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ABSTRACT

Relationship between Suspicious Coincidence in Natural Images and

Contour-Salience in Oriented Filter Responses. (December 2003)

Subramonia P Sarma, B.Tech, University of Kerala, Trivandrum, India;

Chair of Advisory Committee: Dr.Yoonsuck Choe

Salient contour detection is an important low-level visual process in the human

visual system, and has significance towards understanding higher visual and cogni-

tive processes. Salience detection can be investigated by examining the visual cortical

response to visual input. Visual response activity in the early stages of visual process-

ing can be approximated by a sequence of convolutions of the input scene with the

difference-of-Gaussian (DoG) and the oriented Gabor filters. The filtered responses

are unusually high for prominent edge locations in the image, and is uniformly similar

across different natural image inputs. Furthermore, such a response follows a power

law distribution. The aim of this thesis is to examine how these response properties

could be utilized to the problem of salience detection. First, I identify a method to

find the best threshold on the response activity (orientation energy) toward the detec-

tion of salient contours: compare the response distribution to a Gaussian distribution

of equal variance. Second, I justify this comparison by providing an explanation un-

der the framework of Suspicious Coincidence proposed by Barlow [1]. A connection

is provided between perceived salience of contours and the neuronal goal of detecting

suspiciousness, where salient contours are seen as affording suspicious coincidences

by the visual system. Finally, the neural plausibility of such a salience detection

mechanism is investigated, and the representational efficiency is shown which could

potentially explain why the human visual system can effortlessly detect salience.
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CHAPTER I

INTRODUCTION

Vision is one of the most important sensory modalities in organisms because it plays a

crucial part in helping organisms adapt to and thrive in their environments. Although

we often take it for granted, vision is actually a complex process. Understanding

vision and explaining it through the use of suitable models is thus an important and

worthwhile endeavor. Much of the early successes in vision research have been in

low-level vision, where the physical properties of various processing elements in the

visual system were clearly identified and explained [5, 18, 22, 23, 28]. These properties

have been found to be quite useful in explaining various processes in the early visual

system, such as edge detection and contour grouping [13]. Theories based on such

low-level processes have in turn formed the foundation for understanding in high-level

vision, such as object recognition and perception.

Much of the early visual processes in the human visual system have evolved over

time to cope with the natural visual environment. Also, the natural environment

is not random but structured and orderly [33, 17]. Thus it can be assumed that

the structure and functionality of the human visual system are largely influenced

by the statistical properties of the natural scene input it continuously receives from

the environment [13]. Since not all input present in the visual scene has immediate

relevance to the organism, the visual system could be assumed to concentrate on

those areas in the input which are most significant, or in other words, salient. One

important salient property in visual inputs is edges (or contours), where local contrast

abruptly changes along a long stretch of visual space. In this thesis, I will thus focus

The journal model is IEEE Transactions on Neural Networks.
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Fig. 1. An illustration of the main visual pathway in primates.(Adapted from [16, 18].)

on understanding how such salient edge features are processed and derived by the

visual system. Studying the biological visual system can provide a clue towards this

objective.

A. A Visual System Primer

A lot of knowledge has been gained about the primate visual system from various psy-

chophysical and electro-physiological experiments and more recently from advances

in brain imaging methods. It has also been widely known that the general structure

is quite similar for the human visual system and the primate visual system. In this

section, I will attempt to provide a little insight onto the general structure of the

visual system and the properties of its neurons. This section is largely based on [16].

Fig. 1 shows an illustration of the early stages of the main visual pathway in

primates (adapted from [16, 18]). The light collected by the retinal photo receptors

is transmitted by the optic nerve to the retinal ganglion cells. From there the infor-

mation is sent to the lateral geniculate nucleus (LGN) in the thalamus and is further

sent to the primary visual cortex (V1) located at the back of the brain. The V1

is believed to be one of the first locations where the visual information is processed

by the cerebral cortex. Information after it is processed in V1 is then sent to other
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(a) (b)

Fig. 2. Some typical receptive fields of the neurons in the early visual pathway. Positive

signs denote excitation and negative signs denote inhibition. (a) the RFs of

retinal ganglion cells and LGN cells show center-surround property. (b) The

RFs of V1 neurons show orientation selectivity. (Adapted from [16].)

locations in extra-striate cortex through several other pathways.

Neurons represent the primary information processing unit in the brain. Neurons

communicate within themselves via spikes or action potentials. The response of a

typical neuron in the early visual pathways depends on the pattern of input of a

small area of the visual field, called the receptive field (RF). Thus changes in the input

stimulus in the receptive field will lead to changes in the firing of the corresponding

neuron. The receptive fields in different areas of the visual system are known to

exhibit different properties. For example, the receptive fields at the retinal ganglion

cells and the LGN show a center-surround property, whereby they provide excitatory

output by light in a small central circular region, and inhibitory output by light in

a surrounding circular region [5, 23]. The opposite effect of inhibition in the center

and excitation at the periphery is also shown by other cells. Further downstream

in the primary visual cortex (V1), the receptive fields exhibit orientation, phase and

frequency tuned properties [22, 28]. This is depicted in Fig. 2 (adapted from [16]).

It is also known that neurons in the visual cortex (as in other cortical areas) show
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graded response to specific stimuli. Also, nearby locations in the visual field are found

to be mapped to nearby neurons in the visual cortex. A consequence of the finding

about the receptive fields depicted in Fig. 2 is that the early visual processing can

be modeled as a sequence of filter convolutions. The center-surround receptive fields

can be modeled as the difference of two Gaussian kernels, a classic model of which is

given by the Difference-of-Gaussian (DoG) filter. The orientation selective receptive

fields can be modeled by Gabor filters which are products of sinusoidal gratings and

Gaussian envelopes. Although such a kind of model is quite simplistic, it has been

found to be quite effective as a model for preprocessing of visual input to study visual

responses, as in [13]. Such a model is also used in this thesis, and will be discussed

in detail in Chapter III.

B. Motivation

The response of neurons in the visual system, which can be modeled using the DoG

and Gabor filters, have the property that they are quite similar across different natural

image input. It is also known that the response distribution of neurons in the primary

visual cortex (V1) shows a power law. Thus, it has a heavy tail, or in other words,

extreme values are not uncommon. We can then speculate that such a response

property is exhibited by the visual system because it is useful in some way. It then

becomes a motivating problem to investigate if such properties could be used toward

salient contour detection. Studying salience detection can also provide a clue toward

understanding higher level visual and cognitive processes such as object recognition

and perception.
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C. The Problem

The pertinent problem addressed in this thesis can then be stated as follows:

1. Identifying an effective method for detecting salience of contours in natural

images, by utilizing the filter response properties.

2. Justification of the use of the method.

3. Investigation of the neural basis and representational efficiency of the method.

D. Approach

In this thesis I propose to answer the first part of the problem by utilizing the prop-

erties the filter response, called the orientation energy. I will conduct experiments to

see how effectively such properties could be utilized. Since the filter responses are

fairly uniform and are usually high for locations in an image where there are promi-

nent edge elements, thresholding the responses can lead to the detection of salient

contours. I show that comparing the response distribution from a natural image to a

normal distribution with the same variance gives a good thresholding criterion for de-

tecting salient levels of edginess, through comparison with human-chosen thresholds.

To precisely measure the effectiveness of this method, I compare the performance of

this method on synthetic images having similar response properties as natural images,

with human performance.

More significantly, for the second part of the problem, I attempt to interpret the

salience detected using orientation energy thresholding under the concept of Suspi-

cious Coincidence proposed by Barlow [1]. The central idea is that an image where

each pixel is independent from each other (such as a white-noise image) could be

defined as having no suspicious feature in it, which is exactly what humans perceive.
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Thus salience can be understood as a deviation from the unsuspicious baseline of a

Gaussian distribution. If this has to be the case, the orientation energy distribu-

tion for a white-noise image should be at least near-Gaussian, and this turns out to

be true. Thus the white-noise experiment provides justification for the use of the

computationally simpler Gaussian distribution as the baseline for thresholding.

Finally, I suggest a neural basis for the salience detection method by showing that

the appropriate threshold can be easily extracted using a simple neural mechanism

that utilizes a weighted sum of the squared orientation energy response. I further test

the representational effectiveness of squared responses by evaluating the efficiency of a

backpropagation network that learns the orientation energy threshold. Such efficiency

may possibly be one of the important considerations if it is used in the visual system.

E. Outline of the Thesis

This thesis is organized as follows. Chapter II will provide an overview of related re-

search in this area. I will show how other researchers utilize natural image statistics

toward a number of tasks such as denoising and compression, and why my approach

differs from theirs. Chapter III details the approach I have used for my experiments,

and provides details about the input preparation, calculation of orientation energy

and its distribution, and how its properties can be utilized. I examine the relation-

ship between high response levels and perceived salience by humans in Chapter IV,

through comparison to human performance. I then derive a thresholding criterion to

find salient levels of response by comparison with a Gaussian distribution. Chapter

V examines why this comparison is reasonable, and an explanation is given under

the framework of Suspicious Coincidence. I also conduct a quantitative analysis to

precisely measure the effectiveness of such a thresholding approach. The thesis con-
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cludes with a discussion of the neural plausibility of my approach, with experimental

results showing its representational efficiency. Some suggestions for future work are

also presented.
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CHAPTER II

BACKGROUND

There has been extensive research on natural image statistics and their utility for

various practical image processing problems. Natural images are structured and or-

derly and provide unique statistical properties that were found to be useful to develop

efficient methods for tasks such as edge detection, segmentation, denoising, and com-

pression. In another research direction, there has been attempts to model visual

system processes by studying neuronal responses to visual input. However, a major

research path forms a link between these two by studying how natural image statis-

tics influence the development of visual system processes. The basic idea behind such

an approach is that the human visual system has evolved over time to adapt to the

natural scene input from their environment, and thus has been influenced by natural

scene statistics in its development. This research direction is the motivation behind

my thesis.

Ruderman [30] investigated the robust scale invariance property of natural im-

ages and proposed that this property could be explained by the presence of regions

corresponding to statistically independent objects that showed a power-law distribu-

tion of sizes. Research done by Zhu, Wu and Mumford [34] showed that exponen-

tial models could provide a general framework for natural image modeling. Other

researchers such as Huang and Mumford [17] systematically investigated various sta-

tistical properties of natural images using a very large calibrated image database and

fitted mathematical models to some of the properties such as scale invariance.

The use of natural image statistics to image compression was researched by

Buccigrossi and Simoncelli [4]. They developed a statistical model of natural images

in the wavelet transform domain that described joint statistics between pairs wavelet
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coefficients. Simoncelli and Adelson [32] independently in their research on Bayesian

wavelet coring used non-gaussian properties to develop suitable thresholding methods

for denoising in natural images. They also pointed out that such models could be

useful for other kind of tasks such as segmentation and contour identification. In a

related work, the thresholding of wavelet responses was researched by Hansen and Yu

[14] toward denoising and compression of images.

A recent research direction has been the use of response histograms. For ex-

ample, spectral histograms of image were used by Liu and Wang [27] for texture

discrimination and segmentation. They showed that the spectral histogram model

avoided problems such as rectification and spatial pooling which are commonly as-

sumed stages in texture discrimination models. They also showed that by matching

spectral histograms, an arbitrary image could be transformed into another image with

similar features via statistical sampling. Such use of histograms was found to help in

the proper segmentation and synthesizing of textures.

Another direction for research has been to examine the organization and proper-

ties of various elements in the visual system to understand various lower-level vision

tasks. A detailed study of the receptive fields and maps in the mammalian visual

cortex with special regard to the properties of ocular dominance and orientation se-

lectivity was done by Miller [29]. Various models were reviewed that explained the

structure of the receptive fields and cortical maps.

A model for early visual processing in primates was proposed by Itti et al. [20]

that consisted of a population of linear spatial filters and their interactions. Human

psychophysical thresholds were then derived from the population responses. Itti et al.

used such a model to predict human thresholds for orientation and contrast discrim-

ination tasks. The detection of salient objects in natural scenes was also researched

by Itti and Koch [21] where they studied the importance of selective visual attention
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to form saliency maps of visual scenes.

There has been considerable research into the study of natural image statistics

to understand various visual system processes. Barlow [2] suggested that a role of

early sensory neurons is to remove statistical redundancy in the sensory input they

receive, which in the early stages of evolution and development would be the natural

scene input.

The statistics of natural images toward efficient coding of neural responses was

reviewed in detail by Simoncelli and Olshausen [33]. The statistical redundancies

present in natural images were considered for various features such as intensity, color

and spatial correlations. The non-Gaussian nature of neural responses to natural scene

input also was of interest toward understanding efficient coding principles employed

by the visual system neurons.

Other researchers such as Geisler et al. [13] were more interested in applying

natural image statistics to study performance in contour grouping. They proposed

a quantitative method for analyzing grouping performance for natural images, using

both absolute and Bayesian edge co-occurrence statistics. This is a unique approach

due to its quantitative nature of analysis since most of the research in the area of

contour grouping used qualitative analysis methods. Geisler et al. were also able to

successfully derive a contour grouping rule from the edge co-occurrence statistics.

Contour integration in low-level vision was also researched by Choe and Mi-

ikkulainen [6] and they proposed a model that suggested that lateral interactions

between neurons with similar orientation tuning can be learned through input-driven

self-organization.

The relation between natural image statistics and visual cortical cell responses

was also researched by Field [11]. The representation of images by the visual system

in mammals was of interest to Field and various coding schemes were compared and
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analyzed. One of his findings was that the orientation and spatial-frequency tuning

of mammalian simple cells were well-suited for coding the information from natural

images. He also proposed that a goal of such coding schemes was to convert higher-

order redundancy to first-order redundancy and also ensure a high signal-to-noise

ratio. His results thus helped support Barlow’s view that the goal of vision was to

represent information with minimal redundancy.

More recently, the temporal statistical features of natural video scenes have been

studied by some researchers [19] to find the correlations between the temporal re-

sponses of complex cells in the visual cortex. The recent advances in statistical and

computational modeling have really helped to increase the interest in this area.

My approach in this thesis has been essentially motivated by some of the basic

ideas from the research work presented above. Since the primary problem of inter-

est to me is understanding salient contour detection, it was natural to consider the

statistics of natural images. It could be believed that the visual system is quite good

in detecting salient contours and natural image inputs are of interest since such a

capability could be believed to have an evolutionary and developmental background.

The non-Gaussian nature of orientation energy (or wavelet response) histograms has

been utilized previously, but in different contexts such as denoising and compression.

Notable here are the work done by Simoncelli and Adelson [32] for denoising, and

by Hansen and Yu [14] for denoising and compression. It was also noted by Barlow

[3] that comparing peaked distributions with high kurtosis with distributions derived

from an unsuspicious baseline would be quite useful. However, to my knowledge, my

approach is the first systematic study of the relationship between perceived salience

in humans and the orientation energy distribution under the framework of suspicious

coincidence.
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CHAPTER III

APPROACH

The early visual processes can be suitably modeled by the responses of filters that

mimic the receptive field properties of neurons in the visual system. Such a response,

called the orientation energy (OE), can be interpreted as visual cortical activity in

response to visual input. The oriented nature of filters that model the orientation-

selectivity property of the visual system suggests that the filtered response would be

high for locations in an image where there are strong edge elements.

The initial step is then to generate the orientation energy responses for the nat-

ural image input. In this chapter, I describe the inputs used and how the orientation

energy distribution is calculated. I also show an important property of the orienta-

tion energy distribution of natural images,i.e., non-Gaussianity, and consider how it

may be useful. The results presented in this chapter are largely based on [25], which

describes the research project I took part in.

A. Inputs

The early visual system processes could be believed to have evolved over time by

exposure to the natural environment, and thus their development could have been

influenced by the natural scene statistics. Thus one of the primary requirements for

the inputs for my experiments was that they capture aspects of the natural environ-

ment as much as possible, without the presence of artificial (man-made) structures

or objects. Thus the images used would have to be from the natural terrain contain-

ing mostly terrestrial stimuli, such as images of woods, mountains, rivers, birds, and

animals. The natural images selected also needed to be from a wide range of terrain,

which would help support the generality of any conclusion that followed out of the



13

experiment. This meant that there were not only natural images containing high-

contrast features such as densely populated woods, but also those with low-contrast

background such as clouds, river water, etc.

For all the experiments described in this thesis, I utilized a collection of digital

stock images obtained from the Kodak website1, the same source as in [13]. Some

sample images are shown in Fig. 3. The images were from a wide variety of natural

terrain, and were all obtained in the JPEG image format. All the images were in 24

bit color and had dimensions of 256 × 256 pixels.

The images were first windowed with a circular aperture of diameter 256 pixels to

prevent the addition of artefactual orientation bias due to the horizontal and vertical

border regions. An example image and its circular aperture are shown in Fig. 4.

To model visual cortical response, we have to first look at certain properties of

the natural scene input. Unlike gray-scale intensity histograms which could be signif-

icantly different from each other, it was found that the orientation energy histograms

of natural images are quite similar to each other. This is shown in Fig. 5 where the

gray-scale and orientation energy histograms of three representative natural images

are shown.

B. Orientation Energy Calculation

The calculation of orientation energy is based on that in [25], for which I was a

contributor. According to research by Geisler, et al. [13], the orientation energy can

be measured as the response obtained by convolving the natural image input with a

combination of oriented and non-oriented filters similar to those found in the receptive

fields of the primary visual cortex (V1). To calculate the orientation energy response

1The URL is http://www.kodak.com/digitalImaging/samples/imageIntro.shtml
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Fig. 3. Some representative natural images depicting a variety of natural terrain ob-

tained from the Kodak website.
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Fig. 4. An image before and after windowing with a circular aperture.

and its distribution, a procedure similar to [13] is used. The procedure involves

a sequence of convolutions, first with difference-of-Gaussian (DoG) filters and then

with oriented Gabor filters, to give the orientation filter response. The DoG filter is

essentially composed of two Gaussian functions whose widths differ by a factor of 0.5,

as

F (x, y) = G(σ/2)2(x, y)−Gσ2(x, y), (3.1)

where Gσ2(·) is a Gaussian function with variance σ2, defined as follows:

Gσ2(x, y) =
1

2πσ2
.exp−

x2+y2

2σ2 , (3.2)

where the pixel location is denoted by (x, y).

Other kinds of filter models could be used, notably the Laplacian of Gaussian

filter (LoG), instead of the DoG model. However, I used of the DoG filter for sim-

plicity.

For the initial convolution, the gray-level intensity matrix I was obtained from

the input image. It was then convolved with the DoG filter to obtain the intermediate

matrix If , as

If = I ∗ F, (3.3)
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Fig. 5. Comparison of gray-scale intensity histograms of three natural images with

their orientation energy histograms. (a) to (c) show the gray-scale histograms,

and (d) to (f) show the corresponding orientation energy histograms which

model V1 response. It can be seen that the gray-scale histograms are quite

different, while the orientation energy histograms are remarkably similar.
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where the operator * indicates the convolution operation. I used convolution kernels

of size 7 × 7 for all the experiments.

Next, the intermediate filtered image If is convolved with oriented Gabor filters

Rθ,φ,σ(x, y) [10].

Rθ,φ,σ(x, y) = exp−
x′2+y′2

2σ2 . cos(2πx′ + φ), (3.4)

where θ is the orientation, φ is the phase, σ is the width, and (x, y) represents the pixel

location. The Gabor filters have both even and odd phases. The other parameters of

the Gabor filters such as spatial frequency and aspect ratio were set to 1 each. Again,

the convolution kernels were sized 7 × 7 as above.

Convolving the intermediate filter output from the DoG convolution If with this

filter gives the orientation energy matrix Eθ.

Eθ = (Rθ,0,σ ∗ If )
2 + (Rθ, φ

2
,σ ∗ If )

2, (3.5)

where

x′ = x cos(θ) + y sin(θ), y′ = −x sin(θ) + y cos(θ), (3.6)

and (x, y) denotes the pixel location as previously.

The combined orientation energy E(x, y) for each pixel location (x, y) was ob-

tained using a vector sum of six (θ, Eθ(x, y)) pairs in polar co-ordinates where θ had

values of 0, π
6
, 2π

6
, 3π

6
, 4π

6
, 5π

6
. This then gives the estimated orientation θ∗(x, y) and the

associated orientation energy value E∗(x, y) at that location. (For simplicity I will

refer to the orientation energy at any point (x, y) as just E, instead of E(x, y).)

In the next section, the properties of the E distribution (also referred to as the

Orientation Energy Distribution or OED) will be analyzed.
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Fig. 6. The OED derived from the E histograms for six natural images are shown in

log-log plot, from a to f . The same images as in Fig. 4 were used. For easier

comparison, the curves have been scaled by a factor of 10. We can see that all

the curves are mostly straight with a similar slope, which indicates a power law.

It may also be noted that the high energy area toward the right of the curves

has a lot of noise and empty bins, probably due to the scarcity of samples at

high orientation energy.

C. Orientation Energy Distributions (OED)

The orientation energy distribution was estimated for several representative natural

images by constructing a histogram of 100 bins from the E responses, followed by

normalization,

h(E) =
f(E)∑

x∈Bh
f(x)

, (3.7)

where f(E) is the frequency of energy level E in the histogram, Bh is the set of all

histogram bin locations, and h(E) is the resulting probability mass function. The

orientation energy distribution for 6 sample distributions plotted in the log-log scale

is shown in Fig. 6. The orientation energy distributions show a strong similarity to

each other, and also share a unique feature, i.e., a power law (p(x) = 1/xa, where

a is the fractal exponent). When the orientation energy distribution is plotted in
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the log-log scale, it shows up as a straight line. An interesting property of such

power law distributions is that extreme values are not uncommon. In other words,

the distributions may have a heavy tail. For example, when a power law distribution

is compared to a normal distribution with the same variance, it has greatly higher

probability for extreme values. Fig. 7 illustrates the theoretical power law distribution

in both linear and log scales, and the actual distribution obtained from a natural

image.

D. Non-Gaussianity of OED

To detect orientation energy values with unusually high probability, I compared the

OED to discretized half-normal distributions. Also, to make the two distributions

have the same width, the raw second moment σ2 of the OED was calculated as

σ2 =
∑

E∈BE

E2h(E), (3.8)

where BE is the set of E values of the histogram bins, and h(E) is the probability of

the orientation energy level E derived from the E-histogram.

I then proceeded to calculate the continuous normal probability density function

values N(x; 0, σ2) with mean 0 and variance σ2 for all E values, and normalized as

g(E) =
N(E; 0, σ2)∑

E∈BE
N(E; 0, σ2)

, for E ∈ BE, (3.9)

where BE is the set of E values of the histogram bins, and g(E) is the resulting

discretized half-normal probability mass function of orientation energy level E. The

comparison of h(E) and g(E) of 6 natural images in log-log scale are shown in Fig.

8. The OED distributions from natural images shows a significant deviation from

a Gaussian (Normal) distribution. From Fig.8. we can see that after the second
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Fig. 7. The figure shows the comparison of a distribution h(E) that follows the power

law (solid curve) with a normal distribution g(E) with the same variance

(dashed curve), in both the linear and log-log scales. (a) and (b) illustrate

a power law distribution, and (c) and (d) show the actual distributions ob-

tained from a natural image. The x-axis represents the orientation energy and

the y-axis the probability. It is of interest to look for orientation energy val-

ues that have high probabilities, i.e., where h(E) is greater than g(E). Only

positive values for E are considered.
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Fig. 8. Comparison of OED h(E) of six natural images with their corresponding nor-

mal distributions g(E) of the same variance. The second intersection (L2) of

the two curves are marked by a vertical line in each plot. We can see that

beyond this point, g(E) plummets, while h(E) remains steady, thus anything

beyond L2 may be seen as salient.
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intersection point of L2, g(E) significantly drops in comparison to h(E). This point

may indicate where salient levels of orientation energy begin to occur. To test if

the choice of a Gaussian baseline is reasonable in terms of salience, I compared the

L2 values with human preference for thresholding. The details and results of this

experiment will be described in Chapter IV.
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CHAPTER IV

EXPERIMENTS AND RESULTS

It was proposed in the previous chapter that the non-Gaussian nature of orientation

energy responses could be utilized to understand the perceived salience by humans. To

test this hypothesis, it becomes necessary to compare thresholds obtained by utilizing

the non-Gaussian property to thresholds selected by humans. Such a psychophysical

analysis is described in this chapter. The results presented in this chapter are largely

based on [25], which describes the research project I took part in.

A. Experiment 1: Comparison with Psychophysical Data

1. Methods

Since the L2 values obtained by comparing the OED of natural images to a Gaussian

distribution could serve as a reasonable measure of salience, they were compared with

human data. For this comparison, a total of 31 natural images from a wide variety

of natural terrain were used. The L2 values were computationally identified based

on equations 3.7 and 3.9. The human chosen thresholds for all the 31 natural images

were determined by a single person (SB) in my research group. The thresholded E

matrices at 55th to the 95th percentile of h(E) at an interval of 5 percentiles were

shown to SB for each image. The n-percentile point was found by locating the E

value corresponding to the nth percentage point in the cumulative histogram range

of the orientation energy. Fig. 9 shows an example image and some fixed-percentile

threshold results shown to the human observer. The best threshold was determined

by SB by making use of the criteria : (1) contour objects should be presented as much

as possible, and (2) noisy background edges should be eliminated as much as possible.
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(a) (b) (c)

(d) (e) (f)

Fig. 9. A sample natural image and fixed-percentile thresholded orientation energy

images that were shown to a human observer: (a) shows the natural image, (b)

- (f) show the results from 55-,65-,75-, 85-, and 95-percentile thresholding.

Such criteria broadly correspond to our perceived levels of salience in images. For

example, in Fig. 9, the human observer chose the threshold result corresponding to

the 75-percentile threshold as the one that complies best to the criteria. For each

image, the L2 value and the human-selected threshold was compared.

2. Results

Fig. 10 shows the results of comparison of the L2 values with the human-chosen

threshold values for the 31 natural images. A clear linearity between L2 and the

threshold selected by humans can be observed from Fig. 10. Furthermore, the L2
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Fig. 10. Orientation Energy threshold selected by humans vs. L2. The manually cho-

sen thresholds are compared to the L2 values for each image. Each point in

the plot corresponds to one of 31 natural images used in the calculation. The

straight line in the figure shows a linear fit to the data.

value has a close linearity with the square root of the raw second moment (σ) of the

E values, as is shown in Fig. 11.

To see whether the σ values also linearly correlate with human-chosen thresholds,

the two sets of values were compared. As expected, the σ of the orientation energy

distribution g(E) showed a clear linearity to the threshold selected by humans, as

shown in Fig. 12.

3. Discussion

The linearity of the L2 values with the human-chosen thresholds shows that we can

use those values to estimate the threshold of E preferred by humans. However, this is

not always feasible because of the high time and space requirements for constructing

h(E) and g(E), and also for locating L2. On the other hand, the linearity of L2 values

with the square root of the raw second moment (σ) of the OED, and the subsequent

result of good linearity between σ and human-chosen thresholds show that a good

threshold criterion can be obtained using just the raw second moment. Since the
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of 31 natural images. The straight line in the figure shows a linear fit to the

data.
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threshold calculation depends only on the value of σ, such a criterion could be more

computationally efficient.

It may be noted that the effectiveness of the thresholding results using the meth-

ods described in this section is tested psychophysically by comparison with human

preference. The human observer was shown the original image and was also supplied

with the criteria for the selection of the best threshold. It could be argued that since

such criteria concern higher-level visual processes in the observer’s brain, they could

come into play in the selection of the best threshold. However salience detection is

mostly a low-level visual process and there is no reason to believe that changes in

higher level cognitive factors could influence changes in lower level visual processes.

Altering low-level visual processes may, however, alter higher level processes such as

perception, but such a situation is not applicable here since the instructions to the

human observer are high-level instructions, and do not alter the low level visual pro-

cesses in any way. Thus comparison with human-chosen thresholds can be justified to

give us a clue toward which kind of thresholding mechanism is closest to the salience

detection mechanisms in the human visual system.

B. Experiment 2: Application to OE Thresholding

In this section, I show thresholding results using a method that makes use of the σ of

the OED, and compare with threshold results selected by humans and those obtained

by a fixed percentile thresholding of the OED.

1. Methods

The raw second moment of the E distribution (the expected value of E2) for the input

image can be calculated as in Equation. 3.8. Then a linear equation of the preferred
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orientation energy threshold Tσ is expressed as a function of the square root of the

raw second moment (σ) of the orientation energy, :

Tσ = 1.37σ − 2176.59, (4.1)

which is the linear fit shown in Fig. 12. Such a kind of thresholding utilizing the OED

of natural images will be called the OED-derived adaptive thresholding elsewhere in

the thesis.

For the thresholding experiments, 3 sample natural images belonging to the same

set in Fig. 4 were used. A single threshold value computed from Eqn. 4.1 was first

applied to the orientation energy matrix of two sample images to see if it comes

close to our perceived level of edginess in the images. To analyze the effectiveness of

this method, the results were compared both with the human-chosen threshold result

and with a fixed 85-percentile thresholding on the orientation energy values, which

is a simple way of obtaining salient contours. For the 85-percentile thresholding,

the orientation energy value corresponding to the 85th percentile of the orientation

energy is used as a cut-off point. The salient edge elements would then be defined

by those pixels that have orientation energy values greater than this fixed cut-off

point. Experiments with fixed percentile thresholding showed that the 85-percentile

cutoff is a reasonable thresholding criterion for many natural images. This percentile

threshold value provides the best average fixed-percentile threshold on most natural

images, preserving edge contours intact while suppressing background noise as much

as possible.

The OED-derived thresholding method offers an advantage because it depends

only on the raw second moment of the OED, and this value need not always be col-

lected from the entire orientation energy matrix. Thus the OED-derived thresholding

method could be used to calculate locally optimal thresholds for local patches in the
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image. To test this, a sliding window of of size 21 × 21 pixels was used across dif-

ferent local patches of the orientation energy matrix of another sample image having

variations of features to gather thresholds by computing the σ values of the local

patches. The threshold at the center of the sliding window was determined by the σ

value calculated from within that window. The efficiency of the thresholding result

was then tested by comparing with the human-chosen thresholding result, the fixed

85-percentile thresholding result and the global OED-derived thresholding result.

2. Results

Fig. 13 shows the result of using the OED-derived adaptive thresholding globally on a

natural image, and comparison with both the human-chosen threshold result and the

fixed 85-percentile threshold result. The OED of the image has the property that is

not too broad or too narrow, and we can see that all the threshold results are similar.

Fig. 14 shows global thresholding results for another image where the OED-

derived adaptive thresholding result is compared with the human preference and a

fixed percentile threshold result that corresponds to the 85-percentile of the OED. The

input image has the property of huge open space in the background. From the figure

it can be seen that the fixed 85-percentile thresholding method gives sub-optimal

results due to the concentration of the energy values around zero. This has the effect

of reducing the 85-percentile point to a lower value than the effective threshold. For

example, a lot of edges around the wing tips of the bird are not thresholded in this

method. However, the OED-derived thresholding result deals effectively with such a

situation because the spread of the distribution is taken into account.

Global thresholding could still be inadequate for cases where there is a large

variation of σ across different local patches in an orientation energy matrix. Fig. 15.

shows such an example where there are both bold features (the blades of the leaves)
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(a) (b)

(c) (d)

Fig. 13. Global Thresholding Results. (a) The original image. (b) The threshold result

selected by a human. (c) The OED-derived thresholding result where pixels

are replaced by oriented lines indicating the local orientation. The result of

thresholding is close to our perceived salience of edges in (a).
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(a) (b)

(c) (d)

Fig. 14. Comparison of global OED-derived thresholding with fixed-percentile thresh-

olding. (a) The original image. (b) The threshold result selected by a human.

(c) The threshold at the 85-percentile of g(E). (d) The OED-derived thresh-

olding result where pixels are replaced by oriented lines indicating the local

orientation.
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(a) (b) (c)

(d) (e)

Fig. 15. Comparison of global thresholding with local thresholding. (a) The original

image. (b) The threshold selected by a human which is globally applied. (c)

The threshold at the 85-percentile of g(E), also globally applied. (d) The

OED-derived global thresholding result where pixels are replaced by oriented

lines indicating the local orientation. (e) The result of local OED-derived

thresholding using a sliding window of size 21 × 21.

and thin thread like features interspersed together. Fig. 15.(b)-(d) show that the

global thresholding methods are not effective in detecting these features. Fig. 15. (e)

shows the result of a local thresholding method using a sliding window of size 21 × 21

pixels. We can see that the local thresholding method preserves both fine and bold

contour features in the image.

3. Discussion

Results of the global and local thresholding methods using the orientation energy

distribution show that relative advantages are provided by the methods for different

inputs. Both the global OED-derived and the fixed 85-percentile thresholding meth-
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ods was found to be effective when the OED of the natural image was not too broad

or too narrow. The global OED-derived thresholding method seems to be more ad-

vantageous if there are not much variations of σ across several regions of the image,

since a single value can be effectively and globally applied. For images with wide vari-

ations of σ across local patches, the local thresholding method offers the advantage

of providing locally optimal threshold values.
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CHAPTER V

ANALYSIS

The previous chapter has shown that comparison of the OED from natural images to

a Gaussian distribution can lead to orientation energy thresholding mechanisms that

can predict the perceived salience of contours in humans. This chapter will analyze

the justification behind such an approach, and also provide a quantitative analysis to

precisely measure the efficiency of the approach.

A. Analysis of the Gaussian Baseline

It has been shown that the Gaussian distribution serves as an effective baseline for

detecting salient levels of orientation energy. It would be useful to consider why it

could be such a good baseline. If we consider orientation energy values with super-

Gaussian probabilities as being salient, a potential link may be formed between the

concept of salience and the concept of Suspicious Coincidence proposed by Barlow

[1].

The concept of Suspicious Coincidence is basically statistical non-independence

applied to brain theory. The view held by Barlow was that the goal of the perceptual

system was to effectively detect suspicious coincidence events in the environment.

The co-occurrence of statistical events A and B could be said to be a suspicious coin-

cidence if they occur more often together than can be expected from their individual

probabilities. This means that the joint probability of the two events should exceed

the product of their individual probabilities if they were to be considered suspicious:

P (A, B) > P (A)P (B). (5.1)

This criterion is based on the comparison to the baseline case when A and B are
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statistically independent events where P (A, B) = P (A)P (B).

In the domain of image analysis, the concept of suspicious coincidence can be

interpreted by treating each pixel as a random variable. We can then consider whether

the association of a pair of pixel intensities is suspicious or not. For example, pixel

pairs taken from oriented features may be seen as suspicious. We can then test if the

orientation energy value in that area is high as well. On the other hand, when we

consider an image where all pixels are independent, such as a uniformly distributed

white-noise image, we would expect the salience (i.e., the OE) to be low.

If suspicious coincidence is indeed related to salience as in this thesis, the OED

of a white-noise image should show up as non-salient. Since salience is defined by a

deviation from a Gaussian baseline, the OED for a white-noise image should thus be

near-Gaussian, since it does not show any suspicious coincidence.

To test if this is indeed the case, the OED from a white-noise image was calculated

and compared to a normal distribution. The white-noise image was of size 256 × 256

consisting of uniformly randomly distributed intensity values between 0 and 255. The

OED for this image was calculated using the method outlined previously in Chapter

III. Fig. 16 shows the white-noise image and its orientation energy. The OED was

then compared with the matching normal distribution of the same variance to see if

they were similar. The two distributions were indeed closely overlapped, as expected

(Fig. 17; cf. [23]).

A direct consequence of the above results is that the white-noise based OED

could also be used to find the threshold for salient contour detection. I conducted

another experiment in which new L2 values were generated by comparing the OED

from natural images to the white-noise based distribution. The variance of the two

distributions was made equal by the following procedure. The standard deviation of

a random variable which is scaled by a factor of a is a × σ where σ is the standard
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(a) (b)

Fig. 16. A white-noise image and its orientation energy distribution. (a) The original

image. (b) The orientation energy E. No clear structure can be discerned.

Fig. 17. The OED of a white-noise image (solid)and its matching normal distribution

(dotted). The log-log plot shows that the two distributions are quite similar.
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(a) (b)

Fig. 18. Comparison of white-noise based L2 against human-chosen thresholds and

σh. (a) The new L2 values derived from the white-noise based distribution

are plotted against the human-chosen thresholds for a set of 42 natural images.

The correlation coefficient was 0.98, indicating a strong linearity. (b) The new

L2 values are compared against the raw standard deviation σh of h(E). The

correlation coefficient was 0.91, and a strong linearity can be observed between

the two sets of values.

deviation before scaling. Thus to make the two distributions have the same standard

deviation, we can simply multiply the orientation energy matrix of the white-noise

image with the constant σh/σr, where σh and σr are the standard deviations from

the natural image and white-noise image respectively. The OED was then calculated

and the new L2 values obtained by comparing the two distributions. The next step

was to compare these values to the orientation energy thresholds selected by humans,

according to the criteria outlined in Section A of Chapter IV. The result of the com-

parison is shown in Fig. 18. (a). The correlation coefficient value for the comparison

was 0.98. The result shows that the white-noise based L2 values also have a strong

linear relationship with the human-chosen thresholds. The new L2 values also have a

strong linear relationship with the σ of the OED of the natural images, with a value

of 0.91 for the correlation coefficient, as shown in Fig. 18. (b).

The white-noise distribution is a little more accurate as a baseline; however the
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important point here is that Gaussian distributions are also close approximations,

and this analysis provides justification and theoretical insight for the computationally

simpler Gaussian approach to be used as the baseline. Chapter VI will examine the

neural plausibility of a thresholding mechanism that uses the Gaussian distribution

as the baseline.

B. Quantitative Analysis with Synthetic Images

To establish precisely the effectiveness of the thresholding mechanism by comparison

with a Gaussian distribution, I carried out a quantitative analysis. For such an analy-

sis, the natural image input is not the best choice because of the lack of controllability

of its features. It then becomes necessary to consider other kinds of input - artifi-

cially generated images - that closely mimic the characteristics of the natural image

input and yet provide easy access to manipulation and control. In this chapter, I

will describe such a type of artificial input, one containing sets of overlapping squares

and embedded noise, and the results of thresholding for both the fixed percentile

and OED-derived adaptive thresholding methods. Such kinds of synthetic images

have the advantage that the error can be precisely measured, by comparison with the

orientation energy matrix of the ”clean” image without the noise as a reference.

1. Synthetic Images and their OEDs

The synthetic image input was created by generating random squares of various sizes

where the gray-level was uniform within each square but different from adjacent

squares. Uniform background noise was also embedded among these squares. A large

number of such squares were generated and were subjected to a circular aperture to

discount any artefactual orientation bias. The orientation energy distribution for the
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Fig. 19. A synthetic image consisting of a set of overlapping squares with embedded

noise and its corresponding orientation energy distribution shown against the

normal distribution of the same variance. We can see that the synthetic image

has a distribution almost similar to that of a natural image.

resulting image was then calculated using the same procedure as for natural images.

The OED for the synthetic images were similar to that for the natural images, and

had a characteristic high peak and heavy tail. Fig. 19 shows a sample synthetic image

and its OED distribution plotted against the normal distribution in log-log scale. We

can see that the OED of the synthetic image closely mimics that of natural images. In

fact Lee, Mumford and Huang [24] showed that similarly generated synthetic images

have statistical properties very similar to natural images.

A quantitative analysis using synthetic images can then be focused on suitable

thresholding of the images to remove the background noise and detect salient features

given by the edges of the squares. A good thresholding method should perform

two objectives : (1) detect as many salient edges as possible, and (2) remove as

much background noise as possible. In the following sections, I describe two sets

of experiments for the quantitative analysis of the thresholding methods where, (1)

the number of overlapping squares was kept constant but the background noise was

varied; (2) and the background noise was kept constant and the number of squares
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(the input count) was varied. For each of the types, I generated five different image

configurations for a more thorough analysis.

2. Variation in Noise and Performance

For this experiment, I generated synthetic images by keeping the input count (the

number of overlapping square elements) constant and varied the background noise.

The embedded noise was uniformly distributed. Three density levels of noise were

used corresponding to 10%, 5% and 1% noise. The combined resultant images were

then subjected to a circular aperture, and the performance of the fixed and OED-

derived adaptive thresholding methods were measured.

To better investigate the relative merits of the global and local thresholding meth-

ods, both the variations were used for the fixed percentile and OED-derived methods

on all the images. For each noise density level, 5 representative synthetic images were

generated with different configurations of the square patterns in them, with the total

number of squares fixed to 300. The OEDs for each image input were calculated

according to the method outlined in Chapter III. A fixed threshold of 85-percentile

was used for the fixed percentile thresholding. For the local thresholding, a sliding

window of size 21 × 21 was used, as previously for the natural image experiments.

There were four different thresholding methods that were compared : (1) the

global fixed percentile thresholding, (2) the local fixed percentile thresholding, (3) the

global OED-derived adaptive thresholding, and (4) the local OED-derived adaptive

thresholding methods.

Thresholding results for a sample image with 300 overlapping squares and with

95-percentile and above embedded noise level are shown in Fig. 20. We can see that

the global OED-derived thresholding method provides the best performance for this

kind of input.
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 20. (a) A synthetic image consisting of 300 overlapping squares with embedded

noise. (b) The orientation energy matrix for (a). (c) The orientation energy

matrix for the synthetic image without the noise that is used as the reference.

Results of thresholding by the four different methods of (d) global OED, (e)

global 85-percentile, (f) local OED, and (g) local 85-percentile respectively are

shown from the left to the right. The global OED-derived adaptive thresh-

olding method seems to offer the best performance for this input.
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Such qualitative results are also backed by values for the quantitative measure

of sum of squared error (SS Error). The SS Error for a thresholding result could be

defined as the sum of the square of the difference in the orientation energy values of

the thresholded image (containing background noise) from the un-thresholded image

representing the ideal output of zero noise. The average SS Error values for a sample

noise level is shown in the plot of Fig. 21. We can see that the sum of squared

error is the lowest for the global OED derived method, followed closely by the local

OED derived method. The SS Error values for the fixed 85-percentile methods were

found to be significantly higher. The significance in this difference was evaluated the

paired t-test. The p-values for the paired t-test of the difference in the mean SS Error

values are given in Table I. (The ’<’ and ’>’ symbols in each table cell indicate the

relation between the mean SS Error values of the two thresholding methods.) The

p-values of all the probable pairs of comparisons except the global OED vs. local

OED comparison were found to be less than 0.025, which indicates that the mean SS

Error values for the methods could indeed be significantly different. The p-value for

the global OED vs. local OED comparison was found to be much higher, leading to

inconclusive evidence that the means could be significantly different.

The results for this experiment show that the OED-derived adaptive methods

overwhelmingly outperformed the fixed percentile based methods in terms of detec-

tion efficiency of edges in the image input and suppression of noise. The global fixed

However, the global OED-derived method offered a slight improvement in perfor-

mance compared to the local method. This could probably be attributed to specific

properties of the input images considered, such as the low density of the squares in

the image. In fact, a later result with larger input count hints at the possibility that

this might indeed be the case.

The variation of noise seemed to have little effect on the relative performance
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Fig. 21. Bar Plots showing the average SS Error values for the thresholding results for a

sample noise level for the synthetic images. The global and local OED-derived

method have significantly smaller SS Error values than the fixed 85-percentile

methods.

of the thresholding methods. The global OED thresholding method offered the best

performance closely followed by the local OED thresholding method. The global

and local 85-percentile based thresholding methods performed differently for different

inputs but were always weaker than the OED-derived methods.

3. Variation in Input Count and Performance

The second experiment that was carried out was to keep the background noise con-

stant while varying the number of input features. Three different image configurations

were used where the number of overlapping synthetic squares were 100, 300 and 500

respectively. The constant background noise level was kept as 1%. For each input

configuration, 5 different image samples were generated as for the first experiment. A

fixed threshold of 85-percentile was used for the fixed percentile thresholding meth-
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Table I. SS Error means when noise is varied

Global OED Global 85% Local OED Local 85%

Global OED X < (p=0.018) < (p=0.35) < (p=0.021)

Global 85% X X > (p=0.019) > (p=0.014)

Local OED X X X < (p=0.025)

Local 85% X X X X

ods, and a sliding window of size 21 × 21 was employed for the local thresholding

method as previously.

Thresholding results for a sample image with 500 overlapping squares and with

1% embedded noise level are shown in Fig. 22. The OED-derived thresholding meth-

ods again outperformed the fixed 85-percentile based methods for all the input con-

figurations. Among the OED-derived methods, the global method offered better

performance for smaller input count but fell behind the local method for larger input

count. Thus the local thresholding result for the 500-square configuration was bet-

ter than the corresponding global thresholding result. The average SS Error value

is the lowest for the local OED-derived thresholding method, but quite high for the

fixed-percentile methods. Fig. 23 shows this comparison. The paired t-test statistic

for the average SS Errors for the different thresholding methods had p-values less

than 0.15 for all the pairs of comparisons, except for the Global OED vs. Local OED

comparison. Table II shows the p-values for the paired t-test of the difference in the

mean SS Error values for all the thresholding methods. (The ’<’ and ’>’ symbols

in each table cell indicate the relation between the mean SS Error values of the two

thresholding methods.)
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 22. (a) A synthetic image consisting of 500 overlapping squares with embedded

noise. (b) The orientation energy matrix for (a). (c) The orientation energy

matrix for the synthetic image without the noise that is used as the reference.

Results of thresholding by the four different methods of (d) global OED, (e)

global 85-percentile, (f) local OED, and (g) local-85 percentile respectively are

shown from the left to the right. The local OED-derived adaptive thresholding

method seems to offer the best performance for this kind of input.

4. Summary

The experiments and the quantitative analysis presented in this chapter help to re-

inforce the effectiveness of the OED-derived adaptive thresholding methods over the

fixed-percentile methods. Even though qualitatively it could be seen easily that this

is the case, objective measures such as the sum of squared error measure described

here help compare the thresholding methods effectively.

One of the properties of the synthetic images used in this analysis was that they

contained noise embedded within in. It would be interesting to speculate what such
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Fig. 23. Bar plots showing the average SS Error values for the thresholding results for a

sample noise level for the synthetic images. The global and local OED-derived

methods have significantly smaller SS Error values than the fixed 85 percentile

methods.

a noise would correspond to for natural images. Since the primary interest is the

understanding of visual processes and since the visual system does not need to be

concerned with noise from the natural scenes it receives from the environment, it

becomes necessary to identify what the noise would mean for natural images. One

answer is that the noise could correspond to textures within the natural image. For

example, the noise could correspond to certain non-edge features in the image which

will normally be excluded from a thresholding mechanism for contour detection. In

another context, the noise could be attributed to the properties for scenes which are

viewed in dim or low light conditions. Noise could also be introduced into visual scene

input if there are defects in the retinal cells leading to poor reception.

One of the results that came up from the above analysis was that there was

no clear difference between the global and local OED-derived adaptive thresholding



47

Table II. SS Error Means when input count is varied

Global OED Global 85% Local OED Local 85%

Global OED X < (p=0.0107) > (p=0.258) < (p=0.014)

Global 85% X X > (p=0.011) > (p=0.006)

Local OED X X X < (p=0.015)

Local 85% X X X X

methods. For certain kinds of input where the number of input features was less,

the global thresholding method seemed more effective than the local thresholding

method. When the number of input features was high, the local thresholding method

performed better. The key here is the variation of the input features at a local scale,

and it could be expected that the synthetic input image with 300 squares has less

local variation in input features compared to the one with 500 squares. As was seen

with the experimental results on natural images in the previous chapter, the local

thresholding method thrives on instances where there is a wide variation of features

in the input image.
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CHAPTER VI

DISCUSSION AND FUTURE WORK

A. Potential Neural Basis of Salience Detection

The OED-derived adaptive thresholding method described in the previous chapters

only depends on the raw second moment σ2 of the orientation energy matrix. It can

be seen that the σ2 value can be directly calculated from a given orientation energy

matrix using a simple neural network. For example, if E is the response matrix in

the visual cortex V1 (similar to orientation energy), a suitable threshold on the V1

response could be easily calculated as,

σ2 =
∑
i,j

wijg(Eij) (6.1)

where i, j represent the indices, wij represents the connection weight which also serves

as the normalization constant, g(x) = x2 is the square activation function, and Eij is

the V1 response at location i, j. The value σ can be obtained by passing the resultant

value through an activation function of the form f(x) =
√

x. This means that the

raw second moment can be easily obtained by using a weighted sum of V1 response

passed through a quadratic non-linearity and then through a square root activation

function. This is depicted in the flowchart shown in Fig. 24.

The relative effectiveness of such a method could be understood given the fact

that there is no need to construct a histogram of the responses or its matching normal

distribution. It could be speculated that such a mechanism could actually exist in

the visual cortex or in higher visual areas. The usefulness of such quadratic non-

linearity has been previously suggested by Heeger [15] where it was suggested that

the neural circuitry in the complex cells of the primary visual cortex (V1) could
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Fig. 24. Flowchart showing the calculation of sigma by a simple neural mechanism.

probably implement squared response functions similar to the squared orientation

energy response. Such squared response functions have also been known to improve

performance in other learning tasks. For example, Gastaldo et al. [12] use such

functions to model a neural network to qualitatively assess the performance of image

enhancement algorithms.

If a similar thresholding mechanism utilizing a quadratic non-linear input pattern

indeed exists in the visual system, we can speculate about the reason behind it. It

is reasonable to assume that if the human visual system has evolved to learn such

kinds of thresholding mechanisms, efficiency of the representation could be one of the

considerations for it to implemented. Since the quadratic non-linear input pattern

corresponds to the squared V1 response, it would be worthwhile to examine if squared

V1 response is indeed efficient as a representation.

B. Computational Efficiency of Orientation Energy Responses

A simple experiment was done to see whether the squared orientation energy (which

can model the squared V1 response) functions as an efficient input compared with

the plain orientation energy. The objective of the experiment is to compare the

learning performance of the plain orientation energy with its squared form. I used a
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backpropagation network which consists of three layers - an input layer, one hidden

layer, and an output layer. The units are connected in a feed-forward manner with the

input units fully connected to the hidden units and the hidden units fully connected to

the output units. (See [31] for details about learning in a backpropagation network.)

For the experiment, I used the backpropagation network with 49 units in the

input layer, 4 units in the hidden layer, and 1 unit in the output layer. The output

was supposed to give the raw second moment of the orientation energy, which as we

have seen, is the parameter to be learned to find the threshold. I tested the learning

performance of the plain orientation energy with the squared orientation energy input

where the objective was to learn the raw second moment of the plain orientation

energy. For the plain orientation energy experiment, the orientation energy values of

local patches of size 7 × 7 pixels from many different images to a total of 1296 patterns

were used as the training samples. For the squared orientation energy experiment,

the square of the orientation energy values from the previous experiment were used,

but the output was expected to be the same as previously (raw second moment of

orientation energy). In both cases the inputs were normalized independently to reduce

the effects of scaling and learning rate reduction due to one set of inputs being the

square of the other set of inputs.

For both the experiments, the learning rate of the network was set at a value of

0.000001. The initial weights for all the units in the network were randomly assigned

for ensuring correctness. Other parameters such as the momentum and bias were

set as 0 and 1 respectively for both the experiments. The network was then trained

independently with both types of input for a large number of training steps (epochs)

until the error value at the output (the difference between the actual output and the

desired output) was less than the threshold value of 0.0001. The whole experiment

was repeated with another set of input values to give a more conclusive result.
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Fig. 25 shows the results of the training where the learning efficiency of the

network for two repetitions of training is plotted. For the first instance of training,

the network took approximately 140,000 learning epochs to learn the raw second

moment with the acceptable error value with the plain orientation energy input. In

contrast, the network only took approximately 30,000 learning epochs to learn the

required output with the squared orientation energy input. For the second instance

of training with another set of inputs, the network took close to 135,000 epochs to

learn the output for the plain orientation energy input compared to 50,000 epochs for

the squared input. Since fewer epochs imply faster learning, the squared orientation

energy input seems to be much more effective than the plain orientation energy for

the backpropagation network to learn the raw second moment value.

Previously, I suggested that the squared orientation energy input, which models

squared activation functions, can be easily implemented in neural hardware. The

results from the backpropagation training experiment demonstrates that the squared

orientation energy offers a computationally efficient alternative to the plain orienta-

tion energy for any network that learns the salience threshold.

C. Extensions to Other Modalities

We can apply this method of utilizing representations of response histograms to other

visual and sensory modalities as well. For example, Liu and Wang [27] use spectral

histograms to segment and synthesize texture images. A spectral histogram is a com-

bination of many different kinds of filter response histograms. It would be interesting

to analyze the response distribution in the different spectral histograms to gain insight

into how salient features can be detected in the input scene. For example, the spatial

frequency power spectrum also shows a power law. Thus a similar approach could
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Fig. 25. Graphs showing the learning efficiency for two training instances with different

inputs, with both the plain orientation energy input and its squared form. The

graphs clearly show that the efficiency is higher for the squared orientation

energy input to learn the threshold value.
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be employed in the spatial frequency domain as well. In general, such a method of

detection of salient features could be extended to any other modality where a similar

response distribution can be found.

D. Local vs. Global Thresholding

A conclusion that came out of the quantitative analysis experiments conducted in

the previous chapter to compare the different thresholding methods using synthetic

images was that there was not much to choose between the local and global OED-

derived thresholding methods. The statistical paired t-test also failed to show a clear

difference between the effectiveness of the two methods. As was discussed toward the

later part of that section, after analyzing the input, it was found that the two methods

depended on certain properties of the input. The global thresholding method works

best when there are not many variations of input features, while the local thresholding

method works well for the opposite case. This was demonstrated both quantitatively

and qualitatively, through the experiments with synthetic images and natural images

respectively. If there are large variations in the input, the σ values of local patches

would also vary widely, and thus appropriate salient edges could be extracted more

efficiently using the local thresholding method.

It would be interesting to see if there are any other factors involved other than

input scene variations that would help explain the inconclusive results between the

local and global OED-derived thresholding methods. More experiments could be

conducted using synthetic images in which part of the images could have wide varia-

tions and the other parts could have constant variation, to see if the global and local

thresholding methods both give similar results.
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E. Comparison of Local Thresholding with Psychophysical Data

Another interesting line of work that could be considered is to extend the psychophys-

ical experiments for the local OED-derived thresholding method. In particular, local

thresholds could be calculated for all local patches in images using the linear equation

for the threshold. The set of human-chosen thresholds could also be found out by

obtaining preferences from a human observer as to the best thresholds for each local

input patch. These two sets of data could then be compared against each other simi-

lar to that for the global method to see if there is a linear association between them.

This could then establish the generality and basis for the OED-derived methods.
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CHAPTER VII

CONCLUSION

The main contribution of the thesis is the investigation of how salient edge features

are processed and derived by the biological visual system. I have explored the utiliza-

tion of visual system response properties through efficient methods for salient contour

detection in natural images. Through various psychophysical and quantitative exper-

iments, I have shown that an adaptive thresholding mechanism that compares the

response distribution to the normal distribution, serves to be quite effective in de-

tecting salient contours. I have also suggested a possible justification for selecting

the normal distribution as the baseline for the comparison, by the relationship with

the concept of Suspicious Coincidence. The results of experiments with white-noise

based distributions also help reinforce the validity of the normal distribution as the

baseline. Furthermore, the linear thresholds obtained by comparing the orientation

energy distribution to the Gaussian baseline were found to have a strong linear re-

lationship with the square root of the raw second moment of the orientation energy.

I have then suggested a neural implementation that utilizes the squared response to

calculate the raw second moment of the orientation energy and showed that such a

kind of representation is quite efficient to learn the salience thresholds as well.

Such a method of utilizing representations of response histograms can be ex-

tended to other sensory modalities, where a similar response distribution is found.

The psychophysical experiments conducted in this thesis for the global thresholding

methods could be extended by gathering human preference for local thresholds in

images. I am confident that the ideas in this thesis would be of help to researchers

to conduct more insightful research into understanding salient contour detection and

other low-level visual processes.
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