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ABSTRACT 
 
 

The Effects of Torsional-Lateral Coupling on the Dynamics of a Gear Coupled Rotor.   

(December 2005) 

Michael Aaron Emery, B.S., Texas A&M University 

Chair of Advisory Committee:  Dr. John Vance 

 
This thesis focuses on the torsional-lateral interactions seen in gear coupled rotors.  Of 

particular interest are cases where the torsional stiffness parameters affect the lateral 

critical speeds and where lateral stiffness and damping parameters affect torsional 

critical speeds and amplitudes.  A common procedure for critical speed calculations has 

been to solve lateral and torsional systems separately.  This procedure is tested through 

an eigenvalue analysis.  It is shown in this thesis, however, that torsional-lateral 

interactions play major roles in each other’s critical speeds.  Some research has 

seemingly uncoupled two lateral degrees of freedom from the gear system by choosing 

bearing forces and a coordinate system pointing along the line of action and normal to 

the line of action.  This simplification method has been tested for cases when the lateral 

bearing stiffness becomes asymmetric.  The force generated by a rotating imbalance also 

creates a variable moment arm as the center of mass rotates about the geometric center 

of the gear. This variable moment arm is commonly neglected, but is included in the last 

case study and its effects are displayed in the results section of this thesis.   
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I.  INTRODUCTION:  THE NEED TO DEVELOP A GEAR COUPLED 

DYNAMIC MODEL 

 
Gear vibration brings unique challenges to the field of rotordynamics when considering 

the coupling caused by the mesh of the gear teeth.  In order for the equations of motion 

to realistically represent rotors connected by gears, five degrees of freedom (DOF) need 

used to represent the shaft motion at any station.  Currently, rotordynamic software 

packages use two simplified sets of equations (one lateral set and one torsional set) to 

describe the motion seen in gear coupled rotors.  These equations of motion have 

neglected the torsional-lateral coupling as well as the contribution of the gear tooth 

stiffness.  In some instances, the uncoupled model for the coupled system has produced 

accurate results.  However, the uncoupled model’s equations of motion may not be 

accurate for cases where the torsional-lateral coupling is significant.   

 

The objective of this thesis is to provide a better understanding of the torsional-lateral 

interaction and when its effects are significant.  Several studies listed below have been 

conducted in order to fulfill this objective: 

 
1. Compare the natural frequencies of the coupled model to the natural frequencies 

of the uncoupled model as a function of torsional stiffness. 
2. Investigate the effects of varying torsional stiffness on torsional-lateral coupled 

natural frequencies and mode shapes with symmetric support stiffness. 
3. Investigate the effects of varying torsional stiffness on torsional-lateral coupled 

natural frequencies and mode shapes with asymmetric support stiffness. 
4. Investigate the effects of varying lateral stiffness on torsional-lateral coupled 

natural frequencies with symmetric support stiffness. 
5. Compare the lateral critical speeds from the coupled model to the lateral critical 

speeds of the uncoupled model using rotating mass imbalance as the exciting 
force.  

6. Investigate the possibility of stable subsynchronous vibrations caused by forces 
in the low speed gear. 

 
 
 

This thesis follows the style of Journal of Engineering for Gas Turbines and Power. 
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7. Investigate the 2nd order harmonic effects caused by a rotating moment arm 
using numerical integration and FFTs.  This investigation will include the 
development of waterfall plots for a range of running speeds.   

 

If any debate exists on whether to couple the torsional equations of motion to the lateral 

equations of motion when solving for geared system lateral and torsional critical 

speeds, this thesis should help resolve the matter. 
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II. LITERATURE REVIEW 
 
BACKGROUND INFORMATION 

Wachel and Szenasi 
 
Subsynchronous vibrations in several centrifugal compressors prompted the study 

presented in 1980 by Wachel and Szenasi [1].  One of the machines producing 

subsynchronous vibrations was a compressor coupled to a turbine with a gear box.  

Figure 1 shows the schematic of the compressor train.   

 

 
 Figure 1: Schematic of the compressor train [1] 
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Proximity probes were used to measure lateral vibrations in the fourth stage compressor 

as well as the lateral vibrations in the gear box.  Torsiographs were also installed in the 

gear box to measure the torsional vibration seen by the gear teeth.  Rigid couplings 

were used on the shafts connecting the turbines and compressors to the gear box, 

allowing lateral vibrations to transmit between the components of the train.   Lateral 

vibrations of the fourth stage compressor were measured and were interpreted as 

subsynchronous instabilities. The authors note that the frequency of these lateral 

vibrations coincided with the third torsional natural frequency of the compressor train.   

 

The lateral instabilities were eventually corrected when the bearings for the fourth stage 

compressor was changed from pressure pad bearing to tilt pad bearings.  Threshold 

instability calculations based on the logarithmic decrement showed that the compressor 

would be stabile with the new bearings.  These stability calculations were confirmed 

from low frequency, maximum load test data. 

 

The subsynchronous vibrations seen in the fourth stage compressor were still apparent 

on initial startup.  The authors found that this vibration was caused by the idler gear 

exciting the natural frequency of the compressor shaft.   Increased damping improved 

the amplitude of this low frequency vibration. 

 

Based on the test data, Wachel concludes that the torsional vibrations and the lateral 

vibrations are coupled at torsional natural frequencies.  Furthermore, he concludes that 

this coupling mechanism can be a catalyst for inciting any instabilities that may exist in 

the machine.   
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Remmers 

 

 
 
 
 
 

 

 

 

 

 

 
Figure 2:  Mass elastic system [2]  

In his paper published in 1971 on gear paired systems, Remmers details the effects of 

gear tooth errors and the mass inertia characteristics of the gear system.  Remmers 

explains the model of a gear paired system to be one with involute gears where the 

forces act along the line of action, which is tangent to the base circle outlined in  

Figure 2.  

 

When the gear train is stationary, the gear teeth stresses can be modeled as a 

cantilevered beam.  However, this analysis is no longer accurate once the system is in 

motion.  Gear tooth errors cause the transmission of motion from one gear to another to 

be less than ideal.  Remmers suggests that the transmission error could be measured 

with the use of a single flank gear tester, but cautions that this method does not take 

into account tooth deflections or the effect of lubrication.   He also notes that this 

analysis must be done with a load as close to zero as possible.  The result of this 

analysis, the external excitation, is taken as the linear equivalent to the angular error, or      

 

(1)                                                            sin      eX tε ω=  
                 
whe  re:   Instantaneous Error,   = Amp. (in),  = Frequency (rad/s)  and  = Time (sec)eX tε ω=
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Remmers derived the governing differential equations of motion for the gear coupled 

system by summing the forces and summing the moments in the X1, X2, θ1, θ2 

directions.  The forces in the Y directions have not been considered since friction has 

been assumed minimal and no bearing forces appear in the Y direction.  The force 

along the line of action between the gears is given as: 

   

              
2

1 2 1 1 2 2[( )(1 sin ) sin ]     F K X X R R tα θ θ ε ω= + + + + + (2)   

 

which is based on the standard F=KX equation for a spring force.  Assuming a solution 

of the form eiωt and substituting the back into the force and moment equations will yield 

six equations and six unknowns and the ratios of response can now be calculated.  

These ratios are important in that they are used to solve for the dynamic forces, torques, 

and torsional vibrations on the gears.   

 

Remmers justifies his theory by collecting data on the “frictional effects, profile 

modifications, tooth deflections, and the excitation spectrum for different gear designs” 

(page 6).   Figure 9 and Figure 10 on page 7 of this article shows how close the 

experimental data was to the theoretical data.  While the frequency of the peaks closely 

agrees with those predicted by theory, the forces predicted by theory are several orders 

of magnitude larger than the experimental values.   Remmers explains this by stating 

that the assumed coefficient of friction played a large role in the overestimation of these 

forces and that improvements should be made to the dynamic model to enhance the 

precision of predicted forces. 

 

Mitchell 
 
In his paper published in 1975, Mitchell [3] showed through experimental results that 

uncoupled equations of motion are inadequate for calculating natural frequencies.  His 

conclusions were based on a comparison of his measured experimental vibrations to the 

uncoupled theoretical model.  The test rig used in this experiment consisted of three 
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gears; one bull gear driven by a motor and two pinions with heavy inertias connected to 

both sides.  The test was performed on the system several times with varying torsional 

shaft stiffness values.     

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3:  Vibration spectrum of low speed pinion shaft [3] 

 

Vertical vibration amplitudes were measured using non-contacting proximity probes 

and the vibration data was processed with a Real-Time Signal Analyzer.  The results 

show that the system exhibits peak responses above the predicted critical speeds by as 

much as 12 percent.  Further analysis using the Fast Fourier Transform function on the 

signal analyzer in Figure 3 shows 2nd, 3rd, and 4th order harmonics.  Mitchell concludes 

that dynamic models should move towards completely coupling the torsional and 

lateral equations of motion in order to accurately predict critical speeds. 

 

Iwatsubo 
 
Further findings in the subject of geared coupled rotors included Iwatsubo’s [4] study 

in 1984 on lateral torsional vibrations.  The main focus of this study was to determine 

the effect of the variation of tooth stiffness on torsional critical speeds.  The variation in 

tooth stiffness has been taken as the exciting force in the torsional direction and the 
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forces caused by imbalance were assumed minimal.  The coordinate system is set up so 

that the Y directions align normal to the tooth pressure angle, allowing the meshing 

force to be considered in the X direction alone.  Using this coordinate convention 

allows Iwatsubo to uncouple the Y equations from the remaining equations of motion. 

He uses this reasoning to ignore vibrations in the Y direction altogether.  His work 

showed that unstable regions occurred for some running speeds because of the variation 

of tooth stiffness.  He also concluded that vibrations are affected by the mesh period as 

well as the contact ratio. 

 

Iida and Tamura 
 
Iida and Tamura’s study published in 1984 [5] on gear dynamics focuses on cases 

where the gear shaft cannot be assumed rigid.  The dynamic model was developed for a 

system containing four gears with three flexible shafts.  The research also involved 

taking experimental data from a physical setup representing the dynamic model.  The 

authors concluded through numerical integration and experimental results that the 

torsional and lateral modes of vibration are coupled.     

 

Iannuzzelli, Raymond, and Edwards 
 
A geared compressor failure became the basis of Iannuzzelli’s and Edwards’s study [6] 

on torsional lateral coupling published in 1984.  The problems that occurred in the field 

eventually required a better analytical model, which the authors realized should include 

the torsional lateral coupling produced by the gear mesh.  Finite element analysis was 

utilized for the new model and included the torsional degrees of freedom.   The model 

developed did not include external excitation forces, but was used for 

eigenvalue/eigenvector analysis.   

 

One of the key elements in this paper is the notion that the forces create a moment 

about the centerline of the gears.  This differs slightly from the topic of this thesis, in 

that the moments are taken about the geometric center of the gear, and is assumed that 
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the bearing forces act some constant distance away from the geometric center.  The 

authors did not consider the response due to unbalance or the effect of the varying 

moment it produces.   

 

 
 

 

 

 

 

 

 

 

 Figure 4:  Diagram for derivation of mesh stiffness equations [6] 

 

Iannuzzelli also includes the cross-coupling stiffness terms Kxy and Kyx (as seen in 

Figure 4) that are created by spring displacements in the X and Y directions.  A major 

draw back with this model was the assumption that the inertia of the bull-gear could be 

neglected.  This reduced the system from a six degree of freedom system to a three 

degree of freedom system and gives rise to the possibility that several natural 

frequencies could be missed. 

 

Iannuzzelli and Edwards also conducted tests to validate their new computer model.  

Several experiments were performed on the rig to show how stiffening lateral bearing 

parameters affected the natural frequency of the system.  The authors show that the 

measured data closely matched the theoretical predictions of the new computer model.  

Since their model only contained three degrees of freedom, the first natural frequency 

was not predicted at all though some improvement was made in the predict for the other 

modes. 
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Simmons and Smalley 
 
In their paper published in 1984 [7] on lateral gear shaft dynamics, H. R. Simmons and 

A. J. Smalley compare the various rules of thumb used in industry to actual 

measurements.  Their goal in this research project was to show the inaccuracy of 

uncoupled equations of motion in certain cases when calculating critical speeds.  They 

concluded through experimental results that for accurate predictions, the equations of 

motion should remain coupled.  

 

Appendix B gives a simplified version of the method developed by Lund in his paper 

entitled “Critical Speeds, Stability and Response of a Gear Trained Rotor.”  Simmons 

and Smalley used Lund’s method to develop a torsional-lateral vibration model.  The 

authors use this model to predict the torsional critical speeds which will be compared to 

the verified speeds found from experimental data. The basis behind this method is to 

treat the system as a series of lumped masses connected by massless springs.  A more 

detailed discussion of this method will be given in Section 3 of this paper.   

 

The theoretical results were evaluated in the laboratory and compared to experimental 

results.  Simmons and Smalley utilized several transducers in this effort, including the 

“torsional strain telemetry system” shown in Figure 5 below. 

 

 

Figure 5:  Strain gauge telemetry system on coupling spool piece [7] 

 

The test results show that high stresses on the gears are caused by the excitation of the 

turbine’s second torsional critical speed at 65% running speed and by the gearing 

backlash caused by low compressor loads around 30% running speed.  These critical 
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speeds are clearly seen in the Stress vs. Speed graph (Figure 7) found on page 948 of 

the article.  These test results also closely resembled the values predicted before the 

experiment and are shown in Table 2 on page 949, though the predicted damping 

values are consistently around half of the measured damping values. 

 
The authors use Appendix A to give an overview of three methods employed in 

calculating the critical damping ratio from the experimental data.  The three methods 

are the Half Power Method, the Phase Slope Method, and the Real Peak Method.  The 

calculated critical damping ratios for each of these methods are listed in Table 1 on 

page 948. Note the large jump in the values estimated for the second mode of the 

compressor.  It is the authors’ belief that this mode is non-linear due to the backlash 

characteristics displayed by the gear system; hence, the wide range in critical damping 

ratios. 

 

David and Park 
 
David’s and Park’s [8] article published in 1987 focused on the forces generated in the 

gear mesh by the varying tooth stiffness over time.  The authors use the Transfer Matrix 

Method to find the gear meshing forces and model the system using equations similar 

to the Simmons and Smalley paper, with the meshing force is given as: 

 
 
                         

             
  (3)   ( ) ( ) ( )1 2 1 2 1 1 2 2cos sinn b b t eF X X Y Y r r e Kφ φ θ θ= − + − + − −⎡ ⎤⎣ ⎦

 
where φ  = pressure angle, Ke = equivalent average tooth stiffness, and = the 

displacement error.   

te
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In this case, the displacement error, otherwise known as Transmission Error, has been 

used to account for gear tooth errors. Results from an experimental Fast Fourier 

Transform (Figure 6) shows that higher ordered harmonic vibrations are caused by time 

varying tooth stiffness. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  Lateral disk response due to unbalance and single frequency mesh force [8] 

 

Ozguven and Houser 
 
Ozguven’s [9] work published in 1988 on gear dynamics became the reference for 

several papers that focused on the excitation of the variable stiffness characteristics of 

the gear mesh.  For his study, the gear model has been reduced into a non-linear single 

degree of freedom system that uses Static Transmission Error as the exciting force.  

Transmission error describes where tooth contact is made in relation the perfect transfer 

of motion between two gears, and it has been used in place of the other types of gear 

contact error.  Ozguven showed that Static Transmission Error can be used successfully 

to account for the varying equivalent tooth stiffness while using the average stiffness as 

a constant in the stiffness matrix.  
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Zuerbes, Neumer, Klimmek, Schwibinger, and Nordmann 
 
In their paper published in 1989, Zuerbes [10] and his colleagues look at the coupled 

lateral torsional gear model.  Two systems, one running on ball bearings and the other 

running on journal bearings, were analyzed for this project.  One of the key features of 

this dynamic model was the exclusion of such phenomena as the variation of equivalent 

tooth stiffness and backlash.  The authors contend that this simplification does not 

deleteriously affect the system behavior.  The eigenvalues and eigenvectors were 

calculated from the equations of motion, but the effect of a rotating unbalance was not 

discussed.     

 

Based on the test results, the authors conclude that for more accurate natural frequency 

predictions, the equations of motion should be coupled.  The results showed great 

disparity when compared to the uncoupled equations of motion, including natural 

frequency and mode shape predictions, the stability of the machine, and non-linear 

bearing forces.  

 

Kahraman,  Ozguven, Houser, Zakrajsek  
 
Kahraman’s journal article in 1992 [11] focuses on the use of finite elements to model a 

geared rotor system.  The work presented in this paper is a continuation of Ozguven’s 

paper on high speed gears from 1988.  A finite element rotordynamic software package 

(ROT-VIBTM) was altered to include the torsional-lateral interaction caused by gear 

tooth mesh.  The coordinate system was set up like Iwatsubo’s, so that the gear 

meshing forces were isolated in the y-direction thus effectively uncoupling the x 

direction from the y direction.  Though he included the addition moment terms caused 

by the rotating mass unbalance in his moment equation, they were not included in the 

forced response analysis and were assumed negligible.  Kahraman concluded through 

his findings that bearing parameters play a major role in gear mesh natural frequency, 

depending on the bearing stiffness parameters.  Increasing the stiffness of the flexible 

bearings changes the mesh frequency up to a certain limit.  Increasing very stiff bearing 

values was not found to change the mesh frequency significantly.  The results shown in 
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Figure 7 and Figure 8 demonstrate how both lateral and torsional response change with 

bearing stiffness. 

 

 

 
 
 
 

 
 

Figure 7:  Forced response along line of action due to transmission error [11] 

Figure 8:  Forced response in the torsional direction due to transmission error [11] 
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Nelson, Shiau, Chou, and Chang  
 
Nelson [12] expanded Ozguven’s work in his paper in 1994 though he based his results 

on tests conducted by Kahraman [11].  While the finite element method offers very 

accurate results, it does so at the expense of computational times.  In this paper, Nelson 

focused on the merits of using the Hybrid method to improve computational efficiency. 

 

One of the studies included in his paper involved varying the mesh angle.  Nelson 

concludes that the mesh angle plays an insignificant role for systems with symmetric 

bearing stiffness.  This is not true, however, with asymmetric supports as the mesh 

angle significantly changes the torsional-lateral coupled natural frequencies.  

 

Again, the excitation force of particular interest dealt with in Nelson’s paper was 

transmission error.  Forces caused by unbalance response were generally assumed 

negligible in most cases compared to the effects of transmission error.  Theoretical 

analysis of the unbalance response was conducted in his paper, though it dealt with 

non-synchronous high frequency excitations.  The theoretical results using the Hybrid 

method favorably agreed with the finite element method.  This new method allows for 

quicker computational running times without losing significant accuracy. 
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III. MATHEMATICAL METHODOLOGY 
 
 
This project deals with the torsional-lateral interactions found in geared rotors.  The 

gear mesh pressure angle acts as a coupling mechanism between the torsional degrees 

of freedom and the lateral degrees of freedom.  Currently, XLTRC2 and other rotor 

analysis software packages independently calculate torsional and lateral critical speeds. 

To properly model either the torsional or the lateral rotordynamics of some systems, the 

torsional degrees of freedom must be included with the lateral degrees of freedom.  The 

new gear dynamic model contains six degrees of freedom when the torsional-lateral 

coupling is included. 

 

Figure 9 below illustrates the physical setup for this study. For the purposes of this 

study, standard AGMA spur gears were used, so the degrees of freedom associated with 

pitch and yaw can be neglected.  Heavy loads have been assumed on each gear to 

maintain tooth contact.   

 

 Gear 1 ½ Kt1 ½ Kt1

 

 

 ½ Cxx1, ½ Cyy1 
½ Kxx1, ½ Kyy1

½ Cxx1, ½ Cyy1 
½ Kxx1, ½ Kyy1 

 Kn 

 
½ Kt2 ½ Kt2 Gear 2 

 

 
½ Cxx2, ½ Cyy2 
½ Kxx2, ½ Kyy2

½ Cxx2, ½ Cyy2 
½ Kxx2, ½ Kyy2

 

 

 Figure 9:  System for gear study 
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The key forces in the six equations of motion in this model are the bearing spring and 

the bearing damping forces, the torsional spring from the shaft, and the normal force 

applied to the gear tooth.  Gyroscopic moments and friction against the gear teeth have 

been neglected. 

 

For typical gears, more than one gear tooth pair is in contact at any given time, and this 

varies with time.  Multiple gear teeth in contact serve to increase the equivalent spring 

stiffness at the gear mesh, since the cantilevered tooth springs are in parallel.  Since this 

study focuses primarily on the interaction between lateral and torsional dynamics, the 

change in tooth stiffness will be averaged and assumed constant over time. 

 

By making slight changes to the model’s stiffness and damping parameters, key 

properties of the torsional-lateral coupling phenomena can be studied.  The first study 

involves the torsional-lateral interactions found in the homogenous solution to the 

differential equations of motion.  The eigenvalues and the eigenvectors are calculated 

based on given gear geometry and bearing parameters.  The eigenvalue study helps to 

illustrate the effects the torsional and lateral support parameters play in each other’s 

natural frequencies.  This study also serves to verify the accuracy of the equations of 

motion.   
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One of the practices in the literature is to uncoupled the degree of freedom 

perpendicular to the line of action from the equation describing the normal force acting 

on the gear tooth.  An eigenvalue analysis indicates that the assumption that the natural 

frequencies are independent of the torsional stiffness is not accurate when using 

asymmetric bearings. 

 

Since critical speeds do not exactly match natural frequencies in cases where damping 

exists, a forced response case has also been studied.  Instead of treating the 

transmission error caused by the variation of tooth stiffness over time as the primary 

excitation source, this study focuses on the vibrations caused by a rotating mass 

imbalance.  The system has been assumed to be a short rigid rotor on flexible bearings 

where the stiffness and damping parameters come directly from the bearing.  

 

The forced response case presents a problem when dealing with the torsional equations 

of motion.  The rotating mass imbalance creates varying moments which, on first 

inspection, appear to be 2nd order harmonic.  This moment was initially ignored in the 

forced response analysis, but is studied in depth using numerical integration techniques.  

A Fast Fourier Transform of the numerical integration results shows the harmonic 

vibration components at each running speed that cannot be seen in the forced response 

analysis of the linearized system. 
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DETERMINATION OF TOOTH STIFFNESS 
 
 

3

3

(Face Width)(Tooth Thickness)I = 12

1.571Tooth Thickness =                              

2.25Addendum = L =

3Stiffness of Single Tooth = 

d

d

n

p

p

EIK
L

=

 
 

 
 

 
 
 
 
 
 
 
 
 

Figure 10:  Common gear terminology [13]  
 
The stiffness of the gear teeth was calculated using Euler beam bending theory 

equations and the gear terminology described in Figure 10.  The equations below show 

how the gear tooth stiffness should be calculated.  The tooth was approximated as a 

rectangular beam mounted into a rigid support. 

    
)

 

 

 

 

 

The diametral pitch (pd) is the ratio of gear teeth to pitch diameter and is shared b

of the gears in the gear train.  At least two of these three parameters (usually

diametral pitch and the number of gear teeth) must be given in order to calculat

tooth stiffness.  Two teeth in contact act as two springs in series, making the equiv

tooth stiffness of the system 

1 2

1 2

n n
n

n n

K KK
K K

=
+ 
(4
(5) 

)
(7
(6) 
y all 

 the 

e the 

alent 

(8)  
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  Accounting for Multiple Gears Teeth in Contact 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 Figure 11:  Sketch of gear system and line of action 
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(15)    

 

 

where the subscripts describe the gear, pd = Diametral Pitch, pb = Base Pitch, R = Pitch 

Radius, N = Number of Gear Teeth, α = Addendum, mp = Contact Ratio [14],  

 = Base Radius, C = Center to Center Distance, Z = Length of Action. Rb
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Gear teeth mesh along the line of action (Z); an imaginary line whose angle is co-linear 

to the pressure angle (see Figure 11).  Tooth contact and the release of tooth contact 

occur when the line of action crosses the addendum circle of first and second gear 

respectively. At some point before contact is terminated, another tooth pair initiates 

contact.  For the purposes of this study, however, the equivalent tooth stiffness was 

taken to be the average over time based on the gear contact ratio.  Figure 12 illustrates 

how the equivalent tooth stiffness changes over the contract cycle.  The gear contact 

ratio shows the average number of teeth in contact over the entire line of action. 

 

 
 

Figure 12:  Tooth stiffness vs. fraction of engagement cycle [8]  
 

External spur gears generally have a contact ratio between 1.2 and 2, which indicates 

that for some portion during the gear mesh two gear tooth pairs make contact.  The 

average tooth stiffness takes into account the average number of tooth pairs in contact 

over the length of the line of action.   

 
( 1)(2 ) (2 )neq p n p nK m K m K= − + − (16)    

 
 
This equation assumes a contact ratio between 1 and 2.  When the contact ratio equals 

one, multiple tooth pairs never make contact while single pair contact occurs 

throughout the contact cycle of the gear teeth.  As the contact ratio increases, more 

multiple pair contact occurs while less single tooth contact decreases.   External spur 
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gears rarely have gear contact ratios greater than two.  For those rare cases, the 

equivalent stiffness equation should be adjusted accordingly. 

 
 
DEVELOPING HOMOGENEOUS EQUATIONS OF MOTION FOR A SINGLE 

GEAR PAIR ON FLEXIBLE SUPPORTS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 Figure 13:  Free body diagram 

 
   

The development of the equations of motion starts with expressing the normal force on 

the tooth in terms of the chosen X-Y coordinates based on the free body diagram in 

Figure 13.  The normal force on the face of the gear tooth is then defined as [7]: 

 

             2 1 2 1 2 2 1 1[( ) cos( ) ( ) sin( ) ( ) cos( )]n nF K X X Y Y R Rα α ψ ψ α= − + − + −               (17) 
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where Kn is the tooth stiffnes , α is the pressure angle, and the subscripts represent 

displacements of Gears 1 and 

for torsional-lateral interaction

components and the sum of al

of motion.   

 
1 2[( ) cosnx nF K X X= −

 
  
 
 
Gear 1:  

Gear 2: 
∑

∑
 

To find the eigenvalues using

differential equations must be 

is a 12 x 12 matrix of the form

                  

1 2[( ) cos(ny nF K X X= −

 

 
The undamped natural frequen

by setting the damping coeff

matrix. The damped natural

eigenvalues produced when th
s
 

2.  The terms, ψ 1 and ψ2 are state variables to be included 

.  From here, the normal force is resolved into X and Y 

l forces and moments are taken to develop the equations 

1 2 1 1 2 2( ) ( )sin( ) ( ) cos( )]cos( )Y Y R Rα α ψ ψ α α+ − + −
 

 (18)   

1 11 1 1 1 1x xx xxF m X C X K X F= = − − − nx∑  

1 11 1 1 1 1y yy yy nyF m Y C Y K Y F= = − − −∑  

1 11 1 1 1 1 1cg t t nxM J C K R Fψ ψ ψ= = − − −∑  

2 22 2 2 2 2x xx xxF m X C X K X F= = − − + nx  

2 22 2 2 2 2y yy yy nyF m Y C Y K Y F= = − − +∑  

2 22 2 2 2 2 2cg t t nxM J C K R Fψ ψ ψ= = − − +  

 mathematical software (MathCADTM), the second order 

expanded to first order differential equations.  The result 

: 

0
/ /

I X
K m C m X

⎧ ⎫X
X

⎧ ⎫⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎨ ⎬− −⎩ ⎭⎩⎩ ⎭ ⎭

(

                              
 

19)   1 2 1 1 2 2) ( )sin( ) ( ) cos( )]sin( )Y Y R Rα α ψ ψ α α+ − + −

(20)   

(21)   

(22)   

(23)   

(24)   

(25)   

 (26)   

cies are purely imaginary eigenvalues and can be found 

icients to zero and solving for the eigenvalues of the 

 frequencies are the imaginary parts of the complex 

e damping is included. 
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SIMPLIFIED SYSTEM CHECKS FOR EIGENVALUE SOLUTIONS
 

Several measures were taken to help establish credibility for the solutions obtained in 

the MathCADTM program.  First, it was noted that the gear system would be analogous 

to the equivalent system of two disks connected by a flexible shaft when the bearing 

stiffness becomes very high and the external torsional stiffness acting on the gears is 

very low.  In this model the gear tooth stiffness produces an equivalent torsional 

stiffness connecting the two gears. 

 

The virtual flexible shaft has a torsional stiffness Kt which must be derived before the 

equivalent system can be of any use.  Kt = KnR2, where Kn is the tooth stiffness and R is 

some unknown radius to be determined. The eigenvalues of the equivalent system are 

set equal to the eigenvalues of the gear pair. 

 
2 2 2

1 2 1 2 2 1

1 2 1 2

( ) ( )n nJ J K R J R J
J J J J

+ −
=

K R      
2 2

2 1 2 2 1

1 2

( )       R J R JR
J J
+

⇒ =
+

 (27)   

 
 2 2cos ( )n

n
eq

K R
J

αω = (28)   
 

 

This first check of the gear pair eigenvalues comes from (28) when the bearing stiffness 

becomes very large.  It was expected that the torsional eigenvalue would approach this 

number as the bearing stiffness increases.  Figure 14 shows that assumption to be 

correct when using the parameters in Table 1. 

 
Table 1:  Parameters for simplified system checks 

 
m1 = .0058 lbm R1 =  in Kx=0..2000000 lb/in 
m2 = .0362 lbm R2 = 2.5 in Ky=Kx 
Kt=0 in-lb/rad Kn=10000 lb/in  
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Figure 14:  Plot of equivalent and actual eigenvalues versus lateral stiffness 

 

Further verification involved taking extreme values for the gear tooth pressure angles.  

When the pressure angle is set to 90 degrees with a high amount of tooth stiffness, the 

two gears will exhibit two modes along the line of centers and hence, two natural 

frequencies.  The first natural frequency occurs when the two bodies move together in 

the same direction. During this case, the bodies can be converted into an equivalent 

mass-spring system.  With this motion, the tooth stiffness does not come into play at all 

and the gears oscillate on the bearing springs.  During the second scenario, the two 

bodies move in opposite directions and the tooth spring is considered working in 

parallel with the bearing springs.  Therefore, the two natural frequencies that should be 

apparent in the MathCADTM eigenvalue solution are: 

1
1 2

2 y
lat

K
ω =                                                                                                     

 
(29)  

m m+           

 

1

1 2

1 2

(2 )( )y n
lat

K K m m
m m

ω
+ +

= (30)  
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Figure 15 and Figure 16 below confirm both of these cases, and lend more credibility to 

the eigenvalue solutions from the MathCAD TM 12x12 matrix. 

 
 
 

 
 
 

Lateral Eigenvalues for Actual and Equivalent Systems vs Tooth 
Stiffness 
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Figure 15:  Equivalent and actual system eigenvalues versus tooth stiffness for 
Kx=1000 and α =90 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Plot of equivalent and actual system eigenvalues versus tooth stiffness 
for Kx=1000 and α =90 
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One interesting phenomenon occurs when the X and Y bearing stiffness components 

are equal.  It appears as though the eigenvalues are independent of tooth stiffness.  

Furthermore, it appears that the eigenvalues are simply
x nK m , which seems 

surprising.  The mode shape from Figure 17 provides an answer to this problem: 

 

 
0 1 2 3 4 5

0
1

2

3

4

5

-65.395i·10 -6-5.395i·10 -4-5.826i·10 -45.826i·10 -31.473i·10 -3-1.473i·10
-61.964i·10 -6-1.964i·10 -31.601i·10 -3-1.601i·10 -45.36i·10 -4-5.36i·10
-51.079i·10 -5-1.079i·10 0 0 -3-1.305i·10 -31.305i·10
-7-8.632i·10 -78.632i·10 0 0 -41.358i·10 -4-1.358i·10
-7-3.142i·10 -73.142i·10 0 0 -54.942i·10 -5-4.942i·10
-7-6.906i·10 -76.906i·10 0 0 -58.353i·10 -5-8.353i·10

 
 
 
 
 
 
 

Figure 17: Sample eigenvector results from MathCADTM program  

 

Taking a close look at the free body diagram, when the gears move normal to the line 

of action, they are free to move independently of tooth stiffness.  To verify whether this 

explains the eigenvalues calculated by MathCADTM, the angle generated by the 

displacements in the X and Y direction were calculated.  Setting θ=tan-1(Y/X), the 2nd 

and 4th mode shape exhibits an angle of 70 degrees.  This agrees with the angle 

perpendicular to the pressure line and is the final piece of evidence that proves that the 

eigenvalue solutions are valid. 
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DEVELOPING HOMOGENEOUS EQUATIONS OF MOTION FOR AN 

UNCOUPLED GEARED ROTOR SYSTEM 

 
The uncoupled system shown in Figure 18 treats each gear as a separate rotor.  The 

gear tooth stiffness is not considered in the development of the equations of motion.  

The key forces in the uncoupled model are the bearing spring and the bearing damping 

forces, along with the torsional shaft spring and torsional damping forces on the gears.   

            

Gear 2 

Gear 1                  
 
 
 
 
 
 
 
 
 
 
 
 
 

           
Figure 18:  Uncoupled geared system [15]      

 
Equations of Motion 

1 1 11 1 1 1x xx xxF m X C X K X= = − −∑

∑

 (31)  

1 1 11 1 1 1y yy yyF m Y C Y K Y= = − −  (32)  

1 1 11 1 1 1o t tM J C Kψ ψ ψ= = − −∑
∑
∑

 (33)  

2 2 22 2 2 2x xx xxF m X C X K X= = − −  (34)  

2 2 22 2 1 2y yy yyF m Y C Y K Y= = − −  (35)  

2 2 22 2 2 2o t tM J C Kψ ψ ψ= = − −∑  (36)  

 

The undamped natural frequencies are found by setting det(K-λI) equal to zero.   

Gathering the like stiffness, and mass terms forms a 6 x 6 diagonal matrix. By 
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definition, the eigenvalues of a diagonal matrix are found by solving each diagonal 

term independently. 

 

1 
1

1
1
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(37)  
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 ⎢ ⎥

 
 
 
 
 

(38)  m 
 

(39)   
 

(40)   

 

 (41)  
 

 (42)  
 

(43)    

 

The resulting natural frequencies suggest that the lateral natural frequencies are 

independent of the torsional stiffness from the shaft and that the torsional natural 

frequencies are independent of lateral stiffness from the bearings.  Furthermore, the 

eigenvectors of a diagonal matrix result in mode shapes that are purely lateral and 

purely torsional. 
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DEVELOPING NONHOMOGENEOUS EQUATIONS OF MOTION FOR A SINGLE 

GEAR PAIR ON FLEXIBLE SUPPORTS 

 
For the purposes of this project, critical speeds are defined as speeds correlating with 

the peak amplitude of the forced response plot.  Critical speeds are not exactly the same 

as the eigenvalues when damping exists, as damping moves the response peaks to a 

higher frequency.  The second order differential equations are no longer homogenous 

when the center of mass is moved away from the center of the gear (Figure 19). This 

rotating imbalance generates harmonic forces that can be derived from the kinematic 

constraints which define the position and acceleration of the center of mass.   

 

 

 

 

 

ω2t 

ω1t 

 

 

 

 

Figure 19:  Location of the center of mass for Gear 1 (right) and Gear 2 (left) 

 

Gear 1: 

(44)  1 1 1 1cos( )gX X u tω= +  

2
1 1 1 1cos( )gX X u tω ω= −

g

 (45)  

(46)  1 1 1 1sin( )Y Y u tω= +  

2
1 1 1 1sin( )Y Y u tg ω ω= −

∑
∑

 (47)  

Re-writing the force equations: 

1 1 11 1 1 1x g xx xx nxF m X C X K X F= = − − −  (48)  

1 1 11 1 1 1y g yy yy nyF m Y C Y K Y F= = − − −  (49)  
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Plugging in definitions for X1g and Y1g: 

 

1 1

2
1 1 1 1 1 1 1cos( )xx xx nxm X C X K X F m u tω ω+ + + =

1 1

2
1 1 1 1 1 1 1sin( )yy yy nym Y C Y K Y F m u tω ω+ + + =

(50)   

(51)   
 

Gear 2: 
(52)   2 2 2 2cos( )gX X u tω= +  

2
2 2 2 2cos( )gX X u tω ω= −  (53)   

(54)   2 2 2 2sin( )gY Y u tω= −  

2
2 2 2 2sin( )gY Y u tω ω= +  

(55)   

Re-writing the force equations: 

2 22 2 2 2 2x g xx xx nxF m X C X K X F= = − − +∑
∑

 (56)   

(57)   
2 22 2 2 2 2y g yy yy nyF m Y C Y K Y F= = − − +  

Plugging in definitions for X1g and Y1g: 

 

2 2

2
2 2 2 2 2 2 2cos( )xx xx nxm X C X K X F m u tω ω+ + − = (58)      

(59)   2 2

2
2 2 2 2 2 2 2sin( )yy yy nym Y C Y K Y F m u tω ω+ + − = −

 

Equations (50)-(58) are second order non-homogeneous ordinary linear differential 

equations with constant coefficients and can be solved by the method of undetermined 

coefficients.  Noting that eiωt can be re-written as: 

 

cos( ) sin( )i te t iω tω ω= +  (60) 
 

Note that cos(ωt) and sin(ωt) can be re-written to represent the real part of (60) by 

multiplying eiωt by (+/-)1  or (+/-) i. 
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This allows differential equations to be written in exponential form. 

 

1 1

2
1 1 1 1

i t
xx xx nxC X K X F m u e1 1m X ωω+ + + =

m X

 (61) 

(62) 
2 2

2
2 2 2 2 2 2

i t
xx xx nxC X K X F m u e ωω+ + − =

1 1m Y

 

(63) 
1 1

2
1 1 1 1

i t
yy yy nyC Y K Y F im u e ωω+ + + = −

2 2m Y

 

(64) 
2 2

2
2 2 2 2

i t
yy yy nyC Y K Y F im u e ωω+ + − =  

 

Using the method of undetermined coefficients, with the assumed solution Xeiωt the 

differential equations become: 

 

1 1

2 2
1 1( ) i t i t

xx xxm iC K X e m u e                                      1 1
ω ωω ω ω− + + =                          (65)   

1 1

2 2
1 1( ) i t i t

yy yym iC K Y e im u e                                      1 1
ω ωω ω ω− + + = −                         (66)   

1 1

2
1( ) i t

t tJ i C K e ωω ω ψ1 0− + + =                                   (67)                                                   
2 2

2 2
2 2( ) i t i t

xx xxm i C K X e m u e                                      2 2
ω ωω ω ω− + + =                          (68)   

2 2

2 2
2 2( ) i t i t

yy yym i C K Y e im u e                                      2 2
ω ωω ω ω− + + =                         (69)   

1 1

2
1( ) i t

t tJ i C K e ωω ω ψ 2 0− + + =                                   (70)                                                   
 

The same procedure is performed on the variables in the tooth mesh force equations.  

After inserting the coefficients from the assumed solution and grouping the like terms, 

the equations of motion can be placed in a 6 x 6 matrix: 
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A= 

 
1

1

2 2 2
1 1 1

2 2
1 1 1

2 2 2 2
1 1 1 2

2 2
1

cos ( ) sin( ) cos ( )

cos( )sin( ) sin ( ) cos( )sin( )

cos ( ) sin( ) cos ( )

cos ( ) sin( ) cos ( )

cos( )sin( ) s

...

n xx xx n n

n n yy yy n

n n n t

n n n

n n

 
 
 
 

t

m iC K K R

K m iC K R

K R K R K J iC

K K K R

K K

α ω ω α α

α α α ω ω α α

α α α ω ω

α α α

α α

+ − +

+ − +

+ − +

−

− − 2
1

2 2
2 2 1 2

in ( ) cos( )sin( )

cos ( ) sin( ) cos ( )
n

n n n

K R

K R K R K R R

α α α

α α α

−

− − −

K K

K K

K R

− −

 

 

 

 
2

1 1 11
2

1 1 1 1

1
2

2 2 2 2
2

2 2 2 2

2

0
                                   

0

m uX
Y im u

X b
X m u
Y im u

ω
ω

ψ
ω
ω

ψ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  
 

 
The matrix equation now takes on the form =bAX , where A is the 6 x 6 matrix, X  is the 

complex amplitude, and b is the column vector containing the right hand side of the 

equation.  The amplitude of the steady state response is calculated by setting 1X A b−= , 

where the solution is a complex column vector.  The real amplitude is simply the 

magnitude of each row in the column vector. 

 
Since the excitation forces are at separate frequencies, another important concept that 

must be used is the rule of superposition.  In this case, two external forces (from 
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unbalance of Gear 1 and unbalance of Gear 2) act on the gears.  The amplitudes from 

Case 1 (no unbalance on Gear 2) must be added to Case 2 (no unbalance on Gear 1), 

whose sum is the total amplitude used in the forced response plot.  

 

THE ROTATING MOMENT ARM AND ITS EFFECTS ON CRITICAL SPEEDS 

 

 

 Fy1

   u1 Gear 1
ω1t 

Fn

 Fx1

 R1

 

 

 Figure 20:  Gear 1 system sketch with rotating moment arm 

 

Figure 20 shows that the perpendicular distance of the moment arm (from the bearings 

and tooth forces to the center of mass) changes with time as the center of gravity of the 

gear rotates about the geometric center. Thus far, it has been assumed that the effects of 

this rotating moment arm on the system dynamics were negligible.  However, closer 

examination of this phenomenon suggests this assumption may not be valid for gears 

with large unbalances.  With the varying moment arm included, the assumed solutions to 

the forced response equations are no longer valid since the coefficients in the matrix are 

no longer constants.   

 

Also, the right-hand side (RHS) of the moment equations treats the moments generated 

by the unbalance moment arm as a forced excitation.  This produced non-constant 

coefficients in the moment equations.  The right-hand side of the equation of each 

moment equation becomes: 
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Since the state variables are multiplied by cos 1 1ω ω  in the RHS of the 

equation, these terms suggest that second order harmonic vibration will be present.  The 

simplified version of this problem shows where these 2nd order harmonics appear.  The 

variable moment arm is treated as an excitation force and is moved to the right-hand side 

of the equation. 

(73)  

(74)  
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The solution to the differential equation cannot be assumed to be of the form eiωt and the 

method of undetermined coefficients cannot be used to solve the differential equation.  

That assumed solution causes a 2nd order harmonic to appear on the RHS of the equation, 

while only a 1st order harmonic appears on the left-hand side.  This makes a traditional 

solution to the forced response problem impossible. 
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The differential equations of motion can be solved using the Runge-Kutta numerical 

method with the initial conditions taken from the original forced response plots.  

The initial displacement and velocity for each of the degrees of freedom are the initial 

conditions needed for the Runge-Kutta method.  Runge-Kutta requires the system to be 

decomposed into a first order differential equation using the following procedure. 
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A column vector is formed from the variables used in the reduction of order process.  

The final rows of the resulting column vector are shown below: 
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(79)  3 3R  = X  
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(81)  5 5R = X  
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7 7R  = X  (83)  
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  (88)  

 
13R  = 0  (89)  

 
MathCADTM and other mathematic software requires that the column vector is a function 

of time and X alone.  This causes difficulties since the system is also a function of 

running speed (ω).  The workaround to this problem is to include an additional zero row 

to the D(t,x) matrix (Row 13) and define ω as X12.  In addition, a row is added to the 

initial condition matrix which is where ω is varied. 
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The vibration of the system is described by a cosine wave, with a phase angle φ.  The 

amplitude of vibration wave is the magnitude of the complex amplitude from the forced 

response plot. The phase angle is found using the inverse tangent of the imaginary part 

over the real part of the complex amplitude.  The displacement and velocity at time = 0 

now becomes: 

 

cos( )     n nDisplacement amp ϕ= −                                 (90) 
 

 
sin( )nVelocity amp nω ϕ= − −                                          (91) 

 

A Fast Fourier Transform (FFT) of the solutions to the differential equation would 

confirm the existence of second order harmonic vibrations.  However, since the FFT only 

gives solutions in terms of one running speed at a time, a range of running speeds was 

used to build a waterfall plot.  This offers a better representation of what occurs in the 

system as the running speed increases.  The system parameters were modified to lower 

eigenvalues to allow for reasonable computational running times.  
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IV. RESULTS 
 
COMPARISON OF COUPLED AND UNCOUPLED SYSTEMS WITH SYMMETRIC 

SUPPORTS  

 
 
 Table 2:  Parameters for system with symmetric supports 

 m1 = .1451 lbm R1 = 5 in Kx=50000 lb/in 0<Kt<2000000 in-lb/rad 
m2 = .9068 lbm R2 = 12.5 in Ky=Kx   

 

Figure 21 shows the natural frequencies of the uncoupled system and Figure 22 shows 

the natural frequencies of the coupled system with symmetric supports.  Both results 

were found using the parameters listed in Table 2.  Note:  The sixth mode in the coupled 

system does not appear in the graph because the frequency is several magnitudes higher 

than the first five modes.  One immediate disparity between the two systems is that the 

coupled system contains five natural frequencies, while the uncoupled system shows 

only four.  Using an uncoupled model for the coupled system may result in missing a 

natural frequency entirely. 
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Mode 1:  The Lowest Coupled Natural Frequency 
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The first mode shape calculated of the uncoupled model is pure torsional vibration with 

no lateral motion.  For the coupled model, Figure 25 shows the relative amplitude of 

torsional vibration compared to lateral amplitudes of Gear 1 and Gear 2.  The initial 

mode shape is highly torsional at low torsional flexibilities, but the ratio of torsional 

vibration amplitude to lateral vibration amplitude decreases exponentially as the torsional 

stiffness is increased.  At high torsional stiffness, the vibration seen in either gear is 

dominated by lateral vibrations.  Based on the eigenvalue and eigenvector results for this 

particular mode, the uncoupled equations of motion would not accurately predict the 

system’s torsional natural frequency or mode shape.  Note, however, from Figure 22, that 

with very high torsional stiffness, the mode becomes predominantly lateral, and this 

natural frequency may coincide with the natural frequency of Mode 2. 

Modes 2 and 4:  Lateral Modes for Coupled and Uncoupled Models 
 
 
 

 

 

 

 

  

 

 

 

 

Figure 26
Mode 2
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Mode 4
ateral natural frequencies of coupled and uncoupled systems 
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Figure 27:  Undamped natural frequency and mode shape (Mode 2) as a function of 
torsional stiffness Kt 

 

However, some of the uncoupled lateral natural frequencies favorably match the natural 

frequencies of the coupled system.  In particular, the lateral natural frequencies shown in 

Figure 26 perfectly match those of the coupled system.  The coupled motion is normal to 

the line of action.  In this case, with symmetric bearing stiffness, using the coupled 

approximation may be acceptable for some lateral natural frequency calculations 

 

Figure 27 shows that no torsional vibration exists at the natural frequencies for Modes 2 

and 4.  The vibration of these natural frequencies occurs perpendicular to the line of 

action and can be calculated using 
x nK m .  This result suggests that at least two natural 

frequencies of lateral vibration can be calculated using uncoupled equations of motion in 

cases where the overall bearing support stiffness are symmetric. 
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Mode 3:  The Second Coupled Mode 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28:  Undamped natural frequency and mode shape (Mode 3) as a function of torsional 
stiffness Kt 

 

Mode 3 does not appear in the uncoupled natural frequency calculations.  Figure 28 

shows a peak in the relative torsional vibration for Gear 1 using the coupled system.  At 

this point, vibration in the lateral X1 and Y1 direction goes to zero leaving R1ψ1 as the 

only source of vibration in Gear 2.  Torsional vibration dominates with low values of Kt, 

though significant lateral vibration (over 10%) begins as Kt is further stiffened.  The 

relative motion R2ψ2/X2 vibrates out of phase with low values of Kt, but in phase at 

higher stiffness values.  The point on the graph where Gear 2 vibrates laterally, with no 

torsional vibration coincides with the peak torsional response of Gear 1. 
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Eigenvector Analysis of Mode 3 
 
The relative amplitude seen between R1ψ1 and X1 as well as the relative amplitudes of 

torsional vibration is shown in Figure 29 as a function of torsional stiffness.  The 

importance of torsional dynamics increases as the dominance of the torsional mode over 

the lateral mode increases.  The gears initially vibrate out of phase, but at some point as 

the torsional stiffness is increase, they begin vibrating in phase to each other.  At the 

same point in Figure 29 the relative vibration in the X1 direction becomes zero as it 

changes signs and vibrates in phase with the torsional degree of freedom.  The amount of 

torsional stiffness required to make this spike depends strongly on the lateral support 

stiffness, as well as gear ratios.  Figure 30 shows how the stiffness ratio required to 

produce the spike moves as a function of gear ratios.  The radius of Gear 2 has been held 

constant while varying the radius of Gear 1. 

   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 29:  Change in vibration ratio between Phi1 and X1 as torsional stiffness is increased 
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Mode 5:  The Third Coupled Mode 

Figure 30:  Plot of the relative torsional stiffness/support stiffness vs. gear ratio for 
torsional vibration spike 

Lateral Natural 
Frequency (Mode 4)

Kt/Kx vs Gear Ratio

y = 77.41x3.9776

R2 = 1

y = 12.439x3.9795

R2 = 0.9998

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Gear Ratio R1/R2 

K
t/K

x 

R2=12.5
R2=5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 31:  Undamped natural frequency and mode shape (Mode 5) as a function of 
torsional stiffness Kt 
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Figure 32:  Undamped natural frequency and mode shape (Mode 5) as a function of torsional 
stiffness Kt 

 
The closest agreement of this mode with the uncoupled modes occurs when the torsional 

stiffness causes a natural frequency close to the lateral natural frequency of Gear 2.  

Therefore, at this point, it may be possible to accidentally predict this natural frequency 

using the uncoupled case.  Figure 31 shows the natural frequency and relative 

torsional/lateral vibration amplitudes as well as relative torsional amplitudes of Mode 5.  

Lateral vibration amplitudes in both gears are significant, with the vibration in the X1 

direction more than 75 percent of the torsional ψ1 vibration.  The influence that torsional 

stiffness plays in the relative vibration amplitudes levels off with increasing stiffness.  

One point to note in Figure 31 is the vibration amplitude seen in Gear 2 as the natural 

frequency approaches 1856 rad/s.  This natural frequency also coincides with the natural 

frequency of Mode 4.  As the natural frequencies of Mode 4 and Mode 5 intersect (see 

Figure 32), the vibration in Gear 2 goes to zero, though the uncoupled model suggests 

that a mode near this frequency is torsional. 
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Mode 6:  The Highest Natural Frequency 
 

 
 

 
 

 

 

 

 

 

 

 

 

Figure 33:  Undamped natural frequency and mode shape (Mode 6) as a 
function of torsional stiffness Kt 

 

Figure 33 shows the highest natural frequency not shown in Figure 22.  Significant 

lateral motion exists in the mode shape, with the highest lateral influence being that of X2 

(50 percent of the torsional motion).  The relative motion between the two gears is 

dominated by the torsional vibration in Gear 1 and vibrates out of phase with respect to 

Gear 2.   Increasing the torsional stiffness does not significantly affect the mode shape at 

this frequency for either gear.  

 



50 

Asymmetric Supports 
 
Figure 34 shows how increasing torsional stiffness of the shaft affects the undamped 

natural frequencies for a system with asymmetric supports using the parameters listed in 

Table 3.   The seemingly independent natural frequencies now become dependent on the 

torsional stiffness values as well, making the method used by Iwatsubo and Kahraman to 

uncouple two degrees of freedom from the system invalid for cases of asymmetric 

support stiffness. 

 
Table 3:  Parameters for system with asymmetric supports 

 m1 = .1451 lbm R1 = 5 in Kx=100000 
m2 = .9068 lbm R2 = 12.5 in Ky=.25*Kx 
0<Kt<2000000 in-lb/rad   

 
 
 

 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 34:  Undamped natural frequencies of uncoupled and coupled systems with 
asymmetric bearings as a function of torsional stiffness Kt 
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Figure 34 shows that unlike the case with symmetric supports, the uncoupled equations 

of motion do not always produce matching lateral natural frequencies.  The difference 

between the first modes is approximately 5 percent, but this error increases significantly 

for the other three modes.  Asymmetric bearing causes a vibration that does not line up 

perpendicular to the line of action.  Slight torsional vibration shown now occurs (see 

Figure 35) and is the reason why torsional shaft stiffness can change the natural 

frequency of these laterally dominated modes. 

 

 

Figure 35: Mode 4 mode shapes as a function of torsional stiffness (normalized to ψ1) 
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THE EFFECT LATERAL STIFFNESS HAS ON NATURAL FREQUENCIES WITH 

SIGNIFICANT TORSIONAL MOTION 

 

Figure 36 below shows how increasing lateral support stiffness values in the X and Y 

directions affect the undamped natural frequencies when using the parameters listed in 

Table 4.  All of the natural frequencies appear to be strong functions of the lateral 

support stiffness.  The yellow and light blue lines exhibit the greatest dependency on the 

lateral support stiffness as is expected since these natural frequencies are independent of 

torsional stiffness in cases with symmetric supports.  The other coupled natural 

frequencies behave similar to the previous plots, where the influence of the lateral 

stiffness diminishes as the stiffness becomes large. 

Table 4:  Parameters for system with symmetric supports for lateral stiffness analysis

  m1 = .1451 lbm R1 = 5 in Kt = 500000 
m2 = .9068 lbm R2 = 12.5 in Ky = Kx 
0< Kx <50000 lb/in   
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Figure 36:  Undamped natural frequencies of system with symmetric bearing stiffness as a 
function of lateral stiffness Kx 
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EFFECT OF TORSIONAL AND LATERAL STIFFNESS VALUES ON MODE 1 
 

Figure 37 and 38 show how the lateral and torsional stiffness parameters listed in  

Table 5 affect the lowest coupled natural frequency and mode shape.  When Kx is 

flexible, the natural frequency is loosely dependent on torsional stiffness.  The torsional 

stiffness plays a larger role in the natural frequency as the support stiffness increases.   

Table 5:  Parameters for system with symmetric supports for various values of lateral stiffness
 

 

m1 = .1451 lbm R1 = 5 in Kx = Various 0< Kt <1000000 in-lb/rad 
m2 = .9068 lbm R2 = 12.5 in Ky = Kx  

 
 

 
  
 
 
 
 
 
 
 
 
 

Figure 37:  Natural frequency of lowest coupled mode with increasing torsional stiffness 
for various several lateral stiffness values 
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CRITICAL SPEED RESULTS  
 
The forced response plot (Figure 39) obtained from the parameters listed in Table 6 is 

meant to show the accuracy of the forced response development.  The eigenvalues, which 

were calculated independently of the forced response equations, agree with the peaks of the 

Forced Response Plot.  The highest critical speed not shown on the graph corresponds with 

the calculated eigenvalue as well. 

 
 Table 6:  Parameters for comparison to eigenvalue solutions

 

m1 = 0.029 lbm R1 = 1 in R2 = 2.5 in Kx = 5000 lb/in 
m2 = 0.0181 lbm Cx = 0.1 lb-sec/in Ct = .1 in-lb-sec/rad Kn = 2629381  lb/in 
 u1 = .004 in u2 = 0.004 in Kt = 10000  in-lb/rad 
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Figure 39:  Forced response p
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Comparing Lateral Critical Speeds for Models with Symmetric Supports 
  
Figure 40 and Figure 41 show that the uncoupled gear model successfully calculates two 

lateral critical speeds of the coupled system based on the parameters in Table 7.  These 

plots confirm the results found during the natural frequency comparison where it was 

shown that the mode shape that vibrates perpendicular to the line of action would compare 

favorably to the uncoupled case.  However, as these results show, the uncoupled case fails 

to predict the lateral vibration seen in other critical speeds. 

Table 7:  Parameters used for lateral critical speeds with symmetric bearings

m1 = 0.029 lbm R1 = 5 in R2 = 10 in Kx = 50,000 lb/in 
m2 = 0.580 lbm Cx =2 lb-sec/in Ct = .1 lb-sec/rad Ky = 50,000 lb/in 
Kn = 5.94E6 lb/in u1 = .004 in u2 = 0.004 in Kt = 10E6 in-lb/rad 
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Figure 40:  Lateral (X1) forced response plot for uncoupled and coupled systems with 
symmetric bearings
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Figure 41:  Lateral (X2) forced response plot for uncoupled and coupled systems with 
symmetric bearings
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Comparing Lateral Critical Speeds of Models with Asymmetric Supports 
 
Figure 42 through Figure 45 shows that lateral critical speeds calculations for an 

asymmetric system agree with the results obtained for the natural frequency study.  The 

results show that the coupled lateral modes that matched the uncoupled modes with 

symmetric bearings no longer agree when asymmetric bearings are used.  The parameters 

used in this simulation are listed in Table 8.  With asymmetric bearings, the uncoupled 

model fails to predict all but one critical speed. 

Table 8:  Parameters used for lateral critical speeds with asymmetric bearings

m1 = 0.029 lbm R1 = 5 in R2 = 10 in Kx = 50,000 lb/in 
m2 = 0.0181 lbm Cx =5 lb-sec/in Ct = .1 lb-sec/rad Ky = 25,000 lb/in 
Kn = 5,944,975  lb/in u1 = .004 in u2 = 0.004 in Kt = 10E6  in-lb/rad 
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Figure 42:  Lateral (X1) forced response plot for uncoupled and coupled models with 
asymmetric bearings
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Figure 43:  Lateral (X1) forced response plot for uncoupled and coupled models with 
asymmetric bearings
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Figure 44:  Lateral (Y1) forced response plot for uncoupled and coupled models with 
asymmetric bearings
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Figure 45:  Lateral (Y2) forced response plot for uncoupled and coupled models with 
asymmetric bearings 
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Comparing the Torsional Critical Speeds of the Coupled Model to the Uncoupled Model  

 
To study the forced response in the torsional direction, an external torsional torque has 

been added to the uncoupled equations of motion.  The results show that the uncoupled 

does not predict torsional critical speeds consistently (Figure 46).  Accurate predictions 

may be possible if certain lateral bearing stiffnesses are used (see Table 9 for parameters). 

 
Table 9:  Parameters for torsional critical speed plots  

 

m1 = 0.029 lbm R1 = 5 in R2 = 10 in Kx = 50,000 lb/in 
m2 = 0.580 lbm Cx =2 lb-s/in Ct = .1 lb-s/rad Ky = 25,000 lb/in 
Kn = 5.94E6 lb/in u1 = .004 in u2 = 0.004 in Kt = 10E6 in-lb/rad 
T1external = 5000 in-lb T2external = 1000 in-lb   
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Figure 46:  Torsional (Psi1) forced response plot for uncoupled and coupled models
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Figure 47 shows a case where the uncoupled model agrees with the coupled model.  In this 

case, the uncoupled torsional natural frequency of the second gear happens to be extremely 

close to the uncoupled lateral natural frequency of the first gear.  Figure 48 shows the 

models no longer agree when the lateral bearing stiffness is changed. 

Figure 47:  Torsional (Psi2) forced response plot for uncoupled and coupled models 
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Figure 48:  Torsional (Psi2) forced response plot for uncoupled and 
coupled models using two lateral bearing stiffnesses  
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How Torsional Stiffness Affects the Coupled System’s Lateral Critical Speeds 
 

Figure 49 shows how external torsional stiffness affects lateral critical speeds based on the 

parameters listed in Table 10.  The plot shows that the torsional stiffness can play a 

significant role in the critical speeds with significant lateral vibration.  The critical speeds 

that move to the right as the torsional shaft stiffness is increased are the torsionally coupled 

critical speeds.  

Table 10:  Parameters for study of torsional stiffness effects on lateral critical speeds 

m1 =0.058 lbm u1= 0.004 in Cx = 1 lb-sec/in 
m2 = 0.13 lbm u2 = 0.004 in Crψ = .001 1 lb-sec/rad 
R1 = 5 in Kx = 5000 lb/in  
R2 = 7.5 in Kn = 2365430 lb/in  
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 Figure 49:  Lateral forced response plots when torsional stiffness is varied
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How Lateral Damping Affects the Coupled Model’s Critical Speed Amplitudes 
 

Figure 50 shows how lateral damping affects torsional critical speed amplitudes.  The 

torsional critical speed amplitudes of Gear 1 decrease significantly as the lateral support 

damping is increased.   
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Figure 50:  Forced response plot showing effect of lateral damping on torsional amplitudes 
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The Contribution of Lateral Damping to Effective Damping 
 

Figure 51 shows how the lateral damping coefficient (Cxx1) affects the damping ratios of 

the other five modes based on the parameters listed in Table 11.  The graph shows that 

increasing lateral damping also increases the damping ratios of the other modes in a linear 

fashion.  The mode least affected by the increase in lateral damping is the critical speed 

associated with the tooth stiffness.  However, the other coupled modes are more sensitive 

to lateral damping. 

Table 11:  Parameters for the study on the effects lateral damping has on damping ratios

m1 =0.0725 lbm Cx= Variable 
m2 = 0.2902 lbm Ct = .001 1 lb-sec/rad 
R1 = 5 in Kx = 1000 lb/in 
R2 = 10 in Kn = 2988941 lb/in 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 51:  How the lateral damping coefficient (Cxx1) affects damping coefficients in other modes 
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CRITICAL SPEEDS WITH RESPECT TO GEAR RUNNING SPEED 

 

So far, the forced response plots have been shown based on excitation frequency, not 

running speed.  To show the critical speeds as a function of gear running speed, the forced 

response data is shown using two X-Axes; one based on the excitation from Gear 1’s 

running speed and one based on the excitation from Gear 2’s running speed.  The 

parameters listed in Table 12 have been used in this study. 

Table 12:  Parameters used for forced response with respect to running speed

m1 = 0.029 lbm R1 = 5 in R2 = 10 in Kx = 50,000 lb/in 
m2 = 0.0181 lbm Cx =5 lb-s/in Ct = .1 lb-s/rad Ky = 25,000 lb/in 
Kn = 5.944E6 lb/in u1 = .004 in u2 = 0.004 in Kt = 10,000,000  in-lb/rad 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 52:  Lateral X1 forced response plot with respect to running speed  
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Figure 52 shows the response of the lateral X1 direction for each excitation source.  The red 

line is the synchronous vibration amplitude of X1 due to the rotating unbalance of Gear 1.  

The blue line is the subsynchronous vibration amplitude of X1 due to the rotating unbalance 

of Gear 2.  The figure shows the unbalance in Gear 2 causes significant subsynchronous 

lateral X1 vibrations in Gear 1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 53:  Lateral Y1 forced response plot with respect to running speed 

 

Figure 53 shows the response of the lateral Y1 direction for each excitation source.  The red 

line is the synchronous vibration amplitude of Y1 due to the rotating unbalance of Gear 1.  

The blue line is the subsynchronous vibration amplitude of Y1 due to the rotating unbalance 

of Gear 2.  The figure shows that the subsynchronous vibration amplitude caused by Gear 2 

exceeds the vibration amplitude caused by Gear 1. 
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Figure 54:  Torsional ψ1 forced response plot with respect to running speed 

 

 

Figure 54 shows the response of the lateral ψ1 direction for each excitation source.  The red 

line is the synchronous vibration amplitude of ψ1 due to the rotating unbalance of Gear 1.  

The blue line is the subsynchronous vibration amplitude of ψ1 due to the rotating unbalance 

of Gear 2.  The figure shows that the subsynchronous vibration caused by Gear 2 exists, but 

compared to the lateral case, plays a smaller roll in the overall torsional vibration of the 

Gear 1. 
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Figure 55 and Figure 56 show the lateral X2 and Y2 forced response amplitudes.  For Gear 

2 (the larger gear), the vibration caused by Gear 1 is supersynchronous (red line) to its 

running speed.  Compared to the effects Gear 2 has on subsynchronous vibrations in Gear 

1, the effects Gear 1 has on supersynchronous vibrations in Gear 2 play a smaller roll. 

 
 
 
 
 

Figure 55:  Lateral X2 forced response plot with respect to running speed 

Figure 56:  Lateral Y2 forced response plot with respect to running speed 
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 Figure 57:  Torsional ψ2 forced response plot with respect to running speed 
 

 
Figure 57 shows the torsional ψ2 forced response amplitudes.  The red line is the 

supersynchronous vibration amplitude of ψ2 due to the rotating unbalance of Gear 1.  The 

blue line is the synchronous vibration amplitude of ψ2 due to the rotating unbalance of Gear 

2.  The figure shows that the supersynchronous component of the ψ2 can be as great as or 

greater than the synchronous vibration, depending on the running speed. 
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NONSYNCHRONOUS VIBRATIONS AND THE WACHEL PAPER 
 
 
In their paper, Wachel and Szenasi conclude that the vibration of the fourth stage 

compressor was an instability because it contained a vibration frequency not equal to its 

running speed (See Figure 58).   Also, the unstable lateral vibrations they measured were at 

the same frequency as the third torsional natural frequency (see Figure 59).  They 

concluded that the vibrations were coming from the idler gear (the larger gear) and were 

transferred through the pinion and to the fourth stage compressor.   

 

 

 

 

 

 

 

 

 

 

 

Figure 58:  Lateral waterfall plot of the fourth stage compressor [1] 
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 Figure 59:  Torsional waterfall plot of the pinion [1] 
 

Figure 60 shows that the sub-synchronous lateral vibrations with a well balance gear are 

very low at slower running speeds. The subsynchronous vibrations in Gear 1 spike when 

the first coupled torsional natural frequency is excited by the second gear (Figure 61).  This 

may be an explanation to the instability seen by Wachel and Szenasi.  Note that 

subsynchronous spike is not an unstable vibration.  Similar waterfall results can be 

reproduced in MathCADTM based on the amplitudes from the forced response calculations 

and the assumed sinusoidal vibration wave.  The parameters used in this study are listed in 

Table 13. 

 

 Table 13:  Parameters used to create apparent instability

m1 = .1451 lbm Kx=Ky=20000 lb/in Cx=Cy=0.75 lb-sec/in 

m2 = 1.3057 lbm u1=u2=.0001 in R1 = 5 in 

Kn = 6,012,477 lb/in Kt=10,000,000 in-lb/rad R2 = 15 in 
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 Figure 60:  Lateral Y1 bode plot with respect to Gear 1 running speed 
 

 

  

Figure 61
Excitation Frequency (rad/s)
:  Lateral Y1 waterfall plot of Gear 1 
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THE ROTATING MOMENT ARM’S EFFECT ON SYSTEM VIBRATION 
 

The waterfall plots from the numerical integration results are shown in this section.  The 

results show that the lowest natural frequency can be heavily excited by the rotating 

moment arm of the second gear when using the parameters listed in Table 14.  Figure 62 

shows that the first mode shape of the first is torsionally-laterally coupled at this natural 

frequency.  This excitation is subsynchronous in relation to the running speed of Gear 1 

and supersynchronous in relation to the running speed of Gear 2.   

  

 Table 14:  System parameters for waterfall computation 
  

m1 = .1451 lbm Kx = 30000 lb/in Cx = 10 lb-s/in 
m2 = .9068 lbm Ky = 30000 lb/in Cy = 10 lb-s/in 
R1 = 5 inch Kn = 5977883 lb/in Ct = 0 in-lb-s/rad 
R2 = 12.5 inch Kt = 200000 in-lb/rad α = 20 degrees 
u1 =  0.4 in u2 = 0.8 in ωn = 109 and 199 rad/s 

 

 

 

 

 

 Mode Shape of Torsional Dominate Eigenvalue

-0.5

0.0

0.5

1.0

1.5

2.0

X1 Y1 R1*Psi1 X2 Y2 R2*Psi2

State Variable

R
el

at
iv

e 
A

m
pl

itu
de

 

 

 

 

 

 

 

 

 

 

 

Figure 62:  Mode shape of first eigenvalue 
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Figure 63:  Torsional vibration in ψ1 direction of Gear 1 for 44-200 rad/s running speeds 
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Figure 64:  Gear 2 torsional vibration in ψ2 direction for 18-80 rad/s running speeds 
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 Figure 65:  Lateral vibration in X1 for 44-200 rad/s running speeds 

 

 

 

 

 

 

 

 

 

 

 



77 

 

 

 

 

 
1.5X Gear 2 
running speed  

 

1X Gear 
2 running 
speed 

 

1X Gear 1 
running speed 

2X Gear 1 
running speed 

Figure 66:  Lateral vibration in X2 for 18-80 rad/s running speeds 
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Figure 67:  Lateral vibration in Y1 for 44-200 rad/s running speeds 

 



79 

 

1X Gear 1 
running speed 

1.5X Gear 2 
running speed 

1X Gear 2 
running speed 

 

 

 

 

 

 

 

 

 

2X Gear 1 
running speed 

 

 

 

 

 

 

 Figure 68:  Lateral vibration in Y2 for 18-80 rad/s running speeds 
 

The waterfall plots shown in Figures 63-68 agree with the previous assertion that highly 

unbalanced gears exhibit non-synchronous (to either gear) harmonic frequencies.  

Furthermore, the plot shows that these harmonics excite the first natural frequency (which 

is has a highly torsional mode shape) several times during run-up.  Surprisingly, the 

subsynchronous harmonic component is (R2/R1-1) times the running speed of Gear 2.  

Looking at Figure 63, the 1.5X sub-harmonic vibrations from Gear 2 excite the eigenvalues 

nearly as much as the synchronous component from Gear 1.  This frequency is first excited, 

though much smaller, by the second order component of the from Gear 1’s rotating 

moment arm.   
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V.  CONCLUSIONS 
 
The uncoupled gear model was compared to the six DOF coupled gear model.  The results 

show that the uncoupled model fails to accurately predict as many as five natural 

frequencies, depending on the symmetry of the gear supports.  With asymmetric supports 

the uncoupled model is less likely to predict any mode above the first mode, though certain 

exceptions do exist.   

 

A force response analysis of the coupled system was used to study the forced excitations of 

a rotating mass imbalance.  The results show that lateral critical speeds can be significantly 

affected by changes in torsional shaft stiffness.  Further study of the forced response 

resulted in the finding that lateral damping can lower torsional critical speed amplitudes. 

 

A well balanced, lightly damped geared rotor may show signs of instability if one of the 

torsional-lateral coupled natural frequencies is excited by the slower rotor.  However, these 

subsynchronous vibrations are actually stable vibrations.  Wachel and Szenasi may have 

incorrectly diagnosed the subsynchronous vibrations in the fourth stage compressor as an 

instability.  

 

Finally, numerical integration was used to study how a rotating moment arm contributes to 

harmonic vibrations.  In cases with severe imbalance, the system exhibits 2nd order 

harmonics that may excite the system’s natural frequencies as much, or more than the 

synchronous vibration. 
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APPENDIX A 
 

Derivation of Torsional Equivalent Stiffness: 
 

Case 1: 
 
 
 
 
 
 
 
 
 
 
 

Figure 69:  Gear pair with high bearing stiffness and 90 degree pressure angle. 
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Case 2: 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 70:  Equivalent torsional system used for eigenvalue check 
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