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ABSTRACT 
 
 
 

Ovarian and Hormonal Events during Synchronization of Ovulation and Timed 

Appointment Breeding of Bos indicus-Influenced Cattle Using Intravaginal 

Progesterone, GnRH and Prostaglandin F2α. 

(December 2005) 
 

Juan Pablo Saldarriaga López, 
 

D.V.M., Universidad de Antioquia, Medellín, Colombia. 
 

Chair of Advisory Committee: Dr. Gary L. Williams 
 
 

Objectives were to 1) evaluate the use of the CO-Synch + CIDR (COS-C) 

protocol for synchronization of ovulation and timed AI (TAI) in Bos indicus-influenced 

cattle, 2) compare cumulative pregnancy rates after COS-C synchronization and TAI to 

those in a traditional management (TM) scheme, and 3) evaluate specific ovarian, 

hormonal, and estrual events associated with COS-C.  The COS-C regimen included 

insertion of a controlled internal drug release device (CIDR) containing progesterone 

and injection of GnRH (GnRH-1) on day 0, removal of the CIDR and injection of 

prostaglandin F2α
 (PGF on d 7, and injection of GnRH (GnRH-2) and TAI 48 h later.  In 

experiment 1 (Exp. 1), 335 females were stratified by BCS, parity and d postpartum 

before random assignment to COS-C or TM.  An additional 96 females in which TM 

controls were not available for comparison also received COS-C.  Conception rates to 

TAI averaged 39% (n = 266).  Cumulative pregnancy rates were greater (P < 0.05) after 

30 and 60 d of the breeding season in COS-C than in TM (n = 170 and 165 females 
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respectively).  In experiment 2 (Exp. 2), 100 postpartum (F1) females were stratified as 

in Exp. 1 within four replicates (25 each) and assigned randomly to receive either COS-

C or COS (no CIDR) treatment.  No differences were observed between treatments and 

all data were pooled.  Percentages of cows ovulating after GnRH-1, developing a 

synchronized follicular wave, exhibiting luteal regression to PGF, and ovulating to 

GnRH-2 were 40, 60, 93, and 72%, respectively.  In experiment 3 (Exp. 3), primiparous 

(F1) heifers (n = 32) and pluriparous cows (n = 18) received the Select Synch + CIDR 

synchronization regimen (no GnRH-2 or TAI).  Mean intervals from CIDR removal to 

estrus and ovulation, and from estrus to ovulation were 70 ± 2.9, 99 ± 2.8, and 29 ± 2.2 

h, respectively.  Relatively low TAI conception rates (< 50%) were attributed to failure 

of 40% of cattle to develop a synchronized follicular wave after GnRH-1 and to 

inappropriate timing of TAI/GnRH-2.  It may be possible to improve TAI conception 

rates by delaying TAI/GnRH-2 to between 66 and 72 h, and by developing methods to 

increase the number of ovulations after GnRH-1. 
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CHAPTER I 

 

INTRODUCTION 

 

The beef industry is the largest single segment of the U.S. agricultural economy 

and the world’s largest producer of beef (NASS, 2002).  Similar to many other segments 

of the economy, the beef industry has had to implement important changes in order to 

maintain its leading position in the world.  The lowest beef cattle inventory of the last 25 

years was registered in 2004 (NASS, 2004).  Due to this reduction, beef production 

declined about 7% compared with 2003.  On the other hand, productivity has enjoyed an 

opposite tendency, with the number of pounds of beef produced per cow increasing 

steadily during the last 30 years (Brester and Marsh, 2002).  The fact that total beef 

production has been maintained even with a reduced inventory of cattle reflects the 

tendency of the industry towards a more efficient production system. 

In beef cattle, pounds of beef produced and quality are the major sources of 

profit.  In the cow-calf industry, this is accomplished by the number of calves produced 

per year and their genetic value.  Unfortunately, the generation time of cattle is one of 

the longest of any food-producing species, and the potential rate of genetic gain is fairly 

low.  Therefore, under the best of circumstances, cow-calf operations can produce one 

annual calf per year with the goal of continuously attempting to increase their genetic 

merit. 

 
This thesis follows the style of Journal of Animal Science. 
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One reproductive tool that has been recognized to be extremely helpful for 

increasing the rate of genetic gain, increasing pounds of beef, and improving quality is 

artificial insemination (AI).  However, only about 13 % of U.S. producers are using AI 

in their herds (NAHMS, 1997).  There are numerous reasons for the reluctance to 

incorporate AI into commercial beef cattle enterprises.  One of the most important 

reasons is the lack of biologically and economically optimized tools for the 

synchronization of ovulation.  Several new methods of synchronization have been 

developed recently and made available commercially in the U.S.  The main focus has 

been to obtain a system which allows the use of timed artificial insemination (TAI) 

efficiently thus eliminating the need to detect estrus.  Reports involving the use of the 

CO-Synch + CIDR (COS-C) protocol from studies conducted in the Midwestern U.S., 

indicates that it might provide the characteristics necessary to make TAI feasible and 

consistently successful in commercial beef herds (Larson et al., 2004 a, b).  This 

approach has been tested primarily in Bos taurus cattle, including pubertal heifers, first-

calf heifers, and lactating cows, with pregnancy rates of about 55% achieved 

consistently (Johnson, 2005). 

In the southern regions of the U.S., where the environment is predominantly 

subtropical, the common use of Bos indicus-influenced cattle can create additional 

challenges for the successful use of protocols such as COS-C.  Important differences in 

efficiency have been reported when synchronization protocols and TAI are employed in 

these types of cattle (Lemaster et al., 2001; Williams et al., 2002), and newer protocols 

involving the COS-C have not been reported extensively.  Therefore, additional work is 
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needed to determine whether relatively complex, high cost procedures such as COS-C, 

in conjunction with TAI, can provide the level of performance needed for economical 

incorporation into commercial beef cattle herds in the southern U.S.  

Objectives 

Objectives of these experiments were to 1) evaluate the use of the COS-C 

protocol for synchronization of ovulation and TAI in Bos indicus-influenced cattle, 2) 

compare cumulative pregnancy rates after COS-C synchronization and TAI to those in a 

traditional management (TM) scheme 3) evaluate specific ovarian, hormonal, and estrual 

events associated with the use of COS-C and related protocols to identify aspects of the 

system that may contribute to the relative reduced efficiency of the system. 
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CHAPTER II  

 

LITERATURE REVIEW 

 

United States Beef Industry 

The beef industry is an important value-added enterprise in U.S. agriculture.  The 

beef industry is the largest single segment of the U.S. agricultural economy, with cattle 

representing about 22.5 % of total farm sales, according to the 2002 U.S. census of 

agriculture (NASS, 2002).  The U.S cattle inventory totaled 103.6 million of head as of 

July, 2004, and beef cows totaled 33.5 million for the same period (NASS, 2004).  

Although this number of animals continues to make the U.S. beef industry the largest 

beef producer in the world, the inventory is the lowest registered in the last 25 yr (Figure 

1; NASS, 2004), with beef production declining about 7% compared with 2003 (ERS, 

2004c).  This negative trend has been created mainly by the end of a cattle cycle that has 

lasted for about 14 yr (ERS, 2004a).  Other issues such as human dietary health 

concerns, market bans and weather conditions have also contributed to decrease both 

cattle inventory and beef production (ERS, 2004b). 

As noted above, although the U.S. beef industry still leads world production, it 

has had to develop new and different market niches.  Beef produced in the U.S. is 

recognized around the world for its quality and flavor.  Strong efforts have been made to 

position U.S. beef in a competitive advantage against other world beef producers such as 

Brazil and Australia that could potentially threaten the U.S market.  In parallel with 
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quality, health, safety and consumer friendliness of products are key attributes that make 

U.S beef the most preferred in the world. 

 
 

 
 
 Figure 1. U.S. beef cattle inventory trends from 1980 through July 1, 2004. The 
inventory has declined slightly from 2003, and is the lowest in the last 25 yr. (Adapted 
from NASS, 2004). 

 
 
 
Although beef inventory and beef production decreased for 2004 in the U.S., a 

positive tendency has been observed in beef productivity.  In fact, the beef industry has 

experienced a dramatic increase in productivity over the last 30 yr (Figure 2, Brester and 

Marsh, 2002).  This increase in productivity has been influenced by several factors, but 

one of the most important has been an increase in beef production per cow as a result of 

an increase in genetic merit, which has been reflected as an increase in pounds and 

quality of beef produced (Figure 3. Brester and Marsh, 2002; Schroeder et al., 1995). 
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 Figure. 2.  Relationship between U.S. beef cattle inventories and two different 
measures of U.S. beef production from 1972 to 2001. USDA Beef production relates to 
the total of animals slaughtered within U.S. including domestic and imported; U.S. beef 
production relates to the total of animals slaughtered within U.S. excluding imported 
animals.  Although total production has been maintained, cattle inventory has decreased 
about 25 million head. (Source: Brester and Marsh, 2002). 

 
 
 

Importance of Reproductive Efficiency 

In beef cattle, the number of pounds of beef produced continues to be the most 

important source of profit.  This is regulated by two variables: number of calves 

produced per cow year and pounds weaned per calf (De Rose and Wilton, 1991).  

However, the goal of producing one calf per year from each cow does not necessarily 

guarantee long-term profitability in a beef cattle enterprise.  The use of genetic selection 

to improve weaning weights and improve meat quality using sires with desirable 

expected progeny differences (EPD) in these traits should also be a goal (Harris and 

Newman, 1994).  Rate of genetic improvement in cattle is relatively slow compared with 

other farm species because of the long generation interval.  The use of reproductive 
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technologies, especially AI (Willham, 1982) is an important key that allows the 

widespread use of improved genetics (Harris, 1998), and when it is coupled with 

synchronization of estrus/ovulation, both genetic value and uniformity can be enhanced 

(Dziuk and Bellows, 1983). 

 
 

 
 Figure 3.  Productivity of U.S. beef cow breeding herd (carcass weight pounds per 
beef cow, annual). Beef output per U.S. beef breeding cow on a carcass weight basis has 
increased 40 percent over the past 28 years. (Source: Brester and Marsh, 2002). 

 

 

Status of Artificial Insemination in Beef Production 

There are several reproductive technologies that have been identified to be 

applicable and useful to increase the efficiency of beef production.  Of these, breeding 

soundness evaluation of bulls and pregnancy determination in the cow herd are the most 

frequently used at 39.9% and 34.5%, respectively (NAHMS, 1997).  Artificial 

insemination has been recognized as one of the most useful reproductive tools to 

increase genetic gain in cow-calf operations (Vishwanath, 2003), and estrous 
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synchronization has been recognized as one important tool to make it feasible (Johnson, 

2005); however, neither AI nor estrous synchronization are being used by a significant 

number of beef producers.  Only 13.3% of producers are using AI regularly, and just 

11.9% of these use estrous synchronization programs in their operations (NAHMS, 

1997).  The principal reasons for this low rate of adoption are the time and labor 

required, complexity of the procedure, and costs (related to poor results) (NAHMS, 

1997).  These are problems that none of the commercially-available methods for 

synchronization of estrus/ovulation have been able to completely solve.  Therefore 

additional work to optimize synchronization methodology is necessary.  

 

The Bovine Estrous Cycle 

The main purpose of an estrous synchronization/ovulation protocol is to place a 

relatively large population of cows and/or heifers into a specific physiological stage of 

the estrous cycle, and therefore allow mass breeding within a short period of time.  This 

can not be accomplished if the physiology of the estrous cycle is not understood.   

The bovine female is polyestrous, with a relatively uniform distribution of 

estrous cycles throughout the year that are not influenced remarkably by season (Kilen 

and Schwartz, 1998).  The bovine estrous cycle averages 21 d in length.  There are two 

major phases of the cycle.  These, are differentiated primarily by the dominant structures 

present on the ovary within each stage (Senger, 2003).  The follicular phase is the period 

from regression of the corpus luteum to ovulation.  It encompasses about 20 % of the 

estrous cycle.  The dominant ovarian structures are growing dominant follicles, and the 
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female is primarily under the hormonal influence of estradiol (E2), which is responsible 

for preparing the cow for mating (Senger, 2003).  The luteal phase is the period from 

ovulation until corpus luteum (CL) regression.  This phase encompasses about 80 % of 

the cycle, the dominant structure is the CL, and the physiologically-dominant hormone is 

progesterone, which prepares the uterus of the cow for receiving a potential conceptus 

(Senger, 2003). 

Follicular Dynamics   

Although the dominant, estrogen-active, follicle is the primary ovarian structure 

during the follicular phase, the luteal phase is also characterized by marked follicular 

activity and turnover (Fortune, 1994; Fortune et al., 1998).  Two hypotheses were 

proposed regarding follicular dynamics during the bovine estrous cycle.  Rajakoski 

(1960) initially proposed a model in which follicular growth occurred in two waves; the 

first starting a few days after estrus and the second starting around d 12-14.  A second 

hypothesis proposed that follicular development was continuous and independent of the 

stage of the cycle (reviewed by, Sirois and Fortune, 1988).  In the 1980s, development of 

a new technology, transrectal ultrasonography, provided a useful way to repeatedly 

measure and predict events occurring on the ovaries during the estrous cycle, thus 

helping to solve some of these contradictory theories (Pierson and Ginther, 1984; Sirois 

and Fortune, 1988; Ginther et al., 1989b).  It is now well known that there can be two 

(Ginther et al., 1989a), three (Savio et al., 1988) and sometimes four (Sirois and Fortune, 

1988) follicular waves within a single cycle.  The number of follicular waves is 

influenced by many factors such as nutrition, parity and lactational status (Lucy et al., 
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1992).  There are several hormones that regulate follicular development, but the 

gonadotropic hormones, FSH and LH, are the most important.  These gonadotropins are 

glycoproteins produced in the anterior lobe of the pituitary, and their principal function 

is stimulation of the gonads (Senger, 2003).  The primary function of FSH in the female 

is to stimulate the growth of antral follicles, whereas LH causes ovulation and formation 

of the CL (Senger, 2003).  

Follicular waves are composed of various stages.  Follicular recruitment is the 

first step observed in each wave and is associated with an FSH surge (Turzillo and 

Fortune, 1990; Adams et al., 1992) in which a cohort of new follicles emerge and grow 

from a size of approximately 4 to 6 mm (Ginther et al., 1996).  After follicular 

recruitment is achieved, selection or deviation of a follicle occurs.  At this stage, a 

reduced number of follicles grow at a higher rate than the subordinates, allowing one of 

these to become the next dominant follicle of the cohort (Ginther et al., 1996).  The last 

stage of the wave phenomenon occurs with the individualization of the dominant follicle.  

It acquires special characteristics that suppress the development of subordinate follicles.  

The dominant follicle subsequently grows to its maximum size and either ovulates or 

regresses depending upon stage of the cycle (i.e., presence or absence of a CL).  The 

ability of this dominant follicle to growth larger than all the others is based upon its 

ability to secrete inhibin, a small peptide that suppresses FSH secretion.  The dominant 

follicle also acquires more receptors for FSH, which promotes the ability to grow in a 

lower FSH-containing environment than its subordinates, and acquire LH driven growth 

capability (Ginther, 2000; Mihm and Austin. 2002).  Whether dominant follicles ovulate 
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or not is dependent upon stage of the cycle; however, the fertility potential of all follicles 

selected for dominance during each follicular wave has been clearly demonstrated 

(Driancourt, 2001). 

 

Hormones as Pharmacological Products 

Several hormones are used as pharmacological products in order to synchronize 

estrus and/or ovulation in cattle.  Three main groups of hormones are used in this 

process: prostaglandins (PG) and its analogues, steroids (mainly progesterone and E2), 

small peptides (GnRH) and glycoproteins (human chorionic gonadotropin; HCG and 

equine chorionic gonadotropin; eCG).   

Prostaglandin F2� and Analogues  

Prostaglandins are lipids comprised of 20-carbon unsaturated hydroxyl fatty 

acids that are derived from arachidonic acid (Senger, 2003).  Although there are several 

types of prostaglandins, the most important in relation to reproduction are prostaglandin 

F2� (PGF) and prostaglandin E-2 (PGE-2) (McCracken, 1998).  Prostaglandin F2� is 

synthesized in the uterus, and is the most important luteolytic factor of the reproductive 

system (McCracken, 1998).  There are numerous mechanisms by which PGF induces CL 

regression, but the most notable is its vascular action.  After release, PGF reduces blood 

flow to the corpus luteum, thus depriving the gland of nutrients, substrates for steroid 

hormone production, and luteotropic support (Niswender et al., 2000).  Other effects 

include action within the apoptotic cascade (Niswender et al., 2000; Milvae et al., 1996).   
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Exogenous PGF (Dinoprost tromethamine) is a potent luteolytic agent (Inskeep, 

1973) that reduces the size of the CL (Thatcher and Chenault, 1976), reduces serum 

concentrations of progesterone (Lamond et al., 1973; Hansel and Fortune, 1978), and 

induces estrus within about 3 d (Liher et al., 1972; Welch et al., 1975), depending upon 

stage of the estrous cycle relative to onset of a new follicular wave.  Similar to PGF, 

several synthetic analogues have been proven to be equally effective for inducing CL 

regression and synchronization of estrus/ovulation, including alfaprostol (Schams and 

Karr, 1982; Tolleson and Randel, 1998), cloprostenol (Schams and Karr, 1982), 

fenprostalene (Armstrong et al., 1989), luprostiol (Schams and Karr, 1982; Godfrey et 

al., 1989) and tiaprost (Schams and Karr, 1982; Peters, 1984).   

Steroid Hormones 

The sex steroids function as hormones to control or influence every aspect of 

reproduction.  They are synthesized from cholesterol in the ovaries and testes where they 

promote oogenesis and spermatogenesis, respectively, by local action.  They are also 

secreted into the peripheral circulation where they influence the reproductive tract, 

accessory sex organs, the sexual phenotype, and the secondary sexual characteristics of 

both males and females (Brown, 1998).  Both progesterone and E2 or their 

bioequivalents can be used to manipulate female reproduction.  

Progesterone.  After CL formation, circulating concentrations of progesterone 

increase, reaching average peak concentrations of approximately 10 ng/mL on d 10 of 

the cycle (Hansel et al., 1973; Wettemann et al., 1972).  The major function of 

progesterone is to prepare the uterus for pregnancy, converting it to an enriched 
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environment specifically suited for the developing embryo and for the maintenance of 

the pregnant state (Funk and DeMayo, 1998).  Progesterone also acts at the level of the 

brain to modulate behavior, principally to suppress estrus and mating behavior, and to 

enhance maternal behavior (Etgen, 1998).  High levels of progesterone also exert 

negative feedback effects on gonadotropin secretion at the hypothalamic level, 

suppressing frequency and increasing the amplitude of the GnRH pulses (Blake, 1998; 

Karsch et al., 1987; Goodman and Karsch, 1980), thus suppressing the frequency of LH 

pulses (Ulberg et al., 1951; Roche and Ireland, 1981; Karsch, 1987). 

A number of different methods for administering progesterone have been 

developed for estrous synchronization systems in cattle.  The earliest approach involved 

daily injections (Christian and Casida, 1948).  This was followed later by intravaginal 

sponges impregnated with progesterone (Carrik and Shelton, 1967), progesterone-

releasing intravaginal devices (PRID; Roche, 1974), controlled internal drug release 

devices (CIDR; Macmillan et al., 1991; Macmillan and Peterson, 1993), and intravaginal 

bovine device (DIB; Balla et al., 2004) all composed of Silastic silicone rubber (Dow 

Corning Co., MI., USA).  Synthetic progestogen analogues have also been used, 

including medroxyacetate progesterone (MAP; Dhindsa et al., 1967), chlormadione 

acetate (CAP; Fulton et al., 1978), melengestrol acetate (MGA; Hill et al., 1971; Randel 

et al., 1972), administered either orally or injected, and norgestomet (Spitzer et al., 1978; 

Kazmer et al., 1981) administered by subcutaneous ear implants constructed of Silastic 

silicone rubber.   
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Estrogens.  Serum concentrations of estradiol-17� (E2) fluctuate during the 

estrous cycle in parallel with follicular growth and regression.  Estradiol concentrations 

increase with the emergence of the first follicular wave to a peak of about 2 pg/ml 

(Evans et al., 1997).  When the first follicular wave regresses, E2 concentrations decline 

to a baseline concentration of about 0.2-0.5 pg/ml (Evans et al., 1997).  Estradiol 

concentrations reach their maximum (6-9 pg/ml) approximately 24 h before ovulation, 

then decline rapidly after ovulation (Hansel and Convey, 1983).  One of the primary 

targets of E2 action is the reproductive tract.  Estrogens act at this level to promote 

vascular, glandular and epithelial growth to prepare the female for sexual receptivity 

(Liundzey and Korach, 1998).  High concentrations of E2 also influence female 

behavior, triggering sexual receptivity and copulatory events (Uphouse and Maswood, 

1998).  

Fluctuating patterns of estradiol during the estrous cycle play a very important 

role in gonadotropin dynamics, and therefore in follicular activity.  An inverse 

relationship between E2 concentrations and both FSH and LH occurs during the estrous 

cycle (Ginther et al., 2000; Gibbons et al., 1999).  Evans et al. (1997) presented a model 

relating ovarian follicular dynamics, gonadotropin secretion, and ovarian steroid 

hormones that summarized and explained these complex interactions.  The usefulness of 

E2 treatments within treatment schemes for synchronization of estrus and ovulation is 

related to its ability to induce a preovulatory surge of LH (Lammoglia et al., 1998), 

luteolysis in the follicular phase (Wiltbank et al., 1961) and follicular atresia (Bo et al., 

1993; Burke et al., 2000).  Follicular atresia is caused by a marked FSH suppression 
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after E2 treatment (Kesner and Convey, 1982; Bolt et al., 1990).  Suppression of FSH 

occurs within 6 h after E2 (5mg) treatment, followed by a reappearance 36 to 72 h after 

treatment (Bo et al., 1994).  Development of a new follicular wave begins an average of 

4 d after treatment with E2 and is dependant upon FSH reappearance (Bo et al., 1995).  

Different E2 esters have been used for estrous synchronization.  Most of them are 

used in injectable solutions such as estradiol valerate (Wiltbank et al., 1971), estradiol 

benzoate (Bo et al., 1995; Hanlon et al., 1997), estradiol cypionate (Thundathil et al., 

1998; Borman et al., 2003), and E2 (Bo et al., 1994; Murray et al., 1998).  The major 

difference among these compounds is the half-life after injection; for example, a single 

injection of estradiol valerate (5 mg) results in elevated plasma estradiol concentration 

for a period of 5 to 7 d (Bo et al., 1993) whereas a single injection of E2 (5 mg) results in 

elevated plasma estradiol concentrations for only 42h (Bo et al., 1994).  These 

differences, consequently, result in differences in timing of events occurring within the 

synchronization program (Colazo et al., 2003). 

Hypothalamic Peptides and Glycoproteins  

Both the neuropeptides and glycoproteins influence gonadotropic activity by 

either inducing gonadotropin release or by mimicking their effects.  The hypothalamic 

peptide, GnRH, and the glycoproteins HCG and eCG, have been used extensively for the 

pharmacological control of reproduction. 

GnRH.  Gonadotropin-releasing hormone is a decapeptide synthesized and stored 

in the preoptic area and medial basal hypothalamus.  In response to neural signals, pulses 

of GnRH are released into the hypophyseal portal system and transported to the anterior 
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pituitary where they stimulate release of LH and to a lesser extent, FSH (Conn et al., 

1998).  Expression of GnRH mRNA and GnRH receptors (Kakar et al., 1993) has been 

demonstrated in several reproductive tissues such as the ovary (Oikawa et al., 1990), 

testicle (Bahk et al., 1995) and uterus (Ikeda et al., 1997), and cell lines such as the 

oocyte (Ny et al., 1987) granulosa (Harwood et al., 1980), luteal (Minaretzis et al., 

1995), leydig (Clayton et al., 1980) and endometrial cells (Raga et al., 1999); however, 

its pharmacological use has been mainly focused to manipulate the reproductive function 

through gonadotropin regulation.  

After exogenous administration of a pharmacological dose of GnRH, circulating 

concentrations of LH and FSH increase within 30 min, reach peak concentrations at 120-

150 min, then decrease to basal levels between 4 and 5 h after injection (Zolman et al., 

1974; Ford and Stormshak, 1978; Williams et al., 1982; Cupp et al., 1995).  

Gonadorelin diacetate tetrahydrate (Zolman et al., 1974) is an analogue that is 

chemically synthesized but structurally equivalent to natural GnRH.  Some other GnRH 

analogues are available commercially.  Analogues differ as a result of slight chemical 

alterations of the native structure.  These changes are intended to yield more stable 

molecules, better enzymatic resistance, increased binding capacity and better receptor 

affinity (Karten and Rivier, 1986; Thatcher et al., 1993).  Such molecules include 

buserelin acetate (Cavestany and Foote, 1985), deslorelin acetate (Bergfeld et al., 1996), 

and fertirelin acetate (Chenault, 1990).  

Several studies have reported on the ability of these compounds to release both 

LH and FSH in domestic species (Nawito et al., 1977; Ford and Stormshak, 1978; 
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Rettmer et al., 1992).  The magnitude of release is dependant on many factors such as 

type of product (Rajamahendran et al., 1998) dose (Zolman et al., 1974), type of animal 

and physiological status (Williams et al., 1982).  Few studies have been performed, 

under controlled conditions, to directly compare the differences on magnitude of release 

of LH and FSH after GnRH injection.  Chenault et al. (1990) compared in a controlled 

study the magnitude of LH and FSH response to different compounds and doses of 

GnRH, and found that buserelin and fertirelin were 50 and 10 times more potent than 

gonadorelin respectively when used at recommended doses.  Likewise, Martinez et al. 

(2003) also found differences among different GnRH products in Holstein cows. 

Nonetheless, recommended doses are designed to result in maximal release of releasable 

pools of LH to produce a surge capable of causing ovulation. 

The first clinical use of GnRH was for the treatment of ovarian follicular cysts 

(Kittok et al., 1973), with 70-90% of cows with ovarian follicular cysts responding to 

treatment with ovulation.  GnRH-induced LH release exerts numerous changes in 

ovarian follicles, but also affects the CL (Macmillan et al., 1985a,b).  The effect 

generated by GnRH is highly dependant on the stage of follicular development at the 

time of the treatment.  After GnRH treatment, ovulation and CL formation are expected 

when a healthy, mature or growing follicle is present at the time of the treatment 

(Vasconcelos et al., 1999).  Follicular regression is expected in all medium-sized 

follicles and large follicles that are in a state of regression (Macmillan and Thatcher, 

1991).  Another major effect of GnRH treatment is the stimulation of a new follicular 

wave within 2-4 d after treatment (Twagiramungu et al., 1995).  New follicular growth is 
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due either to increased secretion of FSH or by the subsequent FSH release caused by the 

disappearance of the dominant follicle (Twagiramungu et al., 1994).  Although less 

important, the effect of GnRH treatment on CL function has been demonstrated, and is 

associated with structural modifications of the CL and lengthening of the luteal phase 

(Thatcher et al., 1993). 

HCG.  Human chorionic gonadotropin is a glycoprotein produced by the human 

conceptus whose primary function is to allow implantation and maintenance of 

pregnancy.  This hormone has LH-like activity, thus acting at the level of the CL to 

prevent against luteolysis (Senger, 2003).  Use of HCG treatments were initially 

investigated for their ability to increase the lifespan of the CL, hence increasing 

progesterone levels and reducing embryonic mortality (Morris et al., 1976).  Not only 

can HCG increase the lifespan of existing CL, but also can induce ovulation and 

formation of accessory CL (Rajamahendran and Sianangama, 1992).  

eCG.   Equine chorionic gonadotropin is produced by the endometrial cups of the 

placenta of the mare and, similar to HCG, acts as a luteotropin providing a stimulus for 

maintenance of the primary corpus luteum.  Additionally, eCG is responsible for 

controlling the formation of supplementary corpora lutea in mares (Senger, 2003).  

Exogenous treatment of the cow with eCG results in a FSH-like effect (Mulvehill and 

Sreenan, 1977); therefore, depending on the dose, it can be used to stimulate growth of 

single or multiple follicles (Anderson and Bondurant, 1982).  Equine chorionic 

gonadotropin has been used mainly in cattle for superovulation (Bevers and Dieleman, 
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1987), and more recently has been used as an aid to stimulate follicular development in 

anestrous cattle for estrous synchronization protocols (Barusselli et al., 2003, 2004). 

 

Legal Aspects of Use of Hormones 

All of the foregoing compounds described are subject to government regulations; 

hence their availability is restricted in some countries.  In the U.S., the Food and Drug 

Administration (FDA) regulates the use of drugs in both humans and animals.  In the 

case of estrous synchronization protocols, with the exception of the CIDR device and 

oral MGA, all steroid compounds have not been licensed for use in food-producing 

animals.  Drug companies involved in research and development of drugs for use in 

reproductive management of cattle and other animals have been able to obtain approval 

from the FDA to market GnRH, certain GnRH analogues, prostaglandin and certain 

prostaglandin analogues, some glycoprotein hormones, and the progestogens mentioned 

above for use in cattle.  Current commercially-available protocols for estrous 

synchronization are restricted to and tend to focus on the use of these products for 

synchronization of ovulation and TAI protocols in the U.S. 

 

Overview of Estrous Synchronization and Synchronization of Ovulation 

Understanding the physiology of the estrous cycle, follicular wave phenomena, 

and use of hormones form the basis for development of tools to manipulate reproductive 

events in the cow.  However, not all the knowledge in these areas has become available 
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simultaneously; thus, different protocols and pharmacological combinations have been 

developed as science has evolved.   

Initial attempts to manipulate the estrous cycle included the use of progesterone, 

estradiol and PGF.  Treatments using PGF to control the life span of the CL were studied 

intensively in the 1970’s (Peters et al., 1977; Burfening et al., 1978).  Initial experiments 

demonstrated that 70-90 % of cows injected with 30 mg native PGF would exhibit estrus 

within 7 d after administration (Lauderdale et al., 1974), with pregnancy rates after AI 

following detected estrus of about 50% (Lauderdale et al., 1974).  These studies also 

demonstrated the ineffectiveness of PGF to cause regression of the CL between d 0 to 5 

of the cycle (Lauderdale et al., 1980).  The final dose approved by FDA is 25 mg of 

native PGF; however it has been demonstrated that the minimal effective dose may vary 

depending upon stage of the estrous cycle and dose.  Berardinelli and Adair (1989) 

demonstrated that low dosages of PGF, (< 25 mg) resulted in increasing proportions of 

heifers exhibiting estrus as stage of cycle advanced while higher dosages yielded higher 

proportions earlier in the luteal phase and maximum proportions later in the luteal phase. 

Use of progesterone or its analogues in different timing strategies was also 

pursued.  Long-term treatment with progesterone failed to induce estrus and pregnancy 

rates high enough to allow breeding at a pre-set time; therefore, the method never 

achieved favor over natural breeding (Hansel and Fortune, 1978).  Combination 

treatments using both PGF and progesterone were also developed.  Induced estrus rates 5 

to 7 d after treatment and first-service pregnancy rates were higher compared to the 

previous protocols and similar to naturally occurring estrus (Beal and Good, 1986; 
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Whittier et al., 1986; Odde, 1990).  Better reproductive outcomes observed with 

combinations of progesterone and PGF were due mainly to the ability of treatments to 

induce a fertile estrus in anestrous cows, prepubertal heifers, and cows with subnormal 

CL (Beal and Good, 1986; King et al., 1988); however, the use of this combination 

required in most cases the detection of estrus for AI, and timed-breeding was not 

recommended (Whittier et al., 1986).  

The addition of estradiol (e.g., Syncro-Mate-B) to protocols using progesterone 

and PGF yielded better synchrony of estrus, thus allowing inclusion of TAI (Wiltbank et 

al., 1971; Spitzer et al., 1981; Mikeska and Williams, 1988).  First-service pregnancy 

rates to TAI resulted in some cases in excess of 55% (Odde, 1990); nevertheless, such 

results were not typical and wide variation in results contributed to poor acceptance 

among producers.  In addition, the product was removed from the market by the FDA in 

2000. 

Control of the Corpus Luteum and Follicular Waves 

 A modern estrous synchronization method is considered efficient if it has certain 

basic characteristics, including the ability to effectively control the CL, follicular 

development, and estrus/ovulation (Twagiramungu, et al., 1995).  

As reviewed previously, the control of the CL is fundamental for any 

synchronization protocol, and the use of PGF and its analogues is widely accepted as an 

effective pharmacological method to achieve it.  However, these products alone are 

unable to regulate follicular growth or to effectively synchronize ovulation (reviewed in 
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Odde, 1990).  Therefore, to synchronize follicular wave emergence, is necessary the use 

of GnRH or estradiol.    

 Protocols that use estradiol to re-program follicular growth in combination with a 

source of progesterone appear to provide more consistent results than methods that 

incorporate GnRH when they are compared in TAI programs.  For example, in Bos 

taurus beef females, TAI pregnancy rates have been reported in the range of 60-75% 

(Martinez et al., 2002a,b), and in Bos indicus-influenced cattle, pregnancy rates have 

been reported between 60 and 70% (Colazo et al., 1999; Bo et al., 2003).  These 

numbers are generally greater than those reported for protocols in which GnRH is used, 

as will be discussed later.  Neverteless, it is important to note that strict regulations are 

imposed to E2 within U.S. and its use is limited. 

 

Estrous Synchronization and TAI in the U.S. 

 In the early 1990s, a new synchronization protocol was developed and evaluated.  

It included the use of GnRH or its analogues to induce ovulation and/or atresia of 

follicles present on the ovary, and thus allow emergence of a new follicular wave.  An 

injection of PGF was administered 7 d later to induce CL regression.  Collectively, the 

protocol objectives were to synchronize the development of a preovulatory follicle and 

estrus.  Initial results reported induction of a new follicular wave and a preovulatory 

follicle within 3-4 d after the first injection of GnRH (Twagiramungu et al., 1995), and 

synchronized ovulation in 70-80% of cyclic cattle within a period of 4 d after PGF 

(Pursley et al., 1994).  The new protocol was termed, Ovsynch (Fig 4, Pursley et al., 
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1995).  Ovsynch consists of one injection of GnRH (100µg) on d 0, an injection of PGF 

(25 mg Lutalyse) on d 7, and a second injection of GnRH (100µg) 48 h later.  Timed AI 

is then employed 24 h after the second injection of GnRH.  

 

       GnRH        PGF       GnRH           AI 
 
                                                                                                               

   
     Day           0                                7                                    9                 10 
 

 Figure 4. The Ovsynch synchronization protocol consists of one injection of GnRH 
(100 µg) on d 0, an injection of PGF on d 7, and a second injection of GnRH 48 h later. 
Timed AI is then employed 24 h after the second injection of GnRH. (adapted from 
Pursley et al., 1995). 

 

Following the development of Ovsynch, other similar protocols involving GnRH 

and PGF in combination with TAI or AI at estrus were developed.  These included CO-

Synch (Fig 5a, Geary and Whittier, 1998), Select-Synch (Fig 5b, Lamb et al., 2004), and 

Hybrid-Synch (Fig 5c, Lemaster et al., 2001).  However, the general physiological 

rationale for all of these methods was the same as for Ovsynch.    
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A.  CO-Synch 
        GnRH        PGF  GnRH + TAI 
                                                                   
 

  
     Day            0                                7                             48-72h     

 
B. CO-Synch +CIDR 
        GnRH        PGF  GnRH + TAI 
                                                                   
 

CIDR  
     Day           0           7                               48-72h 
 
C. Select Synch 
         GnRH                                   PGF               
                                                                                                              
 

 

     Day           0                     7                  
                                            6                                                  12       
                                                     Estrus Detection and AI 

D. Hybrid Synch 
         GnRH                                    PGF  GnRH + TAI          
 
                                                                                                               

  

     Day           0                                           7                               10-10.5 
                                            6                                                10 
                                                    Estrus Detection and AI 
 

 Figure 5.  Different synchronization schemes using GnRH and PGF. A. CO-Synch: 
second GnRH injection is given 48-72 h after PGF in conjunction with TAI; B. CO-
Synch + CIDR: same protocol as CO-Synch but a source of progesterone (CIDR) is 
added from d 0 to 7; C. Select Synch: heat detection is employed from d 6 to 12; AI is 
performed based upon estrus detection; D. Hybrid Synch: cows are detected in estrus as 
with Select Synch; cows not detected in estrus a second GnRH and TAI is given on d 10.  
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Pregnancy rates obtained with the Ovsynch protocol, which was initially 

developed and tested in dairy cows, ranged from 35% to 50%, with lower results in 

heifers than in cows (Pursley et al., 1997).  Ovsynch was also applied in suckled Bos 

taurus beef cows, with pregnancy rates ranging from 33 to 60% (Geary et al., 1998; 

Thompson et al., 1999). 

Weaknesses in Protocols Utilizing GnRH plus PGF 

Pregnancy rates in cows using protocols that involve combinations of GnRH and 

PGF are greatly influenced by BCS (Herd and Sprott, 1998) and d postpartum.  As a 

general rule the best results are obtained in cattle with a BCS of at least 5 on a scale of 1-

9 , and in individuals that are at least 50 d postpartum (Lamb et al., 2001; Williams et al., 

2002).  In most cases when these requirements are fulfilled, TAI pregnancy rates can be 

increased to over 50% (Lamb et al., 2001; Williams et al., 2002).  Similar to findings in 

dairy cattle, pregnancy rates in beef cattle have been lower in heifers than in cows 

(Lemaster et al., 2001; Williams et al., 2002). 

Some weaknesses have been recognized in these types of protocols.  Those 

weaknesses become apparent in animals that, at the time of the treatment, do not have a 

functional CL or significant follicular development.  This can occur in both anestrous 

cows and heifers.  In addition, it has been reported that only 60-80% of the animals with 

a large follicle present at the time of the first GnRH injection ovulate in response to that 

injection (Pursley et al., 1995).  Vasconcelos et al. (1999) reported that ovulation rates 

exceeded 70 % when GnRH was given between d 5-9 and 17-21 of the estrous cycle, but 

were less than 50 % when the treatment was given at d 1-4 or 10-16 of the cycle.  
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Coincidently, Moreira et al. (2000) observed that follicles on d 2 and 10 of the estrous 

cycle are less likely to ovulate after injections of GnRH than follicles on d 5, 15 and 18 

of the estrous cycle.  Failure of follicles to respond to GnRH has been linked to the 

presence of high serum concentrations of progesterone that reduce LH pulse frequency 

and/or decrease the number of LH receptors in follicles (Macmillan and Thatcher, 1991).  

Failure of CL to regress on d 7 after PGF has also been discussed as a possible 

contributor to synchronization failure, and is associated with the delay or inhibition of 

ovulation at the second GnRH injection 2 d after PGF in the Ovsynch protocol. 

Twagiramungu et al. (1995) reported that when luteolysis was complete, estrus and 

ovulation occurred, but when it was incomplete, ovulation did not occur and the 

dominant follicle became persistent.  Lemaster et al. (2001) has reported similar findings 

and suggested that some differences in responsiveness to PGF may occur between Bos 

indicus and Bos taurus cattle.  Williams et al. (1999) reported that in Bos indicus-

influenced heifers, CL regression differed among d 6, 10, and 14 of the estrous cycle 

with 54.2, 63.3 and 91.7 % regression observed on each day, respectively.  In contrast, 

Thompson et al. (1999) reported that luteal regression in Bos taurus beef females on d 7 

occurred in 100% of the animals treated in an Ovsynch protocol and 91.7% of the 

animals treated in a GnRH + norgestomet protocol.   

Martinez et al. (2002b), using lactating Bos taurus beef cows, compared 

pregnancy rates when PGF was given on either d 6 or 7.  It was not observed any 

difference in pregnancy rates (52.4 and 52.0% respectively), suggesting that luteal 

regression was similar for the two groups injected on different days.  In addition, Hiers 
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et al. (2003), using Bos indicus-influenced cows, evaluated the effect of using two 

different luteolytic compounds, dinoprost tromethamine and cloprostenol sodium, as 

well as the effect of two injections of dinoprost tromethamine administered at 12-h 

intervals, on TAI conception rates.  Timed AI conception rates did not differ among 

treatments (36, 41, and 39% respectively); also suggesting that on d 7 CL regression 

occurs consistently.  Therefore, the preponderance of data suggest that in Bos taurus 

cattle, PGF consistently regresses CL on d 7 of GnRH/PGF protocols, but this may not 

be true in Bos indicus-influenced breeds and could contribute to synchronization failure 

and reduced fertility.   More work in this area is warranted. 

As noted earlier, synchronization protocols involving the use of GnRH, while 

capable of producing reasonable pregnancy rates in cyclic cows, have not been as 

successful in heifers and in anestrous cows.  In heifers, there is a relatively high 

incidence of estrus (6 to 28%) before d 7 (d of PGF injection) and these animals are 

unlikely to conceive to a fixed time AI (Roy and Twagiramungu, 1999; Martinez et al., 

2002b; Williams et al., 2002).  In beef cows, the incidence of premature estrus during the 

Ovsynch and similar protocols has also been reported to be approximately 8-10% (Geary 

et al., 2000; DeJarnette et al., 2001). 

Addition of Progestins to GnRH plus PGF Protocols 

Recent studies suggest that the use of progestins in GnRH/PGF protocols can 

increase conception rates above those obtained with GnRH/PGF alone.  Objectives are to 

increase conception rates in those cattle in which TAI conception rates are not 

acceptable when only GnRH/PGF are utilized.  Three different types of progestogens 
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have been used including norgestomet ear implants (Stevenson et al., 1997; Thompson et 

al., 1999), MGA (Martinez et al., 1998; Funston et al., 2002), and CIDR inserts (Lamb et 

al., 2001; Martinez et al., 2002b).  In general, progestogens are included during the first 

7 d of treatment, between the first injection of GnRH and injection of PGF (Stevenson et 

al., 1997) to induce cyclicity in anestrous females and to impede premature estrus.  In 

several studies, pregnancy rates were increased by at least 10% compared to the 

GnRH/PGF treatment alone.  Pregnancy rates in Bos taurus beef cattle have been 

reported as high as 60% (Thompson et al., 1999; Lamb et al., 2001), and some studies 

have reported a marked increase in pregnancy rates in heifers of up to 65% (Stevenson et 

al., 1997; Martinez et al., 2002b; Martinez et al., 2001).  Pregnancy rates in Japanese 

Black beef cows were even greater, with values as high as 72% reported (Kawate et al., 

2004).  These results indicate that the inclusion of a progestogen in GnRH/PGF 

protocols could optimize TAI conception rates in all types of cattle, including Bos 

indicus-influenced cattle. 
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 Subtropical Regions in the U.S. and Bos indicus Influence 

  Southern regions of the U.S. have environmental characteristics, such as high 

humidity and temperature and extreme degrees of solar radiation, in which the 

incorporation of Bos indicus breeding into beef cattle herds is necessary in order to 

optimize production efficiencies (Turner, 1980).  Williams et al., (1987) reported the use 

of Syncro-Mate-B synchronization in Brahman-influenced cattle in south Texas.  In that 

study, TAI pregnancy rates varied between 33.8 and 44.1 %.  Ovsynch has also been 

applied in Bos indicus-influenced cattle, with pregnancy rates ranging from 31 to 42% 

(Lemaster et al., 2001; Williams et al., 2002).  There have been few reports describing 

the efficiency of GnRH/PGF/progestogen treatments in Bos indicus-influenced cattle.  

Hiers et al. (2003) reported pregnancy rates in Bos indicus-influenced cattle between 

36% and 41% when MGA was combined with the Ovsynch protocol.  Although 

previous studies did not compare directly Bos taurus and Bos indicus cattle, it appears 

that pregnancy outcomes resulting from TAI after synchronization of ovulation are lower 

in Bos indicus-influenced cattle.  Hence, the approach of combining GnRH, PGF, and 

progesterone might offer a promising alternative in regions where Bos indicus-

influenced cattle predominate. 
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CHAPTER III 

 

OVARIAN AND HORMONAL EVENTS DURING SYNCHRONIZATION OF 

OVULATION AND TIMED APPOINTMENT BREEDING OF Bos indicus-

INFLUENCED CATTLE USING INTRAVAGINAL PROGESTERONE, GnRH 

AND PROSTAGLANDIN F2αααα
 

 

Introduction 

Several pharmacological protocols, developed primarily using Bos taurus 

(English and European) females, are currently available for synchronization of estrus 

and ovulation in beef cattle (Stevenson et al., 2003a; Patterson et al., 2003).  Recently 

the CO-Synch protocol (Geary and Whittier, 1998), which involves the combined use of 

GnRH and PGF, has been coupled with an exogenous source of progesterone (CIDR). 

This combination (COS-C) appears capable of producing TAI conception rates 

averaging greater than 50% (Lamb et al., 2001, Larson et al., 2004 a, b) in Bos taurus 

females.  These TAI conception rates are consistently greater than those reported 

previously using other traditional methods (Stevenson et al., 2003a).  Improved 

outcomes have been linked in part to the ability of exogenous progesterone to induce 

ovulation in a high proportion of anestrous cows (Stevenson et al., 2000) and to reduce 

the occurrence of estrus before TAI (DeJarnette et al., 2001; Martinez et al., 2002b).  

However, in environments that are predominantly subtropical to tropical, the need to 

utilize Bos indicus-influenced females may reduce the efficiency of synchronization and 
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TAI conception rates compared to Bos taurus females (Lemaster et al., 2001; Hiers et 

al., 2003).  Although not well-characterized, this may occur due to increased excitability 

and stress in Bos indicus-influenced cattle when subjected to intense management and 

(or) differences in timing of ovarian events.  Reports specifically evaluating the COS-C 

for TAI in Bos indicus-influenced cattle are limited. 

Objectives of studies reported herein were to 1) evaluate the use of the COS-C 

protocol for synchronization of ovulation and TAI in Bos indicus-influenced cattle, 2) 

compare cumulative pregnancy rates after COS-C synchronization and TAI to those in a 

TM scheme and 3) evaluate specific ovarian, hormonal, and estrual events associated 

with the use of COS-C and related protocols to identify aspects of the system that may 

contribute to reductions or improvements in efficiency of the protocol in Bos indicus-

influenced cattle. 

 

Materials and Methods 

The Institutional Agricultural Animal Care and Use Committee of the Texas 

A&M University approved in advance all procedures used in these studies. 

Experiment 1. Field Trials 

Specific objectives of this experiment were to determine reproductive outcomes, 

represented as conception rates, after TAI for synchronized females and to compare 

cumulative pregnancy rates obtained at early (30 d), and late (60 d) stage of the breeding 

season between synchronized and untreated controls (TM).  
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All cattle (n = 431) in this experiment were preferred to have a minimum BCS of 

5 (1-9 scale, 1= emaciated, and 9= obese; Herd and Sprott, 1998) and if suckled, be at 

least 50 d postpartum.  Predominantly Brahman x Hereford (F1) and Brangus females (n 

= 335) were stratified by BCS, parity and d postpartum (primiparous and pluriparous 

only) at each location and assigned randomly in groups of not less than 25 to COS-C or 

TM groups.  An additional 96 similar females in which TM controls were not available 

for comparison also received COS-C and TAI at 48 h.  The COS-C regimen included the 

insertion of a controlled internal drug release device (CIDR; Pfizer Animal Health, New 

York, NY) which is a T-shaped silicone device containing 1.38g of progesterone, and an 

injection of GnRH (GnRH-1; 100 µg i.m. Cystorelin, Athens, GA) on d 0, removal of 

the CIDR and injection of PGF (25 mg i. m. Lutalyse; Pfizer Animal Health, New York, 

NY) on d 7, and injection of GnRH (GnRH-2; 100 µg i.m. Cystorelin) and TAI on d 9 

(Fig 5b).  Timing of AI after CIDR removal/PGF injection in this study was based on 

previous reports indicating that 48 h after CIDR removal was the most appropriate time 

for TAI (Geary and Whittier, 1998; Lamb et al., 2001; Stevenson et al., 2003a).  

Synchronized cows were placed with fertile bulls for 90 d beginning 5 to 7 d after TAI 

whereas TM cows were placed with bulls on d 0 (TAI on synchronized females).  Bulls 

used for natural service had successfully completed a standard breeding soundness 

examination approximately 2 wk before the onset of breeding.  Conception rates to TAI 

were determined by transrectal ultrasonography (Dynamic Imaging, Concept/MCV, 

equipped with a 7.5 MHz linear probe; Livingston, UK) 30 d after TAI in the COS-C 

group.  Presence of both uterine fluid accumulation and embryonic vesicle determined 
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females diagnosed as pregnant, also embryonic heart beat was used to confirm the 

viability of the embryo.  Final pregnancy rates were assessed by palpation per rectum 45 

d after the end of the breeding season in both synchronized and TM groups to 

retrospectively estimate cumulative pregnancy rate at both 30 and 60 d of the breeding 

season.   

Experiment 2. Follicular, Luteal and Hormonal Characteristics of COS and COS-C 

Synchronization Protocols 

Specific objectives of this experiment were to a) perform a full characterization 

of ovarian events occurring within each treatment; b) describe the pattern of 

progesterone secretion and pituitary LH release in response to GnRH; c) identify 

endocrine, follicular, and luteal profiles associated with TAI outcomes. 

Pluriparous, postpartum Brahman x Hereford (F1) cows (n = 100) were divided 

into four replicate groups of 25 females each.  Criteria for inclusion in the study and 

stratification procedures were similar to Experiment 1.  Cattle were placed in pens 

measuring 25.6 x 9.6 m 8 d before the onset of treatments, with five cow-calf pairs per 

pen, and fed according to National Research Council (NRC, 1996) recommendations for 

lactating beef cows.  Half of the cows within each replicate (n=12-13) were allocated 

randomly to received the COS-C treatment (Fig. 5b), as in Exp. 1, and half of the cows 

received the COS treatment (Fig. 5a).  Cows were placed with bulls after TAI as 

described for Exp. 1.  

Transrectal ultrasonography was performed every other day from d -8 to d 0, and 

then daily from d 0 until ovulation or d 12, whichever occurred first.  All ultrasound 
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examinations were performed by the same operator.  Follicles greater than 6 mm as well 

as luteal structures were measured and a picture of the dorsal and lateral view of each 

ovary was then obtained for further analysis.  The dominant follicle was defined as the 

follicle that reached the largest diameter (Sirois and Fortune, 1980).  Ovulation was 

defined as the sudden disappearance of a follicle within two consecutive ultrasound 

examinations and confirmation by the subsequent CL appearance.  Follicular regression 

was defined as the gradual reduction of follicular size until disappearance (Ginther et al., 

1989b).  Emergence of a follicular wave was determined, retrospectively, as the day the 

dominant follicle reached 4 to 5 mm; if the follicle was not detected until it was 6 to 7 

mm, then the day before was considered as the day of emergence (Ginther et al., 1989a).  

A synchronized follicular wave was considered to have occurred if it emerged between d 

1 to 4 after GnRH-1.  Follicular wave emergence occurring outside of this period was 

considered to be spontaneous.  Luteal regression was defined as the progressive 

reduction in size of the CL until disappearance (Ginther, 1998). 

Blood sampling intervals followed the same time course as for transrectal 

ultrasonography.  Samples were placed on ice immediately after collection until arrival 

to the laboratory.  After arrival, samples were removed from the ice and allowed to stand 

at room temperature for approximately 1 h before centrifugation.  Samples were 

centrifuged at 1854 x g for 30 min within the first 4 h of collection (Lesniewski et al., 

1985).  Serum was collected and stored at -20�C until hormone analyses.  Concentrations 

of progesterone in serum were determined with a solid phase RIA using the Coat-A-

Count assay kit (Diagnostic Products Corporation, Los Angeles, CA) as reported 
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previously from this laboratory (Fajerson et al., 1999).  Intra- and interassay coefficient 

of variation was 10.55 and 10.84% respectively (n = 7 assays).  Concentrations of LH 

were also determined as reported previously by McVey and Williams (1991), in blood 

samples collected during the first replicate at 0, 30, 60 and 120 min relative to GnRH 

injections on d 0 (GnRH-1) and d 9 (GnRH-2).  Intra- and interassay coefficient of 

variation was 4.28 and 6.51% respectively (n = 2 assays).  All hormone determinations 

for a particular animal were performed within the same assay.  

Cows were observed for estrus 3x daily from d 0 until ovulation or d 12, 

whichever occurred first, with the aid of androgenized cows.  On d 12, all cows were 

returned to their pasture with clean-up bulls for a 90-d breeding period.  Pregnancy 

determination was performed by transrectal ultrasonography at 30-32 d post-AI, and re-

confirmed by palpation per rectum 45 d after bulls were removed. 

 
Experiment 3.  Distribution of Estrus and Ovulation in Cows Programmed with the 

Select Synch + CIDR Synchronization Protocol 

Specific objectives of this experiment were to a) perform a full characterization 

of estrus and ovulation events occurring after synchronization with Select Synch + CIDR 

protocol; b) compare ovarian and follicular events obtained with those obtained in Exp. 

2 to determine possible differences between naturally-occurring and induced ovulation; 

c) based on results of this and previous experiment, propose modifications that can 

contribute to better outcomes in Bos indicus-influenced cattle. 

 Fifty postpartum, suckled Brahman x Hereford (F-1) females were used.  

Criteria for inclusion were the same as for Experiments 1 and 2.  Cows in the study were 
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primiparous heifers (n = 32), and pluriparous cows (n = 18).  Females were placed in 

pens as in Experiment 2, with 8 cow-calf pairs per pen, and fed according to NRC 

recommendations for lactating beef cows.  All cows received the Select Synch + CIDR 

synchronization regimen (Fig. 5c).  This regimen follows the same procedure as COS-C, 

as described in Experiment 1 but the second GnRH injection (GnRH-2) is not 

administered.  

Transrectal ultrasonography to assess ovarian morphology was conducted at the 

time of CIDR removal and every 12 h until ovulation or d 12, whichever occurred first. 

The technique of ultrasonography was the same as in experiment 2, but the main focus 

was on the development of the preovulatory follicle and CL regression.  Observations 

for estrus were performed by visual observation every 3 h from CIDR removal on d 7 

through d 12 based upon homosexual behavior among herdmates and followed by AI 12 

h after detected estrus.  Three different categories for estrus detection were 

distinguished.  Standing estrus corresponded to cows that stood for at least 4 s while a 

herdmate mounted her and this action was repeated at least three times in a 6 h period. 

Non-standing estrus behavior corresponded to females that had all other signs of estrus 

but did not stand when a herdmate attempted to do so.  No estrous behavior 

corresponded to females that did not show any sign of estrus at all.    

Blood samples were collected on d -21, -11, 0 (CIDR insertion), 7, 8 and 9 

following the same procedures described in experiment 2.  Serum was assayed for 

progesterone in all samples by RIA as described in experiment 2 to retrospectively 

estimate cyclicity and luteal regression.   Cattle were considered to be cyclic at the onset 
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of the study if they exhibited serum concentrations of progesterone ≥ 1ng/ml for two 

consecutive samples and a visible CL at ultrasound within the 10 d previous to d 0.  

 

Statistical Analyses 

Experiment 1.  Categorical variables (TAI conception rates and cumulative 

pregnancy rates after 30 and 60 d of the breeding season) were analyzed by Chi square 

analysis using the Proc Freq of the Statistical Analysis System (SAS Inst. Inc., Cary, 

NC, 1985).  Analysis of variance for categorical data using the CatMod procedure of 

SAS was used to determine the effects of parity, BCS, and d postpartum, year, location, 

and respective interactions on TAI conception rates in a model that included year, 

location, treatment, and their respective interactions.  For these and following procedures 

a 95% confidence level or greater was chosen to determine significative differences 

Experiment 2.  Analysis of variance (Proc GLM of SAS) was used to determine 

effects of parity, BCS and d postpartum; however, in this case the model included 

replicate, treatment, cyclic status and their interaction.  When a significant F-value was 

identified, the LSD test was used to contrast means. 

 Ovulatory response to GnRH-1, new follicular wave emergence, CL regression, 

ovulatory response to GnRH-2, and TAI conception rates were evaluated by Chi square 

analysis (Proc Freq of SAS).   Day of follicular wave emergence, mean follicular size at 

d 7, 9, and 10, as well as follicular growth rate was evaluated using Proc GLM to 

examine effects of treatment, cyclic status and their interaction.  Treatment effects on 

mean concentrations of progesterone and LH were also analyzed by repeated measures 
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analysis of variance (Proc GLM) with treatment, cow within treatment, cyclic status and 

day included in the model.  

Experiment 3.  Differences in parity, BCS and d postpartum were evaluated by 

analysis of variance (Proc GLM of SAS) in a model including cyclic status, and estrus 

and ovulation presentation.  Mean follicular size was evaluated on day 7, 9 and before 

ovulation by analysis of variance (Proc GLM) in a model that included cyclic status, 

occurrence of estrus presentation and their interaction.  Mean intervals from CIDR 

removal to standing estrus and ovulation, and from standing estrus to ovulation, were 

evaluated by the GLM procedure for cyclic and non-cyclic cows.  

 

Results 

Experiment 1 

Mean age, BCS, BW, and d postpartum averaged (± SEM) 4.7 ± 0.2 yr, 5.1 ± 

0.03 (range 3-8), 468 ± 7.1 Kg, and 70 ± 1.1 d, respectively.  Timed AI conception rates 

in all females synchronized with COS-C are summarized in Table 1.  Conception rates to 

TAI averaged about 39 ± 3% overall and did not vary by location (n = 4, P = 0.47), year 

(n = 2, P = 0.53), BCS (P = 0.94), d postpartum (P = 0.81), parity (P = 0.88), sire (n = 6, 

P = 0. 95) or AI technician (n = 3, P = 0.74).  Table 2 summarizes cumulative pregnancy 

rates at 30 and 60 d of breeding season for COS-C (TAI and/or natural service) and TM 

(natural service).  Cumulative pregnancy rates were greater (P < 0.05) in COS-C at both 

30 and 60 d of the breeding season compared to the TM group. 
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Table 1. Timed AI (TAI) pregnancy rates in nulliparous heifers, primiparous heifers, 
and pluriparous cows synchronized with CO-Synch + CIDR (COS-C) 

Source Treatment N TAI Pregnancy Rate, % 
Nulliparous COS-C 89 39.3 
Primiparous COS-C 34 35.3 
Pluriparous COS-C 143 39.9 
Total COS-C 266 39.1 

 
 
 

Table 2.  Cumulative pregnancy rates after 30 and 60 d of breeding in nulliparous 
heifers, primiparous heifers, and pluriparous cows synchronized with CO-Synch + CIDR 

(COS-C) followed by timed AI (TAI) or managed using traditional methods (TM) 

 a Cumulative pregnancy rate for COS-C females included TAI and/or natural service, 
for TM included natural service only. Cumulative pregnancy rate was retrospectively 
estimated for both groups using days of gestation obtained 45 days after the end of the 
breeding season by rectal palpation   
 b,c Percentages in columns with uncommon superscripts differ P < 0.05. 
 
 
 
Experiment 2  

Ovarian and reproductive variables are summarized in Table 3.  Mean age, BCS, 

BW, and d postpartum averaged (± SEM) 8.8 � 0.3 yr, 5.3 � 0.07 (range 4-8), 543 � 7.4 

kg, and 77�0.66 d, respectively.  No differences in the major ovarian and reproductive 

  Cumulative Pregnancy Ratea, % 
Source Treatment N 30 Days 60 Days 

Nulliparous  COS-C 62 75.8 95.2 
 TM 71 71.8 88.7 
     

Primiparous COS-C 34 67.6 100.0 
 TM 28 60.7 89.3 
     

Pluriparous COS-C 74 75.7b 94.6 
 TM 66 51.5c 90.9 
     

Total COS-C 170 74.1b 95.9b 
 TM 165 61.8c 89.7c 
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endpoints were observed between COS-C and COS.  Therefore, data for both treatments 

are presented as pooled means (Table 3).  Data are also presented relative to cyclic status 

at the onset of treatments.  The number of non-cyclic cows ovulating after GnRH-1 was 

greater (P < 0.01) than for cyclic cows.  The number ovulating in response to GnRH-2 

also differed between cyclic and non-cyclic cows; however, in this case, cyclic cows had 

the greater (P < 0.05) response.  Mean follicular diameters are presented in Table 4.  

Non-cyclic cows had greater (P < 0.05) mean follicular size at PGF than cyclic cows, 

and therefore a greater (P < 0.05) follicular growth rate.  Follicular sizes were not 

different at the subsequent stages.  

Data were also summarized relative to presence or absence of ovulation after 

GnRH-1 to evaluate their effects on subsequent ovarian responses (Table 5).  More  

(P < 0.01) cows that ovulated after GnRH-1 developed a synchronized follicular wave 

compared to cows that did not ovulate.  Moreover, there was a trend (P = 0.15) for 

ovulation rates after GnRH-2 to be greater in cows that ovulated in response to GnRH-1 

than cows that did not.  Also, ovulation and TAI pregnancy rates after GnRH-2 were 

increased (P < 0.01) in cows that developed a synchronized follicular wave after GnRH-

1 compared to cows that did not develop a new wave (Table 6). 
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Table 3. Ovarian and reproductive outcomes in postpartum suckled cows synchronized 
with CO-Synch + CIDR (COS-C) or CO-Synch (COS), and for cyclic and non-cyclic 

cows in Exp. 2 

 Ovarian Status 
Variable 

COS-C and COS 
Combined Cyclic Non-cyclic 

No. Cows 100 78 22 
    

Estrous cyclic, % 78 - - 
    

Response to GnRH-1, %    
Ovulating 40 33d 64e 
Follicle regression 39 40 36 
Not responding 21 27d 0e 

    
New follicular wave after 
GnRH-1, %    

Synchronizeda  60 56 73 
Not synchronizedb 31 35 18 
No emergence 9 9 9 

Day of emergence 2.5 ± 0.12 2.4 ± 0.15 2.75 ± 0.23 
    

CL regression, % (No.) 92 (75/81) 91(61/67) 100(14/14)c 
    

Ovulatory Response to 
GnRH-2, %    

0-24 h after TAI 15 14.1 18.2 

24-48 h after TAI 57 62.8 36.3 

Total 72 76.9d 54.5e 
    

TAI pregnancy, %    
Ovulation 0-24 h after AI 9 10.3 4.5 
Ovulation 24-48 h after 
AI 24 23 27.3 

Total 33 33.3 31.8 
 a Cows that developed a follicular wave from d 1 to d 4 after GnRH-1. 
 b Cows that developed a follicular wave before d 1 and after d 4.  
 c Non-cyclic cows with observed luteal regression correspond to females that 
developed a CL after GnRH-1 
 d,e  Percentages within row with uncommon superscripts letters differ (P < 0.01). 
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Table 4. Mean follicular diameters in postpartum suckled cows synchronized with CO-
Synch + CIDR (COS-C) or CO-Synch (COS), measured at different stages of the 

experiment (Exp. 2) 

Ovarian Status 
Variable 

COS-C and COS 
Combined Cyclic Anestrous 

Diameter of the largest 
Follicle, mm (range) 

   

GnRH-1 9.6 ± 0.2 
(4.0 - 12.95) 

9.4 ± 0.2 
(4.0 - 12.95) 

10.2 ± 0.3 
(6.8 - 12.3) 

PGF 9.8 ± 0.2 
(6.3 – 15.4) 

9.6 ± 0.2a 

(6.3 – 13.9) 
10.5 ± 0.2b 

(7.0 - 15.4) 
GnRH-2 11.1 ± 0.2 

(6.0 – 15.4) 
11 ± 0.3 

(6.0 – 15.4) 
11.4 ± 0.5 

(7.5 – 14.5) 
Before ovulation 11.6 ± 0.2 

(8.1-15.4) 
11.4 ± 0.2 

(8.1 – 15.4) 
12.2 ± 0.5 

(9.1 – 14.7) 
Follicular growth rate, 
mm/day 

1.4 ± 0.06 1.3 ±0.07a 1.7 ± 0.1b 

 a,b  Percentages within row with uncommon superscripts letters differ (P < 0.05). 
  
 
 

Table 5. Effects of the response to the first GnRH injection (GnRH-1) on subsequent 
ovarian and reproductive outcomes in cows synchronized with CO-Synch + CIDR 

(COS-C) or CO-Synch (COS) in Exp. 2 
 Ovulatory Response to GnRH-1 

Variable Ovulating 
No. (%) 

Not Ovulating 
No. (%) 

No of cows 40 60 
   
Synchronized follicular 
wave    

Yes 35 (88)a 25 (42)b 
No 5 (12) 35 (58) 

   
Ovulated after GnRH-2   
Yes 32 (80) 40 (67) 
No 8 (20) 20 (33) 

   
TAI pregnancy 15 (37) 18 (30) 
 a,b Percentages within rows with uncommon superscripts differ (P < 0.01). 
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Table 6.  Effects of synchronized follicular wave emergence after GnRH-1 on 
subsequent ovarian and reproductive outcomes in cows synchronized with CO-Synch + 

CIDR (COS-C) or CO-Synch (COS) in Exp. 2 
Occurrence of Synchronized Follicular Wave after GnRH-1 

Yes No 

Variable No. (%) No. (%) 
No of cows 60 40 
   
Ovulation after GnRH-2   
Yes 51 (85)a   21 (52)b 

No 9 (15) 19 (48) 

   
TAI pregnancy 26 (43)a      7  (17)b 
 a,b Percentage within row with uncommon superscripts letters differ (P < 0.01). 
 
 
 

Mean serum concentrations of progesterone are illustrated in Figure 6.  As 

expected, concentrations of progesterone from d -8 to 0 relative to GnRH-1 differed 

between cyclic and non cyclic cows.  After CIDR insertion (d 0), serum progesterone 

increased (P < 0.001) acutely for both cyclic and non-cyclic cows that received the COS-

C treatment.  Serum concentrations of progesterone on day 1 were highest (P < 0.05) for 

cyclic cows receiving COS-C compared to all other groups.  Mean concentrations of 

progesterone did not differ between cyclic cows treated with COS and non-cyclic cows 

treated with COS-C. 

Mean concentrations of progesterone were lowest (P < 0.01) for the non-cyclic 

COS-treated group compared to all others, and mean serum concentrations of 

progesterone never exceeded 1 ng/ml during the treatment period.  After injection of 

PGF and CIDR removal (d 7), progesterone decreased below 1 ng/ml within 24 h in all 
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groups and remained low until d 12 when mean progesterone exhibited a slight increase 

(P = 0.09) in cyclic, COS-treated cows.  The latter was caused by two cows that ovulated 

asynchronously before d 9. 

 

 
 

  

 

 

 

 

 

 
 Figure 6. Concentrations of progesterone (P4) in serum of cyclic (+; n = 39) and non-
cyclic (�; n = 11) cows treated with COS-C, and cyclic (�; n = 39) and non-cyclic (�; n 
= 11) cows treated with COS only (Exp. 2). 
 
 
 
 Release of LH induced by GnRH was considered to have occurred when an 

increment in the concentration of LH of at least 2 SD above the baseline was observed. 

Two cows had an endogenous LH surge before GnRH-2 and were excluded from further 

analysis in relation to this variable.  The latter conclusion was based on the fact that 

concentrations of LH during the sampling period were in a declining mode.  All other 

cows (n = 23) in replicate 1 exhibited increases (P < 0.01; Figure 7) in LH after both 

GnRH-1 and 2.  Magnitude of release did not differ between treatments (COS-C vs 
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COS).  Non-cyclic cows had an induced LH release greater (P < 0.05; Fig 3) than cyclic 

cows after GnRH-1, but concentrations of LH did not differ between cyclic and non-

cyclic cows after GnRH-2.  A time x cyclic status interaction (P < 0.05) associated with 

GnRH-induced LH release was observed after GnRH-2.  Also, overall mean 

concentrations of LH were greater (P < 0.01) after GnRH-2 than after GnRH-1 (7.2 ± 

0.71 and 4.3 ± 1.1, respectively). 

 

 

 

 

 

 

 

 

 

 
 Figure 7.  Mean serum concentrations of LH after GnRH-1 in cows that were cyclic 
(×; n = 15) and non-cyclic (�; n = 10) before treatment onset, and in cyclic (�; n = 14) 
and non-cyclic (�; n = 9) cows after GnRH-2. Cows not cyclic before treatment onset 
had greater (P < 0.05) induced release of LH after GnRH-1 than cyclic cows, but not 
after GnRH-2 (cyclic status x time, P < 0.05) in Exp. 2.   
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Experiment 3   

 Neither ovarian cyclic status (cyclic 60%, non-cyclic 40%) nor parity affected 

the number of cows exhibiting estrus or ovulating.  Mean age (± SEM), BCS, BW, and d 

postpartum were 5.81 � 0.5y, 5.6 � 0.1 (range 4-8), 565 � 10.2 Kg and 60�1.1 d, 

respectively.  On d 7, cows (72%) had a visible CL at ultrasound, and of those (97%) 

exhibited CL regression after PGF, as evidenced by a reduction in ultrasonographic size 

and morphology of the CL and a reduction in serum concentrations of progesterone to 

less than 1 ng/mL.  No cows were observed in estrus during the first 48 h after CIDR 

removal.  The majority (75 %) of estrual events was observed between 60 and 82 h after 

CIDR removal (Figure 8).  Mean size of the largest follicle at CIDR removal and 48 h 

after removal were 9.45 ± 0.26  and 11.65 ± 0.26 mm, respectively (Table 7).  Follicular 

diameter was greater for cows showing standing estrus than for cows showing only non-

standing estrous behavior or no estrous behavior at both CIDR removal (P < 0.05) and 

48 h after removal (P < 0.01).  Cows that showed standing estrus had more (P < 0.01) 

ovulations than cows not standing.  Timing from standing estrus to ovulation is shown in 

table 7. 
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Table 7. Estrual, follicular, and ovulatory characteristics of postpartum, suckled cows 
programmed with Select Synch + CIDR 

Estrus 

Variable 
All Cows Standing Non-

Standing 
None 

No. 50 27 14 9 
     
Mean follicle size, mm     
At CIDR removal 
(range)  10.1 ± 0.4a 

 (6.1 - 13.5) 
8.8 ± 0.6b 

(6.0 - 12.8) 
8.62 ± 0.3b 
(7.2 - 10.2) 

48 h after CIDR 
removal (range)  12.6 ± 0.4c 

(9.6 - 14.7) 
10.4 ± 0.4d 

(8.3 - 13.8) 
10.83 ± 0.4d 
(9.7 - 13.9) 

     
Ovulating, % 56 93c 21d 0d 
     
Mean ovulatory follicle  
size, mm (range) 

12.9 ± 0.3  
(9.4 - 15.1) 

12.9 ± 0.3 
(9.4 - 15.1) 

13.5 ± 0.5 
(12.5 -14.1) - 

     
Mean interval from 
CIDR removal to:     

Standing estrus, h  
(range)  70 ± 2.9             

(49 - 108) - - 

Ovulation, h (range) 99 ± 2.8             
(68 - 127) 

99 ± 3 
(68-127) 

104 ± 11 
(82 - 117) - 

Mean interval from estrus 
to ovulation, h (range)  29 ± 2.2              

(5 - 55) - - 
 a,b Percentage within row with uncommon superscripts letters differ (P < 0.05). 
 c,d Percentage within row with uncommon superscripts letters differ (P < 0.01). 
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Figure 8. Interval from CIDR removal to visual estrus (n = 27) and ovulation (n=28) of 
early postpartum suckled cows treated with Select Synch + CIDR. 
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Discussion 

 Two keys essential for increasing the use of AI in commercial beef operations are 

the development of a synchronization system that is easily applicable and the ability to 

consistently achieve TAI conception rates over 55% (NAHMS, 1997).  The COS-C 

synchronization regimen appears to have the potential to achieve these two goals, 

particularly in relation to its use in Bos taurus females (Larson et al., 2004 a, b; Lamb et 

al., 2001).  Therefore, we were encouraged to test whether the COS-C regimen could be 

economically employed in south Texas commercial beef operations in which Bos 

indicus-influenced cattle are commonly used due to their sub-tropical and tropical 

adaptation.  In a recent study conducted in our laboratory, we obtained and overall TAI 

conception rate of 42.2% using the Ovsynch synchronization procedure (Williams et al., 

2002), which is less complex than COS-C regimen.  Thus, initial goals were to compare 

management systems involving COS-C with traditional management under the 

assumption that TAI conception rates over 50% could be achieved consistently 

following synchronization with COS-C.  Overall TAI conception rates in our studies 

(39%) were substantially lower than the 50% level observed in Bos taurus females 

(Larson et al., 2004 a, b; Lamb et al., 2001).  For that reason, it is not likely that the 

COS-C regimen, as used in Exp. 1, could be economically employed for incorporation 

into commercial beef operations in south Texas.  Efforts to examine economic 

feasibilities of COS-C as employed in Exp. 1 were abandoned in favor of additional 

studies designed to determine the cause of suboptimal outcomes associated with the 

regimen in Bos indicus-influenced cattle in this region.  Attempts to account for the 
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lower pregnancy rates in Bos indicus-influenced vs straight Bos taurus cattle would be to 

question differences in overall fertility of these two breed types.  However the fertility of 

Braford and Brangus cattle in Exp. 1 was high (≥ 90 % pregnancy rates in 60 d) and 

therefore cannot be used to account for the poor TAI conception rates obtained.  

 The proportion of cows that are anovulatory at the time of synchronization is an 

important contributor to reduced rates of success in synchronization regimens and TAI 

(Stevenson et al., 2003a).  Anovulatory conditions are greatly influenced by BCS (Short 

et al., 1990; Yavas and Walton, 2000) and d postpartum (Williams, 1990).  Therefore a 

general approach for most investigators to minimize the effect of anestrus has been to 

require a BCS of at least 5, with cows a minimum of 50 d postpartum at the time of TAI 

(Lamb et al., 2001; Williams et al., 2002).  In the current studies, these conditions were 

fulfilled; moreover TAI conception rates were not influenced by BCS or d postpartum in 

Exp. 1 or 2.  Even though anestrous females can negatively influence outcomes of a 

synchronization program, an increase in TAI conception rates in anestrous females has 

been observed with the addition of an exogenous source of progesterone (Thompson et 

al., 1999; Stevenson et al., 2003b).  Lamb et al. (2001) increased TAI conception rates in 

postpartum anestrous females by 25% with the addition of progesterone to the COS 

synchronization regimen.  Low-level increases in progesterone occur during the natural 

resumption of ovulatory cycles postpartum (Arije et al., 1974; Williams et al., 1983) and 

the use of exogenous sources of progesterone can increase the frequency of LH pulses in 

postpartum cows to hasten first ovulation (Williams et al., 1983).  Although some 

differences were observed in follicular dynamics between cyclic and non-cyclic cows in 
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Exp. 2, TAI conception rates did not differ between the two groups when treated with 

COS-C and, therefore, anestrous did not account for reduced efficiency. 

     Follicular events were examined in Exp. 2 and 3 as sources of variation that 

could contribute to reduced TAI conception rates.  Hypotheses were that COS-C, as 

utilized in these experiments, failed in one or more areas to control ovarian physiological 

events necessary to optimize TAI conception rates.  These could include failure to 1) 

optimize the frequency of ovulation or regression of follicles after GnRH-1 on d 0; 2) 

cause optimally-timed emergence of a new follicular wave between d 1 to 4; 3) 

efficiently regress the CL at the time of PGF; 4) produce an optimally-receptive 

preovulatory follicle at the time of the second GnRH injection.   

 Frequency of ovulation after GnRH-1 (40%) clearly accounted for a significant 

proportion of synchronization failure in Exp. 1 and 2.  Timing of administration of 

GnRH-1 is random relative to different follicular stages.  Pursley et al. (1995) reported 

that only 60 to 80% of females with a large follicle present at the time of the first GnRH 

injection ovulate in response to that injection.  Vasconcelos et al. (1999) reported that 

ovulation rates exceeded 70 % when GnRH was given between d 5 to 9 and 17 to 21 of 

the estrous cycle, but were less than 50 % when the treatment was given on d 1-4 or 10-

16 of the cycle.  In beef heifers, Martinez et al. (1999) administered GnRH on d 3, 6, and 

9 of the cycle and obtained ovulation rates of 67, 100, and 67% respectively.  Overall 

results obtained in the current experiments were lower than those in the foregoing 

reports.  
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 After exogenous administration of GnRH, circulating concentrations of LH and 

FSH increase within 30 min, reach peak concentrations at 120-150 min, then decrease to 

basal levels between 4 and 5 h after injection (Zolman et al., 1974; Ford and Stormshak, 

1978).  Results of Exp. 2 confirmed the expected pattern of LH release.  However, a few 

(n = 4)  individual females exhibited unexplained, relatively small increases in LH after 

GnRH-1 and -2 in which peak concentrations of LH did not exceed 2 ng/mL.  Increased 

hypothalamo–pituitary–adrenal activity is involved in the suppression of gonadotropin 

secretion by stressors (Dobson and Smith, 1995).  Treatment with ACTH delays or 

abolishes estradiol-induced LH surges in anestrous sheep (Dobson et al., 1988) and also 

suppresses and delays LH responses to exogenous GnRH in vivo and in vitro (Matteri et 

al., 1986; Phogat et al., 1997).  Whether the failure to detect more robust increases in 

GnRH-induced release of LH in some cows was caused by a physiological alteration 

such stress or experimental error is uncertain; however, with the exception of one cow, 

the low response was observed in only one (GnRH-1 or 2) of the two sampling periods, 

but not in both.  Also, ovulation was not observed in cows with low LH release after 

GnRH-1, whereas cows with a low response ovulated after GnRH-2.  This indicates that 

an endogenous LH release probably occurred after the sampling period in the latter 

group. 

Even though a complete replenishment of pituitary LH stores occurs between d 

15 and 20 after parturition in cows (Lamming et al., 1981; Moss et al., 1985), we 

observed a greater release of LH after GnRH-1 in non-cyclic females than in cyclic 

females.  In accordance with this observation, Williams et al. (1982) also observed that 
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suckled cows had a greater magnitude of LH release after GnRH injection than non-

suckled cows.  It has been postulated that pituitary gonadotropin stores in non-cyclic 

cows may continue to build as the postpartum period progress, with larger amounts of 

LH and FSH secreted when an exogenous stimulus is applied (Williams et al., 1982). 

The greater amount of LH released overall after GnRH-2 compared to GnRH-1 is likely 

attributable to the increased sensitivity of the anterior pituitary to GnRH caused by 

endogenous estradiol in the low progesterone environment at the time of GnRH-2 

(Padmanabhan et al., 1978; Kesner et al., 1981).  These observations allow us to assume 

that GnRH-induced LH release is not a source of variation that could potentially affect 

the final outcome of the system.  

 The stimulation of new follicle growth after GnRH has been attributed to either 

the acute release of FSH directly associated with the GnRH injection (Chenault et al., 

1990; Roche et al., 1999) or by the subsequent endogenous increase in release of FSH 

caused by the disappearance of the dominant follicle (Twagiramungu et al., 1994).  

Bodensteiner et al. (1996) demonstrated in dairy cows that new follicular wave 

emergence after GnRH is initiated 21.3 ± 1.7 h after treatment, and occurs immediately 

after the FSH peak.  In the current study, induction of a synchronized follicular wave 

between d 1 and 4 after GnRH-1 occurred in 60 % of the cows, with 31% developing a 

follicular wave outside of this range.  Kim et al. (2005) demonstrated in lactating dairy 

cows that GnRH induced a new follicular wave in 95 %  of cows within 7 d; however, 

follicular waves occurring after d 4 occur too late to represent true follicular wave 

synchrony.  The proportion of cows that developed a synchronized follicular wave in the 
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present work was inadequate to ensure a high rate of success for a TAI protocol.  The 

importance of developing a synchronized follicular wave after GnRH-1 is accentuated 

when one examines ovulation and TAI conception rates in the current experiments 

(Table 6).  

 Induction of a new follicular wave was closely related to ovulation after GnRH-

1.  A greater proportion of cows that ovulated after GnRH-1 were induced to develop a 

new follicular wave compared with cows that only exhibited follicular regression or that 

did not respond in any manner (Table 5).  This is in contrast to a report by 

Twagiramungu et al. (1994) in which both ovulation and follicular regression after 

GnRH-1 were equally effective for inducing new follicular wave emergence.  However, 

in support of the current findings, Martinez et al. (2000) demonstrated that the synchrony 

of an induced follicular wave was less variable in heifers that ovulated after GnRH-1 

than in heifers that did not ovulate. 

  As described earlier, a relationship between stage of the cycle and response to 

GnRH injection has been demonstrated; hence presynchronization schemes have been 

developed (Peters and Pursley 2002; DeJarnette et al., 2003) aiming to place a larger 

number of females into a predetermined stage of the cycle just before the initiation of the 

synchronization procedure, thus increasing synchronization rates. These 

presynchronization schemes have not been extensively tested in Bos indicus-influenced 

cattle, but should be evaluated in the future.  Alternatively, E2 and its esters have been 

effectively used to synchronize follicular wave emergence.  Both E2 and GnRH are 

equally efficient for inducing a synchronized follicular wave; however less variability 
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has been demonstrated on timing of emergence of the synchronized follicular wave in 

females treated with E2 than in females treated with GnRH (Martinez et al., 1999).  The 

mechanism by which E2 synchronizes follicular wave emergence has been primarily 

attributed to its ability to suppress FSH (Kesner et al., 1982; Bolt et al., 1990) and 

consequently to induce follicular atresia (Bo et al., 1993; Burke et al., 2000).  Several 

reports are available that demonstrate the value of this alternative in Bos indicus (Bo et 

al., 2003) and Bos taurus cattle (Martinez et al., 2005); nevertheless it is important to 

note that strict regulations are imposed on the use of  E2 within the U.S. and its extra-

label use for synchronization of cattle is illegal (Johnson, 2005). 

 Incomplete luteolysis has been demonstrated to reduce the rates of efficiency in 

GnRH based regimens.  Twagiramungu et al. (1995) reported that incomplete luteolysis 

alters estrus rates and induces the formation of persistent follicles.  Lemaster et al. 

(2001) suggested that a possible cause of the low rate of estrus in the Select Synch 

synchronization protocol in Bos indicus-influenced cows was due to an inadequate 

regression of the CL; however, Hiers et al. (2003) found no differences in pregnancy 

rates when different PGF treatments were employed in Bos indicus-influenced females.  

Results of Exp. 2 and 3 of the current work indicate that the rate of luteal regression after 

PGF on d 7 was relatively high (93%).  Concentrations of progesterone exhibit a marked 

decrease after PGF on d 7 (Twagiramungu et al., 1994; Thompson et al., 1999).  Studies 

herein supported this observation, even in females with a recently induced CL in which 

only a small increase in progesterone was observed before PGF injection.  Therefore, 
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failure of luteal regression did not account for a significant proportion of 

synchronization failure in the current studies. 

Even though progesterone concentrations decreased after PGF injection below 1 

ng/ml within 24 h in all groups and remained low until d 12, a few (4%) animals in the 

COS group exhibited premature estrus and ovulation which caused a small increase in 

overall mean concentrations of progesterone in this group after d 12.  In heifers, there is 

a relatively high incidence of estrus (6 to 28 %) before d 7 (d of PGF injection) in 

GnRH/PGF protocols and these animals are unlikely to conceive to a fixed time AI (Roy 

and Twagiramungu, 1999; Martinez et al., 2002b; Williams et al., 2002).  In beef cows, 

the incidence of premature estrus during the Ovsynch and similar protocols has been 

reported to be approximately 8-10% (Geary et al., 2000; DeJarnette et al., 2001). 

Premature estrus was observed only in the COS group in which a source of progesterone 

was not present.  Progesterone eliminates the occurrence of premature estrus in 

GnRH/PGF protocols (Thompson et al., 1999; Stevenson et al., 2000). 

Ovulation rate after GnRH-2 (72%) in the current studies also accounted for 

reduced efficiency.  Vasconcelos et al. (1999, 2001) reported ovulation rates after 

GnRH-2 in lactating dairy cows of 87% and 91.3% respectively.  Similarly, Pursley et 

al. (1995) obtained ovulation rates of 100% within 32 h after GnRH-2 in dairy cows, and 

in beef cows, Thompson et al. (1999) reported an ovulation rate of 84.6%.  Even though 

the overall ovulation rate in our experiment was lower than expected, cows that 

developed a synchronized follicular wave after GnRH-1 exhibited ovulation rates after 

GnRH-2 (85%) similarly to previous reports.  Therefore, the ability to increase ovulation 
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rates after GnRH-1 will increase ovulation rates after GnRH-2, and attainment of this 

objective should undoubtedly increase conception rates.  

At the time of GnRH-2, mean diameter of the largest follicle was 11.1 ± 0.2 mm 

(Range 6.0 - 15.4).  In Bos taurus cattle, mean follicular diameter has been reported as 

greater than 13 mm at the time of GnRH-2 (Thompson et al., 1999; Perry et al., 2005). 

Follicles acquire ovulatory capacity immediately after deviation (Sartori et al., 2001) 

which occurs around 8.5 mm (Ginther et al., 1996); however ovulatory capacity is also 

dependant upon the amount of LH released and follicular diameter.  In Holstein cows 

treated with GnRH on d 0 to synchronize a follicular wave, 4 mg of an exogenous LH 

preparation on d 7 was insufficient to cause ovulation of 10-mm follicles, although many 

of these follicles had undergone physiological deviation.  However, all growing follicles 

greater than 12 mm and 17% of all 11-mm follicles ovulated to the same LH treatment 

(Sartori et al.; 2001).  In the same experiment, a greater dose of LH (24 or 40 mg) 

resulted in ovulation of  70–80% of 10 mm follicles, and those 10-mm follicles that 

failed to ovulate had generally not yet undergone physiological deviation at the time of 

treatment.  Thus, follicles that had undergone deviation and had reached a diameter of 10 

mm had acquired ovulatory capacity and ovulated in response to a high dose of LH, but 

not to a low dose.  This suggests that some of the follicles present at the time of GnRH-2 

injection in our studies had not yet reached ovulatory capacity, thus reducing the 

proportion of cows ovulating after GnRH-2.  Additionally, although we obtained an 85% 

ovulation rate within 48 of h after GnRH-2 and TAI in cows that developed a 

synchronized follicular wave, only 45 % became pregnant (table 6).  This suggests that a 



 58 

significant proportion of the follicles that ovulated were immature and infertile.  In 

support of this assumption, Perry et al. (2005) reported that in beef cows synchronized 

with CO-Synch, follicles ovulating at sizes of 12.1 mm or less in diameter are less likely 

to support a pregnancy to d 25 after insemination compared with cows that ovulate 

follicles of 14.7 mm.  In our experiment, mean size of the ovulatory follicle was 11.6 ± 

0.2 mm (range 8.1-15.4) which, based on the report by Perry, would substantially reduce 

the likelihood of a viable pregnancy. 

In Exp. 3, we examined the distribution of estrus and ovulation in cows treated 

with the Select-Synch protocol (observe for estrus; no GnRH-2) to determine whether 

TAI and GnRH at 48 h in COS-C were too early to optimize fertile ovulations and 

pregnancy.  Mean size of the ovulatory follicle in Exp. 3 was 12.9 ± 0.3 mm (range 9.4 - 

15.1), which was higher than observed in Exp.2 at the time of GnRH-2 and TAI.  The 

larger follicle size would increase the likelihood that oocytes from those follicles would 

yield a viable pregnancy (Perry et al., 2005).  Lemaster et al. (1999) reported a mean size 

of the ovulatory follicle of 14.4 ± 0.9 (range 14-17) in Bos indicus-influenced females 

synchronized with a CIDR-PGF system, demonstrating that Bos indicus-influenced 

females achieve ovulatory sizes comparable to Bos taurus females.  In support of the 

assumption that follicular maturity and timing of GnRH administration is key for the 

success of these protocols, Peters and Pursley (2003) evaluated the effect of 

administering the second GnRH injection at different times after PGF injection in the 

Ovsynch protocol in dairy cows.  Follicle diameter was measured and correlated with 

TAI conception rates.  A linear relationship was observed between the time of GnRH 
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injection, follicular size and TAI conception rate.  The greatest TAI conception rate was 

obtained at 36 h after PGF with a mean follicle size of 14.6 ± 0.4.  In a similar 

experiment, Vasconcelos et al. (2001), using dairy cows and the Ovsynch 

synchronization protocol, aspirated all follicles greater than 4 mm on d 4 after GnRH 

injection to initiate a delayed follicular wave.  The aim was to reduce the size of the 

preovulatory follicle at the time of second GnRH injection so as to test whether a 

reduction in follicular size would reduce subsequent luteal size, progesterone levels and 

thus conception rates.  It was concluded that ovulation of follicles smaller than 11.5 mm 

have reduced fertility, possibly because of development of smaller CL and decreased 

circulating concentrations of progesterone. 

In Exp. 3, the interval from CIDR removal to standing estrus was 70 ± 2.9 h and 

the earliest ovulation detected was at 69 h after CIDR removal (99 ± 2.8 h), which is in 

accordance with results obtained by Lemaster et al. (1999, 2001) using Bos indicus-

influenced cattle.  In Bos taurus beef females, the mean interval from progesterone 

removal/PGF injection to estrus has been reported to be 55 ± 4 h (Geary et al., 1998a; 

Stevenson et al., 2000; Martinez et al., 2000; Lamb et al., 2004), indicating that Bos 

taurus females are more likely to have a fertile induced ovulation with GnRH-2 and TAI 

at 48 h compared to Bos indicus–influenced females.  Initial reports in Bos taurus 

females suggested that TAI at 48 h using the CO-Synch regimen would optimize 

pregnancy rates (Pursley et al., 1995), and studies comparing the timing of insemination 

revealed no statistical differences in conception rates when TAI at 48 h was compared to 

later times (Stevenson et al., 2003a; Bremer et al., 2004).  However more recent studies 
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indicate that increasing the time of GnRH-2 and TAI to 66 h improves conception rates 

in Bos taurus females compared to 48 h (Schafer et al, 2004; Walker et al., 2005).  There 

are no data to determine whether the same assumption holds for Bos indicus-influenced 

females.  As noted earlier, Bos taurus females appear to exhibit a shorter interval from 

CIDR removal to estrus than Bos indicus-influenced females.  Therefore, changing the 

timing of GnRH-2 from 48 to 66 or 72h should increase conception rates, but this 

hypothesis remains to be tested.  
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CHAPTER IV 

 

SUMMARY AND CONCLUSIONS 

 

Synchronization of ovulation using COS-C in Bos-indicus crossbred cattle did 

not yield TAI conception rates of ≥ 50% in the current studies.  The low TAI conception 

rates observed in Exp. 1 and 2 were not be related to factors such as subfertility, low 

BCS or a high incidence of anestrus.  The relatively low rates of synchronization and 

TAI conception in the Bos indicus-influenced cattle used in these studies were primarily 

attributable to failure of at least 40% of cattle to develop a synchronized follicular wave 

after GnRH-1 and to inappropriate timing of TAI/GnRH-2.  The COS-C is a relatively 

convenient and systematically functional synchronization protocol that is designed to 

maximize the ability to achieve high TAI conception rates.  However, in order to 

successfully utilize this or similar methodology in Bos indicus-influenced cattle, further 

modifications will be required.   Adjustments in the timing of insemination need to be 

evaluated extensively.  Other approaches for inducing a greater proportion of ovulations 

after GnRH-1, and thereby increasing the frequency of a synchronized follicular wave, 

should also be examined.  
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Luteinizing Hormone RIA 
 
 
1. Iodination:    Iodination grade bLH (USDA–bLH-I-1; AFP 6000) 

Reaction: 5 �g of hormone, 0.5 mCi of 125I, 90 �g 
chloramine T, 2 min 

 
2. Antibody: Anti-ovine LH (rabbit anti-oLH – TEA #35; obtained from 

Dr. Jerry reeves) Dilution: 1:100,000 
 
3. Standards:    Biological grade bLH (NIH bLH-B-10) Range: 0.25 

  -100ng/ml 
 
4. Reference preparation:  bLH added to cow serum 
 
5. RIA procedure 
(Davis et al. 1971; Biol Reprod 4:415 and Williams and Ray 1980; J. Anim Sci 50: 906)  

 
a) Label assay sheets and polypropylene or borosilicate glass tubes 4 NSB, 9 TC, 3 

“0”, standards in triplicate, 2 X references in duplicate, and unknown samples in 
duplicate 

b) Day 1: Pipette the following into each tube  
NSB: 500 �l PBS-1% EW  
0 std.: 500 �l PBS-1% EW 
Stds.: 200 �l std + 300 �l PBS-1% EW 
Ref.: 200 �l reference + 300 �l PBS-1% EW 
Unknowns: 200 �l sample + 300 �l PBS-1% EW 
Store at 4oC until next step 

 
Pipette 200 �l PBS-EDTA + 1:400 NRS without 1st Ab into the NSB

 tubes 
Pipette 200 �l anti-oLH (diluted in PBS-EDTA + 1:400 NRS) into all 
tubes except NSB and TC tubes 
Vortex briefly and incubate for 2 h at 4o C 
Pipette 100 �l 125I-bLH (20,000 cpm/tube diluted in PBS-1% EW) into 
All tubes, vortex briefly, and incubate for 24 h at 4o C 

c) Day 2: Pipette 200 �l of sheep-anti-rabbit gamma globulin (SARGG) diluted
 in PBS-EDTA into all tubes except TC   
 Vortex and incubate 48-72 h at 4o C 

d) Day 4: Add (per spin basis) 3 ml ice-cold 0.01M PBS into all tubes except TC 
Centrifuge tubes for 1 h at 3600 rpm at 4o C 
Decant supernatant 
Count radioactivity associated with the pellet in gamma counter 
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Progesterone RIA 
 
 
Single Antibody RIA Kit, Diagnostic Products Corporation, Los Angeles, CA 
 
References: 
Jones et al., 1991. J. Anim. Sci. 69:1607 
Simpson et al., 1992. J. Anim. Sci. 70:1478. 
 

1. Iodinated Product: Iodination grade hP4. 
2. Antibody: Anti-human P4 coated tubes. 
3. Standards: Human serum with added P4. Range: 0.1 – 20.0 ng/ml. 
4. Reference: Human standard preparation added to bovine serum. 
5. RIA Procedure: 

A. Begin and complete assay 
1) Pipette in non-coated polypropylene tubes   

 NSB – 100 µl of 0 std 
2) Pipette in antibody coated tubes    

 0 Std – 100 µl      
 Std – 100 µl      
 Ref – 100 µl     
 Unknowns – 100 µl 

3) Pipette 1 ml of 125I-P4 provided in the kit into all tubes including 
two Total Count non-coated polypropylene tubes. 

4) 4. Vortex tubes briefly and incubate at room temperature for 3 h. 
5) Pour off supernatant. 
6) Count radioactivity of each tube using a gamma counter. 
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