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ABSTRACT 
 

Preliminary Non-destructive Assessment of Moisture Content, Hydration and Dielectric 

Properties of Portland Cement Concrete.  (December 2005) 

Ivan Avelar Lezama, B.S., The University of Texas at El Paso 

Chair of Advisory Committee: Dr. Dan G. Zollinger 

 

Moisture availability is a focal point in the structural development of young concrete. 

Under low humidity and hot weather conditions, concrete loses moisture rapidly as it 

hardens, and it is very difficult, if not impossible, to minimize this loss even though 

proper curing procedures are used.  Early losses in moisture content jumpstart premature 

surface self-dissecation, increase surface paste porosity, prevent concrete from achieving 

the mechanical properties for which it was originally designed, and facilitate the 

development of surface distresses such as spalling.  Curing effectiveness and structural 

assessment of young concrete is generally done through conventional destructive or 

invasive testing.  However, there is no fully established non-destructive testing protocol 

to assess moisture content and its effects on concrete properties quantitatively in an on-

site, fast, and non-invasive way.  The possibility and feasibility of establishing a testing 

protocol with such attributes is explored. 

 

Previous research on pavement bases has used dielectric measurements to relate 

moisture content to their structural performance. Due to the high dielectric value of 

water as compared to any other material used in construction, it is possible to relate high 

volumetric water content to high dielectric readings.  In this study, compressive strength 

tests combined with dielectric and mass measurements are used to investigate how 

dielectric properties change with hydration.  The results of this study suggest that it may 

be possible to approximate the volumetric moisture content in concrete by measuring the 

dielectric value of concrete as it hardens. 
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CHAPTER I 

INTRODUCTION 
 

Non-destructive testing (NDT) targeted towards the assessment and evaluation of 

construction material properties is not a new subject, but its popularity has been growing 

in giant steps among transportation and state highway agencies in recent years.  The 

reason for such popularity resides in the fact that many of these NDT methods are 

relatively quick and inexpensive.  Most of those NDT methods involve the use of probes 

and equipment that can take advantage of the various degrees of sensitivity to 

temperature or electromagnetic responses of the material in question.  However, some of 

those methods require invasive probing or embedding of sensors that can disrupt 

construction procedures.  A very recent generation of surface probes that measure the 

dielectric properties of construction materials do not have those limitations.  

Measurements obtained from granular materials with these new probes have been shown 

to provide important clues about the relative amounts of moisture, a very important part 

of cement hydration.  Unfortunately, limited in-depth analysis has been done on the 

significance and role of moisture availability as a major factor of the dielectric properties 

of concrete, and how it correlates to hydration and to mechanical properties. 

 

The first phenomenon affected by moisture availability is cement hydration. Cement 

hydration produces a chemical compound that is intrinsically complicated in nature.  Its 

structure has been accepted to consist on four different phases with different proportions 

shared among hydrated cement and water in various forms (Breugel 1991; Neville 

1995).  The second characteristic of concrete greatly affected by moisture is its dielectric 

properties from which technologists can take advantage, because the change of 

volumetric water availability in concrete as it hardens causes concrete to change its 

dielectric properties. 

 
This thesis follows the style and format of the Journal of Materials in Civil Engineering. 
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The tracking of moisture loss changes and the corresponding effect on dielectric and 

hydration properties provides some evidence that important concrete properties through 

NDT during early curing periods can be assessed through quick and on-site testing. 

 

Therefore, the present study focuses on the evaluation and discussion of the potential 

that dielectric measurements have on the approximation and possible prediction of 

conventional concrete properties such as moisture content and curing quality, or even 

hydration and strength.  It is not the scope of this effort, however, to establish a protocol 

or to establish new curing requirements or procedures.  The scope is to present a baseline 

study of dielectric measurements in concrete for future, more advanced research.  

Therefore, it is of interest to: 

• Identify key time-dependent changes in water availability and vapor pressure and 

their effect on cement hydration and early-age concrete properties 

• Perform a quantitative analysis of measurements relative to the development of 

characterization relationships of concrete early-age properties that vary as a 

function of hydration 

• Recommend key items to follow-up in future research and investigation 

 

To satisfy such objectives, the study will be presented in the following main divisions 

that describe the development and results of the research effort.  Background 

information about previous dielectric testing on concrete will be presented in Chapter II.  

Theoretical considerations as presented in Chapter III provide the basic research effort 

framework, while the laboratory data collection testing and strategies that provide the 

basic raw data for analysis are described in Chapter IV.  Chapter V presents the 

quantitative analysis of the obtained data, discuss any potentially fundamental behavior, 

and propose characterizing models when deemed applicable or statistically reliable.  

Finally, Chapter VI presents the general conclusions obtained from the results of this 

project and recommends future research and the necessary focus to be given. 
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CHAPTER II 

BACKGROUND 
 

The purpose of this chapter is to present how hydration and moisture loss affect the 

dielectric properties of young Portland Cement Concrete (PCC), and to set the basis for a 

quantitative assessment, analysis and prediction of the changes that take place as 

concrete hardens.  The investigative approach is to be based upon non-destructive testing 

(NDT) and the use of dielectric properties as indicators, or even potential predictors, of 

moisture and hydration-related factors.  It is the intent of this chapter to offer a summary 

of the theory as it was later applied to the experimental investigation. 

 

RELEVANCE OF MOISTURE CONTROL IN CONCRETE BEHAVIOR 

Moisture availability and loss are, in practical terms, the driving forces in many of the 

concrete properties during its fresh, hardening, and hardened stages, yet is not in many 

instances given enough credit or blame for common successes or failures of concrete 

under service.  In this study, the quantification and monitoring of moisture availability 

and loss presents a unique opportunity to identify the main factors affecting the dielectric 

properties of concrete, and to describe the moisture and dielectric changes that occur 

during hydration. 

 

Moisture control is a critical part of all curing practices, and the quality of curing usually 

determines the performance of the finished structure (Somayaji 2001).  Many premature 

failure mechanisms of PCC structures ultimately derive from deficiencies in construction 

methods or curing procedures, especially for those structures with large surface area-to-

volume ratios that are exposed to the atmosphere like road and highway pavements.  

Moisture availability and management must therefore be taken often into consideration 

for construction methodologies and objectives.  In fact, careful and effective curing 

practices applied during the hardening stage immediately following setting greatly 

improve the strength development and performance of concrete in the long term 
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(Mindess et al. 2003).  In concrete terminology, curing involves procedures that maintain 

proper moisture and temperature conditions to ensure the concrete attains the desired 

performance properties such as strength, water tightness, and durability under freeze-

thaw cycles (Somayaji 2001; Mamlouk and Zaniewski 1999).  Curing is focused 

primarily to prevent excessive moisture loss, and to minimize the negative effects of 

shrinkage and creep stresses occurring during the hardening stages of hydration 

(Mindess et al. 2003).  In turn, the progress and development of hydration is influenced 

by the initial water-cement ratio and the curing effectiveness.  The degree of hydration is 

perhaps the main factor affecting the resulting micro- and macro-structural behaviors of 

hardened concrete.  Therefore, there exists a common determining factor for most 

concrete properties: water.  Moisture availability, moisture loss, and moisture 

distribution and history as it develops with time (Wang 2000) is thus a crucial piece of 

information worthy of further investigation and consideration for the improvement of 

concrete performance and curing practices. 

 

MOISTURE LOSS: BLEEDING AND EVAPORATION 

Bleeding and evaporation represent an important piece of the investigation reported 

herein.  Mass quantification of these two stages of moisture loss can help complement 

observations made in other areas of concrete behavior such as creep and shrinkage.  Due 

to the flowing nature of bleeding and moisture loss, changes in mass quantities may also 

help identify when major changes in microstructure and porosity occur. 

 

Bleeding is common to most concrete mixtures.  A portion of the mixed water gets 

displaced from the concrete mass and rises to the surface, and is subsequently lost by 

evaporation to the atmosphere (Somayaji 2001).  Bleeding is accentuated by over-

vibrating the concrete during placement, or by allowing high water-cement ratios, low 

cement contents, or high aggregate fineness moduli (Neville 1995; Somayaji 2001), and 

bleeding rates are higher for pastes with water-cement ratios above 0.38 (Neville 1995).  

Bleeding and evaporation translate into actual volumetric changes in the hydrated paste, 
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which causes shrinkage- and creep-related movements (Mindess et al. 2003).  In 

conventional concrete mixture proportioning (without the consideration of water-

reduction admixtures), water-cementitious materials ratios above 0.38 are necessary to 

maintain a desired level of workability and to maintain the cement paste moisture-

saturated (Powers 1947), although this approach causes the formation of porous concrete 

surfaces (Cano-Barrita et al. 2004; Parrot 1991).  In a concrete mixture, the water-

cementitious materials ratio is defined as follows: 

c
w

w net
0 =        (1) 

where: 

w0 = water-cementitious materials (or water-binders) ratio 

wnet = net water mass (corrected for absorption and moisture on 

aggregates), kg 

c = cementious mass, kg 

 

In this study, the applicable terminology needs to be defined for complete clarity.  

“Moisture” used henceforth will refer to either the vapor or liquid phase of the H2O 

molecule, residing in either the ambient air or inside the concrete matrix at any 

hardening stage.  “Water”, on the other hand, will only be used to refer to the liquid form 

of the same molecule, which can only applicable to the fresh stages of concrete, 

including bleeding water.  Nevertheless, it is emphatically stressed that either 

thermodynamic phase of water can exist in concrete, and sometimes even more that two 

states of bonding of water can co-exist in micro-capillary settings as either adsorbed 

layers, surface tension layers, or viscous (bulk) state layers (Guthrie and Scullion 2000). 

 

In terms of moisture loss, bleeding and evaporation can occur simultaneously.  Bleeding 

starts at the moment of placement of the concrete and ends approximately at setting time 

(Neville 1995) for common concrete mixes, while the bleed water deposited on top of 

the concrete evaporates at a rate depending on the thermodynamic balance of water-air 

interfaces in terms of saturation pressures affected by the ambient temperature and 
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relative humidity (Çengel and Turner 2001).  This implies that evaporation of the bleed 

water is usually accentuated by w0 values above 0.38 and accelerated by high concrete 

and/or ambient temperatures, low relative humidities, and windy conditions (Cano-

Barrita et al. 2004; Jang et al. 2005).  If the rate of evaporation of the bleed water 

exceeds the bleeding rate, the surface of the concrete dries and the free (capillary) water 

in concrete starts evaporating (Cano-Barrita et al. 2004) at a rate influenced by the 

hydration process and the porosity microstructure development (Powers 1947). 

 

Water/moisture loss has been expressed in different quantitative ways, but no consistent 

form was identifiable from the available literature.  The American Association for 

Testing and Materials Standard (ASTM) C232 requires bleeding measurements to be 

expressed in terms of mass by area of concrete surface (in kg/m2) or as a mass fraction 

(percent) of net water (unitless ratio).  It has also been expressed as a rate in terms of 

mass by fresh concrete weight or design concrete volume.  Few quantitative 

measurements of vapor moisture generation and loss have been mentioned, and even 

fewer consistencies can be found when it comes to units of measurement, but the most 

practical ways to express such quantity appears to be those proposed by ASTM C232. 

 

Previous quantitative measurements of bleeding and moisture loss were recorded in the 

development of ASTM C232, and non-destructive testing and research investigating 

detection and quantification of moisture content using radar or electromagnetic probing 

techniques have been conducted in unstabilized pavement bases or hardened concrete, 

where the moisture content can be considered to be a performance indicator (Al-Qadi et 

al. 1995; Scullion and Saaranketo 1996).  Those radar or probing techniques seem to 

provide information that can generally be correlated to performance factors with high 

reliability.  The basic methodology of these non-destructive methods will be discussed in 

detail in the last section of this chapter. 
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ROLE OF MOISTURE DISTRIBUTION AND RELATIVE HUMIDITY IN CONCRETE 

Moisture distribution is usually expressed in terms of relative humidity.  By 

thermodynamic principles, relative humidity is defined in terms of relative gas pressures 

as (Çengel and Turner 2001): 

av ppp +=       (2) 

s

v

p
p

H =       (3) 

where: 

p = Total ideal gas pressure, kPa 

pv = Partial pressure due to water vapor, kPa 

pa = Partial pressure in the air, kPa 

H = Relative humidity, fraction or percentage 

ps = Saturation pressure of water at a specific temperature, kPa; at 

40°C it corresponds to 7.38 kPa (as used in this study). 

 

The distribution of moisture in hardening concrete is never uniform (presents a variable  

volumetric proportion with depth from surface), and it changes with time (Parrot 1991) 

due to the evaporation of free moisture available in the capillary voids from the concrete 

matrix at the surface.  If the humidity in the air is lower than the concrete humidity, a 

moisture gradient is created, which forces moisture movement and loss through the 

interface.  In other words, if a vapor pressure differential exists between the concrete and 

the environment, moisture will be lost through the available pores and capillaries 

(Powers 1947).  In hardened concrete pavement slabs, moisture ditribution is sometimes 

a cause of slab warping due to moisture gradients developed by surface drying (Jannoo 

et al.1999).  Hence, higher moisture concentrations and relative humidity occur in the 

inner parts of the concrete, since the outer parts in contact to the atmosphere loose 

moisture much more rapidly due to bleeding and evaporation.  Previous research on 

hardened, water/moisture-cured concrete provided an insight on the water sorption-

desorption behavior of concrete, which indicates the appearance of a porous, 
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penetration-susceptible “surface zone” displaying low relative humidities as compared to 

measurements made inside the concrete (Parrot 1991; Parrot 1992).  Magnetic 

Resonance Imaging (MRI) measurements have been used to confirm this phenomenon 

(Cano-Barrita et al. 2004). 

 

Relative humidity, in both ambient air and concrete, has a tremendous effect on the 

cement hydration process.  Changes in concrete relative humidity values themselves are 

potential indicators of changes in microstructure and water availability, and they even 

dictate hydration rates (Powers 1947).  When coupled with quantitative analyses of 

moisture availability, relative humidity measurements can offer a clear picture of self-

dissecation characteristics of the hydrating paste (Parrot 1992), as will be elaborated 

further in this study. 

 

Despite the recognized importance of moisture distribution and relative humidity in 

concrete technology, most relevant studies have failed to describe the natural self-

dissecation characteristics of hardening young concrete.  Self-dissecation is inherently 

hydration-rate dependent, occurs only once during the fresh, setting, and early hardening 

stages, and requires careful water-availability measurements from the mass and 

volumetric standpoints.  Ultimately, the self-dissecation phenomena responds to vapor 

pressure, for hydration has been shown to stop if the ambient relative humidity drops 

below 80 percent or if pressure drop rates are zero, and pastes with water-cement ratios 

above 0.32 are able to maintain higher internal concrete humidity for longer periods of 

time (Powers 1947). 

 

When combined with quantitative measurements of moisture loss, relative humidity 

measurements can yield important descriptive information about diffusivity, porosity 

and permeability (Parrot 1991).  Research involving oven-drying practices narrow the 

focus to hardened concrete permeability rather than actual moisture history and 

distribution that are useful for design, construction, and curing practices.  The present 
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study offers this missing perspective and the associated implications interpreted from the 

experimental results as reported in chapter III. 

 

CEMENT HYDRATION 

Cement hydration is defined as the exothermic chemical reaction between water and 

Portland cement (Mamlouk and Zaniewski 1999; Mindess et al. 2003; Neville 1995).  

This reaction produces the glue that binds all aggregate particles, and greatly contributes 

to the development of the mechanical properties of concrete.  It is through this process 

that microstructure and porosity develop (Van Beek and Hilshorst 1999), which in turn 

affect the macroscopic mechanical properties.  Therefore, much of the characterization 

of concrete properties can be correlated to the hydration process, development, and 

history.  In fact, hydration development has been commonly approximated by measuring 

some of its characteristic behavior through heat and strength development (Khan et al. 

1995).  In this study, the measurement of the degree of hydration provides a clue about 

the development of concrete porosity and microstructure, and the necessary tools to 

establish a time-dependent volumetric analysis that is crucial to approximate the electric 

properties of concrete. 

 

However, hydration is a very complex phenomenon.  Among the circumstances 

contributing to the complexity of hydration is the existence of multiple, dependent and 

simultaneous reactions that take place for each of the chemical components of cement as 

reactants (Breugel 1991; Mindess et al. 2003; Neville 1995).  The influence of heat 

availability, moisture availability and changes in pH are also significant during all three 

stages of hydration which implies that in many cases hydration is never 100 % 

thermodynamically efficient, for hydration requires ideal vapor pressure and temperature 

conditions (Mindess et al. 2003; Neville 1995). 

 

Several stages of hydration have been proposed and identified.  Five stages are generally 

defined as initial hydrolysis, induction, acceleration, deceleration, and steady state 
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(Mindess et al. 2003).  In a more general and macroscopic approach, up to three stages 

are identified, and are defined as early, middle, and late (Breugel 1991; Neville 1995).  It 

is in the early stage where high rates of bleeding and high moisture loss rates occur, 

whereas it is during the middle stage that the phenomenon known as setting (initial and 

final) takes place.  Strength development occurs in the late stage, which can be used to 

determine the degree of hydration.  Therefore, setting and strength development 

comprise an important piece in the analysis of this study. 

 

Literature suggests that the main factors that control the rate, development and 

characterization of the hydration process are cement type and chemistry, cement 

fineness, water-cement ratio, ambient conditions, prescence of pozzolans or liquid 

admixtures, and curing effectiveness (Mindess et al. 2003; Neville 1995).  For the 

purposes of this study, it was necessary to keep many of these factors constant, such as 

the type and chemistry of cement, and ambient conditions, as outlined in Chapter IV.  It 

was also decided not to use liquid admixtures or pozzolans to avoid extraneous effects 

on moisture availability and measurements on hydration rates.  Water-cement ratio and 

ambient conditions are of particular interest in this studysince these two factors greatly 

affect hydration and help describe the links between moisture loss, microstructure 

change, porosity, and self-dissecation. 

 

Self dissecation occurs when the water available in liquid form in the capillaries is lost 

through bleeding and evaporation, leaving the capillaries empty.  Hydration products can 

only form in water solution available in saturated capillary pores, and thus self-

dissecation causes hydration to slow down and to practically stop, unless excess water is 

continuously available, which the hydrating cement paste can use during curing (Powers 

1947; Taylor 1997).  Then the underlined purpose of curing, in practical terms, is to keep 

the concrete as saturated as possible until the originally water-filled space has become 

filled with hydration products or space is no longer available, although thorough curing 

rarely guarantees complete hydration (Powers 1947). 
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The influence of the water-cementitious ratio in hydration can be expressed in several 

ways.  It has been proposed that the minimum ratio to ensure full hydration of cement is 

between 0.36 (Mindess et al. 2003) and 0.38 (Taylor 1997).  In chemically balanced 

terms, the ultimate amount of water that can ever be used for hydration has been 

identified to be only between 23 (Taylor 1997) and 25 (Powers 1947) percent of the 

mass of cement.  In terms of water retention, it is known that cement can retain up to 50 

percent of its mass via surface tension, but only up to half of that amount may ever be 

used for hydration, leaving the concrete susceptible to moisture loss.  In that regard, 0.42 

is recognized as the lowest water-cement ratio needed to avoid self-dissecation (Mindess 

et al. 2003), although sealed pastes below a limiting ratio value of 0.44 have shown signs 

of self-dissecation (Powers 1947). 

 

From the discussion above, the best possible measure of hydration is then how much of 

the available capillary space is filled with hydrated cement products, but this 

measurement is impossible to accurately quantify.  The hydration development is 

measured on the basis of more practical means via the degree of hydration.  The basic 

concept for the degree of hydration follows the form (Breugel 1991; Van Beek and 

Hilshorst 1999): 

amount of cement that has reacted at time tα(t)=
total amount of cement at time t=0

   (4) 

or, 

amount of non-evaporable water a time tα(t)=
ultimate amount of non-evaporable water

   (5) 

 

However, neither ratio can be directly measured, so indirect methods are needed based 

on a ratio of two quantities, where the numerator is generally a time-dependent quantity, 

with the denominator being the ultimate value that the numerator can attain.  The most 

accepted indicators of the degree of hydration are ratios of Ca(OH)2 volumes, shrinkage, 

specific surface area, heat, and compressive strength (Breugel 1991).  The last two can 
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be tested very easily and quickly, so strength tests were chosen in the methodology of 

this study. 

 

The term non-evaporable water mentioned above is sometimes used loosely in cement 

hydration research.  There is no clear agreement on what this mass fraction includes, and 

its place in the hydrated cement structure.  For the objectives of this study, the following 

definitions will be used.  Chemically-bound water, many times called gel or non-

evaporable water, is considered to consist on the mass fraction of the available water 

that has reacted with cement and now forms part of the hydrated cement paste (HCP) 

structure (Mindess et al. 2003; Neville 1995).  Physically-bound water is defined as the 

minuscule mass portion of the available water that is practically “trapped” or adsorbed 

onto or in between the Calcium-Silicate-Hydrate (CSH) layers of the hydrated cement 

paste.  The binding mechanism of the physically-bound water is primarily Van-der Walls 

forces (Breugel 1991).  This water portion can be evaporated at concrete humidities 

lower than 40 percent, but these humidity levels are only reached in oven drying 

conditions (Parrot 1991), not under realistically extreme hot-dry climatic conditions.  

Therefore, these two water states will henceforth referred to as non-evaporable water.  

The use of this term is intuitive and it is assumed not to affect the final outcome of the 

data analysis. 

 

Free (capillary) water, on the other hand, is the portion of the water present in the 

capillary pores of the CSH structure.  Much of this water proportion is assumed to 

behave like bulk (viscous) water, although it is possible that the water layers close to the 

CSH structure are either adsorbed or exerting surface tension and pore pressure 

(Mindess et al. 2003), similar to saturated soil-aggregate systems (Guthrie and Scullion 

2000).  As stated in the previous chapter, the complete saturation of capillary pores 

favors continuous hydration of the cement, until space is no longer available for 

hydration products (Powers 1947).  In common concrete practice, a great percentage of 

this water is unavoidably lost during bleeding and evaporation.  This loss creates new 



 13

porosity added to the initial air void content, and the addition of the two can be defined 

as total porosity (Mindess et al. 2003). 

 

Finally, in this study, volumetric approximations need to be obtained for the analysis of 

the material dielectric properties warranting the use of basic volumetric concepts 

surrounding hydration processes.  In simple terms, hydration of cement produces new 

compounds that require more volume than the initial mix proportion quantities.  The 

total volume of a hydrated paste is dependent on the degree of hydration, and is the 

linear summation of the constituent products.  As will be subsequently elaborated in the 

following chapter, a fully hydrated paste occupies the original volume of cement plus 1.4 

times the dry volume of the hydrated cement at each stage of hydration (Powers 1947; 

Neville 1995). 

 

DIELECTRIC PROPERTIES OF CONCRETE 

A dielectric is any non-metallic material that cannot conduct electricity efficiently.  

Insulators and any poorly or semi-conducting material can be considered dielectrics 

(Anderson 1964), and portland cement concrete can be considered a dielectric because it 

meets these requirements.  When an electric field or a current passes through a dielectric 

medium, the divergence, shape, and intensity of the outcoming electrical and generated 

magnetic fields can be measured to determine the electromagnetic properties of the 

medium.  The electric property of the medium is known as permittivity, and the 

magnetic property of the medium is known as permeability.  Research has shown that 

concrete has a negligible magnetic permeability, so the magnetic properties are usually 

assumed to be negligible (Rhim and Büyüköztürk 1998).  Unless ferromagnetic or 

metallic materials are used in concrete as aggregates, there is no need to account the 

magnetic permeability of concrete. 

 

However, the study of the dielectric properties of materials is not a simple task, for it is 

dependent on the way they are measured.  The electric parameter of interest for dielectric 
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mediums is the permittivity.  Permittivity is the proportionality constant that describes, 

as the name implies, how well an electric field travels through a medium.  For static 

electric fields such as the ones generated by point charges and direct current (DC), the 

permittivity of free space (vacuum) can be found to be part of the common electric flux 

density equation (TransTech 2003): 

0D=ε E+P       (6) 

where: 

D  = Electric flux density, C/m2 (Coulombs/meter2) 

ε0 = Permittivity of free space, 8.85 x 10-12 F/m (Farads/meter) 

E  = Electric field intensity or strength, V/m (Volts/meter) 

P  = Induced polarization, C/m2

 

If it is assumed that the medium or material through which the electric field passes 

through is linear and isotropic, then the polarization is proportional to the electric field 

intensity (TransTech 2003): 

0P=χε E       (7) 

where χ is the electrical susceptibility of the material, a measure of the proportion of the 

bound charge density to the free charge density (Anderson 1964), with values ranging 

only from zero to unity.  Then, for an electric field passing through any other medium, 

the electric flux density becomes: 

( )0D=ε 1-χ E       (8) 

so that 

0 rD=ε ε E       (9) 

and, 

medium
r

0

εε = =(1 χ)
ε

-      (10) 

where: 
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εr = Relative permittivity of medium, unitless; equal or larger than 

1.00 

εmedium = Complex absolute permittivity of medium, F/m 

 

When an alternating current (AC) passes through the medium, the permittivity is better 

represented as a complex number.  The permittivity values are thus dependent of the 

frequency of the AC source (Al-Qadi et al. 1995; Guthrie and Scullion 2000).  The 

complex permittivity is generally presented in the following form (Anderson 1964; Rhim 

and Büyüköztürk 1998; Van Beek and Hilshorst 1999). 

ε*=ε'-jε"      (11) 

where: 

ε* = Complex permittivity of medium, F/m 

ε′ = Real term, dielectric constant of medium, F/m (Farads/meter) 

j = -1  

ε′′ = Imaginary or “loss” term, F/m 

 

Yet in engineering practice it is generally more useful to present the permittivity relative 

to either the free space’s or air’s permittivity, so that (Anderson 1964): 

0 0 0

ε* ε' ε"= -j
ε ε ε

      (12) 

and since, 

dσε"=
ω

      (13) 

then, 

r rε* =ε' -ε"r       (14) 

or ultimately, 

d
r r

0

σε* =ε' -j
ωε

      (15) 
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where: 

σd = Dielectric conductivity, Ω-1·m-1 (ohm-1·meter-1) 

ω = Frequency of alternating current source, Hz 

ε*r  (Relative) permittivity, unitless 

ε′r  (Relative) dielectric constant or dielectric value, unitless 

ε′′r  (Relative) dielectric loss, unitless 

 

Also in engineering practice, the term “relative” is commonly dropped from the 

definition.  Henceforth, following common practice in this study, the real term of the 

complex permittivity is simply referred to as the dielectric constant, and the imaginary 

term is simply referred to as the dielectric loss.  The dielectric loss is sometimes also 

presented as a factor of the dielectric constant in a term called the loss tangent (Al-Qadi 

et al. 1995; Anderson 1964; Rhim and Büyüköztürk 1998): 

r

r

ε"tanδ=
ε'

      (16) 

where δ is graphically the angle between the two vectorial components (dielectric 

constant and loss) of the complex permittivity. 

 

The dielectric constant can be thought of as a measure of the ability of a material to store 

charge or electrical energy for a given electrical field strength, whereas the dielectric 

loss (or the loss tangent) is a measure of the attenuation, dissipation or eventual 

unrecoverable loss of energy, and can help determine the depth of penetration of radar 

signals into concrete structures (Guthrie and Scullion 2000; Van Beek and Hilshorst 

1999; Rhim and Büyüköztürk 1998; Zoughi et al. 1995).  At frequencies lower than 

1GHz, the dielectric constant for a pure material is fairly constant, and the loss is 

negligible (Rhim and Büyüköztürk 1998; TransTech 2003), and research suggests the 

use of a frequency between 1 and 40 MHz as the optimum range for good detection of 

permittivity values in soils, asphalt and concrete materials (Al-Qadi et al. 1995; Scullion 

and Saarenketo 1996). 
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Previous research also suggests that either parameter of the permittivity by itself seems 

to provide different detection capabilities.  Resistivity measurements have shown to 

provide an insight into the heat of hydration, porosity and microstructure properties in 

concrete (Li et al. 2003; Xian-Yu et al. 2002), whereas dielectric constant measurements 

have successfully shown sensitivity to moisture content measurements in soil and 

aggregate construction materials (Scullion and Saarenketo 1996). 

 

The statements above imply that one of the two options for the non-destuctive 

determination of hardening concrete properties can be to measure the dielectric 

conductivity.  The dielectric conductivity, which is part of the dielectric loss, is related to 

resistivity through: 

d
1σ =
ρ

       (17) 

where ρ is the resistivity of the medium (Ω/m).  Due to the relative simplicity of 

resistivity measurements, they have been used to investigate the properties of concrete, 

and their sensitivity to cement hydration characteristics have paved the way towards the 

investigation of more thorough permittivity measurements as non-destructive testing 

tools.  Resistivity measurements have been generally driven by the fact that conduction 

of electricity implies the concentration and movement of ions, and by the importance of 

hydration characterization and prevention of chloride attack phenomema (Khalaf and 

Wilson 1999; Li et.at. 2003).  Resistivity testing on cement paste leads to the possible 

determination of the characteristic heat of hydration and is capable of approximating the 

volumetric porosity, for porosity is a controlling factor in conductivity of concrete and 

can be highly correlated to strength (Van Beek and Hilshorst 1999; Xian-Yu et. al 2002). 

 

However, resistivity testing has serious setbacks.  In order to measure resistivity (or both 

permittivity components at the same time), a capacitor plate-type arrangement is usually 

needed and hooked to a set of complicated equipment (Li et al. 2003; Xian-Yu et al. 
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2002) that cannot be used under field conditions.  Also there exist problems with poor 

sensitivity and low statistical significance, since only one condition, one point and one 

location can be tested at each time.  Embedding probes such as the time domain 

reflectometry (TDR) probe (Janoo et al. 1999) solve the sensitivity issue, but does not 

resolve the low statistical significance issues.  It has also been documented that 

polarization and viscous conduction can be encountered if DC is used or even if the 

wrong AC frequency is chosen (Xian-Yu et al. 2002). 

 

The only option left is therefore the measurement of the dielectric constant.  Due to the 

energy and polar nature of water, water possesses one of the largest dielectric values that 

exist (Van Beek and Hilshorst 1999) as shown in Table 1.  It is therefore heavily 

documented that dielectric constant measurements may be sensitive enough and be able 

to assess the amount of unbound water in aggregate construction materials, where high 

dielectric values imply high moisture contents (Guthrie and Scullion 2000).  These 

measurements may eventually be successfully applied to concrete to obtain a clue of the 

free (capillary) moisture content during hardening, or a clue of the moisture 

sorption/desorption after hardening (Janoo et al. 1999).  Furthermore, performance 

assessment guides have been implemented through the use of dielectric value 

measurements in soil-aggregate systems, for which high dielectric value ranges imply 

poor performance (Scullion and Saarenketo 1996). 

 

 

Table 1. Dielectric Constant Range of Values at a Frequency of 40 MHza  
Common concrete material component Dielectric constant 
Air 1 
Cement 3.6-4.0 
Hydrated cement paste products 4.0-5.0 
Gravel 5.8-6.5 
Water 80-82 
aRhim and Büyüköztürk 1998; Zoughi et al. 1995) 
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Nevertheless, in order to limit the number of possible error-inducing testing factors 

during measurements of the dielectric constant of portland cement concrete, a non-

embedding, a surface probe may be needed.  The use of a surface probe is likely to 

eliminate the single-point issues faced with TDR (Time-Domain Reflectometry) probes, 

but may only be able to generate an electric field that penetrates a shallow depth into the 

tested material.  Also, it is likely that repeated randomized testing at different locations 

of specimens for each testing round must be conducted for sake of statistical reliability.  

The dielectric value measurements in concrete are also likely to include systematic 

errors generated by the volumetric changes in the capillary moisture content and 

distribution, and random errors generated by differences in density and aggregate 

gradation (Frolov and Ivanovskii 1984). 

 

Although the use of dielectric constant measurements in concrete as indicators of 

capillary water availability is not yet widely supported due to the potential limitations 

explained above, it may be possible to directly correlate specific dielectric value ranges 

to specific volumetric approximations.  It is important to maintain caution with dielectric 

constant measurements, for the dielectric constant is not only dependent on the amount 

of water but also on the different stages of bonding of water in concrete at different 

curing times (Van Beek and Hilshorst 1999).  Yet there is high potential for the detection 

and quantitative description of changes in moisture, relative humidity, and even 

hydration through dielectric testing, if proper complementary and conventional testing is 

conducted. 
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CHAPTER III 

THEORETICAL CONSIDERATIONS 
 

The purpose of this chapter is to present the theory used in the development of the 

research tasks.  The intended purpose of the theory is to establish the analysis framework 

for the data collected in the experimental program of this study.  Time-dependent 

volumetric equations commonly used for hydrated cement, linearization of concrete 

strength development for hydration approximations, and an empirically derived 

dielectric constant equation for composite materials are the three most prominent 

considerations to be used. 

 

VOLUMETRIC APPROXIMATIONS AND HYDRATION OF CEMENT PASTE 

The analysis of moisture availability requires the volumetric equations.  As stated 

previously in this study, hydrated cement paste product, often referred to as HCP 

(Powers 1947; Neville 1995), consists of several phases that include both HCP and 

moisture, but excludes the unreacted cement.  The Powers-Brownyard HCP model 

describes this product as a combination of reacted cement, gel water, free water and air 

voids (Taylor 1997), plus the unreacted cement.  Figure 1 presents this arrangement 

visually.  Within this arrangement, the structural hydration product, Calcium-Silicate-

Hydrate (CSH) is assumed to consist of all phases except the unreacted cement.  

Although the actual structure of CSH is not entirely well established, its currently 

adopted structure is the Feldman-Sereda model (Neville 1995), as shown in Figure 2. 
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Figure 1 – Powers-Brownyard Model for a Hydrated Cement Paste with Degree of 
Hydration Lower than 100%. (Taylor 1997) 
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Figure 2 – Feldman-Sereda Model for C-S-H Structure (Neville 1995) 
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Despite the individual usefulness of these models in establishing a basic volumetric 

relationship, more detail is needed for this study in the description of water states and 

phases in the HCP.  Although the main focus of previous hydration-related analyses has 

been the cement products, water availability will play a major role in this study.  In order 

to satisfy the stated objectives, it is necessary to focus the attention on water availability.  

For this purpose, a slightly modified, Dutch model that incorporates both known models 

will be adopted.  In this Dutch model, water will be considered to be present in the HCP 

in three different forms: chemically-bound water, physically-bound water, and free 

(capillary) water (Breugel 1991).  

 

Based on the definitions collected from the three HCP models, the model used in this 

study is visually represented in Figure 3.  This model incorporates the commonly 

accepted components and arrangement in order to construct the basic mass-volumetric 

relationships to be used in the quantitative analysis of the experimental results.  The 

general definition of the volumetric model consists on the quantification of the 

individual volume components as a fraction of the actual fresh concrete volume.  This 

approach is necessary for the quantitative measurements to be applicable to the dielectric 

properties model.  It is also necessary that any volumetric model needs to satisfy the 

thermodynamic principle of mass-conservation (Çengel and Turner 2001): 

outinpcc mmm −=      (18) 

where: 

pccm  = Total mass rate of change of concrete, kg/hr 

inm  = Inflow mass rate, kg/hr 

outm  = Outflow mass rate, kg/hr 
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In concrete research, the only likely type of mass inflow or outflow is moisture, since the 

other components of concrete (aggregate or cement) cannot “escape” the system.  As 

previously stated, if the humidity level in the ambient air is lower than the humidity level 

in the concrete, a concrete-air moisture gradient will develop (Parrot 1991).  Thus, this 

principle implies that if low levels of moisture (or no moisture at all) are available in the 

air, a resulting mass loss will occur.  Weight measurements are needed to quantify any 

moisture loss (or unlikely gain) that occurs during the curing length of the experimental 

program.  The application of this principle translates into the following basic water mass 

relationship that can be derived from the adopted volumetric model: 

(t)w(t)ww free_totnnet +=      (19) 

and 

(t)w(t)ww free_lostfreefree_tot +=     (20) 

where: 

wnet = Net water mass (mix design-based, corrected for absorption 

and moisture on aggregates), kg 

wn(t) = Time-dependent non-evaporable water mass, kg 

wfree_tot(t) = Total free (capillary) water mass in concrete, kg 

wfree(t) = Time-dependent free (capillary) water mass left in concrete 

capillary voids, kg 

wfree_lost(t) = Free (capillary) water mass lost to the atmosphere, kg 
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Figure 3 – Modified Breugel Mass/Volumetric Model for Portland Cement Concrete 
(Adopted for This Study) 
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It should be noticed that the correct quantification of the free (capillary) moisture mass 

will depend on a good approximation of the non-evaporable water mass.  The lost 

(evaporated) part of the capillary moisture is easily determinable, following the 

conservation of mass principle, for it can be assumed that the only mass outflow crossing 

the boundary of the concrete system is the moisture lost through bleeding and 

evaporation, and the only mass inflow comes from the moisture available in the 

surrounding air (Wang 2000), as shown in Figure 4.  Under harsh conditions (high 

temperatures and low relative humidities, the moisture outflow rate will be much larger 

than the inflow rate (i.e., >>> ).  For any ambient condition, it can be induced 

that any change in total concrete mass is exactly equivalent to the change in free 

(capillary) water content: 

outm inm

free_tot
t)(t

tpcc
t)(t

t w∆m∆ ii

i

ii

i

∆+∆+ =      (21) 

where: 

pcc
t)(t

t m∆ ii

i

∆+  = ith change in concrete mass from time ti to ti+(∆t)i, kg 

free_tot
t)(t

t w∆ ii

i

∆+  = ith change in free (capillary) moisture mass from time ti to 

ti+(∆t)i, kg 
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Figure 4 – Cross-boundary Mass Flow in Concrete 
 

 

Concrete does not maintain the same volume throughout its hardening process.  

Although indirectly, the concrete volumetric change can be approximated through the 

joint use of the mass conservation principle and the adopted volumetric model.  For the 

determination of basic volumetric quantities, it is necessary to establish a baseline from 

which to reference all the following calculations, and that baseline will be set at the fresh 

concrete mass/volumetric properties.  Therefore, the volumetric content of a concrete 

component is simply defined as: 

Y
V

θ i
i=       (22) 

where: 

θi = Volumetric content of component 

Vi = Absolute volume of component, m3

Y = Fresh concrete yield, m3
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Thus, the volumetric aggregate content can be simply defined as: 

Y
V

θ s
s =       (23) 

where: 

θs = Constant volumetric content of aggregates 

Vs = Solid-bulk volume of aggregates, m3

 

The relationship between fresh concrete yield and solid volume of aggregates is given 

by: 

∑−= is VYV      (24) 

where: 

ΣVi = Sum of absolute volume of air, cement and net water, m3

 

The hydration process involves the remaining phases of the volumetric model, thus a 

consistent definition for the degree of hydration is important.  The two main equivalent 

definitions of the degree of hydration are given as (Breugel 1991; Mindess et al. 2003; 

Taylor 1997 

c
(t)c

α(t) h= , and     (25) 

ultc

c

f'
(t)f'

α(t)
−

=       (26) 

where: 

α(t) = Time-dependent degree of hydration, 0.0 to 1.0 

ch(t) = Time-dependent hydrated cement mass, kg 

c = Mass of cement from mix design 

f’c(t) = Concrete compressive strength, MPa 

f’c-ult = Ultimate compressive strength, MPa 
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It can be seen from the adopted volumetric model that the mass of the unhydrated 

cement is, at all times, simply: 

(t)c(t)cc hu +=      (27) 

where: 

cu(t) = Time-dependent mass of unhydrated cement 

 

Hence, equations (25) and (27) can be combined to determine the mass of the 

unhydrated cement as (Mindess et al. 2003; Taylor 1997): 

( )cα(t)1)(tc u −=      (28) 

 

The quantification of unhydrated cement is more useful for this study in volumetric 

terms.  To transform this quantity, it is necessary to use the definition of specific gravity 

(Somayaji 2001): 

wpc

pc
pc ρV

M
G =       (29) 

where: 

Gpc = Mean specific gravity of Portland cement, 3.15 

Mpc = Mass of Portland cement sample, kg 

Vpc = Volume of Portland cement sample, m3

ρw = Mean density of water, 1,000 kg/m3

 

Since unhydrated cement has the same mass/volumetric properties (specific gravity) as 

dry bulk cement, equation (28) can be transformed into: 

[ ] cCu θα(t)1(t)θ −=      (30) 

where: 

θCu(t) = Time-dependent volumetric content of unhydrated cement 

θc = Volumetric content of cement from mix design 
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Hydrated cement quantification requires longer and more indirect calculations.  The 

volumes of the unhydrated cement (VCu) and hydrated cement products (VHCP), 

including chemically and physically bound water can only be approximated together 

through (Powers 1947; Neville 1995): 

α(t)θf)t(θ)t(θ cvCuHCPCu +=+      (31) 

where: 

θCu+HCP(t) = Time-dependent volumetric content of both unhydrated and 

hydrated cement (including gel and trapped water) 

θCu(t) = Time-dependent volumetric content of unhydrated cement 

fv = Volumetric factor, 1.0 to 1.4 

 

It is important to remark that the volumetric content of the hydrated cement products 

(HCP) consists on both volumetric contents of the non-evaporable water (gel and 

trapped water) and the hydrated cement.  However, the volumetric content of HCP can 

be presented as simply: 

(t)θ)t(θ)t(θ CuHCPCuHCP −= +      (32) 

or as a linear relationship of the form (Figure 5): 

[ ]α(t))θf(1(t)θ CvHCP +=      (33) 

 

The quantification of water in its three different forms also requires indirect calculations 

and initial guesses.  From the default definition of volumetric content, the free water 

available in concrete can be quantified as: 

Y
(t)V

(t)θ w
w =       (34) 

where: 

 

θw(t) = Time-dependent volumetric content of free water 

Vw(t) = Time-dependent volume of free water, m3
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Figure 5 –Dependence of Volumetric Content of HCP on Hydration [All Treatments] 
 

 

 

However, the volume of free water cannot be measured directly, and can only be 

approximated indirectly by calculating the free water as a mass fraction of net water.  

This is possible since the mass/volumetric properties of net and free water are assumed 

to be the same (Taylor 1997). 

net
net

free
w V

w
(t)w

(t)V ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=      (35) 

where: 

Vnet = Net water volume, m3

and 

w

net
net ρ

w
V =       (36) 

where: 

ρw = Mean density of capillary water, 1,000 kg/m3 (Taylor 1997) 
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The time-dependent mass of free (capillary) water cannot be measured directly either, 

but it can be calculated using the mass conservation principle: 

(t)w-(t)ww(t)w free_lostnnetfree −=     (37) 

 

In order to determine the non-evaporable water mass, it is necessary to make the 

assumption that the non-evaporable water mass will have a limiting value at the ultimate 

degree of hydration, and it is defined as (Breugel 1991; Neville 1995): 

cfŵ nn =       (38) 

where: 

ŵn = Ultimate water mass that can be reacted for hydration of 

cement, kg 

fn = Non-evaporable water mass factor, 0.20 to 0.30 

 

It is important to emphasize that the non-evaporable water mass can still be quantifiable 

by total mass measurements and an initial guess for the fn value.  However, the 

complexity lies in the actual structure of the HCP, where the non-evaporable water 

volume is actually part of the hydrated cement product.  Thus, in order to relate the non-

evaporable mass to the rest of the volumetric relationships already described, a third 

definition of degree of hydration is needed.  This additional form of the degree of 

hydration that is presented below is commonly accepted to determine the mass of gel 

water (Breugel, 1991), but as stated before for the purpose of this study, non-evaporable 

water will represent both gel and trapped water, not only gel water: 

n

n

ŵ
)t(w

α(t) =       (39) 

where: 

wn(t) = Time-dependent non-evaporable water mass, kg 

 

The remaining volumetric component is porosity as constituted by air-filled, empty 

pores and spaces.  At the time of placement (t=0), it is assumed that the total porosity 
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will consist on the air void content of fresh concrete.  As cement hydrates, the porosity 

will increase with the space left behind by moisture loss and decrease with the 

expanding hydrated cement products.  From the adopted volumetric model, it can be 

concluded that this component is simply: 

(t)θ-(t)θ(t)θθ1(t)θ HCPCuwsp −−−=    (40) 

where: 

θp(t) = Time-dependent porosity volumetric content 

 

 

DEGREE OF HYDRATION MODELING 

It should be noted that the adopted volumetric analysis revolves around a correct 

determination of the degree of hydration and total concrete weight.  Of all the available 

forms of this parameter, only two of the existing definitions for degree of hydration can 

be directly approximated using conventional tests: strength testing and temperature (heat 

evolution) monitoring (Mindess et al. 2003; Neville 1995): 

ultQ
Q(t)α(t) =       (41) 

ultc

c

f'
(t)f'

α(t)
−

=       (42) 

where: 

Q(t) = Time-dependent adiabatic heat signature, J/g 

Qult(t) = Ultimate adiabatic heat signature, J/g 

 

The adiabatic heat signature (AHS) represents the amount of exothermic heat energy 

liberated by the cement hydration per unit mass of concrete (Neville 1995).  The 

ultimate, cumulative heat generated by this reaction is commonly correlated to the 

amount and chemistry of cement that has been consumed by the reaction, as 

approximated by accepted and well-established models (Mindess et al. 2003).  The 
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strength method to be used in this study is a modified adaptation of the ASTM C1074 

mortar test.  The actual objective of this mortar test is the determination of a 

characteristic heat energy parameter of cement (activation energy).  However, as Figure 

6 shows, this method still allows for the easy determination of the ultimate concrete 

strength by using a linear regression analysis.  The basic form of this linear regression is 

expressed as: 

( )[ ] ( )tf'
1tf'

c

1
c =−      (43) 

and 

( )[ ] [ ] 1
ultc

11
c f'tmtf' −

−
−− +∗=      (44) 

where: 

f’c(t) = Time-dependent compressive strength of concrete, MPa 

m = Slope of regression line, days/MPa 

f’c-ult = Ultimate compressive strength and reciprocal of the intercept 

of the regression line, MPa 

 

Setting time determination can also obtained as a complementary measurement for early 

age hydration.  The initial and final setting times of the mortar fraction of the concrete 

mix are parameters believed to identify a sudden microstructure change, as hydration 

turns fresh workable concrete into a hardened, solid mass.  A commonly accepted 

approach is the use of penetration pressure needles as specified by ASTM C192, in 

which fixed, predetermined values for initial and final setting pressure values are used.  

Penetration resistance (Rp) pressure values of 3.45 MPa (500 psi), and 27.58 MPa (4000 

psi) are set for initial and final setting indication marks.  The accepted form of 

penetration measurements in this test is presented as: 
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Figure 6 – Linearization and Linear Regression of Concrete Strength 
 

 
b
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or, 
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b
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where: 

Rp(t) = Time-dependent penetration resistance pressure of mortar, 

MPa 

t = time, hrs or maturity 

a = Statistically determined proportionality constant, MPa 

b = Statistical regression value 
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COMPLEX REFRACTIVE INDEX MODEL (CRIM) 

As stated in the previous chapter, the dielectric properties of a composite material are a 

combination of the dielectric properties of the individual components.  These composite 

dielectric properties thus depend mainly on the averaged volumetric proportioning and 

relative micro-directionality of each of the components (Hashin 1982; Janoo et al. 1999; 

Khalaf and Wilson 1999).  The complex refractive index model (CRIM) is assumed to 

follow what is known as a linear rule of mixtures, for which the total composite 

dielectric property is simply the addition of the volumetrically proportional dielectric 

properties of the individual components of a multy-phase composite material (Guthrie 

and Scullion 2000).  Neglecting relative directionality of the arrangement of the 

material, the CRIM for the composite dielectric constant of any composite material can 

then be expressed in general as (Klemunes 1998; TransTech 2003): 

∑=
n

i

a
ii

a εθε       (47) 

where: 

ε = Dielectric constant of concrete 

a = Assumed power regression coefficient, 0.5 (for granular 

materials) 

θi = Volumetric content of ith component 

εi = Dielectric constant of ith component 

n = Number of components 

 

In other investigations, this model has been successfully used for unsaturated soil to 

predict water content and saturation values (Klemunes 1998).  This model usually 

consists on two or three terms, since soil-water systems have at the most three 

mathematical terms (corresponding to air, water and solids).  This is not the case for 

Portland cement concrete, where more than four different phases and components can be 

accounted for.  To complicate matters, the dielectric constant of concrete cannot be fully 

described by the capillary water content (Van Beek and Hilshorst 1999).  In order to use 
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the CRIM for Portland cement concrete, it might be necessary to consider a minimum of 

five components (adding the additional unhydrated cement and HCP phases).  On the 

other hand, the dielectric properties of unsaturated soils are usually well fitted through 

the use of a 0.5-degree power model regression coefficient, possibly due to the granular 

nature of soils.  Since Portland cement concrete is a composite granular material, this 

coefficient value may be well-suited for the concrete model construction.  Therefore, in 

this study the applied CRIM for concrete should follow the form: 
0.5
ss

0.5
cc

0.5
HCPHCP

0.5
ww

0.5
pp

0.5 εθεθεθεθεθε ++++=    (48) 

where: 

εp = Dielectric constant of porosity (air), 1 

εw = Dielectric constant of free (capillary) water, 81 

εHCP = Dielectric constant of hydrated cement product, 4 to 5 

εc = Dielectric constant of Portland cement, 3.65 

εs = Dielectric constant of aggregate, usually 5.8 for siliceous 

gravel and 20 for limestone 

 

The average volumetric proportions, then, seem to be the only determining factors that 

can change the value of the composite dielectric constant.  This approach presents an 

opportunity for the non-destructive determination of not only moisture content, but also 

approximated relative proportions of main hydration products. 
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CHAPTER IV 

RESEARCH PROGRAM 
 

The purpose of this chapter is to present the methodology followed for collecting 

moisture, hydration, and dielectric characteristic data on Portland Cement Concrete.  The 

information collected from these measurements will serve as calibration data for the 

proposed models and to identify correlations that have not been extensively analyzed 

previous to this study. 

 

EXPERIMENTAL DESIGN 

The proposed experimental design was established with the main purpose to conduct 

testing and observations from a baseline reference point for future development and 

research.  The environment in which the tests were conducted resembles marginal hot 

and dry weather conditions present in the southwest geographical areas of the United 

States.  A 40°C (104°F) temperature and an ambient relative humidity of 40 percent 

were set for all tests runs.  These conditions were chosen in order to fix the moisture 

mass flow in one direction: out of the concrete system boundary, since that simplifies the 

analysis performed in this study and can be interpreted as a “worst-case” or baseline 

scenario.  Lower temperatures and higher humidity values would generate a two-way 

moisture mass flow that would be impossible to separate by direction quantitatively by 

mass measurements (see Chapter III). 

 

The remaining elements of the baseline conditions have to do with the materials used.  It 

was decided to use neither mineral nor chemical admixtures in order to prevent 

unintended influences on moisture content, moisture loss or hydration development.  

Furthermore, only siliceous gravel and sand were chosen to avoid paste-aggregate 

interface reaction that occurs in limestone concrete.  All baseline weather conditions and 

concrete materials used in this study are shown in Table 2 
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Table 2. Experimental Baseline 
Baseline Element Design Value, Condition or Type 
Environment 40°C (104°F), 40% relative humidity 

No wind or solar exposure 
Cementitious Materials ASTM C150 Type I Portland cement 

Cement Factor: 332 kg/m3 (6 bags/yd3) 
No mineral admixtures used 

Aggregate ASTM C33 Gradation; Max. Size = 38mm (1.5in) 
Coarse Aggregate Factor = 0.7, about 1,116 kg/m3 (1,900 
lbs/yd3) 
Siliceous gravel and sand 

Admixtures No admixtures were used 
 

 

 

The research tasks involved the measurement of eight important concrete characteristics 

through the tests outlined in Table 3.  It is important to emphasize that moisture 

content/loss and strength measurements are the main factors to be considered in the 

testing methodology.  Moisture loss was assumed to be dependent on the amount of area 

exposed and sensitive to shallow depths, especially in hot-dry weather conditions.  

Consequently, moisture loss specimens with shallow depth and wide dimensions were 

considered.  Furthermore, a round shape was also necessary in order to minimize 

concrete-mold interface water concentration and to force the moisture loss to occur 

through the concrete matrix.  These two dimension requirements describe a shallow 

cylindrical shape that needed to be manufactured specifically for this study.  Besides, 

due to the large aggregate size used, a minimum depth dimension requirement was 

introduced, since it is common practice to fit the smallest dimension to at least three 

times the maximum aggregate size (Somayaji 2001).  Figure 7 shows the conclusive 

design of the moisture specimens.  On the other hand, the strength measurements 

required samples described by ASTM C31 (except for the curing requirements). 
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The experimental design test series could not be enclosed into a single factorial design 

due to the individually different characteristics of the seven types of tests.  Table 4 better 

explains the factorial design used according to the test type. 

 

 

 

Table 3. Test Program 
Test Test Name Instrumentation Parameter / Objective 
1 ASTM C138 (Volumetrics) Gravimetric bucket Unit weight, air content 
2 ASTM C143 (Slump) Slump Cone Slump 
3 Modified ASTM C232 

(Bleeding / Mass loss) 
Weight scale Total water content 

4 Permittivity measurements Adek™ Percometer Dielectric Constant, 
Conductivity 

5 ASTM C39 (Compression) Tinius-Olsen Testing 
Machine 

Compressive strength, 
degree of hydration 

6 Calorimetry Q-Drum™ Adiabatic heat signature, 
degree of hydration 

7 Relative humidity A-Tek™ Moisture 
meter 

Relative humidity 

8 ASTM C192 (Penetration) Penetrometer Setting time 
 

 

 

Table 4. Factor Combinations 
Exposure Level Treatment Tests Performed under Combination 
Exposed 0.32 1, 2a, 3, 4, 5, 7a, 8a

Exposed 0.36 1, 2a, 3, 4, 5, 7a, 8a

Exposed 0.40 1, 2a, 3, 4, 5, 7a, 8a

Exposed 0.44 1, 2a, 3, 4, 5, 7a, 8a

Covered 0.32 1, 3, 4, 5, 6a

Covered 0.36 1, 3, 4, 5, 6a

Covered 0.40 1, 3, 4, 5, 6a

Covered 0.44 1, 3, 4, 5, 6a

aRestricted to this combination due to test characteristics and procedure 
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10.2 cm (4 in) Depth 

30.5 cm (12 in) Diam. 

Figure 7 - Specimen for Moisture Loss and Permittivity Measurements 
 

 

 

BLEEDING AND MOISTURE LOSS MEASUREMENTS 

As previously stated, concrete looses some of its net mixing water as it hardens.  This 

part of the investigation first determines the actual total water mass remaining in the 

concrete samples, and thus can indirectly determine the total amounts of moisture mass 

loss in its two stages: bleeding and post-bleeding.  These measurements represent the 

water that will be lost during bleeding and post-bleeding, and provides an important 

piece of the information needed to determine actual time-dependent concrete water 

content in two of its forms: free (capillary) water, and non-evaporable water.  Water 

quantification then, is the major factor and focus of these measurements. 

 

Following the initial (fresh concrete) mass measurement of the samples, controlling 

bleeding measurements required careful procedures, and it was necessary to avoid any 

movement or vibration of the fresh specimen after casting.  Although this last approach 

is contrary to ASTM C232 requirements, it was realized that the absence of vibration 

would provide a more fundamental look at the behavior and loss of post-casting bleeding 



 41

water.  Disposable paper towels were immediately laid on the concrete surface after 

casting, and the high suction of paper towels allowed for the bled water to be trapped 

without carrying out cement particles.  In order to prevent the absorbed bled water from 

evaporating during the bleeding period (of unknown duration), a lid with hardened 

silicon caulking on the rim was also placed immediately after the towels are laid.  The 

bled water was thus collected in the towels every 15 or 30 minute intervals (∆t)i, 

depending on the perceived bleeding rate.  Having measured the dry mass of each towel 

previous to each measurement, the difference in towel mass after absorption is simply 

the amount of bled water for the specific time interval.  The measurements were repeated 

several times until the difference in towel mass was negligible (lower than 1.0 grams).  

Following to the post-bleeding stage, the specimen was uncovered and the concrete was 

subjected to moisture loss.  In order to quantify this loss, the entire specimen was 

measured at intervals (∆t)i, that were progressively increasing in duration, since it is 

assumed that the loss rates would decrease with time as concrete hardens.  Medium-high 

precision weight scales were used to monitor bleeding water mass quantities and 

changes in concrete mass.  Figures 8 and 9 show the basic bleeding and moisture loss 

measurement setup. 
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Paper Towels 

Lid 

Figure 8 - Moisture Loss Measurements, Bleeding Stage 
 

 

 

 
Figure 9 - Moisture Loss Measurements, Post-bleeding Stage 
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PERMITTIVITY MEASUREMENTS 

Permittivity, as stated in Chapter II, can be very sensitive to water content, due to the 

high dielectric constant of water as compared to any other material at any signal 

frequency.  The equipment used for both permittivity parameters (dielectric constant and 

conductivity) was the Adek™ Percometer (Figure 10), and was used only for surface 

measurements, as illustrated in Figure 11.  In these measurements, an electric field ( E ) 

is generated and received by the same device.  Table 5 presents the general 

specifications of this equipment.  During testing at each planned time for measurements, 

five random locations on the sample were tested and averaged, and thus one value was 

reported at each time. 

 

 

 

Table 5. Adek™ Percometer Specifications 
Parameter Value 
Dielectric constant measurement range 1.00 to 32.0 
Electrical conductivity measurement range 0 to 9999 mS/cm 
Precision ±0.1% to 1% 
Operational temperature range -40 to+80°C (-104 to 176°F) 
Surface Probe size(diameter) 60 mm (2.36 in) 
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Figure 10 - Adek™ Percometer 
 

 

 

 

E  E  

Emmittor 
Receptor 

Figure 11 - Permittivity (Dielectric Constant and Conductivity) Measurement 
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Surface permittivity measurements may or may not be representative of the entire 

concrete sample volume considered in this study.  Previous studies (Scullion and 

Saarenketo 1996) have been conducted on aggregate pavement base materials using 

dielectric value measurements on soil suction samples 30.5 cm (12 inches) deep.  

Despite electric field penetration distance of 20mm in average for soil suction samples, 

surface dielectric value ranges for soil-suction samples were accepted to be a good 

indication of the relative base material performance ranges.  In the case of concrete, 

surface permittivity measurements will not be representative of the entire depth of the 

samples, but when it is compared against the predicted composite dielectric (CRIM) 

value, it is expected to identify volumetric differences between surface and inner layers. 

 

It is believed that any systematic error that is introduced to the permittivity 

measurements because of unknown penetration limitations is consistent yet low 

compared to the random-effect variability originated by the measurement location and 

the amount of area of concrete exposure to the ambient conditions.  To minimize the 

effect of systematic variability, the timing of dielectric measurements was set parallel to 

the moisture loss measurements and performed on the same batch in order to eliminate 

batch-related variability.  Since moisture loss and dielectric property measurements were 

planned to be measured together, concrete samples were cast in the combinations shown 

in Figure 12. 
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D (Exposed) C (Covered) 

B (Exposed) A (Exposed) 

Permittivity 
Specimens 

Moisture Loss 
Specimens 
(Exposed only) 

Figure 12 - Moisture Loss/Dielectric Measurements Sample Combination for One 
Treatment (One Water-Cement Ratio) 
 

 

 

RELATIVE HUMIDITY MEASUREMENTS 

Relative humidity as a dependent parameter on moisture content in concrete seems to 

provide a good indication of the self-dissecation phenomenon of cement hydration (see 

Chapter II).  Thus, moisture availability (volumetric moisture content) may not be 

enough to identify how fast hydration is slowing down or coming to a stop.  It is 

believed that as the moisture content decreases, the relative humidity inside concrete 

decreases, but its rate and modeling shape may not be easily identifiable for hardening 

concrete.  The present study investigates and approximates the actual relative humidity 

and moisture content change as concrete hydrates that has not been considered in 

previous research (Parrot 1991). 

 

Measurements of relative humidity require more advanced methods and equipment.  In 

many instances, these methods and equipment simply require the use of a sensor probe 

to be embedded in the concrete sample at a desired depth, but steady-state environmental 

conditions were needed in order to simplify the data reduction process.  Nonetheless, an 

A-Tek™ moisture meter with a sensor probe was used in this investigation (Figure 13) 
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and inserted at a depth of only 2.5 cm (about 1 inch) from the concrete surface.  The size 

of the concrete samples was the same as for the moisture loss measurements because 

using the same sample type and size helps minimize unwanted variability, not to 

mention that moisture loss measurements are to be analyzed against humidity 

measurements as one of the primary concerns of the self-dissecation investigation. 

 

 

 

 
Figure 13 - Concrete Relative Humidity Moisture Meter and Embedding Sensor Probe 
 

 

 

As it will be shown in the following chapter, most of the relative humidity data obtained 

was strongly affected by minor changes in the tightly controlled environment.  These 

minor changes might have been caused by sudden pressure and temperature drops (door 

opening/closing) or even possible voltage variation from the device.  Due to these 

sensitivity issues, the collected information showed sudden data discontinuities.  

However, it was possible to identify a decreasing humidity values that were compatible 

with previous literature predicting trends, where it can be assumed that the initial relative 

humidity value of fresh concrete is between 80 and 100% (Wang 2000).  Therefore, it is 
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reasonable to assume that the recorded humidity data can be “substituted” by using these 

trends in its place (Figure 14).  This approach was necessary in order to eliminate known 

discontinuities and identify the approximated actual trends and behavior of self-

dissecation. 
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Figure 14 - Post-collection Relative Humidity Data Prediction 
 

 

 

COMPRESSIVE STRENGTH AND HEAT EVOLUTION MEASUREMENTS 

Although being the most practical performance measurement, the determination of 

compressive strength was only a stepping stone in this study.  The compressive strength 

parameter can be translated to the actual degree of hydration through the use of the 

strength hydration model as described in Chapter III.  The degree of hydration is of most 

interest in order to approximate the time-dependent volumetric quantities of the 
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unhydrated cement and the hydrated cement product (HCP), which in turn helps 

approximate the remaining volumetric quantities of the rest of the concrete components.  

Standard compressive strength samples 15.3 cm diameter by 30.5 cm high (6 inches 

diameter by 12 inches high) were cast according to ASTM C31, but followed the 

factorial design and the baseline requirements for curing in this study for the ages of 1, 

3, 7, 28, 56, and 90 days.  Figure 15 shows the samples made for a specific age testing of 

treatment 0.40, and the corresponding statistical sample sizes used for each exposure 

level. 

 

 

 

 

Covered 

Exposed 

Figure 15 - Compressive Strength Specimens 
 

 

 

Adiabatic heat signature (AHS) measurements were also recorded in order to determine 

maximum possible degrees of hydration for each of the four treatments of the factorial 

design.  These limiting values will in turn be an indication of the maximum amount of 

cement that can be hydrated and serve as a calibration factor against strength-based 

degree of hydration values.  This calibration factor can then be used as one of the steps 
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performed in a proposed testing and assessment protocol.  However, the AHS 

measurements only provide a backup check for the determination of the actual degree of 

hydration as determined by the exposed condition, and only if the strength-based degree 

of hydration definition turns out to be higher than the heat-based definition at a certain 

time, the application of the calibration factor would then be justified. 

 

Given the nature of these measurements, a special sealed container (the Q-drum) is used 

to track the heat generation of concrete (Figure 16).  This implies that the exposure level 

of the factorial design is not applicable to this test, and this test only responds to the 

different assigned factorial treatments. 

 

 

 

  
Figure 16 - Q-Drum for AHS Measurements 
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FRESH CONCRETE GRAVIMETRIC TESTS 

Porosity was defined in Chapter III as the addition of the air void content of fresh 

concrete and the capillary porosity resulting from moisture loss.  Fresh concrete 

gravimetric tests (unit density tests) as described by ASTM C138 provide the first part of 

such information.  By comparing the design, airless density to the fresh concrete density, 

it is possible to calculate the air content using simple calculations.  Although simple in 

its determination, the fresh air content provides a crucial initial piece of volumetric 

information that is further used for the dielectric value modeling. 

 

SETTING TIME DETERMINATION 

As mentioned in Chapter II, setting represents the hydration stage in which hydrated 

grain particles start bonding across capillary voids.  Final setting is thus believed to 

affect the rate of moisture loss between its bleeding and post-bleeding stage due to 

increasing micro-structure restrictions through which free water is not allowed to escape.  

However, it is important to emphasize that the time at which bleeding stops may not 

necessarily be the same as the setting time. 

 

In order to measure setting time, only the mortar part of the concrete mix can be used.  

However, separation of mortar and coarse aggregate by sieving is a very slow procedure 

but yields a parameter of extreme importance in the testing methodology.  To minimize 

delay, separate mortar mixes were prepared.  By calculating the mortar proportions of 

each of the four concrete mixes and by correcting for absorbed or released moisture from 

aggregate, the resulting material resembled the actual proportions of the mortar part of 

the mixtures.  With the use of a Penetrometer (Figure 17) on a mortar sample 15.3 cm 

diameter by 15.3 cm high (6 inches diameter by 6 inches high), penetration testing was 

conducted on only exposed specimens and according to ASTM C192, but the rest of the 

experimental design and baseline requirements applied. 
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Figure 17 - Penetrometer 
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CHAPTER V 

RESEARCH FINDINGS 
 

This chapter presents the summarized results of the research tasks performed according 

to the baseline conditions and experimental design.  The summarized results on moisture 

loss and availability, hydration, and dielectric properties are presented first, as well as 

possible effects or dependence among parameters measured.  Correlation analyses that 

were also conducted follow, and possible fundamental dielectric behavior is identified 

last.  The full set of graphical relationships exposed in the following sections can be 

found in Appendices A and B. 

 

SETTING AND DEGREE OF HYDRATION 

It was observed in the results of this study that setting may play a role in the moisture 

loss rates, and changes to those rates may occur around the time final setting takes place.  

Figure 18 presents an example of the determination of the initial and final setting times 

for the 0.44 mix, where Rp is the penetration pressure.  As previously stated in the 

experimental design, the initial and final penetration pressures are pre-determined 

according to ASTM C192.  Table 6 summarizes the setting times recorded for the four 

treatments (water-cement ratios) values used. 

 

It was found that the degree of hydration defined as a strength ratio was the best option 

to connect and relate all volumetric relationships, because it is the only conditioned 

parameter that best approximates the degree of hydration of the tested specimens.  The 

reason behind choosing the strength method is also to maintain consistency in the 

analysis and to make all analysis compatible with the methodology and testing baseline 

previously discussed.  Besides, this approach allows the comparison of results as 

affected by two different exposure levels (which can be thought of two different curing 

qualities, with covered samples having “better” curing quality than exposed samples), as 

will be shown later. 
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Figure 18 – Initial and Final Setting Time Determination [w0=0.44] 
 

 

 

 

 

 

Table 6. Bleeding Stop Time and Setting Times 

w0

Approximated 
Bleeding Stop Time 
(hrs) 

Initial Setting time 
(hrs) Final Setting Time (hrs) 

0.32 No bleeding observed 0.91 2.94 
0.36 0.50 1.48 3.15 
0.40 1.50 2.08 3.14 
0.44 2.00 2.76 3.75 
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In regards to the degree of hydration, it is clear that the exposure level affected the rate 

of hydration, as supported by theory.  The effect of the exposure level is observed since 

the strength development in Figures A-5 and A-6 in Appendix A.  Before the seventh 

day, the rate of hydration for the exposed level turned out to be slightly higher than for 

the covered level, as shown in Figure 19.  After the seventh day, the exposed level seems 

to stabilize, whereas the covered level continues to increase.  On the other hand, the 

hydration trend obtained from heat evolution data shows the highest rate of all, and 

stabilizes in a relatively shorter time, as also predicted by theory, since the conservation 

of heat is the most important catalyzing factor for the hydration process.  This justifies 

the use of the strength method as the means to determine the degree of hydration, 

because the strength method is more realistic and conservative than the heat evolution 

method.  The heat evolution method was therefore only used as a correction check, in 

case it yields lower values than the strength method. 
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Figure 19 – Degree of Hydration According to Model Chosen and Exposure Level 
[w0=0.44] 
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There was a very strong and clear relationship between the degree of hydration values at 

the exposed level, and the values at the covered level.  As it can be seen in Figure 20, 

there exists a clear polynomial trend of the mathematical form shown below, with all 

trends showing a coefficient of determination (R2) higher than 0.999, which indicates 

high level of fit: 

( ) 22 cbα(t)_Expaα(t)_Cov +−=     (49) 

where: 

α(t)_Cov = Time-dependent degree of hydration at the covered level, % 

α(t)_Exp = Time-dependent degree of hydration at the exposed level, % 

a, b, c = Regression coefficients (2nd degree polynomial) 
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Figure 20 – Effect of Exposure Level on Degree of Hydration 
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MOISTURE LOSS AND AVAILABILITY 

The moisture loss behavior was thought to exhibit a very simple trend, in which moisture 

loss rates were expected to be very high soon after casting, and to slow down smoothly 

after a few hours as concrete hardens.  Experimental results supported those expectations 

and provided further detail into the pre-setting moisture loss behavior.  Figures 21 and 

22 show the actual moisture loss recorded in terms of area and as a fraction of net water, 

respectively, both forms required by ASTM C232.  These trends reinforce the 

expectations and observations made during testing, but also introduce a new one.  It was 

noticed that within the laboratory testing baseline conditions described previously, there 

is a limit on the value of water-cement ratio (w0) for which a maximum loss history can 

occur.  That is, the moisture loss curves show an increasing vertical “shift factor” as w0 

increases, except for the last w0 value (0.44).  This might be due to the relatively larger 

amount of net water that is initially available in the w0=0.44 mixture which in 

comparison to the lower net water amounts on the other mixes, cannot be as quickly 

exhausted in the same timeframe. 

 

A closer look made to the moisture loss results shows that bleeding loss rates and final 

setting times may affect the early loss history, as shown in detail in Figure 23.  It was 

observed during laboratory testing that the early bleeding rates follow an approximately 

linear trend, but only applicable for the lowest w0 values.  In the case of higher w0 

values, the moisture loss results diverge a bit from linearity for the same timeframe.  

That is, an actual early acceleration in the moisture loss rates was observed during the 

bleeding stage. 
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Figure 21 – Moisture Loss per Area 
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Figure 22 – Moisture Loss per Unit Mass of Net Water 
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Figure 23 – Early Moisture Loss Detail 
 

 

 

Figure 24 shows the relative position of the bleeding “exhaustion” limits on the total 

moisture loss history.  These limits show a limited effect on the rate of change of 

moisture loss for the post-bleeding stage.  It is more likely, however, that rate changes in 

moisture loss were actually caused by developing changes in microstructure due to 

setting.  In fact, the final setting time (tset) in particular seemed to have dictated the 

location of the inflection point on the moisture loss rate history as shown also in Figure 

24, and this inflection point is obvious only through the use of a logarithmic scale for 

time.  The bleeding stop times preceded both initial and final setting times, as listed 

previously in Table 6. 
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Figure 24 – Detail of Total Moisture Loss History 
 

 

 

The careful quantification of lost free (capillary) moisture (wfree_lost) proved to have 

constituted the most important measurement of this study.  Following these 

measurements, a very clear idea of the remaining portion of the initial net water can be 

approximated, as seen in Figure 25.  This remaining moisture portion, according to the 

adopted volumetric model, can be broken into two smaller parts: the free moisture mass 

still available in capillaries (wfree), and the non-evaporable moisture mass used in the 

hydration process (wn), which includes both the chemically-bound and physically-bound 

portions.  However, at humidity levels below 40 percent (encountered only in oven-

drying conditions) the physically bound portion would need to be added to the 

evaporable portion. 

 

Under the mass conservation principle, all quantities must be accounted for until they 

add up to the initial net water value.  It is impossible, however, to determine either free 

or non-evaporable portions without the use of an initial guess for the ultimate non-

evaporable moisture (ŵn).  As an initial guess, a value of 0.23 for the factor fn was used 
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to approximate the ŵn proportion.  By using Equations 38 and 39 in Chapter III for ŵn 

and the degree of hydration based on ŵn, the factor fn value was iterated until the non-

evaporable content converges with the total moisture content around the projected time 

of 100% hydration.  By applying the volumetric model relationships to the testing results 

on moisture availability and loss, the remaining free moisture can be accounted for and 

quantified simply by subtracting the lost and non-evaporable moisture from the net 

(initial) water content.  The main assumption of this approach is that hydration will 

advance by entirely consuming the available capillary moisture portion.  Table 7 and 

Figures 25 and 26 summarize the moisture proportionality characteristics for the four 

different treatments at the end of the exposure time. 

 

 

 

Table 7. Moisture Fractioning at 7th Day of Exposure 
Non-evaporable moisture 

Treatment 
(w0) 

Lost moisture 
mass fraction 

Mass 
fraction 

fn factor used (from 
Equation. 38) 

Free (capillary) 
moisture mass fraction 

0.32 0.257 0.682 0.25 0.062 
0.36 0.260 0.673 0.26 0.067 
0.40 0.325 0.598 0.31 0.077 
0.44 0.293 0.636 0.31 0.071 
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Figure 25 – Approximated Actual Moisture Mass Proportion and History [w0=0.44] 
 

 

 

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 4 10 28 44 56 64 69 75 81 85 88 89

α(t)_Exposed, %

M
as

s F
ra

ct
io

n 
of

 w
ne

t

0 2 4 8 15 24 33 42 54 78 10
3

12
9

15
0

16
8

Time, hrs

Free, total

Non-evap.

 
Figure 26 – Hypothetical Moisture Mass Proportion and History for Zero Moisture Loss 
[w0=0.44] 
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VOLUMETRIC APPROXIMATIONS 

Following the determination of moisture loss, non-evaporable moisture, and the 

approximation of the degree of hydration, the volumetric equations derived in Chapter 

III were applied in order to approximate the proportions of each of the five concrete 

components.  The approximated relative volumetric percentages can then be presented as 

a volumetric phase diagram and inspected. 

 

Shrinkage was not considered in the volumetric approximations.  Shrinkage is most 

likely to raise the porosity proportion, but its contribution determination is not the scope 

of this study.  Although the volumetric contribution from shrinkage may still be 

approximated by other means, porosity carries the lowest dielectric value as it is used in 

the prediction of the composite dielectric value.  The relatively small contribution of 

shrinkage to porosity and the low dielectric value of porosity itself allows the composite 

dielectric value model to closely approximate the resulting volumetric porosity 

regardless of its origin or how many factors contributed to its change. 

 

Volumetric free moisture and air (porosity) content is initially dependent on the 

treatment only, and can change its value dramatically with time due to moisture loss (in 

the case of exposed concrete) and hydration.  The free (capillary) moisture proportion is 

quickly reduced by hydration or loss, or both, as shown in Figure 27.  The approximated 

volumetric content of HCP was kept at a conservative rate of change by using a volume 

expansion factor (fv) value of 1.1 for all treatments.  HCP is shown to quickly develop 

and occupy a larger volume fraction as hydration advances, as literature suggests 

(Powers 1947).  Although the actual volume fraction of HCP cannot be precisely 

measured, its approximated value will suffice for its use in the proposed dielectric value 

model. 
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In the case of covered concrete as shown in Figure 28, the volumetric free moisture and 

air (porosity) are assumed to change only due to hydration, not to moisture loss, for the 

covered specimens are assumed to loose no moisture.  The volumetric expansion 

proportion of HCP is kept at the same value as for the exposed level (fv=1.1) because the 

same cement type is used, but it shows a slower growth rate due to the slower degree of 

hydration rate. 
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Figure 27 – Approximated Volumetric Proportions for Exposed Level [w0=0.44] 
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Figure 28 – Approximated Volumetric Proportions for Covered Level [w0=0.44] 
 

 

 

PERMITTIVITY PARAMETER BEHAVIOR 

Previous to the measurements of both dielectric constant and conductivity, it was 

assumed that these two permittivity parameters would decrease smoothly with time as 

concrete hardened and as moisture is lost.  However, during measurements of these 

parameters, smooth changes appeared to be the exception, not the rule, for dramatic 

changes in dielectric constant values and severely dramatic changes in conductivity were 

consistently observed at all ages.  In fact, dielectric constant measurements could only be 

used partially in the subsequent analysis, and it was necessary to discard all conductivity 

measurements due to unreasonably variable values before setting time, soon after which 

the conductivity drops to zero and does not change afterwards.  It is then emphasized 

that only dielectric constant measurements were considered in the in-depth analysis.  

Figure 29 illustrates the dielectric constant history for the w/cm=0.44 treatment. 
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Figure 29 – Recorded History for Dielectric Constant [w0=0.44] 
 

 

 

The cause of the measurement variations may be due to several issues that were 

encountered during testing.  The first source had to do with the randomization of the 

point measurement locations.  As previously explained in Chapter IV, five point 

measurements were conducted at random locations on the surface of the specimens for 

each age.  It is very likely that the variability in these measurements was mainly 

originated due to the discrete distribution of the aggregate, in which its large size of 38 

mm (1.5 in) is also a main factor, because the surface probe is only 60 mm (2.4 in) in 

diameter.  This implies that there will be some random cases in which the probe might 

be placed precisely over a relatively large aggregate grain, and this would certainly 

cause a biased permittivity measurement, because the volumetric distribution (and hence 

the dielectric value) of the tested point is highly influenced by the solid aggregate 

material. 
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The second source for the observed variability comprises several issues that arose during 

the early stages of hydration (up to the final setting time).  Concrete that had not reached 

the final setting point tended to be too moist on the surface due to bleeding flow.  High 

concentration of moisture on the concrete surface can force permittivity parameter 

values to fall outside of the probe’s measuring range.  These excess surface moisture 

effects were detected in the data trends, where large data clutters cause unreasonably 

high variability.  Therefore, dielectric values previous to setting time were not 

considered in the analysis. 

 

In spite of the high variability of the dielectric constant measurements, a certain degree 

of sensitivity to the exposure level was identified.  Exposed samples tended to yield 

lower dielectric values than covered samples, and this trend can also be seen in Figure 

29.  This is due to the fact that covered samples (under “better” curing) can retain higher 

proportions of moisture for longer periods of time, and higher proportions of moisture 

imply higher dielectric constant values.  The practical meaning of such behavior is that 

dielectric measurements may be able to discern two different levels of curing quality as 

long as they are performed within the same concrete batch.  The statistical significance 

of these measured differences by means of a paired t-test is presented in Table 8 that 

shows significant differences for all treatments, except for the 0.40 treatment, in which 

each exposure test was batched separately.  It is important to recognize, however, that it 

might be possible to encounter either discernible or indiscernible differences for any 

treatment replicate. 
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Table 8. Significance of the Difference in Dielectric Constant Measurements Between 
Exposure Levels 

Treatment (w0) 
Statistical difference in dielectric constant 
(by Paired t-test) 

0.32 Significant 
0.36 Significant 
0.40 Not significant (different batches) 
0.44 Significant 
 

 

 

 

EFFECTS OF RELATIVE HUMIDITY ON DIELECTRIC VALUE 

As the moisture content in concrete decreases with time, the relative humidity can be 

expected to decrease.  Previous research on moisture content–humidity measurements 

(Parrot 1992) was conducted on long-time water-cured concrete through oven drying and 

showed that moisture content (as a mass ratio of free moisture to cement) in hardened 

samples decreases rapidly, stabilizes, and drops to zero during a long timeframe.  Oven 

drying in that study is able to control the amount of moisture present, facilitated by the 

fact that fully-hardened concrete has a constant porosity, microstructure and 

permeability characteristics.  A study of that sort, therefore, refers more to sorption, 

desorption, and suction characteristics than moisture availability, where concrete serves 

the function of a dry sponge.  Furthermore, the results of that literature example do not 

necessarily apply to hardening concrete as analyzed in this study.  In this study and in 

hardening concrete, moisture availability was not controlled and is highly dependent on 

the ongoing hydration and microstructure change.  It is also important to recognize that 

moisture content measurements can be much higher for hardening concrete than for 

fully-hardened concrete, given the fact that higher capillary volume fractions would be 

available in early-age concrete development stages. 
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It is possible, however, to track the history of relative humidity against the available 

moisture content as an indicator of self-dissecation.  In actual observations, it is very 

likely that a sudden drop in the relative humidity within a very narrow range of moisture 

content might indicate that the moisture layers in the capillary pores have “thinned out” 

when the humidity approaches 80 percent, enough to be interpreted as the beginning of 

the self-dissecation process as proposed in literature, and Figure 30 may be a 

representative example of such behavior.  These results indicate that under natural 

conditions, the moisture content cannot drop lower than a certain value after the relative 

humidity stabilizes at a certain level.  Only oven-drying can take these relative humidity 

measurements over to lower humidity values, but this condition is unlikely to happen in 

common concrete construction, not even in the severe environmental conditions applied 

in this study.  It is also important to notice that the stabilization of both free water 

content and relative humidity indicate cessation of vapor pressure change, a potential 

detection threshold for the beginning of self-dissecation (Powers 1947). 

 

It was also possible to correlate dielectric properties to the relative humidity history.  In 

such relationship, there are two limits: 100% for relative humidity, and the final 

dielectric value of the composite material (Figure 31).  These two graphical limits are 

most likely asymptotic for practical purposes, so an asymptotic mathematical model can 

be fitted to the data with relatively small errors.  This prediction model can be presented 

in the form: 

( )bH100
aεε
−

+= ∞       (50) 

where: 

ε = Dielectric constant of concrete at any time 

ε∞ = Assumed or predicted final dielectric constant value 

H = Predicted relative humidity of concrete, % 

a = Regression coefficient (proportionality factor), % 

b  Regression coefficient 
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To test the adequacy of this model, a statistical analysis of variance (ANOVA) was 

performed to test for the significance of regression between the asymptotic model and 

the predicted relative humidity.  The test for significance of linear regression requires the 

use of the F-test with the f-statistic in the form fα,1,n-2, for which (1-α)% is confidence 

interval, and the null hypothesis is H0:β1=0, where β1 is the linear coefficient of the 

regressor term (Çengel and Turner 2001).  The statistical p-value is the smallest α at 

which the null hypothesis can be rejected.  For all treatments, the p-value was practically 

zero, which implies that there is good confidence in the potential for the use of this 

model as a prediction tool for the surface relative humidity. 
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Figure 30 – Actual Free Moisture Mass Fraction for Relative Humidity Values 
[w0=0.44] 
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Figure 31 – Actual Dielectric Constant for Predicted Relative Humidity Values 
[w0=0.44] 
 

 

 

EFFECTS OF HYDRATION ON VOLUMETRIC FREE MOISTURE CONTENT 

Theory suggests a direct link between the degree of hydration and the increasing amount 

of non-evaporable water, which can be predicted through the use of any of the 

volumetric relationships.  As hydration advances, the non-evaporable moisture content 

should increase with a corresponding decrease in the free (capillary) moisture (Breugel 

1991).  The volumetric free moisture content is therefore partially but directly affected 

by the degree of hydration. 

 

Data obtained from the exposed condition shows a semi-linearly decreasing trend as 

shown in Figure 32.  This trend can be approximated by a standard linear model of the 

form: 

bmxy +=       (51) 
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Based on Figure 33, the parameters of this linear model are described by: 

Wnetw fθ(t)mθ += α       (52) 

or in its most useful form by: 

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=

∞α
α(t)1

ρ
)(CF)(wfθ

w

0
w      (53) 

where:  

θw = Volumetric free moisture content 

f = Moisture loss factor, mass ratio of ultimate non-evaporable 

moisture to net water 

w0 = Design water cement ratio 

CF = Design cement factor, kg/m3

ρw = Mean density of free (capillary) water, kg/m3

α(t) = Time-dependent degree of hydration 

α∞ = Ultimate degree of hydration 
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Figure 32 – Dependence of Volumetric Content of Free Moisture on Hydration 
(Exposed) [All Treatments] 
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Figure 33 – Conceptual Volumetric Free Moisture Content Model 
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Conversely, the covered condition shows the free moisture content to exhibit an almost 

perfectly linear relationship, as shown in Figure 34.  This was mainly due to the initial 

assumption of zero moisture loss, and the linear relationships that can be derived from 

the volumetric model equations.  However, this level of linearity was not completely 

expected, for the degree of hydration cannot be controlled by the volumetric equations 

(it is derived from the linearized compressive strength regression, as shown in the 

methodology).  The standard linear model for exposed condition seems to apply to the 

covered level condition as well, with the moisture loss factor (f) at a value of 1.0. 
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Figure 34 – Dependence of Volumetric Content of Free Moisture on Hydration 
(Covered) [All Treatments] 
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Therefore, the free moisture content model seems to depend primarily on three 

parameters: mixture design, rate of hydration, and curing quality.  The portion of the net 

water used for hydration after accounting for any loss may be guessed, or precisely 

determined only from mass measurements and calibrated through the iteration of the 

non-evaporable mass factor fn, the latter method being identical to the procedures 

followed in this study. 

 

EFFECTS OF HYDRATION ON DIELECTRIC CONSTANT 

The dielectric constant decreased as hydration advances.  However, the shapes of the 

trends were neither predictable, nor their cause easily identifiable.  Besides, curing 

quality (exposure level) also seems to influence the results. 

 

In the exposed condition, concrete with the highest treatments (0.44 and 0.40) showed 

trends that decreased smoothly toward a final dielectric value.  On the other hand, the 

lower treatments (0.36 and 0.32) on the exposed conditions show a more abrupt change 

in the behavior, where an apparent bilinear trend exists, although this was later found to 

be not true.  In those lower treatments, the dielectric constant seems to abruptly stabilize 

close to the final (moisture-less) dielectric value (Figure 35).  This is the first indication 

of the occurrence of two phenomena in concrete: 1) surface self-dissecation, and 2) the 

surface top layer actually had higher moisture contents than the average specimen during 

the first 24 or 36 hours, which would undoubtedly raise the dielectric value of that top 

layer, as will be confirmed later. 

 

Conversely, in relatively well-sealed and covered environments, the relationship 

between the dielectric constant and the degree of hydration show slightly different 

trends.  Affected by the degree of hydration measured by covered strength samples, the 

dielectric properties exhibit an almost linear relationship for the lowest treatments (0.32 

and 0.36), where the final concrete dielectric value is the value of the linear trend at the 

ultimate degree of hydration for a particular treatment.  On the other hand, this linear 
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trend seems to “buckle” upward for the highest treatments (0.40 and 0.40) as seen in 

Figure 36, which indicates that better curing maintains higher levels of moisture, which 

also in turn maintains high dielectric readings.  These observations confirm with the 

observations made earlier for the detection of the differences in curing quality through 

dielectric readings.  Refer to Figures B-9 to B-16 in Appendix B for the actual data plots 

of both exposure levels. 
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Figure 35 – Conceptual Dependence of Dielectric Value on Hydration (Exposed) 
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Figure 36 – Conceptual Dependence of Dielectric Value on Hydration (Covered) 
 

 

 

EFFECTS OF VOLUMETRIC FREE MOISTURE CONTENT 

The dielectric value of a composite material like concrete can be a combination of the 

individual dielectric value contributions from each of the components.  It is this basic 

idea that suggests that the composite dielectric value of concrete can be approximated if 

the detailed volumetric proportions of the mix are known, or vice versa.  In this study as 

in theory, it has been implied that the volumetric content of free moisture controls the 

dielectric value of the composite concrete material, for free moisture has the highest 

dielectric value of all of the other components.  This implies that any drastic changes in 

moisture content should reflect drastic changes in the measured dielectric value of 

concrete. 
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The changes in dielectric constant as a function of the volumetric free moisture content 

were compared against the complex refractive index model (CRIM).  By simply plotting 

the measured dielectric and CRIM values against the moisture content as shown in 

Figures 37 and 38, the CRIM seems to fail to properly predict higher values at earlier 

concrete ages.  In the case of exposed concrete, the loss of excess moisture causes the 

dielectric value to follow a relatively smooth and decreasing trend toward a final 

dielectric value for the highest treatments (0.44 and 0.40), contrary to the broken pattern 

seen in the lowest treatments (0.36 and 0.32).  In the case of covered concrete, no trends 

seem broken, but all measured dielectric values stay higher than the CRIM values for the 

majority of the testing.  These trends can be seen in Figures B-17 through B-24 in 

Appendix B. 

 

The explanation to such trends was not immediately obvious.  It should be recalled that 

the CRIM value is based on the average-depth volumetric proportions, and that the 

CRIM closely approximates the measured surface dielectric value only after the surface 

layer of the concrete has begun to self-dissecate, because in practical terms, a self-

dissecated concrete does not change volumetrically.  Besides, the surface layer contains 

higher moisture contents than the average depth during the first 24 or 36 hours, which 

might help further explain the higher dielectric readings.  In other words, this misfit is 

due to the presence of excess moisture contents at the surface, which causes the 

measured dielectric readings to rise, whereas the CRIM values remain dependent on the 

calculated average moisture contents for the entire depth of the samples.  The general 

trends that show in Figures B-17 through B-24 in Appendix B are summarized in 

Figures 39 and 40. 
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Figure 37 – Dependence of Dielectric Value on Free Moisture Content [w0=0.44] 
(Exposed) 
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Figure 38 – Dependence of Dielectric Value on Free Moisture Content [w0=0.44] 
(Covered) 
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Figure 39 – Conceptual Dependence of Dielectric Value on Volumetric Content of Free 
(Capillary) Moisture (Exposed) 
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Figure 40 – Conceptual Dependence of Dielectric Value on Volumetric Content of Free 
(Capillary) Moisture (Covered) 
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The difference between the model and the actual measurements due to excess surface 

moisture can provide clues for the actual volumetric quantities of moisture and porosity.  

The difference between the measured and the predicted CRIM value can be expressed in 

the form: 
0.5

CRIM
0.50.5 ε-ε∆ε =       (54) 

where: 

∆ε0.5 = Powered difference between measured and predicted 

dielectric value of concrete 

ε0.5 = Powered measured dielectric value of concrete 

εCRIM
0.5 = Powered CRIM approximation 

 

The difference then becomes: 
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If it is assumed that the volumetric proportions of aggregate and hydrated cement 

products should be the same whether predicted or measured, then the difference 

simplifies to: 

( ) ( )0.5
ww

0.5
pp

0.5
ww

0.5
pp

0.5 εθεθεθ'εθ'ε +−+=∆    (56) 

or, 

( ) ( )ww
0.5
wpp

0.5
p

0.5 θθ'εθθ'εε −−−=∆     (57) 

where: 

θ′p = Real volumetric proportion of porosity 

θ′w = Real volumetric proportion of free moisture 
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Therefore, the difference between the measured and predicted dielectric values can be 

expressed simply as: 

w
0.5
wp

0.5
p

0.5 θεθεε ∆−∆=∆      (58) 

where: 

∆θp = Actual difference in volumetric content of porosity 

∆θw = Actual difference in volumetric content of free moisture 

 

Alternatively, the difference may be corrected by using a statistical correction factor as 

obtained in Figures 41 and 42, for the lack of a time-dependent, fundamental moisture 

volumetric distribution gradient with depth.  The rest of these graphical fits can be found 

in Figures B-25 through B-32 in Appendix B, and the statistical analysis for these fits are 

available in Appendix C. 
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Figure 41 – Determination of Correction Factor for CRIM (Exposed) [w0=0.44] 
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Figure 42 – Determination of Correction Factor for CRIM (Covered) [w0=0.44] 
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CHAPTER VI 

SUMMARY AND RECOMMENDATIONS 
 

Moisture availability and loss is recognized in concrete research, but lacks effective 

action in concrete construction.  The fundamental assessment of moisture loss is not 

commonly performed on-site, and cannot be easily quantified, for there is not a practical, 

direct way to measure it.  The same can be said for strength and hydration properties, for 

which it is necessary to use invasive and destructive testing.  Therefore, indirect 

measurements of moisture loss through surface dielectric testing show promise in the 

detection of moisture content and degree of hydration.  Previous research show 

successful use of surface electromagnetic measurements on soil-aggregate systems for 

the assessment of moisture content, but there has not existed a fully established testing 

program put in place for the use of concrete dielectric constant measurements as 

indicators of capillary moisture content.  In addition, surface dielectric measurements 

have its own limitations, yet the penetration capabilities of the dielectric probe used in 

this study did not diminish its sensitivity.  This sensitivity was used as an advantage, 

because it is within the surface layers of concrete that surface distresses like spalling 

occur, and changes between actual surface concrete properties and predicted average-

depth concrete properties could be differentiated. 

 

To satisfy the objectives set forth at the beginning of this study, it was necessary to 

choose a convenient approach that would allow the detection of fundamental properties 

through the use of a non-invasive surface probe.  The basic structure of the investigation 

revolved around three main ideas.  The first one corresponds to a simple mass 

conservation principle, for any mass loss observed corresponds to the loss of the free 

(capillary) moisture content.  The second main idea is based on the fact that the 

dielectric constant of water is higher than any other component in concrete, and that high 

dielectric values must correspond to high volumetric free moisture content.  The third 

main idea is the concept that the dielectric value of any composite material is just the 
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addition of the individual dielectric contributions from each of the components, with 

their volumetric proportions controlling the proportionality of those contributions. 

 

The three most important testing practices involved destructive strength testing, the 

determination of mass loss, and the direct surface measurement of the dielectric constant 

of the material.  The results from these three tests suggested that there is clear evidence 

of how dielectric measurements are strongly affected by free moisture availability, 

which in turn is affected by hydration.  The link between these relationships identified 

potentially reliable, non-destructive tools through which curing and hydration 

characteristics can be assessed quantitatively.  It was important, however, to prevent as 

many unintended effects from uncontrollable factors.  For that matter, the basic, “worst 

case” constants such as the environment and mixture proportioning were strictly 

controlled. 

 

Strength testing allowed for a relatively good regression and approximation of the 

degree of hydration history, and showed clear sensitivity to exposure levels.  Relative 

humidity measurements kept at a controlled environment showed near steady-state 

trends that were sensitive to the different water-cementitious ratios, but the response to 

exposure levels is unknown, since relative humidity was not measured under covered 

conditions. 

 

Moisture loss showed high sensitivity to hydration at or around the setting time, and the 

dielectric value showed significant sensitivity to curing “quality” (exposure level).  The 

ultimate moisture loss is not likely to be higher than 30 percent of the net water used 

from mixture design, even under the most extreme climatic conditions.  However, the 

losses were more pronounced for the higher water-cement ratios.  The higher the degree 

of severity of this loss, the more it restricts the ultimate amount of non-evaporable water 

fraction essential to hydration.  The degree of precision in the approximation of the non-
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evaporable and free moisture contents depends on the volumetric relationships and initial 

assumptions used. 

 

The dielectric constant history is unreliable and highly variable before setting, and 

cannot be used in the analysis.  Between one and three days from casting, the decreasing 

trend appears, but the variability remains high.  After the third day from casting, the 

variability drops, giving an indication of stabilized hydration and moisture conditions in 

concrete.  Statistically, however, the dielectric measurements are sensitive to the 

difference in “curing quality” (exposure level) of concrete within the same batch, even 

soon after setting time. 

 

Dependences between parameters were also analyzed.  Relative humidity turned out to 

be very sensitive to the free (capillary) moisture content and hence to the dielectric value 

of concrete.  Relative humidity can become an indicator of self-dissecation, whereas the 

free (capillary) moisture content on its own cannot.  However, relative humidity trends 

and the asymptotic model show that this is possible only when compared against either 

free moisture content or dielectric constant, and only when ambient conditions are kept 

constant.  Besides, it was seen from the relative humidity-free moisture relationship that 

Parrot’s investigation does not apply to hardening concrete because: 1) his study deals 

with concrete that has already hardened and cured underwater (where porosity and 

microstructure are already defined), and 2) his sorption/desorption isotherms are mostly 

functions of permeability (porosity, microstructure connectivity), and of the bonding 

state of capillary moisture. 

 

Free moisture shows a clear dependence with the degree of hydration and its 

approximation is limited by the volumetric model used.  In this study, the volumetric 

free moisture content is a linear relationship sensitive to mix design parameters, degree 

of hydration, and curing quality. 
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Dielectric value measurements show a clear dependence on water-cementitious ratios 

and on curing quality when compared against volumetric moisture content.  Excess 

surface moisture and self-dissecation greatly influence these measurements with self-

dissecation being more pronounced for low water cement ratios.  These influences cause 

the composite dielectric model to deviate from the real dielectric value, yet the 

difference in dielectric value readings can help quantify the actual moisture content of 

the surface concrete layer.  In other words, CRIM works, but lacks fit during early 

concrete ages (less than 1 day) due to excess surface moisture, time during which the 

dielectric value of concrete is much higher than the calculated average moisture content.  

The dielectric constant of self-dissecated concrete is always well approximated by 

CRIM. 

 

In general, the results suggest that dielectric constant measurements can be used as a 

quick, non-invasive and non-destructive tool to predict free (capillary) moisture content 

and to approximate the degree of hydration.  Dielectric constant measurements may be 

used as a tool to approximate ranges of free moisture content changes and self-

dissecation kick-off points, ranges of differences between surface and average moisture 

content, and ranges of hydration variation.  In order to jump from the approximation of 

the degree of hydration to the approximation of the time-dependent compressive 

strength, it would be necessary to obtain ultimate strength values determined from short 

strength test programs. 

 

Although the results show extensive evidence for the potential of dielectric measurement 

as a quantitative assessment tool, at this point only a framework can be proposed due to 

the basic level and limited database from which these test results are obtained.  To this 

regard, it may be feasible to establish threshold values for the volumetric free moisture 

content from dielectric readings.  The free moisture content model as a function of 

hydration along with the dielectric constant history may be used to detect a major change 

in the dielectric loss rates, which indicates self-dissecation.  At this point curing 
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procedures can be put in place to prevent further moisture loss.  Therefore, self-

dissecation detection is the key factor in the timing of curing compound application. 

 

The investigation for surface dielectric measurements can offer an unlimited potential 

for curing quality assessment.  Yet an expanded database is needed.  The proposed 

models are recommended to be refined, tested and expanded to include the water-cement 

ratio as a variable, with a corresponding sensitivity analysis.  The variation of type and 

content of cement, aggregate gradation, concrete surface roughness, pozzolans and liquid 

admixtures needs to be characterized and compared against the baseline results presented 

in this study in the near future. 

 



 89

REFERENCES 
 

1. Al-Qadi, I. L., Hazim, O. A., Su, W., and Riad, S. M. (1995). “Dielectric Properties 
of Portland Cement Concrete at Low Radio Frequencies.” ASCE Journal of 
Materials in Civil Engineering, 7(3), 192-198. 

 
2. Anderson, J. C. (1964). Dielectrics, Reinhold Publishing Corporation, New York. 
 
3. Breugel, K. van (1991). Simulation of Hydration and Formation of Structure in 

Cement-Based Materials, Delft University of Technology, Netherlands. 
 
4. Cano-Barrita, P.F. De J., Balcom, B. J., Bremmer, T. W., MacMillan, M. B., and 

Langley, W. S. (2004). “Moisture Distribution in Drying Ordinary and High 
Performance Concrete Cured in a Simulated Hot Dry Climate.” Materials and 
Structures, 37(272), 522-531. 

 
5. Çengel, Y. A. and Turner, R. H. (2001). Fundamentals of Thermal-Fliud Sciences, 

McGraw-Hill, New York. 
 
6. Frolov, G. V., and Ivanovskii, G. A. (1984). “A Quasibalancing Dielectric Water-

Content Meter for Powdery Building Materials.” Measurement Techniques, 27(3), 
468-470. 

 
7. Guthrie, S., and Scullion, T. (2000). “Using Dielectric Measurements to Predict Cold 

Weather Performance of Unstabilized Aggregate Base Materials.” Proc., Annual 
Meeting of the Transportation Research Board, TRB, Washington, D.C. 

 
8. Hashin, Z. (1982). “Theory of Composite Materials.” Proc., IUTAM Symposium on 

Mechanics of Composite Materials, Pergamon, Blacksburg, VA. 
 
9. Jang, S. H., Mukhopadhay, A., and Zollinger, D. G. (2005). “Hydration Modulation 

Measures to Mitigate the Negative Effect of Paving Concrete in Hot Weather”, 
Proc., International Conference on Concrete Pavements, ISCP, Colorado Springs, 
CO. 

 
10. Janoo, V., Korhonen, C., and Hovan, M. (1999). “Measurement of Water Content in 

Portland Cement Concrete.” ASCE Journal of Transportation Engineering, 125(3), 
245-249. 

 
11. Khalaf, F. M. and Wilson, J. G. (1999). “Electrical Properties of Freshly Mixed 

Concrete.” ASCE Journal of Materials in Civil Engineering, 11(3), 242-248. 
 



 90

12. Khan, A. A., Cook, W. D., and Mitchell, D. (1995). “Early Age Compressive Stress-
Strain Properties of Low-, Medium, and High-Strength Concretes.” ACI Materials 
Journal, 92(6), 617-624. 

 
13. Klemunes Jr., J. (1998). Determining Soil Volumetric Content Using Time Domain 

Reflectometry, Federal Highway Administration, McLean, VA 
 
14. Li, Z., Wei, X., and Li, W. (2003). “Preliminary Interpretation of Portland Cement 

Hydration Process Using Resistivity Measurements.” ACI Materials Journal, 100(3), 
253-257. 

 
15. Mamlouk, M. S. and Zaniewski, J. P. (1999). Materials for Civil and Construction 

Engineers, Addison-Wesley, Menlo Park, CA. 
 
16. Mindess, S., Young, J. F., and Darwin, D. (2003). Concrete, 2nd Ed., Prentice Hall, 

Upper Saddle River, NJ. 
 
17. Neville, A.M. (1995). Properties of Concrete, 4th Ed., Longman Group Limited, 

London, England. 
 
18. Parrot, L. J. (1991). “Factors Influencing Relative Humidity in Concrete.” Magazine 

of Concrete Research, 43(154), 45-52. 
 
19. Parrot, L. J. (1992). “Variations of Water Absorption Rate and Porosity with Depth 

from an Exposed Concrete Surface: Effects of Exposure Conditions and Cement 
Type.” Cement and Concrete Research, 22, 1077-1088. 

 
20. Powers, T.C. (1947). “A Discussion of Cement Hydration in Relation to the Curing 

of Concrete.” PCA Bulletin, 25, 178-188. 
 
21. Rhim, H. C., and Büyüköztürk, O. (1998). “Electromagnetic Properties of Concrete 

at Microwave Frequency Range.” ACI Materials Journal, 95(3), 262-271. 
 
22. Roadscanners Group (2005). “Adek Percometer v.6.” Roadscanners, 

<http://www.roadscanners.com> (July 1, 2005). 
 
23. Scullion, T. and Saarenketo, T. (1996). “Using Suction and Dielectric Measurements 

as Performance Indicators for Aggregate Base Materials.” Transportation Research 
Record, 1577, 37-44. 

 
24. Somayaji, S. (2001). Civil Engineering Materials, 2nd Ed., Prentice Hall, Upper 

Saddle River, NJ. 
 



 91

25. Taylor, H. F. W. (1997). Cement Chemistry, 2nd Ed., Thomas Telford, London, 
England. 

 
26. TransTech Systems, Inc. (2003). “Effect of Water and Temperature on Hot Mix 

Asphalt Density Measurement using Electromagnetic Sensing.” TransTech 
Technical Notes, Number 0301 

 
27. Van Beek, A., and Hilshorst, M. A. (1999). “Dielectric Measurements to 

Characterize the Microstructural Changes of Young Concrete.” Heron, 44(1), 3-17. 
 
28. Wang, L. (2000). Process and Prediction of Moisture and Temperature Distributions 

and History in Hardening Concrete, Ph.D. Dissertation, Texas A&M University, 
College Station. 

 
29. Xian-Yu, J., Nan-guo, J., and Zong-jin, L. (2002). “Study on the Electrical Properties 

of Young Concrete.” Journal of Zhejiang University: Science, 3(2), 174-180. 
 
30. Zoughi, R., Gray, S. D., and Nowak, P. S. (1995). “Microwave Nondestructive 

Estimation of Cement Paste Compressive Strength.” ACI Materials Journal, 92(1), 
64-69. 

 



 92

APPENDIX A 

VISUAL BASE DATA 

UNIT WEIGHT, AIR CONTENT AND SLUMP 

 

 

Table A-1. Fresh Concrete Properties 
Treatment Slump Unit Weight Fresh Air Content 
0.32 0.0 cm (0.0 in) 2449 kg/m3 (153 lb/ft3) 4.89% 
0.36 0.0 cm (0.0 in) 2460 kg/m3 (153 lb/ft3) 3.38% 
0.40 2.5 cm (1.0 in) 2461 kg/m3 (153 lb/ft3) 2.65% 
0.44 5.0 cm (2. 0 in) 2459 kg/m3 (153 lb/ft3) 1.21% 
 

 

 

SETTING TIME DETERMINATION 
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Figure A-1. Setting Time Determination [w0=0.32] 
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Figure A-2. Setting Time Determination [w0=0.36] 
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Figure A-3. Setting Time Determination [w0=0.40] 
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Figure A-4. Setting Time Determination [w0=0.44] 
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STRENGTH AND ADIABATIC HEAT MEASUREMENTS 
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Figure A-5. Compressive Strength (Exposed) [All treatments] 
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Figure A-6. Compressive Strength (Covered) [All treatments] 
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Figure A-7. Compressive Strength Linearization (Exposed) [All treatments] 
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Figure A-8. Compressive Strength Linearization (Covered) [All treatments] 
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Figure A-9. Adiabatic Heat Signature History [All treatments] 
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DEGREE OF HYDRATION 
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Figure A-10. Calculated Degree of Hydration [w0=0.32] 
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Figure A-11. Calculated Degree of Hydration [w0=0.36] 
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Figure A-12. Calculated Degree of Hydration [w0=0.40] 
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Figure A-13. Calculated Degree of Hydration [w0=0.44] 
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DIELECTRIC CONSTANT HISTORY 
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Figure A-14. Dielectric Constant History [w0=0.32] 
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Figure A-15. Dielectric Constant History [w0=0.36] 
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Figure A-16. Dielectric Constant History [w0=0.40] 
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Figure A-17. Dielectric Constant History [w0=0.44] 
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RELATIVE HUMIDITY 
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Figure A-18. Relative Humidity Measurements [w0=0.32] 
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Figure A-19. Relative Humidity Measurements [w0=0.36] 
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Figure A-20. Relative Humidity Measurements [w0=0.40] 
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Figure A-21. Relative Humidity Measurements [w0=0.44] 
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MOISTURE LOSS 
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Figure A-22. Moisture Mass Loss per Area [All treatments] 
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Figure A-23. Moisture Mass Loss per Net Water [All treatments] 
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Figure A-24. Early Moisture Mass Loss per Area [All treatments] 
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Figure A-25. Detail of Moisture Mass Loss per Net Water [All treatments] 
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MOISTURE FRACTION HISTORY 

EXPOSED LEVEL 
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Figure A-26. Approximated Moisture Fraction Change (Exposed) [w0=0.32] 
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Figure A-27. Approximated Moisture Fraction Change (Exposed) [w0=0.36] 
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Figure A-28. Approximated Moisture Fraction Change (Exposed) [w0=0.40] 
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Figure A-29. Approximated Moisture Fraction Change (Exposed) [w0=0.44] 
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COVERED LEVEL 
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Figure A-30. Approximated Moisture Fraction Change (Covered) [w0=0.32] 
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Figure A-31. Approximated Moisture Fraction Change (Covered) [w0=0.36] 
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Figure A-32. Approximated Moisture Fraction Change (Covered) [w0=0.40] 
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Figure A-33. Approximated Moisture Fraction Change (Covered) [w0=0.44] 
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FREE AND NON-EVAPORABLE MOISTURE 

EXPOSED LEVEL 

 

 

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 6 14 25 38 49 57 63 69 76 81 84 86 87

α(t)_Exposed, %

M
as

s F
ra

ct
io

n 
of

 w
ne

t

0 2 4 8 15 24 33 42 54 78 10
3

12
9

15
0

16
8

Time, hrs

Free, total

Non-evap.

 
Figure A-34. Approximated Total Moisture Fractioning (Exposed) [w0=0.32] 
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Figure A-35. Approximated Total Moisture Fractioning (Exposed) [w0=0.36] 
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Figure A-36. Approximated Total Moisture Fractioning (Exposed) [w0=0.40] 
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Figure A-37. Approximated Total Moisture Fractioning (Exposed) [w0=0.44] 
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COVERED LEVEL 
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Figure A-38. Approximated Total Moisture Fractioning (Covered) [w0=0.32] 
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Figure A-39. Approximated Total Moisture Fractioning (Covered) [w0=0.36] 
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Figure A-40. Approximated Total Moisture Fractioning (Covered) [w0=0.40] 
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Figure A-41. Approximated Total Moisture Fractioning (Covered) [w0=0.44] 

 

 

 

 



 114

VOLUMETRIC DIAGRAM 

EXPOSED LEVEL 
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Figure A-42. Approximated Volumetric Proportions (Exposed) [w0=0.32] 
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Figure A-43. Approximated Volumetric Proportions (Exposed) [w0=0.36] 
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Figure A-44. Approximated Volumetric Proportions (Exposed) [w0=0.40] 
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Figure A-45. Approximated Volumetric Proportions (Exposed) [w0=0.44] 
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COVERED LEVEL 
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Figure A-46. Approximated Volumetric Proportions (Covered) [w0=0.32] 
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Figure A-47. Approximated Volumetric Proportions (Covered) [w0=0.36] 
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Figure A-48. Approximated Volumetric Proportions (Covered) [w0=0.40] 
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Figure A-49. Approximated Volumetric Proportions (Covered) [w0=0.44] 
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APPENDIX B 

MAIN ANALYSIS  

FREE MOISTURE VS. H 
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Figure B-1. Free Moisture Sensitivity to Relative Humidity Changes [w0=0.32] 
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Figure B-2. Free Moisture Sensitivity to Relative Humidity Changes [w0=0.36] 
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Figure B-3. Free Moisture Sensitivity to Relative Humidity Changes [w0=0.40] 
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Figure B-4. Free Moisture Sensitivity to Relative Humidity Changes [w0=0.44] 

 

 



 120

DIELECTRIC VALUE VS. H 
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Figure B-5. Dielectric Constant Sensitivity to Relative Humidity [w0=0.32] 
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Figure B-6. Dielectric Constant Sensitivity to Relative Humidity [w0=0.36] 
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Figure B-7. Dielectric Constant Sensitivity to Relative Humidity [w0=0.40] 
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Figure B-8. Dielectric Constant Sensitivity to Relative Humidity [w0=0.44] 

 

 



 122

DIELECTRIC VALUE VS. DEGREE OF HYDRATION 

EXPOSED LEVEL 
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Figure B-9. Dielectric Constant Sensitivity to Degree of Hydration (Exposed) [w0=0.32] 
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Figure B-10. Dielectric Constant Sensitivity to Degree of Hydration (Exposed) 
[w0=0.36] 



 123

0.0

5.0

10.0

15.0

0.0 20.0 40.0 60.0 80.0 100.0
α(t)_Exposed, %

ε,
 E

xp
os

ed

 
Figure B-11. Dielectric Constant Sensitivity to Degree of Hydration (Exposed) 
[w0=0.40] 
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Figure B-12. Dielectric Constant Sensitivity to Degree of Hydration (Exposed) 
[w0=0.44] 
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COVERED LEVEL 
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Figure B-13. Dielectric Constant Sensitivity to Degree of Hydration (Covered) 
[w0=0.32] 
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Figure B-14. Dielectric Constant Sensitivity to Degree of Hydration (Covered) 
[w0=0.36] 
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Figure B-15. Dielectric Constant Sensitivity to Degree of Hydration (Covered) 
[w0=0.40] 
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Figure B-16. Dielectric Constant Sensitivity to Degree of Hydration (Covered) 
[w0=0.44] 
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DIELECTRIC VALUE VS. FREE MOISTURE AND CRIM APPROXIMATION 

EXPOSED LEVEL 
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Figure B-17. Dielectric Constant, Free Moisture and CRIM Fit (Exposed) [w0=0.32] 
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Figure B-18. Dielectric Constant, Free Moisture and CRIM Fit (Exposed) [w0=0.36] 
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Figure B-19. Dielectric Constant, Free Moisture and CRIM Fit (Exposed) [w0=0.40] 
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Figure B-20. Dielectric Constant, Free Moisture and CRIM Fit (Exposed) [w0=0.44] 
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COVERED LEVEL 
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Figure B-21. Dielectric Constant, Free Moisture and CRIM Fit (Covered) [w0=0.32] 
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Figure B-22. Dielectric Constant, Free Moisture and CRIM Fit (Covered) [w0=0.36] 
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Figure B-23. Dielectric Constant, Free Moisture and CRIM Fit (Covered) [w0=0.40] 
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Figure B-24. Dielectric Constant, Free Moisture and CRIM Fit (Covered) [w0=0.44] 
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CRIM CALIBRATION 

EXPOSED LEVEL 
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Figure B-25. CRIM Statistical Calibration (Exposed) [w0=0.32] 
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Figure B-26. CRIM Statistical Calibration (Exposed) [w0=0.36] 
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ε_CRIM = 0.20ε + 5.03
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Figure B-27. CRIM Statistical Calibration (Exposed) [w0=0.40] 
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Figure B-28. CRIM Statistical Calibration (Exposed) [w0=0.44] 
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COVERED LEVEL 
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Figure B-29. CRIM Statistical Calibration (Covered) [w0=0.32] 
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Figure B-30. CRIM Statistical Calibration (Covered) [w0=0.36] 
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Figure B-31. CRIM Statistical Calibration (Covered) [w0=0.40] 
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Figure B-32. CRIM Statistical Calibration (Covered) [w0=0.44] 
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APPENDIX C 

STATISTICAL ANALYSIS 

EFFECT OF EXPOSURE ON DIELECTRIC VALUE 

0.32 TREATMENT 

 

 

Table C-1. Paired T-Test and Confidence Interval: DC0.32[cov], DC0.32[exp] 
Parameter N Mean Std. Dev SE Mean 
DC0.32[cov] 32 8.711 2.576 0.455 
DC0.32[exp] 32 6.746 2.452 0.433 
Difference 32 1.965 1.326 0.234 
95% CI for mean difference: (1.486, 2.443) 

T-Test of mean difference, H0 = 0 (vs Ha = 0): T-Value = 8.38, P-Value = 0.000 
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Figure C-1. Boxplot of Differences in Dielectric Constant between Covered and 
Exposed Measurements [w0=0.32] 
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0.36 TREATMENT 

 

 

Table C-2. Paired T-Test and Confidence Interval: DC0.36[cov], DC0.36[exp] 
Parameter N Mean Std. Dev SE Mean 
DC0.36[cov] 21 8.681 3.336 0.728 
DC0.36[exp] 21 7.492 3.337 0.728 
Difference 21 1.190 1.670 0.364 
95% CI for mean difference: (0.429, 1.950) 

T-Test of mean difference, H0 = 0 (vs Ha = 0): T-Value = 3.26, P-Value = 0.004 
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Figure C-2. Boxplot of Differences in Dielectric Constant between Covered and 
Exposed Measurements [w0=0.36] 
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0.40 TREATMENT 

 

 

Table C-3. Paired T-Test and Confidence Interval: DC0.40[cov], DC0.40[exp] 
Parameter N Mean Std. Dev SE Mean 
DC0.40[cov] 34 7.225 3.156 0.541 
DC0.40[exp] 34 6.570 2.901 0.497 
Difference 34 0.654 1.706 0.293 
95% CI for mean difference: (0.059, 1.250) 

T-Test of mean difference, H0 = 0 (vs Ha = 0): T-Value = 2.24, P-Value = 0.032 
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Figure C-3. Boxplot of Differences in Dielectric Constant between Covered and 
Exposed Measurements [w0=0.40] 
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0.44 TREATMENT 

 

 

Table C-4. Paired T-Test and Confidence Interval: DC0.44[cov], DC0.44[exp] 
Parameter N Mean Std. Dev SE Mean 
DC0.44[cov] 31 8.992 2.925 0.525 
DC0.44[exp] 31 6.733 2.559 0.460 
Difference 31 2.259 2.443 0.439 
95% CI for mean difference: (1.363, 3.155) 

T-Test of mean difference, H0 = 0 (vs Ha = 0): T-Value = 5.15, P-Value = 0.000 
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Figure C-4. Boxplot of Differences in Dielectric Constant between Covered and 
Exposed Measurements [w0=0.44] 
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REGRESSION STATISTICS AND ANOVA FOR ASYMPTOTE MODEL 

0.32 TREATMENT 

 

 

Table C-5. Analysis of Variance: DC0.32(H_asymptote) versus DC0.32[exp]  
Source DF SSE MSE F-Statistic P-Value 
Regression 1 467.815 467.815 646.84 0.000 
Error 30 21.697 0.723   
Total 31 489.511    
Regression Equation: DC0.32(H_asymptote) = - 3.897 + 1.585 DC0.32[exp] 

S = 0.850427, R2 = 95.6%, R2(adj) = 95.4% 
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Figure C-5. Regression Fit for Asymptote Model [w0=0.32] 

 

 

 



 139

Fitted Va lue

R
e

s
id

u
a

l

20.017.515.012.510.07.55.0

2

1

0

-1

-2

Residuals Versus the Fitted Values
(response is DC0.32(H_asymptote))

 
Figure C-6. Residual Plot for Asymptote Model [w0=0.32] 

 

 

 

Res idua l

P
e

rc
e

n
t

210-1-2

99

95

90

80

70

60

50

40

30

20

10

5

1

Normal Probability Plot of the Residuals
(response is DC0.32(H_asymptote))

 
Figure C-7. Normal Probability Plot for Asymptote Model Residuals [w0=0.32] 
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0.36 TREATMENT 

 

 

Table C-6. Analysis of Variance: DC0.36(H_asymptote) versus DC0.36[exp] 
Source DF SSE MSE F-Statistic P-Value 
Regression 1 227.559 227.559 179.01 0.000 
Error 19 24.153 1.271   
Total 20 251.711    
Regression equation: DC0.36(H_asymptote) = - 0.5986 + 1.011 DC0.36[exp] 

S = 1.12747, R2 = 90.4%, R2(adj) = 89.9% 
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Figure C-8. Regression Fit for Asymptote Model [w0=0.36] 
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Figure C-9. Residual Plot for Asymptote Model [w0=0.36] 
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Figure C-10. Normal Probability Plot for Asymptote Model Residuals [w0=0.36] 
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0.40 TREATMENT 

 

 

Table C-7. Analysis of Variance: DC0.40(H_asymptote) versus DC0.40[exp] 
Source DF SSE MSE F-Statistic P-Value 
Regression 1 210.584 210.584 142.73 0.000 
Error 33 48.689 1.475   
Total 34 259.273    
Regression equation: DC0.40(H_asymptote) = 0.7884 + 0.8499 DC0.40[exp] 

S = 1.21467, R2 = 81.2%, R2(adj) = 80.7% 
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Figure C-11. Regression Fit for Asymptote Model [w0=0.40] 
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Figure C-12. Residual Plot for Asymptote Model [w0=0.40] 
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Figure C-13. Normal Probability Plot for Asymptote Model Residuals [w0=0.40] 
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0.44 TREATMENT 

 

 

Table C-8. Analysis of Variance: DC0.44(H_asymptote) versus DC0.44[exp] 
Source DF SSE MSE F-Statistic P-Value 
Regression 1 329.170 329.170 76.61 0.000 
Error 29 124.611 4.297   
Total 30 453.781    
Regression equation: DC0.44(H_asymptote) = - 2.090 + 1.294 DC0.44[exp] 

S = 2.07290, R2 = 72.5%, R2(adj) = 71.6% 
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Figure C-14. Regression Fit for Asymptote Model [w0=0.44] 
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Figure C-15. Residual Plot for Asymptote Model [w0=0.44] 
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Figure C-16. Normal Probability Plot for Asymptote Model Residuals [w0=0.44] 

 



 146

ANALYSIS OF VARIANCE FOR CRIM FIT 

EXPOSED LEVEL 

 

 
Table C-9. Regression Analysis: DC0.32model versus DC0.32[exp] 
Predictor Coeff. SE Coeff. T-value P-value 
Constant 4.5964 0.1268 36.24 0.000 
DC0.32[exp] 0.21278 0.01770 12.02 0.000 
Regression equation: DC0.32model = 4.60 + 0.213 DC0.32[exp] 

S = 0.2417, R2 = 82.8%, R2(adj) = 82.2% 

 

 

 

Table C-10. Analysis of Variance: DC0.32model versus DC0.32[exp] 
Source DF SSE MSE F-statistic P-value 
Regression 1 8.4357 8.4357 144.45 0.000 
Residual Error 30 1.7520 0.0584   
Total 31 10.1877    
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Figure C-17. Regression Plot for CRIM Fit (Exposed) [w0=0.32] 
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Figure C-18. Residual Plot for CRIM Fit (Exposed) [w0=0.32] 
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Figure C-19. Normal Probability Plot for CRIM Fit (Exposed) [w0=0.32] 

 



 149

Table C-11. Regression Analysis: DC0.36model versus DC0.36[exp] 
Predictor Coeff. SE Coeff T-value P-value 
Constant 4.8062 0.1306 36.79 0.000 
DC0.36[exp] 0.19805 0.01599 12.38 0.000 
Regression equation: DC0.36model = 4.81 + 0.198 DC0.36[exp] 

S = 0.2387, R2 = 89.0%, R2(adj) = 88.4% 

 

 

 

Table C-12. Analysis of Variance: DC0.36model versus DC0.36[exp] 
Source DF SSE MSE F-statistic P-value 
Regression 1 8.7362 8.7362 153.38 0.000 
Residual 
Error 

19 1.0822 0.0570   

Total 20 9.8184    
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Figure C-20. Residual Plot for CRIM Fit (Exposed) [w0=0.36] 
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Figure C-21. Normal Probability Plot for CRIM Fit (Exposed) [w0=0.36] 
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Table C-13. Regression Analysis: DC0.40model versus DC0.40[exp] 
Predictor Coeff. SE Coeff T-value P-value 
Constant 5.0338 0.1243 40.51 0.000 
DC0.40[exp] 0.20106 0.01708 11.77 0.000 
Regression equation: DC0.40model = 5.03 + 0.201 DC0.40[exp] 

S = 0.2917, R2 = 80.8%, R2(adj) = 80.2% 

 

 

 

Table C-14. Analysis of Variance: DC0.40model versus DC0.40[exp] 
Source DF SSE MSE F-statistic P-value 
Regression 1 11.785 11.785 138.55 0.000 
Residual 
Error 

33 2.807 0.085   

Total 34 14.592    
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Figure C-22. Regression Plot for CRIM Fit (Exposed) [w0=0.40] 
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Figure C-23. Residual Plot for CRIM Fit (Exposed) [w0=0.40] 
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Figure C-24. Normal Probability Plot for CRIM Fit (Exposed) [w0=0.40] 
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Table C-15. Regression Analysis: DC0.44model versus DC0.44[exp] 
Predictor Coeff. SE Coeff T-value P-value 
Constant 4.6259 0.1624 28.48 0.000 
DC0.44[exp] 0.24720 0.02260 10.94 0.000 
Regression equation: DC0.44model = 4.63 + 0.247 DC0.44[exp] 

S = 0.3167, R2 = 80.5%, R2(adj) = 79.8% 

 

 

 

Table C-16. Analysis of Variance: DC0.44model versus DC0.44[exp] 
Source DF SSE MSE F-statistic P-value 
Regression 1 12.007 12.007 119.69 0.000 
Residual 
Error 

29 2.909 0.100   

Total 30 14.916    
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Figure C-25. Regression Plot for CRIM Fit (Exposed) [w0=0.44] 
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Figure C-26. Residual Plot for CRIM Fit (Exposed) [w0=0.44] 
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Figure C-27. Normal Probability Plot for CRIM Fit (Exposed) [w0=0.44] 
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COVERED LEVEL 

 

 

Table C-17. Regression Analysis: DC0.32model versus DC0.32[cov] 
Predictor Coeff SE Coeff T-value P-value 
Constant 4.1402 0.1639 25.27 0.000 
DC0.32[cov] 0.23269 0.01819 12.79 0.000 
Regression equation: DC0.32model = 4.14 + 0.233 DC0.32[cov] 

S = 0.2638, R2 = 84.1%, R2(adj) = 83.6% 

 

 

 

Table C-18. Analysis of Variance: DC0.32model versus DC0.32[cov] 
Source DF SSE MSE F-statistic P-value 
Regression 1 11.386 11.386 163.58 0.000 
Residual Error 31 2.158 0.070   
Total 32 13.544    
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Figure C-28. Regression Plot for CRIM Fit (Covered) [w0=0.32] 
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Figure C-29. Residual Plot for CRIM Fit (Covered) [w0=0.32] 
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Figure C-30. Normal Probability Plot for CRIM Fit (Covered) [w0=0.32] 
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Table C-19. Regression Analysis: DC0.36model versus DC0.36[cov] 
Predictor Coeff SE Coeff T-value P-value 
Constant 4.37244 0.1210 20.76 0.000 
DC0.36[cov] 0.235800 0.02084 16.09 0.000 
Regression equation: DC0.36model = 4.37244 + 0.235800 DC0.36[cov] 

S = 0.318522, R2 = 86.5 %, R2(adj) = 85.8 % 

 

 

 

Table C-20. Analysis of Variance: DC0.36model versus DC0.36[cov] 
Source DF SSE MSE F-statistic P-value 
Regression 1 12.3754 12.3754 121.978 0.000 
Error 19 1.9277 0.1015   
Total 20 14.3031    
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Figure C-31. Regression Plot for CRIM Fit (Covered) [w0=0.36] 
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Figure C-32. Residual Plot for CRIM Fit (Covered) [w0=0.36] 
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Figure C-33. Normal Probability Plot for CRIM Fit (Covered) [w0=0.36] 
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Table C-21. Regression Analysis: DC0.40model versus DC0.40[cov] 
Predictor Coeff SE Coeff T-value P-value 
Constant 5.15842 0.1502 19.78 0.000 
DC0.40[cov] 0.23722 0.0304 17.10 0.000 
Regression equation: DC0.40model = 5.15842 + 0.237220 DC0.40[cov] 

S = 0.528649, R2 = 68.8 %, R2(adj) = 67.8 % 

 

 

 

Table C-22. Analysis of Variance: DC0.40model versus DC0.40[cov] 
Source DF SSE MSE F-statistic P-value 
Regression 1 20.2930 20.2930 72.6126 0.000 
Error 33 9.2225 0.2795   
Total 34 29.5156    
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Figure C-34. Regression Plot for CRIM Fit (Covered) [w0=0.40] 
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Figure C-35. Residual Plot for CRIM Fit (Covered) [w0=0.40] 
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Figure C-36. Normal Probability Plot for CRIM Fit (Covered) [w0=0.40] 
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Table C-23. Regression Analysis: DC0.44model versus DC0.44[cov] 
Predictor Coeff SE Coeff T-value P-value 
Constant 4.2889 0.3567 12.02 0.000 
DC0.44[cov] 0.26817 0.03778 7.10 0.000 
Regression equation: DC0.44model = 4.29 + 0.268 DC0.44[cov] 

S = 0.6053, R2 = 63.5%, R2(adj) = 62.2% 

 

 

 
Table C-24. Analysis of Variance: DC0.44model versus DC0.44[cov] 
Source DF SSE MSE F-statistic P-value 
Regression 1 18.456 18.456 50.38 0.000 
Residual Error 29 10.625 0.366   
Total 30 29.081    
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Figure C-37. Regression Plot for CRIM Fit (Covered) [w0=0.44] 
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Figure C-38. Residual Plot for CRIM Fit (Covered) [w0=0.44] 
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Figure C-39. Normal Probability Plot for CRIM Fit (Covered) [w0=0.44] 

 

 



 169

VITA 
 

Ivan Avelar Lezama received his Bachelor of Science in Civil Engineering degree from 

The University of Texas at El Paso (UTEP) in 2003.  His extracurricular involvement at 

UTEP included the Presidential position for the student chapter of the American Society 

of Civil Engineers and manager of the chapter’s concrete canoe competition project.  He 

continued his graduate studies at Texas A&M University and received his Master of 

Science in Civil Engineering degree in December 2005. 

 

His research interests focus on Portland cement concrete and include, but are not limited 

to, the mix design and optimization of the mechanical properties of lightweight high-

performance concrete, and the quantitative assessment of curing quality and timing 

optimization of curing procedures for Portland Cement Concrete, to be exposed in future 

journal publications. 

 

Mr. Avelar Lezama may be reached within the South Florida Division of APAC Major 

Projects Group, or at the physical address 7124 Gran Vida, El Paso, TX 79912.  His 

email address is avelivan@yahoo.com. 


	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND
	RELEVANCE OF MOISTURE CONTROL IN CONCRETE BEHAVIOR
	MOISTURE LOSS: BLEEDING AND EVAPORATION
	ROLE OF MOISTURE DISTRIBUTION AND RELATIVE HUMIDITY IN CONCR
	CEMENT HYDRATION
	DIELECTRIC PROPERTIES OF CONCRETE

	THEORETICAL CONSIDERATIONS
	VOLUMETRIC APPROXIMATIONS AND HYDRATION OF CEMENT PASTE
	DEGREE OF HYDRATION MODELING
	COMPLEX REFRACTIVE INDEX MODEL (CRIM)

	RESEARCH PROGRAM
	EXPERIMENTAL DESIGN
	BLEEDING AND MOISTURE LOSS MEASUREMENTS
	PERMITTIVITY MEASUREMENTS
	RELATIVE HUMIDITY MEASUREMENTS
	COMPRESSIVE STRENGTH AND HEAT EVOLUTION MEASUREMENTS
	FRESH CONCRETE GRAVIMETRIC TESTS
	SETTING TIME DETERMINATION

	RESEARCH FINDINGS
	SETTING AND DEGREE OF HYDRATION
	MOISTURE LOSS AND AVAILABILITY
	VOLUMETRIC APPROXIMATIONS
	PERMITTIVITY PARAMETER BEHAVIOR
	EFFECTS OF RELATIVE HUMIDITY ON DIELECTRIC VALUE
	EFFECTS OF HYDRATION ON VOLUMETRIC FREE MOISTURE CONTENT
	EFFECTS OF HYDRATION ON DIELECTRIC CONSTANT
	EFFECTS OF VOLUMETRIC FREE MOISTURE CONTENT

	SUMMARY AND RECOMMENDATIONS
	REFERENCES
	APPENDIX A
	VISUAL BASE DATA
	UNIT WEIGHT, AIR CONTENT AND SLUMP
	SETTING TIME DETERMINATION
	STRENGTH AND ADIABATIC HEAT MEASUREMENTS
	DEGREE OF HYDRATION
	DIELECTRIC CONSTANT HISTORY
	RELATIVE HUMIDITY
	MOISTURE LOSS
	MOISTURE FRACTION HISTORY
	EXPOSED LEVEL
	COVERED LEVEL

	FREE AND NON-EVAPORABLE MOISTURE
	EXPOSED LEVEL
	COVERED LEVEL

	VOLUMETRIC DIAGRAM
	EXPOSED LEVEL
	COVERED LEVEL


	APPENDIX B
	MAIN ANALYSIS
	FREE MOISTURE VS. H
	DIELECTRIC VALUE VS. H
	DIELECTRIC VALUE VS. DEGREE OF HYDRATION
	EXPOSED LEVEL
	COVERED LEVEL

	DIELECTRIC VALUE VS. FREE MOISTURE AND CRIM APPROXIMATION
	EXPOSED LEVEL
	COVERED LEVEL

	CRIM CALIBRATION
	EXPOSED LEVEL
	COVERED LEVEL


	APPENDIX C
	STATISTICAL ANALYSIS
	EFFECT OF EXPOSURE ON DIELECTRIC VALUE
	0.32 TREATMENT
	0.36 TREATMENT
	0.40 TREATMENT
	0.44 TREATMENT

	REGRESSION STATISTICS AND ANOVA FOR ASYMPTOTE MODEL
	0.32 TREATMENT
	0.36 TREATMENT
	0.40 TREATMENT
	0.44 TREATMENT

	ANALYSIS OF VARIANCE FOR CRIM FIT
	EXPOSED LEVEL
	COVERED LEVEL


	VITA

