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ABSTRACT

A Phenomenological Constitutive Model for Magnetic Shape Memory Alloys.

(December 2006)

Bjoern Kiefer, Diplom, Ruhr-Universität Bochum

Chair of Advisory Committee: Dr. Dimitris C. Lagoudas

A thermodynamics-based constitutive model is derived which predicts the nonlinear

strain and magnetization response that magnetic shape memory alloys (MSMAs) ex-

hibit when subjected to mechanical and magnetic loads. The model development

is conducted on the basis of an extended thermo-magneto-mechanical framework.

A novel free energy function for MSMAs is proposed, from which the constitutive

equations are derived in a thermodynamically-consistent manner. The nonlinear and

hysteretic nature of the macroscopic material behavior is captured through the evo-

lution of internal state variables which are motivated by the crystallographic and

magnetic microstructures of MSMAs. Model predictions are presented for differ-

ent relevant loading cases and analyzed in detail. Finally, magnetostatic boundary

value problems for MSMAs are considered and numerically solved using the finite

element method. For these computations the developed constitutive model provides

the nonlinear magnetic properties of the MSMA. The knowledge of the magnetic field

distribution in the computational domain as a function of the applied field, which

results from this magnetostatic analysis, is useful for the proper interpretation of

experimental results as well as the design of experiments and applications.
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CHAPTER I

INTRODUCTION

A. General Aspects of Magnetic Shape Memory Alloys

Shape memory alloys (SMAs) have been an important member of the class of active

materials for at least two decades now. They have successfully been used in actuator

and sensor design as well as biomedical and numerous other technological applica-

tions [1–3]. The large strains of 6–10% these materials exhibit when being subjected

to thermal or mechanical loads, are caused by the change in crystallography associ-

ated with a reversible austenite to martensite phase transformation. Magnetic shape

memory alloys (MSMAs), often also referred to as ferromagnetic shape memory al-

loys (FSMAs) [4–6], have more recently emerged as an interesting extension of this

class of materials. In addition to the strains originating from temperature- or stress-

activated conventional shape memory behavior [7–10], large strains can be produced

in these alloys under the application of magnetic fields. The macroscopically observ-

able field-induced strains in MSMA are caused by the microstructural reorientation

of martensitic variants. Since the variants have different preferred directions of mag-

netization, applied magnetic fields can be used to select certain variants over others,

which results in the macroscopic shape change.

Magnetic shape memory alloys exhibit one or even two orders of magnitude

higher recoverable magnetic field-induced strains (MFIS) [11] than ordinary magne-

tostrictive materials, such as Terfenol-D [12] and Galfenol [13], and these strains

are also much larger than the electric field-induced strains in piezoelectrics [3]. At

comparable recoverable strains they also have an advantage over conventional shape

The journal model is International Journal of Engineering Science.
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memory alloys due to the much higher, up to 1kHz, frequency range at which they

can be operated for some applications [14]. This is because their actuation is driven

by the magnetic-field induced reorientation of martensitic variants and is, thus, not

limited by heat transfer [15]. The main limitation of MSMAs is the relatively low

blocking stress of typically 6-10 MPa, above which magnetic field-induced strains are

completely suppressed. The field-induced strain response of MSMAs is nonlinear,

hysteretic, stress-dependent and intrinsically coupled to the magnetization response

of the material. The coupled macroscopic response is driven by three mechanisms, the

motion of magnetic domain walls, the local rotation of magnetization vectors (both of

which also occur in regular ferromagnetic materials [16–18]), and field-induced variant

reorientation.

This unique coupling of mechanical and magnetic properties (and thermal if

one considers the conventional shape memory behavior) makes MSMAs interesting

materials for smart structures, actuator and sensor applications [14, 19]. A different

class of applications aims to take advantage of the unique and adjustable magnetic

properties of MSMAs in solenoid transducers [5] or voltage generators [20].

The most widely investigated magnetic shape memory materials have been Ni-

Mn-Ga alloys [21]. Martensitic transformations in Ni2MnGa alloys were first con-

clusively reported by Webster et al. [22]. Zasimchuk et al. [23] and Martynov and

Kokorin [9] performed detailed studies on the crystal structure of martensite in the

Ni2MnGa alloy. Ullakko et al. [12] are credited with first suggesting the possibility

of a magnetic field-controlled shape memory effect in these materials. They observed

magnetic field-induced strains of nearly 0.2% in stress-free experiments on martensitic

Ni2MnGa single crystals. Further work on off-stoichiometric intermetallic compounds

near the composition Ni2MnGa, in combination with thermo-mechanical treatments

and the utilization of a better understanding of the crystallographic structure of the-
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ses alloys, have yielded larger field-induced strains of 6% [4] and up to 10% [11, 24]

in single crystals. Other magnetic shape memory alloys have been studied including

Fe-Pd [25–28], Fe-Ni-Co-Ti, Fe-Pt, Co-Ni-Ga, Ni-Mn-Al [24, 29–33] and Co-Ni-Al

[10, 34]. These alloys exhibit lower field-induced strains, but can have other advan-

tages. The largest field-induced strains that have been observed in Fe-Pd, for example

are 3.1% [28, 35], but this material is much more ductile than Ni-Mn-Ga [25].

The magnetic field-induced strains that can be generated in polycrystalline mag-

netic shape memory alloys are smaller than those observed for single crystals [36–40].

One effort aimed towards increasing the strain output of polycrystals is based on

creating favorable texture in these materials. Marioni et al. [41] calculated the upper

bound for the achievable field-induced strain in untextured NiMnGa polycrystals to

be 21% of the single-crystal value and at most 50% for textured crystals.

The phenomenon of magnetic field-induced austenite-martensite phase trans-

formations has also been investigated. Such transformations have been observed

in Fe-Pt [42], Ni-Mn-Ga [43] and Ni-Mn-Fe-Ga [36] alloys. Magnetic fields have

also been shown to influence the temperature- or stress-induced austenite-martensite

phase transformation in MSMAs [36]. Furthermore, it has been observed that Ni-Mn-

Ga alloys exhibit several different martensite morphologies and thus intermartensitic

phase transformations [8, 44, 45]. The work presented here, however, is focused on the

well-established MSMA behavior as caused by the magnetic field-induced martensitic

variant reorientation.

A more detailed description of macroscopic constitutive response of MSMAs, and

of the micro-scale mechanisms causing it, will be provided in Chapter II.
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B. Literature Review of MSMA Models

Several models have been proposed in the literature to describe the constitutive re-

sponse related to the magnetic field-induced variant reorientation. The approach

most commonly taken is the minimization of a free energy function characterizing the

system to find equilibrium configurations for given temperature, stress and magnetic

field.

The model presented by James and Wuttig [26] is based on a constrained theory of

micromagnetics (see also [46–48]). The terms contributing to the free energy in their

model are the Zeeman energy, the magnetostatic energy and the elastic energy. The

magnetization is assumed to be fixed to the magnetic easy axis of each martensitic

variant because of high magnetic anisotropy. The microstructural deformations and

the resulting macroscopic strain and magnetization response are predicted by detect-

ing low-energy paths between initial and final configurations. They conclude that the

typical strains observed in martensite, together with the typical easy axes observed

in ferromagnetic materials lead to layered domain structures that are simultaneously

mechanically and magnetically compatible.

O’Handley [49, 50] proposed a 2-D model in which two variants are separated by

a single twin boundary and each variant itself consists of a single magnetic domain.

The local magnetization is not necessarily constrained to the crystallographic easy

axis. Depending on the magnitude of the magnetic anisotropy, either the magnetic

anisotropy difference (low magnetic anisotropy case) or the Zeeman energy (high mag-

netic anisotropy case) are identified as the driving forces for twin boundary motion.

For the intermediate anisotropy case a parametric study is conducted showing the

influence of varying elastic and magnetic anisotropy energies. All cases assume an

initial variant distribution that implies a remnant magnetization.
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Likhachev and Ullakko [51] presented a model which identifies the magnetic

anisotropy energy difference in the two variant twinned-martensite microstructure as

the main driving force for the reorientation process. The free energies associated with

magnetizing a single variant martensite along the magnetic easy and hard axes are

computed from integration over the experimental magnetization curves. The driv-

ing force for twin boundary motion is proposed to be the derivative of the difference

between the two free energy terms with respect to the martensitic variant volume

fraction. They argue that, regardless of the physical nature of the driving force,

twin boundary motion should be initiated at equivalent load levels. With this as-

sumption experimentally obtained detwinning-under-stress data in addition to the

magnetization data are used to predict the MSMA constitutive behavior associated

with field-induced variant reorientation.

Hirsinger and Lexcellent [52, 53] introduced the outline of a non-equilibrium ther-

modynamics based model. The free energy contains chemical, mechanical, magnetic

and thermal contributions. The magnetic term is given by the Zeeman energy. Two

internal state variables, the martensitic variant volume fraction and the magnetic do-

main volume fraction, are introduced to represent the influence of the microstructure.

The rate independent dissipative nature of their approach motivates the definition of

driving forces for the twin boundary motion and the domain wall motion.

Kiefer and Lagoudas formulated a thermodynamics-based phenomenological con-

stitutive model for MSMAs with internal state variables describing the evolution of

the crystallographic and magnetic microstructures. Their approach is aimed at cap-

turing the hysteretic effects associated with the magnetic field-induced reorientation

of martensitic twins and the resulting loading history dependence of the material re-

sponse. Emphasis is also placed on modeling the nonlinear and stress-level-dependent

nature of the magnetic field-induced strain and magnetization response. The Kiefer
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and Lagoudas model mainly distinguishes itself from the Hirsinger and Lexcellent

approach by allowing the magnetization vectors to rotate away from the magnetic

easy axes, which leads to much more accurate predictions of the magnetization re-

sponse. The model development was discussed in [54–57]. Experimental work, with

Karaman et al., was presented in [58] and compared with model predictions. The

numerical analysis of magnetostatic boundary value problems for MSMAs was de-

scribed in [59, 60]. All of the listed aspects of this research work are also presented

in detail in this dissertation. Faidley et al. [5] proposed an extension of an earlier

version of the Kiefer and Lagoudas model [54] to predict the reversible strain effect in

Ni-Mn-Ga with collinear field and stress. In their approach internal restoring forces

orthogonal to the applied field are attributed to pinning sites which elastically de-

form twin boundaries. Tan and Elahinia [61] utilized the Kiefer and Lagoudas model

[55, 56] to study the dynamic response of MSMA actuators.

Glavatska et al. [62] proposed a constitutive model for the martensitic twin rear-

rangement based on a statistical approach. The rearrangement of twins and resulting

macroscopic strain is assumed to be triggered by magnetic field-induced micro-stresses

originating from magnetoelastic interactions. The probability for the rearrangement

of the twins in which the stresses are near the critical stress is described through

a statistical distribution. This model was utilized by Chernenko et al.[63, 64], who

also followed a microscopic approach to the magnetic field-induced deformation of

martensite in MSMAs.

Another model that uses the principles of statistical physics has been proposed

by Buchelnikov and Bosko [65] who extended a model derived by Govindjee and Hall

[66] for conventional shape memory alloys. Their model derivation follows what is

referred to as a multi-well approach. They identify four phases, the cubic austenite

and the three tetragonal variants. These phases can, in principle, transform into any
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of the other phases under the influence of temperature, stress and magnetic field. The

rate of transformation between the different phases is assumed to be proportional to

the net probability that one phase will overcome the energetic barrier required to

transform to a second phase. The free energy expression that is utilized to compute

the energetic barrier consists of elastic, thermal and magnetic energy terms. The

magnetic energy consists of the magnetic anisotropy energy, the magnetostatic energy

of the demagnetization field and the Zeeman energy.

Smith et al. recently proposed a unified framework for modeling hysteresis in

ferroic materials [67], which briefly discusses the subject of magnetic shape memory

alloys. A detailed comparison of many of the described models can be also found in

the recent paper by Kiang and Tong [68].

A general approach to phenomenological modeling of the loading history depen-

dent constitutive response of materials undergoing phase transformation, detwinning,

or variant reorientation has widely been utilized in the literature on conventional

shape memory alloys [66, 69–77]. A detailed review of the modeling of shape memory

alloys has recently been published by Patoor et al. [78] and Lagoudas et al. [79]. Since

the austenite to martensite phase transformation in SMAs is induced by cooling or

the application of mechanical forces, the independent state variables in this case are

usually chosen to be temperature and stress. In phenomenological constitutive mod-

eling the system can be characterized by a macroscopic free energy expression which

is a function of these independent state variables. A common approach of incorpo-

rating path dependence and dissipation is through the introduction of internal state

variables [80], whose evolution then accounts for the loading history dependence of

the material behavior. Motivated by the crystallographic microstructure of marten-

site, a common choice for an internal state variable is the martensitic volume fraction.

Constitutive equations, which relate the dependent state variables to the independent
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ones, follow directly from applying the well-known Coleman and Noll procedure [81]

commonly used in phenomenological modeling. The dependent state variables, such

as the strain or entropy, are themselves also functions of the internal state variables

through the constitutive relations and depend therefore on the loading history. The

lack of apparent intrinsic time scales (diffusionless, thermoelastic phase transforma-

tion) makes the shape memory effect subject to rate independent modeling. This

approach lends itself to the introduction of transformation functions, similar to yield

functions of rate-independent plasticity models, which govern the onset and termina-

tion of the phase transformation [82]. Transformation hardening functions account

for the interactions of different phases during the transformation process, which in-

fluence the activation of the phase transformation. The evolution of transformation

strain is related to the evolution of the martensitic volume fraction and its direction

is given by a postulated transformation tensor [71].

The variant reorientation process in magnetic shape memory alloys is, from a

modeling standpoint, also similar to the detwinning (i. e. self-accommodated to de-

twinned martensite) and reorientation (i. e. change in the selection of martensitic

variants under changes in the stress state) phenomena that are observed in conven-

tional shape memory alloys [75, 83–86].

C. Outline of the Present Research

The research presented in this dissertation is focused on three main objectives.

1. Formulation of a general thermo-magneto-mechanical framework for the mod-

eling of continuous, deformable and magnetizable materials with evolving mi-

crostructure.

2. Development of a phenomenological constitutive model with internal state vari-
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ables for the martensitic variant reorientation in MSMAs.

3. Analysis of magnetomechanical boundary value problems for MSMAs.

Objective 1 is addressed in Chapter III, which includes the discussion of Maxwell’s

equations for continua, the presentation of the balance laws of continuum mechan-

ics with magnetic source terms and the derivation of an extended thermodynamic

framework.

The second objective is addressed in Chapters IV and V. Since this is the main

aspect of the research work, it shall be outlined briefly. In order to apply the discussed

approach of rate-independent phenomenological modeling to MSMAs the independent

variable state space of the free energy, which typically consists of the temperature

and stress tensor, is expanded to include the magnetic field strength vector. The

Zeeman energy and the magnetocrystalline anisotropy energy are introduced as ad-

ditional terms in the free energy expression. Due to the magnitude of the magnetic

field-induced strain in MSMAs the magnetomechanical coupling through ordinary

magnetostriction is neglected. The evolution of the crystallographic and magnetic

microstructure, which causes the macroscopically observed response of MSMAs is

taken into account through internal state variables such as the martensitic variant

volume fraction. Constitutive equations for the dependent state variables is con-

ducted in a thermodynamically-consistent manner by taking derivatives of the free

energy function. A reorientation function takes the role of the aforementioned trans-

formation function, and governs the start and finish of the magnetic field-induced

strain evolution. The stress level dependence of the critical magnetic fields for this

activation are visualized in a reorientation diagram in magnetic field-stress space.

This diagram is analogous to the stress-temperature phase diagrams frequently plot-

ted for conventional SMAs. Evolution equations for the internal state variables are
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derived. A procedure to calibrate the model parameters from a limited number of

clearly defined experiments is described.

In Chapter V the model is applied to special loading cases for which the general

constitutive equations can be reduced. The predicted strain and magnetization re-

sponse is analyzed for each loading case and the macroscopic behavior is physically

interpreted by connecting it to the predicted evolution of the microstructure.

The work presented in Chapter VI is concerned with objective 3. Maxwell’s

equations are solved using the finite element method for magnetostatic conditions.

The nonlinear magnetic properties and the coupling to the mechanical problem are

provided by the developed constitutive model. This analysis provides the necessary

tool for the design of applications involving MSMA components. It also enables a

more accurate interpretation of experimental data and thus leads to more accurate

model calibrations.
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CHAPTER II

INFLUENCE OF THE CRYSTALLOGRAPHIC AND MAGNETIC

MICROSTRUCTURE ON THE MACROSCOPIC RESPONSE OF MSMAS

A general introduction to the constitutive behavior of MSMAs was given in Chap-

ter I. In this chapter a more detailed description of the connection between the

evolving crystallographic and magnetic microstructure of MSMAs and the observed

macroscopic response is provided. This knowledge will then be used to motivate the

formulation of the constitutive model.

A. The Magnetic Field-Induced Strain Response of MSMAs

Since the ternary intermetallic compound Ni-Mn-Ga is the most widely investigated

magnetic shape memory alloy, it shall be the focus of the following discussion, which

does not imply that the basic concepts or the modeling approach presented in this

work are restricted in any way to this particular alloy.

The high temperature austenite phase of Ni-Mn-Ga alloys near the composition

Ni2MnGa exhibits a L21 Heusler type structure, in which all of the atoms are located

on the sites of a body centered cubic lattice [22]. The austenite phase is paramagnetic

above the Curie temperature, which for the stoichiometric composition of Ni2MnGa

is 376 K [87], and ferromagnetic below it. The Curie temperature only shows a slight

variation with changes in the composition [87, 88]. A strong compositional depen-

dence, however, is observed for the austenite-martensite phase transformation start

temperature [88–90], which is 202 K in stoichiometric Ni2MnGa [87]. The marten-

site in these alloys can be of five-layered tetragonal (5M), seven-layered orthorhombic

(7M), and non-modulated tetragonal martensite (NM) morphology [8, 44, 45]. Here

only the most commonly observed tetragonal martensite of Ni2MnGa is considered.
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A simplified representation of the crystal structure, which is usually adopted for

convenience [91, 92], is shown in Fig. 1. The undeformed austenite has cube edges of

length a0, whereas the undeformed tetragonal martensite unit cell has short and long

edges of lengths a and c, respectively. Typical lattice parameters for Ni2MnGa have

been reported in the literature [22, 23, 93–95].
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cubic austenite

martensite variants

Fig. 1. Crystal structure of the austenitic and the tetragonal martensite phases in

Ni2MnGa. Arrows indicate possible magnetization vector orientations along

the magnetic easy axis of each variant.

Since this transition temperature is well below Curie temperature the martensitic

phase is ferromagnetic such that, even in the absence of an external magnetic field, the

martensitic variants are spontaneously magnetized [16, 18]. The local magnetization

vector in each ferromagnetic variant is oriented along one preferred crystallographic

direction named the magnetic easy axis, which in this case is aligned with the short

edge c of the tetragonal unit cell. The magnetization vectors can be oriented in either

the positive or negative easy axis direction.

If an external field is applied, it is energetically favorable for the magnetization
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vectors to align with the applied field. In MSMAs three competing mechanisms are

available to achieve this alignment. The first two, the magnetic domain wall motion

and the magnetization vector rotation are common to all ferromagnetic materials and

shall be discussed shortly. The third mechanism, which is unique for magnetic shape

memory alloys, is the magnetic field-driven reorientation of martensitic variants. This

is possible since the preferred axes of the tetragonal variants are mutually perpen-

dicular, such that an external magnetic field can be used to favor certain variants

over others. The induced redistribution of variants leads to the observed macroscopic

shape change.

(a)

(b)

Magnitude of
applied stress

(c)

x, [100]
cooling, application of

0 ≤ |σxx| < |σb|

Hy = 0
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single variant 1 σxx
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H f(1,2) < Hy

H s(1,2) < Hy < H f(1,2)
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coexistence of both
intermediate state,

Hy

micro-scaley, [010]

σxx

further
increase of magnetic field

high stress, reduction
to test level

undeformed austenite

application of magnetic field

Fig. 2. Schematic of a typical loading sequence for magnetic field-induced strain mea-

surements in MSMA [58, 96–98]. Inserts (a)–(c) depict the arrangement of

martensitic variants and magnetic domains at different loading stages.
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Fig. 2 on the preceding page schematically illustrates a typical thermo-magneto-

mechanical loading sequence of an experiment in which the magnetic field-induced

strain response of MSMAs is measured. Initially, the single crystalline MSMA spec-

imen is cooled to induce the austenite to martensite phase transformation. Then

a sufficiently high compressive stress is applied to produce a single variant configu-

ration. In the depicted case the sample has been cut such that the [100]-direction

of the austenitic crystal aligns with the compression axis, which is also denoted the

x-axis. The compression along this axis in the martensitic state favors variant 1 (for

nomenclature see Fig. 1), since its short axis is along the x-direction, and the two

other tetragonal variants are eliminated. The stress is then lowered to the desired

test level, during which the single variant state is preserved, and kept constant for

the remainder of the experiment. The upper stress bound above which the variant

reorientation is completely suppressed is called the blocking stress σb [96].

The micro-scale Schematic (a) of Fig. 2 shows the described stress-induced single

martensitic variant configuration, before a magnetic field is applied. Also depicted are

magnetic domains, i. e. regions of uniform magnetization, which are separated by 180
◦

magnetic domain walls, indicated by horizontal lines. These magnetic domains form

to minimize the magnetostatic energy of the configuration [16, 17, 99, 100]. In each

domain the magnetization vectors are aligned with the magnetic easy axis of variant

1, which according to Fig. 1 coincides with the c-edge of the tetragonal variant and the

[100]-direction. These magnetization vectors point in either the positive or negative

coordinate direction. Since no external magnetic field is applied the two domains are

of equal volume fraction, such that the macroscopic magnetization vanishes.

The application of a magnetic field perpendicular to the direction of mechanical

loading induces the nucleation of variant 2 once a critical threshold value is reached.

This variant is favored by the magnetic field because its easy axis is aligned with the y-
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direction. With increasing Hy variant 2 grows at the expense of stress-favored variant

1. This results in an elongation of the sample along the x-axis, because the long edge

a of variant 2 replaces the short edge c of variant 1 along this direction. The magnetic

field-induced strain is usually measured with respect to the initial single variant state.

Typical magnetic field-induced strain response curves are schematically plotted in

Fig. 3. Note that vertical axis marks the total strain, not just the reorientation

strain. The initial strains for the hysteresis loops at each stress level are non-zero,

since the undeformed austenite was assumed as the reference configuration [97], and

are comprised of elastic strain as well as austenite to partially-twinned martensite

transformation strain [71, 85].
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Fig. 3. Typical total strain-magnetic field response curves for MSMAs at different

stress levels.
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The reorientation from the stress-favored into the magnetic field-favored variant

shows a strong stress level dependence. Fig. 3 also explains the notation for the

critical magnetic fields for the start of the forward reorientation process (variant 1

→ variant 2), which is denoted H s(1,2) and its finish H f(1,2). Equivalently, H s(2,1) and

H f(2,1) are defined as the critical magnetic fields to start and finish the reverse (variant

2 → variant 1) reorientation process.

The arrangement of twinned martensitic variants and magnetic domains after

the activation of the reorientation process is sketched in Schematic (b) of Fig. 2 for a

generic intermediate applied magnetic field level H s(1,2)<Hy<H
f(1,2). Again, horizon-

tal and vertical lines indicate 180◦ magnetic domain walls. Slanted lines indicate twin

boundaries [2], which coincide with 90◦ domain walls. The variant reorientation pro-

cess can also be visualized as occurring through the motion of these twin boundaries.

Two types of magnetic domains are present in each twin band.

The volume fraction of the domain in which the magnetization vector opposes

the applied field is less than that of the favorable domain, which yields a non-zero

macroscopic magnetization. At large fields, the unfavorable domains are eliminated

[11]. The magnetization of the material also changes due to the simultaneously occur-

ring rotation of the magnetization vectors in variant 1 away from the magnetic easy

axis. These rotations are not explicitly shown in the schematic, but will be addressed

in detail in Section B of this chapter.

At low stress levels, further increase of the magnetic field completely eliminates

variant 1 at the threshold value of H f(1,2) such that the maximum reorientation strain

is achieved. If the field is increased above H f(1,2) the strain remains constant. The

resulting single variant, single domain configuration is depicted in Schematic (c). At
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most stress levels, however, variant 1 is not completely eliminated, such that the

achievable magnetic field-induced strain is reduced. At the blocking stress in the

field-induced strain is completely suppressed. The mechanism that causes the stress

level dependence of the achievable reorientation strain will be discussed in Chapter

V in more detail.

y

x

y

x

(a) Detail of the test setup showing the elec-
tromagnets, the grips and the load cell on
the MTS frame, with the polymer chamber
removed.
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(b) Schematic showing the compo-
nents of test setup as well as the
applicable mechanical and magnetic
load directions.

Fig. 4. Magneto-thermo-mechanical setup used for MFIS measurements [58, 98].

An experimental setup designed to measure magnetic field-induced strains in

MSMAs following the basic principle qualitatively described in the preceding para-

graphs is shown in Fig. 4 [58, 98]. The setup consists of a 2 T electromagnet, which

is adjustably mounted on a mechanical load frame such that the directions of applied
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force and magnetic field are perpendicular. The specimen is held in place by non-

magnetic grips. A polymer chamber, which encloses the grips and specimen, is filled

with nitrogen gas for cooling. As depicted in Fig. 4(b), temperature, deformation, and

magnetic field measurements are taken by a thermocouple, a capacitive displacement

sensor and a Hall probe. Similar experiments have been reported by Tickle [96, 97],

Heczko [44], Shield [27] and others.

Fig. 5. Evolution of the MFIS in a Ni2MnGa single crystal at different stress levels

during the first magnetic cycle. Data taken from [58].

Magnetic field-induced strain data obtained from measurements on this test

frame are plotted in Figs. 5 and 6 for first and second magnetic field cycles. For

reasons of comparison all of the second cycle magnetic field-induced strain curves

plotted in Fig. 2 have been shifted to start at the origin. Unlike the qualitative strain
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Fig. 6. Evolution of the MFIS in a Ni2MnGa single crystal at different stress levels

during the second magnetic cycle. Data taken from [58].

curves of Fig. 3 these figures show the magnetic field-induced strain as a function of

the magnetic field, not the total strain, such that all curves start at the origin. These

data exhibit all the characteristic features of MSMA behavior discussed in Chap-

ter I. The observed response is nonlinear and hysteretic, which indicates that there

is considerable dissipation associated with the variant reorientation. The achievable

field-induced reorientation strain and the shape of the hysteresis loops show the strong

stress level dependence.

It is observed that after the first magnetic cycle at low stress levels the initial

single variant configuration is not restored and residual strains are observed. Since

the stress level is not raised in between cycles, the second cycle tests at low stress

levels start from mixed variant configurations corresponding to the only partially
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recovered magnetic field-induced strain of the first cycle. At low stress levels, the

reorientation strain that is produced in the second cycle is then significantly reduced

as compared to the corresponding test at the same stress level during the first cycle.

This phenomenon has been termed the first cycle effect [58, 98] and will further be

explained in Chapter V. Hysteresis loops of subsequent cycles are experimentally

observed to be nearly identical to those of the second cycle.

B. The Magnetization Response of MSMAs

In the previous section it was explained that the process of magnetizing a MSMA

specimen involves three mechanisms which help to achieve alignment of its magneti-

zation with the external magnetic field. These are the redistribution of martensitic

variants, the magnetic domain wall motion and the rotation of the magnetization

vectors away from their preferred magnetic axes. In order to better understand the

individual mechanisms, it is helpful to consider a thought experiment in which these

effects can be separated. If the reorientation of martensitic variants in a MSMA sin-

gle crystal is completely suppressed by the application of a stress above the blocking

stress, then the magnetization of the crystal can only change by means of the domain

wall motion or magnetization rotation, or combinations thereof. The magnetization

process of the MSMA in this case is the same as that of a regular ferromagnetic

material.

Fig. 7 shows a sketch of the initial single variant 1 configuration, which cor-

responds to that of Fig. 2, except here a stress level above the blocking stress is

considered to analyze the magnetization process without variant reorientation. Next

to the macroscopic view of the specimen, Fig. 7 also depicts schematics of magnetic

domains on the micro-scale. The crystallographic scale is shown simply to indicate
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Fig. 7. A schematic of the initial single variant 1 martensite state. The variant reori-

entation is suppressed by an axial compressive stress higher than the blocking

stress. Also shown, schematics of the corresponding microscopic scale and the

crystallographic scale.

the fact that magnetic domains generally span many unit cells. As discussed in the

previous section, magnetic domains form to reduce the macroscopic magnetization

of the material and thereby the magnetostatic energy [16–18, 101]. They are sepa-

rated by magnetic domain walls. In these walls the magnetization vectors (magnetic

dipole moments) are rotated over short distances to accommodate the magnetization

directions of neighboring domains. The formation of many small domains leads to

an increase in the amount of domain walls, whose formation also costs energy. This

competition of energy terms determines the size of the domains and also the thickness

of the domain walls. Depending on the material the domain wall thickness can range

from 10 nm to 1µm [17].

If the constrained single crystal of is magnetized along different crystallographic

directions, on observes an anisotropy of the magnetization response. The direction

along which the least amount of energy is required to magnetize the crystal is termed

the magnetic easy axis, and, correspondingly, the hard axis is the direction for which

the most energy needs to be expended. This anisotropic behavior can be explained
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by the mechanism of magnetic domain wall motion and magnetization rotation as

shown in the following sections.

1. Magnetization by Magnetic Domain Wall Motion

Fig. 8 schematically shows the evolution of the magnetic domain distribution at dif-

ferent applied field levels for the magnetization of the MSMA specimen along the

[100]-direction. The starting configuration (left box) is the same microstructural

view of the compressed single variant specimen that was presented in Fig. 7 (middle

box).

Mx = 0 Mx = M sat

low Hx high Hx

Mx > 0

Hx = 0

x,[100]

y,[010]

Fig. 8. Magnetization of the single variant specimen along the easy axis.

The applied field promotes the growth of these domains with favorably oriented

magnetization vectors at the expense of the other domains. Since the external field

is applied in the [100]-direction, which coincides with the magnetic easy axis of the

compressive stress-favored variant 1, the magnetization to saturation can completely

be achieved by 180◦ domain wall motion.
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2. Magnetization by Rotation of Magnetization Vectors

Fig. 9 schematically illustrates the magnetization of the same single variant 1 sample

perpendicular to the compression axis.

high
Hy

My = M satMy = 0

Hy = 0

y,[010]

x,[100]

Fig. 9. Magnetization of the single variant specimen along the hard axis.

Since the magnetization vectors in both domains are equally unfavorable with

respect to the applied field, no domain wall motion mechanism is available to ac-

commodate the magnetization along the [010]-direction. The magnetization in both

domains must be rotated away from the common easy axis. The rotation of the mag-

netization within a martensitic variant requires work against the magnetocrystalline

anisotropy energy. The amount of energy expended in activating this mechanism is

higher than that associated with domain wall motion. The [010]-direction is there-

fore the hard axis for this material. The magnetization of the MSMA specimen along

directions in between [100] and [010], requires an intermediate amount of energy

and involves the activation of both mechanisms. Unlike the motion of 180◦ domain

walls, the rotation of the magnetization is associated with ordinary magnetostriction,

i. e. the crystal elongates in the direction of the rotating magnetization vector [16, 18].

Fig. 10 qualitative shows the resulting magnetization curves for the easy [100]
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and the hard [010]-directions. The coordinate axes are normalized by the saturation

magnetization M sat and an arbitrary maximum applied field value Hmax, respectively.

Data for the magnetization of constrained MSMA single crystals have been reported

by Tickle and James [96], Cui et al. [25], Shield [27], Lickhachev and Ullakko [51] and

Hezcko [102].

1

0

easy axis:
[100]

M/M sat

H/Hmax

hard axis:
[010]

10

Fig. 10. Qualitative magnetization curves of the single variant MSMA specimen mag-

netized along the compression and perpendicular axes. For quantitative ex-

perimental results [96].

The magnetization curves in Fig. 10 are explained by the mechanisms discussed

in the context of Figs. 8 and 9. Recall that the mechanism for alignment with the

applied field is the domain wall motion, in the easy axis case, and rotation of the

magnetization vectors, in the hard axis case. According to O’Handley [17], the energy
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per unit volume ua needed to saturate a material in a particular direction is given by

ua = µ0

∫ M
sat

0

H(M) dM . (2.1)

It is clearly seen that by this measure the energy required to magnetize the material

to saturation along the hard axis does in fact require much more energy.

Furthermore, it is observed that the hystereses for both magnetization curves are

almost negligible. This is expected for the hard axis magnetization curve, since the

magnetization rotation in is a reversible process. Magnetic domain wall motion on the

other hand can be associated with dissipation. Permanent magnets, for example, are

made from materials that exhibit a strong internal resistance to magnetic domain wall

motion, due to micro-scale pinning sites and other phenomena [5, 16, 17], which leads

to large hysteresis effects. In MSMAs, however, the magnetic domain wall motion

appears to be associated with only a very small amount of dissipation.

3. Magnetization by Variant Reorientation

In MSMAs the variant reorientation process provides an additional mechanism to

change the magnetization of the material. This is due to the fact that the magnetic

easy axes in the martensitic variants have different directions with respect to a global

coordinate system. In the presence of an external field the structural rearrangement

is therefore always coupled to a magnetization change. If the reorientation process is

initiated by mechanical loading instead of applying a magnetic field, and the applied

field is constant, the variant reorientation is in fact the only mechanism that changes

the magnetization. This aspect will be explained in more detail in connection with

the model predictions presented in Chapter V.
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4. The Coupling of the Magnetization Mechanisms for MSMAs.

For stress levels below the blocking stress, the magnetic field-induced change of the

magnetization observed in MSMA is driven by all three mechanisms, the magnetic

domain wall motion, the magnetization rotation and the variant reorientation. Typ-

ical magnetization response curves, measured under the loading conditions depicted

in Fig. 2, have been reported by Heczko et al. [44] and are shown in Fig. 11. Similar

data have been obtained by Likhachev and Ullakko [51].
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Fig. 11. Relative magnetization response in Ni-Mn-Ga as reported by Heczko [103].

The sequence of activation of the different mechanisms is the following: The

initial linear slope of the magnetization curves in Fig. 11 corresponds to the magne-

tization of the constrained crystal along the magnetic hard axis, as shown in Fig. 10.

The mechanism that drives the magnetization change is thus the rotation of the



27

magnetization vectors, as was schematically illustrated Fig. 9. Since both magnetic

domains in the stress-favored variant are equally unfavorable with respect to the ap-

plied field, see Fig. 8, domain wall motion does not occur. Here it is assumed, of

course, that the direction of the applied field is perfectly perpendicular to the easy

axis of variant 1. In reality this may not be the case and some domain wall motion

may occur. More experimental evidence is needed to clarify this point.

Once the critical field for variant reorientation has been reached, the magnetic

field-favored variant 2 nucleates and a sharp change in the slope of the magnetization

curves occurs. Fig. 11 clearly shows evidence of the stress dependence of the critical

field to initiate the variant reorientation. In the reorientation region the magnetiza-

tion change is nonlinear and similar to the evolution of the magnetic field-induced

strain observed in the same field regime. During the reorientation process magnetic

domains and martensitic variants coexist in the arrangement qualitatively depicted in

Schematic (b) of Fig. 2. Such configurations have been observed experimentally in Ni-

Mn-Ga [104–107]. Corresponding micrographs are shown in Fig. 12 on the next page.

Sullivan and Chopra also reported that more complex magnetic domain structures

can exist in twinned Ni-Mn-Ga martensite under certain conditions [106, 107].

In this configuration the third mechanism, the magnetic domain wall motion, is

activated, since the magnetization vectors in some of the magnetic domains in variant

2 oppose the applied field. It is generally believed that these unfavorable magnetic

domains are eliminated almost simultaneously with activation of the reorientation

process [11, 97], such that the magnetization change in the reorientation region is

mainly governed by the rearrangement of variants and the magnetization rotation.

At high fields the stress-favored variant is completely eliminated and the material

is magnetically saturated in the field direction. The resulting single variant, single

domain configuration at magnetic saturation is illustrated in Schematic (c) of Fig. 2.
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Twin 
Planes
Twin 

Planes

(a) Magneto-optical images using the
magnetic garnet film technique as ob-
served by Likhachev et al. [104].

(b) Scanning electron microscopy (SEM)
images taken by Ge et al. [105].

(c) Interference-contrast-colloid (ICC)
technique images reported by Sullivan
and Chopra [106].

Fig. 12. Experimentally observed magnetic domain structures in two-variant

Ni-Mn-Ga samples.
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At higher stress levels, however, magnetic saturation can be reached through

magnetization rotation before variant 1 is eliminated, and the variant reorientation

process is not completed. This explains why at these stress levels only a fraction of

the theoretically possible reorientation strain can be induced by the magnetic field.

At stress levels above the blocking stress the critical field for the activation of the

reorientation process is larger than the field needed to fully rotate the magnetization

vector toward the direction of the applied field. The magnetization process then

corresponds to the magnetization of the constrained crystal along the magnetic hard

axis described earlier in this section. The value of the blocking stress depends on

the magnetocrystalline anisotropy energy [58]. This explanation of the stress-level

dependence of the achievable magnetic field-induced strain will further be discussed

in the context of analyzing model predictions in Chapter V.

It is observed that magnetization curves of Fig. 11 exhibit large hysteresis,

whereas the magnetization curves of the constrained single crystal of Figs. 9 and

10 exhibited negligible hysteresis. It can thus be concluded that the only source of

internal dissipation is the variant reorientation process, which then leads to the hys-

teretic nature of the magnetic field-induced strain curves in Figs. 5 and 6, and the

magnetization curves in Fig. 11.

The analysis of the experimental field-induced strain and magnetization response

data, such as those presented in this chapter, is of great importance for the devel-

opment of a constitutive model. In order to properly capture the complex magne-

tomechanical behavior of MSMAs, the model has to take all three of the described

mechanisms into account. In the particular approach taken here this is done through

the evolution of internal state variables as will be described in Chapter IV. A gen-

eral continuum level thermo-magneto-mechanical framework is introduced in the next

chapter on the basis of which the constitutive model will be built.
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CHAPTER III

A CONTINUUM DESCRIPTION OF MAGNETIZABLE SOLIDS

Magnetic shape memory alloys can be considered as continua that deform under me-

chanical and magnetic forces. In this chapter a general framework for the modeling of

continuous, deformable and magnetizable materials with evolving microstructure is

established. This framework consists of Maxwell’s equations, the extended conserva-

tion laws of continuum mechanics and a generalized version of continuum thermody-

namics. The electromagnetic, mechanical and caloric (energy) equations are generally

coupled, for example through magnetic force and energy source terms that appear

in the mechanical balance laws or, as it turns out, for MSMAs through constitutive

relations.

The pioneering work on the complex subject of the mechanics of electromagnetic

continua [108] has been conducted by Guggenheim [109, 110], Landau and Lifshitz

[111], Tiersten [112], Brown Jr. [113], Penfield Jr. and Haus [114], Coleman [115, 116],

Noll, Truesdell and Toupin [117, 118], Eringen and Maugin [119, 120], Pao, Hutter

and van de Ven [121–123], Woodson and Melcher [124, 125], among others. It is a

research field in which there does not yet exist a unified theory that is generally agreed

upon for reasons that will be discussed shortly. Pao, Hutter and van de Ven as well as

Penfield and Haus discussed the thermodynamic equivalency of the various theories

[114, 121, 122]. With the focus of this work on the constitutive modeling of MSMAs,

it is not possible to fully explore the depths of this subject. However, even though the

modeling process is limited to magneto-static or magneto-quasi-static cases, at least

a basic understanding of the underlying more general framework is important. One

especially has to be aware of the assumptions that are associated with a particular

theory, because these may have profound implications even for the static case. Thus,
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instead of simply providing the reduced equations of magnetostatics, a brief discussion

of the underlying more general framework is presented here.

The main challenge of any theory in this field is related to the fact that electro-

magnetic fields measured by a stationary observer differ from those experienced by

an observer in a moving frame and transformation relations between those fields need

to be established. The second difficulty is to formulate expressions for body force,

body couple and energy source terms that are caused by electromagnetic phenomena.

Before specific equations are presented, a few comments are due on why there exists

such a host of different theories, such as the Minkowski, the Ampère, the Chu and

the Boffi formulations, to name the most prominent ones [121]. These comments are

meant to convey some appreciation for the fundamental questions that arise in this

subject:

1. One inherent problem of any electro-magneto-mechanical theory is related to the

fact that one desires to combine the laws of classical non-relativistic mechanics

with the special relativity formulation of Maxwell’s equations. The former are

invariant under Galilean transformations (cf. Eqs. (B.5)), while the later are

invariant under Lorentz transformations [114]. In the context of constitutive

modeling, for example, this becomes an issue if one is concerned with material

frame indifference [117, 126, 127], since it is not clear which invariance properties

one ought to require. The process of deriving semi-relativistic or non-relativistic

approximations is not at all straightforward or unique and has led to many

different formulations. Depending on the invariance properties, the different

theories distinguish themselves by the form of the field transformations that

relate the electromagnetic fields observed by a stationary observer to those

observed in a moving frame.
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2. Although the formulations of Maxwell’s equations in the different theories coin-

cide for stationary matter, the expressions for the electromagnetic body forces,

body couples and energy sources generally do not. A major complication is due

to the fact that measurements can only be performed in free space, where all

theories are identical. It is inside electromagnetic matter, however, that the

definitions and physical meaning of the electromagnetic fields differ. One can

not analyze those quantities without relying on a particular theory, which es-

sentially makes it impossible to favor one theory over another. The advantages

and disadvantages of several theories have been discussed in [114].

3. Another complication in deriving expressions for the body forces and stress

tensors is the fact that the decomposition into long range and short range effects

is not as straightforward as in the mechanical case, where, nonlocal theories

excluded, all short range interactions are described by the surface traction vector

and all long range effects, such as gravity, are captured by the body force term.

The continuum description of magnetizable solids presented here mainly follows

the most widely used theory known as the Maxwell-Minkowski formulation, in the

description presented in the work of Pao, Hutter and van de Ven [121, 122]. The

different parts of the framework are presented in the following sections, A: Maxwell’s

equations, B: Conservation of Mass, Momentum and Energy, C: Extended Thermo-

dynamic Framework.
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A. Maxwell’s Equations

The global form of Maxwell’s equations in the stationary (laboratory) frame is given

by [124]:

Gauss’ law:

∮

∂R

D·n dA =

∫

R

ρf dV ; (3.1a)

Gauss-Faraday law:

∮

∂R

B·n dA = 0 ; (3.1b)

Ampère’s law:

∮

∂S

H· dx =

∫

S

[

Jf +
∂D

∂t

]

·n dA ; (3.1c)

Faraday’s law:

∮

∂S

E· dx = −

∫

S

∂B

∂t
·n dA . (3.1d)

D is the electric displacement vector, ρf the free charge density, B the magnetic

flux density (or magnetic induction), H the magnetic field strength and Jf the free

current and E the electric field strength. The integrations are carried out either

over the fixed (control) volume R with boundary ∂R and outward unit normal n, or

the fixed surface S, with the simple closed boundary curve ∂S whose directionality is

determined by the orientation of the normal n. Maxwell’s equations are supplemented

by the following constitutive equations

D = ε0E + P ; (3.2a)

B = µ0(H + M) . (3.2b)

ε0 is the permittivity of free space that is connected to the permeability of free space

µ0 through the relation ε0µ0 =1/c2, which reflects the constancy of the speed of light

c in vacuo. P and M are the polarization and magnetization vectors of a material
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body.

By applying Ampère’s law Eq. (3.1c) to a closed surface, using the divergence

theorem (A.1) and Gauss’ law Eq. (3.1a), one can also derive the commonly used

conservation of charge balance equation

∮

∂R

Jf ·n dA = −

∫

R

∂ρf

∂t
dV . (3.3)

Clearly Eq. (3.3) is not an independent equation. It has been argued [122] that

Maxwell’s equations are derivable from two basic principles, namely Faraday’s law

Eq. (3.1d), which is sometimes called the conservation of magnetic flux, and the

conservation of charge Eq. (3.3). The Gauss-Faraday law Eq. (3.1b) is then considered

a special case of Eq. (3.1d) for closed surfaces and Gauss’ law Eq. (3.1a) as the

definition of the electric displacement. Finally, it is argued that the conservation of

charge is satisfied if a magnetic field H exists such that Ampère’s law Eq. (3.1c) is

satisfied. However, this logic does not lead to a unique definition of D or H and it

is the general consensus that all four of Maxwell’s equations are fundamental and

independent statements from which the conservation of charge can be derived.

By applying the divergence theorem, Eq. (A.1), or Stokes’ theorem, Eq. (A.2),

to the global expressions of Eqs. (3.1), the local form of Maxwell’s equations in the

stationary (laboratory) frame can be derived as

Gauss’ law: divD = ρf ; (3.4a)

Gauss-Faraday law: divB = 0 ; (3.4b)

Ampère’s law: curlH = Jf +
∂D

∂t
; (3.4c)

Faraday’s law: curlE = −
∂B

∂t
. (3.4d)
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The local form of the conservation of charge can either be derived from its global form

of Eq. (3.3), or by taking the divergence of Eq. (3.4c) and using Eq. (3.4a), which

yields

divJf = −
∂ρf

∂t
. (3.5)

According to Woodson and Melcher [124], nearly all electromagnetic problems

of technical interest, in which the propagation of electromagnetic waves is not im-

portant, can be described by one of two limiting cases, the electro-quasi-static or the

magneto-quasi-static approximation. In the former the magnetic flux is of negligible

importance, in the latter the displacement current. In the quasi-static magnetic field

system the local form of Maxwell equations reduces Eq. (3.4) to

Gauss-Faraday law: divB = 0 ; (3.6a)

Ampère’s law: curlH = Jf ; (3.6b)

Faraday’s law: curlE = −
∂B

∂t
. (3.6c)

Note that in this case Ampère’s law and Faraday’s law are not fully coupled. Thus,

even with time-varying sources, the magnetic field H and magnetic flux B are de-

termined as if the system were magnetostatic. Then the electric field is found from

Eq. (3.6c). Magnetic diffusion problems, for example, are solved with this set of

equations [125, 128].

In the magnetostatic approximation the equations further reduce to

Gauss-Faraday law: divB = 0 ; (3.7a)

Ampère’s law: curlH = Jf . (3.7b)



36

Keeping the discussion from the beginning of this chapter in mind, the global

form of Maxwell’s equations in the co-moving (rest) frame is now considered. The

rest frame is defined to move with the velocity of the material body. For a deformable

body in general motion each particle possesses its own local and instantaneous rest

frame [121]. The integrals in the following exressions are defined over the material

volume Pt with boundary ∂Pt and outward unit normal n or the material surface

St with boundary ∂St, all of which, through the motion of the material points [127],

change with time (cf. Appendix A, Section A2). The electromagnetic variables in the

integrand are spatial fields defined in the deformed configuration [127] as observed

from a moving frame of reference. According to Pao and Hutter [121, 122], Maxwell’s

equations for a moving and deforming continuum can than be written as by

Gauss’s law:

∮

∂Pt

D·n dA =

∫

Pt

ρf dV ; (3.8a)

Gauss-Faraday law:

∮

∂Pt

B·n dA = 0 ; (3.8b)

Ampère’s law:

∮

∂St

H
′

· dx =
d

dt

∫

St

D·n dA +

∫

St

J
′

f ·n dA ; (3.8c)

Faraday’s law:

∮

∂St

E
′

· dx = −
d

dt

∫

St

B·n dA . (3.8d)

Primed field variables are those measured by an observer moving with the material

body. In a non-relativistic approximation D and B are identical to their counterparts

in the moving frame [122], and have thus been left unprimed (cf. Appendix B, Sec-

tion B2). The local form of Maxwell’s equations in the co-moving (rest) frame can

either be derived by applying the transport theorems (A.6) and (A.7) to the corre-

sponding global form, Eqs. (3.8), and localizing the expressions, or by using the field
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transformations (3.10) in the laboratory frame version (3.4) of these equations.

Gauss’s law: divD = ρf ; (3.9a)

Gauss-Faraday law: divB = 0 ; (3.9b)

Ampère’s law: curlH
′

= J
′

f + ρfv +
∂D

∂t
− curl (v×D) ; (3.9c)

Faraday’s law: curlE
′

= −
∂B

∂t
− curl (v×B) . (3.9d)

Eqs. (3.8) and Eqs. (3.9) have to be considered general in the sense that many different

formulations can be cast in this form. The difference between formulations is reflected

in the particular transformation relations that map fields observed in the stationary

frame to those observed in the co-moving frame. For the Minkowski formulation the

field transformations, which are derived in Appendix B, Section B2, are given by

ρ′

f = ρf ; D
′

= D ; B
′

= B ;

H
′

= H − v×D ; J
′

f = Jf − ρfv ; E
′

= E + v×B , (3.10)

where v is the velocity of the moving frame. By definition, substituting these trans-

formation relations into the moving frame version of Maxwell’s equations in global

form Eqs. (3.8) and local form Eqs. (3.9), again leads to the Minkowski version of

Maxwell’s equation in the stationary frame Eqs. (3.1) or Eqs. (3.4), respectively.

B. Conservation of Mass, Momentum and Energy

Although eventually the modeling will be restricted to a small deformation theory,

the derivation of the balance laws in this section is general and they hold for finite

deformations. As mentioned, the balance laws presented are generalized in the sense

that they include source terms due to electromagnetic interactions. The derivation
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again mainly follows the work of Pao, Hutter and van de Ven [121, 122]. A similar

formulation has also been proposed by Eringen and Maugin [108, 119, 129].

The global balance equations are formulated as integrations over the material

volume Pt (closed system), rather than a fixed volume in space (open system). Previ-

ously the same was done for Maxwell’s equations in the moving frame (cf. Eq. (3.8)).

The usual description of the kinematics of a continuum implied here is discussed in

Appendix A, Section A2.

The principle of the conservation of mass states: The total mass of a part of a

body can not change with time or its deformation [127], which yields

d

dt

∫

Pt

ρ dV = 0 , (3.11)

where ρ is the mass density and the material time derivative is defined by Eq. (A.5a).

As a consequence of Eq. (3.11) the following useful relation for any smooth spatial

field Φ

d

dt

∫

Pt

ρΦ dV =

∫

Pt

ρΦ̇ dV , (3.12)

can be derived [127]. Using Reynold’s transport theorem Eq. (A.6) and acknowledging

that Eq. (3.12) has to hold for any volume Pt, the local form of the conservation of

mass is given by

dρ

dt
+ ρ divv =

∂ρ

∂t
+ div(ρv) = 0 , (3.13)

where v is the spatial velocity field. Alternatively the conservation of mass can be

expressed by the relation ρ=Jρ0, where ρ0 is the density in the reference configura-

tion and J is the determinant of the deformation gradient defined in Eq. (A.4). In

the small strain approximation changes in the density are negligible so that J≈1 and

the conservation of mass takes the simple form ρ = ρ0 (see Appendix A, Section A4).
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The conservation of linear momentum states: The rate of change of linear mo-

mentum of any part of the body is equal to the total sum of body and surface forces

applied to it. In global form this balance equation is given by [121, 122]

d

dt

∫

Pt

ρv dV =

∮

∂Pt

t dA +

∫

Pt

ρ
(
f + f

m
)
dV , (3.14)

where t(n) is the traction vector, f is the usual body force which captures long-range

interactions that are not electromagnetic in nature, and f
m is the body force due

to electromagnetic effects. Using Cauchy’s formula t(n) = σn, with σ denoting

the Cauchy stress tensor, the conservation of mass in the form of Eq. (3.13), the

divergence theorem Eq. (A.1) and localizing the local form of the conservation of

linear momentum takes the form

divσ + ρf + ρf
m

= ρ
dv

dt
. (3.15)

The conservation of angular momentum states: The rate of change of angular

momentum of any part of the body is equal to the total sum of the moments applied

by the body and surface forces and the moments exerted by distributed body couples.

In global form it is expressed as [121, 122]

d

dt

∫

Pt

x×ρv dV =

∮

∂Pt

x×t dA +

∫

Pt

[
x×ρ

(
f + f

m
)

+ ρl
m
]
dV . (3.16)

The local form is derived in detail in Appendix A, Section A3 and is given by

skwσ = ρL
m
, (3.17)

where L
m is the dual of the vector l

m (cf. Eq. (A.13)). Thus, in the presence of

magnetic body couples, the stress tensor is generally not symmetric.
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For reasons of convenience one often defines the Maxwell stress tensor σM [122,

125], such that div σM = ρfm and skw σM = −ρLm. The momentum conservation

equations Eq. (3.15) and Eq. (3.17), can then be rewritten as

div(σ + σM) + ρf = 0 ; (3.18a)

skw
(
σ + σM

)
= 0 . (3.18b)

The conservation of energy states: The rate of change of the total energy (i. e. the

sum of kinetic and internal energy) of any part is equal to the power and heat input

into the system. In the generalized context considered here, the power input can be

mechanical or electromagnetic in nature. Mathematically this statement in global

form is expressed as

d

dt

∫

Pt

[
1

2
ρv·v + ρu

]

dV =

∮

∂Pt

t(n) · v dA +

∫

Pt

[

ρ
(
f + f

m
)
· v + ρl

m
· w + ρr̃

m
]

dV

+

∫

Pt

ρrh dV −

∮

∂Pt

q · n dA , (3.19)

where u is the internal energy per unit mass and w is the angular velocity vector

defined by 2w := curlv. The energy source term ρr̃m accounts for the energy supply

generated by electromagnetic fields [121], whereas ρrh is a non-electromagnetic heat

source. The heat flux over the boundary of the material body is denoted q.

The local form of the conservation of energy is derived in Appendix A, Section

A3 and only the result is stated here as

ρu̇ = σ : (gradv) + ρrm + ρrh − divq . (3.20)

The electromagnetic energy supply term rm := r̃m + l
m ·w contains the work done by
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the electromagnetic body couple.

The particular form of the electromagnetic body force ρfm, body couple ρLm and

energy source term ρrm varies between different formulations. In the magnetostatic

approximation that will be of interest here, the Minkowski formulation specifies the

following terms [114, 122]

ρf
m

= Jf×B + µ0(gradH)
T
M ; (3.21a)

ρL
m

= skw(µ0M ⊗ H) ; (3.21b)

ρrm = µ0H·Ṁ . (3.21c)

C. Extended Thermodynamic Framework

A constitutive theory is said to be thermodynamically-consistent if the constitutive

equations are derived in such a manner that they satisfy the restrictions posed by the

conservation of energy, also known as the first law of thermodynamics, and the second

law of thermodynamics [126, 130]. A thermodynamic framework of this kind shall

be established here for a general continuum which possesses thermal, mechanical

and magnetic energy. This formulation is an extension of the thermomechanical

framework used for the modeling of conventional SMAs [71, 72, 76].

In continuum thermodynamics a thermodynamic potential is defined to charac-

terize all thermodynamic properties of a material body [126]. The constitutive model

presented in this work is formulated in terms of the Gibbs potential because its in-

dependent state variable space consists of the scalar temperature T and the Cauchy

stress tensor σ, which are easily controllable in experiments. For the MSMA model-

ing the state space is extended to include the vector-valued magnetic field strength

H. Physically the Gibbs free energy is less intuitive than the internal energy or
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the Helmholtz potential. For a hyperelastic material under isothermal conditions the

Gibbs free energy can be interpreted as the complementary elastic strain energy or

complementary hyperelastic potential [117, 130–132], which is shown in Appendix C,

Section C1.

To account for dissipative effects in thermodynamics-based constitutive model-

ing Coleman and Noll [81] and Coleman and Gurtin [80] introduced the method of

including internal state variables. This approach is followed here, and therefore the

free energy function is assumed to also be a function of a generic set of internal state

variables ζ. These variables allow the constitutive model to capture the dissipation

associated with the evolution of the microstructure in MSMAs. Such dissipative ef-

fects also lead to a loading history dependence of the constitutive response which can

be accounted for with this approach. Evolution equations for the internal state vari-

ables have to be derived in accordance with the laws of thermodynamics. For MSMAs

a specific set ζ of internal state variables will be chosen in Chapter IV, motivated by

the crystallographic and magnetic microstructures observed in these materials, and

described earlier in Chapter II.

Based on the above discussion, the following constitutive assumption is made

regarding the specific Gibbs free energy per unit mass for the thermodynamic de-

scription of a general continuous, deformable and magnetizable material

g = ĝ(T,σ,H, ζ) . (3.22)

The Gibbs free energy is related to the internal energy u = û(s, ε,M, ζ) through the

Legendre transformation [122]

g = u− sT −
1

ρ
σ :ε −

µ0

ρ
H·M , (3.23)

where s is the specific entropy.



43

The total strain tensor has been chosen here as the independent state variable

for the internal energy. For materials in which a separation between the recoverable

elastic strain and an irrecoverable inelastic strain is convenient and clearly definable,

for example in elasto-plastic materials or shape memory alloys, one needs to decide

whether to use the total strain tensor as the appropriate state variable, as done

here, or only the elastic part. Lubliner discusses different approaches proposed in the

literature on plasticity theory (cf. [133], pp. 457). He refers to the Mandel approach in

which ψ= ψ̄(T, εe, ζ̃) and the Green and Naghdi approach in which ψ= ψ̃(T, ε, εp, ζ̃).

Therein ψ is the Helmholtz potential, which is related to the free energy through the

Legendre transformation ψ= u − sT . The tensors εe and εp denote the elastic and

plastic strains, respectively, where the latter is treated as an internal state variable.1

ζ̃ again denotes a generic set of additional internal state variables. In the modeling

of conventional SMAs, both approaches have been followed, where the elastic strain

was identified as the appropriate independent state variable in [71, 83, 131, 134], and

the total strain was used in [66, 76, 86, 135]. In the modeling of MSMAs one faces

an additional difficulty due to fact that the magnetization response of the material,

as described in Chapter II, also is hysteretic and thus associated with dissipation.

However, an analogous separation between the recoverable and irrecoverable part of

the magnetization is not apparent. This aspect will be discussed in more detail in

Chapter IV and Appendix C, Section C2. For reasons of consistency, the internal

energy and consequentially the Gibbs free energy in this work have been chosen to

depend on the total strain and the total magnetization. It must be noted, however,

that this approach ultimately results to the same set of constitutive equations as

proposed in previous publications [55–57], in which the elastic strain was taken to be

1The discussion in [133] actually uses finite strain theory, but the same arguments
hold for small strains.
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the independent state variable for the internal energy.

Furthermore, it shall be remarked that the thermo-magneto-mechanical frame-

work presented so far is not limited to small strains. Finite strain constitutive models

for conventional SMAs have been developed [131, 136, 137] based on similar frame-

works. However, in the present work a small strain and negligible rotation approxi-

mation has been considered sufficient to model the constitutive response of MSMAs,

since the maximum strains are less than 10%. In this case the energy term σ : (gradv)

in Eq. (3.20) reduces to σ : ε̇, as demonstrated in Appendix A, Section A4. The in-

finitesimal strain tensor ε is symmetric and connected to the displacement field by

the definition [138]

ε =
1

2

(

∇u + (∇u)T

)

. (3.24)

There is no longer a distinction made between the reference and deformed configura-

tions, such that one assumes Grad(·)=grad(·)=∇(·) [132].

By substituting the magnetic energy source term (3.21c) into Eq. (3.20), the

conservation of energy then takes the form

ρu̇ = σ : ε̇ + µ0H·Ṁ + ρrh − divq . (3.25)

Using the Legendre transformation, Eq. (3.23), the conservation of energy Eq. (3.25)

can also be rewritten as

ρġ + ρ
(
ṡT + sṪ

)
+ σ̇ :ε + µ0Ḣ·M − ρrh + divq = 0 . (3.26)

A limitation on the direction in which a thermodynamic process can be carried

out in a physical system is given by the second law of thermodynamics, which can be

formulated in terms of the internal entropy production rate γ as [130]

γ := ṡ−
rh

T
+

1

ρT
divq −

1

ρT 2
q·(∇T ) ≥ 0 . (3.27)
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The thermodynamically-consistent derivation of constitutive relations from the free

energy function, as applied next, is known as the Coleman and Noll procedure [81].

The combination of the first and the second laws in the form of Eqs. (3.25) and (3.27),

respectively, is often referred to as the Clausius-Duhem inequality [126]2. If thermal

gradients are negligible, or the heat conduction problem is considered separately, this

inequality reduces to the Clausius-Planck inequality [126], which in this case, using

Eqs. (3.23), (3.25) and (3.27), can be written as

−ρ

(
∂ĝ

∂T
+ s

)

Ṫ −

(

ρ
∂ĝ

∂σ
+ ε

)

: σ̇ −

(

ρ
∂ĝ

∂H
+ µ0M

)

·Ḣ − ρ
∂ĝ

∂ζ
: ζ̇ ≥ 0 . (3.28)

A detailed derivation of this relation is given in Appendix A, Section A5. Note that

the rates Ṫ , σ̇ and Ḣ appear linearly in equation (3.28), and through the constitutive

assumptions of Eq. (3.22) their parenthesized coefficients are independent of those

rates. Therefore, in order for the inequality to hold for arbitrary processes, these

coefficients must vanish, which leads to the constitutive relations

s = −
∂ĝ

∂T
; (3.29a)

ε = −ρ
∂ĝ

∂σ
; (3.29b)

µ0M = −ρ
∂ĝ

∂H
. (3.29c)

Through the relations (3.29) the Clausius-Planck inequality (3.28) reduces to

−ρ
∂ĝ

∂ζ
·ζ̇ ≥ 0 . (3.30)

With the presentation of Maxwell’s equations in Section A, the derivation of the

2The terminology is not always consistent in the literature. Some authors refer to
the second law as the Clausius-Duhem inequality [130], some to the form in which
the heat input terms have been replaced by using the first law.
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generalized conservation laws in Section B and the formulation of the extended ther-

modynamic framework in Section C of this Chapter, the underlying thermo-magneto-

mechanical framework for the MSMA constitutive model has been established.

There are 9 unknown components of the magnetic field variables B, H and M.

The mechanical field variables σ, ε and u represent 18 unknowns. The temperature

T is an additional unknown, which appears in the energy balance if, for example,

Fourier’s law of heat conduction (q = −k∇T ) is considered [139]. Consequently,

there are a total of 28 unknowns. Maxwell’s equations (3.7) and Eq. (3.2b) provide

7 relations. The conservation laws for linear momentum, Eq. (3.15), angular mo-

mentum, Eq. (3.17), and energy, Eq. (3.26), represent an additional 7 equations to

relate the field variables. One also has to consider the 6 strain-displacement relations,

Eq. (3.24), or, alternatively, strain compatibility conditions [132, 138]. A total of 9

additional relations are given by the constitutive equations for the strain tensor and

the magnetization vector, Eqs. (3.29b) and (3.29c), respectively, which have been

derived under consideration of the second law of thermodynamics. In summary, there

are a total of 29 equations to relate 28 unknowns and 1 thermodynamic potential,

the Gibbs free energy in this case, which will be specified for MSMAs in the following

chapter. Additionally, for each of the internal state variables in the set ζ an evolution

equation will be derived.
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CHAPTER IV

PHENOMENOLOGICAL MODELING OF MSMA

The thermo-magneto-mechanical framework for the phenomenological MSMA model

was established in the previous chapter. In this chapter the specific constitutive

equations are derived. The approach is to propose a specific form of the Gibbs free

energy function that incorporates elastic, magnetic and magnetoelastic coupling terms

that are relevant for the MSMA constitutive response as it was discussed in Chapter

II. The influence of the changing crystallographic and magnetic microstructure is

incorporated through suitable internal state variables, which also account for the dis-

sipative effects associated with the reorientation of martensitic variants. Additional

internal state variables are introduced to describe changes in the free energy caused

by the motion of magnetic domain walls and the rotation of local magnetization vec-

tors away from magnetic easy axes. According to the generic constitutive relations

(3.29), which were derived from thermodynamic restrictions, the expressions for the

dependent state variables entropy s, strain ε and magnetization M, then follow di-

rectly from taking partial derivatives of the specific Gibbs free energy function with

respect to the independent state variables temperature T , mechanical stress σ and

magnetic field strength H. Through the constitutive relations the dependent state

variables also depend on the internal state variables, whose evolution accounts for the

loading history dependence of the material behavior.

A. The Choice of Internal State Variables

Motivated by the experimentally observed arrangement of martensitic twins and mag-

netic domains in MSMAs, as previously discussed in Chapter II, specifically in the

context of Fig. 12, an idealized microstructure is assumed. Fig. 13 shows its schematic
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representation. Other experiments have indicated that the actual microstructure of

MSMA can be much more complex [106, 107], but this chosen representation has

proven sufficient to explain all of the main characteristics of the MSMA response.

Many researchers have proposed a similar representations [5, 49, 51, 52].

(1 − ξ)

ξ

(2)

(4)

θ2

M
4

M
3

M
1

M
2

(1)
θ4

θ3

θ1

(2)

(3)

(1)

(3)

(4)

α

(1−α)

(1):=V1D1

(2):=V2D1

(3):=V1D2
(1−α)α

(4):=V2D2

x,[100]

y,[010]

Fig. 13. Schematic representation of the microstructure showing the coexistence of

martensitic variants and magnetic domains. The abbreviation V1D2, for ex-

ample, stands for ”variant 1, domain 2”. The four distinct subdomains are

numbered 1–4 to simplify the notation.

Fig. 13 depicts the coexistence of two martensitic variants, and two magnetic

domain types. The third martensitic variant, and thus the third magnetic domain

type, are thought to have been eliminated by proper load application. This ideal-

ized microstructure was also indicated in Fig. 2, for a generic intermediate applied

magnetic field level. In this sketch, however, the possibility of the rotation of the
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local magnetization away from the magnetic easy axes is included and defined by

the rotation angles θi, with i = 1, . . . , 4 and 0 ≤ θi ≤ π
2
. Variant 1, as previously

defined in Fig. 1, is magnetized along the x, [100]-direction, whereas variant 2 has its

magnetic easy axis along the y, [010]-direction. The magnetic domains are defined by

the preferred orientation of their magnetization vectors. In magnetic domain 1 the

magnetization is oriented in the negative direction of the respective coordinate axis,

and in domain 2 it points in the opposite direction. The two variants are separated

by a twin boundary shown here at a 45
◦
angle. The twin boundary coincides with the

90
◦
domain walls between adjacent magnetic domains. Both are assumed to have zero

thickness on the considered scale. Within each variant 180
◦
domain walls separate the

domains. The local magnetization vectors and their associated rotation angles are,

by definition, considered constant within each domain. Note that the rotations shown

in the sketch do not necessarily correspond to realistic arrangement of magnetization

vectors, but serve the purpose of illustrating the nomenclature. Compatibility of do-

mains along twin planes, which separates different variants, has also been assumed,

such that the domain walls of neighboring twins meet on the twin boundary in a

compatible manner.

Based on this discussion, the scalar volume fractions ξ and α for the martensitic

variant 2 and the magnetic domain 2 (cf. Fig. 13), respectively, are introduced as

internal state variables. The volume fraction of variant 1 is equal to (1− ξ), and that

of domain 1 is similarly given by (1−α), such that no additional variables need to be

introduced. Additionally the inelastic reorientation strain tensor εr is formally identi-

fied as an internal state variable, although its evolution is later connected to the rate

of ξ. It is implied that for a small strain approximation the additive decomposition

ε = εe + εr , (4.1)
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is assumed to be sufficiently accurate. The set of internal state variables is completed

by the rotation angles of the magnetization vectors θi depicted in Fig. 13.

B. Formulation of the Specific Gibbs Free Energy

Before presenting a specific form, the approach to constructing the Gibbs free en-

ergy expression for the proposed MSMA model shall be discussed in general terms.

A generic form of the Gibbs free energy was specified by Eq. (3.22) in Chapter III,

Section C. The basic properties of the Gibbs potential were also discussed there. To

construct the specific form of the Gibbs free energy for the MSMA model different

approaches are conceivable. Certainly the free energy expression must contain an

elastic, a magnetic and a magnetoelastic part to capture the characteristic features

of the constitutive response of MSMAs. The approach that first comes to mind is a

Taylor series expansion of the Gibbs free energy. This approach is typically followed

for modeling materials that exhibit multi-field coupling, such as piezoelectrics, piezo-

magnetics or electro- and magnetostrictive materials because the interaction terms

can then easily be constructed [119, 140, 141]. All of the coupling properties are

then captured by coefficients whose components can, at least in principle, be de-

termined from experiments. The individual Gibbs free energy contributions of the

thermoelastic austenite and martensite phases in conventional SMAs have usually

been constructed by such Taylor series expansions [71, 72]. It is demonstrated in

Appendix C, Section C2, that in order to predict the reversible anisotropic magne-

tization response of MSMAs a free energy based model can be constructed following

the series expansion approach. This model leads to identical constitutive predictions

of the reversible magnetization as the approach that will be taken here.

A number of reasons discourage utilizing the series expansion approach for mod-
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eling MSMAs. An in-depth discussion of this matter can also be found in Appendix C,

but the key points will be summarized here: 1) The inelastic reorientation strain was

accounted for by assuming an additive decomposition of the total strain in Eq. (4.1)

and then postulating Eq. (4.15) to describe its evolution. A similar decomposition

of the magnetization in this case is difficult to justify because due to magnetic do-

main wall motion, which is typically reversible in MSMA (cf. Fig. 8), the macroscopic

magnetization always vanishes as the applied field is reduced to zero. Thus, rem-

nant magnetization is not observed in MSMA and the irreversible magnetization can

therefore not simply be connected to the evolution of variant volume fraction. 2)

The Gibbs free energy expression proposed in this work directly incorporates the

Zeeman energy and the magnetocrystalline anisotropy energy that have briefly been

discussed in Section B of Chapter II. These terms have the advantage that they are

directly connected to the internal state variables α and θi, which allow the track-

ing of the magnetic domain volume fraction and the magnetization vector rotation

angles. This promotes a better understanding of the micro-scale phenomena which

cause the macroscopic constitutive response. This physical intuition is lost if the ef-

fect of magnetic domain wall motion and magnetization rotation are simply captured

by different coefficients of a magnetic susceptibility tensor. 3) The discussed energy

terms are commonly used in the modeling of magnetic materials [17, 18, 100] and

have also been used in other MSMA models [26, 49, 52]. Based on these arguments

it was decided to not follow the series expansion approach.

Motivated by the discussed micro-scale arrangement of martensitic twins in MS-

MAs, the Gibbs free energy is constructed as a weighted average between the con-

tributions of each variant. This assumes an appropriate separation of scales, which

means that the characteristic internal features of the material, such as the martensitic

variants and magnetic domains in MSMAs, are thought to be small enough to allow
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the definition of such average quantities at each material point. The deviation of

the free energy from the weighted average of the individual contributions, as caused

by the interaction of martensitic variants, is captured by a mixing term gξ-mix. In

accordance with the general constitutive assumption of Eq. (3.22), the choice of in-

ternal state variables made in the previous section and the above discussion about

the general approach to formulating the Gibbs free energy, the following expression

is proposed

g := ĝ(T,σ,H, εr, ξ, α, θj)

= ξ ĝV2(T,σ,H, εr, α, θ2, θ4) + (1 − ξ) ĝV1(T,σ,H, εr, α, θ1, θ3) + ĝξ-mix(ξ) .

(4.2)

Since MSMAs are typically used at constant temperatures, isothermal conditions are

assumed and thermal as well as thermoelastic and thermomagnetic coupling terms are

not explicitly included. If one is interested in temperature changes occurring in the

martensitic phase, it is fairly straightforward to include the relevant thermal energy

terms in the total Gibbs free energy expression of Eq. (4.8). This is demonstrated in

Appendix C, Section C3, where the temperature change per magnetic cycle due to

the dissipation associated with the variant reorientation is computed.

The contribution of each martensitic variant gVi , with i = {1, 2}, to the total

Gibbs free energy, Eq. (4.2), is then proposed to be given by

gVi = −
1

2ρ
σ :S

Viσ −
1

ρ
σ :εr + (1 − α)

[

−
µ0

ρ
M

ViD1 ·H + gan,ViD1

]

+ α

[

−
µ0

ρ
M

ViD2 ·H + gan,ViD2

]

+ gα-mix(α) + g0(T ) .

(4.3)

Here, SVi denotes the elastic compliance tensor of variant i. The magnetization

vectors M
ViDj have been defined in Eqs. 4.4. The scalar constant g0 is the reference

state value of the Gibbs free energy.
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The first term in Eq. (4.3) describes the energy stored in the material due to

elastic deformation. The second term is due to the interaction of the stress and

inelastic strain. For the magnetic terms the contributions of each magnetic domain

are again taken into account in a weighted average sense, with the correcting mixing

term gα-mix. It has been assumed that the density, the elastic compliance tensor, the

reorientation strain tensor and the reference value of the free energy are the same in

both magnetic domain types.

The first magnetic energy term in Eq. 4.2 is the Zeeman energy for which the

individual contributions are of the form −M
ViDj ·H, where the magnetization vectors

of the different variant-domain combinations, cf. Fig. 13, are defined as

M
1
:= M

V1D1 = −M
sat

(
cos(θ1) ex + sin(θ1) ey

)
; (4.4a)

M
2
:= M

V2D1 = M
sat

(
sin(θ2) ex − cos(θ2) ey

)
; (4.4b)

M
3
:= M

V1D2 = M
sat

(
cos(θ3) ex + sin(θ3) ey

)
; (4.4c)

M
4
:= M

V2D2 = M
sat

(
− sin(θ4) ex + cos(θ4) ey

)
. (4.4d)

In the above relations, M sat is the saturation magnetization and ex, ey are unit vectors

in the respective coordinate directions. If the magnetization vectors are assumed to

be fixed to the respective magnetic easy axes (i. e. θi = 0) these expressions reduce to

the formulation proposed by Hirsinger and Lexcellent [52]. As discussed in Chapter

II, the Zeeman energy accounts for the interaction of the local magnetization with the

magnetic field [100]. The Zeeman energy difference across the twin boundary is the

main magnetic driving force for variant reorientation. It must be emphasized that H

is the internal field at a generic material point, not the applied field.

Other approaches, such as the formulation by proposed by Buchelnikov and
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Bosko [65], include the Zeeman energy in the form of −M · Ha, where H
a is the

applied field1. They introduce an additional term, namely the magnetostatic energy

of the demagnetization field DM2, where D is the demagnetization tensor. This

method of calculating the magnetostatic fields of magnetized bodies will extensively

be discussed in Chapter VI. According to Eq. (6.6) the internal magnetic field is the

sum of the applied field and the demagnetization field. The latter can be calculated

from Eq. (6.7) as H
d = −DM. It is shown in the following derivation that these

approaches are equivalent.

Energy of demagnetization + Zeeman energy of external field

= (DM)·M − M·H
a
= −(−DM)·M − M·H

a
= −

(
H

d
+ H

a
)
M = −H·M (4.5)

= Zeeman energy of internal field.

The second magnetic term in the free energy expression 4.3 is the magnetocrys-

talline anisotropy energy, whose contributions are denoted gan,ViDj . It is the energy

stored in the material due to the work done by the magnetic field in rotating the mag-

netization vectors away from the magnetic easy axes. Magnetoelastic interactions in

the form of ordinary magnetostriction has also been neglected since the associated

strains are at least two orders of magnitude smaller in MSMAs than the strains caused

by the variant rearrangement [96, 102].

An explicit form of the magnetocrystalline anisotropy energy for uniaxial sym-

metry, i. e. for crystals which exhibit only one preferred direction of magnetization,

1The Buchelnikov and Bosko formulation is one-dimensional, but for reasons of
comparison an equivalent three-dimensional formulation is discussed here
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is usually given in the form of a trigonometric power series [17, 100, 142]

gan =
N∑

n=0

Kn sin2n(θ) , (4.6)

where Kn are coefficients to be determined from magnetization measurements [25, 97]

and θ is again the rotation angle between the magnetization and the easy axis.2

The influence of the interaction of evolving martensitic variants or magnetic

domains on the free energy, introduced in (4.2) by the mixing terms gξ-mix and gα-mix,

respectively, is assumed to be captured by hardening functions of the generic form

gξ-mix =
1

ρ
f

ξ
(ξ) ; (4.7a)

gα-mix =
1

ρ
f

α
(α) . (4.7b)

Specific hardening function will be specified at the end of this chapter.

The combination of Eqs. (4.2), (4.3) and (4.7) yields the following explicit form

of the total Gibbs free energy

g = ĝ(T,σ,H, εr, ξ, α, θj)

= −
1

2ρ
σ :Sσ −

1

ρ
σ :εr

+ ξ

[

(1 − α)

[

−
µ0

ρ
M

2
·H + gan,2(θ2)

]

+ α

[

−
µ0

ρ
M

4
·H + gan,4(θ4)

]]

+ (1 − ξ)

[

(1 − α)

[

−
µ0

ρ
M

1
·H + gan,1(θ1)

]

+ α

[

−
µ0

ρ
M

3
·H + gan,3(θ3)

]]

+
1

ρ
f

ξ
(ξ) +

1

ρ
f

α
(α) + g0(T ) .

(4.8)

2A tetragonal symmetry expression for the anisotropy energy has been considered
by Cui et al. [25], based on the work of Bozorth [143]. If only up to quadratic terms
are taken into account (N=2), as done in this work, the expressions for the uniaxial
and tetragonal symmetries coincide.
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The density has been assumed to be identical in both martensitic variants. The ef-

fective compliance tensor is defined by S := SV1 + ξ∆S = SV1 + ξ(SV2 − SV1) For

isotropic polycrystalline materials, it has been shown by the use of micromechanical

techniques, that this linear average for effective material properties is a good ap-

proximation [71, 76, 144]. The compliance tensor of the two variants only differ by

a rotation. The elastic properties of tetragonal martensite have been discussed in

[8, 145, 146].

According to Eqs. (3.29), constitutive equations for the entropy, the strain and

the magnetization follow from taking partial derivatives of the free energy, Eq. (4.8)

s = −
∂ĝ

∂T
= −

∂g0

∂T
; (4.9a)

ε = − ρ
∂ĝ

∂σ
= Sσ + εr ; (4.9b)

M = −
ρ

µ0

∂ĝ

∂H
= ξ

[
(1 − α)M

2
+ αM

4
]
+ (1 − ξ)

[
(1 − α)M

1
+ αM

3
]
, (4.9c)

where the local magnetization vectors M
i have been defined in Eqs. (4.4). Note

that according to (4.9a) the entropy is only a function of temperature, and therefore

must be constant throughout the reorientation process, if isothermal conditions are

assumed. This means that the entropy changes due to dissipative effects must be

balanced by suitable heat transfer to maintain a constant temperature. For adiabatic

conditions the entropy increases due to the dissipation associated with the reorien-

tation of variants. It is shown in Appendix C, Section C3 how the model must be

slightly extended to capture adiabatic loading paths.

By taking derivatives of the total free energy, Eq. (4.8), with respect to the

internal state variables, the following thermodynamic driving forces are derived

π r := −ρ
∂ĝ

∂εr
= σ ; (4.10a)
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π̃ξ := − ρ
∂ĝ

∂ξ

=
1

2
σ :∆Sσ − ρ (1 − α)

[

−
µ0

ρ

(
M

2
− M

1
)
·H + gan,2(θ2) − gan,1(θ1)

]

(4.10b)

− ρα

[

−
µ0

ρ

(
M

4
− M

3
)
·H + gan,4(θ4) − gan,3(θ3)

]

−
∂f ξ

∂ξ
;

πα := − ρ
∂ĝ

∂α

= − ρ (1 − ξ)

[

−
µ0

ρ

(
M

3
− M

1
)
·H + gan,3(θ3) − gan,1(θ1)

]

(4.10c)

− ρ ξ

[

−
µ0

ρ

(
M

4
− M

2
)
·H + gan,4(θ4) − gan,2(θ2)

]

−
∂f α

∂α
.

Similarly, the driving forces for rotation the rotation of the magnetization vectors are

given by

πθ1 := − ρ
∂ĝ

∂θ1

= − ρ (1 − ξ)(1 − α)

[
µ0M

sat

ρ

[

− sin(θ1)Hx + cos(θ1)Hy

]

+
∂ĝ

∂θ1

an,1
]

; (4.11a)

πθ2 := − ρ
∂ĝ

∂θ2

= −ρ ξ(1 − α)

[

−
µ0M

sat

ρ

[

cos(θ2)Hx + sin(θ2)Hy

]

+
∂ĝ

∂θ2

an,2
]

; (4.11b)

πθ3 := − ρ
∂ĝ

∂θ3

=−ρ (1 − ξ)α

[

−
µ0M

sat

ρ

[

− sin(θ3)Hx+ cos(θ3)Hy

]

+
∂ĝ

∂θ3

an,3
]

; (4.11c)

πθ4 := − ρ
∂ĝ

∂θ4

= −ρ ξα

[

−
µ0M

sat

ρ

[

− cos(θ4)Hx − sin(θ4)Hy

]

+
∂ĝ

∂θ4

an,4
]

, (4.11d)

where the definitions of the magnetization vectors, Eqs. (4.4), have been utilized. The
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defined quantities π r, π̃ξ, πα and πθi are driving forces that are thermodynamically

conjugate to the internal state variables such that, using the above definitions, the

Clausius-Planck inequality (3.30) can be rewritten as

π r : ε̇r + π̃ξξ̇ + παα̇+
4∑

i=1

πθi θ̇i ≥ 0 . (4.12)

C. Evolution Equations and Activation Conditions

The effective number of internal state variables can be reduced by enforcing additional

thermodynamic constraints, based on the following considerations. From physical ob-

servations it is reasonable to assume that the motion of magnetic domain walls and

the rotation of the magnetization vectors are thermodynamically reversible processes

[16, 100], and thus do not contribute to the entropy production. The single variant

sample magnetization curves of Fig. 10, for example, in which only the mechanisms

of domain wall motion (easy axis) and magnetization rotation (hard axis) are active,

exhibit almost no hysteresis. The magnetization curves in Fig. 11, however, exhibit

significant hysteresis due to the dissipation associated with the variant rearrange-

ment. If the internal dissipation production is entirely attributed to the reorientation

process, Eq. (4.12) implies

πα := − ρ
∂ĝ

∂α
= 0 ; (4.13a)

πθi := − ρ
∂ĝ

∂θi

= 0 . (4.13b)

This does not mean that the domain walls do not move, nor that the magnetization

vectors do not rotate, but rather that no dissipation is associated with these processes.

Eqs. (4.13) represent a set of five relations, which can be solved to determine evolution

equations, or more precisely direct functional dependencies, of the domain volume
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fraction α and the four rotation angles θi on the independent state variables as well

as the loading history through the remaining internal state variables. With Eqs. (4.13)

the inequality (4.12) takes the reduced form

π r : ε̇r + π̃ξξ̇ ≥ 0 . (4.14)

In the modeling of conventional shape memory behavior the transformation strain

is usually related to the martensitic volume fraction [71, 72, 76]. Following this

approach, the evolution of the reorientation strain associated with the magnetic shape

memory effect is proposed to be proportional to the rate of the martensitic variant

volume fraction

ε̇r = Λrξ̇ . (4.15)

The reorientation strain is then no longer an independent internal state variable. In

the equation above Λr is the reorientation tensor defining the direction in which the

reorientation strain develops. An explicit form of the tensor will be given in Chapter

V for a specific example. For the special case of constant Λr expression (4.15) can be

integrated to yield the reorientation strain, so that the total strain, using Eq. (4.9b),

is then given by

ε = Sσ + Λrξ . (4.16)

If Λr is not constant, for example for non-proportional loading, equation (4.15) has

to be evaluated incrementally [82].

One can further define the total thermodynamic driving force for the twin bound-

ary motion associated with the variant reorientation process as

πξ := π r :Λr + π̃ξ = σ :Λr − ρ
∂ĝ

∂ξ
, (4.17)

where the definitions (4.10a) and (4.10b) have been utilized. Then, using Eqs. (4.15)
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and Eq. (4.17), the Clausius-Planck inequality (4.14) can finally be written as

πξ ξ̇ ≥ 0 . (4.18)

The rate-independent nature of the formulation motivates the introduction of

the following reorientation function

Φ
ξ
(σ,H, ξ) :=







πξ − Y ξ , ξ̇ > 0

−πξ − Y ξ , ξ̇ < 0

, Φ
ξ
≤ 0 , (4.19)

which defines the activation threshold for variant reorientation or conversely the elas-

tic regime. The proposed reorientation function is similar to transformation functions

used in the rate-independent phenomenological modeling of conventional shape mem-

ory behavior [72, 82]. The positive scalar quantity Y ξ is physically related to internal

dissipation associated with twin boundary motion. It is assumed that the reorienta-

tion process is subject to constraints derived from a principle of maximum dissipation,

which can be expressed in terms of the Kuhn-Tucker type reorientation conditions

[147]

Φ
ξ
(σ,H, ξ) ≤ 0, Φ

ξ
ξ̇ = 0 . (4.20)

Note that in the elastic regime where Φξ < 0 the conditions (4.20) require ξ̇ = 0.

The forward reorientation process is characterized by Φξ = 0 and ξ̇ > 0, whereas for

the reverse process the conditions Φξ = 0 and ξ̇ < 0 hold. Since the thermodynamic

driving force πξ, and therefore the reorientation function Φξ, contain the hardening

function f ξ, the reorientation conditions (4.20) depend on the martensitic variant

volume fraction and thereby on the loading history, not just the current values of

stress and magnetic field.

In order to complete the formulation of the constitutive model, the generically
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introduced hardening functions (4.7) need to be specified. These functions account

for all micro-scale interactions which result in macroscopically observed hardening.

Such hardening behavior is clearly observed in MSMAs, for example in the strain

response curves of Fig. 29 on page 103, where a much higher magnetic field is needed

to finish the reorientation process, than is required to start it. Thus, even though

the martensitic twins are compatible across a twin boundary, the presence of one

variant clearly influences the growth of the others. Effects such as the trapping of the

progressing twin boundary at pinning sites as proposed by Faidley et al. [5], which

influence the macroscopic evolution of the reorientation strain can also be accounted

for in this manner.

Several types of hardening functions have been presented in the literature in the

context of martensitic phase transformation of conventional shape memory alloys,

such as the exponential hardening model [69, 148], the polynomial hardening model

[71, 72], and the trigonometric hardening model [70, 72]. The exponential hardening

function is related to the nucleation process of martensite and was actually the first

model introduced in the literature. The polynomial function is motivated by a series

expansion of the free energy. The trigonometric hardening model has been introduced

to better match results with experimental observations and has been shown to yield

good agreement between experimental results and model predictions in conventional

SMAs.

The polynomial and the trigonometric hardening functions are adapted here in

the context of the variant reorientation process. The quadratic polynomial hardening

function is given by

f ξ,p(ξ) =







1
2
Apξ2 + (Bp

1 +Bp

2 )ξ , ξ̇ > 0

1
2
C pξ2 + (Bp

1 −Bp

2 )ξ , ξ̇ < 0

, (4.21)



62

which yields

∂f ξ,p

∂ξ
=







Apξ +Bp

1 +Bp

2 , ξ̇ > 0

C pξ +Bp

1 −Bp

2 , ξ̇ < 0

, (4.22)

where Ap, Bp

1 , B
p

2 and C p are adjustable parameters of the quadratic polynomial hard-

ening function [55].

The trigonometric hardening function is of the form

f ξ,c(ξ) =







∫ ξ

0

−A
c
[
π − cos−1(2ξ̃ − 1)

]
dξ̃ + (B

c

1 +B
c

2)ξ , ξ̇ > 0

∫ ξ

0

−C
c
[
π − cos−1(2ξ̃ − 1)

]
dξ̃ + (B

c

1 −B
c

2)ξ , ξ̇ < 0

, (4.23)

and thus

∂f ξ,c

∂ξ
=







−Ac
[
π − cos−1(2ξ − 1)

]
+ (B c

1 +B c

2) , ξ̇ > 0

−C c
[
π − cos−1(2ξ − 1)

]
+ (B c

1 −B c

2) , ξ̇ < 0

. (4.24)

It will be shown in Section b of Chapter V, how the parameters Ac, B c

1, B
c

2 and C c

can be connected to physically more meaningful and measurable quantities.

To better capture the reorientation strain evolution in observed in Ni-Mn-Ga, a

power law type hardening function was recently proposed by Kiefer et al. [58]

f ξ,pl(ξ) =







1
n
Aplξn + (Bpl

1 +Bpl

2 )ξ , ξ̇ > 0

C pl
[

ξ + 1
n
(1 − ξ)n

]

+ (Bpl

1 −Bpl

2 )ξ , ξ̇ < 0

, (4.25)

which has the derivative

∂f ξ,pl

∂ξ
=







Aplξn−1 +Bpl

1 +Bpl

2 , ξ̇ > 0

C pl
[

1 − (1 − ξ)n−1
]

+Bpl

1 −Bpl

2 , ξ̇ < 0

. (4.26)
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Similar hardening functions for the evolution of the magnetic domains can in principle

be obtained by simply replacing ξ with α in the above expression. However, the

limited experimental data that is available at this point suggests that it is sufficient

to assume a quadratic hardening behavior of the type specified in Eq. (4.22), which

leads to a linear variation of the magnetization if magnetic domain wall motion is

the only active mechanism. This was demonstrated in the constrained MSMA single

crystal example in Appendix C).

The next chapter is concerned with the reduction of the general constitutive

equations developed in this chapter for specific loading conditions.
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CHAPTER V

MSMA RESPONSE UNDER SPECIFIC MAGNETOMECHANICAL LOADING

In the previous section the constitutive model was introduced in its most general form.

In this section a number of simplifying assumptions are made and specific loading

conditions are considered, such that reduced versions of the constitutive equations

are obtained. The MSMA response is modeled for the following loading cases which

are schematically depicted in Fig. 14: 1) Variable magnetic field at different levels of a

perpendicular compressive uniaxial stress; 2) Variable compressive uniaxial stress at

different levels of a perpendicular magnetic field; 3) Variable magnetic field collinear to

a constant compressive uniaxial stress at different levels of a perpendicular magnetic

field.

constantσ =xx

Loading Case 1

Hy = variable Hy = constant

a

c
MV1

a

c MV2

Variant 1 Variant 2

a

c
MV1

a

c
MV1

a

c MV2

a

c

a

c MV2

Variant 1 Variant 2

Loading Case 2

Hy = constant

Hx = variable

Loading Case 3

y

x

y

x

variableσ =xx σ xxσ xx

constantσ =xx σ xx

Fig. 14. Schematic illustration of the three modeled loading cases. Small arrows indi-

cate the direction of the average magnetization in each variant at an exemplary

load level during the reorientation process.
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It is assumed that it is possible to only apply certain components of the stress

and magnetic field at each material point. The assumption of a homogeneous uni-

axial stress state in a prismatic specimen is justified by Saint-Venants’s principle

[132]. A uniaxial magnetic field applied at the boundary of the same prismatic (non-

ellipsoidal) specimen, however, leads to a non-uniform distribution of the magnetic

field inside the sample whose magnitude is significantly reduced by the demagneti-

zation effect [16, 17]. The influence of the inhomogeneity of the magnetic field and

the specimen shape dependent demagnetization effect are investigated in Chapter VI

by using magnetostatic analysis in combination with the constitutive model. In this

chapter, however, the focus is on the constitutive response and thus H is the mag-

netic field acting at a generic material point. For the comparison of model predictions

with experimental results, H can be interpreted as the average magnetic field in the

specimen. Of course, in general, cases can be modeled involving structures in which

neither the stress nor the magnetic field are uniform, since the constitutive model is

formulated to hold at each point in the continuum.

Based on these assumptions, the three loading cases specified in Fig. 14 are

considered in the following sections.

A. Loading Case 1: Variable Magnetic Field at Different Levels of a Perpendicular

Compressive Uniaxial Stress

In this first loading case σxx = const. ≤ 0 is the only non-zero component of the stress

and Hy is the non-zero component of the magnetic field. For the chosen coordinate
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system the non-zero components of the proposed reorientation tensor are given by1

Λ
r

xx = −Λ
r

yy = εr,max ; Λ
r

zz = Λ
r

xy = Λ
r

xz = Λ
r

yz = 0 . (5.1)

The maximum strain value can be measured experimentally or is often approximated

as εr,max = (a − c)/a, where a and c are the lattice parameters of the tetragonal

martensite. Reorientation strain tensors for arbitrary single crystal orientations have

been discussed in the literature [26, 28, 93].

Typically, the motion of magnetic domain walls is neglected in the modeling

of MSMAs [5, 49, 52, 53], since it is assumed that unfavorable domains are elimi-

nated at relatively low fields [11, 97] such that they do not significantly influence the

magnetic field-induced variant reorientation process and therefore do not justify the

formulation of even more complex constitutive models. However, from comparison

with experimental data [57] it has become evident, that under some circumstances

neglecting the motion of magnetic domain walls leads to very inaccurate predictions of

the magnetization behavior at low stresses and low fields. For example, the model will

predict significant remnant magnetization values, up to saturation, at zero applied

field, whereas experiments show that the macroscopic magnetization vanishes. Since

the evolution of magnetic domain walls is incorporated in the general form of the con-

stitutive model, this problem can be addressed. In Section 1 model predictions under

the common assumption of a fixed magnetic domain structure are presented. This

version of the model is valid for a wide range of loads and is much easier to calibrate,

implement and evaluate. In Section 2 a special case is considered in which accounting

for the motion of magnetic domains significantly improves the model predictions of

the magnetization response at low stress levels.

1Typically specimen are cut such that the < 100>m-directions of the tetragonal
martensite align with the direction of the applied loads.
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1. Fixed Magnetic Domain Structure

a. Reduced Model Equations

If the motion of magnetic domain walls at low fields is neglected, the domain volume

fraction takes the value of α = 1, for Hy>0, and α = 0 for Hy<0. Fig. 15 represents

a modification of Fig 2 for the assumption α=1.

σxxσxx

σxx σxx

Hy

special case: α = 1

σxx

Hy

σxx

c) Maximum applied magnetic field (single variant 2)

b) Intermediate applied magnetic field (mixture of variants)

a) Applied mechanical load (single variant 1)

x, [100]

y, [010]

Fig. 15. The variant reorientation process with fixed domain structure α=1.

For the described magnetomechanical loading and the assumed fixed domain

configuration a reduced set of constitutive equations is now derived2. The constraint

2All of the reduced equations presented in this section are derived for the case of
α=1. It is straightforward to derive their counterparts for α=0 by using the general
expressions provided in Chapter IV.
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(4.13b) on θ3, utilizing Eq. (4.11c), takes the form

πθ3 = (1 − ξ)
[
µ0M

sat
Hy − 2ρK1 sin(θ3)

]
cos(θ3) = 0 . (5.2)

From this it is concluded that

sin(θ3) =
µ0M

sat

2ρK1

Hy , (5.3)

for 0 ≤ θ3 <
π
2

and 0 ≤ ξ < 1. Since the easy axis of variant 2 is aligned with the

direction of the applied field, its magnetization vector does not rotate, such that the

corresponding constraint πθ4 =0 is identically satisfied.

For the considered loading case, using Eqs. (4.10a), (4.10b) and (4.17), the driving

force for variant rearrangement reduces to

πξ = σxxε
r,max + µ0M

sat
[
1 − sin(θ3)

]
Hy + ρK1 sin2(θ3) −

∂f ξ

∂ξ
, (5.4)

where the difference in the elastic compliance of the variants ∆S has been considered

small and thus neglected. If one further utilizes the relation (5.3) to eliminate θ3,

Eq. (5.4) can be rewritten as

πξ = σxxε
r,max + µ0M

sat
Hy −

(µ0M
sat)2

4ρK1

H2
y −

∂f ξ

∂ξ
, (5.5)

The derivative ∂f
ξ

∂ξ
has been specified in Chapter IV, Section C for different hardening

models. The trigonometric hardening function (4.24) is employed here. For the

assumed fixed magnetic domain structure, the driving force πα need not be considered.

Combining the reorientation function (4.19) with the driving force expression

(5.5) and enforcing the Kuhn-Tucker loading conditions (4.20), the evolution equa-

tions for the martensitic variant volume fraction are derived as follows:
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For the forward reorientation process (Variant 1 → Variant 2, ξ̇ >0):

Φ
ξ
ξ̇ = 0 ⇒ Φ

ξ
= 0 ⇒ πξ = Y

ξ,c
. (5.6)

πξ = σxxε
r,max + µ0M

sat
Hy −

(µ0M
sat)2

4ρK1

H2
y + A

c
[
π − cos−1(2ξ − 1)

]
−B

c

1 −B
c

2

= Y
ξ,c
. (5.7)

Since Eq. (5.7) contains only one scalar internal variable, the usual procedure of

enforcing consistency conditions [71, 147, 149] is not necessary, and one can solve for

ξ, which can be viewed as the equivalent of a plastic multiplier, directly in closed-form

to find

ξ
(1,2)

=
1

2
cos

(

−
1

Ac

[

− σxxε
r,max − µ0M

sat
Hy +

(µ0M
sat)2

4ρK1

H2
y +B

c

1 +B
c

2

+ Y
ξ,c

]

+ π

)

+
1

2
. (5.8)

Similarly, it follows for the reverse reorientation process (Variant 2 → Variant 1,

ξ̇ <0):

Φ
ξ
ξ̇ = 0 ⇒ Φ

ξ
= 0 ⇒ πξ = −Y

ξ,c
. (5.9)

πξ = σxxε
r,max + µ0M

sat
Hy −

(µ0M
sat)2

4ρK1

H2
y + C

c
[
π − cos−1(2ξ − 1)

]
−B

c

1 +B
c

2

= −Y
ξ,c
, (5.10)

so that

ξ
(2,1)

=
1

2
cos

(

−
1

C c

[

− σxxε
r,max − µ0M

sat
Hy +

(µ0M
sat)2

4ρK1

H2
y +B

c

1 −B
c

2

− Y
ξ,pl

]

+ π

)

+
1

2
. (5.11)
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From the integration of Eq. (4.15) and the kinematic assumptions of Eq. (5.1) the

components of the reorientation strain follow as

εr

xx = εr,maxξ ; εr

yy = −εr

xx ; εr

zz = εr

xy = εr

xz = εr

yz = 0 (5.12)

The components of the magnetization vector, using Eqs. (4.4) and (5.3) in Eq. (4.9c),

are found to be

Mx = (1 − ξ)M
sat

cos(θ3) = (1 − ξ)M
sat

√

1 −
(µ0M

sat

2ρK1

Hy

)2

;

My = ξM
sat

+ (1 − ξ)M
sat

sin(θ3) = ξM
sat

+ (1 − ξ)
µ0(M

sat)2

2ρK1

Hy ; (5.13)

Mz = 0 .

Again, the activation of the reorientation process and the evolution of ξ in Eqs. 5.12

and Eqs. 5.13 are governed by the reorientation function (4.19), subject to the reori-

entation conditions (4.20), and the evolution equations (5.8) and (5.11).

b. Calibration of the Model Parameters

The material parameters consist of the magnetocrystalline anisotropy constant ρK1,

the saturation magnetization M sat and the maximum reorientation strain εr,max, which

follow from standard experiments described in the literature [90, 98]. Additionally,

the critical magnetic field values H s(1,2)

y , H f(1,2)

y , H s(2,1)

y and H f(2,1)

y must be specified,

which denote the start and finish of the forward and reverse magnetic field-induced

reorientation process, respectively. Fig. 16 shows how the critical magnetic fields and

the maximum reorientation strain εmaxξ crit are estimated from one positive magnetic

field-induced strain cycle at the calibration stress level, denoted σ∗

xx, which can be

arbitrarily chosen in the range between zero and the blocking stress. The plotted
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experimental data was published by Heczko et al. [44] for the Ni50.7Mn28.4Ga20.9 com-

position. In general, first estimates of the critical fields can be obtained by drawing

tangent lines to the hysteresis curves, as indicated in Fig. 16. The calibration can

then be refined by adjusting these parameters such that the best simulation of the

magnetic field-induced strain response is obtained at the calibration stress level. The

value of H f(2,1)

y was determined such that the correct residual reorientation strain was

obtained in the simulation.

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

εr xx
  

[%
]

µ
0
H

y
  [T]

s(2,1)
yH
�

s(1,2)
yH

f(1,2)
yH
�

f(2,1)
yH* 1.0 MPaσ = −

max critε ξ

Fig. 16. Calibration of the model parameters using the experimental MFIS curve at

-1.0 MPa. Solid line—model simulation, dashed line—experimental data [44].

The general relations between the material and the model parameters are listed in

Table I. They have been derived by evaluating the evolution equations for the marten-

sitic variant volume fraction in case of the forward Eq. (5.8) and reverse Eq. (5.11)

reorientation process at ξ = 0 and ξ = ξ crit, respectively, and enforcing continuity of
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the hardening function at ξ = 1. ξ crit is the maximum volume fraction of variant 2

obtained at the stress level σ∗, which can be estimated by relating the maximum re-

orientation strain for this stress level to the maximum achievable reorientation strain

εr,max. The magnetic field Hy(ξ
crit) at which the forward reorientation strain is termi-

nated prior to its completion is denoted H f̃(1,2)

y (see Eq. (5.16) for the computation of

its magnitude). The magnetic field at which the reverse reorientation process is then

activated for ξ = ξ crit < 1 is denoted H s̃(2,1)

y . For the case of complete reorientation

ξ crit is equal to 1, H f̃(1,2)

y =H f(1,2)

y and H s̃(2,1)

y =H s(2,1)

y , such that the listed relations

simplify.

Table I. Relations between material constants and model parameters.

Ac = µ0M
sat

(π−cos−1(2ξ
crit

−1))

(

H s(1,2)

y −H f̃(1,2)

y

)

− (µ0M sat)2

4πρK1

[(

H s(1,2)

y

)2

−
(

H f̃(1,2)

y

)2
]

B c

1 = 1
2
µ0M

sat
(

H s(1,2)

y +H f(2,1)

y

)

− (µ0M sat)2

8ρK1

[(

H s(1,2)

y

)2

+
(

H f(2,1)

y

)2
]

+ σ∗ εr,max

B c

2 = π
4

(

Ac − C c
)

C c = µ0M
sat

(π−cos−1(2ξ
crit

−1))

(

H f(2,1)

y −H s̃(2,1)

y

)

− (µ0M sat)2

4πρK1

[(

H f(2,1)

y

)2

−
(

H s̃(2,1)

y

)2
]

Y ξ,c = 1
2
µ0M

sat
(

H s(1,2)

y −H f(2,1)

y

)

− (µ0M sat)2

8ρK1

[(

H s(1,2)

y

)2

−
(

H f(2,1)

y

)2
]

−B c

2

The parameter set listed Table II on the next page was calibrated by employing

the described methodology and utilizing the relations of Table I.

It was observed in Fig. 16 that for this choice of parameters the model simulation

at the calibration stress level agrees well with the experimental data. For model

predictions at other stress levels the parameters are, of course, not adjusted, as this

would then result in a pure curve-fitting exercise. The details of the model predictions
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Table II. Material parameters for the considered Ni50.7Mn28.4Ga20.9 composition

[44], and the resulting hardening and hysteresis parameters calibrated at

−1.0 MPa.

Material Parameters Model Parameters

Quantity Value Unit Quantity Value Unit Quantity Value Unit

ρK1 167.0 kJm−3 µ0H
s(1,2)

y 0.39 T Ac −9.747 kPa

M sat 514.0 kAm−1 µ0H
f̃(1,2)

y 0.65 T B c

1 −34.847 kPa

εr,max 6.2 % µ0H
s̃(2,1)

y 0.35 T B c

2 54.700 kPa

σ∗ −1.0 MPa µ0H
f(2,1)

y −0.15 T C c −79.394 kPa

ξ crit 0.96 Y ξ,c 58.451 kPa

will be discussed in the following sections.

Although the outlined procedure itself is straightforward, calibrating material

parameters can be a tedious effort due to the complexity of the magnetomechanical

response of MSMA and the fact that real materials never behave as ideally as the

model assumes. The model calibration is especially cumbersome for MSMA because

the demagnetization effect makes experimental measurements difficult to interpret

[59]. Measured data has to be corrected to account for the specimen shape de-

pendence. The accurate interpretation of experimental results based magnetostatic

analysis for MSMA is discussed in Chapter VI. Advanced parameter optimization

techniques, such as constrained optimization methods [5, 131], may be also employed

to find more accurate sets of parameters.
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c. The Reorientation Diagram

With a complete model at hand, a novel variant reorientation diagram is proposed

as shown in Fig. 17. It is the graphical representation of the activation surfaces

for variant reorientation. This diagram has been constructed based on the reduced

constitutive equations presented in Section A.1.a of this chapter and the set of model

parameters listed in Table II, specifically by evaluating the reorientation conditions

Eq. (5.7) and Eq. (5.10) at ξ=0 and ξ=1, respectively.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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yH
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Fig. 17. Numerical µ0Hy − |σxx| variant reorientation diagram. The dashed line rep-

resents the magnetic loading path at the constant stress levels of -1.0 MPa.

Analogous visualizations of phase transformation surfaces in phase diagrams are

common for conventional shape memory alloys [72, 150]. A reorientation diagram for
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MSMA was previously proposed by Kiefer and Lagoudas [55] for an earlier version of

the constitutive model, in which the magnetization was assumed to be fixed to the

respective magnetic easy axes of the martensitic variants and a normalized martensitic

volume fraction was used. Other activation diagrams have been proposed by [151] for

variant reorientation and by [28] for martensitic phase transformation in MSMAs.

In accordance with the reorientation function (4.19) and the Kuhn-Tucker loading

conditions (4.20) the forward reorientation process (ξ̇ >0) in the variant reorientation

diagram is activated at the line ξ (1,2) = 0 and completed at the line ξ (1,2) = 1. The

reverse process (ξ̇ < 0) is activated at the line ξ (2,1) = 1 and terminates at the line

ξ (2,1) = 0. The activation of each process takes place only if the activation lines are

crossed in the proper loading direction, as determined by the Kuhn-Tucker loading

conditions, and the value of the variant volume fraction is such that reorientation can

occur.

The slopes of the activation lines in the reorientation diagram can be calcu-

lated from Eqs. (5.7) or (5.10), respectively, and are given by the following Clausius-

Clapeyron type relation

dσxx

dHy

= −
1

εr,max

[

µ0M
sat

−
(µ0M

sat)2

2ρK1

Hy

]

. (5.14)

A similar expression was derived by Kiefer and Lagoudas in [55] for the earlier model,

which does not account for the rotation of the magnetization vectors. Tickle et

al. [151], who also assumed that the magnetization vectors do not rotate, proposed

the relation

dσxx

dHy

= −
µ0M

sat

εr,max
, (5.15)

which has been translated into the notation used here. The two expressions (5.14)

and (5.15) for the slope of the reorientation activation lines coincide at Hy =0, i. e. the
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intersection with the stress axis, since the magnetization vectors at this field level are

aligned with the easy axes in both models.

As depicted in the reorientation diagram of Fig. 17, the loading path at the

calibration stress level of σ∗ =−1.0 MPa only intersects the reorientation activation

lines H s(1,2)

y (σxx) and H s(2,1)

y (σxx). The corresponding critical values were specified in

Table II on page 73. The line H s(1,2)

y (σxx) is not crossed, such that only partial variant

reorientation occurs is at this stress level. In other words, the stress-independent

critical value µ0H
crit = 0.65 T, at which the magnetization in both variant has fully

aligned with the applied field, is reached before the reorientation process is completed.

This issue will be discussed in detail in the following section in the context of the

interpretation of the model predictions. On the basis of the experimental data [44] it

was assumed for the parameter calibration that only 96% of the second variant are

produced during the forward reorientation process (cf. Table II). Likewise, variant

1 is not completely recovered at this stress level as the magnetic field is removed,

since the line H f(2,1)

y (σxx) is not intersected. It is important to note that for cases of

incomplete reorientation (0 < ξ < 1), the appropriate activation lines lie within the

regions bounded by the lines for ξ=0 and ξ=1 depicted in the reorientation diagram.

Several characteristic features can be concluded from the variant reorientation

diagram for this particular set of parameters: i) the blocking stress is predicted to be

-1.43 MPa. For higher stresses the forward reorientation activation line at ξ = 0 is not

intersected; ii) only in the range of 0 to -0.94 MPa is the maximum strain obtained

by complete variant reorientation. For higher stress levels the reorientation is only

partial, since the forward reorientation termination line is not intersected; iii) For this

set of parameters the model predicts that at least some of variant 1 is recovered at low

stress levels, because the activation line for the reverse process is intersected as the

field reduces to zero; iv) variant 1 can, in this case, not be fully recovered under any
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constant stress level, since the appropriate stress level is above the blocking stress.

d. Model Predictions

The Magnetic Field-Induced Strain Response

Based on the activation lines specified in the variant reorientation diagram of

Fig. 17, and the evolution of the variant volume fraction and the reorientation strain

given by Eqs. (5.8), (5.11) and (5.12), respectively, magnetic field-induced reorien-

tation strain curves have been computed for three different stress levels. Fig. 18

displays the results. To be able to easily compare the curves at different bias stresses

the reorientation strain and not the total strain has been plotted in this figure.

The curve at -1.0 MPa is the simulation of the response used for the model

calibration previously shown in Fig. 16 and it agrees well with the experimental

data. The model is thus capable of capturing the nonlinear and hysteretic nature of

the material response. The two other curves at -1.1 MPa and -1.2 MPa are model

predictions, for which the same set of parameters listed in Table II was used. 3

It is observed that the model also predicts the expected delay in the onset of

the reorientation process from the stress-favored to the magnetic field-favored variant

with an increase in the stress level. Furthermore, the model predicts the reduction of

the obtainable reorientation strain for higher stress levels.

In an earlier version of the model [54, 55, 58], in which the rotation of the mag-

netization within each variant was ignored, this stress dependence of the maximum

reorientation strain had to be provided as input. The magnetic field-induced strain

3Unfortunately experimental data was not available for comparison at these stress
levels. Nonetheless, the Heczko et al. data was chosen for the validation of the
model predictions because they also provide data for the corresponding magnetization
response.
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Fig. 18. Predicted MFIS hysteresis curves at different stress levels (solid lines) and

comparison to experimental data (dashed line) [44].

curves for the earlier model are shown in Fig. 19, where the hysteresis loop under

−5MPa has been omitted to avoid overloading the figure. It can be seen that there is

a good agreement between experimental data, which was previously shown in Fig. 6

and the model predictions. However, since the variant reorientation is the only mech-

anism for magnetization change that is accounted for, this more constrained model

leads to magnetization curves that have the same shape as the reorientations strain

curves, and thus poor representations of the magnetization response observed in ex-

periments (cf. Fig. 11 on page 26). It will be demonstrated shortly that the current

model, which accounts for the local rotation of magnetization vectors, leads to a

much better representation of the magnetization behavior of MSMA. Nonetheless,
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if mainly the field-induced strain response is of interest and a simpler easily imple-

mentable model is sought, the constrained model as presented in [54] works well.

Another characteristic feature of the MSMA response that is captured in the

model predictions shown in Fig. 18 the first cycle effect discussed in Chapter II. Sub-

sequent cycles are predicted to be symmetric, which is in agreement with experimental

observations as seen in Fig. 19.

Fig. 19. Prediction of MSMA magnetic field-induced strain response in Kiefer et

al. [58]. Experimental data (cf. Fig. 6)—dashed lines; numerical results—-

solid lines.

To explain the predicted evolution of the magnetic field-induced reorientation

strain in more detail, Fig. 20 takes a closer look at the hysteresis loop under -1.0 MPa.



80

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

εr xx
  [

%
]

µ
0
H

y
  [T]

1111

11 22

33

4455

66

78 7899

1010

1212

Fig. 20. Detail: MFIS hysteresis loop under -1.0 MPa.

Different characteristic configurations along the loading path have been numbered.

For each of them Table III shows a schematic representation of the variant volume

fraction and the magnetization rotation along with listing the corresponding values of

the applied magnetic field, and the internal state variables, namely the reorientation

strain, the variant volume fraction and the magnetization rotation angle. It should

be emphasized that the schematics shown in Table III are only designed to illustrate

the connection of the macroscopic behavior to the evolution of the internal state

variables. They do not represent the actual distribution of the variants throughout a

single crystal specimen.

Since it has been assumed that the error made by neglecting the magnetic domain

wall motion at low magnetic fields is small, the single variant configuration 1 only
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consists of a single magnetic domain. The magnetic field of 0.2 T in configuration 2 is

not sufficient to initiate the rearrangement of variants against the mechanical stress

and the internal resistance to twin boundary motion. This field causes the magneti-

zation vector in variant 1 to rotate, by 17.9
◦
, and thus changes the magnetization of

the specimen, but does not produce any reorientation strain.

Table III. Configuration schematics and data for the strain hysteresis curve at

−1.0 MPa.

# Schematic µ0Hy εr
xx ξ θ3(θ1)

1 0.0 T 0.0 % 0.0 0.0
◦

2 0.2 T 0.0 % 0.0 17.9
◦

3 0.48 T 3.1 % 0.5 47.6
◦

4 0.65 T 5.95 % 0.96 90.0
◦

5 0.4 T 5.95 % 0.96 38.0
◦

6 0.18 T 4.65 % 0.75 16.1
◦

7 0.0+ T 1.65 % 0.27 0.0
◦

8 0.0- T 1.65 % 0.27 0.0
◦

9 −0.2 T 1.65 % 0.27 17.9
◦

10 −0.5 T 3.1 % 0.5 47.6
◦

11 −0.65 T 5.95 % 0.96 90.0
◦

12 0.0- T 1.65 % 0.27 0.0
◦
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By increasing the magnetic field to the critical value, which is 0.39 T in this case

(cf. Fig. 17 and Table II), the reorientation process is initiated and variant 2 nucleates.

In configuration 3, at 0.48 T, the variant rearrangement has produced 50 % of variant

2, or 3.1% MFIS, while the magnetization has rotated by 47.6
◦
. The stress of -1.0

MPa, which favors variant 1 and therefore counteracts the reorientation process, is

higher than the resistance against 90
◦

rotation of the magnetization in variant 1, as

dictated by the magnetocrystalline anisotropy energy. The magnetization in variant

1 therefore aligns with the external field before the reorientation process is completed,

as indicated in schematic 4. Only 96 % of variant 2 and therefore 5.95 % reorientation

strain can be magnetically induced at this stress level. The physical justification for

this effect is given by the consideration that when the magnetization in variant 1

has completely aligned with the magnetic field the Zeeman energy difference across

the twin boundary vanishes and the driving force Eq. (5.5) does no longer depend

on the magnetic field. Thus the reorientation process is terminated prematurely.

This mechanism explains the reduction of the maximum magnetic field-induced with

increasing stress levels in the presented modeling approach.

According to Eq. (5.3) the critical magnetic field at which the magnetization in

variant 1 has fully rotated is in the limit of θ3→
π
2

given by

µ0H
crit

y =
2ρK1

M sat
= 0.65 T . (5.16)

Note that the critical field is independent of the applied stress. The relative position of

the critical field and the activation and termination fields for the forward reorientation

process determine the amount of strain produced at each stress level. As previously

observed from the variant reorientation diagram in Fig. 17, the magnetic field-induced

strain ranges from 0 % at the blocking stress to its theoretical maximum of 6.2 % for

stresses below |σxx|=0.94 MPa.
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When the magnetic field is subsequently decreased below H crit

y , to 0.4 T in con-

figuration 5, for example, the magnetization in variant 1 rotates back towards the

magnetic easy axis but the MFIS stays constant. It must be emphasized that the

activation field for the reverse reorientation process is not 0.55 T, as the variant re-

orientation diagram in Fig. 17 suggests for ξ= 1, but rather at 0.35 T, which is the

appropriate activation field for ξ = 0.96. By further lowering the field variant 2 is

reduced to 75 % at 0.18 T in configuration 6, while the magnetization rotation angle

in variant 1 has decreased to 16.1
◦
. However, for this stress level, not all of variant

1 is recovered, even at complete removal of the magnetic field, and a residual MFIS

of 1.65 % remains in configuration 7. As evident from Fig. 18 as well as the variant

reorientation diagram, higher compressive stresses help to recover a greater amount of

variant 1. At zero field in configuration 7 the magnetization vectors in both variants

are aligned with their respective easy axes. Since the effect of domain wall motion

at low magnetic fields has been neglected, a remnant macroscopic magnetization is

predicted by the model.

With the application of a negative magnetic field, the magnetization in both

variants is assumed to instantaneously switch directions as indicated in schematics

7 and 8. In configuration 9 the ratio of variants remains unchanged, but the mag-

netization has rotated by 17.9
◦
. Due to the mixture of variants, the activation of

the reorientation process under a negative magnetic field is slightly delayed compared

to the positive field hysteresis loop, and occurs at -0.45 T, which is the appropriate

activation value for ξ= 0.27. After the activation of the reorientation process through

the magnetic field in the negative y-direction, the evolution of the magnetic field-

induced strain is symmetric to its positive counterpart described above in detail, and

is consistent with the microstructure schematically shown in configurations 10 and

11. In terms of the residual strain, configuration 12 at the end of the negative loop
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is identical to configurations 7 and 8 at the end of the positive and beginning of the

negative loop, respectively. Unless a single variant configuration is purposely restored

by temporarily raising the stress level, the reorientation strain that is obtainable in

subsequent cycles is limited to 4.3 %, which is the difference in strain between the

configurations 7 (or 8, 9, 12) and 4 (or 5, 11). The reduction of the obtainable MFIS

is thus limited to the first cycle and hence the term first cycle effect. It should also be

clear that if the negative magnetic field had been applied first, the resulting hysteresis

loop had been the mirror image of the presented one.

The Magnetization Response

The strong coupling between the deformation and changes in the magnetization

that are characteristic of MSMA constitutive response is made evident by consider-

ing the corresponding nonlinear magnetization hysteresis curves. The magnetic field-

induced magnetization curves plotted in Fig. 21 have been computed using Eq. (5.13)

in addition to the evolution equations for the variant volume fraction Eqs. (5.8) and

(5.11). All of the depicted curves represent model predictions, since the model pa-

rameters were entirely calibrated using information from experimental strain curves.

The schematics of Table III again prove helpful to understand the connection

between the evolution of the internal variables and the macroscopic material response,

especially for the magnetization curve at −1.0 MPa.

At low magnetic fields, when the material is in its initial single variant state, the

My-curve represents the magnetization of variant 1 along its magnetic hard axis, which

occurs via magnetization rotation. The magnetization My, according to Eq. (5.13), is

predicted to have a linear dependence on Hy in this region, since only the first term in

the expansion of the anisotropy energy Eq. (3.1c) has been considered, which agrees
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Fig. 21. Predicted magnetization hysteresis curves at different stress levels (solid lines)

and comparison to experimental data [44] at −1.0 MPa (dashed line).

well with the experimental observations. From Eq. (5.13), a slope of 1.53 T−1 has

been calculated, a result which is in excellent agreement with the experimental data

(dashed line) measured by Heczko et al. [44]. According to Eq. (5.3), the magnetiza-

tion rotation is independent of the applied stress and all curves coincide in this initial

region. The abrupt deviation from linearity of the magnetization curves occurs when

the stress-dependent critical magnetic field is reached and the variant rearrangement

is initiated. The magnetization in this region changes via the mechanism of variant

rearrangement as well as magnetization rotation. The influence of the variant 2 mag-

netization becomes more prominent as the reorientation process progresses. When the

critical magnetic field for full magnetization rotation in variant 1 has been reached,
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the reorientation process is terminated and the material is magnetized to saturation

in the direction of the applied magnetic field.

Since the forward reorientation process is not completed for this stress level, the

magnetization rotation in the residual variant 1 volume fraction is reduced when the

magnetic field is subsequently decreased below H crit, resulting again in a linear vari-

ation of the magnetization. The slope, however, is different from the one initially

observed for variant 1 at low magnetic fields, since 96 % of the material still consist

of variant 2, whose magnetization remains unaffected by the decrease of the magnetic

field. Another abrupt nonlinear change in the magnetization occurs when the reverse

reorientation process is activated. Due to the residual variant 2 volume fraction of

27 %, a remnant magnetization is predicted at zero applied field, even though the

magnetization in variant 1 has rotated back to its reference configuration. The model

also predicts a jump of the magnetization curve as the applied field switches sign. As

discussed, this discontinuity is a direct consequence of neglecting the mechanism of

domain wall motion. The prediction of magnetization curves in this region thus devi-

ates from the experimental measurements. However, the importance of this difference

has not been deemed sufficient to justify raising the level of complexity of the model

by accounting for the complicated evolution of the magnetic domains. This is only

necessary if the main goal is to predict the MSMA magnetization response at low

magnetic fields. It is thus concluded that for actuator applications the assumption of

a fixed magnetic domain structure yields sufficiently accurate predictions of the mag-

netic field-induced strain and magnetization response of MSMAs. Model predictions

which account for the magnetization change due to magnetic domain wall motion at

very low stress levels and low magnetic fields are presented next.
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2. Variable Magnetic Domain Structure

It was demonstrated in the previous section that the assumption of a fixed magnetic

domain structure leads to reasonable predictions of the magnetization behavior for

stress levels at which most of the initial variant is recovered. It is observed in ex-

periments [4, 44, 51], however, that low compressive stresses can be insufficient to

even partially restore the stress-favored variant 1. If no reverse reorientation occurs

a residual strain of magnitude εmax remains at zero applied field and this mechanism

can not contribute to changing the magnetization of the material. The remaining

variant 2 has its easy axis aligned with the applied field such that also no local ro-

tation of its magnetization occurs. The vanishing of the macroscopic magnetization

as the applied field is removed, cf. Fig. 11, can at low stresses thus only be explained

by magnetic domain wall motion. With the assumption of a fixed magnetic domain

structure as used in the previous section the model would, however, predict a remnant

magnetization of M sat. At such low stress levels, the evolution of magnetic domains

can therefore not be neglected. This mechanism is already incorporated in the general

form of the constitutive model introduced in Chapter IV. Reduced model equations

for the considered loading case with the possibility of magnetic domain wall motion

shall now be derived.

a. Reduced Model Equations

Enforcing the constraint (4.13b) on θ1 and utilizing Eq. (4.11a) leads to

πθ1 := −(1 − ξ)(1 − α)
[
µ0M

sat
Hy + 2ρK1 sin(θ1)

]
cos(θ1) = 0 . (5.17)

It follows that

sin(θ1) = −
µ0M

sat

2ρK1

Hy , (5.18)
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for 0 ≤ θ1 <
π
2
, 0 ≤ ξ < 1 and 0 ≤ α < 1. The equivalent relation for θ3 was derived

as Eq. (5.3) in the previous section. Note that

sin(θ1) = − sin(θ3) . (5.19)

The corresponding constraints on the remaining rotation angles, with Eqs. (4.11b)

and (4.11d), are identically satisfied for θ2 =θ4 =0.

The derivation of the expression for the driving force πα and the associated

evolution of magnetic domains is similar to that conducted in Appendix C in the

context of predicting the magnetization of the constrained MSMA single crystal. For

the considered loading conditions, the constraint (4.13a) on the driving force for

magnetic domain wall motion, Eq. (4.10c), takes the form

πα =(1 − ξ)
[

µ0M
sat

[
sin(θ1) + sin(θ3)

]
Hy − ρK1

[
sin2(θ1) − sin2(θ3)

]]

+ 2ξµ0M
sat
Hy −

∂f α

∂α
= 0 . (5.20)

Again assuming a hardening behavior of the type ∂f
α

∂α
= aα + b, and utilizing the

relation (5.19), Eq. (5.20) can be written as

aα+ b = 2ξµ0M
sat
Hy . (5.21)

With the conditions α(Hy = 0) = 1/2 and α(Hy = H crit,α) = 1 the evolution equation

for the magnetic domain volume fraction is derived from Eq. (5.21) as

α =
ξHy +H crit,α

2H crit,α
. (5.22)

Recall thatH crit,α has been defined to be the critical field at which magnetic saturation

is achieved through domain wall motion.

The driving force for variant rearrangement, using Eqs. (4.10a), (4.10b) and
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(4.17), takes the form

πξ = σxxε
r,max − µ0M

sat
(1 − 2α)Hy −

(µ0M
sat)2

4ρK1

H2
y −

∂f ξ

∂ξ
. (5.23)

Note that for α= 1 Eq. (5.23) appropriately reduces to Eq. (5.5). For the forward

reorientation process, with trigonometric hardening (cf. Eq. (4.24)) and substituting

Eq. (5.22), it then follows

πξ = σxxε
r,max +

µ0M
sat

H crit,α
ξHy −

(µ0M
sat)2

4ρK1

H2
y + A

c
[
π − cos−1(2ξ − 1)

]

−B
c

1 −B
c

2 = Y
ξ,c
. (5.24)

This equation describes the evolution of the variant volume fraction under the simul-

taneous rotation of the magnetization vectors and the motion of magnetic domain

walls in both variants. Due to its transcendental nature it can not be solved for ξ

in closed-form. If one assumes a quadratic polynomial harding behavior of the form

(4.21), rather than the trigonometric hardening assumed here, a closed-form solution

for ξ can be found. However, the implementation of the model in which all three

mechanism for magnetization change are simultaneously active has proven to be very

difficult. Preliminary analysis with a quadratic polynomial suggests that a simple

linear variation of the term ∂f
α

∂α
leads to an unsatisfactory evolution of the magnetic-

field induced strain in the reorientation region. The use of other hardening functions,

which lead to an exponential evolution of the magnetic domain volume fraction may

yield the desired result.

Here, the motion of magnetic domain walls will be considered only in magnetic

field regimes in which no variant reorientation occurs. This assumption is very reason-

able for those low stress levels at which no reverse reorientation is induced. Initially

the magnetic domain volume fraction takes the value of α=0.5, which is consistent
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with Eq. (5.24) when evaluated at ξ=0, and leads to a macroscopic magnetization of

zero. For the forward reorientation process, which occurs at relatively high magnetic

fields it is assumed as in the previous section that α=1. Since the reverse reorienta-

tion process does not occur at the considered stress levels, no further assumptions on

the evolution of the magnetic domain wall motion have to be made. The evolution

of α is then properly described by Eq. (5.22).

The reorientation strain equations (5.12) are unaffected by the evolution of α,

since only cases are considered for which it is reasonable to assume that the variant

reorientation and magnetic domain wall motion do not occur simultaneously. The

y-component of the magnetization, using Eqs. (4.4), (5.3) and (5.18) in Eq. (4.9c), is

derived to be

My = ξM
sat

(2α− 1) + (1 − ξ)
µ0(M

sat)2

2ρK1

Hy . (5.25)

The evolution of α for fixed ξ is given by Eq. (5.22). The evolution of ξ is coupled

to the condition α = 1 and is then described by Eq. (5.8). Alternatively, the same

expression follows from solving Eq. (5.24) for ξ at α=1.

b. Calibration of the Model Parameters

In principle the same set of parameters as that listed in Table II on page 73 could

be used here. However, as can be deduced from the variant reorientation diagram of

Fig. 17 on page 74, these parameters lead to the prediction of a partial recovery of

variant 1 at the stress level of −0.2 MPa, which is inconsistent with the experimental

strain data at this stress level [44]. In order to obtain a more accurate account of the

magnetic field-induced strain response at low stress levels the alternative parameter

set specified in Table IV is used, which was obtained from a calibration at −0.2MPa.
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Table IV. Material parameters for the Ni50.7Mn28.4Ga20.9 composition [44], and the

resulting hardening and hysteresis parameters when calibrated at −0.2MPa.

Material Parameters Model Parameters

Quantity Value Unit Quantity Value Unit Quantity Value Unit

ρK1 167.0 kJm−3 µ0H
s(1,2)

y 0.22 T Ac −12.683 kPa

M sat 514.0 kAm−1 µ0H
f(1,2)

y 0.36 T B c

1 −3.730 kPa

εr,max 6.2 % µ0H
s(2,1)

y 0.0 T B c

2 9.188 kPa

σ∗ −0.2 MPa µ0H
f(2,1)

y −0.135 T C c −24.382 kPa

ξ crit 1.0 µ0H
crit,α 0.22 T Y ξ,c 76.080 kPa

c. The Reorientation Diagram

The reorientation diagram in Fig. 22 was computed based on the set of parameters

listed in Table IV that where determined from a calibration at −0.2 MPa. This

diagram is the equivalent of that shown in Fig. 17 for which the model parameters

were found from the calibration at −1.0 MPa. In principle one could of course have

chosen to use just one calibration for all loading cases. However, the model calibration

at −1.0 MPa has proven to be fairly accurate in a relatively wide range of stresses,

while the calibration at −0.2 MPa leads to a more accurate prediction of the residual

strain at very small stresses, which are considered in this section.

In the considered loading case the magnetic field is applied at a constant stress

of −0.2 MPa, as indicated by a dashed line in the reorientation diagram. Several

characteristic points in this loading sequence have been labeled A → E. Following the

discussion from the beginning of this section, the magnetic domain wall motion is only

considered at low stress levels and low magnetic fields, for which the reorientation
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Fig. 22. Variant reorientation diagram for the parameters listed in Table IV. Loading

path for model calibration A → E.

process does not occur simultaneously.

d. Model Predictions

The magnetic field-induced reorientation strain response is computed by evaluating

Eqs. (5.8) and (5.12) with the reorientation conditions given by Eq. (4.20) and utilizing

the parameters set listed in Table V. The magnetization in the direction of the applied

field follows from additionally evaluating the relations (5.8), (5.22) and (5.25). The

results have been plotted in Figs. 23 and 24, respectively.

It is observed that the simulation of the magnetic field-induced strain evolution

as well as the prediction of the magnetization response agree rather well with the ex-
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perimental data. The connection between the macroscopic response and the evolution

of the internal variables, which capture the main characteristic features of the crys-

tallographic and magnetic microstructure, shall again be discussed in detail. Table

V shows schematics for the sequence of numbered configurations defined in Fig. 24.

These are analogous to the schematics presented in Table III, with the difference that

in this case the motion of magnetic domain walls has not be neglected.
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Fig. 23. Simulation of the magnetic field-induced strain response at −0.2 MPa. Solid

line—model, dashed line—experiment [44].

In configuration 1 the magnetization vectors are arranged along the easy axis

of variant 1 and both domain types are of equal volume fraction, such that the

macroscopic magnetization is zero. As the magnetic field is applied perpendicularly

to this easy axis in configuration 2, the equally unfavorably oriented magnetization

vectors of both domains rotate towards the direction of the applied field. Upon
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Fig. 24. Prediction of the magnetization response at −0.2 MPa when accounting for

partial magnetic domain wall motion. Solid line—model, dashed line—exper-

iment [44].

reaching the critical field of 0.22 T the forward reorientation process is initiated and

unfavorable magnetic domains have been assumed to be eliminated instantaneously

(see discussion in Chapter II, Section B). Configuration 3 is therefore predicted to

consist of a mixed variant arrangement, but only magnetic domain 2.

The critical field value of 0.36 T has been reached in configuration 4, and the

forward reorientation process is completed. This results in the depicted single variant,

single domain configuration. When the magnetic field is subsequently lowered below

the critical value of µ0H
crit,α = 0.22 T, to 0.11 T in configuration 5 for example,

magnetic domain wall motion sets in and the macroscopic magnetization is reduced,

even though variant reorientation does not occur. At zero field in configuration 6

the overall magnetization is again zero, but this time because the magnetization
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Table V. Configuration schematics and data for the strain hysteresis curve at −0.2MPa

with partial magnetic domain wall motion.

# Schematic µ0Hy εr
xx ξ θ1, θ3 α

1 0.0 T 0.0 % 0.0 0.0
◦
, 0.0

◦
0.5

2 0.2 T 0.0 % 0.0 −17.9
◦
, 17.9

◦
0.5

3 0.284 T 3.1 % 0.5 — , 25.9
◦

1.0

4 0.36 T 6.2 % 1.0 — 1.0

5 0.11 T 6.2 % 1.0 — 0.75

6 0.0 T 6.2 % 1.0 — 0.5

7 −0.11 T 6.2 % 1.0 — 0.25

8 −0.22 T 6.2 % 1.0 — 0.0

9 0.0 T 6.2 % 1.0 — 0.5

vectors in both domains are oriented along the easy axis of variant 2, with opposing

orientations. As a negative magnetic field is applied no variant reorientation occurs,

since the material already consists entirely of the magnetic field-favored variant 2.

The magnetic domain wall motion such as depicted in configuration 7, however, leads

to magnetic saturation in configuration 8, at which point the critical value of −H crit,α

has been reached. When the magnetic field is removed configuration 9 is obtained,

which is identical to configuration 6. Thus the macroscopic magnetization again

vanishes, while the field-induced strain remains.
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It has thereby been demonstrated that allowing for magnetic domain wall motion

significantly improves the accuracy of the magnetization predictions at low stresses.

B. Loading Case 2: Variable Compressive Uniaxial Stress at Different Levels of a

Perpendicular Magnetic Field

The second loading case of practical interest is the reorientation of martensitic vari-

ants under mechanical loads at constant magnetic field. Such loading occurs, for

example, when the compressive stress level is raised to restore the initial single vari-

ant 1 configuration between each magnetic cycle of the experiments modeled in the

previous section (cf. Fig. 18 on page 78). It is demonstrated in this section that

the model, without adjustment of the model parameters, is capable of also predict-

ing the reorientation strain and magnetization response caused by the stress-induced

reorientation of variants at different magnetic field levels.

Different loading paths for which the response will be predicted are indicated by

dashed lines in the variant reorientation diagram shown in Fig. 25. This reorientation

diagram is equivalent to the one shown in Fig. 17 on page 74, and is based on the

parameters calibrated at −0.2 MPa (cf. Table IV on page 91), instead of −1.0 MPa.

This set of parameters was chosen here because it is again important to accurately

predict the residual strain at low stress levels. The model predictions in this case

are based on parameters which were determined from magnetic field-induced strain

curves under constant magnetic field. No experimental data from the response under

mechanical loading at constant magnetic field was used in the calibration of the model.

This emphasizes the fact that this modeling approach is not merely a curve-fitting

exercise.

As depicted in the variant reorientation diagram, the sequence of loading is such
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Fig. 25. Loading paths in the µ0Hy-|σxx| variant reorientation diagram. Exemplary

loading path E → H.

that initially the magnetic field is raised as before to 1 T under the constant stress of

−0.2 MPa and then lowered to the magnetic field H exp

y , which in the different cases

takes the values of 0.0, 0.2, 0.4, 0.6 or 0.8 T. This initial magnetic field loop at constant

stress serves the purpose of establishing a well defined starting configuration for the

mechanical loading sequence. At the respective field levels the compressive stress is

increased to −5.0 MPa, and then lowered back to −0.2 MPa. Finally the magnetic

field is removed under constant stress. A typical loading path at µ0H
exp

y = 0 T has

been labeled with the letters E→H to clarify the sequence of loading.

Since the same components of the stress and magnetic field as in loading case 1 are
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applied here, even though the stress is now variable and the magnetic field constant,

the same set of reduced model equations apply. Partial magnetic domain wall motion

will again be taken into account at magnetic fields below H crit,α. The magnetic field-

and stress-induced MSMA response is thus described by Eqs. (5.8), (5.11) and (5.12),

with the reorientation conditions given by Eq. (4.20). Special attention must be paid

to the response to mechanical loading at magnetic field levels below H crit,α because

magnetic domain wall motion does occur at these field levels. At µ0Hy = 0 T, the

magnetic domain volume fraction α takes the value of 0.5 according to Eq. (5.22).

The driving force for reorientation πξ, however, as specified by Eqs. (4.10a), (4.10b)

and (4.17), is independent of α at µ0Hy = 0 T, such that

πξ = σxxε
r,max −

∂f ξ

∂ξ
. (5.26)

The stress-induced evolution of ξ at 0 T can thus still be described by Eq. (5.11),

which was derived for α=1.

The predicted stress-induced reorientation strain response at different magnetic

field levels is shown in Fig. 26 along with the initial magnetic field cycle at −0.2MPa

(dashed line), which has previously been shown in Fig. 23. The labels A→E refer to

the initial magnetic loading paths at the constant stress level of −0.2 MPa for which

the response was previously shown in Figs. 23 and 24. The labels E→H refer to the

subsequent stress loading cycle at the exemplary constant magnetic field level of 0

T. In Figs.22 and 25 both parts of this three-dimensional loading paths were also

indicated in the reorientation diagram. It is always very instructional to draw the

connection between the loading paths in the reorientation diagram and the predicted

response. An interesting feature of this three-dimensional plot is that it contains some

of the types of plots shown earlier. For instance, the projection of all curves onto the

back wall, plane σxx =0, produces a two-dimensional strain-magnetic field plot such as
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Fig. 26. Stress-induced reorientation strain vs. stress and magnetic field. Initial con-

stant stress loop at -0.2 MPa.

the one depicted in Fig. 18, with the addition of vertical lines for the stress-induced

hystereses loops. If one projects the start and finish points for the reorientation

process onto the bottom plane εr
xx =0 and connects them with lines, one obtains the

variant reorientation diagram of Fig. 25. The projection of the strain curves onto the

side wall, plane µ0Hy =0, produces a two-dimensional strain-stress plot, in which the

response curves are parameterized by the value of the constant field µ0Hy. The result

of such a projection is shown in Fig. 27, where for convenience, however, the induced

reorientation strain has been plotted as a function of the absolute value of the stress.

Two aspects of the predicted response deserve to be emphasized. First, it is ob-

served that the reorientation process is always completed under mechanical loading,
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Fig. 27. Stress-induced reorientation strain vs. stress at different levels of µ0Hy.

which results in the full recovery of the inelastic strain by stress increase at all mag-

netic field levels. This is explained by the fact that the magnetic part of the driving

force for reorientation in Eq. (5.5) vanishes at full alignment of the magnetization

with the applied field, the mechanical part of the driving force does not. This aspect

will be explained in more detail shortly.

Secondly, these cases illustrate the loading history dependence of the constitutive

response which the model is able to capture by accounting for the evolution of the

microstructure through internal state variables. The sequence of loading significantly

influence the response and determines the value of the residual strain. At 0.22 T,

for example, the reorientation strain is fully recovered under stress application and

no residual strain is observed after unloading. If, however, the stress is raised at the

magnetic field level of 0.4 T, a residual strain of 6.2 % associated with the magnetic
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field-favored variant remains after unloading, although the reorientation strain was

temporarily recovered. The material response therefore depends not only on the

current values of the independent state variables stress and magnetic field, but also

on the loading history, which is reflected in the values of the internal state variables.
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Fig. 28. Detail: Stress-induced reorientation strain hysteresis loop at 0.4 T.

Fig. 28 takes a closer look at the stress-induced reorientation strain response

at the exemplary magnetic field level of 0.4 T. The configurational schematics of

Table VI again illustrate the connection between the evolution of the internal state

variables and the observed macroscopic response. Due to the prior magnetic loading,

the material in configuration 1 consists entirely of the second magnetic field-favored

variant. Raising the compressive stress level initiates the reverse variant reorientation

process at the stress corresponding to configuration 2. At −3.1 MPa in configuration
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3 half of variant 1 has been recovered. The process is completed in configuration

4. At the elevated magnetic field level of 0.4 T, however, this stress-induced variant

can not be sustained, and the forward reorientation process is again initiated and

completed in configurations 5–7, as the stress is subsequently lowered. Configuration

8 at the end of the mechanical loading cycle is identical to configuration 1. Similar

explanations of the response apply to all other loading paths.

Table VI. Configuration schematics and data for the strain hysteresis curve under

variable σxx and µ0Hy = 0.4 T.

# Schematic σxx εr
xx ξ θ3

1 −0.20 MPa 6.2 % 1.0 —

2 −2.49 MPa 6.2 % 1.0 —

3 −3.10 MPa 3.1 % 0.5 38
◦

4 −3.71 MPa 0.0 % 0.0 38
◦

5 −0.98 MPa 0.0 % 0.0 38
◦

6 −0.66 MPa 3.1 % 0.5 38
◦

7 −0.34 MPa 6.2 % 1.0 —

8 −0.20 MPa 6.2 % 1.0 —

The corresponding stress-induced magnetization curves are shown in Fig. 29.

Again, to promote an easier interpretation, the projection of these curves onto the

plane Hy =0 is plotted in Fig. 30. These curves have been computed from relations
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Fig. 29. Normalized magnetization vs. stress and magnetic field. Initial constant stress

loop at -0.2 MPa.

(5.8), (5.22) and (5.25). The response to the initial magnetic field cycle at −0.2MPa,

which has previously been shown in Fig. 24, is again depicted as a dashed line. A

careful comparison of the results reveals that these magnetic field-induced magneti-

zation hysteresis curves exhibit a different behavior than that predicted in Fig. 21 for

loading case 1. The explanation is given by the fact that since the stress is applied

at constant magnetic field, the mechanism of magnetization rotation is not activated.

As depicted in Schematics 3–6 of Table VI, the magnetization vector in variant 1

remains constant at the rotation angle appropriate for the magnetic field level and

the magnetization vector of variant 2 is fixed to its magnetic easy axis.

At magnetic field levels above µ0H
crit,α = 0.22 T, where magnetic domain wall



104

Fig. 30. Normalized magnetization vs. stress at different levels of µ0Hy.

motion can be neglected, the only mechanism that leads to changes in the magne-

tization under mechanical loading at constant magnetic field, is the stress-induced

reorientation of variants. In loading case 1 the mechanism of magnetization rotation

was also active during variant reorientation. For case 1 it was predicted, in agreement

with experimental observations, that the reorientation strain is only partially induced

in some cases, and that the magnetization changes from zero to the saturation value

M sat at all stress levels. In loading case 2 just the opposite effect is observed. Un-

der mechanical loading the maximum reorientation strain is induced at all magnetic

levels, whereas only partial changes of the magnetization occur. The macroscopic

magnetization does not reduce to zero at the magnetic field levels of 0.22 T, 0.4 T,

0.6 T and 0.8 T, even if the material at elevated compressive stresses entirely consist

of variant 1, because the magnetization vector of this variant remains at a constant

rotation angle and thus always has a non-zero y-component. At 0.8T, which is above
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H crit, the magnetization in both variants is fully aligned with the constant applied

field and no change in the magnetization is observed, even though it is clear from

the strain response shown in Fig. 26 that variant reorientation occurs. Likewise, no

change in the magnetization is observed at 0 T, but the reason in this case is that in

the absence of an external field the arrangement of magnetic domains again is such

that the overall magnetization is zero.

The constitutive model has therefore successfully been employed to capture the

response of MSMA as caused by the stress-induced reorientation of martensitic vari-

ants. In the following loading case, it will be demonstrated that a magnetic field

collinear with the applied stress can also be used to recover the residual reorientation

strain, but that during this process one more internal mechanism for magnetization

change is activated which further raises the complexity of the predicted response.

C. Loading Case 3: Variable Magnetic Field Collinear to a Constant Compressive

Uniaxial Stress at Different Levels of a Perpendicular Magnetic Field

Since variant 1 is not only favored by the compressive stress σxx, but also by a

magnetic field in that same direction, due to the fact that it corresponds to the easy

axis of variant 1, such a field can similarly be used to recover the residual reorientation

strain at the end of a magnetic loading cycle. The MSMA response under such loading

is modeled in this section.

This leads to the simplifying assumptions that σxx = const. ≤ 0 is the only

non-zero component of the stress and Hx and Hy are the non-zero components of the

magnetic field, where Hx is variable and Hy is constant. Since the effect of magnetic

domain wall motion under two components of the magnetic field is extremely difficult

to analyze, such loading will in this section only be considered at magnetic field
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levels for which it is save to assume that unfavorable domains have been eliminated

such that α= 1. The purpose of this analysis is to show that modeling the MSMA

response to the additional application of a magnetic field which is collinear to the

applied stress significantly increases the complexity of the governing equations and

leads to a magnetomechanical response that is different in nature than the response

observed in loading cases 1 and 2. This analysis shall not be further complicated by

accounting for the evolution of magnetic domains, which is only of interest at low

fields.

The reduced form of the driving force for variant rearrangement is then derived,

under the specified assumptions, from the definition (4.17) by using Eqs. (4.10a) and

(4.10b), which yields

πξ := σxxε
r,max − ρ

∂ĝ

∂ξ

= σxxε
r,max + µ0M

sat
[

−
[
cos(θ3) + sin(θ4)

]
Hx −

[
sin(θ3) − cos(θ4)

]
Hy

]

+ ρK1

[
sin2(θ3) − sin2(θ4)

]
−
∂f ξ

∂ξ
.

(5.27)

The following additional constraints are derived from Eqs. (4.11c), (4.11d) and (4.13b)

πθ3 := −ρ
∂ĝ

∂θ3

= 0 ⇒ µ0M
sat

[Hy −Hx tan(θ3)] − 2ρK1 sin(θ3) = 0 , (5.28)

for 0≤ξ<1, 0≤θ3<
π
2

and

πθ4 := −ρ
∂ĝ

∂θ4

= 0 ⇒ µ0M
sat

[Hx +Hy tan(θ4)] + 2ρK1 sin(θ4) = 0 , (5.29)

for 0 < ξ ≤ 1, 0 ≤ θ4 <
π
2
. An explicit closed-form solution of the transcendental

equations Eqs. (5.28) and (5.29) for the rotation angles θ3 and θ4 can not be found,

except for the special case of Hy =0, so that numerical solutions have to be obtained.

Following the same procedure used in Sections A and B of this chapter for the



107

loading cases 1 and 2, the evolution of the variant volume fraction for the forward

reorientation process (V1 → V2) is derived from Eq. (5.27) and the reorientation

conditions (4.20), using Eq. (4.24), as

Φ
ξ
ξ̇ = 0 ⇒ Φ

ξ
= 0 ⇒ πξ = Y

ξ,c
.

ξ
(1,2)

=
1

2
cos

(
1

Ac

[

σxxε
r,max + µ0M

sat
(

− [cos(θ3) + sin(θ4)]Hx − [sin(θ3) − cos(θ4)]Hy

)

+ ρK1 sin2(θ3) − ρK1 sin2(θ4) −B
c

1 −B
c

2 − Y
ξ,c

]

+ π

)

+
1

2
. (5.30)

And for the reverse reorientation process (V2 → V1)

Φ
ξ
ξ̇ = 0 ⇒ Φ

ξ
= 0 ⇒ πξ = −Y

ξ,c
.

ξ
(2,1)

=
1

2
cos

(
1

C c

[

σxxε
r,max + µ0M

sat
(

− [cos(θ3) + sin(θ4)]Hx − [sin(θ3) − cos(θ4)]Hy

)

+ ρK1 sin2(θ3) − ρK1 sin2(θ4) −B
c

1 +B
c

2 + Y
ξ,c

]

+ π

)

+
1

2
. (5.31)

The reorientation strain is still of the form Eq. (5.12). The components of the

magnetization, using Eqs. (4.4) and (4.9c), are in this case give by

Mx = (1 − ξ)M
sat

cos(θ3) − ξM
sat

sin(θ4) ;

My = (1 − ξ)M
sat

sin(θ3) + ξM
sat

cos(θ4) ; (5.32)

Mz = 0 .

The evolution of ξ in the above equations is governed by Eqs. (5.30) and (5.31) and

is subject to the reorientation conditions Eq. (4.20). In this case the magnetization

rotation angles can not be eliminated in closed-form. In the example presented below
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a point wise numerical solution was obtained by enforcing the constraints (5.28) and

(5.29), respectively, while solving for ξ and then evaluating εr and M.
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Fig. 31. Loading paths in the µ0Hx-µ0Hy variant reorientation diagram at −0.2 MPa.

The reorientation diagram in µ0Hx-µ0Hy space, shown in Fig. 31, was plotted

based on these equations. This particular diagram represents a different cross-section

of the same multi-dimensional reorientation diagram for which a cross-section at

Hx = 0 in µ0Hx-|σxx|-space was previously presented in Figs. 17 and 25. Dashed

line indicate the loading at constant values of µ0Hy. The diagram is again based on

the same set of material parameters of Table IV on page 91 that were obtained from

a MFIS hysteresis loop at −0.2MPa. Alternatively, the model parameters could have

been calibrated from the reduced set of equations presented in this section. Ideally

this would result in the same set of parameters. Similarly the parameters in con-
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ventional SMAs found in an isobaric test should be the same as those found in an

equivalent isothermal test [72], but they are usually slightly different.

Fig. 32. Magnetic field-induced reorientation strain vs. two components of the mag-

netic field at a constant stress of −0.2 MPa.

The sequence of loading in this case is similar to that of loading case 1. Initially

the magnetic field component Hy is applied at constant stress and Hx =0, raised to

1 T and then lowered to 0.4 T, 0.6 T or 0.8 T, respectively. This again establishes a

well-defined initial configuration for subsequent loading. Instead of raising the stress

level the magnetic field component Hx is applied in this case, while the stress and the

components Hy are kept constant. Fig. 32 depicts the predicted reorientation strain

response. The projection of these curves is shown in Fig. 33.
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Fig. 33. Magnetic field-induced reorientation strain vs. the x-component of the mag-

netic field at different levels of µ0Hy and σxx =−0.2 MPa.

A close inspection of these curves reveals that the nature of the reorientation

strain evolution is different than that of the response previously observed. This is

due to the fact that an additional mechanism is activated, namely the rotation of

the magnetization vector in variant 2. In the prior loading cases 1 and 2 such a

rotation did not occur, since the magnetic field was applied along the easy axis of

variant 2. Fig. 34 is analogous to Fig. 28 and takes a closer look at the collinear

magnetic field-induced reorientation strain evolution at Hy = 0.4 T. Table VII con-

tains the corresponding schematics that have again been created for a few interesting

configurations along the loading path. It also lists the internal state variable data.

Configuration 1 in Table VII is identical to that of Table VI on page 102. The

application of the Hx field results in a rotation of the magnetization vector in variant
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Fig. 34. Detail: Hx-induced reorientation strain hysteresis loop under 0.4 T.

1, which was not observed in the other two loading cases, because there the magnetic

field was always applied along the easy axis of that variant. After the reverse variant

reorientation process has been activated at µ0Hx = 0.40 T and the field has been

raised further configuration 3 is obtained, in which 50 % of the first variant have

been recovered. One observes that the magnetization vectors in both variant are now

rotates away from their preferred axes. The reorientation process is completed at

µ0Hx =0.74 T. However, as the magnetic field Hx is again lowered via configuration

5, the variant 1 configuration is not sustained, cf. configurations 5, since the constant

field level of µ0Hy = 0.4 T creates a strong enough bias for the material to again

reorient to the single variant 2 configuration 7.
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Table VII. Configuration schematics and data for the strain hysteresis curve under

variable Hx at µ0Hy = 0.4 T and σxx = −0.2 MPa.

# Schematic µ0Hx εr
xx ξ θ3 θ4

1 0.00 T 6.2 % 1.0 — 0.0
◦

2 0.25 T 6.2 % 1.0 — −13.6
◦

3 0.55 T 3.1 % 0.5 19.0
◦

−29.6
◦

4 1.40 T 0.0 % 0.0 11.1
◦

—

5 0.35 T 0.0 % 0.0 22.9
◦

—

6 0.07 T 3.1 % 0.5 33.0
◦

−3.9
◦

7 0.00 T 6.2 % 1.0 — 0.0
◦

The fact that the rotation of the magnetization in both variants has a significant

impact on the constitutive behavior is evident from Eqs. (5.27), (5.28) and (5.29),

and it is clearly observable in the associated magnetization response shown in Fig. 35.

For an easier comparison of the magnetic response curves at different levels of Hy,

Fig. 36 depicts the projection of the curves shown in Fig. 35 onto the plane Hy =0.

It is observed that unlike the magnetization response predicted for loading cases 1

and 2, cf. Fig. 21 on page 85 and Fig. 29 on page 103, every section of these curves

exhibits a nonlinear behavior. Furthermore, it is predicted that My is non-zero after

the reverse reorientation process is completed and variant 1 has been fully recovered

as depicted in Schematic 4 of Table VII, and that it approaches zero asymptotically

for large Hx. This is due to the fact that the constant component Hy counteracts the
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Fig. 35. Normalized magnetization vs. the magnetic field components at -0.2 MPa.

increasing rotation of the magnetization in variant 1 and thus its alignment with the

field in the x-direction. This statement is consistent with the observation that My

approaches zero faster the lower the value of Hy at Hx is applied.

In summary, the model predicts a macroscopic reorientation strain and magneti-

zation behavior that is fundamentally different in nature for the three loading cases,

stemming from the fact that different micro-scale mechanisms are activated in each

case. In loading case 1 ( variable stress σxx under constant Hy and Hx = 0), only

the mechanism of martensitic variant reorientation is activated. In loading case 2

(variable Hy under constant stress σxx and Hx = 0), the magnetization in variant 1

rotates in addition to the variant reorientation. In loading case 3 (variable Hx under



114

constant σxx and Hy), the rotation of the magnetization vectors

Fig. 36. Normalized magnetization vs. the x-component of the magnetic field at dif-

ferent levels of µ0Hy and σxx =−0.2 MPa.

in both variants is activated. Furthermore, the evolution of magnetic domains influ-

ences the response at low magnetic field levels. The magnetic domain wall motion

has been accurately modeled for special cases in which the variant reorientation does

not occur simultaneously.
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CHAPTER VI

MAGNETOMECHANICAL BOUNDARY VALUE PROBLEMS FOR MSMAS

This chapter is concerned with the numerical analysis of nonlinear magnetostatic

boundary value problems involving MSMA components. These problems are solved

using the finite element method, where the nonlinear magnetic properties of the ma-

terial are provided by the introduced constitutive model for MSMAs. This analysis

is important for several reasons:

1. It is needed to properly interpret experimental data. Due to the so-called de-

magnetization effect the magnetic field inside a magnetized MSMA sample is

substantially lower than the applied field that magnetized it. In order to accu-

rately calibrate a constitutive model, one needs to know the strain and mag-

netization response of the material as a function of the internal magnetic field,

i. e. the field that the material actually experiences inside the sample. How-

ever, one can only measure the strain as a function of the externally applied

field. The relation between internal and applied field is not known a priori and

depends on the sample geometry. Furthermore, the interpretation of experi-

ments is complicated by the fact that unless ellipsoidal specimen are used, the

magnetic field inside a specimen is always nonuniform, even if a uniform field

is externally applied. The magnetostatic analysis computes the distribution of

the internal magnetic field as a function of the applied field such that these

problems can be addressed;

2. The magnetostatic analysis can also be used as a tool to design MSMA experi-

ments and applications. For example, one can determine the optimal placement

of the Hall probe used for the measuring of the applied field, if the distribution
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of the magnetic field between the pole pieces of the electromagnet and around

the MSMA sample in the experiment previously shown in Fig. 4(b) on page 17

is known.

3. This analysis can be considered a first important step toward implementing the

fully-coupled magnetomechanical problem for MSMAs defined in Chapter III.

For the computations presented in this Chapter the influence of magnetic body

forces and magnetic body couples, as specified by Eqs. (3.21a) and (3.21b),

is considered negligible. The change in the computational domain due to the

deformation of the sample during magnetic loading is considered small enough

to also be neglected. The coupling of the mechanical and magnetostatic problem

in this analysis is thus solely due to the stress level dependence of the magnetic

properties of the MSMA.

A. Review of the Magnetostatic Problem

The Gauss-Faraday law and Ampère’s law for the magnetostatic approximation were

specified in Chapter III, Section A. For convenience, the magnetostatic problem is

usually reformulated by introducing either the scalar magnetic potential Φm, if free

currents are negligible, such that

H=−∇Φ
m
, (6.1)

or otherwise the vector-valued potential Φ
m
, with

B=curlΦ
m
. (6.2)

Eq. (6.1) identically satisfies Ampère’s law Eq. (3.7b), whereas Eq. (6.2) satisfies the

Gauss-Faraday law Eq. (3.7a). The magnetostatic problem defined by Eqs. (3.7) can
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then be reformulated to yield the following two alternative versions of the Poisson

equation of magnetostatics [152] (see derivation in Appendix B, Section B1).

∆Φ
m

= divM ; (6.3a)

or ∆Φ
m

= −µ0 curlM . (6.3b)

These equations are defined everywhere in R
3, the space occupied by the magnetized

body and the infinite surrounding free space. Additionally, on all interfaces the field

variables B and H are subject to jump conditions, which, using Eqs. (3.2b) and (6.1),

can also be written in terms of the magnetic potentials, to yield [17]

[[B]]·n = µ0[[M −∇Φ
m
]]·n = 0 ; [[H]]×n = −[[∇Φ

m
]]×n = 0 . (6.4)

Surface currents have again been considered negligible. The jump of a generic field A

is defined as [[A]] = A+−A−. The plus sign superscript refers to the side of the interface

on which the unit normal n points outward. As a consequence of these conditions,

the normal component of the magnetic flux density and the tangential component

of the magnetic field strength are continuous over any interface. Similarly, for the

vector-valued potential the following interface conditions hold

[[B]]·n = [[ curlΦ
m
]]·n = 0 ; [[H]]×n = [[µ−1

0 curlΦ
m
− M]]×n = 0 , (6.5)

where Eqs. (3.2b) and (6.2) were used.

B. The Demagnetization Effect

For illustration purposes a typical magnetic field distribution around a rectangular

permanent magnet is depicted in Fig. 37. It is observed that the magnetic field stream

lines emanate from the right edge of the specimen and end at the left edge. The
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Fig. 37. Magnetic field of a rectangular permanent magnet. The white arrow indi-

cates the direction of the magnetization. Contour plot: |Hy|; arrows and

streamlines: direction of H.

”source” of the magnetic field lines is called the north pole of the permanent magnet,

the ”sink” the south pole [16, 17]. It is evident that the depicted stream line pattern

satisfies the interface conditions (6.4) or (6.5). While the tangential component of H is

continuous on all interfaces, its normal component can be discontinuous if there exist

a discontinuity in the magnetization. Since the normal component of B is continuous

and therefore [[B]]·n = µ0[[H + M]]·n = 0, it is clear that the normal component of H

has to balance the jump in M that occurs at the interface between the magnetized

medium and free space. Inside the specimen the magnetic field opposes the direction
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Fig. 38. Magnetic field of an ellipsoidal permanent magnet. The white arrow indi-

cates the direction of the magnetization. Contour plot: |Hy|; arrows and

streamlines: direction of H.

of magnetization. The magnetostatic field caused by the body’s own magnetization is

therefore called the demagnetizing field H
d [16]. Note that the demagnetization field

is nonuniform inside the rectangular specimen, even though the magnetization that

causes it is uniform. As shown in Fig. 38 the demagnetization field in a uniformly

magnetized ellipsoidal sample is always uniform. Furthermore, if the magnetization

is caused by an applied field it is uniform inside the ellipsoidal body, while it is

nonuniform in a rectangular body.

Permanent magnets exhibit substantial remnant macroscopic magnetization at
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zero applied fields and, within certain limits, the magnetization of the magnetic sam-

ple does not depend on the applied magnetic field [16]. For magnetostatic problems

involving only permanent magnets the Poisson equations (6.9) are linear and the

principle of superposition holds. Thus, if additionally an external magnetic field H
a

is applied, the total magnetic field is then given by

H = H
a
+ H

d
. (6.6)

Generic integral representations of the solution of the magnetostatic problem de-

fined by Eqs. (3.7) or Eqs. (6.3) exist [152, 153]. For uniformly magnetized bodies the

magnetization vector can be taken outside the integral expressions for the magnetic

field strength [153, 154], such that

H
d
(r) = −




1

4π

∫∫

∂Ωm

r − r′

|r − r′|3
⊗ n′ dA′





︸ ︷︷ ︸

=:D

M = −DM . (6.7)

Therein r is the position at which H is evaluated in R
3 and r′ the location of a

point on the surface ∂Ωm, with unit outward normal n′, of the region Ωm occupied

by the magnetized body. By applying the divergence theorem an equivalent volume

integral representation of Eq. (6.7) can be obtained. D is the demagnetization tensor,

which only depends on the geometry of the body and can be computed by evaluating

the bracketed integral expression in Eq. (6.7). For a spatially uniformly magnetized

body the demagnetization field can thus be computed by simply multiplying the

magnetization with an appropriate demagnetization factor. Such factors have been

tabularized for ellipsoids of many different aspect ratios [16, 17, 143]. This procedure

is analogous to using Eshelby tensors in elasticity theory to determine the strain field

inside ellipsoidal inclusions [155, 156]. The demagnetization tensor has the following
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properties: i) it is independent of position inside an ellipsoidal body; ii) it is diagonal

if its eigenvectors are aligned with the symmetry axes of the body; iii) its trace is 1,

if evaluated inside the body. The demagnetization factor for a sphere is therefore 1/3

in any direction. For a prismatic cylinder with square or cylindrical cross-section the

axial and transverse demagnetization factors are related by Dt =1/2(1 −Da) [157].

The magnetic field inside a uniformly magnetized sample of non-ellipsoidal shape

is always nonuniform. The demagnetization tensor in this case depends on the posi-

tion inside the sample. It is customary to define average demagnetization tensors for

samples of arbitrary shape, sometimes referred to as magnetometric demagnetization

tensors [157, 158], in the following manner

〈D〉 :=
1

Ωm

∫

Ωm

D(r) dV . (6.8)

The average demagnetization field can then be written as

〈H
d
〉 = −〈D〉M . (6.9)

Numerical solution schemes have been developed to compute the demagnetization

factors for uniformly magnetized bodies of arbitrary shape. For many standard ge-

ometries, such as prismatic bars with different types of cross-sections, these have also

been tabularized [154, 157, 158].

By definition the demagnetization factor loses its meaning for bodies with nonuni-

form magnetization. Thus, the exact demagnetization field inside a non-ellipsoidal

body, whose magnetization is induced by an external magnetic field and therefore

not uniform unless complete saturation is reached at high fields, can not be com-

puted with the help of demagnetization factors. Furthermore, if the magnetization is

a function of the applied field the magnetostatic problem as described by Eqs. (6.3)
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becomes nonlinear and superposition no longer holds. In this case, which is always

encountered in experiments unless ellipsoidal specimen are used, an explicit numer-

ical solution of the magnetostatic boundary value problem has to be obtained. For

MSMAs the problem is complicated by the fact that the magnetic properties are non-

linear, hysteretic and stress level dependent, Furthermore, the shape of the sample

changes due to the magnetic field-induced strain. This effect, however, is expected to

have negligible significance.

A general discussion of the influence of the demagnetization effect on the mea-

suring of magnetization curves in ferromagnetic materials can be found in [17]. Shield

[27] addressed the problem for experiments on MSMAs by approximating his samples

as uniformly magnetized rectangular bars, in which case a constant demagnetization

factor according to Eq. (6.9) can be utilized. Shield acknowledges [27] that the de-

magnetization factor method can only lead to approximations of the demagnetization

effect for the prismatic samples typically used in MSMA testing. Nonetheless, this

method is often used due to its simplicity or lack of alternatives. However, it is not

clear a priori what kind of error one might expect from making this approximation.

One aspect of the numerical analysis presented in the following section is aimed at

estimating this error.

C. Finite Element Analysis of the Magnetostatic Problem

Based on the numerical analysis of specific magnetostatic boundary value problems,

which are defined by the vector-valued Poisson equation (6.3b), the interface jump

conditions (6.3b) and constitutive relations of the form M(σ,H, ζ), the influence of

the demagnetization effect on the interpretability of MSMA experiments is investi-

gated in this section. This analysis has also been discussed in [59, 60].
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As explained in Chapters II and V, a typical experiment consists of subjecting

a martensitic MSMA sample to a constant mechanical load and subsequently to a

perpendicular magnetic field. Such an experiment was previously described in Fig. 4.

This particular setup has motivated using the computational domain depicted in

Fig. 39 to solve a relevant magnetostatic problem using the finite element method.

All magnetostatic analysis was performed using the COMSOL Multiphysics (formerly

Femlab) finite element software package in which the constitutive model was used to

provide the magnetic properties of the MSMA sample.

0µ
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x

a
0µ yH

26 mm

26 mm

4 mm

8 mm

0µ

0µ

a
0µ

y
H

a
0µ yH

a
0µ yH

Fig. 39. Domain geometry, mesh and boundary conditions for the magnetostatic prob-

lem. Dashed lines indicate the location of the nonmagnetic grips of the load

frame.
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According to the electromagnet’s specifications, a uniform magnetic field can be

assumed in the empty gap between the pole pieces of dimensions 26 mm × 26 mm ×

26mm. Fig. 39 also indicates the location of the specimen, and the nonmagnetic grips

(dashed lines). Typical specimen dimensions are 8 mm × 4 mm × 4 mm, or aspect

ratios of 2 :1 :1, where the long axis is the x-direction.

A spatially constant magnetic flux is applied on all sides of the boundary, or,

more precisely, the potential

Φ
m

x = Φ
m

y = 0 ; Φ
m

z = −µ0H
a

yx , (6.10)

is applied, such that with Eq. (6.2) it follows

µ0Hx = Bx =
∂Φm

z

∂y
−
∂Φm

y

∂z
= 0 ; µ0Hy = By =

∂Φm

x

∂z
−
∂Φm

z

∂x
= µ0H

a

y ;

µ0Hz = Bz =
∂Φm

y

∂x
−
∂Φm

x

∂y
= 0 . (6.11)

This results in the desired homogeneous magnetic field in the computational domain

if no specimen is included. The presence the MSMA sample in the gap of course

perturbs the homogeneity of the computed field.

Since only a few experimental setups exist in which the magnetic field-induced

magnetization response can be measured [27, 44], this data is usually not available,

such that the magnetic properties of the MSMA sample in the magnetostatic analysis

have to be provided by the constitutive model. The reduced model equations for the

considered loading case were derived in Chapter V, Section A. The same section also

introduced the model parameters calibration scheme which was used here to determine

the parameters listed in Table VIII. The experiments from which these data were

obtained are discussed in [58]. The magnetocrystalline anisotropy coefficient was not

available and had to be estimated such that simulation of the predicted magnetic
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field-induced strain reflected approximately the same blocking stress as observed in

the experiment.

Table VIII. Material parameters for the Ni51.1Mn24.0Ga24.9 composition [58], and the

resulting hardening and hysteresis parameters calibrated at −2 MPa.

Material Parameters Model Parameters

Quantity Value Unit Quantity Value Unit Quantity Value Unit

ρK1 700.0 kJm−3 µ0H
s(1,2)

y 0.9 T Ac −60.807 kPa

M sat 742.4 kAm−1 µ0H
f(1,2)

y 1.85 T B c

1 75.411 kPa

εr,max 5.65 % µ0H
s(2,1)

y 0.75 T B c

2 96.736 kPa

σ∗ −2.0 MPa µ0H
f(2,1)

y −0.17 T C c −183.975 kPa

ξ crit 1.0 Y ξ,c 223.572 kPa

For the calibration stress level of −2 MPa the magnetic field-induced strain hys-

teresis loop depicted in Fig. 40 results from the model parameters of Table VIII. The

corresponding magnetization behavior predicted by the model is shown in Fig. 41.

The following assumptions are made for using the magnetization data in the

magnetostatic analysis

1. The stress is assumed to be uniaxial, at a constant level and spatially homo-

geneous, since magnetic body forces and magnetic body couples are neglected.

The only coupling between the mechanical and the magnetostatic problem at

this point is given by the stress level dependence of the magnetic properties.

Thus for each stress level the magnetostatic analysis has to be performed in a

separate computation.
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Fig. 40. Model Calibration. Experimental data (diamonds) and model simulation

(solid line). Data (taken from [58]) for a Ni51.1Mn24.0Ga24.9 alloy tested at

−95◦C under the compressive stress of 2 MPa.

2. The magnetic field, and thus the magnetization, on the other hand vary spa-

tially inside the prismatic specimen. The magnetic properties predicted by

constitutive behavior are evaluated separately at every integration point in the

finite element mesh. Since the magnetization depends on the applied field in a

nonlinear fashion the magnetostatic problem described by Eq. (6.3b) is highly

nonlinear1. COMSOL Multiphysics provides an appropriate iterative nonlinear

solver. The parametric version of this solver was used such that the magnetic

field distribution could be computed, while scaling the applied magnetic field

from 0 T to 2 T.

1Even if the relation between field and magnetization were linear the magnetostatic
problem would be nonlinear, though numerically most likely easier to handle.
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Fig. 41. Predicted y-component of the magnetization at the compressive stress of 2

MPa. Only the solid portion of the curve is used in the magnetostatic analysis.

3. From the discussion in Chapter V, Section A the component Mx is predicted to

be zero at low fields, due to the magnetic domain structure, then to suddenly

increase as the variant reorientation process sets in and to again decrease to

zero as the material is saturated in the y-direction. It is always smaller than

M sat. The component My =My(Hy) is therefore determined to be dominating

the component Mx = Mx(Hy), which is neglected in the following analysis.

Furthermore, even though the x-component of the applied magnetic field is zero,

the same does not hold for the internal field, due to the magnetization of the

body and the shape of the specimen (corner effects). However, the dependence

M(Hx), and M(Hz) in a three dimensional analysis, is assumed to be small and

thus neglected;
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4. The hysteretic nature of the constitutive response is not addressed in the mag-

netostatic analysis at this point. To be precise, the hysteresis is not neglected,

but the analysis is only carried out from 0 T to 2 T, for which the solid line

part of the magnetic hysteresis in Fig. 41 applies, not for the removal of the

magnetic field (dashed line).

The nonlinear magnetostatic problem is mathematically described by Eq. (6.3b),

the interface conditions (6.5) and the boundary conditions (6.10). The geometry of

the computational domain was introduced in Fig. (41). The constitutive relations are

reflected in the magnetization curve of Fig. (41). A number of simplifying assumptions

have been specified. The problem has thus been fully defined.

Numerical results of the finite element analysis are plotted in Fig. 42 in terms of

the distribution of the y-component of the magnetic field for the exemplary applied

magnetic flux level of 2 T.

It is observed that indeed, due to the non-ellipsoidal shape of the specimen,

the magnetic field and thus the magnetization are nonuniform inside the specimen

although a constant magnetic flux is applied at the boundary of the computational

domain. The presence of the magnetized specimen clearly perturbs the magnetic field

in the free space surrounding the sample. From this distribution one can for example

obtain information on how much a Hall probe reading, which is used to measure the

applied field as shown in Fig. 4(a) on page 17, can be expected to be influenced by

the samples magnetic field. The distribution at 2.0 T, at which essentially all of

the material has been magnetized to saturation along the y-axis, is symmetric with

respect to both axes of the coordinate system.

It again must be emphasized that in the magnetostatic problem the magneti-

zation is allowed to change locally and its value is determined by evaluating the



129

y

x

y

x

0 [T]yHµ

Fig. 42. Distribution of Hy in the computational domain at the applied magnetic field

of µ0H
a
y =2.0 T.

magnetization curve for the magnetic field acting at the particular point. The inter-

nal mechanism which leads to the macroscopic magnetization response, namely the

evolution of the martensitic variants, the magnetic domains and the magnetization

rotation angles as predicted by the constitutive model have been discussed in Chap-

ter V. For this loading case, this evolution was also schematically depicted in Table

V. As discussed, this assumes that there exists a separation of scales such that at

each point in the continuum, the MSMA sample, there exist a smaller length scale

at which a sufficient number of martensitic twins and magnetic domains coexist such

that average quantities such as the magnetization can be defined for each point. The

contributions of the variant and magnetic domains are then taken into account in a

phenomenological sense and are no longer ”visible” on the continuum scale. It is still

a matter of discussion whether this approach is fully justified for single crystals.
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To further visualize the local behavior, the variation of the magnetic field within

the MSMA sample is plotted in Fig. 43 for two different applied field levels.

y

x

y

x

0x =

1x =

2x =

3x =

0 [T]yHµ

(a)
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y

x

y

x

0 [T]µ yM sat/ [ ]yM M

(b)

Fig. 43. Distribution of the magnetic field and magnetization within the specimen at

the applied magnetic field of µ0H
a
y =1.3 T.

In Fig. 44 the variation of the magnetic field and the magnetization across the

specimen are plotted for different locations. Note that at the left (y=−2) and right

(y=2) sides of the specimen the jump in the magnetic field is balances the jump in

the magnetization in going from free space into the magnetized material. According

to relation (3.2b) the magnetic flux component By =µ0(Hy +My), which is the normal

component of the magnetic flux on these interfaces, thus stays constant, so that the

first jump condition specified in Eqs. (6.5) is satisfied.
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(a) (b)

Fig. 44. Distribution of the y-components of the magnetic field and the magnetization

across the specimen and its immediate vicinity at different levels of x, as

indicated in Fig. 43, for the exemplary applied flux level of 1.3 T.

D. Interpretation of Experimental Data through Magnetostatic Analysis

With the numerical solution of the magnetostatic problem the relation between the

internal magnetic field and the applied field is known. However, in this analysis the

magnetic properties, which are initially only known in terms of the applied field, were

used as if they were the true constitutive response of the material. Thus the relation

between the internal and applied field computed in one run of the analysis can only

serve as a first correction of the experimental data according to

Known: 〈My〉(H
a

y), H
a

y ⇔ 〈H
iter1

y 〉.

To be computed: 〈My〉(H
a

y) =⇒ 〈My〉(〈H
iter1

y 〉) . (6.12)
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Then the analysis is repeated with the magnetic properties given by 〈My〉(〈H
iter1

y 〉)

and with the result one can again correct the magnetization curve

Known: 〈My〉(H
a

y), H
a

y ⇔ 〈H
iter2

y 〉.

To be computed: 〈My〉(H
a

y) =⇒ 〈My〉(〈H
iter2

y 〉) . (6.13)

By following this procedure, the relation between the applied field and the internal

field is computed more accurately in each iteration step. This can be considered

an inverse problem. One aims to determine the actual magnetic properties of the

sample such that solving the magnetostatic problem for a sample of this geometry

gives back the relation 〈My〉(H
a

y) that is plotted in Fig. 41. The original and corrected

magnetization curves resulting from this iterative procedure are depicted in Fig. 45

for the considered specimen with 2:1 length to width ratio.

As described above, the corrected curves were plotted by using the same data for

the vertical magnetization axes, while rescaling the magnetic field axis by means of the

relation between the average internal and applied field at each iteration. One observes

the relatively fast convergence of the solution. After six iterations the difference to

the solution of the previous iteration is small enough to conclude that the solution

has converged. The magnetization of curve of iteration six can thus be considered the

”true” magnetization response, which is independent of the specimen geometry. The

original data is the magnetization behavior that would be measured in an experiment

using a prismatic sample of this aspect ratio. In an experiment that uses a sample of

the same material, but different aspect ratio a different curve would be measured.

A parametric study has been performed to investigate the sample shape de-

pendence of the demagnetization effect for the prismatic specimen with nonlinear

magnetic properties. In Fig. 46 the corrected magnetization data has been plotted
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Fig. 45. Magnetization data corrected for demagnetization. Specimen aspect ratio 2:1.

for four different aspect ratios of the prismatic specimen with square cross-section.

The corresponding corrections of the magnetic field-induced strain data have been

plotted in Fig. 47. It is clearly observed that the influence of the specimen aspect

ratio on the difference between the apparent material behavior and the true consti-

tutive response is very significant and must therefore be addressed when using data

for model calibration. Once the MFIS data has been corrected for demagnetization,

the model parameters can be recalibrated.2

One of the stated goals of this analysis was to investigate the error one can expect

when using the demagnetization factor method instead of the finite element analysis

2The specific results presented here are based on solutions of 2-D boundary value
problems and can thus only be used qualitatively. The procedure is the same for 3-D
problems, which however are computationally much more involved.
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Fig. 46. Influence of specimen aspect ratios on the correction of the magnetization

data.

of the nonlinear magnetostatic problem. The average demagnetization factor was

defined in Eq. (6.8). Using Eqs. (6.6) and 6.9 one can compute the average internal

magnetic field by

〈Hy〉 = H
a

y + 〈H
d

y 〉 = H
a

y − 〈Dyy〉〈Myy〉 . (6.14)

This relation is often applied in the literature [27, 97] to correct magnetization data.

As discussed in Section A of this chapter, this procedure of course assumes that the

magnetization in the sample is uniform and that superposition holds.

The demagnetization factor for the specimen of the 2:1 aspect ratio is Dyy =

0.651. Since a literature value was not available for this particular geometry, the

factor was computed using finite elements for a sample of constant and spatially
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Fig. 47. Influence of specimen aspect ratios on the correction of the magnetic field-in-

duced strain data.

uniform magnetization placed in free space. This method has proven to yield very

accurate demagnetization factors for other geometries for which literature data could

be referred to [157].

If the magnetization response curve of the MSMA can not be measured and is also

not predicted by a constitutive model Eq. (6.14) is sometimes used with a constant

My, for example My =M sat. This is expected to lead to a very crude approximation

of the demagnetization effect. If the magnetization response is known or predicted as

in Fig. 41 a much better approximation is obtained. The different correction methods

are compared in Fig. 48.

These observations suggest that using the demagnetization factor method, which

is based on the assumption of uniform magnetization in the specimen, one obtains
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Fig. 48. Comparison of the corrections through demagnetization factors and FEM

analysis. Specimen aspect ratio 2:1.

essentially the same result as performing the FEM analysis of the nonlinear mag-

netostatic problem with nonuniform magnetization, if average field quantities are

considered. This conclusion can be misleading, however, because it only holds for

average quantities. As evident from Fig. 43 and Fig. 44, there exist a significant

variation in the local magnetization.

To further quantify this variation, Fig. 49 displays local values of the magnetic

field at several points in the specimen as a function of the applied field.

For problems in which the knowledge of local magnetic field and magnetization

is important, one can not avoid solving the magnetostatic problem explicitly, as done

here. Such cases are certainly encountered if one is interested in solving magnetome-
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Fig. 49. Position dependence of the magnetization response within the rectangular

specimen.

chanical MSMA boundary value problems not just involving simple specimen shapes,

but, for example, more complicated geometries of MSMA components in actuators

and other applications.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

A thermodynamics-based phenomenological constitutive model has been developed to

predict the nonlinear, hysteretic and stress-level-dependent strain and magnetization

response of magnetic shape memory alloys. The model is formulated in terms of a

continuum level free energy function which contains elastic energy, magnetic energy

and coupling terms. The independent variable state space of the Gibbs free en-

ergy function, usually containing the temperature and stress tensor, was expanded to

contain the magnetic field strength vector. The influence of the evolving microstruc-

ture on the macroscopic response has been captured through internal state variables.

Constitutive equations were derived from the free energy in a thermodynamically-

consistent manner. A novel reorientation diagram was proposed to visualize the

activation surfaces for the martensitic variant reorientation process, which are math-

ematically described by a reorientation function and Kuhn-Tucker type reorientation

conditions. By linking partial reorientation at higher stress levels to the full rota-

tion of the magnetization vector in the stress-favored variant, the developed model is

capable of predicting the stress level dependence of the magnetic field-induced strain.

The MSMA response to several types of loading was modeled: i) the mag-

netic field-induced variant reorientation under constant levels of stress; ii) the stress-

induced variant reorientation under constant levels of the magnetic field; iii) the

simultaneous application of two magnetic field components, one constant, one vari-

able, and constant stress. The modeling results were compared to experimental data,

where available, and showed good agreement.

Finally, nonlinear magnetostatic boundary value problems for MSMAs were an-

alyzed using the finite element method. Partial coupling of the magnetostatic and
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the mechanical problem was taken into account through the stress level dependence

of the magnetic properties of the MSMA, which were provided by the constitutive

model. In the analysis, performed with the COMSOL Multiphysics (Femlab) soft-

ware package, the magnetic field distribution as a function of the applied field was

determined inside a typical sample geometry. This relation was then used to obtain

a more accurate interpretation of experimental data.

There are several aspects in which this work can be extended. For example, for

the model predictions presented in this dissertation it was assumed that the MSMA

single crystal samples were oriented such that the loading and the deformation oc-

curred along certain known crystallographic directions. The reorientation tensor in

this case takes a simple form. This is not necessarily too restricting of an assump-

tion, since experiments are typically conducted in this manner. However, if one is

interested in analyzing MSMA components which are subjected to multi-dimensional

loading in real applications, the model needs to be generalized. Recently there have

been some efforts to capture the kinematics of MSMA single crystal deformation more

accurately [28, 93]. A general theory of the kinematics of twinning can be found in

[2, 159, 160]. If a general reorientation tensor for arbitrary stress and magnetic field

loading conditions can be formulated this would also result in a multi-dimensional

formulation of the reorientation function.

Furthermore, the evolution of magnetic domains has only been considered for

low stress levels and low magnetic fields, at which the variant reorientation does not

occur. In principle the model is equipped to handle the simultaneous evolution of all

internal state variables. However, a linear hardening function for the domain evolu-

tion, as assumed in the presented example, has not yielded satisfactory results in the

reorientation regions. This is mainly due to the fact that not enough experimental

evidence is available, especially in terms of the magnetization response, to understand
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what the response ought to be. This effort to capture the interaction of twin boundary

and magnetic domain wall motion for different magnetomechanical loading conditions

may also be supported by modeling on other length scales. Jin [161], for example,

recently presented some preliminary work aimed at combining phase field method

approaches that have successfully been applied to predict the formation and twin-

ning of martensite [162] and the development of magnetic domains in ferromagnetic

polytwinned microstructures [163].

In terms of the analyzing relevant boundary value problems for MSMAs it is

desirable to implement the fully-coupled magnetomechanical problem described in

Chapter III. The magnetostatic and the mechanical equilibrium equations then have

to be solved simultaneously. The full coupling is given through i) the magnetic body

force and body couple, which appear in the equilibrium equations; ii) the constitutive

response in terms of the stress-dependent magnetization properties and the magnetic

field-dependent stress-strain relation; iii) the magnetic field-induced deformation of

the computational domain.
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[154] E. Schlömann, A sum rule concerning the inhomogeneous demagnetizing field

in nonellipsoidal samples, Journal of Applied Physics 33 (9) (1962) 2825–2826.

[155] J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion,

and related problems, Proceedings of the Royal Society of London. Series A,

Mathematical and Physical Sciences 241 (1226) (1957) 376–396.

[156] T. Mura, Micromechanics of Defects in Solids, 2nd Edition, Mechanics of Elastic

and Inelastic Solids, Kluwer Academic Publisher, Dordrecht, The Netherlands,

1987.

[157] R. Moskowitz, E. Della Torre, Theoretical aspects of demagnetization tensors,

IEEE Transactions on Magnetics 2 (4) (1966) 739–744.

[158] H. Fukushima, Y. Nakatani, N. Hayashi, Volume average demagnetizing tensor

of rectangular prisms, IEEE Transactions on Magnetics 34 (1) (1998) 193–198.

[159] R. W. Cahn, Plastic deformation of alpha-uranium; Twinning and slip, Acta

Metallurgica 1 (1) (1953) 49–70.

[160] B. A. Bilby, A. G. Crocker, The theory of the crystallography of deformation

twinning, Proceedings of the Royal Society of London. Series A, Mathematical

and Physical Sciences 288 (1413) (1965) 240–255.



161

[161] Y. M. Jin, Y. U. Wang, A. Kazaryan, Y. Wang, D. E. Laughlin, A. G. Khachatu-

ryan, Magnetic structure and hysteresis in hard magnetic nanocrystalline film:

Computer simulation, Journal of Applied Physics 92 (10) (2002) 6172–6181.

[162] Y. M. Jin, A. Artemev, A. G. Khachaturyan, Three-dimensional phase field

model of low-symmetry martensitic transformation in polycrystal: Simulation

of ζ ′2 martensite in AuCd alloys, Acta Materialia 49 (2001) 2309–2320.

[163] A. Kazaryan, Y. Wang, Y. M. Jin, Y. U. Wang, A. G. Khachaturyan, L. Wang,

D. E. Laughlin, Development of magnetic domains in hard ferromagnetic thin

films of polytwinned microstructure, Journal of Applied Physics 92 (12) (2002)

7408–7414.

[164] E. Cesari, V. A. Chernenko, J. Font, J. Muntasell, AC technique applied to

cp measurements in Ni-Mn-Ga alloys, Thermochimica Acta 433 (1–2) (2005)

153–156.

[165] I. Gersten, J, F. W. Smith, The Physics and Chemistry of Materials, John

Wiley & Sons, New York, 2001.



162

APPENDIX A

CONCEPTS OF CONTINUUM MECHANICS:

DEFINITIONS AND DERIVATIONS

A1. Mathematical Preliminaries

Divergence theorem [127]: If R is a closed bounded region with piecewise smooth

boundary ∂R (regular region) and unit outward normal n, and f : R → V is a smooth

vector field, where V is the Euclidean vector space associated with the Euclidean point

space E , then
∫

R

div f dV =

∮

∂R

f ·n dA . (A.1)

Stokes theorem [132]: Let S be a regular surface in space, with the unit outward

normal n, that is bounded by a simple closed curve ∂S. For the smooth vector field

f : S → V the identity
∫

S

curl f ·n dA =

∮

∂S

f · dx , (A.2)

holds, where dx is an increment along ∂S.

A2. Kinematics

In continuum mechanics one defines a material body as the collection of particles

which in the reference configuration occupy the (possibly unbounded) regular region

B of E (cf. [127]); bounded regular subregions of B are called parts P . The material

body is subjected to the motion x̂ : B×R −→ E , such that at time t the body B and
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part P are mapped (one-to-one) into Bt = x̂(B, t) and Pt = x̂(P , t), respectively. The

material point X, defined in the reference configuration B, is thus mapped into the

point x, which is defined in the deformed (current) configuration at the time t. The

trajectory of a particle is defined as [127]

T = {(x, t)|x ∈ Bt, t ∈ R} . (A.3)

A material field is a function of the material point and time with domain B×R;

a spatial field is a function with domain T [127]. The material field

F := Grad x̂ , (A.4)

is called the deformation gradient and has the property J := detF > 0. The oper-

ator Grad (·), is the gradient taken with respect to the coordinates in the reference

configuration.

The material time derivative of the smooth spatial fields φ(x, t) and u(x, t) is

defined as [127]

φ̇ =
∂φ

∂t
+ v·(gradφ) ; (A.5a)

u̇ =
∂u

∂t
+ (gradu)v . (A.5b)

All lower case differential operators, such as grad (·), div (·) and curl (·), are defined

as derivatives with respect to the coordinates of the deformed configuration.

Reynold’s transport theorem [127]: For a smooth scalar or vector valued spatial

field Φ(x, t) the following relation holds

d

dt

∫

Pt

Φ dV =

∫

Pt

(
Φ̇ + Φ divv

)
dV =

∫

Pt

∂Φ

∂t
dV +

∮

∂Pt

Φv·n dA . (A.6)
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Similarly, for the rate of change of the flux of the vector field A through the material

surface St the following transport theorem holds [121]

d

dt

∫

St

A·n dA =

∫

St

[
∂A

∂t
+ v divA − curl (v×A)

]

·n dA . (A.7)

A3. Derivation of the Local Forms of the Balance Laws

The derivation of the local forms of the conservation of mass and linear momentum

are fairly straightforward and a standard procedure of continuum mechanics [126,

127, 130, 132, 138]. The steps were outlined in Section B of Chapter III and they

differ from the usual derivation only by the electromagnetic body force term, which

can be treated just as the usual body force term. The respective derivation for the

conservation of angular momentum, however, is more involved since both body

forces and body couples of magnetic nature will be accounted for and therefore this

derivation is presented in detail. A similar derivation of the conservation of angular

momentum that accounts for body couples and even surface couples and intrinsic

angular momentum can be found in Malvern [130]. For simplicity and without loss

of generality, the following proof will be conducted in index notation for cartesian

coordinates. In this case the balance Eq. (3.16) takes the form

d

dt

∫

Pt

ρεijkxivj dV =

∮

∂Pt

εijkxitj dA +

∫

Pt

ρ
[
εijkxi

(
fj + f

m

j

)
+ l

m

k

]
dV , (A.8)

where εijk is the Levi-Civita permutation symbol. Using Cauchy’s formula ti =σijnj

and the conservation of mass in the form of Eq. (3.13), Eq. (A.8) can be rewritten as

∫

Pt

d

dt
(εijkxivj)ρ dV =

∮

∂Pt

[
εijkxiσjlnl

]
dA +

∫

Pt

ρ
[
εijkxi

(
fj + f

m

j

)
+ l

m

k

]
dV . (A.9)
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By using the divergence theorem (A.1) and the chain rule one derives from Eq. (A.9)

∫

Pt

εijk
[
xiv̇j + ẋivj

]
ρ dV =

∫

Pt

ρ
[

εijk
[
xi,lσjl +xiσjl,l +ρxi

(
fj +f

m

j

)]
+ l

m

k

]

dV . (A.10)

Invoking the conservation of linear momentum Eq. (3.15) yields

∫

Pt

[(
ρẋivj − σji

)
εijk − ρl

m

k

]
dV = −

∫

Pt

[
σjiεijk + ρl

m

k

]
dV = 0 . (A.11)

The last equality holds since the term ẋivjεijk = vivjεijk vanishes due to the fact that

vivj is symmetric in the indices i and j while εijk is antisymmetric. Since Eq. (A.11)

has to hold for any volume Pt, the local form of the conservation of angular momentum

is given by

σjiεijk = −ρl
m

k . (A.12)

For convenience this equation can be rewritten by defining L
m as the dual of the

vector l
m, such that L

m
a = l

m×a for any vector a [121]1. In index notation this

relation is expressed as Lm

ij = 1
2
εijkl

m

k . By multiplying Eq. (A.12) with −1
2
εmnk on

both sides and using the identity εijkεpqk = δipδjq − δiqδjp [132], it then follows

−
1

2
εmnkεijkσji =

1

2
ρεmnkl

m

k

or −
1

2
(δmiδnj − δmjδni)σji = −

1

2
[σnm − σmn] = ρL

m

mn (A.13)

By defining the skew-symmetric part of the stress tensor as skwσ = 1
2
(σ −σT) , the

local form of the conservation of angular momentum accounting for magnetic body

1This operation is similar to defining the axial vector w for a skew-symmetric
tensor W such that Wa = w×a, ∀a [127, 132]. Unfortunately the nomenclature
is not always consistent because many authors use the term axial and dual vector
interchangeably [126, 138] for what is termed axial vector here.
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couples in direct notation finally follows from Eq. (A.13) as

skwσ = ρL
m
,

which is Eq. (3.17).

In generic terms the conservation of energy is expressed as [130]

Ė
tot

= K̇ + U̇ = P
inp

+Q
inp
, (A.14)

where E tot is the total energy of the part, K is the kinetic energy, U is the internal

energy, P inp the total electro-magneto-mechanical power input and Qinp the heat

input. The left hand side of the conservation equation is then given by

Ė
tot

(Pt) =
d

dt

∫

Pt

[
1

2
ρv·v + ρu

]

dV =
d

dt

∫

Pt

1

2
ρv·v dV +

∫

Pt

ρu̇ dV , (A.15)

where the conservation of mass Eq. (3.13) has been utilized. To determine the power

input expression, a generalized theorem of power expended [127] is formulated

P
inp

=

∮

∂Pt

t(n) · v dA +

∫

Pt

ρ
[(

f + f
m
)
·v + l

m
· w + r̃

m
]
dV . (A.16)

The first term on the right hand side of Eq. (A.16) can be rewritten using the diver-

gence theorem Eq. (A.1) and applying the product rule div(AT
b)=A : (gradb) + b·

divA [127], such that

∮

∂Pt

t(n) · v dA =

∫

Pt

div(σ
T
v) dV =

∫

Pt

[
σ : (gradv) + v · divσ

]
dV . (A.17)

Using Eq. (A.17) in Eq. (A.16) yields

P
inp

=

∫

Pt

[[
divσ + ρ

(
f + f

m
)]

· v + σ : (gradv) + ρr
m
]

dV . (A.18)
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The term ρrm now also contains the work done by the body couple ρlm [121]. The

first term in the integrand of the above equation can be modified by using the con-

servation of linear momentum Eq. (3.15), the product rule of differentiation and the

conservation of mass Eq. (3.13), so that

∫

Pt

[
divσ + ρ

(
f + f

m
)]

· v dV =

∫

Pt

ρ v̇ · v dV =

∫

Pt

d

dt

[
1

2
v · v

]

ρ dV

=
d

dt

∫

Pt

1

2
ρv · v dV . (A.19)

Using Eq. (A.19) in Eq. (A.18) one obtains the generalized theorem of power expended

P
inp

=
d

dt

∫

Pt

1

2
ρv · v dV +

∫

Pt

[
σ : (gradv) + ρr

m
]
dV . (A.20)

The heat input is given by the usual expression

Q
inp

=

∫

Pt

ρrh dV −

∮

∂Pt

q · n dA =

∫

Pt

[
ρrh − divq

]
dV , (A.21)

where q is the heat flux through the boundary, ρrh is an energy source term and

the divergence theorem Eq. (A.1) has again been used. Substituting the expressions

Eq. (A.15), Eq. (A.20) and Eq. (A.21) into Eq. (A.14) one finds

d

dt

∫

Pt

1

2
ρv·v dV +

∫

Pt

ρu̇ dV =
d

dt

∫

Pt

1

2
ρv · v dV (A.22)

+

∫

Pt

[
σ : (gradv) + ρr

m
+ ρrh − divq

]
dV . (A.23)

Canceling terms, rearranging and considering the fact that the equality has to hold

for any part Pt, one finally arrives at the local form the conservation of energy

ρu̇ = σ : (gradv) + ρrm + ρrh − divq , (A.24)
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which is Eq. (3.20).

A4. Stress Power for a Small Strain Approximation

According to Eq. (3.20) the local form of the conservation of energy is given by

ρu̇ = σ : (gradv) + ρrm + ρrh − divq . (A.25)

The impact of a small strain approximation on the energy term σ : (grad v), often

referred to as the stress power [126, 127], shall be investigated.

Every tensor, can be expressed uniquely as the sum of a symmetric and an a

skew-symmetric tensor [127]. For the velocity gradient tensor L := gradv it follows

L = D + W , (A.26)

with

D := symL =
1

2

(
gradv + (gradv)T

)
; (A.27)

W := skwL =
1

2

(
gradv − (gradv)T

)
. (A.28)

D is known as the rate of deformation tensor and W as the spin tensor [126, 127, 138].

The stress power can then be rewritten as

σ :gradv = (symσ + skwσ) : (D + W) = symσ :D + skwσ :W , (A.29)

where the property that the inner product (contraction) of a symmetric and a skew-

symmetric tensor is zero has been used [127]. The first term in the result of Eq. (A.29)

is the work done by the stress in stretching the body, while the second term represents

the work done in spinning the body [118, 130]. If the stress tensor is symmetric, i. e. if

body couples are negligible, cf. Eq. (3.17), the second term vanishes.
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In order to derive the reduction of the stress power associated with D for a small

strain approximation, it is easier to consider the equivalent term

1

ρ
σ :D =

1

ρ0

S : Ė , (A.30)

where S is the second Piola-Kirchhoff stress tensor and E is the Green-Lagrange

strain tensor [126, 127, 132]. The following proof of this relation can also be found in

[130, 132]. The tensors σ and D are defined in the deformed configuration, whereas

S and E are defined in the reference configuration. The following relations hold [126]

S = J F−1σF−T
; (A.31a)

Ė = F
T
DF . (A.31b)

Using Eqs. (A.31), it can be shown that Eq. (A.30) must indeed hold

ρ0

ρ
σ :D = J σ :D = J σ :

(
F−T

ĖF−1
)

= J
(
F−1σ

)
:
(
ĖF−1

)

= J
(
F−1σF−T

)
: Ė = S : Ė . (A.32)

The Green-Lagrange strain tensor can be expressed in terms of the displacement

gradient tensor Gradu [126, 132]

E :=
1

2

(
F

T
F − I

)
=

1

2

(

Gradu + (Gradu)T + (Gradu)TGradu
)

, (A.33)

where the relation [127]

F = Gradu + I , (A.34)

has been used, and I is the second order identity tensor. In the infinitesimal strain

approximation it is assumed that the norm of the deformation gradient is small,

i. e. ||Grad u|| =
√

(Gradu) : (Gradu) � 1 , and Grad u ≈ grad u = ∇u, such that
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from Eq. (A.33) it follows

E ≈
1

2

(

∇u + (∇u)T

)

= ε . (A.35)

Similarly, it follows J = ρ0/ρ ≈ 1 and S ≈ σ (for details refer to [132]). Thus, for

small strains the part of the stress power associated with the rate of deformation can

finally be approximated as

1

ρ
σ :D =

1

ρ0

S : Ė ≈
1

ρ
σ : ε̇ . (A.36)

A5. Derivation of Thermodynamic Restrictions on Constitutive Equations

Combining the first and the second law of thermodynamics in the form of Eqs. (3.25)

and (3.27), and considering the dissipation through heat conduction separately, leads

to the Clausius-Planck inequality [126]

ρ(T ṡ− u̇) + σ : ε̇ + µ0H·Ṁ ≥ 0 . (A.37)

Taking the material time derivative of the Legendre transformation Eq. (3.23) and

reorganizing yields

ρu̇ = ρġ + ρ
(
ṡT + sṪ

)
+ σ̇ :ε + σ : ε̇ + µ0Ḣ·M + µ0H·Ṁ . (A.38)

Using Eq. (A.38) in Eq. (A.37) results in

−ρġ − ρsṪ − σ̇ :ε − µ0Ḣ·M ≥ 0 . (A.39)

If ĝ is sufficiently smooth in all arguments its total differential leads to the expression

ġ =
∂ĝ

∂T
Ṫ +

∂ĝ

∂σ
: σ̇ +

∂ĝ

∂H
·Ḣ +

∂ĝ

∂ζ
·ζ̇ . (A.40)
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Combining Eqs. (A.39) and (A.40) yields

−ρ

(
∂ĝ

∂T
+ s

)

Ṫ −

(

ρ
∂ĝ

∂σ
+ ε

)

: σ̇ −

(

ρ
∂ĝ

∂H
+ µ0M

)

·Ḣ − ρ
∂ĝ

∂ζ
: ζ̇ ≥ 0 ,

which is Eq. (3.28). From this inequality and the arguments given in Chapter III,

Section C the constitutive relations of Eqs.(3.29) and the reduced form of the Clausius-

Planck inequality Eq.(3.30) follow.



172

APPENDIX B

DERIVATIONS RELATED TO ELECTROMAGNETISM

B1. Magnetostatic Poisson Equations

By introducing the scalar magnetic potential Φm, such that H=−∇Φm, Ampère’s law

Eq. (3.7b) is identically satisfied if free currents are negligible, since curl (∇α)=0, ∀α.

Using Eq. (3.2b) and Eq. (3.7a) it then follows

divB = µ0

(
divH + divM

)
= µ0

(
div −∇Φ

m
+ divM

)
= 0 , (B.1)

such that with the definition of the Laplacian operator ∆α := div(∇α) one obtains

∆Φ
m

= divM , (B.2)

which is Eq. (6.3a).

Alternatively, by introducing the vector valued potential Φ
m
, such that B =

curlΦ
m
, the Gauss-Faraday law Eq. (3.7a) is identically satisfied. Combining Eq. (3.2b),

Eq. (3.7b) and the identity curl (curlA)=∇(divA) − ∆A, where ∆A := div(∇A) is

the vector-valued Laplace operator, yields

curlH = curl

(
B

µ0

− M

)

= curl

(
curlΦ

m

µ0

− M

)

=
1

µ0

(

∇(divΦ
m
) − ∆Φ

m
)

− curlM = 0 . (B.3)

Since the relation B = curl Φ
m

determines the magnetic potential only up to a con-

stant, one is free to choose this constant such that divΦ
m

=0. This is usually referred



173

to as setting the Coulomb gauge [152]. Rearranging then leads to

∆Φ
m

= −µ0 curlM , (B.4)

which is Eq. (6.3b).

B2. Field Transformations

The following derivation has been compiled from material presented in [114, 122, 124].

The different formulations of Maxwell’s equations for moving matter distinguish them-

selves by the relations between electromagnetic fields measured by an observer in a

stationary (laboratory) frame and an observer moving with a material point (rest

frame). For the Minkowski these relations are found by imposing the invariance of

Maxwell’s equations under Galilean transformations for the non-relativistic approx-

imation. A Galilean transformation between two frames, or change in observer, is

defined by

t = t′ ; (B.5a)

x = x′ + vt , (B.5b)

where additionally a rigid body rotation could be superimposed [127]. The classical

equations of motion (the local form of the conservation of linear momentum) in con-

tinuum mechanics, for example, are known to be invariant under Galilean changes in

observer [127], i. e. the equations are of the same form in both frames. In the following

paragraphs field transformation relations for the Minkowski formulation are derived

under the requirement of invariance of Maxwell’s equations under Galilean changes

in observer.

From Eqs. (B.5) the following relations between derivatives in the two frames
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hold [114, 122, 124]

∇
′

(·) = ∇(·) ; (B.6a)

div ′(·) = div(·) ; (B.6b)

curl ′(·) = curl(·) . (B.6c)

Similarly the convective derivative of a vector is defined as

∗

(·) :=
∂(·)

∂t′
=
∂(·)

∂t
+

[
∇(·)

]
v =

∂(·)

∂t
+ v div(·) − curl (v×(·)) , (B.7)

where the identity curl (a×b) = a div b − b div a +
(
∇a

)
b −

(
∇b

)
a was used in

addition to the fact that the velocity field v is spatially constant.

The local form of Maxwell’s equations in the laboratory frame were given in

Eqs. (3.4). In order to establish invariance of these equations, the local form of

Maxwell’s equations in the co-moving rest frame must be of the form [124]

Gauss’s law: div ′D
′

= ρ′

f ; (B.8a)

Gauss-Faraday law: div ′B
′

= 0 ; (B.8b)

Ampère’s law: curl ′H
′

= J
′

f +
∂D′

∂t′
; (B.8c)

Faraday’s law: curl
′

E
′

= −
∂B′

∂t′
. (B.8d)

Using the relations (B.6), Eqs. (B.8) can be rewritten in the form

Gauss’s law: divD
′

= ρ′

f ; (B.9a)

Gauss-Faraday law: divB
′

= 0 ; (B.9b)
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Ampère’s law: curlH
′

= J
′

f +
∂D′

∂t
+ ρ′

fv − curl (v×D
′

) ; (B.9c)

Faraday’s law: curlE
′

= −
∂B′

∂t
+ curl(v×B

′

) . (B.9d)

By rearrangement and comparison of the terms in Eqs. (B.9) and Eqs. (3.4) the

transformation relations (3.10) are deduced.
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APPENDIX C

DISCUSSION OF THE GIBBS FREE ENERGY

C1. Interpretation of the Gibbs Free Energy for a Hyperelastic Material

The Gibbs free energy in this case is of the general form

g = ĝ(T,σ) . (C.1)

Neglecting magnetic terms, using the Legendre transformation Eq. (3.23), and con-

sidering the heat conduction problem separately, the first and second law of thermo-

dynamics as specified in Eqs. (3.20) and Eq. (3.27), respectively, can be combined to

yield

ρT ṡ− ρrh + divq = −ρġ − σ̇ :ε − ρsṪ ≥ 0 . (C.2)

From Eq. (C.1) one can find ġ using the total differential of g, which substituted

into Eq. (C.1) leads to

−ρ

(
∂ĝ

∂T σ
+ s

)

Ṫ −

(

ρ
∂ĝ

∂σ T

+ ε

)

: σ̇ ≥ 0 , (C.3)

which is the equivalent of Eq. (3.28) for the elastic case. In this expression it has been

emphasized that the partial derivatives imply that the other independent variables

are kept constant when taking the derivative. With the same arguments as given

in Section C of Chapter III, for the inequality to hold for arbitrary processes, the
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following constitutive relations must hold

s = −
∂ĝ

∂T σ
; (C.4a)

ε = εe = −ρ
∂ĝ

∂σ T

. (C.4b)

The complementary strain energy of a hyperelastic material is defined such that

the integral

U
c
(σ) :=

σ∫

0

ε : dσ̄ , (C.5)

is independent of the integration path in stress space, with the conditions U c(σ) ≥ 0

and U c(σ) = 0, if and only if σ = 0 [132]. This definition implies

ε =
∂U c

∂σ
. (C.6)

Thus by comparing Eqs. (C.4b) and (C.6) the following relation must hold for a

hyperelastic material

∂U c

∂σ
= −ρ

∂ĝ

∂σ T

. (C.7)

For isothermal conditions and negligible changes in the density, Eq. (C.7) can be

integrated to yield

U
c
= −ρg . (C.8)

Thus for a hyperelastic material under isothermal conditions the Gibbs free energy

can be interpreted as the complementary strain energy potential (with a factor of −ρ).

C2. Discussion of an Alternative Gibbs Free Energy Expression for MSMA

The Gibbs free energy for the MSMA constitutive model was proposed in the form

of Eq. (4.8) in Chapter IV. Alternatively the more common approach of using a
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Taylor series expansion of the free energy about a reference point can be employed.

At first the discussion shall be restricted to a comparison of the two approaches for

general non-dissipative magnetoelastic materials. In series expansion approach the

free energy is then given by2

g = ĝ(σij, Hi) = −
1

2ρ
Sijklσijσkl −

1

2ρ
χsc

ijHiHj −
1

2ρ
χms

ijklσijHiHj + g0 , (C.9)

where Sijkl, χ
sc
ij and χms

ijkl are the components of the compliance tensor, the suscep-

tibility tensor and the magnetostrictive coefficient tensor. The effect of temperature

is not explicitly considered since the focus in on isothermal processes. Other cou-

pling terms, such as a piezomagnetic coupling for example, have been omitted. It is

straightforward to include these terms, but in the context of MSMA modeling they

are deemed negligible.

Then from the thermodynamic restrictions (3.29b) and (3.29c) the following con-

stitutive equation are derived

εij = εe

ij = −ρ
∂ĝ

∂σij

= Sijklσij +
1

2
χms

ijklHkHl ; (C.10a)

µ0Mi = −ρ
∂ĝ

∂Hi

= χsc

ijHj + χms

jkliσjkHl . (C.10b)

One can consider the constrained MSMA single crystal discussed in Chapter II, Sec-

tion B as such a magnetoelastic material. The constitutive response for the mag-

netization of this material along the easy axis (x-axis) and the hard axis (y-axis),

2Index notation is used here instead of direct notation wherever it is deemed more
convenient.
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cf. Figs.8-10, follow from Eq. (C.10b), neglecting magnetostriction, as

M
easy

x = χsc

xxHx ; (C.11a)

M
hard

y = χsc

yyHy . (C.11b)

These equations represent a linear approximation of the magnetization response

curves of Fig. 10 on page 24 for fields up to the magnetic saturation limit. The

coefficients χsc
xx and χsc

yy can be determined from these curves.

This result shall be compared to the magnetization response of the constrained

single crystal as predicted by the proposed model. Since ξ=0, due to the compressive

stress bias along the x-axis, Eqns. (4.9c), (4.10c), (4.11a) and (4.11c) take on the

following reduced form

M = (1 − α)M
1
+ αM

3

= − (1 − α)M
sat

(
cos(θ1) ex + sin(θ1) ey

)
(C.12)

+ αM
sat

(
cos(θ3) ex + sin(θ3) ey

)
;

πα = − ρ

[

−
µ0

ρ

(
M

3
− M

1
)
·H + gan,3(θ3) − gan,1(θ1)

]

−
∂f α

∂α

= µ0M
sat

[

cos(θ3) ex + sin(θ3) ey + cos(θ1) ex + sin(θ1) ey

]

·H (C.13)

− ρK1 sin2(θ3) + ρK1 sin2(θ1) −
∂f α

∂α
.
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πθ1 = − ρ(1 − α)

[
µ0M

sat

ρ

[

− sin(θ1)Hx + cos(θ1)Hy

]

+ 2K1 sin(θ1) cos(θ1)

]

; (C.14)

πθ3 = − ρα

[

−
µ0M

sat

ρ

[

− sin(θ3)Hx + cos(θ3)Hy

]

+ 2K1 sin(θ3) cos(θ3)

]

. (C.15)

For the magnetization along the easy axis, i. e. Hx 6= 0 and Hy = 0, the con-

straint (4.13b) on the rotation angle θ1, with Eq. (C.14), leads to

(1 − α) sin(θ1)
[

µ0M
sat
Hx − 2ρK1 cos(θ1)

]

= 0 . (C.16)

This equation is satisfied for all values of Hx if θ1 = 0 and 0 ≤ α < 1. Similarly, it

follows from Eq. (C.15) and (4.13b)

α sin(θ3)
[

µ0M
sat
Hx + 2ρK1 cos(θ3)

]

= 0 , (C.17)

which is satisfied for all values of Hx if θ3 = 0 and 0 < α ≤ 1. Thus, if the field is

applied the direction of the easy axis, the model predicts the expected result that the

magnetization vectors do not rotate away from their preferred directions.

in this case the constraint (4.13a) on the driving force for the evolution of the

domain volume fraction as described by Eq. (C.13) reduces to

πα = 2µ0M
sat
Hx −

∂f α

∂α
= 0 . (C.18)

If one assumes a linear hardening behavior of the type ∂f
α

∂α
= aα+b solving Eq. (C.18)
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for α leads to

α =
1

a

[

2µ0M
sat
Hx − b

]

. (C.19)

With the conditions α(Hx = 0) = 1/2 and α(Hx = H crit,α) = 1 the evolution equation

for the magnetic domain volume fraction is finally derived to be

α =
Hx +H crit,α

2H crit,α
. (C.20)

H crit,α is the critical field at which magnetic saturation is achieved through domain

wall motion and its value can be determined from an easy axis magnetization curve of

the type shown in Fig. 10 on page 24. Substituting Eq. (C.20) as well as θ1 = θ3 = 0

into Eq. (C.12) and considering the x-component yields

M
easy

x = (2α− 1)M
sat

=

(
Hx +H crit,α

H crit,α
− 1

)

M
sat

=
M sat

H crit,α
Hx . (C.21)

For the magnetization along the hard axis, i. e. Hx = 0 and Hy 6= 0, the

constraint (4.13b) on the rotation angle θ1, with Eq. (C.14) and 0 < α ≤ 1 leads to

cos(θ1)
[

µ0M
sat
Hy + 2ρK1 sin(θ1)

]

= 0 . (C.22)

For 0 ≤ θ1 <
π
2

one obtains the relation

sin(θ1) = −
µ0M

sat

2ρK1

Hy . (C.23)

The equivalent expression for θ3(Hy) was derived as Eq. (5.3). Note that sin(θ3) =
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− sin(θ1). With these relations the hard axis magnetization is derived to be

M
hard

y = −(1 − α)M
sat

sin(θ1) + αM
sat

sin(θ3)

= −(1 − α)M
sat

sin(θ1) − αM
sat

sin(θ1) = −M
sat

sin(θ1) (C.24)

=
µ0

(
M sat

)2

2ρK1

Hy .

A comparison of Eqs. (C.11) with Eqs. (C.21) and (C.24) reveals that if one sets

χsc

xx =
M sat

H crit,α
and χsc

yy =
µ0

(
M sat

)2

2ρK1

, (C.25)

the same magnetization response is predicted for the constrained MSMA by the cur-

rent constitutive model and the model based on the alternative form of the Gibbs

free energy (C.9). In fact by substituting Eq. (C.10b) into Eq. (C.9) and neglecting

ordinary magnetostriction the term

−
1

2ρ
χsc

ijHiHj = −
µ0

2ρ
H·M(H) , (C.26)

can be interpreted as the equivalent of the Zeeman energy term in Eq. (4.2). The

difference between the two energy terms is that in Eq. (C.26) the magnetization vector

M is a linear function of H, which also explains the factor of 1/2 in Eq. (C.25), whereas

in Eq. (4.2) it is a function of the internal state variables α and θi and a function

of H only after the evaluation of the additional constraints (4.13). However, as was

demonstrated, both energy expressions predict the same magnetization response for

the MSMA with suppressed variant reorientation. The magnetocrystalline anisotropy

energy does not explicitly appear in Eq. (C.9), but according to Eqs. (C.25) it is

captured in the component χsc
yy. The anisotropic nature of the magnetization response

is further evident from the fact that χsc
xx 6= χsc

yy.
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One of the reasons the Gibbs free energy was chosen to be of the form specified

in Eq. (4.8) is the fact that the change in the magnetization due to variant reorienta-

tion can easily be incorporated. Instead of having a Zeeman energy term of the form

−µ0

ρ
M(α, θi)·H as was assumed for the constrained MSMA, the term now becomes

−µ0

ρ
M(ξ, α, θi)·H. In the series expansion approach of Eq. (C.9), however, it is not

straightforward to incorporate the contribution of the evolving variant volume frac-

tion to the magnetization change. The inelastic reorientation strain was accounted

for by assuming an additive decomposition of the total strain in Eq. (4.1) and then

postulating the corresponding evolution equation (4.15). A similar decomposition of

the magnetization in this case is difficult to justify because the magnetic domain wall

motion is typically reversible in MSMA (cf. Fig. 8) such that the macroscopic mag-

netization always vanishes as the applied field is reduced to zero. This situation is

different from the magnetic hysteresis observed in permanent magnets in which irre-

versible magnetic domain wall motion leads to remnant magnetization and hysteresis

[16, 17] such that the magnetization can actually by decomposed into a reversible and

an irreversible part [129].

A second reason for not choosing the series expansion approach is the fact that

the internal state variables ξ, α and θi and their evolution are directly connected to the

physical processes that cause the unique magnetomechanical response of MSMA. By

being able to keep track of these variables and schematically visualizing the marten-

sitic variant and magnetic domain volume fractions as well as the orientation of the

magnetization vectors, as for example shown in Tables III–VII in Chapter V, one can

analyze the model predictions in much greater detail and compare them with physical

intuition. The susceptibility tensor χsc on the other hand captures the macroscopic

effect of the magnetic domain wall motion, the magnetization vector rotation and

the resulting anisotropy through the values of its coefficients. Information about the



184

current values of the rotation angles and the domain volume fractions as functions of

the magnetic field is not available in this case.

C3. Accounting for Temperature Changes During Variant Reorientation

The expanded expression of the free energy is then given by

g = gEq. (4.8) + cp

[

(T − T0) − T ln

(
T

T0

)]

, (C.27)

where cp is the effective heat capacity defined as cp = cV1
p + ξ

(
cV2
p − cV1

p

)
, and T0

is the reference temperature. Furthermore, the free energy reference state value in

Eq. (4.8) is interpreted as g0(T )=u0 − s0T , where u0 and s0 are the internal energy

and entropy at the reference state. Within reasonable limits, and far below the Curie

and the austenitic transformation temperatures, the magnetic properties such as the

saturation magnetization and the magnetocrystalline anisotropy are assumed to be

constant with respect to temperature. Thermal expansion has been neglected, since

only small temperature changes are considered.

From Eq. (C.27) the following constitutive equation for the entropy is derived,

which is an extension of Eq. (4.9a)

s = −
∂ĝ

∂T
= cp ln

(
T

T0

)

+ s0 . (C.28)

All other constitutive equations remain the same. Using Eq. (A.40), the conservation

of energy Eq. (3.26) can be rewritten as

ρ

[
∂ĝ

∂T
Ṫ +

∂ĝ

∂σ
: σ̇ +

∂ĝ

∂H
·Ḣ +

∂ĝ

∂ζ
·ζ̇

]

+ ρ
(
ṡT + sṪ

)
+ σ̇ :ε

+ µ0Ḣ·M + ρrh − divq = 0 . (C.29)
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Using the constitutive relations (4.9), canceling terms and rearranging then leads to

ρ
∂ĝ

∂ζ
·ζ̇ + ρṡT − ρrh + divq = 0 . (C.30)

With the definitions of the thermodynamic driving forces in Eqs. (4.10), (4.11) and

(4.17), the first term can, in agreement with Eq. (4.12), be written as

ρ
∂ĝ

∂ζ
·ζ̇ = −

[

π r : ε̇r + π̃ξξ̇ + παα̇+
4∑

i=1

πθi θ̇i

]

= −

[

πξξ̇ + παα̇+
4∑

i=1

πθi θ̇i

]

= −πξξ̇ . (C.31)

For the last equality the constraints (4.13) have been imposed. Substituting Eq. (C.31)

into Eq. (C.30) yields

πξξ̇ − ρṡT + ρrh − divq = 0 . (C.32)

From Eq. (C.28) it follows ṡ = cp

T
Ṫ , where the reference state entropy has been

assumed to be identical in both martensitic variants, i. e. ∆s0 =0. The conservation

of energy can then finally be expressed as

ρcpṪ − πξξ̇ = ρrh − divq . (C.33)

This expression can be used to calculate the temperature increase during a mag-

netic cycle due to the dissipated heat associated with the reorientation of martensitic

variants. If one assumes adiabatic conditions to find an upper bound for the temper-

ature change in a complete cycle, using the reorientation function Eq. (4.19) and the

Kuhn-Tucker conditions (4.20), it follows
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∆T =
1

ρcp





1∫

0

π (1,2) dξ +

0∫

1

π (2,1) dξ





=
1

ρcp





1∫

0

Y
ξ
dξ +

0∫

1

−Y
ξ
dξ



 =
2Y ξ

ρcp
. (C.34)

For a typical Ni-Mn-Ga composition which has the properties ρ=8300.0 kgm−3,

cp = 480.0 Jkg−1K−1 [164] and 223.6 kPA (see Table VIII), one calculates a temper-

ature change of ∆T =0.11 K per magnetic cycle. This value is at least one order of

magnitude lower than the temperature change induced by the austenite-martensite

phase transformation in an adiabatic pseudoelastic cycle of NiTi, but seems reason-

able, nonetheless, since the variant reorientation process is not a first order phase

transition [165]. In fact for the stress-induced phase transformation in SMAs the

energy balance Eq. C.33 contains an extra term ρ∆s0T [71, 76], which reflects the

entropy difference between the austenite and martensite phases.
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APPENDIX D

SELECTED MAPLE FILES

D1. Determination of Model Parameters

> restart:
> with(plots):
> xis:=0:
> xif:=0.96: (in case of partial reorientation, xif<1)

Evaluation of the reorientation surfaces at xis and xif
>eqn1:={sigp*emax+mu0*Msat*Hs12-(mu0*Msat)^2/(4*rhoK1)*Hs12^2

-(-A*(Pi-arccos(2*xis-1))+B1+B2)-Yk=0,sigp*emax+mu0*Msat*Hf12
-(mu0*Msat)^2/(4*rhoK1)*Hf12^2-(-A*(Pi-arccos(2*xif-1))+B1+B2)-Yk=0,
sigp*emax+mu0*Msat*Hs21-(mu0*Msat)^2/(4*rhoK1)*Hs21^2
-(-C*(Pi-arccos(2*xif-1))+B1-B2)+Yk=0,
sigp*emax+mu0*Msat*Hf21-(mu0*Msat)^2/(4*rhoK1)*Hf21^2
-(-C*(Pi-arccos(2*xis-1))+B1-B2)+Yk=0}:

> xi12:=1/2*cos(-1/A*(-sigma*emax-mu0*Msat*H+(mu0*Msat)^2/(4*rhoK1)*H^2
+B1+B2+Yk)+Pi)+1/2:

> xi21:=1/2*cos(-1/C*(-sigma*emax-mu0*Msat*H+(mu0*Msat)^2/(4*rhoK1)*H^2
+B1-B2-Yk)+Pi)+1/2:

> sol1:=solve(eqn1,{A,C,B1,Yk}):
> assign(sol1):

Evaluation of hardening function at ksi=1

> intgr1:=-A*(Pi-arccos(2*xi-1)):
> term1:=simplify(int(intgr1,xi=0..1)):
> f12:=term1+B1+B2:
> intgr2:=-C*(Pi-arccos(2*xi-1)):
> term2:=simplify(int(intgr2,xi=0..1)):
> f21:=term2+B1-B2:
> sol2:=solve(f12=f21,B2):
> B2:=simplify(sol2):

Material parameters
> mu0:=4*Pi*1E-7:
> Msat:=514.0E3:
> rhoK1:=1.67E5:
> sigp:=-1.0E6:
> emax:=0.062:
> Hcrit:=evalf(2*rhoK1/(mu0*Msat)):
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> Hcrit_bar:=evalf(Hcrit*mu0):

Hcrit_bar := .6498054475

Conversion from kG to A/m.
> Hs12:=0.39/mu0:
> Hf12:=Hcrit:
> Hs21:=0.35/mu0:
> Hf21:=-0.15/mu0:

D2. Numerical Evaluation of the Constitutive Response

> with(plots):
> with(plottools):
> plotsetup(default):
> unassign(’sigma’):
> Digits:=32:

Evolution of the variant volume fraction. (with magnetization
rotation and cosine hardening function)
> Pi_s12:=sigma*emax+mu0*Msat*H-mu0^2*Msat^2/(4*rhoK1)*H^2-B1-B2-Yk:
> Pi_f12:=sigma*emax+mu0*Msat*H-mu0^2*Msat^2/(4*rhoK1)*H^2+A*Pi-B1-B2-Yk:
> Pi_s21:=sigma*emax+mu0*Msat*H-mu0^2*Msat^2/(4*rhoK1)*H^2+C*Pi-B1+B2+Yk:
> Pi_f21:=sigma*emax+mu0*Msat*H-mu0^2*Msat^2/(4*rhoK1)*H^2-B1+B2+Yk:
> Pi_s12neg:=sigma*emax-mu0*Msat*H-mu0^2*Msat^2/(4*rhoK1)*H^2-B1-B2-Yk:
> Pi_f12neg:=sigma*emax-mu0*Msat*H-mu0^2*Msat^2/(4*rhoK1)*H^2+A*Pi-B1-B2-Yk:
> Pi_s21neg:=sigma*emax-mu0*Msat*H-mu0^2*Msat^2/(4*rhoK1)*H^2+C*Pi-B1+B2+Yk:
> Pi_f21neg:=sigma*emax-mu0*Msat*H-mu0^2*Msat^2/(4*rhoK1)*H^2-B1+B2+Yk:
> xi12pos:=1/2*cos(-1/A*(-sigma*emax-mu0*Msat*H+mu0^2*Msat^2/(4*rhoK1)*H^2

+B1+B2+Yk)+Pi)+1/2:
> xi21pos:=1/2*cos(-1/C*(-sigma*emax-mu0*Msat*H+mu0^2*Msat^2/(4*rhoK1)*H^2

+B1-B2-Yk)+Pi)+1/2:
> xi12neg:=1/2*cos(-1/A*(-sigma*emax+mu0*Msat*H+mu0^2*Msat^2/(4*rhoK1)*H^2

+B1+B2+Yk)+Pi)+1/2:
> xi21neg:=1/2*cos(-1/C*(-sigma*emax+mu0*Msat*H+mu0^2*Msat^2/(4*rhoK1)*H^2

+B1-B2-Yk)+Pi)+1/2:

Material parameters
> eoff:=0:
> sigmax:=0E6:
> sigmin:=-6E6:
> Hmax_bar:=1.0:

Derived material constants
> evalf(A);
> evalf(B1);
> evalf(C);
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> evalf(B2);
> evalf(Yk);

-9747.0632020485761666980459447134
-34847.411377245508982035928143712
-79393.749892589101796407185628742
54700.379820347183593573556532629
58451.026167676768502234826700902

Critical magnetic fields for onset and termination of reorientation
> sol1:=solve(Pi_s12,H):
> sol2:=solve(Pi_f12,H):
> sol3:=solve(Pi_s21,H):
> sol4:=solve(Pi_f21,H):
> sol5:=solve(Pi_s12neg,H):
> sol6:=solve(Pi_f12neg,H):
> sol7:=solve(Pi_s21neg,H):
> sol8:=solve(Pi_f21neg,H):

Value for full magnetization rotation (theta3=90)
> xicrit:=evalf(subs(sigma=-1E6,H=Hcrit,xi12pos));

xicrit := .95999999999885874972759125659926

Blocking stress
> sigb:=solve(sol1[SNP]*mu0=0.99999*Hcrit_bar,sigma);

7
sigb := -.14305807318148662400708181499898 10

> SN1:=evalf(mu0*subs(sigma=sigp,sol1[1]));
> SN2:=evalf(mu0*subs(sigma=sigp,sol1[2]));
> if (SN1 > SN2) then SNP:=2; SNN:=1 else SNP:=1;SNN:=2 end if;

Stress level 1
> sigma:=-1.0E6:

Note conversion from kG to A/m. In the calculation all the
quantaties are in SI units, but for convenience the magnetic field
in the plots is measured in kG.

Critical magnetic fields for considered stress level
> sol1_bar:=evalf(sol1[SNP]*mu0);
> sol2_bar:=evalf(sol2[SNP]*mu0);
> sol3_bar:=evalf(sol3[SNP]*mu0);
> sol4_bar:=evalf(sol4[SNP]*mu0);
> sol5_bar:=evalf(sol5[SNN]*mu0);
> sol6_bar:=evalf(sol6[SNN]*mu0);
> sol7_bar:=evalf(sol7[SNN]*mu0);
> sol8_bar:=evalf(sol8[SNN]*mu0);

sol1_bar:=.39000000000000000000000000000001
sol2_bar:=.64980544747081712062256809338521
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-.099623400159566407042786338670848 I
sol3_bar:=.55471790525222673927592588307912
sol4_bar:=-.15000000000000000000000000000001
sol5_bar:=-.39000000000000000000000000000001
sol6_bar:=-.64980544747081712062256809338521

+.099623400159566407042786338670848 I
sol7_bar:=-.55471790525222673927592588307912
sol8_bar:=.15000000000000000000000000000001

Critical values in case of partial reorientation
> xicrit:=evalf(subs(H=Hcrit,xi12pos));
> xicritH0:=evalf(subs(H=0,xi21pos));

xicrit := .95999999999885874972759125659926
xicritH0 := .26574541432721612330354739487652

> Pi_21:=sigma*emax+mu0*Msat*H-mu0^2*Msat^2/(4*rhoK1)*H^2
+C*(Pi-arccos(2*xi-1))-B1+B2+Yk:

> Pi_12neg:=sigma*emax-mu0*Msat*H-mu0^2*Msat^2/(4*rhoK1)*H^2
+A*(Pi-arccos(2*xi-1))-B1-B2-Yk:

> sol3_crit_bar:=evalf(mu0*solve(subs(xi=xicrit,Pi_21),H)[1]);
> sol1neg_crit_bar:=evalf(mu0*solve(subs(xi=xicritH0,Pi_12neg),H)[2]);

sol3_crit_bar := .34999999999999999999999999999965
sol1neg_crit_bar := -.44780580528774753855737534904424

> xicrit*emax*100;
> xicritH0*emax*100;

5.9519999999929242483110657909154
1.6476215688287399644819938482344

Plot the MFIS curves
> eps01:=eoff:
> eps12:=xi12pos*emax+eoff:
> eps23:=xicrit*emax+eoff:
> eps34:=xi21pos*emax+eoff:
> eps45:=xicritH0*emax+eoff:
> eps56:=xi12neg*emax+eoff:
> eps67:=emax*xicrit+eoff:
> eps78:=xi21neg*emax+eoff:

> pl1:=plot(subs(H=1/mu0*Hbar,eps01)*100,Hbar=0.0..sol1_bar,y=-0.8..6):
> pl2:=plot(subs(H=1/mu0*Hbar,eps12)*100,Hbar=sol1_bar..Hcrit_bar):
> pl3:=plot(subs(H=1/mu0*Hbar,eps23)*100,Hbar=sol3_crit_bar..Hmax_bar):
> pl4:=plot(subs(H=1/mu0*Hbar,eps34)*100,Hbar=0..sol3_crit_bar):
> pl5:=plot(subs(H=1/mu0*Hbar,eps45)*100,Hbar=0..sol1neg_crit_bar):
> pl6:=plot(subs(H=1/mu0*Hbar,eps56)*100,Hbar=-Hcrit_bar..sol1neg_crit_bar):
> pl7:=plot(subs(H=1/mu0*Hbar,eps67)*100,Hbar=-Hmax_bar..-sol3_crit_bar):
> pl8:=plot(subs(H=1/mu0*Hbar,eps78)*100,Hbar=-sol3_crit_bar..0):
> dplstrain:=display(pl1,pl2,pl3,pl4,pl5,pl6,pl7,pl8):
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Plot the Magnetization Curves (My at theta4=0)
> My01:=mu0*Msat^2/(2*rhoK1)*H:
> My12:=(1-xi12pos)*mu0*Msat^2/(2*rhoK1)*H+Msat*xi12pos:
> My22b:=Msat:
> My2b3:=(1-xicrit)*mu0*Msat^2/(2*rhoK1)*H+Msat*xicrit:
> My34:=(1-xi21pos)*mu0*Msat^2/(2*rhoK1)*H+Msat*xi21pos:
> My45:=(1-xicritH0)*mu0*Msat^2/(2*rhoK1)*H-Msat*xicritH0:
> My56:=(1-xi12neg)*mu0*Msat^2/(2*rhoK1)*H-Msat*xi12neg:
> My66b:=-Msat:
> My6b7:=(1-xicrit)*mu0*Msat^2/(2*rhoK1)*H-xicrit*Msat:
> My78:=(1-xi21neg)*mu0*Msat^2/(2*rhoK1)*H-xi21neg*Msat:

> pl01my:=plot(subs(H=1/mu0*Hbar,My01)/Msat,Hbar=0.0..sol1_bar):
> pl12my:=plot(subs(H=1/mu0*Hbar,My12)/Msat,Hbar=sol1_bar..Hcrit_bar):
> pl22bmy:=plot(subs(H=1/mu0*Hbar,My22b)/Msat,Hbar=Hcrit_bar..Hmax_bar):
> pl2b3my:=plot(subs(H=1/mu0*Hbar,My2b3)/Msat,Hbar=sol3_crit_bar..Hcrit_bar):
> pl34my:=plot(subs(H=1/mu0*Hbar,My34)/Msat,Hbar=0..sol3_crit_bar):
> pl45my:=plot(subs(H=1/mu0*Hbar,My45)/Msat,Hbar=0..sol1neg_crit_bar):
> pl56my:=plot(subs(H=1/mu0*Hbar,My56)/Msat,Hbar=sol1neg_crit_bar..-Hcrit_bar):
> pl66bmy:=plot(subs(H=1/mu0*Hbar,My66b)/Msat,Hbar=-Hcrit_bar..-Hmax_bar):
> pl6b7my:=plot(subs(H=1/mu0*Hbar,My6b7)/Msat,Hbar=-Hcrit_bar..-sol3_crit_bar):
> pl78my:=plot(subs(H=1/mu0*Hbar,My78)/Msat,Hbar=-sol3_crit_bar..0):
> dplmagn:=display(pl01my,pl12my,pl22bmy,pl2b3my,pl34my,pl45my,pl56my,pl66bmy

,pl6b7my,pl78my):

> display(dplstrain,labels=["mu0 Hy","MFIS"]);
> display(dplmagn,labels=["mu0 Hy","My/Msat"]);
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