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ABSTRACT 
 
 
 

Transient Finite Element Analysis of Electric Double  

Layer Using Nernst-Planck-Poisson Equations with a  

Modified Stern Layer. (December 2006) 

Jong Il Lim, B.A., Inha University; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. John D. Whitcomb 

 

Finite element analysis of electric double layer capacitors using a transient 

nonlinear Nernst-Planck-Poisson (NPP) model and Nernst-Planck-Poisson-modified 

Stern layer (NPPMS) model are presented in 1D and 2D. The NPP model provided 

unrealistic ion concentrations for high electrode surface potential. The NPPMS model 

uses a modified Stern layer to account for finite ion size, resulting in realistic ion 

concentrations even at high surface potential.  

The finite element solution algorithm uses the Newton-Raphson method to solve 

the nonlinear problem and the alpha family approximation for time integration to solve 

the NPP and NPPMS models for transient cases. Cubic Hermite elements are used for 

interfacing the modified Stern and diffuse layers in 1D while serendipity elements are 

used for the same in 2D.  

 



 iv

Effects of the surface potential and bulk molarity on the electric potential and ion 

concentrations are studied. The ability of the models to predict energy storage capacity is 

investigated and the predicted solutions from the 1D NPP and NPPMS models are 

compared for various cases. It is observed that NPPMS model provided realistic and 

correct results for low and high values of surface potential. 

Furthermore, the 1D NPPMS model is extended into 2D. The pore structure on 

the electrode surface, the electrode surface area and its geometry are important factors in 

determining the performance of the electric double layer capacitor.  Thus 2D models 

containing a porous electrode are modeled and analyzed for understanding of the 

behavior of the electric double layer capacitor. The effect of pore radius and pore depth 

on the predicted electric potential, ion concentrations, surface charge density, surface 

energy density, and charging time are discussed using the 2D Nernst-Planck-Poisson-

modified Stern layer (NPPMS) model.  
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NOMENCLATURE 

 

φ                        Electric potential (Volt) 
 

sc                       Concentration of species s  (M) 
 
D                      Electrical displacement 2( / )C m  
 

sD                     Diffusion coefficient of species s  ( 2 / secm ) 
 
F                       Faraday’s constant ( 49.652 10 /C mol× ) 
 
T                       Temperature ( K ) 
 
R                       Gas constant (8.314 /J molK ) 
 
e                        Electronic charge 19(1.602 10 )C−×  
 

fρ                     Free charge density 3( / )C m  
 
k                       Boltzmann constant 23(1.381 10 / )J K−×  
 
P                      Polarization 3( / )C m  
 
χ                      Susceptibility 
 
ε                       Dielectric constant (relative permittivity) of water 
 

oε                      Permittivity of free space or vacuum 12 2 2(8.854 10 / )C Nm−×  
 

sz                     Valence of species s  
 

sc∞                     Bulk concentration of species s  (M) 
 

sJ                     Flux density of species s 2( / sec)mol m  
 

1κ −                    Debye length (m) 
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2x                      Thickness of Stern layer (m) 

 
L                      Half distance between two electrodes (m) 
 
q                       Degrees of freedom 
 
N                     Interpolation functions 
 
PB                    Poisson-Boltzmann 
 
NPB                 Nonlinear Poisson-Boltzmann  
 
NPP                 Nernst-Planck-Poisson 
 
NPPMS           Nernst-Planck-Poisson-Modified Stern layer 
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CHAPTER I 

 

INTRODUCTION  

  

1.1        Overview 

 

In the recent times there has been growing interest in energy storage devices for 

many advanced power systems such as electronic communications, electric/hybrid vehicles 

and aerospace vehicles that require high energy density and high power density. The 

supercapacitor is one of the most fascinating technologies among energy storage devices 

and is known by various names such as ‘electrochemical capacitors’, ‘ultra-capacitors’, 

‘power-capacitors’, or ‘gold-capacitors’ (1).   There are two kinds of supercapacitors: 

electric double layer capacitors (EDLCs) and pseudo-capacitors (2).  

 

Supercapacitors have several advantages over existing batteries. They have at least 

ten times more specific power, hundreds of times more cycles (~1 million), much faster 

charging rate, zero maintenance, and an extremely long shelf life compared to the batteries. 

However, a major drawback of these devices is their relatively low energy density, 

compared with batteries.  

                                                 
  This dissertation follows the style of the Journal of Colloid and Interface Science. 
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As for a battery, the energy density is high, but has a poor power density as indicated in Fig. 

1.1 (1). The conventional capacitors have limited energy density with a high power density. 

Supercapacitors give a unique combination of high power and relatively high energy 

density, bridging the gap between batteries and capacitors. In Fig. 1.1, it is seen that fuel 

cells rapidly becomes inefficient under high power demands. They can be used in tandem 

with either batteries or supercapacitors to provide a combination of high energy and high 

power.  

 

Main characteristic of the supercapacitors is to provide both a high energy density 

together with a high power density.  

 

 
 

FIG. 1.1 †Sketch of ragone plot for various energy storages (areas are rough guide lines) 
(† Reprinted from “Principles and Applications of Electrochemical Capacitors”, volume 45, 
Kötz, R., and Carlen, M., page2483, year 2000, with permission from Elsevier) 
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This leads to new applications for energy storage, even with energy density being lower 

than that in the batteries. Currently, one of most important applications of supercapacitor is 

in electronic automobiles. Combined with a fuel cell, the supercapacitor can be used in 

automotive applications to supply the extra power needed for acceleration, and to store 

energy during breaking, which can be reused in the next acceleration process.  

 

Among the supercapacitors, the electric double layer capacitors (EDLCs) are 

considered in this dissertation. An EDLC is a device that consists of two ideally polarizable 

electrodes. In order to obtain a reasonable energy density with EDLCs, the electrode 

surface area and the applied voltage should be as high as possible. The energy of the 

EDLCs is stored across the electric double layer formed at the electrode/electrolyte 

interface. An EDLC forms an electric double layer with charge separation at the 

electrode/electrolyte interface but in pseudo-capacitors faradaic redox reactions occur near 

the solid electrode surface. An EDLC does not have faradaic reaction. In fact, since no 

chemical reaction is involved, these devices become reversible and reusable. 

 

The electrolyte may be aqueous or non-aqueous. The use of aqueous electrolytes 

limits the voltage to a maximum value of only about 1 V. However, aqueous electrolytes 

allow to obtain low resistance supercapacitors. In contrast, non-aqueous electrolytes allow 

the supercapacitor to reach 2 or 3 V with a higher resistance.  
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1.2        Description of Electric Double Layer 

 

Electric double layers have an important role in physical chemistry, biology, 

engineering, and many industrial processes. The double layer forces stabilize colloids, 

preventing the flocculation of particles. They are one of the reasons for the swelling of 

clays, and they influence the conformation and function of biomolecules. Formation of the 

electric double layer is the basic energy storage mechanism for supercapacitors, in which 

electric double layers forms at the electrode/electrolyte interface.  

 

Helmholtz (1879) was the first to develop a double layer model (3~12) wherein he 

proposed a simple charge separation at the interface. The interface separates two layers of 

opposite charges, one in the electrode and the other in the solution as shown in Fig. 1.2(a). 

The thickness of the Helmholtz layer [Fig.1.2(a)] is the distance of closest approach of the 

charges towards the electrode (5).  It is equivalent to a conventional parallel-plate capacitor 

that has a separation of 2L  between the two electrodes. The main defect of the Helmholtz 

model is that it predicts a constant capacitance, helmholtz o helmholtzC dεε=  which is incorrect for 

real systems (4~6,9).  The capacitance in the Helmholtz model does not change with the 

surface potential or concentrations (4). 

 

Gouy (1910) developed an electric double layer model that includes the effects of 

both the electric potential and ionic concentration with the aid of Boltzmann distributions 
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(3~6,13~15).  Ions in the double layer are not compact as described in the Helmholtz model 

but are free to move. This is called the diffuse layer as shown in Fig. 1.2(b) (3~6).  

 

 
FIG. 1.2 Fundamental models of the electric double layer      
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Chapman (1913) established the steady-state governing equation for the diffuse 

layer, the Poisson-Boltzmann equation, which is nonlinear. This equation is based on the 

combination of the Poisson equation and the Boltzmann equation.  

 

For steady-state conditions, if we impose zero flux at the boundaries and integrate 

the conservation of mass equation, the concentration can be expressed in terms of bulk 

molarity. By substituting this into Gauss’s law, a nonlinear second order partial differential 

equation is derived. This model is referred to as the Gouy-Chapman model. The predicted 

behavior depends on the surface potential. This model is valid for low surface potential and 

dilute electrolyte. Using the Debye-Huckel&& approximation, which is based on assumption of 

very small electric potential (i.e. less than 25 mV), the Poisson-Boltzmann equation can be 

linearized and a closed form solution can be obtained (3~6, 16). However, for other than 

very low voltages and molarity, extremely high concentrations and voltage gradients are 

predicted near the electrode (10, 17). This overestimation results from idealization of the 

ions as point charges.  

 

Stern (1924) improved the Gouy-Chapman model by considering finite ion size and 

dividing the electrolyte into two layers, referred to as the Stern layer and the diffuse layer in 

Fig. 1.2(c) (3~6, 10).  The Stern layer (or compact layer) has an assumed thickness 

approximately equal to the radius of one hydrated ion (3, 10) (i.e. about 0.5nm). The 

electric potential distribution in the Stern layer is assumed to decrease linearly. The Stern 

layer posses no free charge. The second layer of the electrolyte is governed by the Gouy-
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Chapman model. This model shows good agreement with the experiments for ions that are 

not tightly bound to the electrodes by chemical interactions, called as nonspecifically 

adsorbed ions on the electrode (4, 5).  

 

For specifically adsorbed ions, which means ions are tightly bound to the electrodes 

by chemical interactions, Grahame (1947) (1,3,18,19) updated the Stern model using three 

layers: inner Helmholtz layer (IHL), outer Helmholtz layer (OHL) and diffuse layer (3~6) 

as shown in Fig. 1.2(d). The difference between the Grahame model and Stern model is the 

existence of specific adsorption (5).  

 

 

 

 

 

 

 

 

 

FIG. 1.3 Schematic variation of the electric potential in the Stern model 
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Stern layer, is the focus of this dissertation. The schematic variation of the electric potential 

in the Stern model is described in Fig. 1.3. The present model uses a modified Stern layer in 

the sense that the multipoint constraints of the numercial method impose a linear potential 

distribution and a uniform ion concentration ( or free charge density), whereas the Stern 

layer contains no free charge. Also, ideal polarized electrodes (IPE) at both electrode ends 

are assumed. 

 

The transient version is obtained by combining the Nernst-Planck, conservation of 

mass, and Gauss equations. Herein, this transient version is referred to as the Nernst-

Planck-Poisson-modified-Stern layer (NPPMS) model or simply the Nernst-Planck-Poisson 

(NPP) model (20,21) if there is no a modified Stern layer.  

 

1.3       Literature Reviews 

 

Solution of the NPP model is simple for steady state, low voltage and low molarity, 

but in general the equations require numerical solution using the finite difference or finite 

element method (FDM and FEM, respectively). There have been few FEM applications in 

electrochemistry (22,23). The FDM (24~29) has been the main tool for solving the 

nonlinear partial differential equations in electrochemistry. This is likely because many 

consider FDM to be easy to program. However, instability and long runtime problems 

remain as primary disadvantages for the FDM (24).  
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Solving the Poisson-Boltzmann equation is one way to describe electrolyte solutions 

(23,30). It is a special case of the Nernst-Planck-Poisson equations for steady-state 

conditions. Before reviewing the literature on numerical solution, the history of closed form 

solutions will be briefly discussed.  

 

Many researchers have solved the governing equations using simplifying 

assumptions such as the electroneutrality ( 0ρ = ), constant field condition, and nil current 

(
1

0
N

s s

s
z J

=

=∑ ), which means imposing zero electric current conditions. 

 

Planck (1890) used the electroneutrallity and nil current assumptions to solve the 

Nernst-Planck equation for two monovalent species in 1D (31). Fixed concentration and 

surface potential were used for boundary conditions for simple and idealized cases (32).  

 

The electroneutrality condition violates fundamental laws because this 

electroneutrality condition is not satisfied in solutions where an electric double layer is very 

thin (i.e. 1~10 nm) (33). 

 

Gouy and Chapman (1913) established the steady-state governing equation using 

the Boltzmann distribution and it is known as the Poisson-Boltzmann equation. It could not 

be solved analytically except for special cases. They independently derived the exact 

solutions for a monovalent electrolyte case (3). Derjaguin, Landau, Verwey and Overbeek 
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(1941) linearized the Poisson-Boltzmann equation using the Debye- Huckel&&  approximation 

(3~6). For the Nernst-Planck equation, Goldman (1943) introduced the constant electric 

field assumption, which made it possible to directly integrate the Nernst-Planck equation.  

Goldman assumed that the constant field assumption is valid when the Debye length is 

large (25, 34). 

 

Conti and Eisenman (1965) derived the expression for the total potential, which is 

the difference of electrical potential between two solutions separated by a membrane. They 

used the Nernst-Planck equation but did not obtain the concentration and electrical potential 

distribution. The expression was restricted to only electrolytic solutions made of 

monovalent ions (35). Although insights can be obtained from these limited closed form 

solutions, numerical techniques are required for more general steady state and transient 

problems.  

 

A numerical algorithm by Cohen and Cooley (1965) was presented for the Nernst-

Planck equations using a predictor-corrector scheme with the FDM for transient cases. 

They also included discussion of boundary effects that occur when electroneutrality does 

not hold (36).   

 

Another algorithm by Hwang and Helfferich (1987) was developed to solve the 

Nernst-Planck equations for a multispecies system and transient cases using the implicit 

finite difference method (37). Helfferich pointed out that the Poisson equation is required 
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for electrical coupling with ionic fluxes (33, 38). It was proved by MacGillivray and Hare 

that the electroneutrality and constant field assumptions are particular applications of the 

Poisson equation (34,39).  

 

Over the years, it has been established that the mechanisms of ionic diffusion can be 

modeled by the Nernst-Planck-Poisson set of equations (38,40), which are simply the 

combination of three equations: Gauss’s law (i.e. conservation of charge), the Nernst-

Planck equations, and conservation of mass (32,26,38,40~46). However, accurate solutions 

to the Nernst-Planck-Poisson system of equations (NPP model) have not been possible due 

to the nonlinearity (36, 44~46). 

 

Kato (1995) solved the Nernst-Planck-Poisson equations using the Finite Difference 

Method (FDM) for steady-state 1D cases. Kato studied the solution of the equations where 

the electroneutrality and constant field assumptions were not valid (42). Hsu (1997) derived 

nondimensional forms of the Nernst-Planck-Poisson equations using an independent 

variable and solved the equations through a numerical procedure he developed (46). 

 

The Nernst-Planck-Poisson equations were also solved by Samson (1999) in 1D and 

2D using FEM (32,40). Transient problems were emphasized by Samson. Samson used 

both a Picard iteration method and a Newton-Raphson method. Samson compared the two 

algorithms to solve the ionic diffusion problem using the Nernst-Planck-Poisson equations. 

Convergence using the Newton-Raphson method was faster than the one using the Picard 
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iteration method. The range of stability was demonstrated to be broader for the Newton-

Raphson method (32,40). However, Samson used low potential cases and numerical 

solutions were obtained using coarse meshes. As already mentioned for the Gouy-Chapman 

model, the Nernst-Planck-Poisson equations are not valid for high potential cases (e.g. 0.3 

V and 0.001 M) (17) and a refined model is needed due to highly nonlinear effects near 

electrodes, since high voltage gradients and unrealistic ionic concentrations in the electric 

double layer cause numerical difficulties.  

 

Horno and coworkers presented the “network thermodynamic method” to obtain 

numerical solutions of the Nernst-Planck-Poisson equations (47~50). The key strategy is to 

transform the governing partial differential equations into an equivalent electric circuit. The 

governing equations for this equivalent circuit are ordinary differential equations in terms 

of time. After conversion to an electric circuit, the electric simulation program SPICE 

(Simulation Program with Integrated Circuit Emphasis) is used to obtain the behavior of the 

circuit (i.e. solve the governing equations). This approach appears to be limited to 1D 

analysis.  

 

Enikov and Boyd (2000) solved the 2D Nernst-Planck-Poisson equations in solids 

using the FEM with an application to anodic bonding of glass to conductors (51). In anodic 

bonding, the glass and conductor are placed in contact at a high temperature ( 400 Fo ), a 

positive potential is applied to the conductor and a negative potential is applied to an 

electrode on the top of the glass. Mobile sodium ions diffuse toward the top of the glass, 



 

 

13

leaving behind a negative space charge, which is attracted to the positively charged 

conductor. The interfacial pressure results in a chemical bond between the glass and the 

conductor surfaces. The Nernst-Planck equation was coupled to Gauss’ law and the linear 

momentum equations, which included the electric body force and electric surface traction 

(stress vector) acting at the glass/conductor interface and the electrode/glass interface. The 

temporal equations were solved using the semi-discrete method (52,53) with the Euler 

integration method. The Newton-Raphson method was not used. The equations were solved 

for the electric potential, the sodium ion concentration, and the stress as functions of space 

and time.  

 

The NPP and NPPMS models are applicable to the ideal flat electrode cases. 

However, they can not be applied to most practical cases. The fundamental behavior of 

electric double layer is based on a model with the assumption of planar electrode geometry. 

Measured currents and impedances on planar electrodes can yield deviations from the ideal 

behavior. A possible cause for the deviation from the idealistic case is due to geometric 

assumption in the electrode (54,55).  

 

Recently, many kinds of porous materials in electrodes have been developed which 

have very high specific surface areas enabling the development of EDLCs with high energy 

densities. Their capacitance for a given size of the device is much higher, (by a factor of 

10,000) than those achievable with regular capacitors (9). These astonishingly high 
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capacitances due to high surface areas are the technological breakthrough that has initiated 

a rush to develop EDLCs. 

 

In a conventional capacitor, energy is stored within the electric field between its 

electrodes.  The capacitance in a conventional capacitor is determined by the geometric 

parameters (e.g. surface area and thickness) of the device and by the dielectric constant of 

free space.  

 

For example, the surface area of the electrodes can be increased by rolling 

conducting materials in order to increase the capacitance. Rolled capacitors are 

manufactured as thin as possible by this technology (56). Increasing the surface area by 

rolling and minimizing the separation distance to the nano range seemed the ultimate limit 

in the production of large energy storing devices. Therefore, high surface area electrode 

materials have been developed by many laboratories. 

 

Currently, activated carbon is being pursued as a material for the supercapacitor 

electrode because of its porous structure and large surface area in Fig. 1.4. Porous activated 

carbon contains randomly connected pores with sizes ranging from micro pores (<2nm 

diameter) to macro pores (>50 nm diameter). Yoon claims that high surface area carbon 

materials containing mesopores are highly desirable for the supercapacitor electrode (57). 
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FIG. 1. 4. †Porous model for porous activated carbon 
(† Reprinted from Endo, T. Takeda, Y.J. Kim, K. Koshiba, and K. Ishii, “High Power 
Electric Double Layer Capacitor (EDLCs): from Operating Principle to Pore Size Control 
in Advanced Activated Carbons”, Carbon Science, 1, 117~128 (2001) 

 

Modeling of porous structures in electrodes is needed for understanding the 

behavior of EDLCs with porous electrodes. Simple pore geometries (i.e. meso pore size, 

>2nm) with the change of pore radius and depth will be considered in Chapter IV. 

 

1.4       Summary 

 

As seen above, most of the analyses have been focused on the NPP and very little 

work has been done for analyzing more realistic models. A thorough understanding of the 

electric double layer capacitors (EDLCs) is required to develop the NPP and NPPMS 

models. To achieve this, a transient nonlinear finite element analyses is performed to 
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predict the numerical solutions in 1D and then extended into 2D analyses. In 2D analyses, 

several models of porous electrode with different pore depth and radius will be analyzed. 

 

Chapter II details the general governing equations and the weak form of the 

governing equations. Chapter III explains the finite element formulation for the NPP and 

NPPMS models in 1D. The unrealistic ion concentration obtained due to the assumption of 

a point charge is eliminated by addition of a modified Stern layer near the electrode. Multi-

point constraints are used for implementation of the modified Stern layer for the NPPMS 

model. The finite element solution algorithm uses the Newton-Raphson method for 

nonlinear iteration. Alpha family approximations are used for time integration in the 

transient cases in both the models. Finite element techniques are used for interfacing the 

modified Stern and diffuse layers with cubic Hermite interpolation functions.  

 

The 2D NPP and NPPMS models are implemented in Chapter IV. As mentioned in 

the literature review, the pore structure on the electrode surface is a significant element in 

determining the performance of supercapacitor (56). The electrode surface area and its 

geometry are important factors in its performance.  Thus porous electrode is modeled for 

understanding of the behavior of the electric double layer capacitor. The 2D models 

analyzed contain a simple geometry representing the porous electrodes. The effect of pore 

radius and pore depth on the predicted electric potential, ion concentrations, surface charge 

density, and surface energy density are discussed using the 2D Nernst-Planck-Poisson-

modified Stern layer (NPPMS) model. 
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Finally, the discretized governing equations for 1D and 2D are presented in 

Appendix A.  Derivations of the M matrix for 1D and 2D analysis, linearized incremental 

forms are shown in Appendix B and C respectively. Derivations of the tangential matrix for 

1D and 2D are presented in Appendix D and E respectively. 

 

In summary, the overall objective of this research is to develop the NPP and 

NPPMS models in 1D and 2D that allows reliable predictions of the behavior of 

supercapacitors. The research will focus on the following goals: 

1) To develop the NPPMS model interfacing the modified Stern layer and diffuse 

layer using the multi point constraint technique. 

2) To prove the effectiveness and advantages of the developed NPPMS model over 

the existing NPP model. 

3) To study the effect of modified Stern layer on the electric potential distribution, 

ion concentration, charge and energy density and the overall charging time. 

4) To study the effect of a pore radius and depth on the electric potential 

distribution, ion concentration, charge and energy density and the overall 

charging time. 
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CHAPTER II 

 

GENERAL MATHEMATICAL MODELS 

 

 
2.1        Governing Partial Differential Equations 

 

This Chapter describes the general governing equations for the Nernst-Planck-

Poisson (NPP) model. First, Gauss’s law for conservation of charge is given using index 

notation (i.e. i ), 

 

                                                ( 1, 2,3)
d

fi

i

E i
x

ρ∂
= − =

∂
                                           [2.1] 

where  

                                                               d
i o

i

E
x
φεε ∂

=
∂

                                                [2.2] 

 

This is also referred to as Poisson’s equation. d
iE  is an electric flux density (or 

electric displacement) vector. The medium is assumed to be isotropic. For linear and 

isotropic media, d
iE  and 

ix
φ∂

∂
are related by Eq. [2.2].  φ is the voltage and 

ix
φ∂

∂
is the 

electric field vector. oε is the electric permittivity of a vacuum and ε is the dielectric 
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constant (or relative electric permittivity) of water and fρ is the free charge density, which 

is given by (15, 35, 46) 

 

                                                          
1

s
f s sez cρ = ∑                                       [2.3] 

 

where the ion concentrations sc , their valence sz and s  is the species (i.e. positive/negative 

ion). This dissertation will focus on the binary electrolyte case (i.e. two ion types with 

identical valence, 1, 2s = ).  

First, Gauss’s law for conservation of charge which is also referred to as Poisson’s equation 

can be expressed as  

 

                                                         ( )1 1 2 2
d
i

i

E ez c ez c
x

∂
= − +

∂
                                       [2.4]                               

 

Second, the Nernst-Planck equations are 

 

                                   where  1, 2
s s

s s s s
i

i i

c z FJ D D c s
x RT x

φ∂ ∂
= − − =

∂ ∂
                           [2.5] 

 

which express the relationship between the flux s
iJ  and the electric field

ix
φ∂

∂
. sD  are the 

diffusion coefficients, F is the Faraday constant, R is the ideal gas constant, and T is the 
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absolute temperature. Finally, inserting the Nernst-Planck equations into the conservation 

of mass equations gives  

 

                                                     where  1, 2
ss
i

i

Jc s
t x

∂∂
= − =

∂ ∂
                                     [2.6] 

 

In summary, the general governing partial differential equations are introduced for 

the Nernst-Planck-Poisson model as follows (43,53,60). 

 

                                            
2

0
d

s si

si

E ez c
x

∂
+ =

∂ ∑                                                [2.7] 

where   

                                                             d
i o

i

E
x
φεε ∂

=
∂

                                                  [2.8] 

and  

                                                              0 
ss
i

i

Jc
t x

∂∂
+ =

∂ ∂
                                                [2.9] 

where  

                                                  
s s

s s s s
i

i i

c z FJ D D c
x RT x

φ∂ ∂
= − −

∂ ∂
                                [2.10] 

 

and where  1, 2,3 and 1,2i s= = . 
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2.2        Weak Forms of Equations 

 

The first step is to convert the general governing partial differential equations to 

weighted residual equations.  It is convenient to think of the weight functions as variations 

of the primary variables in the governing equations to derive weak form. We obtain the 

weighted residual statements by multiplying the variations (i.e. , scδφ δ ) with the left hand 

side of Eqs. [2.7] and [2.9] and integrating over the domain. The weighted integral forms in 

3D (i.e. : , :V volume containing electrolyte S boundary of domain V ) are 

 

                                                  0
d

s si

si

E ez c dV
x

δφ
⎛ ⎞∂

+ =⎜ ⎟∂⎝ ⎠
∑∫                                   [2.11] 

and  

    0   
ss

si

i

Jc c dV
t x

δ
⎛ ⎞∂∂

+ =⎜ ⎟∂ ∂⎝ ⎠
∫                                    [2.12] 

 

                                  

where 1,2,3 and 1,2i s= = . 

Also, δφ  and scδ  are the arbitrary variations of the electric potential and ionic 

concentrations, respectively.  Integration by parts yields the weak form of Eqs. [2.11] and 

[2.12]. 

 

                                   0d d s s
i i

si

E dS E dV ez c dV
x
φδφ δ δφ∂

− + =
∂ ∑∫ ∫ ∫                      [2.13] 



 

 

22

and 

                                    0
s s

s s s s
i i

i

c cJ c dS c dV J dV
t x

δ δ δ∂ ∂
+ − =

∂ ∂∫ ∫ ∫                           [2.14] 

 

These equations form the basis for the finite element formulation. It can be simply reduced 

into 2-D weak forms of equations as follows.  

 

                                 0d d s s
i i

si

E dL E dA ez c dA
x
φδφ δ δφ∂

− + =
∂ ∑∫ ∫ ∫                           [2.15] 

and 

                                    0
s s

s s s s
i i

i

c cJ c dL c dA J dA
t x

δ δ δ∂ ∂
+ − =

∂ ∂∫ ∫ ∫                             [2.16] 

 

where :   , :A area containing electrolyte L boundary of domain A  

Similarly, 1-D weak forms of the above equations are 

 

                                   2

1
0

xd d s s

x
s

E E dx ez c dx
x
φδφ δ δφ∂

− + =
∂ ∑∫ ∫                            [2.17] 

and 

                                     2

1
0

s sxs s s s

x

c cJ c c dx J dx
t x

δ δ δ∂ ∂
+ − =

∂ ∂∫ ∫                               [2.18] 

 

The weak forms in 1D and 2D will be used in the Chapter III and Chapter IV, respectively. 
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CHAPTER III 

 

TRANSIENT FINITE ELEMENT ANALYSIS OF ELECTRIC 

DOUBLE LAYER ON THE STRAIGHT ELECTRODE USING ONE 

DIMENSIONAL NERNST-PLANCK-POISSON EQUATIONS WITH A 

MODIFIED STERN LAYER (NPPMS)† 

 

3.1        Introduction 

 

In this Chapter a finite element method (FEM) to solve the 1D NPP and NPPMS 

models is developed and it is shown that the NPPMS model is reliable for both high as well 

as low surface potential cases. This Chapter details the finite element formulation for both 

these models including the utilization of multi-point constraints for the implementation of 

the modified Stern layer for the NPPMS model. 

 

The finite element solution algorithm uses the Newton-Raphson method for 

nonlinear iteration and the alpha family approximation for time integration to solve the 

NPP and NPPMS models for transient cases. Finite element techniques are described for 

interfacing the modified Stern and diffuse layers with cubic Hermite interpolation functions.  

                                                 
† Part of this chapter is reprinted with permission from “Transient finite element anlysis of electric double 
layer using Nernst-Planck-Poisson equation with a modified Stern layer” by J. Lim, J.D. Whitcomb, J.G. 
Boyd IV and J. Varghese, 2006, Journal of Colloid and Interface Science,with permission from Elsevier. 
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Following the governing equations, simplification of the NPP under steady-state 

condition is discussed. The present model uses a modified Stern layer. The multipoint 

constraints of the numerical method impose a linear potential distribution and a uniform ion 

concentration (or free charge density), whereas the Stern layer contains no free charge. 

Both the electrodes are assumed to be ideal polarized electrode (IPE). 

 

Next, the weak form and finite element discretizations are presented and an 

illustration of multi-point constraints (MPCs) is discussed. Following this numerical results 

and discussion are presented. Finally, a summary of the 1D work is presented.  

 
 
3.2        Mathematical Model 

 

3.2.1      Governing Equations and Boundary Conditions 

 

The general governing partial differential equations, Eqs. [2.7] ~ [2.10] are 

introduced in the Chapter II. The general governing Eqs. [2.7] ~ [2.10] simplify for the 1D 

case to 

 

                                                     ( )1 1 2 2
dE ez c ez c

x
∂

= − +
∂

                                              [3.1] 

where 
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                                                                d
oE

x
φεε ∂

=
∂

                                                  [3.2] 

and  

                                                   where  1, 2
ss Jc s

t x
∂∂

= − =
∂ ∂

                                         [3.3] 

where  

                                              
s s

s s sc z FJ D c
x RT x

φ⎛ ⎞∂ ∂
= − +⎜ ⎟∂ ∂⎝ ⎠

                                            [3.4] 

 

For simplicity, it is assumed that the diffusion coefficients of two ions, (i.e. 1 2D D= ) are 

equal to the same constant (i.e. 9 22 10 ( / )m s−×  (61). The distance between two flat 

electrodes is assumed to be 2L , where  150L nm= . For this dimension, at the center i.e. 

x L= , the initial conditions are 

 

               ( 0, 2 , 0) 0x x L tφ ≠ ≠ = =                                                  [3.5] 
 

                    1( , 0) bulkc x t c= =                                                         [3.6] 
 

                    2 ( , 0) bulkc x t c= =                                                         [3.7] 

 

where bulkc  are the bulk solutions. 

The concentrations at the center are assumed to stay at the initial concentrations of the bulk. 

The boundary conditions at x=0 and x=2L are  
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      ( 0, ) ox tφ φ= =                                                     [3.8]      
 

     ( 2 , ) ox L tφ φ= = −                                                 [3.9] 
 

      1( 0,2 , ) 0J x L t= =                                              [3.10]  
 

      2 ( 0,2 , ) 0J x L t= =                                              [3.11] 
 

        1( , ) bulkc x L t c= =                                              [3.12] 
 

        2 ( , ) bulkc x L t c= =                                             [3.13] 

 

where oφ  is the surface potential. As described earlier, electrodes at both the ends are 

assumed “ideal polarized electrodes”, which means, the fluxes can be assumed to be zero, 

( 0,2 , ) 0sJ x L t= = .  

 
 
3.2.2      Simplification of NPP model for Steady-State Conditions 
 

 

For steady-state conditions, the ion fluxes are zero and the Nernst-Planck  

equation can be solved for the ion concentrations in terms of the electric potential. The 

results obtained are 
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1

1 expbulk
z ec c
kT

φ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

                                        [3.14] 

and 

                                              
2

2 expbulk
z ec c
kT

φ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

                                       [3.15] 

 

Substitution of these relationships into Gauss’s law yields the nonlinear Poisson-Boltzmann 

equation (14,16) as given below 

 

                                                   
2

2

2 sinhbulk

o

ezc ze
x kT
φ φ

εε
∂ ⎛ ⎞= ⎜ ⎟∂ ⎝ ⎠

                                        [3.16] 

 

and the solution for the above differential equation is as mentioned below (16). 

 

                                     

1 exp( ) tanh
42 ln

1 exp( ) tanh
4

o

o

zex
kT kT

zeez x
kT

φκ
φ

φκ

⎛ ⎞⎛ ⎞+ −⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟=

⎜ ⎟⎛ ⎞− − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                               [3.17] 

 

Solution of Eq. [3.16] will be used as a check for the transient solution by comparing the 

results for “long time” with the steady state results. It should be noted that this equation can 

be linearized using the Debye-Huckel&&  approximation (i.e. less than 0.025 V) to yield  
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2

2
2x
φ κ φ∂

=
∂

                                                        [3.18] 

 

where 
2 2

2 2 bulk

o

z e c
kT

κ
εε

=   and 1/κ  is the Debye length.  

Solving Eq. [3.18], the linearized electric potential is obtained as  

 

                                                     exp( )o xφ φ κ= −                                                      [3.19] 

 
 

The linearized Poisson-Boltzmann equation is valid for small electric potentials. Hogg 

(1965) showed that the exact electric potential distribution for two electrodes is derived by 

Debye-Huckel&& approximation (15). 

 

3.2.3      The Diffuse Layer Charge from the Nonlinear Poisson-Boltzmann       

 

From the nonlinear Poisson-Boltzmann equation, the charge density in the diffuse 

layer is obtained by (3,4) 

 

( )1/ 28 sinh
2

o
o bulk

zekT c
kT
φσ εε ⎛ ⎞= − ⎜ ⎟

⎝ ⎠
                              [3.20] 

 

And the units of σ are 2/C cmµ  for bulkc  in /mol liter  and the temperature in K . 
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The charge density over the entire region is calculated by 

 

1 1 2 2

0 0
( )

L L
dx e z c z c dxσ ρ= = +∫ ∫                                   [3.21] 

 

Note that the sign of Eqs. [3.20] is opposite to that of the surface potential, which is 

positive in this dissertation. 

 

3.2.4      Free Energy Formulation of Electric Double Layer 

 

The energy density F  is obtained from the free energy density of the electric double 

layer. The total free energy density of electric double layer, ( totalF ) is widely used and 

expressed in many papers (6,9,11). Based on a method of Verwey and Overbeek (10), the 

total free energy density consists of chemical energy ( chemF ) and electrical energy ( elecF ).  

 

                                                      total elec chemF F F= +                                                [3.22] 

where  

                                                        
0

final

elecF d
σ

σ
φ σ

=
= ∫                                                 [3.23] 

and        

                                                           chem oF σφ= −                                                     [3.24] 
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The total free energy can be re-expressed (3, 6, 9~11) as 

 

                                                        
0

( )o

totalF d
φ

σ φ φ= −∫                                           [3.25] 

 

The units of totalF are 2/J cmµ . 

 

This total free energy is always negative because the chemical term is larger than 

the electric term (3, 9, 10). The negative sign means it is gained from the electric double 

layer system. From this total free energy, we obtain the energy strored in the electric double 

layer from the total free energy. The energy density is calculated to be 

 

                                                        
0

( )oF d
φ

σ φ φ= −∫                                               [3.26] 

 

And the units of  F are 2/J cmµ . 
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3.3        Finite Element Formulations 

 

3.3.1      Approximation of the Weak Form for Typical Element 
 
 

In this Chapter, the weak forms of the governing equation in 1D are considered for 

finite element formulations. In the previous Chapter II, the weak forms of the governing 

equations are obtained as follows. 

 

2

1
0

xd d s s

x
s

E E dx ez c dx
x
φδφ δ δφ∂

− + =
∂ ∑∫ ∫                        [3.27] 

 
and 

2

1
0

s sxs s s s

x

c cJ c c dx J dx
t x

δ δ δ∂ ∂
+ − =

∂ ∂∫ ∫                            [3.28] 

 
 

These equations form the basis for the finite element formulation in 1D. 

 

In order to solve the Nernst-Planck-Poisson-modified Stern layer (NPPMS 

) model, the NPPMS model simulates the modified Stern layer using multi-point constraints. 

The NPPMS model requires slope continuity of the electric potential and ion concentrations 

at the interface between positive electrode surface and electrolyte. Multi-point constraints 

are described in detail later in this Chapter. Hermite interpolation functions automatically 

impose continuity of the slopes (or derivatives) of the primary degrees of freedom. Thus, 

cubic 1D Hermite elements were used to analyze the NPPMS model.  
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The formulas for the finite element coefficient matrices and load vectors are based 

on the weak form in Eqs. [3.27] and [3.28] as described earlier. The nodal variables at each 

node are defined as  

 

                                                         { }1 1 2 2, , , , ,
T

x x xc c c cφ φ                                              [3.29] 

where ,
s

s
x x

cc
x x
φφ ∂∂

≡ ≡
∂ ∂

. 

Also, it is assumed that  

 

N qφ
α αφ =                                                           [3.30] 

and 

ss cc N qα α=                                                         [3.31] 
 
 

where  qφ
α =  time dependent nodal variables that define φ  and  

scqα =  time dependent nodal 

variables that define sc . The particular choice of nodal variables depends on whether 

Lagrange of Hermite interpolation is used. Since Hermite interpolation is used herein, both 

the field variable and the first derivative appear as nodal variables. For example, 

 

{ }(1) (1) (2) (2), , ,
T

x xqφ
α φ φ φ φ≡                                          [3.32] 

and 
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{ }(1) (1) (2) (2), , ,
s Tc s s s s

x xq c c c cα ≡                                         [3.33] 

 
where 1..4α = .  

Combining the weak forms, Eqs. [3.27] and [3.28], and then factoring out the variation of 

the nodal variable give us the form 

 

                                                              0qφ φ
α αψ δ =                                                       [3.34] 

and 

0
s sc cqα αψ δ =                                                     [3.35] 

 

where                        2

1

xd d s s

x
s

NE N E dx ez c N dx
x

φ α
α α αψ ∂

= − +
∂ ∑∫ ∫                            [3.36] 

 

                                       
2

1

s x
c s s s

x

NJ N c N dx J dx
x

α
α α αψ ∂

= + −
∂∫ ∫&                                  [3.37]    

 

and 1..4α = . Since qφ
αδ  and  

scqαδ  are arbitrary in Eqs. [3.34] and [3.35], the coefficient of 

each variation must be zero.   

 

0φ
αψ =                                                           [3.38] 

and 

0
sc

αψ =                                                        [3.39] 



 

 

34

 

The 3 sets of 4 equations, (i.e. 1 2, , and c cφ
α α αψ ψ ψ ) are collected in a single list as 

 
0  ( 1..12)i iψ = =                                                [3.40] 

where  

1 1 2 2 1 1 2 2

1 2 1 2 1 2 3 4 3 4 3 4, , , , , , , , , , ,
T

c c c c c c c cφ φ φ φψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ⎡ ⎤≡ ⎣ ⎦                [3.41] 

 

corresponding to the following list of degrees of freedom for a typical element.  

 

1 1 2 2 1 1 2 2

1 2 1 2 1 2 3 4 3 4 3 4, , , , , , , , , , ,
T

c c c c c c c cq q q q q q q q q q q q qφ φ φ φ⎡ ⎤≡ ⎣ ⎦                         [3.42] 

 

The set of governing Eq. [3.40] are now a collection of nonlinear first order ordinary 

differential equations in time. 

 

3.3.2      Solution of Nonlinear First Order Ordinary Differential Equations in Time 

 

 This section derives the solution algorithm for the nonlinear first order ordinary 

differential equations in time using numerical time integrations. Newton-Raphson iteration 

was used to deal with the nonlinearity. In this section matrix notation will be used to 

simplify the notation. Since the section only considers the algorithm (not the details), there 
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is no loss of information. The governing Eq. [3.40] for the element can be expressed in 

matrix form as 

                                       

                  0Mq R Fψ = + − =&                                               [3.43] 

 

where F  is the applied loads, M describes the sensitivity of the residual to the time 

derivatives of the nodal variables, and R  is the collection of the remaining terms. The 

components of F , Mq&  and R  are described in the Appendix A and M is described in the 

Appendix B. 

 

The governing equation is nonlinear and time dependent. The time approximation 

for Eqs. [3.36] and [3.37] is considered by using the α family of approximation. This 

means the time derivative of a dependent variable is approximated at two consecutive time 

steps by linear interpolation of the values of the variable at the two steps as follows (52). 

 

                                  1
1

1

(1 ) t t
t t

t

q qq q
t

α α +
+

+

−
− + =

∆
& &  for 0 1α≤ ≤                               [3.44] 

 

where t  refers to the values of the quantity at time step, t .  

Since  0Mq R F+ − =&  is valid for any 0t > , it is valid for tt t= and 1tt t += . That is,  

 

0t t t tMq R Fψ = + − =&                                                [3.45]                                
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and 

1 1 1 1 0t t t tMq R Fψ + + + += + − =&                                         [3.46] 

 

Eq. [3.44] can be re-written by 

 

( )1 1 1 11t t t t t tt q t q q qα α+ + + +∆ − + ∆ = −& &                                 [3.47] 

 

After substituting Eqs. [3.45] and [3.46] into Eq. [3.47], we obtain   

 

          1 1 1 1 1 1 1( ) ( )t t t t t t t t t t t tt R M q M q t F R t F R t Fα α α+ + + + + + +∆ + = + ∆ − − ∆ − + ∆        [3.48] 

 

After regrouping Eq. [3.48], it is re-written as 

 

1 1 1 1 1

1 1

(1 )

                                             ((1 ) ) 0
t t t t t t t

t t t

Mq t R Mq t R

t F F

ψ α α

α α
+ + + + +

+ +

= + ∆ − + − ∆

− ∆ − + =
              [3.49] 

 

Now, the set of the governing Eq. [3.49] is expressed using time approximation. Herein, the 

backward difference scheme (i.e. 1α = ) is used for the numerical integration scheme. After 

substituting 1α =  into Eq. [3.49], Eq. [3.49] is  

 

1 1 1 1 1 0t t t t tM q t R t Fψ + + + + += ∆ + ∆ − ∆ =                                 [3.50] 
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where 1t tq q q+∆ = − . 

Unless the time increment t∆  is extremely small, large errors accumulate. Due to the 

nonlinearity of the governing Eq. [3.50], the Newton-Raphson procedure is performed at 

each time step in order to obtain a converged solution for that time step.  

 

The first step is to obtain the linear incremental solution from a linearized form of 

Eq. [3.50]. Derivation of the linearized incremental form is described in the Appendix C. 

The linearized incremental equation can be expressed as 

 

M q F∆ =                                                   [3.51] 

where  

 RM M t
q

⎛ ⎞∂
= + ∆ ⎜ ⎟∂⎝ ⎠

                                           [3.52] 

and 

F t R t F= −∆ + ∆                                              [3.53] 

 

M  is described in the Appendix D. 

 

For example, assuming we are in the 30th timestep of the transient simulation, the 

procedure for this time step is summarized as follows: 

 



 

 

38

1. Obtain the linear incremental solution, q∆  by solving Eq. [3.51] using the solution 

for the 29th timestep and the timestep interval, t∆ . The current estimate of 

30 29q q q= + ∆ .  

2. Calculate the residuals using Eq. [3.50]. Note that the equation for the residual 

requires both q∆  as well as 30q .  

3. If the residual is not acceptable, perform the Newton-Raphson iteration as follows. 

A. Solve for the correction to the incremental solution using  

( )M q ψ∆ ∆ = −                                                 [3.54] 

B. Update the current estimate of incremental solution,  

( )q q q∆ = ∆ + ∆ ∆                                              [3.55] 

C. Calculate the residuals using Eq. [3.50].  

D. If the residual is acceptable, go to in step 4, otherwise, repeat Step 3.  

4. Update the current estimate, 30 29q q q= + ∆  

5. Proceed to 31st timestep.  

 

3.3.3      Multi-Point Constraints (MPCs) 

 

When a modified Stern layer is added for the NPPMS model, constraints related to 

finite ion size are imposed near the electrode. These constraints are (16-18)  

 
• Linear variation of voltage φ in the modified Stern layer 
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• Continuity of  φ  and d
dx
φ at the interface between the modified Stern and diffuse 

layers  

• Constant concentrations 1 2and cc  in the modified Stern layer 

 
It should be noted that the thickness of the modified Stern layer is specified. In the current 

study the thickness was taken to be 0.5 nm (i.e. a little larger than one hydrated ion radius) 

(3). The schematic variation of the electrical potential in the modified Stern model is 

described in Fig. 1.3. 

 

To expedite imposition of the constraints, cubic Hermite interpolation functions 

were used in the finite element analysis. When cubic Hermite interpolation is used, the 

nodal variables are the field variable and the first derivative of the field variable with 

respect to  x . (i.e.  φ  and d
dx
φ ) This makes it easy to impose the slope continuity 

requirement at the interface. The constraints of linear variation of voltage and constant 

concentrations were imposed using multi-point constraints (MPCs). These MPCs were 

imposed using a transformation technique. The coefficient matrix and load vector in the 

finite element analysis are transformed as follows 

 
                                                         T

newK T K T=                                                      [3.56] 

and 

T
newF T F=                                                          [3.57] 
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where T  is defined by the relationship, newq T q=  

The “ q and newq ” are the original and transformed lists of nodal variables, respectively and 

T  is the transformation matrix.   

 

The meaning of these terms is best described via an example as followings. 

Consider a modified Stern layer that has two degrees of freedom at each nodal point (i.e. 

Hermite interpolation function) 

 

 
 
For simplicity, only the voltage nodal variables will be considered in the illustration. We 

will impose three constraints as follows. 

 
• Boundary condition: (1)φ = surface potential on left electrode = 0φ  

• Slope equality: 
(1) (2)d d

dx dx
φ φ

=  

• Linear variation: 
(2)

(1) (2)
2

d x
dx
φφ φ= −  

 

Slope continuity at the interface is automatically imposed when we chose Hermite 

interpolation functions for the FE formulation. 

(2)

(2)d
dx

φ

φ

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭Stern Layer: 2x   

(1)

(1)d
dx

φ

φ

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
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The q , newq , and the transformation matrix (T ) are  

 

(1)
(1)

(1) (2)
(1)

(2)
(1) (2) (1)

2 2
(2)

(2)

1 0 0 0
0 1 0 1
1 0 1
0 0 0 1

d dd
dx dxdx

dx x
dx

d d
dx dx

φ
φ

φ φ
φ

φφ φ φ
φ

φ

⎧ ⎫
⎧ ⎫ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎡ ⎤ −⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥ − −⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎪ ⎪⎩ ⎭

                    [3.58] 

 
q                    T                          newq  

 
 

The final step is to impose the conditions, [1]new oq φ= , [2] 0newq = , and [3] 0newq =  which 

means  

 
 
                                               (1)

oφ φ=  (Boundary condition)                                      [3.59] 

(1) (2)

0d d
dx dx
φ φ

− = (Slope equality)                                    [3.60]                            

(2)
(2) (1)

2 0d x
dx
φφ φ− − =  (Linear variation of electric potential)           [3.61]    
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3.4        Results and Discussion 

 

In this section, numerical results obtained from the Nernst-Plank-Poisson (NPP) and 

Nernst-Plank-Poisson-modified-Stern (NPPMS) models are discussed. The effect of the 

surface potential and the molarity of the bulk solution on the electric potential, electric field, 

and ion concentrations are compared for both models. The charge density and charging 

time from the NPP and NPPMS models are compared for various cases. More importantly, 

the ability of the models to predict realistic energy storage capacity is investigated. All the 

results discussed in this section were generated using models with 600 elements over a 

length of 300 nm. The time step was taken to be 10-9 ~ 10-7 second for cases. The modified 

Stern layer thickness is 0.5 nm and is modeled using a single element adjacent to the 

electrodes.  

 

Reference transient solutions for the NPP and NPPMS models were not available, 

so only limited checking was done by comparing the steady-state ("long time") transient 

solutions with an exact solution of the nonlinear Poisson-Boltzmann differential equation, 

which is for steady state. This is done only for the case with low surface potential and dilute 

bulk solution (i.e. 0.02 V and 0.001 M), since the nonlinear Poisson-Boltzmann equation 

gives unrealistic ion concentrations for high surface potential and high concentration bulk 

solutions. The nonlinear Poisson-Boltzmann model is assumed to have one electrode and 

the other region is infinitely wide. Therefore, the exact steady-state solution is applied for 

only the region from 0 nm to 150 nm.  
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Fig. 3.1 shows the electric potential distribution at different times obtained using the 

NPP and NPPMS models. Fig. 3.1(a) shows the electric potential distribution in the full 

width models and Fig. 3.1(b) zooms in the electric potential distribution near electrode. It is 

seen that the electric potential distribution starts off as a linear distribution as expected in 

conventional capacitors. The NPPMS predictions approach the steady-state solution faster 

than the NPP predictions. The electric potential distributions from the transient models 

were found to converge in 10 sµ , at which time the predictions agreed very well with the 

exact steady-state solution. 

 

Fig. 3.2 shows the electric field distribution for the NPP and NPPMS models and the 

exact solution. Fig. 3.2(b) zooms in the electric field distribution near electrode. Again, we 

see that the converged NPP solutions match very well with the exact solution. The NPPMS 

model gives a slightly different distribution very near the positive electrode. This is due to 

the constraints imposed by the modified Stern layer. We see that the electric field remains 

constant in the modified Stern layer and differs from the exact solution at the electrode 

surface by about 4 %.   

 

Fig. 3.3 shows the positive and negative ion concentrations from the NPP and 

NPPMS models and the exact solution, which is obtained by using the exact electric 

potential distribution in the Poisson-Boltzmann equation, given by Eq. [3.16]. Again, Fig. 

3.3(b) zooms in the ionic concentrations near electrode. The simulation starts with both ion 

concentrations at the bulk solution of 0.001 M. 
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(a) Electric potential distributions: full width model 

 
(b) Electric potential distributions: zoom in from 0 to 25 nm 

 
FIG. 3.1 Transient electric potential predictions for the NPP and NPPMS full models and 
exact steady-state prediction (with one electrode). (bulk solution = 0.001 M and surface 

potential = 0.02 V,  (a) : full width model, (b) : zoom in from 0 to 25 nm) 
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(a) Electric field distributions: full width model 

 
(b) Electric field distributions: zoom in from 0 to 25 nm 

FIG. 3.2 Transient electric field predictions for the NPP and NPPMS full models and exact 
steady-state prediction (with one electrode). (bulk solution = 0.001 M and surface potential 

= 0.02 V, (a) full width model, (b) zoom in from 0 to 25 nm) 
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(a) Positive and negative ion concentration distributions: full width model 

 
(b) Negative ion concentration distributions: zoom in from 0 to 25 nm 

FIG. 3.3 Transient ion concentration predictions for the NPP and NPPMS full models and 
exact steady-state prediction (with one electrode). (bulk solution = 0.001 M and surface 
potential = 0.02 V, (a) positive and negative ion concentration distributions : full width 

model, (b) negative ion concentration distributions : zoom in from 0 to 25 nm) 
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The negative ion concentration at the positive electrode increases with time while the 

positive ion concentration decreases.  Again, we see that the converged NPP solutions 

matches very well with the exact solution whereas the NPPMS model differs from the exact 

solutions by about 4 % at the electrode surface. The ion concentrations within the modified 

Stern layer do not vary with x  because of the constraints imposed by the modified Stern 

model.  

 

 

(a) 2L=100 nm (0.9% difference between full and half model at 1 Sµ , 0.01%, at 0.3 Sµ  
0.004% at 0.06 Sµ  at x=0 nm) 

 
FIG. 3.4 Comparison of negative ion concentration predictions for the NPP full and half 

width models (bulk solution = 0.001 M and surface potential = 0.02 V)  
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(b) 2L=80 nm (2.3% difference between full and half model at 1 Sµ , 0.15%, at 0.3 Sµ  
0.001% at 0.06 Sµ  at x=0 nm) 

 

(c) 2L=70nm (3.3% difference between full and half model at 1 Sµ , 0.39%, at 0.3 Sµ  
0.01% at 0.06 Sµ  at x=0 nm) 

 
FIG. 3.4 Continued 
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Fig. 3.4 evaluates the accuracy of the half width model. The negative ion 

concentrations are compared for full and half width models. The difference in the 

predictions is less than 1 % for an applied potential of ±0.02 V, bulk solution of 0.001 M, 

and electrode spacing of 100 nm which is much less than 300 nm used in this Chapter. The 

difference in the prediction increases when the spacing is reduced. For a spacing of 70 nm, 

the difference observed is less than 3.5 % (see Fig.3.4(c)). Similar observations are seen on 

increasing the bulk solution molarity up to 1 M. Therefore, for the previous case of 0.02 V 

and 0.001 M can be analyzed using the full and half width models. However, only the full 

width models are analyzed for all the simulations in this Chapter. 

  

Next, the predictions of the NPP and NPPMS models will be compared for cases for 

which either the electrolyte is not dilute or the surface potential is not very low. The 

predicted solutions are shown from 0 nm to 25 nm. First, the bulk solution is increased 10 

times to 0.01 M while keeping the surface potential at 0.02 V. Increasing the molarity 

decreases the charging time to 2 sµ . The effect of different parameters on the charging 

time will be discussed later on in this section. The behavior is found to be similar to the 

ideal case with 0.001 M and 0.02 V, except there is now more difference between the NPP 

and NPPMS models. Fig. 3.5(a) shows that now the electric field at the electrode surface 

predicted by the NPP and NPPMS models differ by almost 10% compared to about 4% for 

the ideal case. Similarly, the predicted ion concentration distributions from the NPP and 

NPPMS models (Fig. 3.5(b)) now differ by 12%. Also, note that when the bulk solution is 
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increased, the gradient of the electric field and ion concentration distributions are much 

steeper.  

 
(a) Electric potential distributions 

 
(b) Electric field distributions 

 
FIG. 3.5 Transient predictions for the NPP and NPPMS full models and exact steady-state 
prediction (with one electrode). (bulk solution = 0.01 M and surface potential = 0.02 V)  
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(c) Positive and negative ion concentrations 

 
FIG. 3.5 Continued 

 

Next, the bulk solution molarity is kept at 0.01 M and the surface potential is 

increased 10 times to a moderate surface potential of 0.2 V. In this case, we see a very large 

difference between the NPP and NPPMS models. Fig. 3.6(a) shows that the electric field 

for the NPP and NPPMS models by a factor of about 1.5 times near the electrode surface.  

 

Fig. 3.6(b) shows that the NPP model gives an ion concentration of 9.4 M at the 

electrode surface, whereas the NPPMS model predicts only 1.2 M. When the surface 

potential is increased to 0.3 V and even more dilute bulk solutions, 0.001 M (not shown in 

the figures), the differences are extremely large. 
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(a) Electric field distributions 

 
(b) Negative ion concentration distributions 

 
FIG. 3.6 Comparison of prediction for the NPP and NPPMS models at steady-state  

(bulk solution = 0.01 M and surface potential = 0.2 V)  
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For example, the NPPMS model predicts a concentration of 1.9 M at the electrode 

surface compared to an impossibly high value (i.e. such crowding conditions, are seldom 

anticipated in clay systems) of 118 M predicted by the NPP model (10,12). It is clearly an 

absurdly high concentration in view of the finite ions (10). 

 

Next, we look at the charge density and charging time for different molarities and 

surface potentials. Three cases are considered – (a) the dilute case with 0.001 M bulk 

solution and 0.02 V low surface potential, (b) 0.01M and 0.02 V, and (c) 0.01 M and 0.2V. 

Herein, the charging time is defined to be the time required to reach 98 % of the converged 

value. For convenience, Fig. 3.7(a) and (b) show the absolute value of charge density. For 

the case (a) shown in Fig. 3.7(a) we find that the charging time from both models to be very 

close, with the NPPMS model giving a 3.6 sµ  charging time and the NPP model giving a 

3.8 sµ  charging time. The converged charge density from both models match very closely 

with the steady-state charge density obtained from the Nonlinear Poisson-Boltzmann 

equation, 0.149 2/C cmµ , given in Eq. [3.17].   

 

When the bulk solution is increased to 0.01M (case (b)), we find the difference in 

charging time to be a bit larger as shown in Fig. 3.7(a). Here, the NPPMS model gives 

about 1 sµ  charging time while the NPP model gives about 1.2 sµ  charging time. We also 

see that when the bulk solution molarity is increased, the charging time is decreased. 
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(a) Charge density vs. time for low surface potential of 0.02 V 

 
(b) Charge density vs. time for moderate surface potential of 0.2 V 

FIG 3.7 Charge density in a modified Stern  + diffuse layer, 
0

L

dxρ∫  vs. time for the NPP 

and NPPMS models. 
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Fig. 3.7(b) shows that when the surface potential is increased to 0.2 V (case (c)), we 

see a large difference in behavior from the two models. In this case, the NPPMS model 

gives a 20 sµ  charging time while the NPP model gives 40 sµ  charging time. Also, the 

converged charge density in the NPP model is about 2 times larger than that from the 

NPPMS model. It appears that the charging time is more sensitive to the surface potential 

than the molarity.  

 

 
(a) Charge density vs. time (bulk solution = 0.001 M) 

 
FIG. 3.8 Charge density vs. time and charging time vs. surface potential and bulk solution 

molarity for the NPPMS model. 
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(b) Charge density vs. time (bulk solution = 0.01 M) 

 
(c) Charging time vs. surface potential 

 
FIG. 3.8 Continued 
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Fig. 3.8(a), (b) show the time evolution of the charge density for different surface 

potential and bulk concentrations (i.e. 0.001 M and 0.01 M). Fig. 3.8(c) summarizes the 

effect of surface potential and bulk solution molarity on the charging time. The charging 

time decreases with the increase of bulk solution molarity whereas it increases as the 

surface potential increases. 

 

 

FIG. 3.9 Energy density, 
0 0

L
dxd

φ
ρ φ−∫ ∫  vs. time 

 

Next, the distribution of the energy density across the modified Stern and diffuse 

layer is investigated. Fig. 3.9 shows the energy density distribution during the charging 

process for the case with 0.01 M bulk solution and 1 V surface potential. After the electrode 

is fully charged, we see that the modified Stern layer holds about 77 % of the total energy 
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density although the modified Stern layer thickness is only about 0.3 % of the total 

thickness.  The modified Stern layer and diffuse layer do not become charged at the same 

rate. For this case, the diffuse layer becomes saturated before the modified Stern layer. 

 

Fig. 3.10 shows the effect of surface potential on the energy density for 0.01 M bulk 

solution. We see that up to 0.27 V the modified Stern layer stores less energy than the 

diffuse layer. Above 0.27 V, the modified Stern layer quickly dominates the energy storage 

as surface potential increases. The plot shows values up to 1 V surface potential, which is 

only a little less than the 1.23 V critical potential for water decomposition in aqueous 

systems. 

 

Fig. 3.11 shows the effect of surface potential and bulk solution molarity on the 

energy density obtained from the NPP and NPPMS models. The ratio of the two energies is 

plotted against the surface potential for three values of the bulk solution molarity (0.01 M 

and 0.1 M). For very low voltage, ~0.05 V, both models provide almost the same energy 

density. As the surface potential increases, the NPP model starts to predict much larger 

energy densities and beyond 0.4 V it becomes unrealistic. The ratio is much more sensitive 

to surface potential than bulk solution molarity. 
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(a) Energy density vs. surface potential from 0.05 volt to 1 volt with 0.01 M 

 

 
(b) Zoom in from 0.2 ~ 0.4 volt  

 
FIG. 3.10 Energy density vs. surface potential 
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FIG. 3.11. Ratio of predicted energies for the NPP and NPPMS models, NPPS

NPP

F
F

 

 

3.5 Summary 
 
 

A finite element implementation of the transient nonlinear Nernst-Planck-Poisson 

(NPP) model and Nernst-Planck-Poisson-modified-Stern (NPPMS) model is presented. The 

NPPMS model uses a modified Stern layer to account for finite ion size, resulting in 

realistic ion concentrations even at high surface potential. The Poisson-Boltzmann equation 

is used to provide a limited check of the transient models for low surface potential and 

dilute bulk solutions. The effect of the surface potential and bulk molarity on the electric 

potential and ion concentrations as functions of space and time are studied. The ability of 
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the models to predict realistic energy storage capacity is investigated. The predicted energy 

is much more sensitive to surface potential than to bulk solution molarity. 
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CHAPTER IV 

 

TRANSIENT FINITE ELEMENT ANALYSIS OF ELECTRIC 

DOUBLE LAYER ON A POROUS ELECTRODE USING NERNST-

PLANCK-POISSON-A MODIFIED STERN LAYER (NPPMS)  

 

4.1        Introduction 

 

In Chapter III, the unrealistic ion concentration due to the assumption of point 

charge was removed by adding a modified Stern layer near an electrode. 1D analysis done 

using an idealized flat electrode can not be applied to most practical cases. As mentioned in 

the literature reivew, the pore structure on the electrode surface is a significant element in 

determining the performance of supercapacitor (56). One significant application of porous 

electrodes is the electric double layer capacitor. The electrode surface area and its geometry 

are important factors in its performance. A porous structure of electrode in 2D is modeled 

for a better understanding of the behavior of the electric double layer capacitor. 

 

In this Chapter, an attempt is made to understand the fundamental behavior of a 

porous electrode. Simple geometric shapes are considered to simulate the presence of pores 

in the electrode. Effect of pore radius and depth on the predicted electric potential, ion 
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concentrations, surface charge density, and surface energy density are discussed using the 

2D Nernst-Planck-Poisson-Modified Stern layer (NPPMS) model. 

 

4.2        Governing Equations 

 

In this section, the 2D governing equations are described. The 2D Nernst-Planck-

Poisson equations are derived from Eqs. [2.7] - [2.10]. This section will focus on the binary 

electrolyte case (i.e. two ion types with identical valence, 1,2s = ). 

 

First, Gauss’s law for conservation of charge in 2D which is also referred to as 

Poisson’s equation in 2D can be expressed as 

               

                                           ( )1 1 2 2
dd
yx EE ez c ez c

x y
⎛ ⎞∂∂

+ = − +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
                                        [4.1] 

 

where ,d d
x yE E  are an electric flux density (or electric displacement) vector.  

1c , 2c  are the ion concentrations and  

1z , 2z  are the valence ; where superscript 1 and 2 denote positive ion and negative 

ion respectively. 

 and d d
x yE E  are expressed as  

                                                      d
x oE

x
φεε ∂

=
∂

                                                             [4.2] 
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and 

                                                      d
y oE

y
φεε ∂

=
∂

                                                             [4.3] 

 

where the φ is voltage,  

,
x y
φ φ∂ ∂

∂ ∂
are the electric field vectors.  

oε is the electric permittivity of a vacuum, 

ε is the dielectric constant (or relative electric permittivity) of water.  

 

Second, the Nernst-Planck equations in 2D are  

 

s s
s s s s
x

c z FJ D D c
x RT x

φ∂ ∂
= − −

∂ ∂
                                           [4.4] 

and 

                                             
s s

s s s s
y

c z FJ D D c
y RT y

φ∂ ∂
= − −

∂ ∂
                                            [4.5] 

 
 

where sD  are the diffusion coefficients (i.e. s=1, 2), 

 F is the Faraday constant,  

R is the ideal gas constant, and  

T is the absolute temperature. 
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Eq. [4.4] and [4.5] express the relationship between the flux (    )s s
x yJ or J  and the electric 

field  ( )or
x y
φ φ∂ ∂

∂ ∂
. 

Now inserting the Nernst-Planck equations in 2D into the conservation of mass 

gives,  

 

                                       where  1,2
sss
yx JJc s

t x y
⎛ ⎞∂∂∂

= − + =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
                                       [4.6] 

 
 

Also, it is assumed that the diffusion coefficients of the two ions, (i.e. 1 2D D= ) are equal  

(i.e. 9 22 10 ( / )m s−×  for simplicity (61).  

 

In this Chapter, the distance between the two electrodes is considered as 2L=100 

nm . For this dimension, the electrode can be assumed to be at an infinite distance from 

each other. Hence, one can impose initial and boundary conditions as though the region was 

infinitely long. As already shown in Chapter III, Fig.[3.4], with infinitely long distance 

between two electrodes, analysis of half model showed very good agreement with those of 

full model. Fig. 4.1. shows a simple half model considered to explain the boundary and 

initial conditions.  
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FIG. 4.1 An illustrative example for boundary and initial conditions 
 
 
 

Fig. 4.1 shows a positive electrode, several elements, and nodes used for modeling 

the electrolyte. Each node has 3 degrees of freedom (i.e. electric potential, positive ion 

concentration, and negative ion concentration). The initial conditions (i.e. 

( 0, , , 0) 0x x L y tφ ≠ ≠ = = , 1 1( , , 0) bulkc x y t c= = , and 2 2( , , 0) bulkc x y t c= = ) are imposed by 

specifying 

 

0, ( 4.. )i i nφ = =                                                 [4.7] 
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1 1 , ( 1.. )i bulkc c i n= =                                                 [4.8] 

 

2 2 , ( 1.. )i bulkc c i n= =                                                 [4.9] 

 

where 1 2,bulk bulkc c  are the bulk solutions. 

The concentrations at half inter electrode distance are assumed to stay at the bulk initial 

concentrations. The boundary conditions, 

 ( 0, , ) ox y tφ φ= = , ( , , ) 0x L y tφ = = , 1 ( 0, , ) 0xn J x y t⋅ = = , 

2 ( 0, , ) 0xn J x y t⋅ = = , 1 1( , , ) bulkc x L y t c= = , and 2 2( , , ) bulkc x L y t c= =  are expressed as 

follows. 

 

, ( 1,2,3)i o iφ φ= =                                                [4.10] 

 

, ( 2, 1, )i o i n n nφ φ= = − −                                             [4.11] 

 

1 1 , ( 2, 1, )
i bulkc c i n n n= = − −                                          [4.12] 

 

2 2 , ( 2, 1, )
i bulkc c i n n n= = − −                                          [4.13] 
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where  oφ  is a surface potential and n is the total number of nodes in the elements.  

 

As described earlier in 1D finite element analysis, here too the electrodes are 

assumed as  “ideal polarized (or perfectly blocking) electrode”. Ideal polarized (or perfectly 

blocking) electrode means an electrode at which no charge transfer can occur across the 

metal-solution interface. This means that the fluxes can be assumed to be zero,  i.e. 

( 0, , ) 0s
xJ x y t= = .  

 

4.3        Weak Forms of Equations 

 

In Chapter II, the general weak forms of the governing equations are derived. The 

general weak forms (Eqs. [2.13] and [2.14])  are simplified to obtain the 2D forms as 

mentioned below :  

 

               ( ) 0d d d d s s
x y x y

s

E E dL E E dA ez c dA
x y
φ φδφ δ δ δφ

⎛ ⎞∂ ∂
+ − + + =⎜ ⎟∂ ∂⎝ ⎠

∑∫ ∫ ∫            [4.14] 

and 

                    ( ) 0
s s s

s s s s s s
x y x y

c c cJ J c dL c dA J J dA
t x y

δ δ δ δ
⎛ ⎞∂ ∂ ∂

+ − − + =⎜ ⎟∂ ∂ ∂⎝ ⎠
∫ ∫ ∫                [4.15] 

 

where :A area containing electrolyte  and  :    L boundary of domain A  

Eqs. [4.14] and [4.15] form the basis for the finite element formulation in 2D. 
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4.4        Finite Element Formulations 

 

In order to solve the 2D Nernst-Planck-Poisson equations with a modified Stern layer, 

the NPPMS model needs to simulate the modified Stern layer using multi-point constraints. 

In the 1D finite element formulation, slope continuity of the electric potential and ion 

concentrations at the interface between the positive electrode surface and electrolyte was 

imposed by using Hermite interpolation functions. Hermite interpolation functions 

automatically impose continuity of the slopes (or derivatives) of the primary degrees of 

freedom. Thus, cubic 1D Hermite elements were used to analyze the NPPMS model in the 

1D case. 

 

However, in 2D formulations, cubic 2D Hermite elements are not used because of 

the complications involved in implementing a Hermite 2D element. Such an element can be 

implemented if one imposes restrictions on the element edges such as keeping it rectangular. 

However in this work 2D elements with arbitrary shapes are required. Thus 2D serendipity 

elements with Lagrange interpolation were used in analyzing this problem (52,53). 

Continuity of slope of electric potential at the interface between the modified Stern layer 

and diffuse layer is imposed by using multi point constraints. This also requires certain 

restrictions on the shape of the element which are discussed in section 4.4.  

 

The formulae for the finite element coefficient matrices and load vectors are based 

on the weak form. The nodal variables at each node are defined as  
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                                                            { }1 2, ,
T

c cφ                                                         [4.16] 

 

In order to implement 2D finite element, 8-node quadratic 2D serendipity  elements are 

used. The nodal variables are assumed as follows.  

 

N qφ
α αφ =                                                          [4.17] 

and 

ss cc N qα α=                                                        [4.18] 
 
 

where  qφ
α =  time dependent nodal variables that define φ  and 

scqα =  time dependent nodal 

variables that define sc (i.e. 1..8α = ). Note that the interpolation functions, Nα  are 

presented in Appedix B. Since 8-node quadratic Lagrange interpolation is used herein, only 

the field variables appear as nodal variables. For example, 

 

                                      { }(1) (2) (3) (4) (5) (6) (7) (8), , , , , , ,
T

qφ
α φ φ φ φ φ φ φ φ≡                            [4.19] 

and 

                                    { }(1) (2) (3) (4) (5) (6) (7) (8), , , , , , ,
s Tc s s s s s s s sq c c c c c c c cα ≡                      [4.20] 

 

where 1..8α = .  
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Combining discretized versions of the weak forms in Eqs. [4.14] and [4.15] and factoring 

out the variation of the nodal variable gives us the form 

 

                                                              0qφ φ
α αψ δ =                                                        [4.21] 

and 

0
s sc cqα αψ δ =                                                      [4.22] 

 

where                        

             ( )d d d d s s
x y x y

s

N NE E N dL E E dA ez c N dA
x y

φ α α
α α αψ

⎛ ⎞∂ ∂
= + − + +⎜ ⎟∂ ∂⎝ ⎠

∑∫ ∫ ∫              [4.23]             

and        

                      ( )sc s s s s s
x y x y

N NJ J N dL c N dA J J dA
x y

α α
α α αψ

⎛ ⎞∂ ∂
= + + − +⎜ ⎟∂ ∂⎝ ⎠

∫ ∫ ∫&                 [4.24]    

 

where 1..8α = . Since qφ
αδ  and 

scqαδ  are arbitrary in Eqs. [4.21] and [4.22], the coefficient 

of each variation must be zero.  Thus, 

 

                                                             0φ
αψ =                                                              [4.25] 

and 

                                                             0
sc

αψ =                                                             [4.26] 
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The 3 sets of 8 equations, (i.e. 1 2, , and c cφ
α α αψ ψ ψ ) are collected in a single list as 

 

                                                        0  ( 1..24)i iψ = =                                                  [4.27] 

where  

                        
1 2 1 2 1 2 1 2

1 1 1 2 2 2 3 3 3 8 8 8, , , , , , , , ,..., , ,
T

c c c c c c c cφ φ φ φψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ⎡ ⎤≡ ⎣ ⎦               [4.28] 

 

corresponding to the following list of degrees of freedom for a typical element.  

 

                        
1 2 1 2 1 2 1 2

1 1 1 2 2 2 3 3 3 8 8 8, , , , , , , , ,..., , ,
T

c c c c c c c cq q q q q q q q q q q q qφ φ φ φ⎡ ⎤≡ ⎣ ⎦                        [4.29] 

 

The set of governing equations in Eq. [4.29] are a collection of nonlinear first order 

ordinary 2D differential equations in time. 

 

The basic algorithm for solving the non-linear equations is the same as that for the 

1D configuration and this has been explained in detail in Chapter III. The main differences 

in solving the 2D configuration as compared to the 1D configuration come from the mesh, 

the 2D element formulation and the multi-point constraints. The element formulation for 

the 2D configuration is derived in Appendix A. The  derivation of  the M matrix for the 2D 

version of equation [3.34] and linearized incremental forms are given in Appendix B and C, 

respectively. The tangential matrix in 2D is derived in Appendix E.  
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The derivation of the multi point constraints for the 2D configuration is explained in 

the next section. 

 

4.5        Multi-Point-Constraints 

 
 

When a modified Stern layer is added for the 2D NPPMS model, constraints related 

to finite ion size are imposed near the electrode. These constraints are   

 
• Linear variation of voltage φ along x in a modified Stern layer and the interface 

between the modified Stern and diffuse layers 

• Continuity of  φ  and d
dn
φ at the interface between the modified Stern and diffuse 

layers,  where n is normal to the interface : 
1 2element elementd d

dn dn
φ φ

=  

• Constant concentrations, 1 2and cc  along x in the modified Stern layer 

 

In the 2D analysis, we consider geometries with curved boundaries as well as 

straight ones. In order to simplify the constraints imposed, we generate the mesh such that 

the elements are aligned along the interface  (i.e. between the modified Stern and diffuse 

layer ) and the element edges in the radial direction to a porous boundary are perfectly 

normal to the interface. This is done so that continuity of d
dn
φ  can be imposed in terms of 
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slope in the local coordinate system rather than in terms of the slope in the global 

coordinate system. 

 

To expedite imposition of the constraints in this Chapter, quadratic Lagrange 

interpolation functions were used in the 2D finite element analysis. The constraints of linear 

variation of voltage and constant concentrations which were listed above were imposed 

using multi-point constraints (MPCs). These MPCs were imposed using the transformation 

technique which was used in the 1D FE analysis. The coefficient matrix and load vector in 

the finite element analysis are transformed as follows 

 

                                                         T
newK T K T=                                                       [4.30] 

and 

T
newF T F=                                                         [4.31] 

 

where T  is defined by the relationship, newq T q=  
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FIG. 4.2 An illustrative example for MPC in 2D analysis 
 

 

The q and newq are the original and transformed lists of nodal variables, respectively and T  

is the transformation matrix.  The meaning of these terms is best described via an example 

as follows.   

 

Consider a modified Stern layer that has three degrees of freedom at each nodal 

point (i.e. quadratic Lagrange interpolation function) in two 8-node quadratic elements as 

follows. Fig. 4.2. shows that i (i=1..13) is each nodal point, 3 2iq −  is electric potential and 

3 1iq − , 3iq  are positive ion concentration and negative ion concentrations, respectively.  
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The total number of degrees of freedom in the two elements are 39. Each element is a 

rectangular element of length of 1L and 2L respectively. 

 

We will impose constraints as follows. 

• Linear variations of electric potential in element 1 

 

28 25 31
1 1
2 2

q q q= +                                               [4.32] 

                                                 7 4 12q q q= −                                                      [4.33] 

19 31 7
1 1
2 2

q q q= +                                              [4.34] 

 

• Constant positive ion concentrations in element 1 

 

                               2 5q q= , 5 8q q= , 23 20q q= , 26 29q q= , 29 32q q=                    [4.35] 

 

• Constant negative ion concentrations in element 1 

 

3 6q q= , 6 9q q= , 24 21q q= , 27 30q q= , 30 33q q=                     [4.36] 

 

• Continuity of the slope of electric potential between element 1 and element 2 
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Unlike the above constraints which are straightforward, this constraint is of a complex 

nature and hence its formulation is explained as below. 

Consider the constraints corresponding to 
1 2element elementd d

dn dn
φ φ

=  mentioned earllier. Taking 

the derivative of Eq. [4.17] we get by chain rule, 

 

( , ) dN dNd d d q
dn d dn d dn

α α
α

φ ξ η ξ η
ξ η

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
                                 [4.37] 

 

where ( , )ξ η  is the local coordinate system,  

( , )n t  is the global coordinate system where n is normal and t is tangential to the 

interface. 

Nα  is the interplation functions which are presented in Appendix B.  

0d
dn
η

=  since η  is perpendicular to n.  Thus, Eq. [4.37] reduces to  

 

dNd d d dq
dn d dn d dn

α
α

φ ξ φ ξ
ξ ξ

= =                                [4.38] 

 

For element 1, calculating the Jacobian, 

1

1

0
2

0
2

dn dt L
d d

J
dn dt L
d d

ξ ξ

η η

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥= = ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 ,  it gives 
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1

2d
dn L
ξ

=                                                    [4.39] 

 

After substituting Eq. [4.39] into Eq. [4.38], Eq. [4.38] is rewritten as follows. 

 

1

2d d
dn d L
φ φ

ξ
=                                                 [4.40] 

Similarly, for element 2,  

2

2d d
dn d L
φ φ

ξ
=                                                [4.41]  

 

Now in order to impose the continuity of the slope of the electric potential along the 

interface, we need to impose continuity at all the nodes along the interface, i.e.  

 

1 2

1, 1 1, 1

element elementd d
dn dnζ η ζ η

φ φ

= = =− =

=  at node 11                       [4.42] 

 
1 2

1, 0 1, 0

element elementd d
dn dnζ η ζ η

φ φ

= = =− =

=  at node 7                        [4.43] 

1 2

1, 1 1, 1

element elementd d
dn dnζ η ζ η

φ φ

= =− =− =−

= at node 3                       [4.44] 

 

Eq. [4.42] can be rewritten using Eqs.[4.40] and [4.41] as 
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1 2

1 21, 1 1, 1

2 2element elementd d
d L d L

ζ η ζ η

φ φ
ξ ξ

= = =− =

=                             [4.45] 

 

Using the Lagrange interpolation functions we have   

 

( , )dNd q
d d

α
α

ξ ηφ
ξ ξ

=                                             [4.46] 

 

Substituting the corresponding degrees of freedom for the element 1 and 2, we can rewrite 

Eq. [4.46] as  

 

31 28 25 37 42 31

1 2

3 4 4 3q q q q q q
L L

− + − + −
=                             [4.47] 

 

After rearranging Eq. [4.47], the following constraint equation is derived for Eq. [4.42].  

 

2 2 2
37 28 31 42 25

1 1 1

4 3 3 4L L Lq q q q q
L L L

⎛ ⎞
= − + + −⎜ ⎟

⎝ ⎠
                           [4.48] 

 

Similarly, constraint equations for Eq.[4.43] and [4.44] can be  obtained :  
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2 2
13 16 37 34 19 1

1 1

2 2 2 2 2 2
7 4 31 28 25 22 10

1 1 1 1 1 1

2 1 ....

.... 1 2 1 2 2

L Lq q q q q q
L L

L L L L L Lq q q q q q q
L L L L L L

⎛ ⎞
= − + − + − −⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞

+ + − + + − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  [4.49] 

2 1 1 1 1
4 1 7 10 13

2 2 2

3 31
4 2 4

L L L L Lq q q q q
L L L

+⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

                       [4.50] 

 

Note that newq  are { }1, 2, 3, , 39....new new new newq q q q  and { }1, 2, 3, 39....q q q q q= . 

The degrees of freedom newq  in terms of q  are as follows. 

 

2 2 5newq q q= −  

3 3 6newq q q= −  

2 1 1 1 1
4 4 1 7 10 13

2 2 2

3 31
4 2 4new

L L L L Lq q q q q q
L L L

+⎛ ⎞= − − + −⎜ ⎟
⎝ ⎠

 

5 5 8newq q q= −  

6 6 9newq q q= −  

7 7 4 12newq q q q= − +                                             

2 2
13 13 16 37 34 19 1

1 1

2 2 2 2 2 2
7 4 31 28 25 22 10

1 1 1 1 1 1

2 1 ....

.... 1 2 1 2 2

new
L Lq q q q q q q
L L

L L L L L Lq q q q q q q
L L L L L L

⎛ ⎞
= − + − + + − +⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞

+ − + + − + − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

19 19 7 31
1 1
2 2newq q q q= − −                                        [4.51]                    
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23 23 20newq q q= −  

24 24 21newq q q= −  

26 26 29newq q q= −  

27 27 30newq q q= −  

28 28 25 31
1 1
2 2newq q q q= − −  

29 29 32newq q q= −  

30 30 33newq q q= −  

2 2 2
37 37 28 31 42 25

1 1 1

4 3 3 4new
L L Lq q q q q q
L L L

⎛ ⎞
= − + + − +⎜ ⎟

⎝ ⎠
 

 

The transformation matrix (T ) is not shown due to its large size. (i.e. 39 39× ).   

It was checked that the transformation matrix satisfies the relationship, newq T q= . As in the 

section of multi-point constraints in Chapter III, the final step is to impose the conditions, 

 0new iq =  where   2,3,4,5,6,7,13,19,23,24,26,27,28,29,30,  and 37i = .  

 

4.6        Results and Discussion 

 

In this section, results for the 2D finite element analysis of curved electrodes are 

discussed. In an attempt to understand the fundamental behavior of a porous electrode,  

simple pore geometries are considered.  
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FIG. 4.3 Schematic of configurations  
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(a) Model 1 : flat region + pore region of electrode 

(b) Model 2 : pore region only  
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Schematics of the electrodes with a pore are shown in Fig 4.3. The configuration is 

symmetric with respect to horizontal and vertical lines through the center of the system. 

Hence, only a quarter of the region is modeled for the 2D anlaysis, considerably saving the 

computational time. 

 

The effect of pore radius and pore depth on the predicted electric potential, ion 

concentration, surface charge density, surface energy density and charging time are 

examined here. All the results discussed here are obtained using the 2D Nernst-Planck-

Poisson-Modified Stern layer (NPPMS) model that was described in the earlier sections of 

this Chapter.   

 

The first set of results in this section discuss the effect of pore radius on the 

properties mentioned above. Fig. 4.4 shows the effect of pore radius on the electric 

potential distribution along AB.  Four different configurations were analyzed; three with 

different pore radii, (R = 3, 4, and 5 nm) and one  with no pore, i.e. a planar electrode. The 

variation of the electric potential along three different lines - AB, CG and EF at different 

locations are examined. The results shown in Fig 4.4 - Fig 4.7 were obtained using a 0.02 

volt surface potential and a 0.1 M bulk solution. The length ( L ) of quarter model is 50 nm,  

width (W ) is 15 nm, and depth of the pore ( D ) is 0.5 nm as shown in Fig. 4.3(a). 

 

Fig. 4.4 shows that the steady-state electric potential along line AB is not affected 

by the change in pore radius. It is in good agreement with the electric potential obtained in 
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the case with no pore. This is because line AB is sufficiently far away from the pore to be 

influenced by it.  

 

 

FIG.4.4 Effect of pore radius on the electric potential distributions along line AB for 0.02 V 
and 0.1 M case 

 

 

Fig. 4.5(a) shows the electric potential distribution along line CG which is along the 

center of the pore. It is seen that as the pore radius increases, the electric potential drops 

faster as we move along CG away from the electrode. The extreme case is when the radius 

is infinity, i.e. when there is no pore, we see the steepest drop in the electric potential. This 

effect can be explained by the fact that proximity of the line CG to the pore surface restricts 

the electric potential from dropping as quickly as occurs for the flat electrode.  
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(a) 0.02 V & 0.1 M  

 

(b) 0.08 V & 0.1 M 

FIG.4.5 Effect of pore radius on the electric potential distributions along line CG 
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Fig. 4.5(b) shows that the electric potential distribution with a pore approaches the 

no pore case with increase in surface potential (i.e. Difference of the electric potential at 

x=2nm is reduced by 5% compared to Fig. 4.5(a)).  

 

Fig. 4.6 shows the electric potential distribution along line EF which is at an angle 

of 45 degrees with line CG. It is seen that electric potential drops with a steeper gradient 

with increase in pore radius as observed in Fig. 4.5(a). 

 

FIG.4.6 Effect of pore radius on the electric potential distributions along line EF for 0.02 V 
and 0.1 M case 

  

Fig. 4.7(a) compares the electric potential distribution along the line CG and EF for 

pore sizes R=3 nm and 5 nm. Pore with a higher radius shows a steeper gradient in the drop 

of electric potential. The potential drops identically along CG and EF for same pore radius.  
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(a) Along line CG and EF for R=3 and R=5 nm cases 

 

(b) Along CG, EF and 90 degree for different bulk solutions, 0.1M and 1M 

FIG.4.7 Comparison of the electric potential distributions along radial lines  
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Fig. 4.7(b) shows the electric potential distribution for pore radius of 5nm along 

different radial directions for different bulk soultions. For low bulk solution concentration 

(i.e. 0.1M), potential drops almost identically along the radial lines CG and EF. Beyond EF 

and upto the vertical i.e. 90 degree the gradient becomes steeper for increasing angle. 

However, increasing the bulk solution molarity results in an identical gradient of potential 

drop along the radial lines CG and EF.(Fig. 4.7(b))   

 

 

FIG.4.8 Effect of pore radius on the electric potential distributions along line CG for 0.02 V 
and 1 M case 

 

 Next, when the concentration of the bulk solution is increased from 0.1M to 1M, It 

is observed that the change of pore radius does not affect the electric potential as shown in 

Fig. 4.8. This change of bulk solution drastically reduces the effect of pore radius on the 

electric potential distribution. This is as expected because the electric potential gradient 
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increases near the electrode surface as the bulk solution concentration is increased. Since 

the drop in electric potential occurs within a very small distance from the electrode surface, 

the surface of the pore has very little effect on the electric potential, for the pore sizes that 

were considered.  

 

 
 
FIG.4.9 Effect of pore radius on the negative ion concentration distributions along line AB 

for 0.02 V and 0.1 M case 
 

Fig. 4.9 shows the negative ion concentration along line AB for different pore radii. 

The negative ion concentration is maximum and constant within the modified Stern layer. 

Beyond the modified Stern layer progressing into the diffuse layer the negative ion 

concentration drops rapidly. The rate of ion concentration drop increases with increasing 

pore radius. A slight difference is observed at the constant ion concentration within the 

modified Stern layer. The ion concentration in the modified Stern layer for the case without 

the pore is 0.5% higher than the corresponding value for the case with the 3nm pore. The 
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modified Stern layer ion concentrations for the different cases are tabulated in Table 4.1. It 

is seen that the variation is almost similar for all the cases considered. 

 

Table 4.1. Negative ion concentration values in modified stern layer along line AB for 
different pore radius cases (i.e. R=3, 4, 5 nm and no pore cases) – 0.02V and 0.1M  
 

Models no pore R = 5 nm R = 4 nm R = 3 nm 
2
modelc (M) 0.162 M 0.16138 M 0.1613 M 0.1611 M 

Differences*  0.33% 0.36% 0.5% 
Differences* (%) = 2 2 2 100R nopore noporec c c− ×  

 

 

FIG.4.10 Effect of pore radius on the ions, 1 2c c−  concentration distributions line CG 
 

 

 

1 2c c−

2c

1c
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Next, we look at the ion concentration distributions for different pore sizes along 

CG in Fig 4.10. The negative ion concentration distributions follow the trend as in AB as 

seen in Fig. 4.9. The positive ion concentration is the least and constant within the modified 

Stern layer, which increases gradually progressing into the diffuse layer. The gradient of 

increrase in positive ion concentration increases with increasing pore radius. The ion 

concentration distribution along CG is affected by the pore size. For the negative ion 

concentration within the modified Stern layer it is observed that as the pore size decreases, 

the negative ion concentration increases, opposite to that as observed for the positive ion 

concentration within the modified Stern layer. Reduction of pore radius might cause an 

increase in the attraction for ions at the electrode surface due to its curved geometry which 

results in the above observation. The free charge density (i.e. 1 2( )f e c cρ = − ) increases 

with increasing pore radius. The value e  in 1 2( )f e c cρ = −  is constant and thus the 

measure of 1 2c c−  is used to calculate the free  charge density. The gradient of free charge 

density increases with increasing pore radius. 

 

Increase in molarity of the bulk solution from 0.1M to 1M results in a  higher 

gradient within the modified Stern layer. The ion concentration in the modified Stern layer 

for different pore radii are closely packed on increasing the molarity. Similar observations 

are observered along EF for change in molarity of the  bulk solution (not shown in figures). 
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The ion concentrations in the modified Stern layer at C and E for the different pore 

sizes and two different bulk solution configurations are tabulated in Table 4.2. It is seen 

that when the pore radius is 3 nm, the modified stern layer ion concentration at point C for 

the 0.1M case is more than 3 %  larger than the case without the pore. Almost exactly the 

same numbers are seen for the ion concentrations at point E. The same trend is seen when 

the bulk solution concentration is increased to 1M, however with a smaller increase in ion 

concentration compared to the case with bulk solution of 0.1M. 

 
 
Table 4.2. Negative ion concentration values and difference* near electrode along line CG 
and EF for different pore radius cases (i.e. R=3, 4, 5 nm and no pore cases) 

Difference* (%) = 2 2 2 100R nopore noporec c c− ×  

At point C for 0.02 V and 0.1 M 
Models no pore R = 5 nm R = 4 nm R = 3 nm 
2
modelc (M) 0.162 M 0.1645 M 0.166 M 0.167 M 

Difference  1.54% 2.46% 3.08% 
 
At point E for 0.02 V and 0.1 M 

Models no pore R = 5 nm R = 4 nm R = 3 nm 
2
modelc (M) 0.162 M 0.1651 M 0.1658 M 0.1675 M 

Difference  1.91% 2.34% 3.39% 
 
At point C for 0.02 V and 1 M 

Models no pore R = 5 nm R = 4 nm R = 3 nm 
2
modelc (M) 1.275 M 1.279 M 1.281 M 1.284 M 

Difference  0.313% 0.47% 0.705% 
 
At point E for 0.02 V and 1 M 

Models no pore R = 5 nm R = 4 nm R = 3 nm 
2
modelc (M) 1.275 M 1.279 1.281 M 1.284 M 

Difference  0.313% 0.47% 0.705% 
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(a) 0.02 V & 0.1 M  

 
(b) 0.1 V & 0.1 M  

FIG. 4.11 Effect of modified Stern layer on the total charge vs. time for different surface 
potential 0.02 V and 0.1 V with 0.1 M 
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Fig. 4.11(a) and (b) reveal the percentage distribution of the total charge within the 

modified Stern layer and diffuse layer. It is seen that for low surface potential (0.02V) the 

diffuse layer has a larger charge (63%) than the modified Stern layer (37%). This 

distribution is reversed for higher surface potentials where the modified Stern layer 

accounts for 53 % of the total charge. Fig. 4.11(a) and (b) reveal the percentage distribution 

of the total charge within the modified Stern layer and diffuse layer. It is seen that for low 

surface potential (0.02V) the diffuse layer has a larger charge (63%) than the modified 

Stern layer (37%). This distribution is reversed for higher surface potentials where the 

modified Stern layer accounts for 53 % of the total charge. 

 

The surface charge density is obtained by taking the ratio of the total charge in the 

electrolyte to the surface area of the electrode. It would be unfair to compare the results 

based on the total charge because the geometries in the analysis vary. A standardized 

comparison between different geometries can be made using a normalized parameter like 

the surface charge density. 

 

Fig 4.12 shows the build up of surface charge density (σ ) over time for different 

configurations. All the cases have the same surface potential of 0.02V but the bulk solution 

concentration is increased from 0.01M to 1M. It is seen that for a particular boundary 

condition and concentration and all three configurations (two with pores and one without 

pore) the surface charge density eventually builds up to almost the same value. The 
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charging time is defined to be the time required to reach  98% of the steady-state charge 

density.  

 

FIG. 4.12 Effect of pore radius on the surface charge density vs. time for different bulk 
solutions and pore sizes 

 

It is seen that as the bulk solution concentration is increased the charging time 

decreases. For a particular surface potential and bulk solution concentration, it is seen that 

the presence of a pore increases the charging time. 

 

Fig. 4.13 shows the distribution of surface charge density within the pore and the 

vertical flat portions of the electrode. It is seen that the pore region has a higher surface 

charge density than the vertical flat portions of the electrode.  
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FIG. 4.13  Distribution of  surface charge density within the electrode 
 

Table 4.3 Surface chage density at the steady state for  the different regions 
 
Surface Charge Density Region R = 5  R = 4  R = 3 

Pore( poreσ ) 15.97
14.63

=1.091 12.498
11.49

=1.087 9.007
8.35

=1.078 

Fullelectrode( allσ ) 22.26
20.63

=1.079 20.86
19.43

=1.070 19.43
18.35

=1.058 

Difference* 1.1% 1.58% 1.81% 

Flat electrode( flatσ ) 6.29
6

=1.049 8.37
8

=1.046 10.42
10

=1.042 

Difference*(%) = 100pore allσ σ
σ
−

× (%) 

 

The surface charge density over the full electrode, obtained numerically (Table 4.3) 

is nearly equal to the average of surface charge densities obtained in the pore region and the 
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vertical flat regions of the electrode. It is seen that increase in amount of flat portion of the 

electrode reduces the overall surface charge density while the pore increased the overall 

surface charge density. Thus the area within the pore and that occupied by the flat portion 

of the electrode influence the overall surface charge density.   

 

Table 4.3 shows the distribution of surface charge densities in the vertical flat 

portion and the pore region of the electrode. It is seen that the increase in pore dimension 

reduces the influence of the flat portion on the overall surface charge density of the 

electrode. Thus for an electrode with a pore of infinite radius i.e. flat electrode the 

numerically calculated value for surface charge density exactly matches that of the surface 

charge density within the pore. Correspondingly reduction of pore dimension increases the 

difference between the overall surface charge density and that within the pore. Here the 

vertical flat portion of the electrode influences the overall surface charge density.  

 

The surface charge density within the pore was confirmed by analyzing a geometry 

consisting of only the pore as shown in Fig. 4.3(b). The results obtained using this model 

were within 1% of those obtained from analysis of the full model as in Fig. 4.3(a). 

Similarly, increase in surface potential and/or molarity of the bulk solution revealed that 

were within 0.5% of each other for both the models.  

 

Fig. 4.12 showed that the steady state surface charge density for the cases with the 

pore and without pore are almost the same. For all the cases analyzed it is observed that the 
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overall surface charge density obtained numerically is reasonably close to the average of 

the surface charge densities of the vertical flat portion of the electrode and the pore region. 

Thus for simplicity of calculation of the surface energy the overall surface charge density is 

used henceforth. Overall surface charge density is plotted against the surface potential for 

different bulk solution concentrations in Fig. 4.14(a). It is seen that for a particular bulk 

solution concentration, the relation between surface charge density and surface potential is 

linear. The energy is calculated using numerical integration of  the surface charge density 

and surface potential (see Eq. 3.27), however the linear plot obtained results in calculating 

the surface charge density as the area under the curve given as , 1
2 oσφ . This relationship is 

observed to be nonlinear with increasing surface potentials (Fig. 4.14(b)).  

 

(a) Different bulk solutions : 0.01M, 0.1M and 1 M 

FIG. 4.14 Surface charge density vs. surface potentials for different bulk solutions 
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(b) Different surface potentials up to 0.1 V with 0.1M and R=5nm 

FIG. 4.14 Continued 

 

FIG. 4.15 Effect of pore radius on the surface energy density vs. time for different bulk 
solutions (i.e. 0.01, 0.1, and 1 M) and pore sizes (i.e. R=3, 5 nm, and no pore) 
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Surface energy density for the different cases with pores and without pores has been 

plotted against time in Fig. 4.15. Variation in surface energy density with time is observed 

to be similar to that as observed in surface charge density with time, as expected. Thus we 

can obtain the surface energy density if we have the surface charge density. 

 

The effect of pore radius on the charging time is shown in Fig. 4.16. The results are 

obtained for two bulk solution concentrations – 0.1M and 0.01M. For both cases, it is seen 

that when the surface area increases (due to the presence of the pore), the charging time 

increases but the effect is much smaller for 0.1 M. The charging time for all configurations 

in the lower bulk solution concentration case is larger than that for the higher bulk solution 

concentration case.  

 

FIG. 4.16 Effect of pore radius on the charging time vs. surface potentials for different bulk 
solutions (i.e. 0.01 M and 0.1 M) and pore sizes (i.e. R=3, 5 nm, and no pore) 
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This is consistent with the results obtained in the 1D analysis. It is observed that 

increasing the surface potential increases the charging time which is evident in the lower 

bulk solution concentration case (0.1M). For bulk solution with 0.01M and surface 

potential 0.02V, increasing the pore radius from 3nm to 5nm increases the charge time by 

17% while a similar increase in the radius for bulk solution with 0.1M and surface potential 

0.02V charging time increases by 9.4%. In general it is observed that pore radius 

considerably influences the electric potential distribution and charging time for bulk 

solution with lower molarity (0.01M) but this influence reduces with bulk solution of 

higher molarity (0.1M). 

 

The second set of results in this section discusses the effect of pore depth (D) on the 

electric potential distribution, ion concentration along AB, CG and EF, surface charge 

density, surface energy density and charging time.  

 

Fig. 4.17 shows the effect of pore depth on the electric potential distributions along 

AB. Four different configurations were analyzed – three with different pore depths, D = 0.5, 

2, and 3 nm, and one with no pore. The pore radius is R = 5 nm, width is W = 15 nm, and 

length of the quarter model is L = 50 nm.  

 

It is observed that the stead-state electric potential distributions along line AB are 

not affected by the change in pore depth. All the curves agree closely with the no pore case, 

which may be since the line AB is sufficiently far away from the pore to be influenced by it.  
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FIG. 4.17 Effect of pore depth on the electric potential distributions along line AB with 
R=5nm 

 

Fig.4.18 shows the variation of electric potential along CG. It is observed that the 

electric potential distribution along CG with a pore has a lesser gradient compared to that 

with no pore. This gradient due to the pore remains unchanged for different depths of the 

pore. It is observed that for  any given pore depth the relative position of CG with respect to 

the pore remained the same which might be the reason for the above observation.  

 

As expected for the smaller pore radius, R=3 nm, the electric potential distributions 

along line AB are not affected as shown in Fig. 4.19.  Reduction in the pore radius resulted 

in an increase in the distance between outer surface of the pore and line AB thus further 

reducing the influence of the pore on the electric potential distribution along AB. 
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FIG. 4.18 Effect of pore depth on the electric potential distributions along line CG with 
R=5nm 

 

 

FIG. 4.19 Effect of pore depth on the electric potential distributions along line AB with 
R=3nm 

 

D=8 nm
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FIG. 4.20 Comparison of the electric potential distributions along line CG and EF with 
R=3nm 

 

Fig. 4.20 compares the electric potential distribution along the line CG and EF for a 

pore depth of D=3 nm and pore radius R=3 nm. We see that the potential drop along CG 

and EF are almost exactly the same. However the electric potential distribution in the case 

of a pore drops with a smaller gradient than that in the case with no pore, which is similar 

to the observation in Fig 4.18.   

 

Fig. 4.21 shows the ion concentration along line CG for different pore depths and a 

pore radius of 5nm. It is seen that the variation is almost same for the different depths. The 

ion concentration in the modified Stern layer for  the case without the pore is 0.162 M, 

which is about 2 % less than the corresponding value for the cases with  the different pore 
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depths. As mentioned in the discussion of Fig. 4.10, this could have been caused by the 

increased attraction for ions at the electrode surface due to its curved geometry. 

 

 
FIG. 4.21 Effect of pore depth on the negative ion concentration distributions along line CG 

with R=5nm 
 

Fig. 4.21 shows the ion concentration along line CG for different pore depths and a 

pore radius of 5nm. It is seen that the variation is almost same for the different depths. The 

ion concentration in the modified Stern layer for  the case without the pore is 0.162 M, 

which is about 2 % less than the corresponding value for the cases with  the different pore 

depths. As mentioned in the discussion of Fig. 4.10, this could have been caused by the 

increased attraction for ions at the electrode surface due to its curved geometry. 

 

D=8 nm
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FIG. 4.22 Comparison of the negative ion concentration distributions along CG and EF 
with R=3nm 

 

 Next, when the pore radius is decreased from R=5 nm to R=3 nm, the effect of 

negative ion concentration distribution along line CG for the D=3 nm is increased in Fig. 

4.22. The ion concentration in the modified Stern layer  for the case with the D=3 nm is 

0.168 M, which is larger than the corresponding value for the case with the D=3 nm and 

R=5 nm in Fig.4.21. Fig. 4.22 compares the negative ion concentration distributions along 

the lines CG and EF for the pore depth D=3 nm and pore radius R=3nm. This figure also 

shows that the gradient of the ion concentration for the case with the D=3 nm is less than 

the corresponding gradient of ion concentration for the case without pore. 
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FIG. 4.23 Effect of pore depth on the surface charge density vs. time for different pore  
radius 

 

Next, the overall surface charge density is obtained by taking the ratio of the total 

charge in the electrolyte over the total surface area of the electrode. The surface area for the 

pore radius and depth is tabulated in Table 4.4. For all five configurations ( four with pores 

and one without pore) it is seen in Fig. 4.23 that they all eventually build up to almost the 

same surface charge density.  

 
Table 4.4.  Surface area (SA : 2nm ) for different radius, R and depth, D of pore 

 
Depth ( nm ) of pore Radius ( nm ) D=8 D=3 D=1 D=0.5 

R=5 28.13(87.5%) 23.13(54.2%) 21.13(40.9%) 20.63(37.5%)
R=3 25.8(72.3%) 20.85(39%) 18.85(25.6%) 18.35(22.3%)

No pore 15 
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Note that ( 1) ( 1)
2 2
R RSA D W R Rπ π −

= + + + − − −  for the NPPMS quarter model. 

All these cases have the same surface potential of 0.02 V. The bulk solution concentration 

is either 0.01 M or 0.1 M. It is seen that as the bulk solution concentration is increased the 

charging time decreases. For a particular surface potential and bulk solution 

concentration,it is seen that the presence of a pore makes the charging time longer in Fig. 

4.23. 

 

Fig. 4.23 shows that the steady-state surface charge densities for the  cases with the 

pore and without pore are almost the same. This is also seen in Fig. 4.24 where the surface 

charge densities are plotted against the surface potential for the different pore depth, D=0.5 

and D=3nm and pore radius, R=5nm.  

 

FIG. 4.24 Surface charge density vs. surface potential for different pore radius with 
R=5nm 
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FIG. 4.25 Surface energy density vs. time for different pore radius with R=5nm 

 

It is seen that for a particular bulk solution concentration, the relation between 

surface charge density and surface potential is linear. Therefore, The surface energy density 

is calculated by getting the area under the curve for a surface charge density vs. surface 

potential plot. This has been done for the different cases with pores and without pores and 

the surface energy density has been plotted against time in Fig. 4.25. 

 

The effect of pore depth on the charging time is shown in Fig. 4.26. The results are 

obtained for bulk solution concentration, 0.1 M. The charging time increases with 

increasing pore radius for a given depth. The difference in charging time for increasing 

radius reduces with increased depth. Increasing the pore depth for similar increase in radius 

results in a decrease in the time difference in charging. 
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FIG. 4.26 Effect of charging time vs. surface potentials for different pore radius 
    and depth 

 

The corresponding observations are tabulated in the Table 4.5. This is observed 

since increasing the depth for similar increase in radius results in a lesser percentage 

increase in the overall surface area thus further reducing the time difference for charging.  

 

Table 4.5 Charging time for different pore depth, D=3, 0.5 nm 
 

Charging timeτ  ( Sµ )  
0.02V & 0.1 M 

D=3nm D=0.5nm 
R=5 2.38(67.6%) 2.05(44.3%) 
R=3 2.33(64.0%) 1.89(33%) 

No Pore 1.42 
Differences* (%) = 100R nopore noporeτ τ τ− ×  

 

D=3 nm 

D=0.5 nm 
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Consequently it can be stated that as the pore depth increases to a large number the 

time difference in charging tends to zero for similar increase of pore radius as the 

percentage increase in surface area goes to a very small number. 

 

4.7        Summary 

 

The fundamental behavior of a porous electrode was investigated using a finite 

element implementation of the transient nonlinear 2D Nernst-Planck-Poisson-modified-

Stern (NPPMS) model. A flat electrode with a pore, having a depth and semi-circular ends 

was modeled and analyzed using the 2D NPPMS model. The 2D NPPMS model uses the 

modifed Stern layer to account for finite ion size. Effects of pore radius and depth on the 

predicted electric potential, negative ion concentration, charge, surface charge density, 

surface energy density, and charging time were discussed. The ion concentration and  

electric potential were found to be sensitive to the change in radii of the pore and 

insensitive to the pore depth. Surface charge density was slightly higher within the pore 

than that along the vertical flat regions of the electrode. Increase in surface area of the 

electrode due to the presence of a pore increased the charging time. 
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CHAPTER V 

 

CONCLUSIONS AND FUTURE WORK 

 

5.1       Conclusions 

 

Transient nonlinear Nernst-Planck-Poisson (NPP) and Nernst-Planck-Poisson-

Modified Stern Layer (NPPMS) models were developed and compared for 1D and 2D 

finite element analysis. The finite element formulations for both models were described. 

For high surface potential cases, both the NPP model and exact steady-state solution give 

unrealistic results. The NPPMS model overcomes this problem by using the modified Stern 

layer to account for finite ion size, resulting in realistic ion concentrations even at high 

surface potential has been developed. The presence of very high total energy density within 

the modified Stern layer, which possess very small percentage of the total area necessitaes a 

very accurate modelling of the modified Stern layer for accurate analysis.  

 

For low value of surface potential, the results obtained using the NPPMS model are 

similar to those obtained using the NPP model except within the modified Stern layer. 

However for higher values of surface potential the NPP model produces unrealistic results 

while the NPPMS model gives reasonable results. This is due to the constraints imposed by 

the modified Stern layer. Thus it is observed that NPPMS model provided realistic and 

correct results for low and high values of surface potential. Thus it is concluded that the 
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NPPMS model is better compared to the NPP model in the investigation of electric 

potential distribution, ion concentration and charging time at higher surface potential.   

 

It is observed that the total charge density approaches the steady-state solution faster 

when predicted using the NPPMS model than that using the NPP model. The charging time 

decreases with the increase of bulk solution molarity and it increases with an increase of  

surface potential. The results show that charging time is more sensitive to the surface 

potential than the molarity. 

 

For a given molarity of the bulk solution the rate of charging of the modified Stern 

layer and diffuse layer depends on the surface potential applied. Initially for low surface 

potential, the diffuse layer charges at a higher rate than the modified Stern layer. With 

increase of  surface potential the gradient of electric potential increases across the modified 

Stern layer, thus resulting in higher charge within the modified Stern layer than that within 

the diffuse layer. For a solution of given molarity, beyond a critical value of electric 

potential the rate of charging at the modified Stern layer becomes higher than that in the 

diffuse layer. 

 
 

Based on the 2D analysis it can be concluded that pore radius influences the 

gradient of electric potential distribution and the ion concentration within the curved 

surface of the pore. Increase in  bulk solution molarity reduces the effect of radius on the 

above properties. The surface charge density within the pore is higher than that along the 



 

 

114

flat region of the electrode. Presence of the pore affects the surface charge density upto the 

steady state beyond which the surface charge density attains a constant value for a given set 

of conditions. Pore depth does not influence the gradient of elecric potential distribution 

and ion concentration. Pore depth does influence the charging time. Charging time 

increases with increase in the pore depth and the pore radius, however the effect of pore 

radius decreases with increase in the pore depth.  

 
 
5.2       Future Work 

 

The pore considered in this analysis had a simple geometry. This geometry can be 

chosen to obtain more realistic results using the concept of fractal geomtry (54,55,62). 

Fractal geometry provides a technique to handle problems arising from irregular geometries.  

The  ions in this analysis were considered no chemical activity. This consideration can be 

relaxed by considering the chemical activity  coefficients in the NPP equation (32). In the 

desire to obtain further reasonable results regarding the electric potential distribution, ion 

concentration distribution, surface charge density and thus the supercapacitor performance 

problems can be addressed using a 3D model with porous electrodes.  
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APPENDIX A 

 

DISCRETIZED GOVERNING EQUATIONS 

 

Discretized Governing Equations in 1D  
 
 

This appendix gives the discretized components, Mq& , R , and F for 1D finite 

element formulas in Chapter III. The governing Eq. [3.43] for the element can be expressed 

in matrix form as 

                                       

                 0Mq R Fψ = + − =&                                                [A1] 

 

where M describes the sensitivity of the residual to the time derivatives of the nodal 

variables, R  is the collection of the remaining terms, F  is the applied loads, and q  is the 

collection of degrees of freedom in a typical element. In particular, 

 

                                                    ( ) ( )(1) (2)
(12 1) ,

T
Mq Mq Mq×

⎡ ⎤= ⎣ ⎦& & &                                     [A2] 

 

where the superscripts are the number of nodes in the element. 
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                         ( )(1) 1 1 2 2
1 2 1 20,0, , , ,Mq c N dx c N dx c N dx c N dx⎡ ⎤= ⎣ ⎦∫ ∫ ∫ ∫& & & & &                        [A3] 

 

                        ( )(2) 1 1 2 2
3 4 3 40,0, , , ,Mq c N dx c N dx c N dx c N dx⎡ ⎤= ⎣ ⎦∫ ∫ ∫ ∫& & & & &                        [A4] 

 

                                                     (1) (2)
(12 1) ,

T
R R R× ⎡ ⎤= ⎣ ⎦                                                  [A5]        

where                               

                                       

1 1

2 2

1
(1) 1

1
2

2
1

2
2

d s s

s

d s s

s

E Nx dx ez c N dx

E Nx dx ez c N dx

J Nx dxR
J Nx dx

J Nx dx

J Nx dx

⎛ ⎞− +
⎜ ⎟
⎜ ⎟

− +⎜ ⎟
⎜ ⎟
⎜ ⎟−= ⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

∑∫ ∫

∑∫ ∫

∫
∫
∫
∫

                                   [A6] 

 

                                      

3 3

4 4

1
(2) 3

1
4

2
3

2
4

d s s

s

d s s

s

E Nx dx ez c N dx

E Nx dx ez c N dx

J Nx dxR
J Nx dx

J Nx dx

J Nx dx

⎛ ⎞− +
⎜ ⎟
⎜ ⎟

− +⎜ ⎟
⎜ ⎟
⎜ ⎟−= ⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

∑∫ ∫

∑∫ ∫

∫
∫
∫
∫

                                   [A7] 

and 
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(1) (2),
T

F F F⎡ ⎤= ⎣ ⎦                                           [A8] 

where 

                                               

2

1

2

1

2

1

2

1

2

1

2

1

1

2

1
1

(1)

1
2

2
1

2
2

xd

x

xd

x

x

x

x

x

x

x

x

x

E N

E N

J N
F

J N

J N

J N

⎛ ⎞−⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟= ⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

                                                        [A9] 

 

                                               

2

1

2

1

2

1

2

1

2

1

2

1

3

4

1
3

(2)

1
4

2
3

2
4

xd

x

xd

x

x

x

x

x

x

x

x

x

E N

E N

J N
F

J N

J N

J N

⎛ ⎞−⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟= ⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

                                                      [A10] 

 
 

Discretized Governing Equations in 2D 
 
 

This appendix gives the discretized components, Mq& , R , and F for 2D finite 

element formulas in Chapter IV. The governing Eq. [3.43] for the element can be expressed 

in Eq. [A1]. 
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In particular, in 2D finite element formulas, the discretized components, Mq& , R , 

and F  are easily expanded as follows. 

 
                                

                            ( ) ( ) ( ) ( )(1) (2) (3) (8)
(24 1) , , ,....,

T
Mq Mq Mq Mq Mq×

⎡ ⎤= ⎣ ⎦& & & & &                         [A11] 

 

where the superscripts are the number of nodes in the element. 

 

             ( )( ) 1 20, ,Mq c N dA c N dAα
α α

⎡ ⎤= ⎣ ⎦∫ ∫& & &                              [A12] 

where 1..8α =  

 

                                              (1) (2) (3) (8)
(24 1) , , ,....,

T
R R R R R× ⎡ ⎤= ⎣ ⎦                                [A13]        

where                     

           

                          

( )

( )
( )

( ) 1 1

2 2

T
d d s s
x y

s

x y

x y

E Nx E Ny dA ez c N dA

R J Nx J Ny dA

J Nx J Ny dA

α α α

α
α α

α α

⎛ ⎞− + +
⎜ ⎟
⎜ ⎟

= − +⎜ ⎟
⎜ ⎟

− +⎜ ⎟⎜ ⎟
⎝ ⎠

∑∫ ∫

∫
∫

                  [A14] 

where   

                                             
s s

s s s s
x

c z FJ D D c
x RT x

φ∂ ∂
= − −

∂ ∂
                                     [A15] 

and 
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s s

s s s s
y

c z FJ D D c
y RT y

φ∂ ∂
= − −

∂ ∂
                                     [A16]                

and 

                                      (1) (2) (3) (8)
(24 1) , , ,....,

T
F F F F F× ⎡ ⎤= ⎣ ⎦                                      [A17] 

where 

                                        

( )
( )
( )

( ) 1 1

2 2

T
d d
x y

x y

x y

E E N dL

F J J N dL

J J N dL

α

α
α

α

⎛ ⎞− +
⎜ ⎟
⎜ ⎟= − +
⎜ ⎟
⎜ ⎟⎜ ⎟− +⎝ ⎠

∫
∫
∫

                                           [A18] 
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APPENDIX B 

 

DERIVATION OF THE M MATRIX 

 

Derivation of the M  Matrix in 1D 

 
 

This appendix gives the derivation of the M  matrix in Eq. [3.43]. M is defined as 

the matrix multiplying the time derivative of the unknowns in Eq. [3.43]. The governing 

equations are derived in Eqs. [3.38] and [3.39]. There are no derivatives with respect to 

time in Eq. [3.38] and the only non-zero terms in M  come from Eq. [3.39]. The non-zero 

terms are simply, 
s

s

c
i
c
jq

ψ∂

∂ &
, which is i jN N dA∫ . 

The complete M matrix consistent with the DOF list provided in Eq. [3.42] can be 

assembled as follows. 

1122 1324

3142 3344

M M
M

M M
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                                           [B1] 

where ijklM  is defined as 
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0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

i j i l

ijkl
k j k l

i j i l

k j k l

N N dx N N dx
M N N dx N N dx

N N dx N N dx

N N dx N N dx

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫
∫ ∫

∫ ∫
∫ ∫

            [B2] 

 
where  , , ,  and 1..4i j k l =  

For example, 1122M  is given by 

 

1 1 1 2

1122
2 1 2 2

1 1 1 2

2 1 2 2

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

N N dx N N dx
M N N dx N N dx

N N dx N N dx

N N dx N N dx

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫
∫ ∫

∫ ∫
∫ ∫

           [B3] 

 
Other submatrices, 1324 3142, ,M M  and 3344M can be obtained using Equation [B2]. 
 
 
 
Derivation of the M Matrix in 2D 
 
 

This appendix gives the derivation of the M  matrix in 2D finite element 

formulation. M is defined as the matrix multiplying the time derivative of the unknowns in 

Eq. [3.43]. The governing equations are derived in Eqs. [3.38] and [3.39]. There are no 
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derivatives with respect to time in Eq. [3.38] and the only non-zero terms in M  come from 

Eq. [3.39]. The non-zero terms are simply, 
s

s

c
i
c
jq

ψ∂

∂ &
, which is i jN N dA∫ . 

The complete M matrix consistent with the DOF list provided in Eq. [3.42] can be 

assembled as follows. 

 

                                             

11 12 18

21 22 28

81 82 88

...

...
: : . :

...

M M M
M M M

M

M M M

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                         [B4] 

where ijM  is defined as 
 

 

                  

0 0 0

0 0

0 0

ij i j

i j

M N N dA

N N dA

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

∫
∫

                                    [B5] 

 
 
where  , 1..8i j = . Note that the interpolation functions are  
 
 

{ }1 2 3 4 5 6 7 8
TN N N N N N N N Nα =                   [B6] 

 
where 

2 2 2 2
1

1 1 1 1 1 1
4 4 4 4 4 4

N ηξ ξ η ξ η ξη= − + + + − −                     [B7] 
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2 2
2

1 1 1 1
2 2 2 2

N η ξ ξ η= − − +                                                [B8] 

 
2 2 2 2

3
1 1 1 1 1 1
4 4 4 4 4 4

N ηξ ξ η ξ η ξη= − − + + − +                    [B9] 

 
2 2

4
1 1 1 1
2 2 2 2

N ξ η ξη= + − +                                              [B10] 

 
2 2 2 2

5
1 1 1 1 1 1
4 4 4 4 4 4

N ηξ ξ η ξ η ξη= − + + + + +                  [B11] 

 
 

2 2
6

1 1 1 1
2 2 2 2

N η ξ ξ η= + − −                                              [B12] 

 
 

2 2 2 2
7

1 1 1 1 1 1
4 4 4 4 4 4

N ηξ ξ η ξ η ξη= − − + + + −                  [B13] 

 

2 2
6

1 1 1 1
2 2 2 2

N ξ η ξη= − − +                                              [B14] 
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APPENDIX C 

 

DERIVATION OF LINEARIZED INCREMENTAL FORM 
 
 
 

This appendix gives the derivation of linearized incremental form. The first step is 

to linearize the nonlinear term, 1tR +  in Eq. [3.50] and this is obtained by Taylor series. Let 

us approximate, 1tR +  as follows 

 

1
t

t t
RR R q
q+

⎛ ⎞∂
= + ∆⎜ ⎟∂⎝ ⎠

                                              [C1] 

 
After rearranging Eq. [3.50] with Eq. [C1], the linearized incremental equation can be 

expressed as  

 
ij j iM q F∆ =                                                    [C2] 

where 

i
ij ij

j

RM M t
q

⎛ ⎞∂
= + ∆ ⎜ ⎟⎜ ⎟∂⎝ ⎠

                                             [C3] 

and 

i i iF t R t F= −∆ + ∆                                              [C4] 
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APPENDIX D 

 

DERIVATION OF TANGENTIAL MATRIX IN IN 1D 
 
 

This appendix gives the derivation of tangential matrix. The tangential matrix M  

can be obtained after taking a derivative of the residual given by Eq. [3.50] with respect to 

the unknowns.   

 

( )i
ij ik k i i

j j

M M q t R t F
q q
ψ∂ ∂

= = ∆ + ∆ − ∆
∂ ∂

                         [D1] 

and  

 
i i

ij ij
j j

RM M t
q q
ψ∂ ∂

= = + ∆
∂ ∂

                                                 [D2] 

 

Since iF  is not dependent on the unknowns, 0i

j

F
q

∂
=

∂
.  

The expression i

j

R
q

∂
∂

 denotes a matrix of dimension, 12 12× . The components can be 

described using R
q

φ
α∂

∂
 and 

scR
q
α∂

∂
 where 1..4α =  and 1,2s = . 

The full matrix is assembled using the following order, 
 
 

1 1 2 2 1 1 2 2

1 2 1 2 1 2 3 4 3 4 3 4, , , , , , , , , , ,
T

c c c c c c c cR R R R R R R R R R R R Rφ φ φ φ⎡ ⎤= ⎣ ⎦                      [D3] 
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The term, iR  is a vector of dimension, 12 1× , corresponding to the DOF list in Eq. [4.22]. 

Its components can be determined by inspection of Eq. [4.16], [4.17], and [4.22] and are 

obtained as follows. 

                      

d s s

s

R E Nx dx ez c N dxφ
α α α= − + ∑∫ ∫                                         [D4] 

and 

sc s NR J dx
x

α
α

∂
=

∂∫                                                    [D5] 

and 1..4α = , 1,2s =  

Let us take a derivative of Eq. [D4] with respect to the unknowns, q  

 

d s
s

s

R N E cdx ez N dx
q x q q

φ
α α

α
∂ ∂ ∂ ∂

= − +
∂ ∂ ∂ ∂∑∫ ∫                                 [D6] 

 
Using Eq. [3.2],  

s
sx

o
s

R N cdx ez N dx
q x q q

φ
α α

α
φεε∂ ∂ ∂ ∂

= − +
∂ ∂ ∂ ∂∑∫ ∫                            [D7] 

 

From Eq. [D5], the derivatives of 
scRα  with respect to q  are  

 
sc s

sR N NJ dx J dx
q q x x
α α α∂ ∂ ∂∂

= − −
∂ ∂ ∂ ∂∫ ∫                                  [D8] 
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Furthermore, since 0s NJ
q x

α∂∂ ⎛ ⎞ =⎜ ⎟∂ ∂⎝ ⎠
 the component, 

scR
q
α∂

∂
 reduces into 

 

sc sR NJ dx
q q x
α α∂ ∂∂

= −
∂ ∂ ∂∫                                                    [D9]  

 

and using Eq. [3.4], it can be expanded as 

                        

                    
sc s ss s

s sx x
x

R c N N Ncz F z FD c dx
q q x RT q x RT q x
α α α αφφ∂ ∂ ∂ ∂ ∂ ∂∂

= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂∫                      [D10] 

 

Using Eqs. [B1], [D2], [D7], and [D10], the tangential matrix in terms of a cubic Hermite 

interpolation function for a typical element is obtained as follows.  

 

(6 6) (6 6)
(12 12)

(6 6) (6 6)

11 12
21 22

M M
M

M M
× ×

×
× ×

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
                                             [D11] 

 
 

where the submatrices are as follows.  
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Note that NNx
x

α
α

∂
≡

∂
 is to reduce the size of the formulas. 

(6 6)

1 1 2 2
1 1 2 1 1 1 2 1 1 1 2 1

1 1 2 2
1 2 2 2 1 2 2 2 1 2 2 2

1 1
1 1

1 1

11

o o

o o

M

t Nx Nx dx t Nx Nx dx t ez N N dx t ez N N dx t ez N N dx t ez N N dx

t Nx Nx dx t Nx Nx dx t ez N N dx t ez N N dx t ez N N dx t ez N N dx

z F z Ft c Nx Nx dx t c
RT RT

εε εε

εε εε

× =

−∆ −∆ −∆ −∆ −∆ −∆

−∆ −∆ −∆ −∆ −∆ −∆

∆ ∆

∫ ∫ ∫ ∫ ∫ ∫
∫ ∫ ∫ ∫ ∫ ∫

∫
1 1

1 1 1 1 1 2 2 1

1 12 1

1 1 2 1

1 1
2 1 1 2 2 2 2 21 1

1 1
1 11 2 2 2

1 2 2 2

2
2

1 1

0 0

0 0

x x

x x

N N dx tD Nx Nx N N dx tD Nx Nx
Nx Nx dx z F z FN Nx dx N Nx dx

RT RT
N N dx tD Nx Nx N N dx tD Nx Nx

z F z Ft c Nx Nx dx t c Nx Nx dx z F z FRT RT N Nx dx N Nx dx
RT RT

z F c Nx Nx dx
RT

φ φ

φ φ

+∆ +∆

+ +

+∆ +∆
∆ ∆

+ +

∫ ∫ ∫ ∫
∫

∫ ∫ ∫ ∫
∫ ∫

2 2
1 1 1 1 1 2 2 12

2
2 22 1

1 1 2 1

2 2
2 1 1 2 2 2 2 22 2

2 2
2 21 2 2 2

1 2 2 2

0 0

0 0

x x

x x

N N dx tD Nx Nx N N dx tD Nx Nx
z F c Nx Nx dx z F z FRT N Nx dx N Nx dx

RT RT
N N dx tD Nx Nx N N dx tD Nx Nx

z F z Fc Nx Nx dx c Nx Nx dx z F z FRT RT N Nx dx N Nx dx
RT RT

φ φ

φ φ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

+∆ +∆

+ +

+∆ +∆

+ +
⎣

∫ ∫ ∫ ∫
∫ ∫

∫ ∫ ∫ ∫
∫ ∫

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎦
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(6 6)

1 1 2 2
3 1 4 1 3 1 4 1 3 1 4 1

1 1 2 2
3 2 4 2 3 2 4 2 3 2 4 2

1 1
1 1

3 1

12

o o

o o

M

t Nx Nx dx t Nx Nx dx t ez N N dx t ez N N dx t ez N N dx t ez N N dx

t Nx Nx dx t Nx Nx dx t ez N N dx t ez N N dx t ez N N dx t ez N N dx

z F z Ft c Nx Nx dx t c
RT RT

εε εε

εε εε

× =

−∆ −∆ −∆ −∆ −∆ −∆

−∆ −∆ −∆ −∆ −∆ −∆

∆ ∆

∫ ∫ ∫ ∫ ∫ ∫
∫ ∫ ∫ ∫ ∫ ∫

∫
1 1

3 1 3 1 4 1 4 1

1 14 1

3 1 4 1

1 1
3 2 3 2 4 2 4 21 1

1 1
1 13 2 4 2

3 2 4 2

2
2

3 1

0 0

0 0

x x

x x

N N dx tD Nx Nx N N dx tD Nx Nx
Nx Nx dx z F z FN Nx dx N Nx dx

RT RT
N N dx tD Nx Nx N N dx tD Nx Nx

z F z Ft c Nx Nx dx t c Nx Nx dx z F z FRT RT N Nx dx N Nx dx
RT RT

z F c Nx Nx dx
RT

φ φ

φ φ

+∆ +∆

+ +

+∆ +∆
∆ ∆

+ +

∫ ∫ ∫ ∫
∫

∫ ∫ ∫ ∫
∫ ∫

2 2
3 1 3 1 4 1 4 12

2
2 24 1

3 1 4 1

2 2
3 2 3 2 4 2 4 22 2

2 2
2 23 2 4 2

3 2 4 2

0 0

0 0

x x

x x

N N dx tD Nx Nx N N dx tD Nx Nx
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APPENDIX E 

 

DERIVATION OF TANGENTIAL MATRIX IN 2D 
  
 

This appendix gives the derivation of tangential matrix in 2D finite element 

formulation. Note that in 2D formulation, quadratic Lagrange interpolation functions are 

used for interfacing a modified Stern layer. Similarly, as shown in 1D FE formulation, the 

tangential matrix M  can be obtained after taking a derivative of the residual given by Eq. 

[3.50] with respect to the unknowns.   

 

( )i
ij ik k i i

j j

M M q t R t F
q q
ψ∂ ∂

= = ∆ + ∆ − ∆
∂ ∂

                          [E1] 

and  

 
i i

ij ij
j j

RM M t
q q
ψ∂ ∂

= = + ∆
∂ ∂

                                                 [E2] 

 

Since iF  is not dependent on the unknowns, 0i

j

F
q

∂
=

∂
.   

The expression i

j

R
q

∂
∂

 denotes a matrix of dimension, 24 24×  because 8-nodes quadratic 

Lagrange 2D elements are used. The components can be described using R
q

φ
α∂

∂
 and 

scR
q
α∂

∂
 

where 1..8α =  and 1,2s = . 
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The full matrix is assembled using the following order, 
 
 

         
1 2 1 2 1 2

1 1 1 2 2 2 8 8 8, , , , , ,...., , ,
T

c c c c c cR R R R R R R R R Rφ φ φ⎡ ⎤= ⎣ ⎦                           [E3] 

 

The term, iR  is a vector of dimension, 24 1× , corresponding to the DOF list in Eq. [4.22]. 

Its components can be determined by inspection of Eq. [4.16], [4.17], and [4.22] and are 

obtained as follows. 

                      

                                   d d s s
x y

s

N NR E E dA ez c N dA
x y

φ α α
α α

⎛ ⎞∂ ∂
= − + +⎜ ⎟∂ ∂⎝ ⎠

∑∫ ∫                     [E4] 

and 

                                                
sc s s

x y
N NR J J dA
x y

α α
α

⎛ ⎞∂ ∂
= − +⎜ ⎟∂ ∂⎝ ⎠

∫                                     [E5] 

and 1..8α = , 1,2s =  

Let us take a derivative of Eq. [E4] with respect to the unknowns, q  

 

                                
dd s
y sx

s

ER N E N cdA ez N dA
q x q y q q

φ
α α α

α

⎛ ⎞∂∂ ∂ ∂ ∂ ∂
= − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∑∫ ∫             [E6] 

 

Using Eq. [3.2],  

 



 

 

138

                     
s

y sx
o o

s

R N N cdA ez N dA
q x q y q q

φ
α α α

α

φφεε εε
∂⎛ ⎞∂ ∂ ∂ ∂ ∂

= − + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
∑∫ ∫             [E7] 

 

From Eq. [E5], the derivatives of 
scRα  with respect to q  are  

                                

           
s sc s

y s sx
x y

JR J N N N NdA J J dA
q q x q y q x q y
α α α α α

⎛ ⎞∂ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂∂ ∂⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
∫ ∫     [E8] 

 

Furthermore, since 0s
x

NJ
q x

α∂∂ ⎛ ⎞ =⎜ ⎟∂ ∂⎝ ⎠
 and 0s

y
NJ

q y
α⎛ ⎞∂∂

=⎜ ⎟∂ ∂⎝ ⎠
 the component, 

scR
q
α∂

∂
 reduces 

into 

 

                                         
s sc s

yx JR J N N dA
q q x q y
α α α

⎛ ⎞∂∂ ∂ ∂ ∂
= − +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

∫                                    [E9]  

 

and using Eqs. [4.5] and [4.6], it can be expanded as 

                        

                 

           

sc s ss s
s sx x

x

s ss s
y ys s

y

R c N N Ncz F z FD c dA
q q x RT q x RT q x

c N N Ncz F z FD c dA
q y RT q y RT q y

α α α α

α α α

φφ

φ
φ

∂ ∂ ∂ ∂ ∂ ∂∂
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∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂ ∂∂
+ +

∂ ∂ ∂ ∂ ∂ ∂

∫

∫
                 [E10] 
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Using Eqs. [B1], [E2], [E7], and [E10], the tangential matrix in terms of a quadratic 

Lagrange interpolation function for a typical element is obtained as follows.  

 

                                

11(3 3) 12(3 3) 18(3 3)

21(3 3) 22(3 3) 28(3 3)
(24 24)

81(3 3) 82(3 3) 88(3 3)

....

....
: : : :

....

M M M
M M M

M

M M M

× × ×

× × ×
×

× × ×

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                           [E11] 

 
 

where a submatrix is follows.  
 

( )

( )
( )
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(3 3)
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⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
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⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 

 
where , 1..8α β =  
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