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ABSTRACT

A Comparison of Genetic Variation between Black-crowned Night Heron (Nycticorax 

nycticorax) Populations From Contaminated and Reference Sites.

(December  2005)

Danielle Summer Bernard, B.S., Long Island University

Chair of Advisory Committee:  Dr. Keith A. Arnold

I examined genetic variation for two populations of Black-crowned Night Herons 

using a 467 base pair region of the mitochondrial DNA.  One population inhabits an 

environment highly impacted by industrial waste, heavy metals, and urbanization; while 

the other, a reference population, comes from a contaminant-free area.  I observed a total 

of 10 haplotypes, three of which the two populations share.  One individual from the 

contaminated site was ostensibly heteroplasmic.  I found no evidence of significant 

genetic differentiation between the two populations.  Coalescent simulation results 

provided evidence that both populations have undergone or are currently undergoing 

population expansion.  The results of the biological marker I developed showed a high 

diversity for the ND-6 gene, making it a useful biomarker of population effects.
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INTRODUCTION

Black-crowned Night Herons (BCNH) Nycticorax nycticorax, a nocturnal species, 

inhabit wetland areas throughout most of the contiguous United States (Golden et al. 

2003).  BCNH have long been considered useful biological indicators of the effects of 

environmental contamination (Custer et al. 1994).  Reasons for studying this species 

include their ability to bioaccumulate toxins because they feed high on the food chain, 

their generalized feeding habits, their colonial nesting habits, and their broad geographic 

distribution and migration patterns (Custer et al. 1991, 1994; Erwin et al. 1991; Rattner et 

al. 1993).  

Despite the ability of these birds to bioaccumulate contaminants and utility as a 

sentinel species, little is known of their population genetics.  A previous study of BCNH 

investigated the Cytochrome b (Cyt b) gene of the mitochondrial DNA (mtDNA; Dahl et 

al. 2001).  Reasons for investigating mtDNA include 1) strict maternal inheritance of the 

marker; and 2) the mitochondria often are the target affected by contamination. Utilizing 

mtDNA as a marker, studies comparing contaminated and noncontaminated populations 

have demonstrated decreased genetic diversity at contaminated sites, increased mutation 

rates at contaminated sites, and evidence of ecological sinks (Bickham et al. 2000).  

However, the only previous investigation of BCNH failed to reveal sufficient genetic 

variability to adequately test for genetic effects (Dahl et al. 2001).

In order to detect the potential genetic effects of contaminant exposure, I 

sequenced mtDNA for 58 BCNH from one reference (Chincoteague Wildlife Refuge, 

This thesis follows the style and format of Ecotoxicolgy.
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Virginia) and one contaminate (Calumet Lake, Illinois) site and subjected the results to 

statistical analyses.  The statistical tests detect departures from a neutral model and help 

to explain the differences that might be observed between the two populations (Fu 1997; 

Okello et al. 2005).  Genetic hitchhiking, bottleneck effects, population growth, and 

background selection can cause departures from neutrality of mutations.  Fu and Li’s D* 

and F* tests test against background selection; while TAJIMA’s D and FS test for 

population growth (Fu 1997).  

The first objective of this study was to investigate genetic diversity in a more 

variable region of the mtDNA than was used by Dahl et al. (2001), who sequenced a 215 

base pair region within the Cyt b gene.  The region of interest, subunit 6 of NADH 

Dehydrogenase (ND-6), is about 600 base pairs in length.  The second objective was to 

use this region as a biomarker to determine if contaminant exposure affected population 

genetic patterns.
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MATERIALS AND METHODS

In this study, I used BCNH populations from Chincoteague Wildlife Refuge, 

Virginia (N = 31) and Calumet Lake, Illinois (N = 27) (Figure 1) for comparison (see 

Table 1 for amino acid differences, and Appendix I for complete list of samples). Blood 

and tissue samples from 10-day-old chicks (Dahl et al. 2001), which had been stored at    

-80ºC, were used for analyses.  Custer et al. (1994) explained the collection procedures.  

DNA extraction was done using a standard PCI protocol and then quantified by 

gel electrophoresis on a 0.8% agarose gel and visualized using Eagle Eye II. I then 

amplified the extracted genomic DNA by using 5µL Nycticorax ND6R and 5µL 

Nycticorax Cytochrome b DNF primers in a Polymerase Chain Reaction (PCR) method.  

The extracted genomic tissue and blood samples each required 5µL dNTP, 5µL buffer, 

and 0.3µL Taq polymerase.  One microliter of extracted tissue DNA was used, along with 

30µL distilled water; while various amounts of extracted blood DNA were used, along 

with an adjusted water amount (for exact amounts, see Appendix II), and Mg2/BSA.  

PCR conditions were as follows:  35 cycles of 95ºC for 15 seconds, 50ºC for 10 seconds, 

and 72ºC for 1 minute using a GeneAmp PCR System 2700 (Tarr 1995). The resulting 

product was quantified using gel electrophoresis on a 0.8% agarose gel and visualized 

using Eagle Eye II. After amplification using 3µL of Nyc. Cyt b DNF; PCR products 

were cut from the gel and cleaned using the QIAquick PCR Purification Kit Protocol.  

Blood samples, however, were cleaned using the same purification protocol but were not 

band cut.  Amplification of blood samples utilized 3µL of the primer Nyc. Proline tRNA 

Forward.  Each sequence was aligned visually, compared and assigned a unique 

haplotype if differences were observed (Dahl et al. 2001).  All unique sequences were 
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deposited in GenBank.  A minimum spanning network showing the relative frequencies 

of haplotypes in the entire dataset, as well as the evolutionary relationships of haplotypes, 

was constructed using PAUP* v4.0b10 (see Figure 2) (Swofford, 2002).

Figure 1.  Map illustrating the two study sites for sampling Nycticorax nycticorax populations.
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Table 1.  Variable positions, substitutions and resulting amino acid shifts for the ND6  gene in  
Black-crowned Night Herons. The variable positions are relative to the crow ND6 sequence in 
GenBank

Number Position Substitution Codon 

Position

Amino Acid

1 114 A → G 3rd Val

2 144 T→ C 3rd Ala

3 187 T→ C 1st Leu

4 200 C→ T 2nd Ala → Val

5 201 T→ C 3rd Ala

6 216 C→ T 3rd Ser

7 220 C→ T 1st Pro → Ser

8 275 C→ T 2nd Ser → Leu

9 307 C→ T 1st Leu → Phe (heteroplasmic)

10 138 A → G 3rd Pro

11 36 T→ C 3rd Ser

I analyzed sequence data for both populations with DnaSP 3.5 and ARLEQUINN 

ver. 2.000 programs.  Calculations of haplotype (h), Fu and Li’s D*, Fu and Li’s F*, 

TAJIMA’s D, and FS values were used to detect genetic differentiation using the 

coalescent simulations produced by DnaSP 3.5 (Hahn et al. 2002).  I used Analysis of 

Molecular Variance (AMOVA) produced by ARLEQUINN, to test for significant 

population subdivision.  
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Figure 2.  A minimum spanning network of relative haplotype frequencies of all BCNH sampled.



7

RESULTS

I obtained the nucleotide sequence from a 467 bp segment including 32 bases of 

the tRNAPro, 11 bases of an intergenic spacer, and 423 bases of the 3’ end of the ND-6 

gene from each of the 58 specimens studied.  Eleven variable positions defined 10 

haplotypes (Table 1).  All of the variable positions were in the ND6 gene.  The 11 

changes included nucleotide substitutions at three 1st codon positions, two at 2nd codon 

positions, and six at 3rd codon positions, and they coded for four amino acid 

replacements.  The two populations shared three of the 10 haplotypes (Table 2).  This 

included a single common haplotype (haplotype 1); the other nine haplotypes were 

present in low frequencies (N = 1-3 per population).  Chincoteague had four private 

haplotypes, and Calumet had three.  A single haplotype (haplotype 6) from Calumet was 

observed in one heteroplasmic individual.

Table 3 presents the results of one coalescent simulation from combining the two 

sites to act as one population using the DnaSP program.  Coalescence results estimate the 

expected number of haplotypes to be seven, yet 10 haplotypes were observed.  This 

indicates both populations have experienced expansion and there is an excess of unique 

haplotypes.  Coalescent Fu and Li’s F* and TAJIMA’s D values were both significant, 

also indicating population expansion.  Fu and Li’s D* was not significant at the 95% 

confidence level, but it was significant at the 90% level.  Such a borderline significant 

result could indicate that sample size was not sufficient for this test.  

The value of FS, which tests for genetic hitchhiking and population growth, was 

significant and negative, implying population growth (Fu 1997) and not genetic 

hitchhiking or background selection (Okello et al. 2005).  A significant and positive 
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result in this test would have indicated the population was evolving in a non-neutral 

pattern and acted upon by background selection (Fu 1997).

Analysis of molecular variance across all loci did not show significance (Table 4); 

yet the locus-by-locus AMOVA was significant (Table 5).  This indicates an absence of 

population subdivision.

Although, AMOVA indicated that there was no population subdivision, 

coalescent simulations for each site were also run.  Results of these simulations did not 

show significance for any neutrality test (Table 6), unlike the combined data simulations.  

Reasons for this difference could be due to insufficient sample size.  

Table 2.  Haplotype relative frequency distribution among the samples
Haplotype Chincoteague (n=31) Calumet (n=27)

Hap 1 0.71 0.778

Hap 2 0 0.037

Hap 3 0.0968 0.0741

Hap 4 0.0323 0.037

Hap 5 0 0.037

Hap 6 0 0.037

Hap 7 0.0323 0

Hap 8 0.0323 0

Hap 9 0.0645 0

Hap 10 0.0323 0
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Table 3.  Results of the coalescent simulations based upon 1000 replicates, no recombination, 
and value of Theta=0.7308

Fu and Li’s D* Fu and Li’s F* FS TAJIMA’s D h Hd

Obs. Value -2.1300 -2.4517 -6.9764 -1.9652 10 0.4465

CI Lower 0.02348 -2.38164 -3.62380 -1.47828 1 0

CI Higher 0.75525 1.56806 4.76400 2.02191 7 0.76165

Table 4.  Analysis of molecular variance as a combined population across 11 loci
Source of Variation d.f. Sum of Squares Variance Components
Among populations 1 0.357 -0.00353
Within populations 56 25.691 0.45877
Total 57 26.048 0.45524
Fixation Index FST:  -0.00776

Table 5.  Locus-by-locus analysis of molecular variance across 11 loci
Source of Variation d.f. Sum of Squares Variance Components
Among populations 1 0.254 -0.00392
Within populations 56 20.573 0.36738
Total 57 20.828 0.36346
Fixation Index FST:  -0.01080

Table 6.  Results of the coalescent simulations for each site based upon 1000 replicates and no 
recombination
Site Fu and Li’s D* Fu and Li’s F* FS T A J I M A ’ s  D

Chincoteague -1.87296 -2.16101 -3.483 -1.79750
Calumet -1.04646 -1.44285 -3.175 -1.70783



10

DISCUSSION AND CONCLUSIONS

Wildlife populations exposed to genotoxic contaminants have an increased risk of 

induced mutations that can increase variability, as well as bottleneck effects that can 

result in the reduction of genetic variability (Dahl et al. 2001).  Whereas increased 

mutation rates could lead to potential catastrophic population crashes due to mutational 

meltdown (Lynch et al. 1995), a bottleneck can lead to the reduction of genetic diversity, 

and decrease a population’s overall fitness from increased levels of inbreeding (Saillant et 

al. 2004).

In comparison to Dahl et al. (2001), this study revealed relatively high levels of 

genetic variation in BCNH.  However, results indicated no significant genetic 

differentiation between the two populations. This could be the result of demographics, 

such as their ability to disperse, or to historical factors.  The Chincoteague population and 

the Calumet population are over 1500 miles distant and they are located in separate 

migratory flyways.  They occupy very distinct environments:  Chincoteague has 

remained pristine and relatively unaffected by industrial activities; while Calumet Lake 

has been impacted by industrial waste, heavy metals, and urbanization.  It is not known to 

what extent BCNH populations might adapt to local environmental conditions.  Gene 

flow could alter the genetic diversity of local populations and prevent significant genetic 

differentiation.  If local populations receive numerous immigrants, it could have 

resounding effects on gene diversity in either a positive or negative way, depending on 

the source populations (Matson et al. 2000).  Due to the limited population sampling in 

this study, it is impossible to say if the lack of subdivision and high diversity levels 

indicate any effects of contaminant exposure.  The observation of a single heteroplasmic 
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individual and slightly higher number of haplotypes at Calumet suggest such effects, but 

this will require examination of larger sample sizes and more populations to confirm.  

This study examined 10-day-old chicks whose exposure levels should reflect that 

of their local environment (Custer et al. 1994).  No convincing evidence of an increased 

mutation rate was observed in this study or in that of Dahl et al. (2001), notwithstanding 

the fact that the Calumet population was chosen for analysis based upon considerable 

evidence of biomarker effects and contaminant exposure.   The relationship between 

exposure, somatic effects, and induced heritable mutations is difficult to establish.  

Nonetheless, several recent studies convincingly show induced mutations in both natural 

wildlife populations (Yauk and Quinn 1996; Yauk et al. 2000; Matson et al. 2004) and 

laboratory mice exposed in situ to contaminants (Somers et al. 2002).

The coalescent simulation results indicate that a significantly increased number of 

haplotypes could be due to population growth.  Fu and Li’s F* and TAJIMA’s D were 

marginally significant which also supports a scenario of population expansion.  And, 

finally, Fs were significant and negative indicating population growth.  These analyses 

present a consistent picture of the demography, which will be useful in future genetic 

studies of this important sentinel species.  This historical population expansion has 

resulted in a pattern with a single predominant haplotype (haplotype 1), and a large 

number of low frequency haplotypes.  Since bottlenecks can effectively eliminate rare 

alleles, BCNH populations should be sensitive indicators of avian population declines 

resulting from contaminant exposure or other anthropogenic changes in the environment.  

The main objective of this study was to develop a biological marker in 

mitochondrial DNA for use as an indicator for contamination assessment.  The results, 
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which show high diversity for the ND6 gene of the mtDNA, succeeded in this endeavor.  

Although, mtDNA is hypothesized to reveal increased mutations when exposed to 

genotoxic contaminants, this is not always the case, as was seen in this study and that of 

Johnson et al. (1999).  The results of her research showed similar results of no significant 

genetic diversity among Wood Duck (Aix spopnsa) populations.  Nonetheless, levels of 

diversity for ND6 are high enough in BCNH to serve as a useful biomarker of population 

effects.
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APPENDIX I

Black-crowned Night Heron Sample Collection
Sample # Specimen # Locality Haplotype Collection Year

1 IL02-B Calumet Lake 1 2002
3 IL05-B Calumet Lake 1 2002
4 IL06-B Calumet Lake 1 2002
5 IL07-B Calumet Lake 1 2002
6 IL08-B Calumet Lake 6 2002
7 IL09-B Calumet Lake 1 2002
8 IL11-B Calumet Lake 1 2002
9 IL12-B Calumet Lake 1 2002
10 IL13-B Calumet Lake 1 2002
11 IL14-B Calumet Lake 3 2002
12 IL15-B Calumet Lake 1 2002
13 IL16-B Calumet Lake 3 2002
14 IL17-B Calumet Lake 1 2002
16 VA62-B Chincoteague 1 2002
17 VA63-B Chincoteague 1 2002
18 VA64-B Chincoteague 1 2002
19 VA65-B Chincoteague 1 2002
20 VA66-B Chincoteague 4 2002
21 VA67-B Chincoteague 1 2002
22 VA68-B Chincoteague 1 2002
23 VA69-B Chincoteague 1 2002
24 VA70-B Chincoteague 1 2002
25 VA72-B Chincoteague 1 2002
26 VA73-B Chincoteague 3 2002
27 VA74-B Chincoteague 1 2002
28 VA75-B Chincoteague 1 2002
29 VA77-B Chincoteague 10 2002
30 VA79-B Chincoteague 8 2002
31 VA80-B Chincoteague 1 2002
32 91CBP1 Chincoteague 1 1991
33 91CBP5 Chincoteague 1 1991
34 91CBP6 Chincoteague 1 1991
35 91CBP8 Chincoteague 1 1991
83 91CBP10 Chincoteague 1 1991
85 91CBP13 Chincoteague 1 1991
86 91CBP15 Chincoteague 1 1991
36 91CBP17 Chincoteague 9 1991
37 91CBP20 Chincoteague 1 1991
38 91CBP21 Chincoteague 7 1991
39 91CBP25 Chincoteague 1 1991
40 91CBP26 Chincoteague 1 1991
82 91CBP27 Chincoteague 1 1991
41 91CBP28 Chincoteague 9 1991
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Sample # Specimen # Locality Haplotype Collection Year

42 91CBP31 Chincoteague 1 1991
44 91CBP33 Chincoteague 1 1991
45 91CBP36 Chincoteague 3 1991
46 91CBP42 Chincoteague 1 1991
47 91CBP43 Chincoteague 3 1991
49 BC03EBC Calumet Lake 1 1993
52 BC06EBC Calumet Lake 4 1993
53 BC07EBC Calumet Lake 1 1993
54 BC08EBC Calumet Lake 1 1993
55 BC09EBC Calumet Lake 1 1993
56 BC10EBC Calumet Lake 1 1993
60 BC15EBC Calumet Lake 5 1993
61 BC17EBC Calumet Lake 1 1993
62 BC18EBC Calumet Lake 2 1993
63 BC20EBC Calumet Lake 1 1993
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APPENDIX II

Specific Blood Sample Amounts and Distilled Water Used During PCR
Sample # µL DNA µL Water

1 12 0

2 12 0

3 12 0

4 12 0

6 12 0

8 12 0

9 8 4

10 12 0

11 12 0

12 12 0

13 6 6

14 6 6

15 8 4

16 8 4

17 8 4

18 12 0

19 12 0

20 8 4

21 12 0

22 8 4

23 8 4

24 12 0
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Sample # µL DNA µL Water

25 12 0

26 4 8

27 8 4

28 12 0

29 8 4

30 12 0

31 8 4

35 4 8

47 3 9

48 12 0

50 12 0

52 12 0

53 4 8

54 6 6

55 4 8

56 3 9

57 12 0

58 12 0

59 12 0

60 6 6

61 12 0

62 12 0

63 3 9
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