

chapter is different from Chapter IV and Chapter V in following ways: (1) the volume

of TCP traffic adapts to changes of qualities of Internet paths; (2) the traffic volume

changes more rapidly because of TCP’s congestion control mechanism and increased

burstiness because smaller traffic volume. In this chapter, we propose a small time

scale greedy MRC for highly dynamic TCP traffic based on study of characteristics

of bottleneck links for this type of traffic. We evaluate the approach using ns-2 [17]

packet level simulations.
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CHAPTER II

A FAST REROUTING SCHEME FOR OSPF/IS-IS NETWORKS

In this chapter, we propose such a Fast Rerouting scheme for Link-state protocols. In

our approach, when a link fails, the affected traffic is rerouted along a pre-computed

Rerouting Path. In case rerouting cannot be done locally, the local router will signal

minimal number of upstream routers to setup the Rerouting Path for rerouting. We

propose algorithms that simplify the rerouting operation and the Rerouting Path

setup. With a simple extension to the current Link State protocols, our scheme can

route around failures faster and involves minimal number of routers for rerouting.

A. Fast rerouting scheme

In this section we first briefly describe how our scheme works, then give algorithms

used in each step.

1. Overview

In this paper, we assume that all links are point to point, bi-directional and with

equal weights on both directions, which is generally true for backbone networks. We

also assume there is at most one link failure at a time. This is because individual link

failures account for nearly 70% of all unplanned failures [7] and rerouting around mul-

tiple failures requires more complex algorithms. Instead of using a complex algorithm,

our scheme relies on the original IGP mechanism to handle multiple failures.

Our scheme uses the nearest Feasible Next Hop (with regard to number of hops)

of affected traffic for Fast Rerouting. Feasible Next Hop (FNH) is defined as a router

whose shortest paths to the destination of a packet do not include the failed link.

Throughout this paper, affected means all the paths to the destination of a packet
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from the local router include the failed link. When there is more than one nearest

FNH, our scheme chooses the one with minimum distance from the exit node to

affected destinations, where exit node is defined as the node one hop away from the

nearest FNH. We define Rerouting Path (RP) as the path from the router adjacent

to the failed link to the selected FNH.

For example, in Fig. 1, a may have e, f, h, i as its FNHs for traffic affected by

the failure of link (a, b) and path (a, e, h), etc. as the corresponding RPs. Our scheme

will choose one from (a, f) and (a, i) that has shorter distance from a to b as the RP.

There are tow types of RPs: 1). Local RPs, i.e. direct FNHs; 2). RPs with

one or more signaling hops. If the nearest FNH is type 1, rerouting is done locally.

For example, in Fig. 1, a can forward all traffic affected by link (a, b) via FNH f . If

the nearest FNH is type 2, local router should setup the RP by notifying (signaling)

routers on the RP about the failure and the RP before rerouting. For example, in

Fig. 1, a needs to notify g about the failure of (a, b) and the RP, (a, g, h). g will route

all traffic affected by the failure of (a, b) to h. Since RPs are usually very short, as

shown in Section B, the cost to setup a RP is not significant.

2. Calculation of Rerouting Paths (RP)

In our scheme, each router calculates a RP based on its sink tree for each of its links

on behalf of its neighbor. Its neighbor will use the RP to send affected traffic when the

link fails. This choice of RP calculation requires routers to exchange RP information

but can avoid routers to calculate sink tree for all its neighbors.

Without losing generality, we describe the algorithm for a router, b, to calculate

a RP for a link between itself and one of its neighbors, a, as shown in Fig. 1.

In the sink tree of b, we use BFS (Breadth First Search) in the sub-tree rooted

at a to search for a RP for a and link (a, b). We call this sub-tree as the upstream
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Fig. 1.: The sink tree of b

area for link (a, b). During the search, at each node we check every neighbor of it.

If the neighbor is not an upstream router, it is a FNH. As mentioned before, our

scheme choose the nearest FNH for rerouting. When there are ECMPs (Equal Cost

Multi-Paths) between a and the exit node we use all of them as part of the RP. We

can always find a RP for a given link as long as the network is not partitioned. (See

Appendix for detailed algorithm.)

Using this method we actually find a rerouting path for traffic with destination

of b. But as Theorem 1 shows, this type of RPs can be safely used for all traffic

originally forwarded to b by a.

Theorem 1. Once a packet originally forwarded from a to b is rerouted to a router

outside the upstream area (the 1st part in Fig. 1), the packet will be routed along a

shortest path without link (a, b) to its destination.

Proof. It is obvious for packets that have b as its destination.
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For a packet heading for a router below b , say c, it is also true. This can be

proved as below: As shown in Fig. 1, the shortest path from a nearest FNH, e, to b,

(e, f, b), must be shorter than the shortest path from it via a to b, (e, a, b). So the

shortest path from e to a to b to c, (e, a, b, c), is longer than the shortest path from e

to b to c, (e, f, b, c), i.e. the shortest path from e to a to b to c is not the shortest path

from e to c. Therefore, the shortest path from e to c must not include edge (a, b).

And it is obvious that the path from e to c must not include edge (b, a).

3. Identification of affected traffic

In case there is no local RP, a router on the RP needs to efficiently identify traffic

affected by a link failure.

Because there are ECMPs, when a link fails, it is also possible that a destination

is not reachable via one next hop but reachable via another next hop. So our scheme

decides whether a destination is reachable via a given next hop.

In our scheme, a router identifies affected traffic using a simple range checking.

It relies on an algorithm that assigns sequence numbers for all nodes in each first

level subtree (i.e. the subtree under a first level child node) of the local routing tree.

Sequence numbers for each subtree are independent. For each subtree, the sequence

numbers are from 0 to the number of nodes in the subtree. The algorithm ensures that

the sequence numbers of all nodes affected by a node failure and the sequence number

of the failed node itself are continuous and thus can be represented as a simple range.

In other words, when a node fails, only the nodes with sequence numbers within the

affected range become unreachable from the root of the subtree. The start of the

affected range of a node is its sequence number. The end of the affected range is the

largest sequence number of all nodes affected by this node. We call the end of the

affected range of a node as the seq end number. We store the sequence number and
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the seq end number along with each node in the subtree.

A link failure either causes the downstream node of the link to become unreach-

able from the root of the subtree or does not affect reachability of any destination. So

the destinations affected by a link failure can also be identified using above sequence

numbers. We will discuss this further in Section 4.

For a subtree without ECMPs, we can use DFS (Depth First Search) traversal

order as the sequence numbers. This is because: in a tree without ECMPs, all

descendant nodes are the nodes affected by this node; and they are traversed during

the period when this node is traversed.

However, for a subtree with ECMPs, if a node becomes unreachable from the

root of the subtree, some of its descendants may be still reachable, because there may

be more than one path from the root to the later. We have developed a modified

DFS algorithm to assign sequence numbers for nodes in a general subtree (with or

without ECMPs). The algorithm, SEQ, is shown in Figs. 2 and 3. Notations used in

this and following algorithms are listed in Table I.

Table I. Notations for fast rerouting algorithms

V : set of all vertices of the topology

E: set of all edges of the topology

(a, b): link from a to b

RP (a, b): Rerouting Path of link (a, b)

Ts: routing tree of s

ST (Ts, i): subtree of Ts rooted at i

P (Ts, n): set of parents of n in Ts

C(Ts, n): set of children of n in Ts

Algorithm SEQ can be described as follows: during the DFS traversal, whenever
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ST (Ts, i).seq count⇐ 0

foreach n ∈ ST (Ts, i) do

n.enqueued⇐ False

n.visited⇐ False

DFS seq(ST (Ts, i), i)

Fig. 2.: Algorithm SEQ(ST (Ts, i))

we encounter a child node having more than one parent, we find the nearest single

upstream node whose failure will cause the child node unreachable from the root. We

call this upstream node as the nearest ancestor of the child node. (The algorithm to

find the nearest ancestor is a reverse DFS traversal from the node to the root. See

Appendix for detailed algorithm.) We enqueue the child node to the deferred DFS

queue of its nearest ancestor. After that we continue the DFS traversal for other

children. After traversing all its children, we call this modified DFS algorithm for

the nodes in the local deferred DFS queue one by one. Similar to subtree without

ECMPs, the sequence number of each node is its traversal order. Fig. 4 shows the

result of algorithm SEQ on a simple topology.

As Theorem 2 shows, the sequence numbers and the checking ranges assigned

by the above modified DFS algorithm can be used to identify the unreachable nodes

after a node fails.

Theorem 2. In a routing tree, where each node is assigned a sequence number and

an affected range using algorithm SEQ if a node fails, all and only the nodes with

sequence numbers in the affected range of the node are affected.

Proof. During the traversal, whenever a child node is found to have more than one

parent it is added to the deferred search queue of its nearest ancestor. It is equivalent

to removing the links of this node to its current parent and linking it to its nearest
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/* n: DFS start node */

n.visited⇐ True

if |P (ST (Ts, i), n)| > 1 and n.enqueued = False then

p⇐ DFS nearest ancestor(ST (Ts, i), n)

enqueue(p.deferred dfs queue, n)

n.enqueued⇐ True

else

n.seq[i]⇐ ST (Ts, i).seq count

ST (Ts, i).seq count⇐ ST (Ts, i).seq count + 1

foreach m ∈ C(ST (Ts, i), n) do

if m.visited = False then

DFS seq(ST (Ts, i), m)

while n.deferred dfs queue 6= ∅ do

m⇐ dequeue(n.deferred dfs queue)

DFS seq(ST (Ts, i), m)

n.seq end[i]⇐ ST (Ts, i).seq count− 1

/* Notes: visited ensures each node having single parent is

visited only once (consider ECMPs). Nodes having multiple

parents are visited twice: one for enqueuing, one for real

traversal.) enqueued ensures every node is enqueued only once.

It is used to distinguish the tow times we visited a node having

multiple parents. */

Fig. 3.: Algorithm DFS seq(ST (Ts, i), n)
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ancestor as a child via a virtual link.

We claim that when we move this child node to its new parent (i.e. its nearest

ancestor), the DFS traversal has not left its new parent. This is because:

When we move the node(C) to its new parent(A), the currently traversed node(B)

is one of C’s original parents. We must arrive at B via a path from the root to it.

The path may consist of real links and virtual links we created before. According to

the DFS algorithm, all the nodes on this path has not been left at this time.

The nearest ancestor of node C must be one of the nodes on this path or a node

in the real topology between two ends of a virtual link on this path. However, the

failures of nodes in the real topology between the two ends of a virtual link do not

affect the reachability of C, since the failures do not affect the reachability of the

downstream end of the virtual link. Thus the nearest ancestor of node C must be

one of the nodes on this path. Hence the claim is correct.

The above claim also ensures that all nodes in the tree are traversed by the DFS
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traversal.

Therefore, the algorithm transforms the routing tree into a simple tree(without

ECMPs) and the traversal is equal to a DFS traversal on the transformed tree. In the

transformed tree(after removing links and adding virtual links), a failure of a node

will affect all and only its descendants. According to properties of DFS traversal, the

theorem is proved.

4. Rerouting operations and setup of RP

In this subsection we give detailed description of the rerouting operations of routers

after a link failure detected.

a. Operations of local router

The operations of a local router is given by algorithm RP SETUP1 shown in Fig. 5.

After detection of a link failure, the local router first marks the next hop unreachable.

As a result, for traffic having other ECMP next hops, the router will avoid using this

next hop. If the RP for the failed link is a local FNH, the router set the rerouting

flag and the rerouting next hop. If the RP includes some upstream nodes, the router

send messages to them to notify the link failure and the RP before rerouting traffic

along the RP.

b. Operations of routers on a RP

The operations of a router on a RP are given in algorithm RP SETUP2 shown Fig.

6. When a router receives a RP setup request, it marks affected interfaces and sets

the rerouting flags and affected range for the interface. We call an interface affected

when some packets forwarded through the interface cannot reach their destinations
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/* called by a for failed link (a, b) */

interface(b).failure⇐ True

if interface(b).local reroue = False then

foreach RP ∈ RPs(a, b)

/* There are multiple RPs only when there are ECMPs between a

and the exit node. */

do

msg.RP ⇐ RP

msg.failed link ⇐ (a, b)

foreach i = RP.num of hops, · · · , 1 do

msg.position⇐ i

SEND MSG(RP.nodes[i], msg)

reroute next hop⇐ interface(b).reroute next hop

rerouting ⇐ True

Fig. 5.: Algorithm RP SETUP1((a, b))
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/* called by a router on the RP, n */

(a, b)⇐ msg.failed link

foreach m ∈ C(Tn, n) do

f ⇐ interface(m)

if (a, b) ∈ ST (Tn, m) and b.seq[f ] ∈ [a.seq[f ], a.seq end[f ]] then

f.affected⇐ True

f.affected start⇐ b.seq[f ]

f.affected end⇐ b.seq end[f ]

if msg.RP.num of hops > msg.position then

reroute next hop⇐ msg.RP.nodes[msg.position + 1]

else

reroute next hop⇐ msg.RP.next hop

rerouting ⇐ True

Fig. 6.: Algorithm RP SETUP2(msg)
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(dest node, next hops)⇐ routing table lookup(pkt)

if rerouting = False then

normal forward(next hops, pkt)

else

valid next hops⇐ ∅

foreach n ∈ next hops do

f ⇐ interface(n)

if f.affected = False then

valid next hops⇐ valid next hops ∪ n

else if dest node.seq[f ] /∈ [f.affected start, f.affected end] then

valid next hops⇐ valid next hops ∪ n

if valid next hops 6= ∅ then

normal forward(valid next hops, pkt)

else

reroute(reroute next hop, pkt)

Fig. 7.: Algorithm NEW FWD(pkt)

because of the link failure.

c. Modified forwarding operations

After the RP is setup, the router adjacent to the failed link will reroute all traffic

routed to the failed link along the RP; other routers on the RP check traffic to

be forwarded via affected interface and reroute affected traffic along the RP. The

algorithm, NEW FWD, is shown in Fig. 7.

Theorem 3 ensures the correctness of algorithms shown Figs. 6 and 7.
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Theorem 3. For a router on the RP, when link (a, b) fails, if and only if (a, b) is an

edge of the first level subtree below an interface (assume a is the upstream node of the

link) and the sequence number of b is within the affected range of a for the interface,

then b becomes unreachable via that interface.

Proof. If b is within the affected range of a, then the failure of a causes b unreachable,

i.e. the traffic to b must pass a. Because our scheme uses the nearest FNH to reroute,

a does not have ECMPs to b, otherwise a will reroute locally. So the failure of link

(a, b) causes b unreachable via the interface.

If link (a, b) is not an edge of the subtree, no traffic via the interface will pass the

link. If link (a, b) is an edge of the subtree but the sequence number of b is not within

the affected range of a, then the failure of a will not affect traffic to b, i.e. there is a

ECMP not including link (a, b) from the root of the subtree to b.

B. Evaluation

We have evaluated our rerouting scheme on random topologies generated using BRITE

topology generator [18]. We have generated topologies of 25-200 nodes with average

degree of 4, 6 and 8. The link weights are uniformly distributed between 100 and

300. For each configuration we have generated 5 random topologies.

1. Number of signaling hops

First, we have measured the number of signaling hops of rerouting paths. (0 means

local rerouting, 1 means the exit node is 1 hop away, and so on)

As shown in Fig. 8, the maximum number of signaling hops is 2 for all topologies

we used. For topologies with average degree of 6 and 8, most RPs are local FNH.

The small value of number of signaling hops is beneficial for our rerouting scheme,
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since it means short RP setup time, i.e. the response time of our rerouting scheme.

For signaling hops of 0, the response time of our scheme is near zero. For signaling

hops of n, the response time of our scheme is the time it takes to send a message to

a router n hops away in the network plus the processing time of routers.
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Fig. 8.: Percentage of RPs with different number of signaling hops and average number

of signaling hops (the number above each vertical bar)

2. Path elongation

We have measured the distance elongation of our rerouting scheme compared to the

optimal shortest path routing.

We define the elongation ratio (elongation value) as the ratio (difference) of the

distance between an affected pair of nodes under our rerouting scheme and the optimal

distance after global routing table recalculation.



22

25 50 75 100 125 150 175 200
1

1.1

1.2

1.3

el
on

ga
tio

n 
ra

tio

ave_degree=4
ave_degree=6
ave_degree=8

25 50 75 100 125 150 175 200
0

50

100

150

200

number of nodes

el
on

ga
tio

n 
va

lu
e

ave_degree=4
ave_degree=6
ave_degree=8

Fig. 9.: Elongation ratio and value compared to optimal paths

Since our main objectives are to achieve fast response to link failures and simple

rerouting operations, our scheme does not prioritize the optimization of the rerouting

path. But as we see in Fig. 9, the path elongation is not significant. While the average

elongation ratio is about 1.21, the elongation value value is about 100 to 160, i.e. less

than twice of the minimum link weight, 100. This means the average elongation of

our scheme is less than two hops.

3. Complexity of algorithms

The most complex algorithm in our scheme is Algorithm SEQ shown in Fig. 2 that

calculates sequence numbers for all nodes in each first level subtree of the local routing

1The elongation ratio is decided by the elongation value and the average distance
between pairs. While the increase of average degree reduces the elongation value, it
also reduces the average distance. And we can see it increases the elongation ratio as
shown in Fig. 9
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tree.

In a routing tree without ECMPs, the complexity is same as DFS, i.e. O(|V |)

where |V | is the number of nodes in the routing tree.

In a routing tree with ECMPs the complexity can be estimated as O(n|V | +

n|V ′||E ′|), where n is the maximum degree of the root node, |V ′| is the maximum

number of nodes in a first level subtree that have more then one parent, |E ′| is the

maximum number of unique edges traversed in a call of DFS nearest ancestor, which

is at most |V |. O(n|V |) represents the complexity of the DFS search procedures for

all first level subtrees. O(n|V ′||E ′|) represents the complexity of the calculation of

all nearest ancestors that is loosely bounded by O(n|V |2). However, in a real-world

routing tree the number of nodes that have more than one parent(|V ′|) is much smaller

than |V |; accordingly, |E ′| is in order of the diameter of the topology Therefore the

complexity of the algorithm is small. Moreover, using incremental implementation by

storing the deferred dfs queue with the nodes in first level subtrees, the complexity

of this algorithm can be further reduced.

C. Future work

First, we plan to use more than one RPs to split rerouted traffic for load balancing.

Second, we plan to enhance our algorithm to detect multiple link failures and node

failures. In such cases we should avoid fast rerouting and rely on the original IGP

convergence mechanism.

D. Conclusions

We have proposed a Fast Rerouting scheme for OSPF/IS-IS networks in this paper.

We have developed efficient algorithms for calculation of Rerouting Path, and identi-
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fication of affected traffic. The rerouting operation for each packet is comparable to

basic IP forwarding. Simulation results show that, assuming there is one link failure

at a time which accounts for a large portion of network failures, our scheme achieves

fast response to link failures and the path elongation compared to optimal path is

not significant.
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CHAPTER III

FRACTIONAL MULTIHOMING ROUTE CONTROL

A. Introduction

When a network has more than one external link to one or more ISPs, it is said to

be multihomed [11]. Multihoming has been traditionally used by stub networks for

improving service availability. In recent years, Multihoming Route Control (MRC)

technology [19] has been employed by multihomed stub networks to improve their

Internet access performance. In the discussion of multihoming route control, multi-

homing specifically means that a stub network connects to multiple ISPs. A MRC

device chooses the best ISP(s) for traffic to (and from, for NAT [20] based of MRC)

an IP address prefix that is usually equivalent to a destination network according to

measured qualities of alternate paths via different ISPs. Measurement based analysis

of the benefits of multihoming [15] showed that MRC may improve Internet access

performance significantly for both enterprises and large data centers.

There are two types of multihoming: NAT(Network Address Translation) [20]

based and BGP [12] based. NAT based multihoming is usually used by small to

medium size stub networks because it does not require the stub network to have

an independent IP block and maintain a BGP router. BGP based multihoming is

usually used by a large stub network that has an independent IP address block(s)

and maintains a BGP router. Accordingly, multihoming route control devices can be

classified into NAT based and BGP based categories, see [21] for a survey.

In this work, we study MRC for large stub networks that employ BGP based

multihoming. We also assume the stub network advertises its IP address block(s)

to all its ISPs. While it is possible to control the incoming traffic direction through
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selective advertisement of addresses to different ISPs, such a control is only possible

over longer timescales and may leave the stub network vulnerable to network failures.

In this case, the stub network can send outgoing traffic via either of its ISPs, but

it cannot control which ISP the ingress traffic comes from. In summary, the task

of MRC for BGP based multihoming is to map egress traffic onto available paths

provided through BGP based multihoming. This is not a problem when multihomed

receivers also have MRC devices deployed since all traffic is controlled by the MRC

devices of the originating stub networks. When the receivers are single-homed or

do not employ MRC, we can assume the ingress traffic is statically routed. In this

case, MRC can still improve performance of stub networks that deploy MRC, but the

improvement is limited to optimizing egress traffic. However, the control of egress

traffic alone is good enough to attract content providers to deploy MRC, since the

volume of their egress traffic is usually larger than the volume of their ingress traffic.

For networks where MRC of ingress traffic is desirable, NAT based MRC should be

considered which is beyond this work.

Multihoming route control is usually done in a distributed manner: each stub

network adaptively changes the ISP of its traffic to (and from, for NAT based MRC)

a destination network according to its own view of the quality of alternate paths via

different ISPs. When (1) the controlled traffic accounts for a significant portion of

the total load on the bottleneck links and (2) the traffic controlled by multiple MRC

devices shares bottleneck links, the MRC by different stub networks may interact

with each other. In such situations, greedy MRC approaches may cause oscillations.

Beginning in this chapter, we start to study the possible oscillations of MRC and

propose new MRC schemes to avoid such oscillations. In this dissertation, we focus

on MRC among a group of multihomed stub networks, for example, the networks

of branches of an enterprise that are multihomed and exchange considerable traffic
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regularly among themselves. Since access links of stub networks are more likely to be

the bottlenecks along end to end Internet paths, MRC among a group of multihomed

stub networks is more likely to cause oscillations. Although we focus on MRC among

a group of multihomed stub networks, the distributed MRC scheme we proposed in

Chapter V can be also used as a general MRC method.

In this chapter, we explain the problem we want to solve, give the fractional

MRC framework of our solutions and explain the method of our study. In the next

three chapters, we will propose MRC schemes under the framework and study their

performance and implementation issues. In Chapter IV, we propose an optimal rout-

ing based global coordination method for MRC among a group of multihomed stub

networks. In Chapter V, we propose a user-optimal routing based distributed MRC

approach that can be used for both MRC among a group of multihomed stub net-

works and more general MRC of stub networks. While in Chapter IV and V, we

assume traffic is UDP type traffic whose traffic volume does not change because of

network condition changes, in Chapter VI, we study MRC of highly dynamic TCP

traffic consisting of TCP flows of different sizes.

The remaining of this chapter is organized as follows. In Section B, we describe

an Internet measurement experiment we have done to study the quality differences

between alternate paths through multihoming and present the results. In Section

E, we propose the framework of fractional MRC to avoid oscillations of MRC. This

framework is an extension of traditional MRC and is the foundation of our MRC study

in next three chapters. In Section C, we describe the simulation methods we used in

this chapter and the next two chapters. In Section D, we introduce two greedy MRC

algorithms and show the possibility of oscillations of these two MRC approaches. In

Section G, we discuss related work on MRC. Conclusions are drawn in Section H.
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B. Measurement study of qualities of alternate paths provided through multihoming

1. Measurement method

We conducted measurements on the Internet to study the dynamics of the quality

differences of the alternate paths available through multihoming. This is important

for designing an effective MRC scheme.

The experiment consisted of the following steps.

(1) We identified a number of multihomed stub networks by analyzing the AS

graph generated using multiple BGP RIBs (Routing Information Bases) from the

Route Views website [22]. The method is similar to the one used in [3].

ScriptRoute

Server

Traceroute

destination
ISP edge

router

Stub network

edge router

IP1IP2

ISP
Stub

network

Fig. 10.: Traceroute measurement

(2) Based on the IP address ranges of Autonomous Systems (ASes) from the

BGP RIBs, we use the traceroute utilities on a number of Scriptroute servers [23] to

identify the edge routers of these stub networks. Traceroute utility generates a list

of IP addresses of routers along the forwarding path from the originating host to the

destination host. The address of a router along the path is usually the IP address

of the incoming interface of the traceroute packet. For example, in a traceroute

measurement shown in Fig. 10, we get an IP address of the ISP edge router, IP2,

and an IP address of the stub network edge router, IP1. Usually IP1 is the last IP

address belonging to the ISP along the list of addresses generated by the traceroute

measurement.



29

(3) We measure alternate paths to a stub network by “pinging”(using “tracer-

oute” (UDP) packets) the IP1s of different ISPs of the stub network. We measured

the alternate paths to one stub network from a number of Scriptroute servers.

In this way, we measure the alternate “round trip paths” from a Scriptroute

server to a multihomed stub network. We compare the qualities of two “round trip

paths” by calculating the differences of the average RTTs and average loss rates of

the “ping” packets on the two paths. Without access to hosts in the remote stub

networks, it is hard to measure quality of one way paths from the Scriptroute servers

to remote multihomed stub networks. That is the reason we conduct measurement

of quality of round trip paths. Although it is not a direct measurement of quality

difference between alternate “one way paths” through multihoming, in most cases, it

still reflects the dynamic quality differences of alternate paths through multihoming.

In our measurement, we find that the RTTs and loss rates of the “ping” packets

to the stub network edge routers sometimes fluctuate significantly and have a daily

pattern. We suspect that it is because the access links of the remote networks are

busy, so the characteristics of the paths may be concealed by the queuing delay and

packet losses on the access links. To get rid of the queuing delay on access links of the

stub networks, we calculate the RTT of a “route trip path” from a Scriptroute server

to a stub network edge router as RTT1min + RTT2− RTT2min, where RTT1 is the

RTT of a “ping” packet to the stub network edge router, e.g. IP1 in the measurement

shown in Fig. 10, RTT2 is the RTT of a “ping” packet to the ISP edge router, e.g.

IP2 in the measurement shown in Fig. 10. The minimum of RTT1 and the minimum

of RTT2 are expected to be the propagation delay (without queuing delays on links)

of the “round trip paths”. We use the loss rates of the packets to ISP edge routers

as the loss rates for the “round trip path”.
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2. Measurement results

We carried out measurement for more than 2 days in June, 2004. Here, we give some

results from our measurement of 33 pairs of alternate paths in the United States.
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Fig. 11.: Average RTT differences and loss rate differences of pair 1 of alternate

paths. (over 5 minute durations, Y axis: ∆RTT in milliseconds and ∆loss rate, X

axis: time since the start of measurement in hours)

Figs. 11, 12 and 13 show the RTT differences and loss rate differences of 3 pairs

of alternate paths. The RTTs and loss rates are averaged over 5 minute durations.

From the figures, we see significant performance differences between a pair of alternate

paths for both RTTs and loss rates. The differences change over time. A better

path may become worse some time later. The RTT differences persist over both

small time scales (e.g. 5 minute) and over long time scales (e.g. a few hours).

Similar differences are observed for more than half of the paths we measured. These

observations indicate: (1) route control is possible to improve the performance of
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Fig. 12.: Average RTT differences and loss rate differences of pair 2 of alternate paths.

(using same parameters as Fig. 11)
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Fig. 13.: Average RTT differences and loss rate differences of pair 3 of alternate paths.

(using same parameters as Fig. 11)
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multihomed network significantly, and it should be implemented in a dynamic manner;

(2) both small time scale route control and large time scale route control have the

potential to improve the routing of multihomed stub networks.

C. Simulation methods

In this chapter and next two chapters, Chapter IV and Chapter V, we use flow level

simulations to study the performance of different MRC algorithms. In Chapter VI,

we use network simulator, ns-2 [17] to study our MRC approach proposed in Chapter

V. In this section, we describe the common methods we used in these simulations.

Other methods will be discussed in corresponding chapters.

1. Topologies and path characteristics

In our simulations, we make some simplifications to network topologies. We assume

that the traffic controlled by the stub networks accounts for only a small part of the

total traffic on any link of the backbone networks which is usually true. Under this

assumption, the MRC of traffic of the stub networks won’t affect the quality (or level

of load) of backbone links. Therefore, we can abstract a network path between the

ISP edge routers of two stub networks as a directed “virtual” link with given quality

that may change overtime. We also abstract paths from ISP edge routers of a stub

network to an Internet destination as “virtual” links. Based on previous analysis of

heavy-tailed Internet traffic distributions, e.g. [24], we apply fractional MRC only

for a number of Internet destinations that account for a large amount of total egress

Internet traffic of a stub network. Since the routing inside a stub network is not

relevant to our work we also abstract each stub network as a node.

Therefore, a network we are studying consists of: (1) nodes representing stub
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networks in the group; (2) nodes representing ISP edge routers of the stub networks;

(3) nodes representing a number of top Internet destinations of the stub networks; (4)

links representing access links of the stub networks; (5) virtual directed links between

ISP edge routers of different stub networks. (6) virtual directed links between ISP

edge routers of the stub networks and the Internet destinations. To simplify the

simulation, we assume that stub networks in the group are multihomed to same

number of ISPs and each has same number of representative Internet destinations.

Depending on whether the group of networks multihome to the same set of ISPs,

there are two types of topologies for traffic among the stub networks: (1) Symmetric

topology: When all the nodes multihome to the same set of ISPs, the path from a

stub network i via ISP k to any other stub network, say j, normally reach j via ISP

k. Thus, the alternate paths between these two stub networks are “parallel”, they

merge only inside the stub networks we considered. (2) Asymmetric topology: When

nodes multihome to different set of ISPs, the alternate paths from a stub network to

another stub network are not necessarily ”parallel”. Two paths to a stub network may

merge in one ISP of the stub network or in other AS between the two stub networks.

This is decided by the BGP relationship of ASes between the two stub networks. We

generate asymmetric paths for inhouse traffic from a node, say i, to a node, say j, by

connecting each ISP of i to a randomly selected ISP of j . Each ISP of j has equal

probability to be selected.

Fig. 14 shows the partial topology of a “4x2” network (“AxB” means the topol-

ogy has A stub networks and each stub network has B ISPs) . The ISPs of different

stub networks are different, i.e. asymmetric topology for inhouse traffic. For clarity,

we only draw paths from stub network 2, 3, and 4 to stub network 1. Other paths

among the stub networks and paths to and from Internet destinations are ignored.

We generate path characteristics as follows: we randomly map the stub networks
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Fig. 14.: Topology consisting of multihomed stub networks, the edge routers of their

ISPs and the paths among them

onto 17 major cities of the United States. We generate propagation delay of a path

for inhouse traffic between two ISP edge routers by multiplying half of the RTT

between the the two cities on the AT&T backbone [25] by a random factor, uniformly

distributed from α − δ to α + δ, where α and δ are constant for each topology. α

defines the mean end to end delay of the path. We set α = 1.3 in our simulations. We

call δ as the diversity factor, because it reflects the average performance difference

between alternate paths via different ISPs. We use different diversity factors from 0.2

to 0.6 in our simulations. If more than one stub network is mapped to the same city,

we assigned the propagation delay of a path for inhouse traffic between these stub

networks as 1.5 millisecond multiplied by the above random factor.

2. Traffic demands

Traffic demands of networks are usually not available to the public. Therefore, in

most of our simulations, we generate demand matrices using a simplified version of

the “gravity model” [26]. This model is shown to work well in traffic matrix estimation

[27]. In Chapter IV, we also use traffic matrices constructed from Internet traces. We

will describe the method in that chapter.
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Using the simplified “gravity model”, to generate inhouse traffic between nodes,

we assign two uniformly distributed random numbers to each node i, Oi, Di ∈ [0, 1].

Then the traffic demand from node i to node j is αOiDj , where α is a parameter, Oi

and Di model how active node i is as a sender and as a receiver.

Similarly, to generate Internet traffic, we assign two uniformly distributed ran-

dom numbers to each node i, O′
i and D′

i, where O′
i, D

′
i ∈ [0.5, 1] in Chapter IV,

O′
i, D

′
i ∈ [0, 1] in Chapter V. The two choices do not have significant impact on our

conclusions. The egress and ingress Internet traffic of the node are βO′
i and βD′

i,

where β is a parameter, O′
i and D′

i model how active node i is in sending and receiv-

ing Internet traffic. In Chapter IV, the above aggregate of Internet traffic is enough

for our simulations. When we consider MRC of egress traffic to Internet destinations

in Chapter V, the egress Internet traffic is randomly distributed to 5 Internet desti-

nations(each has a random weight uniformly distributed in [0,1]); the ingress Internet

traffic is randomly distributed on all ingress access links(each has a random weight

uniformly distributed in [0,1]).

In our simulations we choose α and β to make the expected volume of inhouse

traffic 50% of the total traffic.

3. Queuing delay models

We wrote a flow level simulator for our simulations in this chapter and next two chap-

ters. In flow level simulations, queuing delays and loss rates on links are calculated

according to queuing models.

In this chapter and Chapter IV, like most previous related work [16, 28], we

consider only queuing delays. We use following two representative queuing models:

1) M/D/1 queuing model [29] : fixed sized packets arrive according to Poisson process;

2) P/M/1 queuing model [30] : exponentially sized packets arrive according to Pareto
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process. The queuing delay function of M/D/1 is: q(x) = 0.5
µ−x

+ 0.5
µ

, where µ is the

link capacity, x is the load on the link. In our simulations, we assume packet size

is 1000 bytes. Because there is no close form of queuing delay function for P/M/1

queue, we use a piece-wise linear function to approximate the function according to

the numerical result of [30] (with β = 1.5). Because both of these two models are

defined in x ∈ [0, 1) while the demand in our simulation may exceed the capacity,

similar to previous work [28], we extend the queuing delay of the two models linearly

for utilization over 99%.

D. Basic multihoming route control and possible oscillations

1. The greedy method: best-path-only multihoming route control

According to literature on multihoming route control [31, 32], most MRC devices

greedily choose the “best” path for traffic to a destination prefix according to mea-

surement of quality of alternate paths. Since this algorithm is a special case of the

next algorithm we will study, we express it using the same algorithm as shown in Fig.

15. For this algorithm, H1 = 1, H2 = 0 (Note that H2 is not used in this algorithm and

we set H2 = 0 here to make “delay x < 0” always false). In this algorithm, each node

selects a path among alternate paths according to path quality measurements after

every T seconds, where T is a random number uniformly distributed in [0.5T0, 1.5T0]

(T0 = is the mean period over which route control decisions are made.) to avoid

update synchronization that may increase oscillation probability. H1 specifies that

only the path with minimum delay can be used.

An implicit assumption of this type of greedy route control is that the quality of

the “best” path will not get much worse after traffic being switched to it from alternate

paths. However, this assumption does not always hold. When the assumption is not
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while true do

foreach destination, d do

xmin ← min delay of alternate paths to d ;

equally split traffic to d along paths with delay x: x ≤ H1 · xmin or

x ≤ H2 ;

wait for random time T ∈ [0.5T0, 1.5T0) ;

Fig. 15.: Basic multihoming route control algorithm for a MRC device

true, route control may cause oscillations. For the routing of traffic among a group

of multihomed networks, access links may have high utilization and traffic controlled

by MRC devices may account for non-trivial volume relative to the total capacity of

an access link. Thus this assumption could be easily violated. Simulation results in

Section 3 will illustrate the affect of possible oscillations in the greedy multihoming

route control approach.

2. A less greedy method: threshold based load-balancing

The fundamental reason for the above MRC approach to cause oscillations is its

“coarse” control over traffic in a network where access links have limited capacity.

Naturally, a less greedy MRC approach that has finer control of traffic routing may

lower the probability of oscillations.

A possible such approach is to split traffic among a few paths that have relatively

better quality according to the algorithm shown in Fig. 15. The meanings of t, T0 are

the same as described in the best-path-only algorithm. Each round the MRC device

chooses all the paths satisfying some QoS requirement: “end to end delay < H2” or

“< H1· minimum end to end delay” (H1 = 1.4, H2 = 50ms in our simulations) and

begin to equally split traffic among these paths.
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This approach is less greedy and has a finer control over traffic. However, we

have found that this approach may still cause oscillations in some situations as we

show in Section 3.

3. Possible oscillations of basic multihoming route control method

We study the performance of above basic multihoming route control methods using

simulations. The simulation configurations are given in Section C. For comparison,

we also study the corresponding performance of static load balancing( splitting traffic

to one destination along all alternate paths).

In each simulation, we initialize the routing allocations according to the static

load-balancing approach and evaluate the routing dynamics of routing approaches

from the 100th second to the 1000th second. For each MRC approach, we plot the

time average and variance of mean end to end delay of inhouse traffic under different

network configurations. The average end to end delay of inhouse traffic is a metric

representing the overall performance of the routing approach. The variance of end

to end delay of inhouse traffic is a metric reflecting the stableness of the routing

approach. Because we assume the network situation and demand matrix do not

change in the simulations, a routing approach should ideally get 0 variance after it

converges.

Figs. 16, 17 and 18 are the simulation results for an asymmetric topology of 8

stub networks where each stub network connects to 3 ISPs, makes a routing decision

every second (T0 = 1), and with the P/M/1 queuing model.



39

0.2 0.3 0.4 0.5 0.6
0

10

20

M
ea

n 
de

la
y 

(m
s)

Diversity factor

elb max util = 60%

0.2 0.3 0.4 0.5 0.6
0

0.5

1

M
ea

n 
de

la
y 

(m
s)

Diversity factor

elb max util = 60%

0.2 0.3 0.4 0.5 0.6
0

50

100

150

M
ea

n 
de

la
y 

(m
s)

elb max util = 90%

0.2 0.3 0.4 0.5 0.6
0

10

20

M
ea

n 
de

la
y 

(m
s)

elb max util = 90%

0.2 0.3 0.4 0.5 0.6
0

100

200

M
ea

n 
de

la
y 

(m
s)

elb max util = 100%

0.2 0.3 0.4 0.5 0.6
0

20

40
M

ea
n 

de
la

y 
(m

s)

elb max util = 100%

0.2 0.3 0.4 0.5 0.6
0

200

400

600

800

M
ea

n 
de

la
y 

(m
s)

elb max util = 110%

0.2 0.3 0.4 0.5
0

100

200

M
ea

n 
de

la
y 

(s
)

elb max util = 110%

Fig. 16.: Average delay and delay variance of best-path-only MRC v.s. utilization

and path quality diversity factors (asymmetric topology, Pareto type traffic)
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Fig. 17.: Average delay and delay variance of threshold based MRC v.s. utilization

and path quality diversity factors (asymmetric topology, Pareto type traffic)
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Fig. 18.: Average delay and delay variance of static load-balancing v.s. utilization

and path quality diversity factors (asymmetric topology, Pareto type traffic)
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To show the cause of the delay variances, we plot some details of one simulation

point in Fig. 16. We plot the time sequences of (1) average virtual delay and average

loss rate; (2) routing vector for from one site to one destination; (3) end to end

virtual delay of paths from the site to the destination, in Figs. 19 to 21, for following

configuration: diversity factor = 0.4; traffic matrix is scaled such that the maximum

utilization for static load-balancing is 100%; asymmetric topology; Pareto type traffic.
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Fig. 19.: Average delay and average loss rate of best-path-only MRC

As we can see from these figures:

1. When average utilization equals 60% or higher, the variances of delays along

time of both best-path-only MRC and the threshold based MRC are larger than

105, which indicates that there are severe oscillations. At the same time the

traffic experiences larger mean delay compared to static load-balancing.

2. When average utilization equals to 40%, the threshold based MRC can avoid

majority of oscillations (indicated by very small delay variance) and achieves
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Fig. 20.: Routing vector for one pair of source and destination in best-path-only MRC
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Fig. 21.: End to end virtual delay for one pair of source and destination in best-path-

only MRC
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smaller delay than static load-balancing, which means the approach can exploit

the diversity of alternate paths.

3. For the same average utilization of 40%, the best-path-only MRC cause some

oscillations (indicated by medium delay variance) and achieve larger average

delay than the other two approaches.

4. The best-path-only MRC do achieve smaller average delay when path quality

diversity factor becomes larger when average utilization is 40% and oscillations

are not severe(medium delay variance along with time). The average delay for

threshold based MRC does not change as the diversity factor changes because

it ignore path quality changes smaller than the threshold.

Simulation results for symmetric topology and Poisson traffic are shown in Figs.

22 to 30. Similar results are observed. In summary, using greedy MRC approach

for traffic among a group of multihomed stub networks may cause oscillations. And

a better approach is needed for traffic routing among a group of multihomed stub

networks.

E. Framework of fractional multihoming route control

Existing BGP based MRC schemes usually work as follows [19]: A MRC device

measures quality of alternate paths from the local stub network to an IP prefix via

different ISPs. Based on the measurement results, the MRC device directs a local

BGP border router to select an ISP for traffic to that IP address prefix. Because

BGP uses single route for an address prefix at any time, MRC is also restricted to

use a single route. However, the coarse granularity of control of single path MRC

increases possibility of oscillations.
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Fig. 22.: Average delay and delay variance of best-path-only MRC v.s. utilization

and path quality diversity factors (symmetric topology, Pareto type traffic)

While it is critical for ISP networks to use single path for routing of inter-domain

traffic to make BGP scalable, it is not a problem for stub networks to use multiple

paths for their egress traffic. In this work, we assume stub networks can use multiple

paths for egress traffic. The desired percentages of traffic to one destination network

on each alternate path are decided by the MRC device. We call MRC that uses

multiple paths simultaneously for traffic to one destination network as fractional

MRC. In this chapter and Chapter IV and V, we study fractional MRC for UDP

type traffic. In Chapter VI, we study MRC for TCP traffic, the proposed scheme is

also under the Fractional MRC framework.

Fractional MRC device can move traffic from one path to another path smoothly.

Proper implementations of fractional MRC can avoid oscillations, as we will show in in

Chapter IV and Chapter V and Chapter VI. Fractional MRC is a form of multipath
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Fig. 23.: Average delay and delay variance of threshold based MRC v.s. utilization

and path quality diversity factors (symmetric topology, Pareto type traffic)
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Fig. 24.: Average delay and delay variance of static load-balancing v.s. utilization

and path quality diversity factors (symmetric topology, Pareto type traffic)
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Fig. 25.: Average delay and delay variance of best-path-only MRC v.s. utilization

and path quality diversity factors (asymmetric topology, Poisson type traffic)
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Fig. 26.: Average delay and delay variance of threshold based MRC v.s. utilization

and path quality diversity factors (asymmetric topology, Poisson type traffic)
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Fig. 27.: Average delay and delay variance of static load-balancing v.s. utilization

and path quality diversity factors (asymmetric topology, Poisson type traffic)
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Fig. 28.: Average delay and delay variance of best-path-only MRC v.s. utilization

and path quality diversity factors (symmetric topology, Poisson type traffic)
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Fig. 29.: Average delay and delay variance of threshold based MRC v.s. utilization

and path quality diversity factors (symmetric topology, Poisson type traffic)
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Fig. 30.: Average delay and delay variance of static load-balancing v.s. utilization

and path quality diversity factors (symmetric topology, Poisson type traffic)
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routing. It inherits other advantages of multipath routing, e.g. ability to route

broader range of traffic matrices than single path routing without causing congestion.

Routing decision

Measurement Packet forwarding

Fig. 31.: Multihoming route control system architecture

A basic fractional MRC system consists of three components as shown in Fig.

31: (1) measurement module, (2) routing decision module and (3) packet forward-

ing module. The measurement module performs active or passive measurement of

qualities of alternate paths to specified destination networks.

The measurement results are sent to the routing decision module. The routing

decision module keeps current routing vectors (We call the fractions of traffic to

one destination as a “router vector”.) for destination networks, and will change the

routing vectors according to path quality measurement results. The packet forwarding

module forwards packets in such a way that the traffic load on alternate paths match

the routing vectors.

To implement the measurement module, there are a number of metrics of quality

we can use, e.g. delay, loss rate and available bandwidth (ABW). Different applica-

tions have different quality requirements. For example, VoIP applications prefer low

delay, low loss rate paths, bulk transfer applications, such as FTP, prefer high ABW

paths. In this and next three chapters, we study MRC devices that measure delays
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and loss rates of forwarding paths. These two metrics are measurable when we have

access to both measurement sources and destinations. They can usually be estimated

when we don’t have access to measurement destinations. These two metrics are easier

to measure than ABW and have relatively mature techniques available, e.g. [33]. The

usage of ABW measurement in MRC is a direction for future study.

Different algorithms for calculating exact percentage of traffic sent on each ISP

can be used in the decision module. In next two chapters, we propose two such

algorithms for MRC among a group of multihomed stub networks.

Techniques to implement the forwarding engine is discussed in next section.

F. Implementation of fractional forwarding engine

To implement fractional MRC, multiple routes need to be assigned for interested

destination networks. The packet forwarding module forwards packets according to

the routing vectors decided by the routing decision module.

There are a number of choices for designing this forwarding module. The straight-

forward one is packet level switching. Packet level forwarding treats packets from

different flows in the same way. Weighted fair queuing [34] or deficit round robin [35]

can be used as the packet level forwarding algorithm to maintain the target fraction

of traffic routed on each path.

A drawback of packet level forwarding is packet reordering that could affect

performance of TCP. Most currently used TCP implementations treat duplicated

ACKs as a sign of congestion. A TCP sender reduce congestion window by half after

it receives the third duplicated ACK packet from its peer. This mechanism causes

TCP throughput degradation in multipath routing environments. See [36] for detailed

description.
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A few types of approaches have been proposed to address the packet reordering

issues of multipath routing schemes:

1. Reordering robust TCP variants.

In recent years, a number of TCP variants have been proposed to address the

above weakness of TCP, e.g. TCP-DCR [37]. In this work, we will study the

use of TCP-DCR to mitigate the affect of packet reordering caused by our

MRC approach. TCP-DCR is designed to work in both wireless and wired

environments. It is a sender side modification. Therefore, there are other

possible benefits of deploying TCP-DCR in addition to solve packet reordering

issue. Of course, other TCP variants can also be used. We will not study other

packet reordering robust TCP variants because we don’t have access to their

ns-2 source code at the time this work is being done.

2. Flow level switch and “Flowlet” [38].

To totally avoid packet reordering, “flow level” switching can be used. Packets

belong to a flow can be identified by the (source address, destination address,

protocol type, source port, destination port) tuple, where the two port fields are

applicable for UDP and TCP packets. In this approach, a flow is assigned to a

path at the moment the first packet of the flow is forwarded on a router. All

subsequent packets of the flow will be routed along the same path. This method

does not cause packet reordering, but has limited ability to switch traffic from

one path to another path and loses benefits of adaptive routing. Anther limita-

tion of this method is that this approach cannot guarantee accurate fractional

routing that is required by the MRC scheme we proposed in Chapter IV and V.

Flow level hashing can be used to approximately maintain the target fraction

while reduce number of reordering. Hashing based load-balancing methods
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are studied in [39], where hash values of packet headers are used to decide

the outgoing links. The authors of [39] also show that “dynamic hashing”,

i.e. hashing bins are reassigned to outgoing links periodically to maintain the

target fractions, can significantly improve the splitting accuracy. A number of

algorithms for dynamic hashing are proposed and studied in [40]. However, to

support a dynamic MRC where traffic is constantly switched, hashing based

splitting methods are still not perfect. Some existing flows need to be switched

to maintain higher splitting accuracy, thus packet reordering may happen for

such flows. Otherwise, target allocations cannot be achieved accurately.

“Flowlet” switching [38] is proposed to overcome the above drawback of hashing

based splitting methods. “Flowlet” switching is based on the fact that a TCP

flow normally consists of a sequence of bursts that are separated by intervals

of 50 milliseconds or so. If a flow is switched right after such an interval, it

will not cause packet reordering assuming the delay difference between the two

paths are smaller than the interval.

The most important parameter of Flowlet switching algorithm is the timeout

value. An idea value should be larger than the maximum delay difference be-

tween alternate paths so that Flowlet switching won’t cause any out of order

delivery.

Using “Flowlet” switching, higher splitting accuracy can be achieved for dy-

namic multipath routing schemes like our MRC approach and cause much less

packet reordering event than packet level switching approaches.



53

G. Related work

The benefits of MRC are studied using both Internet measurements [15] and emu-

lation [32]. Tao et al [31] have measured quality of alternate paths among between

three campus networks. They show packet losses are bursty and no path is consis-

tently better than others. We also measure the quality of alternate paths provided

through multihoming in this work. Using a number of hosts in the PLANETLAB

[41], we measured more paths than [31]. With only access to tools like traceroute,

we can measure only round trip delays and loss rates. But it still reflects the quality

differences between alternate paths provided by multihoming. Goldenberg et al [42]

have studied the optimization of cost and performance for multihoming. All the above

work does not consider interaction between MRC of different stub networks which is

the focus of this work.

H. Conclusions

In this chapter, we have presented our Internet measurement experiment results that

show the dynamics of quality differences between alternate paths through multihom-

ing. The results indicate the benefits of multihoming route control and that both

large time scale and small time scale MRC have potential to improve performance.

We have also proposed the generic fractional multihoming route control method for

avoidance of oscillations. Our simulations of two greedy MRC approaches have shown

the possibility of oscillations which motivates our fractional MRC approaches in fol-

lowing chapters.
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CHAPTER IV

ROUTE OPTIMIZATION AMONG A GROUP OF MULTIHOMED STUB

NETWORKS

A. Introduction

In this chapter, we propose an “optimal routing” [16] based global coordination

method for MRC among a group of multihomed stub networks under the fractional

MRC framework introduced in Chapter III. Through global coordination, our ap-

proach can avoid oscillations which may be caused by uncoordinated route control.

In Section B, we describe our global optimization based MRC approach for traf-

fic among a group of multihomed stub networks. In Section C, we evaluate the

performance of the approach for static traffic matrices and dynamic traffic matrices.

Conclusions are drew in Section D.

B. Route optimization among a group of multihomed stub networks

1. Optimal routing formulation

The problem we are studying can be formulated as a optimal routing [16] problem. In

a general optimal routing problem, routing traffic on a link incurs some cost that is a

function of the total load on the link and the optimal solution maps all traffic on all

“physically possible” paths such that the overall cost is minimized. In our problem,

only a limited number of paths are given and we need only to map traffic to these

paths.

The cost function used in optimal routing is usually a continuous non-decreasing

convex function. A common cost function used in earlier optimal routing work is

the delay on the link weighted by the traffic volume on the link. The objective is to
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find a routing solution that minimizes the average delays experienced by all traffic.

Using this cost function, other performance metrics, packet loss rate and congestion

are partly considered because these metrics are correlated with queuing delay of a

link.

In the optimal routing formulation of MRC among a group of multihomed stub

networks, we set the objective as minimizing the sum of the “path delays” of in-

house traffic and the access link queuing delays of inhouse traffic and Internet traffic

weighted by their traffic volumes.

Before giving the optimal routing formulation of MRC among a group of multi-

homed stub networks, we define following symbols.

• N : set of nodes representing stub networks;

• Ki: set of nodes representing ISP edge routers of i ∈ N ;

• Pij: set of virtual directed links representing valid paths between ISP edge

routers of i and ISP edge routers of j, where i, j ∈ N, i 6= j;

• (i, j): link from i to j, where i ∈ N, j ∈ Ki or i ∈ Kj, j ∈ N ;

• dij(x): virtual delay function of directed link (i, j), where x is the load on link

(i, j), i ∈ N, j ∈ Ki or i ∈ Kj, j ∈ N ;

• dijw: virtual delay of virtual link w, where w ∈ Pij , i, j ∈ N, i 6= j;

• rij: traffic demand from i to j, where i, j ∈ N, i 6= j;

• xijw: fraction of rij routed along path w ∈ Pij , where i, j ∈ N, i 6= j;

• uij: load of ingress Internet traffic on link (i, j), i ∈ Kj, j ∈ N ;

• vij : load of egress Internet traffic on link (i, j), i ∈ N, j ∈ Ki ;
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• Sik: set of paths (virtual links), egress traffic on which passes link (i, k), where

i ∈ N , k ∈ Ki, i.e. {(m, n)|m = k, n ∈ Kj, j ∈ N, j 6= i, (m, n) ∈ Pij};

• Ski: set of paths (virtual links), ingress traffic on which passes link (k, i), where

i ∈ N , k ∈ Ki, i.e. {(m, n)|m ∈ Kj , n = k, j ∈ N, j 6= i, (m, n) ∈ Pij}.

The optimal routing formulation of our problem is as follows.

Minimize:

C(x) =
∑

i∈N,j∈(N\i)∪Mi,w∈Pij

xijwrijdijw +
∑

i∈N,k∈Ki

tkidki(tki)+
∑

i∈N,k∈Ki

tikdik(tik) (4.1)

Subject to:

xijw ≥ 0, (i ∈ N, j ∈ (N \ i), w ∈ Pij) (4.2)

∑

w∈Pij

xijw = 1, (i ∈ N, j ∈ (N \ i)) (4.3)

tik =
∑

w∈Sik

xijwrij + vik, (i ∈ N, k ∈ Ki) (4.4)

tki =
∑

w∈Ski

xijwrij + uki, (i ∈ N, k ∈ Ki) (4.5)

where (4.1) is the objective function, i.e. delays of Internet paths (virtual links)

experienced by traffic controlled by MRC devices plus virtual delays on access links

weighted by traffic volumes; (4.2) is non-negativity of routing vectors; (4.3) is to

ensure that all traffic are routed; (4.4) and (4.5) are traffic volume on access links.

Packet losses are not considered in the above formulation. However, we can

take loss rates into account by substituting pijkl with a “virtual delay function”,

vdelay(pijkl, rijkl), where rijkl represents the loss rate on the path. We will use virtual

delay functions in next chapter.
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Our optimal routing based MRC works as follows: The demand matrices of

inhouse traffic and Internet traffic and path qualities are measured in a distributed

manner. After a fixed period, say one minute, or when there are significant changes

of the demand matrix or path qualities, the measured path characteristics and the

demand information are exchanged among all the stub networks. After receiving the

updated information, each stub network predicts the demand matrix and the path

characteristics using a prediction model (see section 1 for details), and calculates the

optimal routing solution using an optimal routing algorithm for all the stub networks.

The routing solution is adopted until next update. We also assume that the queuing

delay function can be measured and is known to the optimization algorithm. As long

as the queuing delay is a non-decreasing convex function, our algorithm can find an

optimal solution [16].

C. Evaluation

1. Simulation scenarios

We analyze the performance of our approach in two aspects:

1. Static analysis: we study the performance of our approach for a set of model-

based random demand matrices on a set of randomly generated topologies with

different path characteristics. We compare the average end to end delay of

inhouse traffic and the average queuing delay of Internet traffic with a static

load-balancing approach that distributes egress inhouse traffic evenly on each

link. In this analysis, we assume the demand matrix and path characteristics are

static. This analysis gives an upper bound of the performance of our approach.

We assume egress Internet traffic is distributed evenly on all egress links. Both

our approach and the static load-balancing approach do not have control over
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the routes of ingress Internet traffic. We generate 20 random demand matrices

for each combination of number of stub networks and number of ISPs for each

stub network.

2. Dynamic analysis: We also study the performance of our algorithm with chang-

ing demand matrices. Specifically, we evaluate the performance of our algorithm

with a time series of demand matrices generated from an Internet trace. In this

analysis, the path characteristics are fixed. We study a simple demand predic-

tion method, i.e. using the average demands of the last period as the prediction

of demands for the next period. Empirical study [43] shows this simple predic-

tion model is as good as other complex models for prediction period in order

of minutes. We study optimization periods of 1, 2, 3, 5 and 10 minutes. We

compare the performance of our approach using predicted demand matrices

with the ideal performance, i.e. when the demand matrix of current period is

available to the algorithm.

For dynamic analysis, we generate time series of demand matrices using the

Leipzig-II trace from NLANR [44] website. We generate a time series of de-

mand matrices by classifying packets with same source (or destination) IP ad-

dresses into one of a number of flows by a probability that is proportional to

the expected volume of the flow.

2. Implementation of the optimal routing algorithm

Optimal routing problems are a type of non-linear optimization problems. They are

usually solved using the gradient projection methods [16]. In this chapter, to speed

up the calculation, we solve the optimal routing problem using a linear program-

ming approximation method. Specifically, we use piece-wise linear function fki(tki)
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and fik(tik) to approximate the item tkidki(tki) and tikdik(tik) in (4.1). This linear

approximation method is similar to the one used in [45]. In our implementation, we

use the GNU Linear Programming Kit (GLPK) [46] to solve the linear programming

problems.

3. Simulation results

a. Static analysis

Fig. 32 shows the “performance improvement ratios” of our approach compared to

the static load-balancing approach for topologies of 10 stub networks where each

stub network has 2 ISPs. Here, we define “performance improvement ratio” of our

approach compared to the static load-balancing approach as (Llb − Lopt)/Llb, while

Llb is the average delay for the static load-balancing approach, Lopt is the average

delay for our global optimization approach. The ratios are calculated for both the

access link queuing delay of Internet traffic and end to end delay of inhouse traffic

under different link utilization. We fix a demand matrix and change the access link

capacities to change the average utilization. The four curves show the effects of

queuing model and type of network topologies.

The main observations are:

1). The improvement for Pareto queuing model is more evident than Poisson

queuing model. This is because the queuing delay of Poisson model is lower than

the queuing delay of Pareto model. While our approach gets improvement mainly

by exploiting path diversity for the Poisson queuing model case, it can get more

improvement by balancing load on access links for the Pareto queuing model case.

2). The improvement for asymmetric topologies is more evident than symmetric

topologies. This is because for symmetric topologies, inhouse traffic can be balanced
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Fig. 32.: Performance improvement ratios: topologies of 10 stub networks, each has

2 ISPs, capacities are in Mbps
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on links using the static load-balancing.

3). The improvement is larger at higher average utilization. This is because the

queuing delay of both Poisson and Pareto model is dramatically increased as utiliza-

tion approaches 100%. (The utilization shown in the figure is average utilization.

Utilization is higher on some links in the topologies.)

4). The average access link queuing delays of Internet traffic are also improved,

except for symmetric networks under Poisson queuing model where the queuing delay

is increased by 5% at most.

Results for 10 stub networks with 3 ISPs and 4 ISPs are shown in Figs. 33 and

34. As the number of ISPs increases, the improvement ratios become larger than the

above 2-ISP case. The explanation is that more ISPs provide more opportunities for

global optimization. Results for 20 stub networks with 2, 3 and 4 ISPs for each stub

network are shown in Figs. 35 to 37. The above observations for 10 stub network

topologies are still true for 20 stub network topologies.

b. Dynamic analysis

Figs. 38 to 41 show the average improvement ratios of end to end delay of inhouse

traffic of our approach compared to the static load-balancing approach for symmet-

ric/asymmetric topology and Pareto/Poisson type traffic. Results for topologies of 9

different sizes are shown in groups of bars from left to right. The sizes of topologies

can be represented by x − y, where x = 4, 10, 20, is the number of stub networks,

y = 2, 3, 4, is the number of ISPs of each stub network. In this set of simulations, the

resulting average link utilization is about 50%.

The results for asymmetric topology and Pareto type traffic show that the per-

formance improvements are larger over shorter prediction periods. Shorter periods

enable more accurate prediction of demand and path characteristics and hence pro-



62

6 7 8 10 12

0

0.2

0.4

in
h 

e2
e 

im
pr

 r
at

io asym pareto
asym poisson
sym pareto
sym poisson

6 7 8 10 12

0

0.2

0.4

w
eb

 q
de

la
y 

im
pr

 r
at

io

asym pareto
asym poisson
sym pareto
sym poisson

6 7 8 10 12
0

0.5

1

av
er

ag
e 

lin
k 

ut
ili

za
tio

n

capacity

asym pareto
asym poisson
sym pareto
sym poisson

Fig. 33.: Performance improvement ratios: topologies of 10 stub networks, each has

3 ISPs, capacities are in Mbps
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Fig. 34.: Performance improvement ratios: topologies of 10 stub networks, each has

4 ISPs, capacities are in Mbps
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Fig. 35.: Performance improvement ratios: topologies of 20 stub networks, each has

2 ISPs, capacities are in Mbps
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3 ISPs, capacities are in Mbps
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Fig. 37.: Performance improvement ratios: topologies of 20 stub networks, each has

4 ISPs, capacities are in Mbps
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vide larger performance gains. We also found that as the number of stub networks

increases, the performance gain decreases more rapidly as prediction period increases.

This is primarily due to the artifact of how the demand matrices are generated in our

simulations. In our simulations, the total expected volume of inhouse traffic on a link

is fixed, as the number of stub networks increases, the volume of traffic from a stub

network to another becomes smaller making the demand less predictable.
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Fig. 39.: Inhouse traffic end to end delay improvement: asymmetric topology, Poisson
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Fig. 40.: Inhouse traffic end to end delay improvement: symmetric topology, Pareto

traffic. Topology 1 to 9: 4x2 4x3 4x4 10x2 10x3 10x4 20x2 20x3 20x4

From Figs. 38 to 41, we observe that symmetric topologies and Poisson-arrival

queuing model show smaller performance gains even performance degradation(the

negative values in the figures) for dynamic simulations in dynamic environment, which
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is consistent with the static analysis. Since the volume of the demand we generated

from the real trace is small, we scale it by 36 to get the average load on a link to be

about 3.5 Mbps. In the real environment, because volume of demand is larger, we

expect the demand matrix becomes more predictable as traffic volume increases.

D. Conclusions

In this chapter, we proposed an approach for coordinating the route control of traffic

among a group of multihomed stub networks. We studied the static and dynamic per-

formance of our approach using simulations. The results show that our approach can

significantly improve the performance of route control among a group of multihomed

stub networks for both static traffic demand and dynamic traffic demand.
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CHAPTER V

USER-OPTIMAL MULTIHOMING ROUTE CONTROL

A. Introduction

In this chapter, we continue our study on MRC among a group of multihomed stub

networks. As we pointed out in Chapter III, when the access links of the stub net-

works are not over-provisioned, traditional MRC schemes that use a single path at

a time for traffic to one destination network may cause oscillations. In Chapter IV,

a global optimal routing based coordination method is proposed to avoid such pos-

sible oscillations. In this chapter, we propose a distributed “user-optimal routing”

[47] based MRC scheme to solve the above problem. The basic idea is to use multi-

ple paths provided by multihoming simultaneously and move traffic gradually during

changes in network environment. Specifically, our scheme calculates “user-optimal

routing” using the gradient projection method that is originally used in solving op-

timal routing problems. User-optimal routing is simpler to implement. Moreover,

as we will show in Section F, it can achieve similar performance as global optimal

routing for this problem.

While this approach is mainly designed for MRC among a group of multihomed

stub networks, it can also be applied to Internet traffic to a number of “top” Internet

destination networks that account for a large portion of the Internet traffic of the stub

networks. In this study, we assume there are a few top Internet destinations for each

stub network and we use the same MRC algorithm for these Internet destinations.

We call the traffic among such a group of stub networks as inhouse traffic and call

the traffic between a stub network and networks not in the group as Internet traffic.

The rest of this chapter is organized as follows: Related work is discussed in
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Section B. The optimal routing formulation of MRC (modified from Chapter IV to

take Internet traffic into account) is given in Section C. In Section D, we introduce the

user-optimal routing formulation of our MRC problem. In Section E, we give our user-

optimal routing based MRC algorithm. In Section F, we compare the performance of

our scheme with the optimal solution and show the dynamic characterization of our

scheme using simulations. Conclusions and future work are discussed in Section G.

B. Related work

The performance of user-optimal routing, also called selfish routing, has been studied

analytically [48] and using simulations [28]. Qiu et al [28] show selfish routing achieves

performance close to optimal routing for intra-domain routing. Similarly, our work

shows selfish routing based MRC achieves performance close to optimal routing based

MRC.

Centralized and distributed gradient projection algorithms for optimal routing

have been proposed in [16, 49, 50]. A measurement based multipath optimal routing

algorithm has been proposed in [51]. However, the algorithm needs an overlay network

infrastructure to measure the first derivatives of the cost functions of all links in the

network. In our approach no such information exchange is required.

Our MRC approach uses measurement based gradient projection algorithm to

calculate the user-optimal solution. It is similar to [51, 52] but does not require

overlay infrastructure to exchange information, thus is simpler to implement.

In summary, our work leverages previous work on optimal routing and user-

optimal routing and targets a new problem on multihoming route control.
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C. Optimal routing formulation

We modify the optimal routing formulation in Chapter IV to take MRC of Internet

traffic into account. The modified symbols used in this chapter are defined as follows.

• N : set of nodes representing stub networks;

• Mi: set of nodes representing Internet destinations of i ∈ N ;

• Ki: set of nodes representing ISP edge routers of i ∈ N ;

• Pij: set of virtual directed links representing valid paths between ISP edge

routers of i and ISP edge routers of j, where i, j ∈ N, i 6= j, or paths from ISP

edge routers of i to Internet destination j, where i ∈ N, j ∈Mi;

• (i, j): link from i to j, where i ∈ N, j ∈ Ki or i ∈ Kj , j ∈ N , or virtual link from

i to j, where i ∈ Kn, j ∈ Mn, n ∈ N or i ∈ Km, j ∈ Kn, (i, j) ∈ Pmn, m, n ∈

N, m 6= n;

• dij(x): virtual delay function of directed link (i, j), where x is the load on link

(i, j), i ∈ N, j ∈ Ki or i ∈ Kj, j ∈ N ;

• dijw: virtual delay of virtual link w, where w ∈ Pij, i, j ∈ N, i 6= j, or i ∈ N, j ∈

Mi;

• rij: traffic demand from i to j, where i, j ∈ N, i 6= j or i ∈ N, j ∈Mi;

• xijw: fraction of rij routed along path w ∈ Pij, where i, j ∈ N, i 6= j or i ∈

N, j ∈Mi;

• uij: load of ingress Internet traffic on link (i, j), i ∈ Kj, j ∈ N ;
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• Sik: set of paths (virtual links), egress traffic on which passes link (i, k), where

i ∈ N , k ∈ Ki, i.e. {(m, n)|m = k, n ∈ Kj , j ∈ N, j 6= i, (m, n) ∈ Pij} ∪

{(m, n)|m = k, n ∈Mi};

• Ski: set of paths (virtual links), ingress traffic on which passes link (k, i), where

i ∈ N , k ∈ Ki, i.e. {(m, n)|m ∈ Kj , n = k, j ∈ N, j 6= i, (m, n) ∈ Pij}.

The optimal routing formulation of our problem is as follows.

Minimize:

C(x) =
∑

i∈N,j∈(N\i)∪Mi,w∈Pij

xijwrijdijw +
∑

i∈N,k∈Ki

tkidki(tki)+
∑

i∈N,k∈Ki

tikdik(tik) (5.1)

Subject to:

xijw ≥ 0, (i ∈ N, j ∈ (N \ i) ∪Mi, w ∈ Pij) (5.2)

∑

w∈Pij

xijw = 1, (i ∈ N, j ∈ (N \ i) ∪Mi) (5.3)

tik =
∑

w∈Sik

xijwrij, (i ∈ N, k ∈ Ki) (5.4)

tki =
∑

w∈Ski

xijwrij + uki, (i ∈ N, k ∈ Ki) (5.5)

where (5.1) is the objective function, i.e. virtual delays of Internet paths (virtual

links) experienced by traffic controlled by MRC devices plus virtual delays on access

links weighted by traffic volumes; (5.2) is non-negativity of routing vectors; (5.3) is

to ensure that all traffic are routed; (5.4) and (5.5) are traffic volume on access links.

In this chapter, we consider both queuing delays and loss rates on links. We use

half of the expected TCP hand shake time [53] as the virtual one way delay function,

i.e. delay+Ts
loss rate

1−2loss rate
(loss rate < 0.5), where Ts is the TCP SYN timeout, initially
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three seconds [54]. Here, we assume the reverse path has the same delay and loss rate

as the forward path. TCP handshake round trip time is used in comparing qualities

of alternate paths by previous studies on multihoming, e.g. [15]. When loss rates are

small, e.g. less than 1%, the sum of virtual delays of links along a path is roughly

the same as the virtual delay of the path.

In our simulations, we use piecewise linear approximation models of queuing delay

and packet drop rate built from samples of ns-2 [17] simulations. The two models are

Poisson queuing model, M/M/1, and a Pareto (β = 1.5) queuing model, P/M/1. The

parameters of the ns-2 simulation are as follows: The average packet length is 558

bytes(calculated from a backbone trace); The link capacity is 100 Mbps; The buffer

size of each link is equal to the product of 250 milliseconds and link speed according

to the rule-of-thumb of router buffer sizing [55]). The resulting virtual delay function

of a link is a continuous, non-decreasing, convex function, which ensures that the

optimal routing has a unique solution [16].

D. User-optimal routing formulation

In this section, we first introduce the concept of user-optimal routing. After discussing

the characterizations of optimal routing and user-optimal routing, we give the user-

optimal routing formulation of our MRC problem.

1. User-optimal routing

“User-optimal routing” [47] is optimal from the point of view of each user. It is

also called “selfish routing”. Like previous work on “user-optimal routing” [28], we

assume traffic consists of a lot of “infinitesimal flows” and each user controls such an

infinitesimal flow. At equilibrium of user-optimal routing, each flow is routed along a
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path with minimum end to end delay. Thus no user can reduce the delay of its traffic

by changing the routing of its own traffic unilaterally.

Previous work [28] showed that “selfish routing” can achieve similar performance

as “optimal routing” [16] for intra-domain routing. As we will show in Section F, for

MRC, the performance of user-optimal routing based approach is also close to optimal

routing based approach. One of the advantages of user-optimal routing is that it is

distributed in nature and easier to implement.

Because the similarity of the characterization between network-optimal routing

and user-optimal routing, user-optimal routing can be solved using algorithms for

network-optimal routing with a specific cost function [56].

2. Characterization of user-optimal routing

The characterization of user-optimal routing is that user-optimal routing allocation

is positive only on paths with minimum end to end delay [57]. In our MRC problem,

it is as follows:

x∗
ijw > 0 ⇒















































dijw′ + dik′(tik′) + dl′j(tl′j) ≥ dijw + dik(tik) + dlj(tlj),

(i ∈ N, j ∈ (N \ i), w, w′ ∈ Pij , w = (k, l), w′ = (k′, l′));

x∗
ijw > 0⇒ dijw′ + dik′(tik′) ≥ dijw + dik(tik),

(i ∈ N, j ∈Mi, w, w′ ∈ Pij , w = (k, j), w′ = (k′, j))

(5.6)

3. Characterization of optimal routing solutions

We give the characterization of optimal routing here, because it is useful to design an

algorithm for user-optimal routing as we will see in Section 4.
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According to [16], the characterization of the optimal solution x∗ is:

x∗
ijw > 0⇒

∂C(x∗)

∂xijw′

≥
∂C(x∗)

∂xijw

, (i ∈ N, j ∈ (N \ i) ∪Mi}; w, w′ ∈ Pij) (5.7)

In other words, at the optimal point, for any source-destination pair, shifting a

small amount of traffic from one path to an alternate path that is not used by the

source-destination pair will increase the total cost, and shifting a small amount of

traffic to an alternate path that is used by the source-destination pair won’t change

the total cost. In summary, at the optimal point, changing routing solution x won’t

lower the total cost.

4. Formulation of user-optimal routing

Specifically, we need to define the cost function of a link, l, as

Dl(x) =

∫ x

0

dl(t)dt (5.8)

Therefore, the user-optimal routing problem can be formulated as the following

optimal routing problem and can be solved using the algorithms for optimal routing.

Minimize:

D(x) =
∑

i∈N,j∈(N\i)∪Mi,w∈Pij

xijwrijdijw +
∑

i∈N,k∈Ki

Dki(tki) +
∑

i∈N,k∈Ki

Dik(tik) (5.9)

subject to: (5.2), (5.3), (5.4), (5.5)

The solution for this optimal routing problem has the characterization given by

(5.7). Thus
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x∗
ijw > 0 ⇒

∂D(x∗)

∂xijw′

≥
∂D(x∗)

∂xijw

(5.10)

⇔















































dijw′ + dik′(tik′) + dl′j(tl′j) ≥ dijw + dik(tik) + dlj(tlj),

(i ∈ N, j ∈ (N \ i), w, w′ ∈ Pij , w = (k, l), w′ = (k′, l′)) ;

dijw′ + dik′(tik′) ≥ dijw + dik(tik),

(i ∈ N, j ∈Mi, w, w′ ∈ Pij, w = (k, j), w′ = (k′, j)

(5.11)

That is equivalent to (5.6), i.e. the solution has the same characterization as

the user-optimal routing solution. Because the user-optimal solution is unique when

the delay function of a link is continuous and nondecreasing [57], we actually get the

user-optimal solution.

E. User-optimal routing based MRC among a group of multihomed stub networks

An important class of algorithms for solving optimal routing problems are the gradient

projection methods[16]. They are also suitable for distributed implementation. In

this work, we implement a distributed asynchronous gradient projection algorithm

[16] to solve the user-optimal routing problem formulated in Section 4. Two minor

modifications are made to improve the convergence speed: normalization of delay

difference (changing (lijw − lijw̄) to (lijw − lijw̄)/lijw) and randomized waiting time

(changing T = T0 to T ∈ [0.5T0, 1.5T0)). This algorithm is more practical than other

projection methods because it requires simpler calculations at each iteration. Because

important information needs to be exchanged during optimal routing calculation,

the sum of first derivatives, are end to end delays of alternate paths that can be

measured directly, the distributed algorithm can be implemented more easily than

normal optimal routing algorithm. The algorithm for each node is shown in Fig. 42.



77

while true do

Measure all one-way end to end virtual delays, lijw : w ∈ Pij ;

Find the minimum virtual delay to j, lijw̄ ;

foreach w ∈ Pij , w 6= w̄ do

xt+1
ijw = max{0, xt

ijw − αt(lijw − lijw̄)/lijw} ;

xt+1
ijw̄ = 1−

∑

w∈Pij ,w 6=w̄ xijw ;

Wait for random time T ∈ [0.5T0, 1.5T0) ;

Fig. 42.: User-optimal routing based MRC (for traffic from i to j, where i ∈ N ;

j ∈ N, j 6= i or j ∈Mi.)

Three types of route control strategies, static, greedy and user optimal can be

expressed using the same algorithm shown in Fig. 42. For static route control, the

step size of modification to the routing factor is 0. For greedy route control, the step

size is ∞. For user optimal route control the step size is a positive number.

Our algorithm works as follows:

(1) Each node measures the end to end delays of alternate paths from it to a

remote node every t seconds, where T is uniformly distributed in [0.5T0, 1.5T0] to

avoid update synchronization. Each measurement consists of a number of samples to

filter noise. Because our algorithm is based on the difference of delays of alternate

paths, it does not require clock synchronization of different nodes.

(2) After the node obtains measured end to end delays, it updates the routing

vector x for this destination according to the algorithm shown in Fig. 42. This is

according to the gradient projection algorithm [16]. αt is the step size, for distributed

implementation it is usually a constant.

In this algorithm, we assume that the traffic demand and path quality does not

change too rapidly compared to its convergence speed. This is true when the network
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traffic consists of a lot of small flows. The algorithm converges to user-optimal routing

given α is small enough [49].

F. Evaluation

In this section, we evaluate our user-optimal routing based MRC scheme. The evalu-

ation consists of two parts: (1) Since our scheme is based on user-optimal routing, it

is important to ensure it will not cause network wide performance degradation. We

perform a number of simulations to compare the performance of user-optimal routing

based MRC with the optimal solution. (2) We study the dynamic behavior of our

algorithm in various dynamic network environments.

1. Performance compared to optimal routing

We calculate the global optimal routing(“gopt”), user-optimal routing(“uopt”) and

static load-balancing(“elb”) MRC solutions for randomly generated topologies and

traffic matrices. The “static load-balancing” here is to split traffic evenly among

all alternate paths. The topologies are of size “4x2”, “4x3”, “8x2” and “8x3”. For

each size, we generate 1 symmetric topology, 6 asymmetric topologies and 5 traffic

matrices. (See Chapter IV, Section 1, for definitions of types of topology.) We scale

the traffic matrices to make the maximum link utilization 60%, 95%, 110% and 125%

assuming basic load-balancing routing is used.

For each simulation input(topology, queuing model, traffic matrix), we calculate

the total routing cost, average delay, average loss rate and maximum link utiliza-

tion for “gopt”, “uopt” and “elb”. The average, minimum and maximum values for

simulations of each configuration (same topology type, same queuing model, same

network size, traffic matrices that resulted same maximum link utilization for “elb”)
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are plotted in Figs. 43 to 58.
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Fig. 43.: Optimization objective, 8x2, symmetric topology: average, minimum and
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Fig. 44.: Average delay, 8x2, symmetric topology: average, minimum and maximum
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Fig. 45.: Average loss rate, 8x2, symmetric topology: average, minimum and maxi-

mum
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Fig. 46.: Maximum link utilization, 8x2, symmetric topology: average, minimum and

maximum
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Fig. 47.: Optimization objective, 8x2, symmetric topology: average, minimum and

maximum
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Fig. 48.: Average delay, 8x2, asymmetric topology: average, minimum and maximum
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Fig. 49.: Average loss rate, 8x2, asymmetric topology: average, minimum and maxi-

mum
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Fig. 50.: Maximum link utilization, 8x2, asymmetric topology: average, minimum

and maximum
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Fig. 51.: Optimization objective, 8x3, symmetric topology: average, minimum and

maximum
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Fig. 52.: Average delay, 8x3, symmetric topology: average, minimum and maximum
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Fig. 53.: Average loss rate , 8x3, symmetric topology: average, minimum and maxi-

mum
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Fig. 54.: Maximum link utilization , 8x3, symmetric topology: average, minimum

and maximum
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Fig. 55.: Optimization objective , 8x3, asymmetric topology: average, minimum and

maximum
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Fig. 56.: Average delay , 8x3, asymmetric topology: average, minimum and maximum
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Fig. 57.: Average loss rate , 8x3, asymmetric topology: average, minimum and max-

imum
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Fig. 58.: Maximum link utilization , 8x3, asymmetric topology: average, minimum

and maximum
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From the simulation results, we observe that the topology type (symmetric/asymmetric),

queuing model type (Pareto/Poisson) do not make significant difference to the sim-

ulation results. The explanations are as follows: (1) Although packet arrival process

under Pareto queuing model is more bursty than Poisson queuing model, the delay

and loss rate are significant only near and above 100% utilization. When link is over-

utilized, the delay and loss rate for both types of packet arrivals become very close.

That is why we see similar performance for both kinds of queuing models in our sim-

ulations. (2) Because the Internet traffic on the links is not balanced, optimal routing

and user-optimal routing can improve routing performance for symmetric topologies

by balancing inhouse traffic.

For the queuing models we studied, queuing delay is very small from utilization

of 0 up to utilization of 90%. Therefore, from Figs. 44, 48, 52 and 56, we can see

the average delays for all three routing approaches change very little when average

utilization increases from 30.6% to 63.8%. However, because of the differences in

propagation delays of alternate paths, “uopt” and “gopt” can reduce the average

delay by nearly 2 milliseconds.

From the figures of loss rates and maximum utilization, i.e. Figs. 45, 46, 49,

50, 53, 54, 57 and 58, we can see: (1) When average utilization is high (56.3% and

63.8%), the “uopt” and “gopt” based MRC reduce cost by reducing loss rate in

networks. This is equivalent to reducing the maximum link utilization in networks.

(2) When average utilization is low (30.6% and 48.5%), the maximum link utilization

in networks of “uopt” and “gopt” is higher than “elb”. The explanation is: for

queuing models we are studying, increasing link utilization up to 90% will not cause

packet losses or excessive queuing delays. Therefore, the delay and loss rate based

optimal routing and user-optimal routing may cause higher maximum link utilization

but lower than 100%.
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The conclusions we draw here are: (1) The performance of both the approaches(“uopt”

and “gopt”) are very similar, which is consistent with previous work [28]. (2) Because

the delay and loss rate increase significantly as the link utilization approaches 100%

or exceeds 100%, the performance gains of user-optimal routing based MRC increase

with link utilization. (3) User-optimal routing based MRC can achieve lower delays

and lower loss rates at the same time.

We also compare the routing performance of “gopt”, “uopt” and “elb” for each

simulation (one topology, one traffic matrix). For each simulation, we calculate follow-

ing values:
total cost of gopt(uopt)

total cost of elb
,
average delay of gopt(uopt)

average delay of elb
, ”total cost of gopt(uopt)”−

“total cost of elb” and

average max link utilization of gopt(uopt)
average max link utilization of elb

. The average, minimum and maximum

values for each configuration(same topology type, same queuing model, same net-

work size, traffic matrices that resulted same maximum link utilization for “elb”)

are plotted in Figs. 59 to 74. From the figures, we observe that user-optimal rout-

ing based MRC improves performance in most cases while it is unable to improve

performance for some topologies and traffic matrices.
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Fig. 59.: Optimization objective ratio(opt/elb), 8x2 symmetric topology: average,

minimum and maximum
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Fig. 60.: Average delay ratio(opt/elb), 8x2 symmetric topology: average, minimum

and maximum



92

31.1% 49.3% 57.1% 64.9%
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

av
g.

 ∆
 o

f l
os

s 
ra

te
: u

op
t −

 e
lb

average utilization

31.1% 49.3% 57.1% 64.9%
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

av
g.

 ∆
 o

f l
os

s 
ra

te
: g

op
t −

 e
lb

average utilization

Fig. 61.: Average loss rate ∆(opt-elb), 8x2 symmetric topology: average, minimum

and maximum
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Fig. 62.: Maximum link utilization ratio(opt-elb), 8x2 symmetric topology: average,

minimum and maximum
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Fig. 63.: Optimization objective ratio(opt/elb), 8x2 asymmetric topology: average,

minimum and maximum
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Fig. 64.: Average delay ratio(opt/elb), 8x2 asymmetric topology: average, minimum
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Fig. 65.: Average loss rate ∆(opt-elb), 8x2 asymmetric topology: average, minimum

and maximum
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Fig. 66.: Maximum link utilization ratio(opt-elb), 8x2 asymmetric topology: average,

minimum and maximum
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Fig. 67.: Optimization objective ratio(opt/elb), 8x3 symmetric topology: average,

minimum and maximum
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Fig. 68.: Average delay ratio(opt/elb), 8x3 symmetric topology: average, minimum

and maximum
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Fig. 69.: Average loss rate ∆(opt-elb), 8x3 symmetric topology: average, minimum

and maximum
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Fig. 70.: Maximum link utilization ratio(opt-elb), 8x3 symmetric topology: average,

minimum and maximum
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Fig. 71.: Optimization objective ratio(opt/elb), 8x3 asymmetric topology: average,

minimum and maximum
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Fig. 72.: Average delay ratio(opt/elb), 8x3 asymmetric topology: average, minimum
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Fig. 73.: Average loss rate ∆(opt-elb), 8x3 asymmetric topology: average, minimum

and maximum
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Fig. 74.: Maximum link utilization ratio(opt-elb), 8x3 asymmetric topology: average,

minimum and maximum
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2. Dynamic behavior

We study the convergence of our algorithm under following three types of scenarios:

(1) We generate a random 8x3 topology and a random traffic matrix, assign initial

routing allocation according to the “static load balancing” algorithm and let the

algorithm converge to user-optimal equilibrium; (2) At the equilibrium point, we

select 30% of paths among the stub networks and increase the delay of them by

50 ms and let the algorithm converge; (3) At the equilibrium point, we select 30%

of paths among the stub networks and mark the path as disconnected and let the

algorithm converge. Here, we define convergence as the state when the maximum

difference of virtual delays of alternate paths used by traffic to one destination are

not larger than 5 milliseconds. To converge to a state where the maximum difference

is not larger than 1 millisecond or less, it takes more time but gets similar overall

performance. In the simulations, the traffic matrix is scaled such that the maximum

utilization for the “elb” routing approach is 110%.

Results of two sets of simulations are shown in Figs. 75 and 76. The different

sub-figures in each figure correspond to the three scenarios (1), (2) and (3) explained

above. We can see that the algorithm converges fast to a near-equilibrium point, in

a few seconds. The convergence time for the “link failure” scenario is shorter than

other scenarios because the algorithm responds to large virtual delay difference faster.

The link failures cause traffic to be switched to other paths immediately and cause

high virtual delay on some other paths.

We also study the effect of different step sizes on the convergence of the algorithm.

The convergence from “static load balancing” to “user-optimal equilibrium” of one

previous simulation (as shown in Fig. 75) is shown in Fig. 77. We can see that the

algorithm converges quickly for several step sizes, converging faster with larger step
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Fig. 75.: Convergence of user-optimal routing based MRC in different scenarios, sim-

ulation 1 (step size = 0.02)
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Fig. 76.: Convergence of user-optimal routing based MRC in different scenarios, sim-

ulation 2 (step size = 0.02)
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G. Conclusions and future work

In this paper, we have studied Multihoming Route Control(MRC) among a group of

multihomed stub networks. We proposed a user-optimal routing based distributed

Multihoming Route Control scheme that is simple to implement. We have shown

through extensive simulations that the proposed MRC scheme improves performance

in various network conditions without any oscillations. We have also shown that the

user-optimal routing algorithm converges reasonably fast and achieves performance

close to that of global optimal routing.

In this work, we assume the errors of measurement can be smoothed out. A

stochastic approximation [58] analysis of the convergence of our algorithm when mea-

surement results are corrupted by errors is desirable.
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Although fixed step size is good for implementation of distributed MRC, properly

decided adaptive step size may increase the convergence speed of the user-optimal

routing based MRC.
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CHAPTER VI

MULTIHOMING ROUTE CONTROL OF HIGHLY DYNAMIC TCP TRAFFIC

A. Introduction

In the previous chapter, we proposed a user-optimal routing based multihoming route

control algorithm that can avoid possible oscillations caused by uncoordinated multi-

homing route control. In that study, we assumed network traffic is highly multiplexed,

therefore the packet inter-arrival processes can be modeled using a heavy-tailed dis-

tribution, e.g. Pareto distribution. We also assumed the traffic is UDP type traffic,

i.e. the traffic demand is fixed regardless of routing changes. The above assumptions

are based on previous work on Internet traffic analysis [30] and are used by network

routing research community in previous work [28].

In this chapter, we study the case where access links have limited capacity and

traffic consists of TCP flows, which is a more accurate model of traffic on access links

with limited capacity. In this case, the instant traffic volume changes more rapidly

because of TCP’s congestion control mechanism, which increases the difficulty in

designing an effective MRC approach. To study MRC in such situation accurately,

we adopt packet level simulations in this study using the ns-2 [17] simulator. Using

packet level simulations, we will also be able to study implementation issues of our

MRC approach. The two implementation issues we will study in this chapter are: (1)

measurement errors and the delays in observing the effect of routing changes and (2)

effect of packet reordering caused by multi-path MRC.

We first study the link characteristics of bottleneck links when traffic consists

of TCP flows of different sizes. The link characteristics we considered are: loss rate,

queuing delay and available bandwidth. Through the simulations, we want to get a
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better understanding of the relationships between the different link characteristics.

This is important for our measurement based MRC. It helps us to select measurement

metrics used in our MRC approach. While there is much previous work on Internet

path quality measurement and prediction [31, 33], most of them are experiments on

Internet and focus on general Internet path quality.

Second, we analyze the design of MRC algorithm for highly dynamic TCP traffic

based on our study of link characteristics and propose our MRC scheme for highly

dynamic TCP traffic.

Third, we study the effect of different parameters and algorithm choices for mea-

surement based adaptive multihoming route control through simulations.

B. Link characteristics

In this section we study link characteristics on bottleneck access links since they

determine the end to end routing quality. First, we study the dynamics of link

characteristics that determines how often an adaptive MRC scheme should change

its routing behavior. Second, we study the predictability of different quality metrics

since our measurement based adaptive MRC relies on predicted path quality. Third,

we show that the quality differences between two bottleneck links that determine the

extent of performance improvement of adaptive MRC schemes.

1. Simulation setup

We perform ns-2 simulations on the topology shown in Fig. 78, where A1, A2, · · · , A10

are traffic sources, B is the traffic destination, Ri is the edge router of A′
is ISP

(i = 1, 2, · · · , 10), R100 is the edge router of B′s ISP. The delay and bandwidth of

the access links and Internet paths are labeled in the figure. We set the delay from
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Ri(i = 1, 2, · · · , 10) to R100 as X milliseconds, where X ∈ [5, 30].
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Fig. 78.: Topology for link quality predictability study

We generate TCP transfers from Ai(i = 1, 2, · · · , 10) to B and study link charac-

teristics of the access link of B. The flow sizes are distributed according to power-law

models which are a more accurate model of Internet traffic [59]. According to previous

measurement study on Internet traffic [59], the distribution of FTP-DATA “burst”

sizes are heavy tailed, while flow inter-arrival interval distribution is still unknown

but not Poisson. Accordingly, in our simulation, the sizes of the flows are distributed

according to Pareto distribution and flow inter-arrival intervals are distributed ac-

cording to Pareto-II(Lomax) distribution. The shape of the Pareto distribution of

flow sizes is 1.1, while the minimum value of the distribution is uniformly distributed

between 4KB and 36KB for every 100 flows. The shape of the Pareto-II distribution

of flow inter-arrivals is 1.5, while the average is calculated from the target load.
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2. Simulation results and analysis

We run each simulation for 2000 seconds. The three characteristics, queuing delay,

packet loss rate and load on the access link when average link utilization is 40%, 60%

and 80% are plotted in Figs. 79 to 81. From the figure, we observe the three link

characteristics change rapidly over time.
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Fig. 79.: Example of Internet path quality: average utilization of 40%

We also study the dynamics of quality differences between alternate paths in

a simple case, where only one site performs MRC and the background traffic are

statically routed. In this case the background traffic on multiple access links can be

assumed independent. We expect the “quality differences” between alternate paths

change over time. To verify, we repeat the simulation with traffic load generated using

a different random seed. The quality differences between two bottlenecks are plotted

in Fig. 82. The results have confirmed our expectation. Therefore, an adaptive MRC

has potential to adaptively switch traffic to a path with better quality. Another affect
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Fig. 80.: Example of Internet path quality: average utilization of 60%
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Fig. 81.: Example of Internet path quality: average utilization of 80%
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of fast changes of path qualities is that we may need to switch long-lived TCP flows in

order to achieve better performance. When the “background traffic” is also adaptively

routed, the analysis of the dynamics of quality differences will become more complex.

In this work, we will not study the later case directly, but will study the performance

of MRC when there are multiple site performing MRC.
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Fig. 82.: Internet path quality differences: average utilization of 60%

To quantify the dynamics of the link characteristics, we calculate the autocorrela-

tion functions for the three quality metrics. The autocorrelation functions under dif-

ferent utilization are plotted in Figs. 83 to 85. We also calculate the cross-correlation

functions between load and queuing delay, between load and loss rate, between queu-

ing delay and loss rate. and plot in Figs. 86 to 88.

According to the property of autocorrelation function, the more slowly the au-

tocorrelation function decreases as lag increases, the more slowly the characteristic

changes and the more predictable the characteristic is. Similarly, a larger cross-

correlation function means the characteristic is more predictable from the other char-
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Fig. 83.: Autocorrelation functions of link quality metrics: average utilization of 40%
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Fig. 84.: Autocorrelation functions of link quality metrics: average utilization of 60%
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Fig. 85.: Autocorrelation functions of link quality metrics: average utilization of 80%
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Fig. 86.: Cross correlation functions of link quality metrics: average utilization of

40%
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Fig. 87.: Cross correlation functions of link quality metrics: average utilization of

60%
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acteristic at a different moment.

Therefore, according to the autocorrelation functions, queuing delay is the most

predictable in that the value at a moment is highly correlated with its values within

100ms. load and loss rates are less predictable than queuing delay. The autocor-

relation function decreases to about 0.7 within 30ms for both load and loss rate

measurements. According to the cross correlation functions, we can see that load,

queuing delay and loss rate are correlated, but their correlations are very weak. It is

not easy to predict another metric from measurement of one metric. Similar results

are observed for average utilization of 40% and 80% and when the minimum flow size

is changed to 1MB.

We also calculate autocorrelation and cross-correlation functions of quality dif-

ferences for utilization of 60%, as plotted in Figs. 89 and 90.
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Fig. 89.: Autocorrelation function of Internet path quality differences: average uti-

lization of 60%
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lization of 60%

From Figs. 89 and 90 we observe that the link quality differences change at

similar time scale as link quality changes. It means that an adaptive MRC device

should adapt it routing behavior at the same scale as the the link characteristics

changes.

According to the above results, all the three characteristics are changing rapidly.

Queuing delay is easier to predict than the other two metrics. Queuing delay is also

more easily measurable than the other two metrics which allows faster response to

link quality changes. Because of above reasons, in this work, we choose to use queuing

delays as the quality metric. Specifically, we measure sum of queuing delays along a

path.

To measure the sum of queuing delays along a path, ICMP timestamp re-

quest packets can be used. Using this, the one way delay can be calculated as
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remote node receiving time − local node sending time. The sum of queuing de-

lay can be obtained by subtracting the minimum one way delay from the current

measured one way delay. This method also avoids the requirement of clock synchro-

nization between remote and local nodes.

For inhouse traffic, each site needs only to control egress traffic. For Internet traf-

fic, using BGP based Multihoming, we only have control of egress traffic. Therefore

we need to measure qualities of forwarding paths.

C. MRC of highly dynamic TCP traffic

1. Greedy MRC for highly dynamic TCP traffic

The results in section B show that MRC for highly dynamic TCP traffic should work

at time scales of tens of milliseconds. This is a significant change compared to our

study in last a few chapters where MRC is done every second or longer.

The fundamental reason that MRC causes oscillations in the situations we study

in last a few chapters is: switching traffic to one path from other paths may cause

some links on the first path congested, and the quality of the path may become worse

than other paths. According to a concurrent study of MRC oscillations [60], the

oscillations can be further classified into two categories: (1). When there is only one

adaptive MRC sender and the switching traffic of this MRC device causes oscillations,

the reason is “self-load” effect. In this case, the MRC device fails to consider the effect

on the new path of its switched traffic. (2) When switching made by multiple MRC

devices cause oscillations, the reason is “synchronization of multiple MRC devices”.

In last chapter, a user-optimal routing based MRC was proposed to avoid os-

cillations in the above two cases. The basic idea is to switch traffic smoothly while

measuring the path quality.
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The change of MRC adaptation time scale in this chapter makes it necessary to

reevaluate the oscillation problem for following reasons:

1. Switching periods of tens of milliseconds are comparable to queuing delays on a

bottleneck link, whose maximum value could be 250 milliseconds. If a “greedy

MRC device” switch traffic in such small time scales, it can detect the increase

of queuing delays on the congested link and switch traffic to other paths before

packet are dropped on the congested link. This way, the MRC device switches

traffic so fast that it almost does not cause packet drops on any path. This

actually avoid the “self-load” effect of MRC approach works in coarse timescales.

Although the MRC device might keep switch traffic from path to path, it is

different from the “oscillations” we studied before, where the oscillations cause

packet drops and hurt end to end performance. As we will show in Section D,

this greedy MRC approach can improve end to end performance.

We classifies this approach as a multipath routing approach because it works

very similarly as a multipath routing scheme. The difference is that in a mul-

tipath routing approach, a packet is the smallest unit that can be switched

to alternate paths; in this greedy approach that works in timescales of tens

of milliseconds, traffic routed in each period is the smallest unit that can be

switched. Accordingly, the packet reordering issue of multipath routing should

also be addressed in this approach. From the result of Section B, we observe

that the link characteristics change rapidly. Therefore, a measurement based

MRC scheme is expect to adapt the changes quickly enough, at the same time

scale as the characteristics change. Even if single path routing is adopted by

MRC devices, if the forwarding path is changed at 10 ms scale considering the

queuing delays on access links, this approach still may cause packet reordering.
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Since the traffic and path metrics change rapidly in this case, the greedy MRC

is in fact multi-path MRC. Therefore, we need some mechanism to minimize

the effect of packet reordering on performance of TCP. In this work, we study

TCP-DCR and Flowlet.

2. When MRC is done in time scale of tens of milliseconds, the delays of observation

of effects of MRC adaptations are not negligible anymore. It may actually avoid

the synchronization of different MRC devices.

This greedy approach differs from BGP based greedy MRC in that it works

in smaller time scales that is impossible for BGP based MRC. A fractional MRC

switching engine is needed to implement this approach. The benefit of this approach

is to further improve end to end performance for highly dynamic TCP traffic.

2. Implementation of greedy MRC

As we mentioned in Section C, greedy MRC for highly dynamic MRC works as a

multipath routing scheme. Greedy MRC is simpler than user-optimal and optimal

routing based MRC. Using the same framework for fractional MRC we proposed in

Chapter III, we need only to change the algorithm of the “routing decision module”.

The new algorithm can be expressed as routing all traffic to one destination network

to a path that has the best predicted quality for next period.

Similar to other multipath routing schemes, we need a mechanism to mitigate

the affect of packet reordering to TCP and other communication protocols that relies

on in-order delivery. In this study, we focus on performance of TCP applications

which is the dominant transport protocol on the Internet.

As we introduced in Chapter III, there the choices to implement the forwarding

engine of a fractional MRC are: flow level switching, packet level switching and
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“Flowlet” switching. On the end hosts, packet reordering robust TCPs can be used

to tolerate packet reordering caused by fractional MRC.

In this work, we will study the use of a variant of reordering robust TCPs, TCP-

DCR, and different switching method in our MRC approach.

D. Simulation study

1. Implementation of switching algorithms in simulations

We use a generic implementation to simulate different switching algorithms. The

MRC algorithms we studied are the greedy MRC we proposed in this chapter and user-

optimal routing based MRC we proposed in Chapter V. The switching algorithms we

studied include flow level, packet level and “Flowlet” switching.

The implementation of switching algorithms is as follows. When a packet arrives,

the router looks up the flow in a flow state table.

If the flow state is not in the table, the router assigns a path for the flow according

to the routing algorithm. Then a new entry for that flow is created in the table. The

flow ID and the route of the flow along with a timestamp of current time is recorded

in the entry.

If the flow state is in the table, the timestamps of the entry is compared with

current time. If the difference is larger than a given threshold, “active timeout”, a new

path is assigned to the flow according to the routing algorithm and the timestamp is

updated as the current time. Otherwise, the packet is routed along the path stored

in the entry.

The inactive flows are periodically removed from the table to reduce memory

usage. Of course, for flows whose termination is detectable, the removal is made after

the router forwarded the last packet of the flow.
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By changing the “active timeout” threshold, we can simulate flow, packet and

Flowlet level switching. When we set the “active timeout” as zero, the switching

is packet level switching. When we set the “active timeout” as a “large” value, the

switching is flow level switching. The value is decided by the maximum time gap

between any two subsequent packets of the flow. When we set the “active timeout”

as a value in between, the switching is “Flowlet” level switching.

The larger “active timeout” is, the more flow states need to be kept in the router.

In our simulation, we set it as 1 second to simulate flow level switching.

To evaluate the performance of greedy MRC, we compare the flow completion

times when N1 uses this approach with the flow completion times when N1 uses a

static load balancing approach. The static load balancing approach we used is simply

to assign a new flow to a path by equal probability. In our greedy approach, the routes

for new flows are adjudged every 10 milliseconds according to the latest queuing delay

measurement of alternate paths. The best path will be used for new flows coming in

next 10 milliseconds.

2. Simulation setup

We study the performance of our MRC scheme on a number of many-to-one topologies

using ns-2 simulations. Our simulation study consists of two parts:

In the first set of simulations, we perform simulations to study the cases where

only one stub network does adaptive multihoming route control while all other stub

networks use predefined static routing strategy. The analysis of this simple case

gives us insight of performance of different techniques for adaptive multihoming route

control. It is also the foundation for analysis of the more complex case where all stub

networks do adaptive multihoming route control.

One topology we used in our study is shown in Fig. 91. In our simulation, stub
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Fig. 91.: Simulation topology: 3 send to 1, one sender site uses MRC

network N1, N2 and N3 send data using TCP protocols to stub network N4. The local

router of stub network N2, AR2, uses our greedy multihoming route control algorithm

to route traffic on two alternate paths. N1 and N3 route traffic to N4 via their single

ISP routers. In other words, we use N1 and N3 to generate background traffic and

study the performance of MRC of stub network N2.

We generate Internet paths delays as α×β, where α models the physical distance

of two stub networks and is uniformly distributed from 5ms to 30ms, β models AS path

differences of alternate paths provided by different ISPs and is uniformly distributed

from 0.8 to 1.2. An Internet path here is the path from an ISP edge router of one

stub network to an ISP edge router of another stub network. The propagation delays

of the access links are set as 1 millisecond.

We also change the number of ISPs of the sender that adopts MRC and the

receiver to 3 and 4. Accordingly, we add 1 and 2 sender stub networks, to generate

background traffic on the added access links of the receiving stub network.

In the second set of simulations, we study the performance of our MRC scheme
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when all sender sites use MRC. Through this set of simulations we study the inter-

action between MRC done by different stub networks and study the performance of

MRC in such situations. The topology we used in our second part of the simulations

is shown in Fig. 92. In the topology, N1 to N9 are sender stub networks that deploy

our MRC scheme and N10 is the receiver stub network. The Internet path delays are

generated same as the first set of simulations. The topology plotted is an asymmetric

topology, i.e. the path from one ISP edge router of a send stub network is randomly

connected to a ISP edge router of the receiver stub network. The we also performed

same simulations on symmetric topologies. There is no significant difference between

the two type of topologies.
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Fig. 92.: Simulation topology: 9 send to 1, all sender sites use MRC

In all our simulations, we generate traffic using the same method as we used in

Section B.
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To compare performance of different routing schemes, we define “average comple-

tion time” as our performance metric. Assuming the sizes of data transfers completed

during a simulation are si, (i = 1, · · · , n) and the corresponding completion time are

ti, (i = 1, · · · , n), where n is the number of flows completed, the “average completion

time”,

T =

∑

i=1,··· ,n ( ti
si

si)
∑

i=1,··· ,n si

=

∑

i=1,··· ,n ti
∑

i=1,··· ,n si

3. Simulation result

a. Smoothing of measurement result

As we analyzed in Section B, we choose to use sum of the queuing delays along a

path as the quality metric of a path. Since the measurements are noisy, we need

some method to smooth the measured queuing delays. We evaluate two smoothing

methods in this work: (1) using the average of measured values in the last period,

i.e. l̂t = 1
T
(lt−1 + · · · + lt−T ); (2) using the Exponential Weighted Moving Average

(EWMA) of measured values, i.e. l̂t = (1− α) ˆlt−1 + αlt. We set lt as 1 second when

measurement packet is dropped to take packet drops in to account.

We perform simulations using the configuration of the first set. We use packet

level switching along with TCP-DCR in our simulations. The results are shown in

Fig. 93.

From the results we have the following observations: (1) for the “last period”

smoothing method (configuration 11 to 16), the shorter the averaging period the

higher the improvement. This is consistent with our study of link quality in Section

B where we show that the link characteristics change rapidly. (2) EWMA smoothing

method (configuration 3 to 10) with α from 0.01 to 1.0 achieves similar result as the

best “last period” which is what we expected since for all the α’s the measurement
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Fig. 93.: Performance of EWMA and last-period predictors: (1) elb-flow, (2) elb-

packet, (3-10) ewma α = 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1, (11-16) last period,

period = 5ms, 10ms, 50ms, 100ms, 500ms, 1s
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results in the last 10 milliseconds have higher weight, e.g. (1− 0.9)10 ≈ 0.3487. Since

the two methods are comparable, to simplify our analysis, we use only the EWMA

method in the remaining simulations.

b. Single MRC sender stub network: routing performance of the MRC site

The simulation results for routing performance of the MRC site when there is only

one site performing MRC are shown in Figs. 94, 97 and 98, where the number of ISPs

of MRC site and the destination site are 2, 3 and 4 respectively.

TCP works in two distinct modes: “slow start” and “congestion avoidance”.

TCP adapts its congestion window using different algorithms in the two modes which

determine the throughput of TCP. The throughput of TCP in “slow start” phase

is usually much less than its throughput in “congestion control” phase. Because of

this, the throughput of small flows that spend larger proportion of their lives in “slow

start” phase is usually smaller than the throughput of large flows. In this chapter, we

classify flows with size less than one Megabyte as “small flows” and flows with size

larger than or equal to 1 Megabytes as “large flows”.

For the case when MRC devices connect to 2 ISPs, we simulate equal splitting

based static routing (labeled as “elb” in the figure) and greedy MRC with different

switching algorithms and two types of TCP: TCP-DCR and TCP-SACK. First, we

run the simulation for 16 configurations twice with different random seeds. The results

for the two runs are shown in Table II and Fig. 94 and Table III and Fig. 95.

We also record the total number of TCP events for the traffic of the MRC site

in the simulations. The data 2 sets of simulations are listed in Tables IV and V

From the figure, we have the following observations:

1. For static flow level routing, i.e. “elb-flow”, the “average completion time” for
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Table II. Average completion time of traffic of MRC site, 2 ISP case: traffic matrix 1

switching method
TCP-DCR TCP-SACK

small large small large

elb-flow 4.344781 0.436980 4.250966 0.387510

elb-packet 4.821521 0.353402 7.499323 2.438142

greedy-flow 2.216936 0.331528 2.154564 0.304395

greedy-packet 2.397582 0.219830 1.985902 0.470547

greedy-flowlet-50ms 1.988831 0.303839 2.081593 0.276129

greedy-flowlet-100ms 2.076806 0.320381 2.027103 0.271728

greedy-flowlet-250ms 2.126990 0.336444 2.037026 0.290396

greedy-flowlet-500ms 2.153087 0.318318 2.248163 0.294258

TCP-DCR is slightly larger than TCP-SACK. However, for packet level greedy

MRC, TCP-DCR has obvious advantage over TCP-SACK for large flows. From

the Table V, we see the reason is that the number of “fast recovery” for TCP-

SACK is much larger than TCP-DCR for “packet-greedy” which is a direct

result of packet reordering and reduces TCP’s throughput. The confirms that

TCP-DCR is more robust to packet reordering than TCP-SACK.

2. The best trade-off between benefit of switching and side effect of packet re-

ordering is achieved by “greedy-packet” in TCP-DCR case, where the “average

completion time” for large (small) flows is shortened by 49.7% (44.8%) com-

pared to “elb-flow”.

3. The performance of greedy MRC compared to static routing for small flows is

better than the performance for large flows. A possible reason is that TCP flows

in “congestion avoidance” phase might be more sensitive to packet reordering
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Fig. 94.: Routing performance of MRC site, 2 ISP case, traffic matrix 1: (1) elb-

flow, (2) elb-packet, (3) greedy-flow, (4) greedy-packet, (5-8) greedy-flowlet, timeout:

50ms, 100ms, 250ms and 500ms

than TCP in “slow start” phase. To verify this, further analysis of TCP’s

behavior is needed. Unfortunately, we did not record enough trace data in our

simulations for this analysis and have to leave it as future work.

To ensure our observed performance differences are not because of random fac-

tors in simulations, we perform simulations for a few approaches, with representative

parameter setting, 10 more times with different random seeds. For each set of sim-

ulations, we normalize the mean completion time of each approach by dividing the

mean completion time of the “elb” approach with TCP-SACK. The mean, maximum

and minimum value of the normalized mean completion times are plotted in Fig. 96.

The results shown in Fig. 96. The results are consistent with the simulation results

shown in Table II and Fig. 94 and Table III and Fig. 95.
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Table III. Average completion time of traffic of MRC site, 2 ISP case: traffic matrix 2

switching method
TCP-DCR TCP-SACK

small large small large

elb-flow 4.183970 0.445129 3.978715 0.359663

elb-packet 4.979890 0.409569 7.592696 1.785910

greedy-flow 2.365486 0.323899 2.431206 0.309921

greedy-packet 2.255806 0.254252 1.983752 0.526816

greedy-flowlet-50ms 2.226852 0.315311 2.281431 0.291223

greedy-flowlet-100ms 2.176076 0.311337 2.173757 0.288538

greedy-flowlet-250ms 2.220801 0.326950 2.154934 0.311280

greedy-flowlet-500ms 2.283300 0.323854 2.393445 0.303984

The simulation results for 2 ISP case show that greedy MRC can significantly im-

prove routing performance of highly dynamic TCP traffic when working together with

either TCP-DCR or Flowlet switching as a mechanism to tolerate packet reordering.

However, to properly use Flowlet switching the Flowlet time-out should be set

larger than the maximum delay difference between alternate paths. For our case,

it should be larger than the maximum queuing delay on a bottleneck link, 250 mil-

liseconds, the value suggested by a IETF guideline [55]. Using such a large Flowlet

timeout value reduces the ability of Flowlet switching to switch traffic among alter-

nate paths, thus the adaptiveness to path quality changes. In the rest of this work,

we will focus on the study of greedy MRC when TCP-DCR is used.

We also study the performance of the greedy MRC for 3 ISP case and 4 ISP

case. The results are plotted in Figs. 97 and 98. For the 3 ISP case, greedy MRC

with TCP-DCR reduces the “average completion time” by 43.8% for large flows and

by 46.5% for small flows compared to elb-flow with TCP-DCR. For the 4 ISP case,
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Fig. 95.: Routing performance of MRC site, 2 ISP case, traffic matrix 2: (1) elb-

flow, (2) elb-packet, (3) greedy-flow, (4) greedy-packet, (5-8) greedy-flowlet, timeout:

50ms, 100ms, 250ms and 500ms

greedy MRC with TCP-DCR reduces the “average completion time” by 60.6 % for

large flows and by 51.0% for small flows compared to elb-flow with TCP-DCR. We

also observe that, same as in the 2 ISP case, TCP-SACK performs better than TCP-

DCR for static flow level routing, i.e. “elb-flow”. However, the “average completion

time” of packet level greedy MRC with TCP-DCR is still around 40% to 50% less

than the value of flow level static routing with TCP-SACK.

c. Single MRC sender stub network: effect on non-MRC stub networks

When MRC sites and non-MRC sites coexist, we need to make sure the MRC done by

MRC sites do not hurt the routing performance of non-MRC sites. To verify that the

performance improvement of greedy MRC we observed in our simulations does not



130

1 2 3 4 5 6 7 8

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 c
om

pl
et

io
n 

tim
e

Configuration

flows ≤ 1MB

1 2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

3

N
or

m
al

iz
ed

 c
om

pl
et

io
n 

tim
e

Configuration

flows > 1MB

Fig. 96.: Statistics of normalized mean completion time(compared to elb-flow, TCP-

SACK) of MRC site, 2 ISP case: (1) elb-flow, TCP-DCR; (2) elb-flow, TCP-

SACK; (3) greedy-flow, TCP-DCR; (4) greedy-flow, TCP-SACK; (5) greedy-packet,

TCP-DCR; (6) greedy-packet, TCP-SACK; (7) greedy-flowlet-100ms, TCP-DCR; (8)

greedy-flowlet-100ms, TCP-SACK.
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Fig. 97.: Routing performance of MRC site, 3 ISP cases: (1) elb-flow-TCPDCR, (2)

elb-flow-TCPSACK, (3) greedy-packet-TCPDCR
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Fig. 98.: Routing performance of MRC site, 4 ISP cases: (1) elb-flow-TCPDCR, (2)

elb-flow-TCPSACK, (3) greedy-packet-TCPDCR
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Table IV. Number of TCP events experienced by traffic of MRC site, 2 ISP case, traffic

matrix 1

switching method

TCP-DCR TCP-SACK

timeout
slow fast

timeout
slow fast

start recovery start recovery

elb-flow 710 821 153 522 831 365

elb-packet 1004 3287 3082 970 16861 37241

greedy-flow 328 365 64 224 381 192

greedy-packet 395 504 177 112 1646 4091

greedy-flowlet-50ms 183 204 35 166 305 169

greedy-flowlet-100ms 189 206 32 176 316 166

greedy-flowlet-250ms 282 313 56 227 375 181

greedy-flowlet-500ms 289 314 48 243 426 221

come at the cost of hurting routing performance of other non-MRC sites, we calculate

the “average completion time” for flows of non-MRC sites. The results corresponding

to Figs. 94 to 98 are plotted in Figs. 99 to 103 respectively.

From Figs. 99 to 103, we observe that the routing performance of non-MRC sites

are actually improved when the MRC site change from static routing to greedy MRC.

These results show that the benefit of MRC does not come from hurting routing

performance of non-MRC sites. In other words, the benefit of MRC in the problem

we are studying comes from avoiding the use of congested paths. This improves the

routing performance of the MRC site as well as the routing performance of other

non-MRC sites.
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Fig. 99.: Routing performance of non-MRC sites, 2 ISP case, traffic matrix 1: (1)

elb-flow, (2) elb-packet, (3) greedy-flow, (4) greedy-packet, (5) greedy-flowlet50ms,

(6) greedy-flowlet100ms, (7) greedy-flowlet250ms, (8) greedy-flowlet500ms
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Fig. 100.: Routing performance of non-MRC sites, 2 ISP case, traffic matrix 2: (1)

elb-flow, (2) elb-packet, (3) greedy-flow, (4) greedy-packet, (5) greedy-flowlet50ms,

(6) greedy-flowlet100ms, (7) greedy-flowlet250ms, (8) greedy-flowlet500ms
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Fig. 101.: Statistics of normalized mean completion time(compared to elb-flow, TCP-

SACK) of non-MRC site, 2 ISP case: (1) elb-flow, TCP-DCR; (2) elb-flow, TCP-

SACK; (3) greedy-flow, TCP-DCR; (4) greedy-flow, TCP-SACK; (5) greedy-packet,

TCP-DCR; (6) greedy-packet, TCP-SACK; (7) greedy-flowlet-100ms, TCP-DCR; (8)

greedy-flowlet-100ms, TCP-SACK.
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Fig. 102.: Routing performance of non-MRC site, 3 ISP cases: (1) elb-flow-TCPDCR,

(2) elb-flow-TCPSACK, (3) greedy-packet-TCPDCR
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Fig. 103.: Routing performance of non-MRC site, 4 ISP cases: (1) elb-flow-TCPDCR,

(2) elb-flow-TCPSACK, (3) greedy-packet-TCPDCR
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Table V. Number of TCP events experienced by traffic of MRC site, 2 ISP case, traffic

matrix 2

switching method

TCP-DCR TCP-SACK

timeout
slow fast

timeout
slow fast

start recovery start recovery

elb-flow 672 799 168 414 712 353

elb-packet 953 3632 3658 766 17794 37949

greedy-flow 290 315 49 208 379 202

greedy-packet 369 493 221 135 1821 4982

greedy-flowlet-50ms 237 252 41 174 329 185

greedy-flowlet-100ms 177 192 35 142 254 135

greedy-flowlet-250ms 231 255 41 205 354 179

greedy-flowlet-500ms 264 298 61 222 376 177

d. Multiple MRC sender stub networks: overall performance

We also study the routing performance of MRC when multiple sites perform MRC.

The routing schemes we studied include static equal-splitting based flow level and

packet level routing, greedy MRC with different parameters and user-optimal routing

based MRC with different steps sizes. The TCP variant used in this set of simulations

is TCP-DCR. The overall routing performance of all sites are plotted in Fig. 104.

From the results, we have the following observations: (1) Compared to static

routing, both greedy MRC and user-optimal based MRC can improve routing per-

formance for highly dynamic TCP traffic; (2) The performance of Greedy MRC is

not sensitive to EWMA smoothing parameter, α; (3) Greedy MRC together with

TCP-SACK and Flowlet switching achieves similar performance as greedy MRC with

TCP-DCR; (4) Greedy MRC achieves similar performance as user-optimal routing
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Fig. 104.: Overall routing performance when all sites using MRC, asymmetric topolo-

gies, cases: (1) elb-flow, (2) elb-packet, (3) greedy-ewma0.1-packet, (4) greedy-

ewma0.2-packet, (5) greedy-ewma0.4-packet, (6) greedy-TCPSACK-flowlet50ms, (7)

uopt-0.01, (8) uopt-0.05, (9) uopt-0.1, (10) uopt-0.5, (11) uopt-1
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based MRC.

The results have confirmed the our analysis in Section C, i.e. greedy MRC will

not cause performance degradation for highly dynamic TCP traffic when multiple

MRC devices work together.

E. Conclusions

In this chapter, we studied MRC of highly dynamic TCP traffic, i.e. traffic con-

sisting of TCP flows of mixed sizes on paths with limited bottleneck capacity. We

first analyzed the characteristics of links in this type of environment. Based on

the analysis, we proposed a greedy MRC scheme for highly dynamic TCP traffic.

The proposed approach works at much smaller time scales than traditional MRC to

effectively route highly dynamic TCP traffic in multihomed environment. Ns-2 sim-

ulation results showed that the proposed scheme performs significantly better than

static routing approaches. Both the routing performance of the MRC site and other

sites are improved. The proposed greedy MRC approach achieve similar performance

as user-optimal routing based MRC for routing of highly dynamic TCP traffic.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have studied two types of important Internet routing problems:

fast rerouting for ISP networks and multihoming route control for stub networks.

We first propose a fast rerouting scheme for link state routing protocols. Our

scheme includes both pro-active and reactive components. The pro-active compo-

nent avoids complex computation of rerouting paths after links fail, which reduces

restoration latency. The reactive component is used to handle the cases where local

rerouting cannot be done. We proved the correctness of our algorithms. Simulation

results show that the rerouting after link failures usually can be done by local routers

and for the remaining cases by local routers along with a small number of neighboring

routers. The rerouting operations after link failures are also very simple. Therefore,

our scheme can increase rerouting speed as well as limit the range of propagation of

transient link failure events.

In the second part of this dissertation, we propose and analyze three Multihoming

Route Control (MRC) methods for improving routing performance of multihomed

stub networks in dynamic network environments.

The first MRC method is based on optimal routing. In this method, traffic matrix

and information on path qualities are exchanged among a group of stub networks.

Based on such information, each stub network calculates the optimal routing vector

and uses it to route its egress traffic to other stub networks in the group. We study the

performance of this method using both synthesized traffic matrices and traffic matrices

generated from real-world Internet traffic traces. The simulation results have shown:

(1) the method can improve performance of routing among a group of multihomed

stub networks up to 40% compared to static equal-splitting based load balancing; (2)
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The performance improvement is larger for Pareto traffic and asymmetric topologies

compared to Poisson traffic and symmetric topologies; (3) smaller prediction and

adjudgement periods can improve the performance of this method.

The second MRC method is based on user-optimal routing. The distributed na-

ture of user-optimal routing makes it suitable for both inhouse traffic (traffic among

a group of multihomed stub networks) and Internet traffic (from a multihomed stub

network to any Internet destination). In this method, we apply the user-optimal rout-

ing theory to the MRC problem. We compare the performance of this user-optimal

routing based MRC to optimal routing based MRC using extensive simulations. Re-

sults show that user-optimal routing based MRC can achieve similar performance

as optimal routing based MRC. We also study the dynamics of this method using

simulations. The results show that the algorithm converges fast and does not cause

oscillations.

The third MRC method we proposed is for MRC of highly dynamic TCP traffic.

We study MRC in this environment using ns-2 packet level simulations. We first

analyze link characteristics when load consists of TCP flows of different sizes. Based

on the analysis result, we propose to use greedy MRC in small timescales for MRC of

highly dynamic TCP traffic. Simulation results show that the proposed method can

greatly improve the routing performance of stub networks when packet reordering

robust TCP is employed (we use TCP-DCR in our study). Our simulation study also

show that the greedy MRC in small timescales does not hurt routing performance of

non-MRC sites and can improve the overall routing performance of all sites competing

for bandwidth on same set of bottlenecks.

Possible future research directions include: (1) Study of our MRC schemes in

real world environment or through emulations using real world traffic and path qual-

ity data; (2) Further study of the use of alternative quality metrics, e.g. available
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bandwidth, in measurement based adaptive MRC.
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[33] S. Tao and R. Guérin, “On-line estimation of Internet path performance: an

application perspective,” in Proc. IEEE INFOCOM, Mar. 2004, pp. 1774–1785.

[34] A. J. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair

queueing algorithm,” in Proc. ACM SIGCOMM, Sep. 1989, pp. 1–12.



147

[35] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round-

robin,” IEEE/ACM Trans. Netw., vol. 4, no. 3, pp. 375–385, 1996.

[36] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols, chapter 20. TCP

Bulk Data Flow, Addison-Wesley, 1994.

[37] S. Bhandarkar and A. L. Narasimha Reddy, “TCP-DCR: Making TCP robust

to non-congestion events,” in Proc. NETWORKING, May 2004, pp. 712–724.

[38] S. Sinha, S. Kandula, and D. Katabi, “Harnessing TCP’s bursti-

ness using flowlet switching,” 3rd ACM SIGCOMM Workshop

on Hot Topics in Networks, Nov. 2004, [Online]. Available:

http://nms.csail.mit.edu/papers/index.php?detail=111.

[39] Z. Cao, Z. Wang, and E. W. Zegura, “Performance of hashing-based schemes

for Internet load balancing,” in Proc. INFOCOM, 2000, pp. 332–341.

[40] R. Martin, M. Menth, and M. Hemmkeppler, “Accuracy and dynamics of

hash-based load balancing algorithms for multipath Internet routing,” IEEE In-

ternational Conference on Broadband Communication, Networks, and Systems

(BROADNETS), Oct. 2006, [Online]. Available: http://ieeexplore.ieee.org.

[41] PlanetLab Consortium, “PlanetLab,” [Online]. Available: http://www.planet-

lab.org, accessed on Jun. 2004.

[42] D. K. Goldenberg, L. Qiu, H. Xie, Y. R. Yang, and Y. Zhang, “Optimizing cost

and performance for multihoming,” in Proc. ACM SIGCOMM, Aug. 2004, pp.

79–92.

[43] Y. Qiao, J. Skicewicz, and P. A. Dinda, “An empirical study of the multiscale

predictability of network traffic,” in Proc. HPDC, Jun. 2004, pp. 66–76.



148

[44] NLANR Measurement and Network Analysis Group, “NLANR PMA: Special

traces archive,” [Online]. Available: http://pma.nlanr.net/Special/, accessed on

Jun. 2004.

[45] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing OSPF

weights,” in Proc. IEEE INFOCOM, Mar. 2000, pp. 519–528.

[46] Free Software Foundation, “GLPK (GNU Linear Programming Kit),” [Online].

Available: http://www.gnu.org/software/glpk/, accessed in 2006.

[47] J.G. Wardrop, “Some theoretical aspects of road traffic research,” in Proc. The

Institute of Civil Engineers, 1952, vol. 1, pp. 325–378.
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