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ABSTRACT 

 
The Effect of Strain and Path Change on the Mechanical Properties and Microstructural 

Evolution of Ultrafine Grained Interstitial Free Steel during Equal Channel Angular 

Extrusion (ECAE). (December 2005) 

Steven George Sutter, 

B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Ibrahim Karaman 
 
 
 

The objectives of this study were to examine the effect of strain and path change on 

the microstructural evolution of ultrafine grained interstitial free (IF) steel during equal 

channel angular extrusion (ECAE); to determine the mechanical properties; to observe 

the resulting texture; and to perform optical and electron microscopy of the resulting 

material.  The effects of different routes of extrusion (A, B, C, C’ and E), heat treatment 

and plastic strains from 1.15 to 18.4 were examined.  Monotonous tensile testing was 

used to determine mechanical behavior of processed materials.  X-ray diffraction and 

TEM analyses were performed to evaluate the effect of processing on texture and grain 

morphology.  Hardness measurements were performed to determine recrystallization 

behavior of the processed material.  Optical microscopy was conducted on heat treated 

samples to determine their grain size and refinement. 

Monotonous tensile testing of processed materials showed that there was significant 

strengthening after the first extrusion.  Further processing resulted in increasing values 
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of yield strength and ultimate tensile strength, with ductility at failure varying depending 

upon which processing route was used.  The best tensile strength results were obtained 

after processing Routes 8C’ and 16E, due to the significant grain refinement these routes 

produced. 

X-ray diffraction revealed increases in strength of preferred texture along the 

directions [111] and [001], perpendicular to the transverse plane, for all specimens that 

were processed using ECAE.  TEM observations showed a consistent refinement of 

grain size as the amount of processing increased, especially within Routes C’ and E. 

Hardness measurements of heat treated specimens showed that the onset of 

recrystallization occurred at approximately the same temperature of recrystallization as 

that of pure iron, 450°C.  The recrystallization curves for all samples showed that grain 

growth begins at a temperature of around 700°C. 

The low carbon content of IF steel made optical microscopy challenging.  The grain 

size of annealed materials becomes finer and more uniform, ranging between 60 and 90 

μm2, at high strain levels under Routes C’ and E, due to the many potential nucleation 

sites developed in highly worked material. 
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1.  INTRODUCTION 
 

Material1 properties are dependent upon material microstructure, crystal structure, 

and crystallographic texture.  Crystallographic texture describes how grains are oriented 

with respect to a sample coordinate grame.  The materials properties and mechanical 

performance are closely related to its microstructure.  Manipulating the microstructure of 

a material through mechanical deformation, processing, and heat treatment, i.e. 

thermomechanical treatments, can be used to change material properties. 

 There are a number of different thermomechanical treatments for changing the 

microstructure of a material.  One commonly used method, rolling, involves reducing 

one dimension of a materials cross-section by feeding it through a set of rollers.  The 

resulting textures are sometimes called “sheet texture” characterized by a planar 

structure that runs parallel to the rolling direction.  Drawing of a material, in which the 

material is pulled through a die, can produce wire.  The textures associated with drawing 

are fibrous and are oriented in the direction of drawing.  There are many other methods 

of working a material, including torsion and compression, but one method that is 

receiving much interest is severe plastic deformation, in particular a special form of 

extrusion known as equal channel angular extrusion. 

The mode of deformation in equal channel angular extrusion (ECAE) is mainly 

simple shear.  This is made possible by subjecting a sample of material, known as a 

billet, to a high load, forcing the billet through an angled channel.  In the case of a 

                                                           
The journal model is Acta Materialia. 
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perfect 90° angled die, it is within this angled channel that the simple shear occurs, 

causing a change in the materials microstructure across the entire cross-sectional area of 

the billet.  The material that emerges from the process has the same cross-section as the 

material that entered.  This is one of the benefits of the ECAE processing technique.  

Another benefit offered by ECAE processing is the ability to control the resulting 

microstructures during subsequent extrusions, by changing the orientation of the billet, 

rotating it along the long axis. 

Post-processing heat treatments permit further modification of the material’s grain 

structure.  Recrystallization within the processed billets relieves some of the internal 

stresses and restores ductility. 

The present research focuses upon the effect of severe plastic deformation strain and 

path change on the microstructural evolution of a material that has been subjected to 

equal channel angular extrusion.  Multiple extrusion routes and passes through the die 

were performed, all at a fixed room temperature.  Microstructural analysis was 

conducted to help determine grain size, deformation structure and orientation.  The 

objectives and parameters of this research are: 1) to examine mechanical performance of 

post-process material through the use of room temperature monotonic tensile tests; 2) 

determine its hardness using microhardness tests; 3) observe microstructural features 

through optical microscopy and TEM visualization; 4) examine the texture changes that 

occur during the processing, both before and after heat treatment, using XRD texture 

analysis; and 5) examine the recrystallization behavior of the material for different 

temperatures and a fixed time.  The material in question is known as interstitial free (IF) 
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steel, a variant of the steel commonly used in the automotive industry for body panels 

and other “non-exposed” or painted surfaces.  To date there have been very few studies 

of this kind conducted on IF steel at room temperature. 
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2.  LITERATURE REVIEW 
 

 2.1. Properties and Application of Interstitial Free Steel 
 

Interstitial free steel was selected for this study due, in part, to its excellent deep 

drawing characteristics.  Such properties lend this material to wide application in fields 

ranging from the automobile industry to architectural applications. 

As stated previously the automotive industry uses IF steel for body panels and other 

painted components.  Known as “bake hardening” steel, this metal is very easily formed 

into complex contours using pressing machines.  During the forming process 

dislocations are created within the steel, and are subsequently pinned in place by the few 

remaining carbon atoms during the paint curing stage of part fabrication.  The pinned 

dislocations make the metal stronger, and the processing stage where this takes place is 

what gives the metal its name.  The use of IF steel in architecture is based upon similar 

logic: the metal is easily formed into complex shapes.  This permits builders to create 

structures that are more organic in form than previously possible. 

 

2.2. Equal Channel Angular Extrusion 
 

The severe plastic deformation technique known as equal channel angular extrusion 

(ECAE) was pioneered in Soviet Russia in 1972 by V. M. Segal [1, 2].  This processing 

technique allows the creation of ultra-fine or nano-scale structures within a material by 
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imparting a nearly uniform simple shear load in large billets.  Billet dimensions do not 

change much between the beginning and end of the process (Figure 1).  Repetitive 

extrusions make it possible to control the evolution of the resulting billet microstructure. 

The process of ECAE is accomplished by pressing a lubricated billet through two 

intersecting channels of equivalent cross section.  The angle of intersection of these 

angles may vary, but is typically either 90-degrees or 120-degrees.  In the present work 

the ECAE intersection angle was 90-degrees.  Pressing forces and temperature are 

sometimes varied for research purposes, but for this research the press force was 500,000 

pounds, performed at room temperature.  Billet lubricant for the ECAE machine used is 

typically a thin wrapping of Teflon sheet, with the moving parts lubricated by an anti-

seize compound that can tolerate high temperatures. 

 

 

 
Figure 1: Schematic of the ECAE process [38] 
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Figure 2 shows the slip line field and velocity vectors associated with a billet during 

extrusion.  Some assumptions, namely that the billet moves with a constant velocity 

inside both channels, and that the zone of plasticity is a single β-slip line, lead to some 

basic operating equations for ECAE.  If there is no other force acting upon the transverse 

plane – that is, the plane that is parallel to the driving punch – then it is possible to 

calculate the average stress σ along the line OA, as well as the punch pressure p. 

θ
θσ

cot2
cot

kp
k

=
−=

 

The variable k in the above equations represents the material shear stress, while θ is the 

angle between channels. 

 

 

Figure 2: (a) ECAE slip line diagram; (b) velocity vector diagram [2] 
 

In the event of contact friction between the billet and the die channel walls, the 

situation becomes a bit more complex.  Given a contact friction τ, the slip line field 
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becomes more of a fan, and includes a central fan AOB, a zone of rigid metal AO1B, and 

a zone of uniform stress BOC.  These zones are illustrated in Figure 3a and Figure 3b. 

 

 

Figure 3: (a) Slip line fan with friction forces, (b) velocity diagram [2] 
 

The angle ψ, the fan angle, is calculated using: 

( )θηψ −= 2  

where η=π/2-1/2 Arccos (τ/k) is an angle between slip lines AO and BO.  These 

equations are true when τ>k cos 2θ.  With a ratio of length to thickness (L/H), the punch 

pressure may be calculated as: 

( )[ ] ( )[ ]
H

Lkp τηηητθηη 2cossinsin2cot2 1 +++−+= −  

Material strain is focused primarily in the fan shape of AOB in Figure 3, and also 

across the lines AO and BO.  The shear within these regions is a simple shear in the 

direction of the β-slip lines, and may be calculated using: 
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[ ] ηγ β cot==
nv

v  

After passing through the area AOB the accumulated shear is: 

ψγ α = (rad) 

with α-slip lines making up the flow lines and indicating the direction of simple shear 

within the region AOB. 

Segal’s work [2] describes the history of a square element within a fictitious billet of 

material that is undergoing ECAE.  The element, confined between flow lines 1-1 and 2-

2 (see Figure 4) undergoes repeated stages of simple shear along the line AO, simple 

shear along the α-slip lines within the AOB region, and simple shear along the slip line 

BO.  The dashed lines and vectors show that the deformation process is not one of a 

single step of simple shear, but rather a more complex series of different macroslip 

planes.  Full distortion of the element is given by: 

η
ψηϕ 2sin

cot2tan +=  

This equation, however, does not correspond to simple shear in the flow direction.  

There are two limiting cases worth noting.  First, when η<θ, ψ=0, as shown in Figure 2, 

and the element distortion and shear strain are given by: 

θϕγγ β cot2tan2 ===  

while shear planes are involved with the β-slip line AO. 
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Figure 4: Deformation history of a square element [2] 
 

In the second case, η=π/2 and distortion is given by: 

ψϕγγ α === tan  

These two cases may correspond to situations of both low and high contact friction. 

Segal’s work uses the axes x, y, z to represent the directions perpendicular to the 

flow, transverse and longitudinal planes, respectively.  The angles associated with these 

axes, φ1, φ2, and φ3, are the three possible angles of rotation about the flow, transverse 

and longitudinal axes. 

For cases in which φ1= φ2= φ3=0 or when those three angles are divisible by 180°, 

the flow is plastic and planar.  Structural elements will receive distortion into the plane 

in these cases.  The accumulation of shear may increase continuously, as in the case of 

Route A (no rotations between extrusions), or alternate between their destruction and 
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creation, as in Route C (+180° rotation on even passes, -180° on odd passes).  An 

equation that yields the orientation of any shear plane of Route A at the nth pass out of N 

total passes is given by: 

( ) θϕ cot12tan nNn −+=  

and is visually represented in Figure 5. 

 

Figure 5: Shear planes of Route A [2] 
 

In the case of Route C, the angle φ2 alternates between ± 180°, causing the shear 

planes to alternate across the same shear plane.  Structural elements are alternatively 

destroyed and restored between odd and even passes, respectively.  Visually, the shear 

planes of Route C are presented in Figure 6. 

 
 

 

Figure 6: Shear planes of Route C [2] 
 

It is possible to rotate the angle φ2 by 90° or even 270°, and these rotations are the 

basis of Routes B and C’.  Routes B and C’ are made up of superpositioning shear 
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vectors, as seen in Figure 7.  In the case of two rotations of φ2=90°, the first pass 

performs a simple shear γ1 in the plane yoz, with line 1 indicating the unit element’s 

displacement. 

 

Figure 7: The superposition of shear vectors [2] 
 

The second operation induces a second shear, γ2, on the plane xoy, with line 2 

indicating the displacement.  Adding these vectors gives the equivalent shear: 

( )2
2

2
1 γγγ +=  

which lies within plane P, and has a trace O1 O1 at the transverse section zox. 

2

1tan
γ
γω =  
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When a billet is alternated between φ2= ±90°, it is following Route B.  The billet’s 

original position is returned after even numbers of passes.  The distortion within a billet 

following Route B is shown in Figure 8 for up to 4 passes in a tool with a die angle of 

2θ=90°. 

 
 

 

Figure 8: Shear plane orientations within a billet following Route B [2] 
 

For Route C’, the billet is rotated by φ2=+90° after each pass.  This has the end effect 

of returning the billet to its original position after four passes.  It should be noted that 

because subsequent passes are performed upon the previous shear planes, all passes of 

Route C’ occur on four spatially separate planes.  Figure 9 shows the orientation of the 

shear planes for a billet following Route C’ after four passes through a die angle of 

2θ=90°. 
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Figure 9: Shear plane orientation within a billet following Route C’ [2] 
 

During multi-pass ECAE, the ends of the billets are subject to “end effects,” which 

are zones of rigid metal that have not been subjected to the same amount of working as 

the rest of the billet.  Figure 10 (a) and (b) shows process simulations, and Figure 10 (c) 

and (d) actual billets of aluminum alloy 3003 that have been processed up to Route 4A 

through a die with an angle of 2θ=90°, the billets having been macroetched to better 

show the end effects, which vary between route. 
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Figure 10: (a) Process simulation of two passes; (b) process simulation of four passes; (c) 
macroetched Al billet after two passes; (d) macroetched Al billet after four passes  [2] 

 

In the case of Route A, the end effect development is fairly easy to visualize and 

understand.  Route C has localized end effects, and there is a periodic repetition of the 

coordinate grid distortion between odd and even-numbered passes.  Route B’s end 

effects are somewhat similar to Route A’s, except that the areas of non-uniformity are 

turned on an angle of ω=45° about the y-axis, and are symmetrically arranged on the 



  15

other end of the billet.  Route C’ has a more complex distribution of end effects, as after 

four passes the rigid zones at the billet ends are only partially restored, and are partially 

distributed across the billet volume. 

End effects can impact the amount of fully processed material that a billet can yield, 

and must be taken into consideration during processing. 

When comparing a process such as ECAE to other, more conventional operations, 

some important differences emerge.  Since ECAE is not coupled with a change in 

geometry there must be some discussion of equivalence.  Segal’s work uses equivalence 

of spent energy through effective stress (σi) and strain (εi).  In the case of ECAE simple 

shear with no friction, effective stress, strain and punch pressure can be calculated using: 

θ
θε

σ

cot2
3/cot2

3

kp
N

k

i

i

=
=

=

 

For standard extrusion, the equations for “ideal” forming without friction are: 

λ

λε
σ

ln3

ln
3

kp

k

i

i

=

=
=

 

with λ=Fo/f representing the cross-sectional area reduction from Fo to f.  The equivalent 

extrusion reduction, based upon the effective strain calculations above, is: 

( )3/cot2exp θλ NE =  

The equivalent extrusion reduction provides the same spent energy as N passes of 

ECAE.  The ideal conventional extrusion of like final products would require N times 

higher pressure, and NλE times larger load than the equivalent ECAE process.  In the 
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event of extremely high values of N, ECAE may be used to achieve very large effective 

strains under low pressures and loads. 

The evolution of texture under ECAE processing was also studied [36].  The 

researchers observed the evolution of texture in a high purity Al0.5Cu alloy based upon 

the processing route, the number of passes and the initial texture of the specimen.  It was 

discovered that processing route and number of passes have a very important impact on 

texture evolution.   

 

 

Figure 11: Inverse pole figures for Route C’ after two passes for strong (a) and weak (b) initial 
texture, after four passes for strong (c) and weak (d) initial texture [36] 
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Figure 11 shows how the beginning texture impacts the texture results at low 

numbers of ECAE pass.  In the case of Figure 11 (c) and (d), the influence of initial 

texture begins to decrease.  The researchers discovered that, as a general rule, the texture 

strength shows a decrease as the number of ECAE passes increases.  Routes A, B and C’ 

showed a continuous decrease in texture strength, with Routes A and C’ being most 

effective for randomizing the texture after four passes.  Given a strong starting texture 

Route B yields a moderately strong texture after six and even eight passes.  Route C 

exhibits a cyclic evolution in texture strength, with odd-numbered passes showing very 

weak textures and even numbered passes showing strong textures, as in Figure 12. 
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Figure 12: Inverse pole figures of Route C after two (a), three (b), four (c), five (d), six (e) and seven 
(f) passes [36] 
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2.3. The Mechanical Behavior of Metals Subjected to ECAE 
 

When processing metallic materials through a technique such as equal channel 

angular extrusion, certain changes in mechanical behavior are commonly observed.  As 

ECAE strain levels increase, so too follows the yield stress of the metal [4], while the 

ductility typically decreases, sometimes significantly [3].  Figure 13 shows the 

mechanical behavior of 0.15%C steel after having been processed using ECAE. 

 

 

Figure 13: Tensile properties vs. pass number for ECAE processed 0.15%C steel [19] 
 

The increase in tensile strength is most noticeable at the initial stage of ECAE 

processing.  After the first pass through the die, the increase in both yield strength and 

ultimate tensile strength decreases.  Grain refinement is also most pronounced after the 
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initial stage of ECAE [18], with less significant refinement as the processing is 

continued, but an increase in high-angle boundaries.  Figure 14 shows a series of TEM 

images of low-carbon steel subjected to increasing passes of ECAE. 

 

 

Figure 14: Low-carbon steel processed via ECAE Route C: (a) one passes; (b) two passes; (c) two 
passes, in a different region; (d) four passes; (e) eight passes.  Numerals within the figures reference 

features relevant to the researcher’s study [18] 
 

To recover some of an as-processed material’s ductility, an annealing heat treatment 

may be used.  During annealing, the sample is placed in a furnace at elevated 
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temperatures for an extended period of time, ranging from as little as one hour to as long 

as 72 hours.  At the elevated temperatures of the annealing process, stored internal strain 

energy from severe plastic deformation is relieved as a result of increased atomic 

diffusion.  Recrystallization, in which new, low strain, equiaxial grains grow, occurs at a 

certain point during the annealing heat treatment.  As recrystallization progresses and 

crystal grains grow, the mechanical properties associated with the severe plastic 

deformation revert to a state that is closer to the pre-deformation material; the yield 

strength and ultimate tensile strength decrease, along with the material’s hardness, while 

ductility is recovered.  Research into the use of annealing after ECAE [4, 7] indicates 

that samples that are processed using ECAE and then annealed for various lengths of 

time show superior performance when compared to unprocessed samples.  Figure 15 

shows this in the case of 0.15 wt.% C steel that has been processed using four passes of 

Route C. 

 

 

Figure 15: Stress-strain curves of 0.15C steel, as-received, post ECAE (“As-pressed”), post ECAE (4 
passes) and annealed at 753K for 72 hours [7] 



  22

3. EXPERIMENTAL PROCEDURES 
 

 3.1. Material 
 

This research was conducted using titanium-stabilized interstitial free steel that was 

obtained from US Steel Research, Monroeville, Pennsylvania.  The chemical 

composition of this material is shown in Table 1.  The raw material used in this research 

came from US Steel Research in the form of a 21” x 8” x 1” plate.  The plate was hot 

rolled and allowed to slow cool, permitting the IF steel to fully recrystallize. 

 

Table 1: Chemical composition of the IF steel used in the present research 
Element Atomic 

Weight
Weight 
Percent

Atomic 
Percent

Fe 55.85 Balance Balance
C 12.01 0.0023 0.0107
S 32.07 0.0077 0.0134
N 14.01 0.0018 0.0072
O 16 0.002 0.007
Ti 47.9 0.065 0.0758
Nb 92.91 0 0
Al 26.98 0.05 0.1035  

 

3.2. ECAE Procedures 

The billets of IF steel were first rough cut from the bulk plate, and then machined on 

a mill to the dimensions of 1”x1”x6” in preparation for extrusion.  The longitudinal axis 

of each billet corresponded to the rolling direction.  The original plate was hot rolled and 

allowed to slowly cool and recrystallize, and so was not cold worked.  The texture of the 
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as-received material indicated a strong texture in the [111] and [001] directions of the 

transverse plane of the billets.  All billets were extruded at room temperature at a rate of 

0.1 inch per second, using a variety of routes and passes.  Table 2 shows the routes and 

number of passes used in this study.  Graphical representations of the billet rotations for 

each route are provided in the Appendix. 

 

Table 2: Processing routes 
Sample Group 

Number
Extrusion 

Route

0 / As-Received
No 

Extrusions 
Performed

1 Route 1A
2 Route 2A
3 Route 2B
4 Route 2C
5 Route 4A
6 Route 4B
7 Route 4C’
8 Route 4C
9 Route 4E
10 Route 8C’
11 Route 8C
12 Route 8E
13 Route 16E  

 

Prior to extrusion, anti-seize lubrication was applied to both the billet and the 

moving surfaces of the extrusion machine in an effort to reduce the friction during the 

extrusion process.  IF steel is easily extruded at room temperature with a punch speed of 

0.1 inches per second. 
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The formation of flash was a common side-effect of the extrusion process because of 

the wearing of the tool over time.  Flash occurred along most corners of the billet, and at 

the point of contact between the punch and the billet.  The flash was easily removed 

using a high speed rotary grinder.  The extrusion process caused some dimensional 

changes from the norm as a result of friction and tool wear, and these were addressed 

using a combination of rolling (performed on the flow faces) and milling (performed on 

the longitudinal faces) to make the billet ready for further processing.  Recrystallization 

does not occur until approximately 500°C in IF steels, so the process of machining a 

billet was not expected to cause a significant recovery or recrystallization. 

 

3.3. Tension Testing 

Tension testing was performed to examine the mechanical behavior of ECAE 

processed IF steel.  Tension tests were conducted on specimens that were both as-

processed and post-process annealed, to examine the impact of recrystallization on 

mechanical response.  The tension tests in this study were conducted until failure 

occurred.  To obtain the tension test specimens, cubes of approximately 1” x 1” x 1” 

were first cut from processed billets on a diamond saw, and the tension sample profiles 

were cut using wire EDM.  The tension sample profile is shown in Figure 16.  Once the 

bulk tension profile was cut, the individual specimens were sliced from the bulk profile, 

again using wire EDM.  Every tension specimen was cut such that the profile face 

corresponded to the flow plane of the billet and load direction was parallel to the 

extrusion direction.  The thickness of each tension specimen was two millimeters, with 
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the exception of the tension specimens from Routes 4A and 4B, which were cut to 1.5 

mm thickness. 
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Figure 16: Schematic of the tension sample profile 
 

 

The samples were all coated with a thin film of residue that is normal for EDM 

processing.  This thin film was removed by hand-sanding each specimen first with a 
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600-grit pad, and then finished off with an 800-grit pad.  The objective was to remove 

any surface imperfections that could interfere with the extensometer during tension 

testing and cause stress concentration areas. 

Tension testing was performed on an MTS brand machine with a computer recording 

the output data.  Simple experiments were conducted to check the modulus of the 

samples before each tension test to verify measurement accuracy.  The strain rate was 

0.004 sec-1 for all experiments.  The data collected from the test series was then 

evaluated using programs such as Microsoft Excel and Igor Pro.  Of particular interest 

were the shape of the complete stress-strain response, the yield and ultimate tensile 

strengths, and the ductility at failure of each specimen.  To check for repeatability, two 

or three companion specimens from each case were tested. 

The annealed tension specimens were tested and evaluated in the same manner as the 

as-processed specimens.  A light hand-sanding of each specimen was performed prior to 

the tension tests so as to remove any residue that may have collected during the 

annealing heat treatment.  Of particular interest was how the annealing process 

influenced the ductility of the material, or the level of strain on a material just prior to 

failure. 

 

3.4. TEM 

The transmission electron microscopy done in this research was conducted at the 

University of Paderborn, Germany.  IF steel was processed into foils for use in the TEM 

system.  First, a slice of about 1 mm to 1.5 mm thickness was cut from the original 
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sample.  This slice was then polished using SiC paper to a grit of 4000, and then finished 

with twin-jet electropolishing. 

Transmission electron microscopes resolve images by emitting a beam of electrons 

through a specially prepared specimen.  Internal microstructural details are resolved, and 

contrasts in the image are produced by beam scattering and diffraction off of the 

microstructure or defect.  Solid materials are very absorptive to electron beams, so the 

specimen being imaged must be a very thin foil.  Once the beam penetrates through the 

specimen, it is projected onto a fluorescent screen or photographic film for viewing [39]. 

3.5. Heat Treatment and Construction of Recrystallization Curves 

A diamond saw was used to cut out sections of ECAE-processed billets for use in 

constructing recrystallization curves.  The cuts were done such that the largest surface 

was that of the flow plane.  In order to construct these curves each sample was annealed 

for 90 minutes at temperatures ranging from 100°C to 700°C, then mounted into epoxy, 

ground to a surface finish of 800-grit, and finally tested for hardness.  Heat treatments 

were performed in air inside a Lindberg/Blue brand box furnace, followed by quenching 

in water at the end of annealing.  The schedule for the heat treatments conducted in this 

study is shown in Table 3. 
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Table 3: Annealing schedule for the ECAE processed IF steel samples 
Annealing Temperature (°C) Annealing Time (minutes)

100
200
300
350
400
450
500
550
600
700

90

 

 

For each temperature, ten microhardness measurements were taken on each sample.  

All results will be presented in the experimental results section. 

 

3.6. Texture 

All texture measurements were performed at the University of Paderborn, Germany.  

The planes under examination are identified as 1, 2, 3, and correspond to the flow plane, 

longitudinal plane, and transverse plane, respectively. 

Obtaining a pole figure requires the use of X-ray diffraction systems.  X-ray 

diffraction systems make use of alignment characteristics of the crystal lattice in regards 

to the reflection of incident rays of radiation with varying wavelength off of 

crystallographic surfaces.  Using the Bragg law, which governs how waves of radiation 

are diffracted from the parallel atomic planes of crystals, it is possible to generate a map 

of the arrangement of crystals within a specimen.  In equation form, the Bragg law 

appears as 
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θλ sin2dn =  

where n is an integer, λ is the wavelength (in nanometers), d is the interplanar distance 

within the crystal, and θ is the angle of incidence or reflection of the radiation. 

X-ray diffractometers use devices such as Geiger countertubes or ionization 

chambers instead of photographic plates to detect the reflected radiation from a sample 

[32].  These machines, at the basic level, consist of a source of parallel X-rays, a rotating 

sample holder that is held at an angle of incidence θ to the X-ray source, and a Geiger 

countertube that is held at an angle 2θ from the incident X-rays.  Both the sample holder 

and the Geiger countertube rotate, with the Geiger counter tube always rotating at twice 

the speed of the specimen holder.  This doubling of speed is necessary if the Geiger 

countertube is to remain in position for receiving the reflected radiation from the 

specimen. 

A schematic of a standard X-ray diffractometer is shown in Figure 17. 
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Figure 17: Schematic of an X-ray diffractometer  [40] 
 

In Figure 17, T represents the target emitting X-rays, B and C are slits and collimator 

assemblies, S is the specimen holder, D is the X-ray detector, and G is a goniometer 

scale graduated in degrees. 

 

3.7. Hardness Measurements 

One method of determining the recrystallization temperature is to measure the 

change in hardness of a specimen.  There is a significant drop in hardness due to 

softening of the material during recovery and recrystallization.  Hardness, or the 

resistance of a material to penetration or indentation, is determined by applying a 

constant force on the material’s surface via an indenter.  For the hardness measurements 

in this study, Vickers microhardness was measured.  Vickers hardness makes use of a 

square shaped diamond indenter, which leaves a pyramidal indentation in the surface of 
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the sample.  The diagonal dimensions of this pyramid indentation are measured, and 

from that the hardness value is calculated.  Vickers hardness, or HV, is the ratio of 

applied load to the surface area of the indentation left on the sample’s surface. 

The hardness testing machine used in this research was a Buehler Micromet II 

Digital Micro Hardness Tester.  A load of 1000 grams (g) was applied for a duration of 

15 seconds.  Such test conditions permitted a well-defined indentation to form, allowing 

more accurate readings.  It is important to have a smooth, flat surface on the specimen, 

in order to better identify the contours of the indentation.  Every sample used in this 

research was given an initial rough grinding on 240-grit paper, and then transferred in 

groups of six samples to the automatic grinding machine for further grinding with 400-

grit, ending with 800-grit paper.  The samples were then rinsed with water, followed by 

alcohol, and then dried under a heated blower.  All hardness measurements were 

performed on the flow plane for each route studied.  When performing the hardness 

measurements, the recommended spacing between adjacent indentations was at least 

three times the average indentation diameter.  The rationale behind this spacing is that 

for each load applied to the surface, there may be a zone around the indentation where 

material stresses have increased; therefore, each indentation must be made outside of this 

zone of stress.  In measuring the recrystallization curves, ten measurements were 

recorded for each specimen.  The highest and lowest microhardness values were ignored 

in order to obtain a better calculation of the average hardness. 
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3.8. Metallography 

To examine the microstructure of the specimens using optical metallography, the 

specimens were subjected to the following processes: sectioning, mounting, polishing 

and etching.  These processes are described in the following paragraphs. 

Cutting specimens out of the as-processed billets is an important step, and should 

therefore be done with care and attention to detail.  If done properly, a good sectioning 

will not interfere with hardness measurements.  Carelessness can lead to improper 

mechanical loading, which could damage the diamond blade, introduce mechanical 

hardening, or cause localized annealing due to heat buildup.  Standard cutting techniques 

tend to introduce an inclination of the specimen, leading to misorientation of the desired 

surface.  To maintain as precise an orientation as possible, the sections were cut using a 

Buehler Isomet 1000 diamond saw, which was cooled with an oil-water lubricant to keep 

cutting temperatures low. 

All specimens were mounted in Buehler Epoxicure epoxy.  Epoxy mounting was 

used first because of its low curing temperature, and second because it cures clear, 

making it possible to insert identifying labels into each specimen for quick reference. 

The grinding of the specimens was performed via the traditional method of abrasive 

removal of material from the surface.  Typically this is accomplished through the use of 

a grinding wheel with an attached grinding pad.  This wheel rotates at a set rate, and the 

sample is pressed against the grinding pad, initiating the surface grinding.  To improve 

the surface finish of the specimen, successive grinding stages make use of smaller 

abrasive particle sizes.  Once a small enough particulate size is reached, the process 
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becomes known as polishing, and makes use of liquid abrasive solutions and polishing 

pads.  The stages of grinding and polishing are performed in order to prepare the 

specimen’s surface for microstructural evaluation and hardness testing.  It is important to 

obtain as smooth a surface as possible, since scratches may negatively impact the results 

of optical microscopy.  The use of automated grinding and polishing machines has made 

this stage of sample preparation more efficient, since multiple samples can be ground 

and polished at the same time. 

All of the specimens used in this phase of the research were given an initial rough 

grinding treatment by hand.  This was performed on a Buehler Ecomet 3 machine, using 

rough 240-grit grinding disks.  First a chamfer with an angle of approximately 45° was 

ground into the epoxy in order to reduce grinding friction during the later stages of 

surface preparation.  Next the sample was subjected to a rough grinding to remove any 

thin film of epoxy that might exist on the surface of the sample.  Once the rough 

grinding was completed, the samples were gathered into groups of six for further surface 

preparation using a Buehler automatic grinding machine.  The automatic grinding 

machine allowed adjustments in grinding time, downward force during grinding, and 

direction of circular rotation during the grinding cycle.  For the purposes of this research, 

the grinding time was kept as 10 minutes, the downward force was 24 pounds, and the 

platter rotated in a counter-clockwise direction.  Initial grinding on the automatic 

grinding machine was performed with disks of 400-grit surfaces, then finished with 800-

grit disks.  Upon completion of the final grinding step, the platter was removed from the 

power head and rinsed under running water, sprayed with alcohol to prevent watermark 
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formation, and dried under a heater.  The resulting surface finish was acceptable for 

microhardness testing of the various samples. 

To obtain a good optical image, the surface finish must be of high enough quality to 

reflect back large amounts of light.  Good results in microscopy also require a flat, 

scratch free surface finish on the sample in question.  Using the correct polishing surface 

and abrasive compound, it is possible to obtain a mirror-like surface finish on a 

specimen.  Unlike grinding, where the abrasive is bonded onto the surface of the 

grinding disk, the abrasive particles used in polishing are so small they must be held in a 

suspension, typically in the form of liquid slurry or as a paste that is then applied to a 

soft polishing wheel. 

For IF steel, a regimen of progressively finer grit polishing compounds is applied to 

clean polishing cloths.  The polishing begins with an initial surface grind at 240-300 

rpm, under moderate pressure, using 320-grit SiC paper for one minute.  The next phase, 

lasting five minutes and rotated opposite the direction of the polishing wheel, is 

performed at 120-150 rpm, with moderate pressure, using 9-μm diamond paste applied 

to an Ultra-Pol cloth, and Metadi Fluid as a lubricant.  After cleaning the specimens, a 

four minute polish at 120-150 rpm, using 3-μm diamond paste and Metadi Fluid 

lubricant on a Trident cloth is performed.  A similar polish using 1-μm diamond paste is 

recommended for materials such as IF steel.  The final polishing stage is performed for 

2-3 minutes using 0.05-μm Masterprep Alumina slurry on a wet MicroCloth polishing 

cloth. 
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It is important to maintain a high level of cleanliness during the polishing stage.  

Routine distilled water rinses are used during the polishing stage, sometimes followed up 

with ultrasonic cleaning if there are any pockets of foreign material trapped between the 

specimen and the epoxy.  A thorough rinse with alcohol prevents any staining during the 

drying stage. 

Before any etching was performed, the specimens were examined under an optical 

microscope.  This preliminary examination was done to identify any defects, such as 

pores, pits, inclusions or scratches, which could result in a possible adverse reaction 

during etching. 

Even after polishing is complete, the final surface of the IF steel samples will not 

have any visible microstructure under optical microscopy.  This is because the incoming 

light is uniformly reflected.  To expose grain boundaries and produce contrast between 

grains a chemical etch is employed.  Since IF steel has such a low carbon content, 

conventional etchants such as Nital can not be used.  Instead a mixture of Marshall’s 

reagent and hydrofluoric acid is used.  The composition of the Marshall’s reagent is 

presented in Table 4. 

 

Table 4: The composition of the Marshall’s reagent used to reveal grain boundaries in IF steels 
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The recommended mixture of Marshall’s reagent to hydrofluoric acid is 100:1 ml, 

with the etching performed through immersion of the sample.  Marshall’s reagent works 

well for exposing the grain structure of low carbon steels, such as IF steel. 
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4.  EXPERIMENTAL RESULTS AND DISCUSSION 

 

4.1. Tensile Testing 

Tensile testing is a standard method of examining the mechanical behavior of 

materials.  Of interest in this study were the value of ECAE-processed IF steel’s yield 

strength, ultimate tensile strength, and ductility.  The description of the tensile testing 

performed in this study was presented in Section 3.3.  A summary of the values of yield 

strength, ultimate tensile strength and ductility for each sample used in the as-processed 

tests is shown in Table 5.  The values are presented as true-stress for YS and UTS, and 

engineering-strain for % ductility.  Engineering-strain was chosen because the equations 

for converting to true-stress and true-strain do not apply after plastic deformation begins. 

 

Table 5: Summary of tensile test results 

Sample YS (MPa, true) UTS (MPa, true) Ductility at Failure (%, Engineering)
As Received 70.7 282.3 60.3

1A 442.7 467.8 29.3
2A 496.3 526.3 10.7
2B 532 571.2 45.2
2C 522.7 561.6 45.6
4A 593.1 636.3 27.1
4B 590.9 634.8 18.8
4C' 602 678.2 41.5
4C 552.7 588.3 16
4E 555.5 651.2 41.7
8C' 681.2 776.3 43.4
8C 575.4 634.6 41.9
8E 613.2 704.7 39.6

16E 654.2 758.9 44.7

Tensile Test Results

 



  38

A comparison of these values makes it possible to see, at a glance, the impact ECAE 

has on the mechanical performance of IF steel (Figure 18).  Yield strength shows a 

dramatic improvement at the first pass through the press.  In the case of Route A, there is 

a steady increase in the yield strength as the number of passes increases.  The same 

increase is observed in Route B, although the increase is not as noticeable.  In the case of 

Route C the increase in yield strength is very slight, especially between ECAE 4C and 

ECAE 8C.  For Route C’ the increase in yield strength is more noticeable; ECAE 8C’ 

has the highest yield strength of all of the processing routes used in this study.  Route E 

shows some degree of yield strength enhancement, though it is not as great as Route C’. 
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Figure 18: A comparison of yield strength of as-processed IF steel 
 



  39

In Figure 19 a comparison of tensile strength across the various routes is made.  

Route A shows a steady increase in the value of UTS from ECAE 1A to ECAE 4A.  

Route B shows a less significant increase in comparison to Route A.  The increase in 

ultimate tensile strength in Route C as the number of passes increase is very slight.  

Route C’ shows a significant increase in ultimate tensile strength, and again ECAE 8C’ 

has the highest recorded values for ultimate tensile strength.  Route E shows a steady 

increase in its UTS values, with ECAE 16E having the second-highest ultimate tensile 

strength recorded. 

The ductility of the IF steel tension test samples is presented in Figure 20 so as to 

allow a comparison between the routes that were examined in this study.  Comparisons 

of ductility at failure across the different routes show unusual results.  In the case of 

Route A, the first specimens showed a decrease from ECAE 1A to ECAE 2A, and then 

an increase to ECAE 4A.  Route C showed a similar behavior.  The ductility of Route B 

decreased as the number of passes increased.  The opposite is true for Routes C’ and E: 

their ductility increased as the number of passes rose. 
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Figure 19: A comparison of ultimate tensile strength of as-processed IF steel 
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Figure 20: A comparison of ductility at failure of as-processed IF steel (Engineering-strain) 

 



  41

The summaries that were presented in Figures 18 – 20 present only the yield 

strength, ultimate tensile strength and ductility values of the specimens tested.  They do 

not show the actual true-stress versus true-strain curves obtained from the test data.  The 

ductility data presented in Figure 20 is taken from engineering strain values.  Plots of the 

true-stress versus true-strain performance of the different routes examined in this study 

are presented in Figures 21 – 25 on the following pages.  In each case the as-received 

material true-stress versus true-strain curves are shown for comparison purposes.  

Because the values for true-stress and true-strain were obtained using the equations 
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+=

+=
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the strain values after the ultimate tensile strength should not be considered accurate by 

the reader. 

True-stress versus true-strain behavior for specimens processed using Route A is 

shown in Figure 21.  True-stress versus true-strain behavior for specimens processed 

using Route B is shown in Figure 22.  True-stress versus true-strain behavior for 

specimens processed using Route C is shown in Figure 23.  True-stress versus true-strain 

behavior for specimens processed using Route C’ is shown in Figure 24.  True-stress 

versus true-strain behavior for specimens processed using Route E is shown in Figure 

25. 
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Figure 21: True-stress vs. true-strain comparison of IF steel processed using Route A 
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Figure 22: True-stress vs. true-strain comparison of IF steel processed using Route B 
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Figure 23: True-stress vs. true-strain comparison of IF steel processed using Route C 
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Figure 24: True-stress vs. true-strain comparison of IF steel processed using Route C’ 
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Figure 25: True-stress vs. true-strain comparison of IF steel processed using Route E 
  

The data plots shown in Figures 21 – 25 are useful for examining how the 

mechanical properties of as-processed IF steel change as the number of passes increase 

in a given route.  A comparison of the routes, given a constant number of passes, allows 

an examination of the impact routes have upon mechanical performance.  In all cases, 

the true-stress vs. true-strain behavior of the as-received material is included for 

reference purposes. 

The plot comparing routes given two passes (Figure 26) shows that ECAE 2A yields 

poor YS and UTS when compared to ECAE 2B and ECAE 2C.  In the cases of ECAE 

2B and ECAE 2C, their YS is virtually identical, and their UTS values are also quite 

similar. 
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When four passes are considered (Figure 27), there are more routes available for 

examination: ECAE 4A, ECAE 4B, ECAE 4C, ECAE 4C’ and ECAE 4E.  Of these, 

ECAE 4C’ and ECAE 4E show the highest values of YS and UTS. 

In the case of eight passes (Figure 28), there are three routes that can be compared: 

ECAE 8C, ECAE 8C’ and ECAE 8E.  It is shown that the mechanical performance of 

ECAE 8C’ is superior to the other routes in this instance.  The UTS of ECAE 8C’ is the 

highest recorded in this study. 
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Figure 26: Comparison of routes at two passes for as-processed IF steel 
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Figure 27: Comparison of routes at four passes for as-processed IF steel 
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Figure 28: Comparison of routes at eight passes for as-processed IF steel 
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To examine the impact of annealing on as-processed IF steel, tension specimens 

from three ECAE processing routes were annealed and tested.  The annealing 

temperatures chosen corresponded to those of the early and middle stages in 

recrystallization, between 400°C and 600°C, with annealing times ranging from five to 

90 minutes.  In the case of ECAE 4A, three samples were annealed; one at 500°C for 

five minutes, one at 600°C for five minutes and the last at 600°C for 15 minutes.  In the 

case of ECAE 4E, two specimens were annealed for 90 minutes each, one at 450°C and 

the other at 500°C.  In the case of ECAE 8E, three specimens were annealed for 90 

minutes each, one at 400°C, another at 500°C and the last at 600°C. 

True-stress vs. true-strain plots from these annealed specimens are shown in Figures 

29 – 31.   

The plot for ECAE 4A (Figure 29) shows that a short anneal of 15 minutes at 600°C 

significantly reduces both YS and UTS values.  The true-stress vs. true-strain curve for 

ECAE 4A that has been annealed at 500°C for five minutes shows inferior values of YS 

and UTS.  When annealed for 600°C for five minutes, the true-stress vs. true-strain plot 

shows a decrease in YS and UTS in comparison to the as-processed sample.  The YS and 

UTS of the sample annealed for five minutes at 600°C is lower than those values for the 

sample annealed at 500°C for the same time. 

In the case of ECAE 4E the true-stress vs. true-strain plots of Figure 30 show a 

steady decrease in YS and UTS as the 90-minute annealing temperature increases. 

The true-stress vs. true-strain results for ECAE 8E are shown in Figure 31.  All of 

the tension specimens were annealed for 90 minutes in this case.  When annealed at 
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400°C the YS is slightly lower than the as-processed material, but the UTS values are 

both lower than the as-processed curves.  At 500°C the sample displays a YS lower than 

that of the 400°C sample, with a UTS that is almost identical to the YS.  At the highest 

annealing temperature, 600°C, the true-stress vs. true-strain curve shows similar 

behavior to the as-received curve.  At 600°C the ECAE 8E tension specimen displays 

somewhat improved YS and UTS, in comparison to the as-received sample. 
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Figure 29: True-stress vs. true-strain behavior of as-processed and annealed ECAE 4A IF steel 
 



  49

800

600

400

200

0

Tr
ue

 S
tre

ss
, M

Pa

6050403020100

True Strain, %

As Received
ECAE 4E
ECAE 4E (450C 90 min.)
ECAE 4E (500C 90 min.)

 
Figure 30: True-stress vs. true-strain behavior of as-processed and annealed ECAE 4E IF steel 
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Figure 31: True-stress vs. true-strain behavior of as-processed and annealed ECAE 8E IF steel 
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4.2. Hardness 

Vickers hardness measurements are taken for two reasons: first, to determine how 

different ECAE processing routes impacts the mechanical behavior of IF steel; second, 

to identify the temperature at which recrystallization occurs within the processed billets. 

 

4.3. Texture 

The objective of the texture analysis was to examine how different processing routes 

of ECAE impacted the preferred grain orientation in IF steel, and whether this preferred 

grain orientation might be responsible for some of the anisotropy we observe in 

mechanical properties. 

Pole figures and inverse pole figures are standard methods of visualizing textures.  

Inverse pole figures may be used to locate certain billet planes, such as the longitudinal, 

flow and transverse planes, with respect to the poles [001], [101], and [111].  All pole 

figures are oriented with the flow plane (1) normal to the bottom, the longitudinal plane 

(2) normal to the right, and the transverse plane (3) normal to the center.  In Figure 32 

these orientations are depicted in relation to a billet. 
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Figure 32: Notations of billet orientation used in texture analysis 
  

To obtain a baseline for comparison purposes, IF steel in its as-received condition 

was subjected to a texture analysis.  The pole figures of the as-received IF steel are 

shown in Figures 33 – 35. 

 
 

 

Figure 33: (110) Pole figure for as-received IF steel, direction 3 normal to plane of page 
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Figure 34: (200) Pole figure for as-received IF steel, direction 3 normal to plane of page 

 
 
 

 
Figure 35: (211) Pole figure for as-received IF steel, direction 3 normal to plane of page. 
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The inverse pole figures for the as-received material are shown in Figure 36.  There is a 

strong texture in the [111] and [001] orientation along axis 3, the transverse plane. 

 
 

 
Figure 36: Inverse pole figures for as-received IF steel 

 

 

This study had three samples of IF steel that were processed following Route A: 

ECAE 1A, ECAE 2A and ECAE 4A.  A sample processed using Route A does not 

undergo any rotation between passes. 

The [110] pole figures are shown in Figures 37 – 39.  The textures appear rotated by 

90° from the as-received specimen for the cases of ECAE 1A and ECAE 2A.  As 

processing continues, the intensity of the preferred texture increases.  In the case of 

ECAE 4A, the orientation of the texture of [110] appears similar, but is of a higher 

intensity, than that of the as-received sample. 
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Figure 37: (110) Pole figure of ECAE 1A IF steel, direction 3 normal to plane of page 

 
 
 

  
Figure 38: (110) Pole figure for ECAE 2A IF steel, direction 3 normal to plane of page 
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Figure 39: Pole figures for ECAE 4A IF steel (all orientations), direction 3 normal to plane of page 
  

For [200] there is little change in the preferred texture orientation from the as-

received specimen.  In Figures 39 – 41 the texture shows a general increase in peak 

magnitude as the number of passes increases.  
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Figure 40: (200) Pole figure for ECAE 1A IF steel, direction 3 normal to plane of page 
  

 

Figure 41: (200) Pole figure for ECAE 2A IF steel, direction 3 normal to plane of page 
  

For [211] the texture does not show a great deal of change from one case to another.  

Figures 42, 43 and 39 show the texture results for ECAE 1A, ECAE 2A and ECAE 4A, 

respectively.  Texture becomes stronger as the number of passes increase. 
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Figure 42: (211) Pole figure for ECAE 1A IF steel, direction 3 normal to plane of page 
  

 

Figure 43: (211) Pole figure for ECAE 2A IF steel, direction 3 normal to plane of page 
  

  

Inverse pole figures for the three samples processed using Route A are presented in 

Figures 44 – 46.  The inverse pole figures show a consistent strengthening in the textures 
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of [001] and [111] on the transverse plane.  There is also a gradual strengthening of the 

texture corresponding to [001] and [101] in both the flow and longitudinal planes.  The 

strength of the textures increased with the number of passes performed. 

 

 

Figure 44: Inverse pole figure for ECAE 1A IF steel 
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Figure 45: Inverse pole figure for ECAE 2A IF steel 
  

 

 

Figure 46: Inverse pole figure for ECAE 4A IF steel 
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 Two samples, ECAE 2B and ECAE 4B, were processed using Route B.  After the 

first extrusion pass, samples processed according to Route B are rotated +90° on the 

even-numbered passes, and -90° for the odd-numbered passes. 

The [110] pole figures for Route B are shown in Figures 47 – 48.  The preferred 

texture for ECAE 2B [110] shows a higher strength and is rotated 45° from the as-

received material.  The preferred texture for ECAE 4B [110] is the strongest, and shows 

a counter-rotation, back to the as-received orientation. 

 

 

Figure 47: (110) Pole figure for ECAE 2B IF steel, direction 3 normal to plane of page 
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Figure 48: Pole figures for ECAE 4B IF steel, direction 3 normal to plane of page 
 

Texture for [200] is shown in Figures 48 – 49 and shows a significant increase in 

texture strength between four and two passes, respectively, as well as a consolidation of 

texture.   

The pole figure for ECAE 2B [200] shows three separate preferred texture zones, 

while the pole figure for ECAE 4B [200] shows only a single, very strong region of 

preferred texture. 
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Figure 49: (200) Pole figure for ECAE 2B IF steel, direction 3 normal to plane of page 
 

The pole figures for [211] of the Route B samples are shown in Figure 48 and Figure 

50 for ECAE 4B and ECAE 2B, respectively. 

Two passes following Route B results in a fragmented texture of increased strength 

when compared to the as-received material.  Four passes following Route B results in a 

single [211] texture of greater magnitude. 
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Figure 50: (211) Pole figure for ECAE 2B IF steel, direction 3 normal to plane of page 
 

The inverse pole figures for ECAE 2B and ECAE 4B are shown in Figure 51 and 

Figure 52, respectively. 

Two passes using Route B produces preferred textures on the transverse plane in the 

[001] and [111] directions.  There is also a preferred texture on the longitudinal plane 

corresponding to [111], and a small zone of preferred texture on the flow plane near 

[101]. 

Four passes using Route B produces strong preferred textures on the transverse plane 

in the [001] and [111] directions.  Both the flow plane and longitudinal plane of ECAE 

4B show a some texture strengthening around [101]. 
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Figure 51: Inverse pole figures for ECAE 2B IF steel 
 

 

Figure 52: Inverse pole figures for ECAE 4B IF steel 
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Three samples, ECAE 2C, ECAE 4C and ECAE 8C, were processed following 

Route C.  After the first pass, the sample is rotated +180° on the even-numbered passes, 

and -180° on the odd-numbered passes. 

The pole figures for [110] are shown in Figures 53 – 55.  The texture associated with 

ECAE 2C [110] is rotated 45° from the as-received condition, and is not as strong as the 

as-received texture.  The texture orientations for ECAE 4C and ECAE 8C are nearly 

identical to the as-received material, but show significant increases in strength. 

 

 

Figure 53: (110) Pole figure for ECAE 2C IF steel, direction 3 normal to plane of page 
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Figure 54: Pole figures for ECAE 4C IF steel (all orientations), direction 3 normal to plane of page 
 

 

Figure 55: Pole figures for ECAE 8C IF steel (all orientations), direction 3 normal to plane of page 
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The pole figures for [200] (Figures 54 – 56) show two distinct regions of preferred 

texture in the case of ECAE 2C, as well as a decrease in the maximum recorded texture.  

The pole figures for ECAE 4C and ECAE 8C show a formation similar to that of the as-

received material, and a strengthening of the recorded texture strength. 

 

 

Figure 56: (200) Pole figure for ECAE 2C IF steel, direction 3 normal to plane of page 
 

The [211] pole figures for Route C show a consistent trend in preferred texture 

growth and strengthening.  The texture for ECAE 2C (Figure 57) is very similar to that 

of the as-received material and shows little strengthening.  In the case of ECAE 4C 

(Figure 54), the texture has consolidated and strengthened, a behavior that is continued 

with the texture of ECAE 8C (Figure 55). 



  68

 

Figure 57: (211) Pole figure for ECAE 2C IF steel, direction 3 normal to plane of page 
 

The inverse pole figures for Route C are shown in Figures 58 – 60.  Preferred 

textures are apparent on the transverse plane in all cases to a varying degree.  The 

strength of the preferred texture on the transverse plane in ECAE 2C is lower than that 

of the as-received material in general, and in particular around [001].  A single spot of 

preferred texture is observed on the longitudinal plane of ECAE 2C around [111] that is 

not found on any of the other specimens followed Route C.  Strong preferred texture 

signatures are visible on the transverse planes of ECAE 4C and ECAE 8C around [111] 

and [001].  The strength of the preferred texture observed in ECAE 8C is not as great as 

that of ECAE 4C. 
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Figure 58: Inverse pole figures for ECAE 2C IF steel 
 

 

Figure 59: Inverse pole figures for ECAE 4C IF steel 
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Figure 60: Inverse pole figures for ECAE 8C IF steel 
 

Two samples, ECAE 4C’ and ECAE 8C’, were processed according to Route C’.  

According to this method of processing, after the initial pass the sample is rotated +90° 

for each additional pass. 

The pole figures for Route C’ are shown in Figures 61 – 62.  The [110] texture 

shows a 45° rotation from the as-received sample to the ECAE 4C’ and then ECAE 8C’ 

sample.  The strength of the [110] texture shows a steady increase as the number of 

passes increases.  For the texture of [200] there is no change in structure from as-

received to ECAE 4C’ and ECAE 8C’, and the texture strength does not increase 

dramatically.  The texture of [211] shows a great deal of consolidation and strengthening 

as the number of Route C’ passes increase from the as-received condition. 
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Figure 61: Pole figures for ECAE 4C’ IF steel (all orientations), direction 3 normal to plane of page 

 
 

 

 
Figure 62: Pole figures for ECAE 8C’ IF steel (all orientations), direction 3 normal to plane of page 
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The inverse pole figures for Route C’ are shown in Figures 63 – 64.  Texture strength 

on the transverse plane around [001] and [111] is significantly stronger in ECAE 4C’ 

than ECAE 8C’, though both are stronger than the as-received material.  The flow plane 

and longitudinal plane do not show a great deal of strengthening, although the regions 

around [001] and [101] seem to be developing a preferred texture. 

 

 

Figure 63: Inverse pole figures for ECAE 4C’ IF steel 
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Figure 64: Inverse pole figures for ECAE 8C’ IF steel 
 

The pole figures for Route E are shown in Figures 65 – 67.  Three samples, ECAE 

4E, ECAE 8E and ECAE 16E, were processed using Route E.  The processing of Route 

E involves rotating the billet +180° after the initial pass and for the even-numbered 

passes, then -90° for the odd-numbered passes. 

The pole figures for Route E [110] show little change in orientation from one 

specimen to the next, and all of the samples using this processing route have a stronger 

preferred texture when compared to the as-received sample.  The highest recorded 

preferred texture was observed in ECAE 8E, with the other two samples being somewhat 

weaker, but of similar value to each other. 
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Examination of the texture of [200] shows no major changes in texture orientation 

from one sample to the next.  There appears to be a general consolidation and 

strengthening in texture as the number of passes increase. 

In the case of [211] the texture undergoes a noticeable evolution and strengthening 

beginning with ECAE 4E and ending with ECAE 16E.  A somewhat diffuse preferred 

texture can be observed in ECAE 4E, which develops and strengthens into ECAE 8E.  

The texture for ECAE 16E shows a large area of preferred texture, as well as a 

surrounding zone of strong texture. 

 

 

Figure 65: Pole figure for ECAE 4E IF steel (all orientations), direction 3 normal to plane of page 
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Figure 66: Pole figures for ECAE 8E IF steel (all orientations), direction 3 normal to plane of page 

 
 

 

 
Figure 67: Pole figures for ECAE 16E IF steel (all orientations), direction 3 normal to plane of page 
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The inverse pole figures for Route E are presented in Figures 68 – 70.  Strong 

preferred textures exist on the transverse plane around [001] and [111], with the 

strongest textures belonging to ECAE 8E, then ECAE 16E and finally ECAE 4E.  Some 

degree of texture formation may be observed on both the flow and longitudinal planes 

around [001] and [101], though these textures do not display the strength or 

concentration as those seen on the transverse plane. 

 

 

Figure 68: Inverse pole figures for ECAE 4E IF steel 
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Figure 69: Inverse pole figures for ECAE 8E IF steel 

 
 

 

 
Figure 70: Inverse pole figures for ECAE 16E IF steel 
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In summary, the texture data indicates ECAE processing of IF steel produces strong 

texture in the [111] and [001] directions on the transverse plane. 

 

4.4. Electron Microscopy 

The use of transmission electron microscopy makes possible an examination of the 

internal structure of the materials used in this study.  Thin foils of the different bulk 

samples are prepared by first grinding and then electropolishing the material.  Foil 

thickness is dictated by the amount of energy the incoming electrons possess.  Thin foils 

from each sample used in this study were evaluated using transmission electron 

microscopy. 

Electron microscope images of the as-received IF steel are presented in Figures 71 – 

72.  The grain size in the as-received material is so large that the TEM could not observe 

a whole grain, even at the lowest magnification.  At intermediate magnification (Figure 

72) it was possible to observe dislocations in the as-received material.  Some features 

which resemble “dark spots” may be artifacts from sample preparation, carbide 

precipitates, or some dislocation phenomenon.  Such features deserve further study. 
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Figure 71: Low magnification TEM image of as-received IF steel (white bar = 5 μm) 

 
 
 
 

 
Figure 72: Medium magnification TEM image of as-received IF steel showing dislocations (white 

bar = 500 nm) 
 

Electron micrographs of ECAE 1A IF steel are shown in Figures 73 – 76.  At low 

magnification (Figure 73) an elongated subgrain structure, the result of ECAE 

processing, is clearly visible.  The subgrain size is on the order of 500 nm. 

An electron micrograph from another region of the sample (Figure 74) with slightly 

higher magnification shows similar elongated subgrains.  The significant change in 

contrast show large misorientation between the regions that may correspond to 
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microshear banding.  In each region, further contrast change is visible, which is an 

indication of small misorientation.  This small misorientation between the regions, on 

the order of a few hundred nm in size, corresponds to subgrain or cell formation in each 

microshear banding. 

 

 
Figure 73: Low magnification TEM image of ECAE 1A IF steel (white bar = 2 μm) 

 
 

 

 
Figure 74: Low magnification TEM dark field image of ECAE 1A IF steel (black bar = 1 μm) 
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Structures within the zones of high dislocation density begin to appear as the 

magnification is increased (Figure 75).  These appear as speckles or “spots” within the 

dark, high dislocation density zones in the electron micrographs, and are visible inside 

the circled region of Figure 75. 

 

 

Figure 75: TEM dark field image of high dislocation density zones within ECAE 1A IF steel (black 
bar = 500 nm).  Circled region contains “dark spots” 

 

At even higher magnification within the zone of high dislocation density the “spots” 

are clearly visible (Figure 76) and well defined.  These spots may be associated with 

very small carbides or interstitial-vacancy pairs which form upon dislocation 

annihilation [3]. 
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Figure 76: High magnification TEM dark field image of “dark spots” in ECAE 1A 
(black bar = 200 nm) 



  83

Transmission electron microscopy images of ECAE 2A sample material is presented 

in Figures 77 – 78.  At low magnifications the grain structure appears elongated and 

homogenous. 

 

 

Figure 77: Low magnification TEM image of ECAE 2A IF steel (white bar = 2 μm) 



  84

At higher magnifications (Figure 78) it is possible to observe the grains that show 

moderate dislocation densities and distinguish individual dislocations.  It can be seen in 

the image that dislocations have formed walls and occasional dislocation cells.  Grains 

with lower dislocation density appear lighter in color, while darker grains have a higher 

dislocation density. 

 

 

Figure 78: High magnification TEM image of ECAE 2A IF steel (white bar = 200 nm) 
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Transmission electron micrographs of ECAE 2B sample are shown in Figures 79 – 

80.  The subgrain structure (Figure 79) is homogeneous and elongated at a low 

magnification.  The low quality of the image is partly caused by the very low 

magnification. 

 

 

Figure 79: Low magnification TEM image of ECAE 2B IF steel (white bar = 2 μm) 
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At very high magnifications it is possible to observe individual dislocations within 

the subgrains (Figure 80).  On the left side of the image is a small cluster of the “dark 

spots.” 

 

 

Figure 80: High magnification TEM image of ECAE 2B IF steel (white bar = 100 nm) 
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Electron micrographs of IF steel processed under ECAE 2C are shown in Figures 81 

– 82.  At very low magnification the image quality is not optimal, but it is still possible 

to observe homogenous, elongated subgrains in the foil.  The aspect ratio of the 

subgrains are considerably lower than the 2A and 2B cases.  The 2C case is expected to 

result in equiaxed structures, but it is obvious from the image, and from other Route C 

and E cases, that the last pass is always the decisive step in final subgrain morphology. 

 

 

Figure 81: Low magnification TEM image of ECAE 2C IF steel (white bar = 2 μm) 
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At very high magnification (Figure 82) it is possible to observe the subgrain/cell 

boundaries, as well as individual dislocations within the subgrains.  Subgrain/cell 

interiors are relatively free of dislocations.  The visible refinement is significant. 

 

 

Figure 82: High magnification TEM image of ECAE 2C IF steel (white bar = 100 nm) 
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Transmission electron microscope images of ECAE 4A IF steel is presented in 

Figures 83 – 85.  A very low magnification micrograph is shown in Figure 83.  At such a 

low magnification the geometry of the foil has a negative impact on image quality.  The 

grains show significant elongation. 

 

 

Figure 83: Low magnification TEM image of ECAE 4A IF steel (white bar = 2 μm) 
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Another region of the foil was examined at slightly higher magnification.  This low 

magnification image (Figure 84) shows an elongated microstructure and somewhat 

improved image quality.  Subgrains seem to be developed further as compared to two 

pass cases, with more distinguishable subgrain boundaries and clearer interiors. 

 

 

Figure 84: Low magnification TEM image of ECAE 4A IF steel (white bar = 1 μm) 
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At intermediate magnification, individual cells and the dislocations within them 

become visible.  The TEM micrograph of Figure 85 clearly shows high dislocation 

density cell walls. 

 

 

Figure 85: Intermediate magnification TEM image of ECAE 4A IF steel (white bar = 500 nm) 
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A high magnification TEM micrograph from the elongated cell structures of the 

ECAE 4A foil is presented in Figure 86.  Many dislocations are visible and the cell walls 

are more distinguishable. 

 

 

Figure 86: High magnification TEM image of ECAE 4A IF steel (white bar = 200 nm) 
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Transmission electron microscope images from a sample obtained from ECAE 4B 

processed IF steel are presented in Figures 87 – 89.  At very low magnifications (Figure 

87) the image is not of the highest quality.  The image shows grains that are not very 

homogeneous, with some grains being elongated, and others equiaxial in nature.  As 

compared to previous cases, the further microstructural refinement is evident, which is a 

consequence of cross-shearing between the passes. 

 

 

Figure 87: Low magnification TEM image of ECAE 4B IF steel (white bar = 2 μm) 
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At intermediate magnification within the region of equiaxed grains a high dislocation 

density is observed (Figure 88).  The structure is no longer elongated. 

 

 

Figure 88: Intermediate magnification TEM image of ECAE 4B IF steel (white bar = 500 nm) 
 

At very high magnifications (Figure 89) it is possible to observe individual 

dislocations.  Dislocation buildups are visible on the left-hand side of the image near the 

subgrain boundaries.  Increasing the magnification is problematic because of the natural 



  95

magnetic properties of IF steel, which act as a sort of weak lens and interfere with the 

resolution of the electron microscope. 

 

 

Figure 89: High magnification TEM image of ECAE 4B IF steel (white bar = 100 nm) 
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Electron micrographs for IF steel processed using ECAE 4C are presented in Figures 

90 – 91.  At relatively low magnification (Figure 90), the structure of ECAE 4C consists 

of mixed shapes.  There is long band of large, equiaxed cells just below the center of the 

image.  The region is bordered by zones of high dislocation density.  There are 

indications of the formation of subgrains/grains, as shown in the image. 

 

 

Figure 90: Low magnification TEM image of ECAE 4C IF steel (white bar = 1 μm) 
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At high magnifications (Figure 91) it is possible to observe the distribution of 

dislocation densities in a localized area.  Some cells do not clearly show dislocations 

because they are out of contrast in the image.  Rotating the sample reveals the 

dislocations. 

 

 

Figure 91: High magnification TEM image of ECAE 4C IF steel (white bar = 500 nm) 
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Electron micrographs of IF steel processed using ECAE 4E are presented in Figures 

92 – 93.  At low magnification (Figure 92) the grains appear equiaxial as expected, with 

little tilt between them. 

 

 

Figure 92: Low magnification TEM image of ECAE 4E IF steel (white bar = 2 μm) 
 

 



  99

At high magnification (Figure 93) it is possible to observe individual cells and 

dislocations.  The central area of the image shows an area with dislocation cell walls that 

are not well defined. 

 

 

Figure 93: High magnification TEM image of ECAE 4E IF steel (white bar = 200 nm) 
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Transmission electron micrographs from IF steel samples processed using ECAE 8E 

are shown in Figures 94 – 96.  At very low magnifications (Figure 94) there is a large 

amount of homogeneity visible with clear refinement as compared to two and four pass 

cases. 

 

 

Figure 94: Low magnification TEM image of ECAE 8E IF steel (white bar = 2 μm) 
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 At intermediate magnifications (Figure 95) it is possible to see well defined 

subgrain boundaries. 

 

 

Figure 95: Intermediate magnification TEM image of ECAE 8E IF steel (white bar = 500 nm) 
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At high magnification (Figure 96) it is possible to observe boundaries that have the 

appearance of fine subgrains, with well defined dislocation networks.  An excellent 

example of a dislocation network is visible just above center in the image below. 

 

 

Figure 96: High magnification image of ECAE 8E IF steel (white bar = 200 nm) 
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Transmission electron microscope images of the sample taken from the IF steel 

processed using ECAE 16E is presented in Figures 97 – 99.  At very low magnification 

the image quality is poor, due to geometrical issues with the foil previously mentioned.  

There are no large inhomogeneities present, and the grains are small and equiaxed.  As 

compared to the 8E case, the structure (i.e. subgrain size) seems to be larger.  This may 

be an indication of the saturation of internal energy storage due to new dislocation 

generation.  The material minimizes its energy transformation of more stable dislocation 

configurations.  It is likely that dislocation generation and annihilation occur with similar 

rates.  This behavior is usually observed during SPD of pure metals in which it is 

difficult to store additional dislocations due to easy annihilation. 

 

 

Figure 97: Low magnification TEM image of ECAE 16E IF steel (white bar = 2 μm) 
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At intermediate magnification (Figure 98) the grains show well developed 

boundaries.  The micrograph shows that many of the grains are in the sub-500 nm size 

range. 

 

 

Figure 98: Intermediate magnification TEM image of ECAE 16E IF steel (white bar = 500 nm) 
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At high magnification (Figure 99) individual dislocations become visible.  There is a 

dislocation network visible in the center of the image.   

 

 

Figure 99: High magnification TEM image of ECAE 16E IF steel (white bar = 200 nm) 
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4.5. Recrystallization Curves 

Measuring the microhardness of each annealed sample from different ECAE routes 

was the first step in determining the recrystallization temperature.  During 

recrystallization, the material’s hardness decreases due to recovery and recrystallization.  

When a material is annealed at the recrystallization temperature, there is a loss in 

hardness.  Elevating the temperature permits enhanced atomic diffusion, which allows 

new grains to form.  The Vickers hardness measurements taken in this study are 

presented in Table 6.  Eight hardness measurements were taken, and the average and 

standard deviation are included.  The average hardness values are used to construct the 

recrystallization curves and to identify the recrystallization temperature.  The standard 

deviation shows the uniformity of hardness at a given annealing temperature. 

 

Table 6: Vickers hardness measurements taken for the construction of recrystallization curves 
Route Annealing Temperature (degrees C) 1 2 3 4 5 6 7 8 Average Deviation

23 171 157 159 150 181 165 179 171 166.6 10.9
100 185 177 188 177 173 178 186 177 180.1 5.4
200 180 188 186 174 183 171 177 189 181.0 6.6
300 177 190 187 188 186 192 181 179 185.0 5.4
350 162 157 167 149 168 159 169 162 161.6 6.7
400 169 155 158 166 161 162 168 164 162.9 4.9
450 160 155 157 157 158 153 160 164 158.0 3.4
500 167 153 159 154 148 151 154 157 155.4 5.8
550 145 148 157 154 148 153 151 156 151.5 4.2
600 81 74 71 68 71 80 84 71 75.0 5.9
700 71 71 68 66 70 67 69 67 68.6 1.9

1A
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Table 6. (continued) 

Route Annealing Temperature (degrees C) 1 2 3 4 5 6 7 8 Average Deviation
23 172 183 183 180 177 177 175 173 177.5 4.2
100 193 176 185 183 184 196 196 199 189.0 8.1
200 171 168 174 180 165 146 170 173 168.4 10.1
300 157 165 162 160 166 170 159 154 161.6 5.2
350 199 189 187 177 194 184 191 188 188.6 6.6
400 178 173 187 171 182 176 185 185 179.6 6.0
450 144 157 161 158 140 162 159 153 154.3 8.1
500 153 149 155 151 156 142 149 158 151.6 5.1
550 141 136 142 134 133 141 143 139 138.6 3.8
600 75 75 77 78 79 75 75 77 76.4 1.6
700 68 66 68 66 66 70 66 66 67.0 1.5

Route Annealing Temperature (degrees C) 1 2 3 4 5 6 7 8 Average Deviation
23 191 197 190 190 196 189 183 192 191.0 4.3
100 185 195 204 188 193 198 191 197 193.9 6.0
200 190 198 196 201 193 191 200 200 196.1 4.3
300 194 186 197 193 183 190 192 182 189.6 5.4
350 181 185 183 196 187 187 190 182 186.4 4.9
400 188 184 180 187 185 185 180 186 184.4 3.0
450 185 180 175 176 171 180 184 172 177.9 5.2
500 169 159 164 161 164 164 173 163 164.6 4.4
550 140 137 135 134 133 142 146 136 137.9 4.5
600 73 74 74 73 70 74 71 71 72.5 1.6
700 66 66 65 66 67 67 65 67 66.1 0.8

Route Annealing Temperature (degrees C) 1 2 3 4 5 6 7 8 Average Deviation
23 213 186 198 200 201 198 191 199 198.3 7.9
100 177 196 210 201 198 189 206 196 196.6 10.2
200 192 193 186 202 196 190 196 195 193.8 4.7
300 198 189 201 193 192 189 199 194 194.4 4.5
350 201 187 200 189 200 184 191 188 192.5 6.8
400 182 180 186 186 182 192 187 189 185.5 4.0
450 181 174 185 189 178 189 182 184 182.8 5.2
500 172 162 163 169 161 171 171 169 167.3 4.5
550 140 131 131 136 141 148 135 148 138.8 6.8
600 72 70 71 74 74 74 71 74 72.5 1.7
700 69 69 69 69 67 66 66 68 67.9 1.4

2A

2B

2C
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Table 6. (continued) 

Route Annealing Temperature (degrees C) 1 2 3 4 5 6 7 8 Average Deviation
23 190 205 197 193 204 191 197 197 196.8 5.5
100 200 202 195 201 199 198 199 202 199.5 2.3
200 200 193 195 201 196 196 191 203 196.9 4.1
300 191 195 195 191 205 195 198 199 196.1 4.6
350 202 199 198 198 200 200 196 197 198.8 1.9
400 187 185 183 193 189 191 190 192 188.8 3.5
450 179 184 179 182 181 186 177 183 181.4 3.0
500 167 156 157 166 165 166 168 161 163.3 4.7
550 140 140 141 136 147 138 144 142 141.0 3.4
600 73 73 72 73 73 72 73 72 72.6 0.5
700 66 67 65 67 66 67 67 67 66.5 0.8

Route Annealing Temperature (degrees C) 1 2 3 4 5 6 7 8 Average Deviation
23 204 209 202 201 211 205 209 205 205.8 3.6
100 196 207 203 205 203 207 207 204 204.0 3.7
200 202 198 195 206 204 204 201 207 202.1 4.1
300 193 193 198 201 203 197 197 205 198.4 4.4
350 201 201 203 199 205 203 206 204 202.8 2.3
400 192 203 200 204 202 198 207 195 200.1 4.9
450 186 197 189 195 187 188 186 187 189.4 4.2
500 174 172 168 173 170 169 167 174 170.9 2.7
550 128 126 126 130 132 127 130 133 129.0 2.7
600 77 74 74 75 73 73 76 75 74.6 1.4
700 68 70 68 68 67 66 65 66 67.3 1.6

Route Annealing Temperature (degrees C) 1 2 3 4 5 6 7 8 Average Deviation
23 204 207 208 205 206 207 205 201 205.4 2.2
100 197 206 217 213 202 203 203 205 205.8 6.4
200 207 213 208 201 213 213 201 208 208.0 5.0
300 202 190 202 203 192 202 201 203 199.4 5.2
350 210 205 206 202 202 209 205 198 204.6 3.9
400 196 196 199 196 198 197 186 199 195.9 4.2
450 186 180 180 185 180 188 185 187 183.9 3.4
500 170 170 162 168 175 177 171 164 169.6 5.0
550 145 142 144 144 142 143 143 142 143.1 1.1
600 75 74 75 75 75 76 76 77 75.4 0.9
700 69 69 69 67 68 70 67 70 68.6 1.2

4A

4B

4C
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Table 6. (continued) 

Route Annealing Temperature (degrees C) 1 2 3 4 5 6 7 8 Average Deviation
23 212 202 206 205 203 207 216 210 207.6 4.7
100 204 204 200 200 208 200 202 200 202.3 2.9
200 219 218 212 198 212 206 200 203 208.5 8.0
300 208 206 202 208 213 209 204 208 207.3 3.3
350 213 199 202 204 207 210 208 208 206.4 4.5
400 201 197 198 196 192 200 193 199 197.0 3.2
450 191 190 194 187 187 190 187 197 190.4 3.6
500 169 167 168 170 167 169 169 172 168.9 1.6
550 131 128 131 136 129 131 131 131 131.0 2.3
600 78 79 79 80 78 77 79 78 78.5 0.9
700 67 69 70 69 71 69 71 68 69.3 1.4

Route Annealing Temperature (degrees C) 1 2 3 4 5 6 7 8 Average Deviation
23 197 199 201 197 196 197 208 203 199.8 4.1
100 200 195 187 195 199 199 198 195 196.0 4.2
200 202 203 201 197 200 200 197 196 199.5 2.6
300 205 198 188 201 204 189 194 203 197.8 6.7
350 191 191 194 196 201 188 189 194 193.0 4.2
400 190 190 185 194 195 189 190 178 188.9 5.4
450 184 186 179 187 183 180 190 186 184.4 3.7
500 168 168 166 167 162 165 166 170 166.5 2.4
550 139 148 128 142 141 124 129 132 135.4 8.3
600 70 72 73 71 71 72 73 74 72.0 1.3
700 67 66 65 65 65 67 67 67 66.1 1.0

Route Annealing Temperature (degrees C) 1 2 3 4 5 6 7 8 Average Deviation
23 219 222 219 202 213 212 222 220 216.1 6.8
100 214 212 219 222 222 219 215 216 217.4 3.7
200 227 220 221 225 220 224 221 217 221.9 3.2
300 220 213 222 215 223 213 214 210 216.3 4.8
350 205 213 208 215 206 205 210 218 210.0 4.9
400 208 210 210 208 214 212 207 208 209.6 2.4
450 192 193 199 193 195 192 198 197 194.9 2.8
500 167 176 174 176 170 176 168 174 172.6 3.7
550 133 131 135 134 136 135 132 137 134.1 2.0
600 82 81 83 84 83 85 84 82 83.0 1.3
700 67 68 67 69 67 69 68 67 67.8 0.9

4C'

4E

8C
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Table 6. (continued) 

Route Annealing Temperature (degrees C) 1 2 3 4 5 6 7 8 Average Deviation
23 226 228 231 227 229 227 230 228 228.3 1.7
100 223 224 226 224 225 224 225 224 224.4 0.9
200 226 227 230 231 230 231 232 229 229.5 2.1
300 234 229 233 228 232 236 230 233 231.9 2.7
350 229 226 227 227 230 229 229 230 228.4 1.5
400 220 220 218 221 217 220 218 216 218.8 1.8
450 206 211 210 208 213 210 208 205 208.9 2.6
500 180 180 181 178 179 181 178 182 179.9 1.5
550 124 121 123 123 122 123 124 125 123.1 1.2
600 85 84 83 83 84 86 84 85 84.3 1.0
700 74 75 74 72 72 74 73 72 73.3 1.2

Route Annealing Temperature (degrees C) 1 2 3 4 5 6 7 8 Average Deviation
23 216 210 216 212 213 217 212 221 214.6 3.5
100 205 210 213 204 211 214 208 205 208.8 3.8
200 216 211 217 221 211 209 220 207 214.0 5.2
300 211 214 206 204 209 213 209 211 209.6 3.4
350 206 208 204 207 208 198 206 205 205.3 3.2
400 204 203 204 204 200 204 200 203 202.8 1.8
450 193 190 188 189 195 195 190 193 191.6 2.7
500 170 176 170 177 175 175 171 178 174.0 3.2
550 124 129 126 131 125 129 126 125 126.9 2.5
600 81 80 79 81 79 81 81 81 80.4 0.9
700 70 69 67 68 66 69 69 69 68.4 1.3

Route Annealing Temperature (degrees C) 1 2 3 4 5 6 7 8 Average Deviation
23 202 205 204 200 200 199 199 207 202.0 3.0
100 198 197 193 199 196 199 192 197 196.4 2.6
200 209 218 213 211 216 212 220 216 214.4 3.7
300 199 199 199 201 201 198 198 205 200.0 2.3
350 209 210 213 207 212 213 209 211 210.5 2.1
400 213 207 211 210 212 207 208 204 209.0 3.0
450 200 197 198 198 195 195 196 199 197.3 1.8
500 162 160 162 159 161 158 158 160 160.0 1.6
550 127 122 118 128 124 121 121 126 123.4 3.5
600 79 78 78 79 78 79 81 78 78.8 1.0
700 72 72 71 69 71 69 68 68 70.0 1.7

8E

16E

8C'
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It is possible to determine the temperatures at which recrystallization occurs once the 

hardness tables are converted into graphical format.  The recrystallization curves all 

show similar behavior for the various processing routes that were used in this study.  

There are three major zones of interest in the hardness curves.  The first zone begins at 

room temperature and ends between 400°C and 450°C.  The hardness within this first 

zone generally remains constant, but may show slight increases or decreases in 

magnitude, depending on the route and number of passes.  Further examination of this 

first zone will be covered later.  The second zone begins where the first zone ends, and 

ends at approximately 600°C.  The hardness values within this second zone decrease due 

to recrystallization.  Beyond the 600°C mark is the third zone, where hardness values 

decrease gradually or level out.  This third zone terminates at 700°C, and corresponds to 

the zone in which grain growth occurs.  The ECAE 1A case stands out in particular, and 

does not conform to the standard three-zone structure that the other routes follow.  In the 

case of ECAE 1A, the hardness gradually increases from room temperature up to 300°C, 

then suddenly decreases between 300°C and 350°C, after which it stays almost constant, 

though with a very gradual negative slope until 550°C.  Once ECAE 1A reaches a 

temperature of 550°C, the hardness values rapidly decrease until the 600°C mark is 

reached.  Beyond 600°C the hardness values are more or less stable, though they do 

show a slight decrease associated with grain growth.  Another processing route that 

shows unusual behavior is ECAE 2A, which shows an increase in hardness between 

room temperature and 100°C, a gradual decrease between 100°C and 300°C, followed 

by a “hump” between 300°C and 450°C.  Beyond this “hump” the materials hardness 
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gradually decreases from 450°C to 550°C, after which it shows a sudden decrease in 

hardness due to recrystallization.  Grain growth begins at 600°C and continues through 

to the 700°C point with the standard gradual decrease in hardness.  Route 16E shows a 

series of “waves” in its hardness values between the temperatures of 100°C and 300°C, 

and again between 300°C and 450°C, with a normal recrystallization and grain growth 

behavior following.  Figures 100 through 112 show the recrystallization curves for the 

materials used in this study. 

Variations in hardness prior to the onset of recrystallization may be explained by two 

factors.  The first factor is the location of the specimens used for the recrystallization and 

hardness testing, specifically their location within the billet.  Not all of the specimens 

were cut from exactly the same location in each billet, although they were from 

theoretically uniformly deformed regions.  The variation in hardness after low 

temperature annealing could simply be an indication of strain localization during 

extrusion such that the level of strain imposed may vary from specimen to specimen 

within each case.  The second factor is a phenomenon known as polygonization [32], in 

which dislocations within locally bent crystals rearrange themselves during annealing to 

form sub-boundaries, producing a more orderly and stable structure.  This structure may 

cause an increase in the measured hardness. 
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Figure 100: 90-minute recrystallization curve for IF steel processed via ECAE 1A 
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Figure 101: 90-minute recrystallization curve for IF steel processed via ECAE 2A 
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Figure 102: 90-minute recrystallization curve for IF steel processed via ECAE 2B 
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Figure 103: 90-minute recrystallization curve for IF steel processed via ECAE 2C 
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Figure 104: 90-minute recrystallization curve for IF steel processed via ECAE 4A 
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Figure 105: 90-minute recrystallization curve for IF steel processed via ECAE 4B 
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Figure 106: 90-minute recrystallization curve for IF steel processed via ECAE 4C 
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Figure 107: 90-minute recrystallization curve for IF steel processed via ECAE 4C’ 
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Figure 108: 90-minute recrystallization curve for IF steel processed via ECAE 4E 

 
 
 

0.0

50.0

100.0

150.0

200.0

250.0

0 100 200 300 400 500 600 700 800

Annealing Temperature (Degrees C)

H
v

 
Figure 109: 90-minute recrystallization curve for IF steel processed via ECAE 8C 
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Figure 110: 90-minute recrystallization curve for IF steel processed via ECAE 8C’ 
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Figure 111: 90-minute recrystallization curve for IF steel processed via ECAE 8E 
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Figure 112: 90-minute recrystallization curve for IF steel processed via ECAE 16E 

 
  

All of the processing routes examined in this study show a consistent 

recrystallization temperature of 600°C, although the temperature at which 

recrystallization begins varies, as shown in Table 7. 
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Table 7: Temperature ranges of three annealing regimes for the processing routes studied 
Route Recovery Zone Recrystallization Zone Grain Growth Zone

1A RT - 550C 550 - 600C
2A RT - 550C 550 - 600C
2B RT - 450C 450 - 600C
2C RT - 450C 450 - 600C
4A RT - 450C 450 - 600C
4B RT - 400C 400 - 600C
4C RT - 400C 400 - 600C
4C' RT - 450C 450 - 600C
4E RT - 450C 450 - 600C
8C RT - 400C 400 - 600C
8C' RT - 400C 400 - 600C
8E RT - 400C 400 - 600C

16E RT - 450C 450 - 600C

600 - 700C

 

 

It is interesting to note the fluctuation in some of the hardness values that were 

recorded.  Cases such as ECAE 1A, ECAE 2A and ECAE 16E, which show fluctuations 

in their pre-recrystallization hardness values, are of particular interest, since these 

fluctuations are not seen in the plots of other processing routes.  These fluctuations may 

be attributed to the specimen location within the billet.  All hardness specimens were 

taken from a position close to the centerline of their source billet.  The orientation of the 

shear plane, as shown in Figure 8 in Section 2, and by association the fully worked zone, 

can change from one pass to another during processing.  Hardness values between the 

fully worked zones and the outer zones would not necessarily be the same after 

annealing, and this could account for the behavior shown in the pre-recrystallization 

regions of the samples from ECAE 1A, 2A and 16E. 
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4.6. Microstructures 

Once all of the necessary steps were completed, optical examination of specimens of 

IF steel that had been subjected to various ECAE routes, as well as post-process 

annealing, was performed.  The specific cases examined were: ECAE 1A, ECAE 2A, 

ECAE 2B, ECAE 2C, ECAE 4A, ECAE 4B, ECAE 4C’, ECAE 8C’ and ECAE 16E.  

Material that was in an as-received condition was also examined for comparison 

purposes.  Each case consisted of three specimens, each one corresponding to an 

annealing condition: one in the as-processed condition; one annealed for 90 minutes at 

550°C; and one annealed for 90 minutes at 700°C. 

Figures 113 and 114 show two optical micrographs of IF steel in the as-received 

condition.  Figure 113 is a low magnification overview, with large grains of 

approximately 350 μm clearly visible.  Figure 114 is a higher magnification view, 

showing unusual “fiber” structures.  These fibers may be the result of veining, an 

imperfection in which fcc iron transforms to bcc iron [37], or they may represent another 

structure within the as-received material, such as an unusual concentration of carbon in 

the zone of observation.  It could also be possible that the structures in question are 

artifacts of the polishing process. 
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Figure 113: Low magnification optical micrograph of as-received IF steel 
 

 

Figure 114: Optical micograph showing “fiber” structures on as-received IF steel 
 

The optical microscopy of the heat-treated samples shows a very noticeable 

difference in the resulting microstructures between the specimens examined in an as-

processed condition and those which were subjected to an annealing heat treatment 
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corresponding roughly to their grain growth temperature.  Figures 115 – 116 show 

representative optical micrographs of IF steel specimens at room temperature and 

annealed at 700°C for 90 minutes.  The micrographs of all samples and annealing 

schedules can be found in the appendix.   

 

 

(a) 

 

(b) 

Figure 115: Microstructures of ECAE 1A IF steel. (a) as-processed, (b) annealed for 90 minutes at 
700°C 
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(a) 

 

(b) 

Figure 116: Microstructures of ECAE 8C’ IF steel. (a) as-processed, (b) annealed for 90 minutes at 
700°C 
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During the optical examination of the as-processed IF steel specimens, it was 

observed that in some cases very little clear grain structure could be seen.  The severe 

plastic deformation caused by ECAE resulted in optical images with little or no 

observable grains (Figure 117). 

 

 

Figure 117: Optical micrograph of ECAE 2C IF steel showing worked structure 
 

Figures 118 – 122 show the microstructures of ECAE processed IF steel following 

the Routes 1A, 2A, 4A, 4C’, and 8C’.  Optical microscopy was performed on the flow 

plane of these specimens for three different temperature conditions.  All heat treatments 

lasted 90 minutes.  Figure 118 shows the microstructures of ECAE 1A processed IF 

steel.  Figure 118 (a) shows the elongated structure associated with Route A.  The 

nucleation of new grains is visible in Figure 118 (b) by 550°C.  These nucleation sites 

appear along the slip lines.  The discolored areas in Figure 118 (b) and Figure 119 (b) 
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are artifacts of the etching process.  The formation of new crystals from these nuclei 

occurs mostly in regions of high strain energy, such as the intersections of slip lines and 

areas near grain boundaries.  At 700°C, the structure has been consumed by new grains, 

as shown in Figure 118 (c).  The new grains form in regions of severe localized 

deformation. 

 

 
(a) 

 
 

 
(b) 

 
Figure 118: Optical micrographs of ECAE 1A IF steel. (a) as-processed, (b) annealed at 550°C 
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(c) 

 
Figure 118: Continued. (c) annealed at 700°C 

 

 

 
(a) 

 
Figure 119: Optical micrographs of ECAE 2A IF steel. (a) as-processed 
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(b) 

 

 
(c) 

 
Figure 119: Continued. (b) annealed at 550°C, (c) annealed at 700°C 
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(a) 

 

 
(b) 

 
Figure 120: Optical micrographs of ECAE 4A IF steel. (a) as-processed, (b) annealed at 550°C 



  130

 
(c) 

Figure 120: Continued. (c) annealed at 700°C 

  

Materials processed using Route C’ demonstrate a different microstructure.  The 

microstructure obtained at room temperature is more equiaxed in this route, especially at 

high numbers of passes.  At low numbers of passes, i.e. ECAE 4C’ (Figure 121), a 

certain amount of filamentary structure is still visible, but this is almost completely 

unobservable by ECAE 8C’ (Figure 122). 

Nucleation of the new grains has started to occur at 550°C, with the nucleation sites 

developing preferentially along the slip lines of Route C’.  As in Route A, grain growth 

has occurred at 700°C.  The grains depicted in Figure 121 (c) and Figure 122 (c) show 

grains of similar size distribution. 
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(a) 

 

 
(b) 

 
Figure 121: Optical micrographs of ECAE 4C’ IF steel. (a) as-processed, (b) annealed at 550°C 
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(c) 

Figure 121: Continued. (c) annealed at 700°C 

 

 
(a) 

 
Figure 122: Optical micrographs of ECAE 8C’ IF steel. (a) as-processed 
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(b) 

 

 
(c) 

 
Figure 122: Continued. (b) annealed at 550°C, (c) annealed at 700°C 

 

Figures 118 – 122 show that grain size increases with increasing temperature, given 

a constant annealing time.  Grain growth lowers surface energy, which means that 
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growth should slow over time given a constant temperature.  At high temperatures, 

samples that were processed with lower levels of strain energy displayed a somewhat 

inhomogeneous structure.  This may be caused by grains that, having already achieved a 

low surface energy, continue to grow and consume neighboring grains. 

Highly worked structures, such as those of ECAE 4C’ and ECAE 8C’ present 

numerous sites from which nuclei may form.  The subsequent grain growth results in a 

more homogeneous structure at elevated temperature.   

Image manipulation software and a supplemental “plug in” called Image Pro Tool 

Kit (IPTK) were used to determine the grain area for all specimens that were annealed at 

700°C.  Calculating grain boundaries was accomplished through a procedure involving 

the reduction of an optical micrograph to a tracing of grain boundaries (Figures 123 – 

124).  This “skeleton” image is then put through a global measuring stage within IPTK, 

resulting in a file containing a large quantity of data relevant to the image. 

 

 

Figure 123: Optical micrograph of ECAE 16E IF steel annealed at 700°C for 90 minutes 
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Figure 124: A “skeleton” image of the grain structure of ECAE 16E IF steel annealed at 700°C for 
90 minutes 

 

Grain area data was collected from the IPTK output file and imported into Microsoft 

Excel.  With the Excel program, the grain area data was sorted using Boolean operations 

to produce information that was used to create a histogram of the grain areas.  Figures 

125 – 133 show the resulting histograms for all of the optical microscopy specimens that 

were annealed at 700°C for 90 minutes.  The grain area, and not its size, was used in this 

study because the shape of the grains was neither square nor circular.
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Figure 125: Grain size distribution for ECAE 1A IF steel annealed at 700°C for 90 minutes 
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Figure 126: Grain size distribution for ECAE 2A IF steel annealed at 700°C for 90 minutes 
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Figure 127: Grain size distribution for ECAE 2B IF steel annealed at 700°C for 90 minutes 
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Figure 128: Grain size distribution for ECAE 2C IF steel annealed at 700°C for 90 minutes 
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Figure 129: Grain size distribution for ECAE 4A IF steel annealed at 700°C for 90 minutes 
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Figure 130: Grain size distribution for ECAE 4B IF steel annealed at 700°C for 90 minutes 
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Figure 131: Grain size distribution for ECAE 4C’ IF steel annealed at 700°C for 90 minutes 
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Figure 132: Grain size distribution for ECAE 8C’ IF steel annealed at 700°C for 90 minutes 
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Figure 133: Grain size distribution for ECAE 16E IF steel annealed at 700°C for 90 minutes 
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When examining the histograms on the previous pages, some features stand out.  

When the histogram shows a strong, centralized “peak,” with few outlying points, the 

grain area of that specimen is more uniform.  A wider histogram peak indicates more 

variation in the final area of the grains.  The histograms of ECAE 8C’ and ECAE 16E 

show relatively uniform grain areas in the ranges of 60 – 90 μm2 in both cases, while the 

histogram of ECAE 1A shows a wide variation of grain areas, the majority of which fall 

into the range of 120 – 150 μm2.  A comparison of the two histograms representing the 

Route C’ cases will demonstrate how the grain area distribution, as well as the grain 

area, is refined. 
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5. CONCLUSIONS 
 

Severe plastic deformation through equal channel angular extrusion (ECAE) 

dramatically improves the yield strength and ultimate tensile strength of interstitial free 

steel.  Ductility at failure, as measured using engineering strain, is generally lowered by 

SPD, especially at low strain values.  Samples of IF steel subjected to many passes of 

both Route C’ and Route E demonstrated the highest values of yield strength and 

ultimate tensile strength, and also high ductility at failure.  This may be attributed to fine 

grain structures. 

Samples processed using ECAE 8C’ or ECAE 16E demonstrate superior YS and 

UTS as compared to unprocessed material.  In the case of ECAE 8C’, the yield strength 

is 9.5 times as strong as that of unprocessed material, and 80% as ductile at failure. 

Electron microscopy shows that as the strain increases dislocation cells and networks 

begin to appear.  The grains themselves first are elongated, and then begin to evolve 

based upon which processing route was used.  Route A produces elongated grains with 

high density cell walls.  Route B produces a less homogeneous structure of grains that 

are filamentary and grains that are elongated.  Samples processed using Route E result in 

progressively finer equiaxial grains, ending with grains below 500nm for ECAE 16E. 

The recrystallization curves for all samples show that grain growth begins at a 

temperature of approximately 700°C.  Recrystallization for IF steel begins at 

approximately the same temperature of recrystallization as that of pure iron, 450°C.  

Vickers microhardness values prior to the point of recrystallization increase as the 

amount of strain within the specimen increases. 
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The texture of IF steel is strengthened after ECAE along [111] and [001] and in the 

direction perpendicular to the transverse plane.  Inverse pole figures for Route A show a 

continuous increase in texture strength along [111] and [001] in the direction 

perpendicular to the transverse plane.  Route B shows a significant increase in texture 

strength for the same directions, also perpendicular to the transverse plane.  In the same 

directions and orientation, Route C demonstrates a consolidation and strengthening of 

texture.  Route C’ produced a varied texture after four passes, but the texture was 

consolidated along [111] and [001] after eight passes.  After eight passes using Route E, 

the texture strength is at its highest recorded value; Route E after 16 passes yields a 

highly localized and strong texture along [111] and [001]. 

When IF steel is annealed it loses much of its as-processed mechanical properties.  

Yield strength, ultimate tensile strength and, to a lesser extent, ductility at failure, are 

lowered significantly by annealing.  The decrease in mechanical strength is made worse 

as either the annealing time or temperature is elevated, and the decrease is particularly 

severe when both are elevated.  This behavior is consistent with the results obtained 

during the analysis of recrystallization in as-processed IF steel. 

Interstitial free steel is easy to grind and polish.  The softness of the material makes 

grinding by hand possible, but in order to obtain a uniform polish an automatic 

polisher/grinder should be used. 

The use of Marshall’s Reagent as an etchant produced good optical microscopy 

results.  It was determined that an etching time of approximately five to seven seconds 

after the sample emitted bubbles resulted in the best etch of the material. 
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Optical microscopy results vary, due to the low carbon content of the material.  Good 

results depend on a high quality polish and proper timing during immersion in the 

etchant. 

Grain structures are most visible in the samples that have been annealed for 90 

minutes at a temperature of 700°C, during which grain growth occurs.  It is possible to 

observe nucleation of grains in samples that have been annealed at 550°C. 
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6.  RECOMMENDATIONS FOR FUTURE STUDY 
 

The stress-strain behavior of ECAE-processed IF steel deserves further study. 

Additional routes should be examined for their impact on mechanical performance.  

In particular the routes of C’, such as ECAE 16C’ deserve further testing. 

A systematic analysis of the effect of annealing on processed IF steel should be 

conducted.  Variables of time and temperature need to be evaluated for their impact on 

mechanical performance. 

Optical microscopy of post-process annealed material should be performed in order 

to examine the grain size distribution. 

Specimens should be cut from processed billets in all three planes (flow, transverse 

and longitudinal) and tested in tension for anisotropic behavior. 

Processed specimens should be tested to determine whether there is a relation 

between the strain path and the Bauschinger effect in IF steel.  



  

 

150

REFERENCES 
 
[1] De Messemaeker J, Verlinden B, Van Humbeeck J. Mat Sci Forum 

2004;467:1295. 

[2] Segal VM. Mat Sci and Eng A 1999;271:322. 

[3] Gazder A, Timokhina I, Pereloma E. Mat Sci Forum 2003;426:2693. 

[4] De Messemaeker J, Verlinden B, Van Humbeeck J. In: Zhu YT, Langdon TG, 

Valiev RZ, Semiatin SL, Shin DH, Lowe TC, editors. Ultrafine Grained 

Materials III. Warrendale, PA: The Minerals, Metals & Materials Society; 2004, 

p. 595. 

[5] De Messemaeker J, Verlinden B, Van Humbeeck J. Mat Let 2004;58:3782. 

[6] Jin JH, Huh MY, Chung YH. J Mat Sci 2004;39:5311. 

[7] Kim H, Choi M, Chung C, Shin DH. Mat Sci and Eng A 2003;340:243. 

[8] Regone W, Jorge Jr AM, Balancin O. Scr Mat 2003;48:773. 

[9] Hwang B, Lee HS, Kim YG, Lee S, Ahn BD, Shin DH, Lee CG. Met and Mat 

Trans A 2005;36A:389. 

[10] Haouaoui M, Hartwig KT, Payzant EA. Acta Mater 2005;53:801. 

[11] De Messemaeker J, Verlinden B, Van Humbeeck J. Acta Mater 2005;53:4245. 

[12] Tsuchida N, Baba E, Nagai K, Tomota Y. Acta Mater 2005;53:265. 

[13] Kim HS, Ryu WS, Janecek M, Bail SC, Estrin Y. Adv Eng Mat 2005;7 (No. 1-

2):43. 

[14] Song R, Ponge D, Kaspar R. Steel Res Int 2004;75 (No. 1):33. 

[15] Fukuda Y, Oh-ishi K, Horita Z, Langdon TG. Acta Mater 2002;50:1359. 



  

 

151

[16] Shin DH, Park J, Chang SY, Lee Y, Park K. ISIJ Inter 2002;42 (No. 12):1490. 

[17] Kim WJ, Kim JK, Choo WY, Hong SI, Lee JD. Mat Lett 2001;51:177. 

[18] Shin DH, Kim I, Kim J, Park K. Acta Mater 2001;49:1285. 

[19] Shin DH, Seo CW, Kim J, Park K, Choo WY. Scripta Mater 2000;42:695. 

[20] Shin DH, Kim W, Choo WY. Scripta Mater 1999;41 (No. 3):259. 

[21] Han BQ, Yue S. J Mat Proc Tech 2003;136:100. 

[22] Shin DH, Pak J, Kim YK, Park K, Kim Y. Mat Sci and Eng A 2002;325:31. 

[23] Kim J, Kim I, Shin DH. Scripta Mater 2001;45:412. 

[24] Kim YK, Kim SM, Lee KS, Pak JJ, Shin DH. Met and Mat Int 2001;7 (No. 

5):437. 

[25] Saito N, Mabuchi M, Nakanishi M, Shigematsu I, Yamauchi G, Nakamura M. J 

Mat Sci 2001;36:3229. 

[26] Barber RE, Dudo T, Yasskin PB, Hartwig KT. Scripta Mater 2004;51:373. 

[27] Suś-Ryszkowska M, Wejrzenowski T, Pakiela Z, Kurzydłowski KJ. Mat Sci & 

Eng A 2004;369:151. 

[28] Shin DH, Kim J, Oh Y, Park K. Mat Sci Forum. 2003;426:2801. 

[29] Semiatin SL, DeLo DP. Mat & Design. 2000;21:311. 

[30] Storojeva L, Ponge D, Kaspar R, Raabe D. Acta Mater 2004;52:2209. 

[31] Mughrabi H, Höppel HW, Kautz M, Valiev RZ. Mat Res and Adv Tech2003;94 

(No. 10):1079. 

[32] Reed-Hill RE, Abbaschian R. Physical Metallurgy Principles. Boston: PWS 

Publishing Company;1998. 



  

 

152

[33] Nave MD, Barnett MR. Mat Sci & Eng A 2004;386:244. 

[34] Han BQ, Lavernia EJ, Mohamed FA. Metall and Mat Trans A 2004;35A:1343.  

[35] Chen QZ, Duggan BJ. Metall and Mat Trans A 2004;35A:3423. 

[36] Ferrasse S, Segal VM, Kalidindi SR, Alford A. Mat Sci & Eng A 2004;368:28. 

[37] Metallography: An Introduction. Metallography and Microstructures, Vol. 9, 

ASM Handbook. Materials Park, OH: ASM International, 2004, p.26. 

[38] The Light Alloy Processing Group of University of Manchester (2004), Equal 

Channel Angular Extrusion.  Retrieved September 22, 2005 from 

http://www2.umist.ac.uk/material/research/lap/ECAE.html 

[39] Callister Jr WD. Materials Science and Engineering, an Introduction. New York, 

NY: John Wiley & Sons, Inc; 1997. 

[40] Radiation Safety Office of Indiana University – Bloomington (2003), Radiation 

safety guide.  Retrieved September 22, 2005 from 

http://www.research.indiana.edu/rschcomp/radsafety/x-

ray%20guide%202004.htm 



  

 

153

APPENDIX 



  

 

154

800

600

400

200

0

Tr
ue

 S
tre

ss
, M

Pa

6050403020100

True Strain, %

As Received
ECAE 1A

 

Figure 134: True stress vs. true strain behavior of IF steel after ECAE 1A processing 
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Figure 135: True stress vs. true strain behavior of IF steel after ECAE 2A processing 
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Figure 136: True stress vs. true strain behavior of IF steel after ECAE 2B processing 
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Figure 137: True stress vs. true strain behavior of IF steel after ECAE 2C processing 
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Figure 138: True stress vs. true strain behavior of IF steel after ECAE 4A processing 
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Figure 139: True stress vs. true strain behavior of IF steel after ECAE 4B processing 
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Figure 140: True stress vs. true strain behavior of IF steel after ECAE 4C processing 
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Figure 141: True stress vs. true strain behavior of IF steel after ECAE 4C' processing 
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Figure 142: True stress vs. true strain behavior of IF steel after ECAE 4E processing 
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Figure 143: True stress vs. true strain behavior of IF steel after ECAE 8C processing 
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Figure 144: True stress vs. true strain behavior of IF steel after ECAE 8C' processing 
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Figure 145: True stress vs. true strain behavior of IF steel after ECAE 8E processing 
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Figure 146: True stress vs. true strain behavior of IF steel after ECAE 16E processing 
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(a) 

 

 
(b) 

 
Figure 147: Optical micrographs of ECAE 2B IF steel. (a) as-processed, (b) annealed at 550°C 
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(c) 

Figure 147: Continued. (c) annealed at 700°C 

 

 
(a) 

 
Figure 148: Optical micrographs of ECAE 2C IF steel. (a) as-processed 
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(b) 

 

 
(c) 

Figure 148: Continued. (b) annealed at 550°C, (c) annealed at 700°C 
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(a) 

 

 
(b) 

 
Figure 149: Optical micrographs of ECAE 4B IF steel. (a) as-processed, (b) annealed at 550°C 
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(c) 

Figure 149: Continued. (c) annealed at 700°C 

 

 
(a) 

 
Figure 150: Optical micrographs of ECAE 16E IF steel. (a) as-processed 
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(b) 

 

 
(c) 

Figure 150: Continued. (b) annealed at 550°C, (c) annealed at 700°C 
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Figure 151: Rotation schematic for Route A.  PF refers to punch face 
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Figure 152: Rotation schematic for 90° rotations 
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Figure 153: Rotation schematic for 270° rotations 
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Figure 154: Rotation schematic for 180° rotations 
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