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ABSTRACT 

 

Numerical Model for Steel Catenary Riser 

on Seafloor Support. (December 2005) 

Jung Hwan You, B.S., Yeungnam University 

Chair of Advisory Committee: Dr. Charles Aubeny 

 

Realistic predictions of service life of steel catenary risers (SCR) require an 

accurate characterization of seafloor stiffness in the region where the riser contacts the 

seafloor, the so-called touchdown zone. This thesis presents the initial stage of 

development of a simplified seafloor support model. This model simulates the seafloor-

pipe interaction as a flexible pipe supported on a bed of springs. Constants for the soil 

springs were derived from finite element studies performed in a separate, parallel 

investigation. These supports are comprised of elasto-plastic springs with spring 

constants being a function of soil stiffness and strength, and the geometry of the trench 

within the touchdown zone. 

Deflections and bending stresses in the pipe are computed based on a finite 

element method and a finite difference formulation developed in this research project. 

The finite difference algorithm has capabilities for analyzing linear springs, non-linear 

springs, and springs having a tension cut-off. The latter feature simulates the effect of a 

pipe pulling out of contact with the soil. 

The model is used to perform parametric studies to assess the effects of soil 
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stiffness, soil strength, trench geometry, amplitude of pipe displacements, pipe stiffness, 

and length of touchdown zone on pipe deflections and bending stresses. 

In conclusions, the seafloor stiffness (as characterized by the three spring 

parameters), the magnitude of pipe displacement, and the length of the touchdown zone 

all influence bending stresses in the pipe. Also, the tension cutoff effect, i.e., the pipe 

pulling away from the soil, can have a very large effect on bending stresses in the pipe. 

Neglecting this effect can lead to serious over-estimate of stress levels and excessive 

conservatism in design. 
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CHAPTER I 

INTRODUCTION 

 

1.1 GENERAL 

Many systems have been developed in recent to exploit hydrocarbon resources in 

deep waters throughout the world. Lately, compliant systems composed of large floating 

structures tethered to the seafloor by mooring lines are selected rather than conventional 

gravity systems. The need for development of new designs for riser pipes transmitting 

petroleum product has been created by the appearance of these new systems. The steel 

catenary riser (SCR) is proving to commonly be the system of choice to meet this need. 

The advantage of this concept is that it allows reduced cost because the pipeline is 

extended to the vessel using standard grade steel. Additionally, the riser can be installed 

using the same lay vessel as the pipeline, saving a dedicated mobilization. 

One of the major issues with SCR’s is fatigue, which is strongly influenced by 

soil conditions in the touchdown zone (TDZ), the zone at which the catenary riser makes 

contact with the seabed. A potential fatigue failure is directly related to maximum 

bending stress and moment in the SCR, which depends on the stiffness and damping of 

the seafloor and the motions of the SCR. For example, an SCR on a soft seafloor will 

have reduced bending stresses when a load is applied, while the one on a rigid seafloor 

will have more critical bending stresses.  

This thesis follows the style of The Journal of Geotechnical and Geoenvironmental 
Engineering. 
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1.1.1 Steel Catenary Riser (SCR) 

The essential steel catenary concept is simple. A free hanging simple catenary 

riser is connected to a floating production vessel and the riser hangs at a prescribed top 

angle. It is free-hanging and smoothly extends down to the seabed at the touchdown 

point (TDP). At the TDP, the SCR buries itself in a trench and then gradually rises to the 

surface where it is effectively a static pipeline. SCR may be described as consisting of 

three sections as shown in Figure 1.1, below: 

 
• Catenary zone, where the riser hangs in a catenary section 

• Buried zone, where the riser is within a trench 

• Surface zone, where the riser rests on the seabed 

 

 

 
Figure 1. 1 General Catenary Arrangement (Bridge et al., 2003) 
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1.1.2 Touchdown Point (TDP) 

The seabeds of deepwater oil and gas fields often consist of soft clay. In the 

buried zone beyond the TDP, deep trenches cut into the seabed. The mechanisms of 

trench formation are not well understood because the response of the riser at the seabed 

TDP and the interaction with the seabed is complex. However, it is thought that the 

dynamic motions of the riser, including scour, sediment transport, and seabed currents 

produce the trench. Also, storm and current action can pull the riser upwards from its 

trench, or laterally against the trench wall. Once a trench is formed there is a possibility 

that the trench may back-fill the trench and, over time, consolidate. Subsequent extreme 

vessel offsets may then result in higher stresses than those calculated on a rigid seabed, 

since the pipe must be sheared out of the soil and high suction forces must be overcome. 

This can concentrate curvature in the riser immediately above the TDP causing higher 

stresses, resulting in possible overstressing and a higher fatigue damage rate. 

 

1.2 OBJECTIVE OF WORK 

More detailed analysis of risers can be conducted using non-linear finite element 

analysis programs. Most riser analysis codes use either rigid or linear elastic contact 

surfaces to simulate the seabed, which model vertical soil resistance to pipe penetration, 

horizontal friction resistance and axial friction resistance (Bridge et al., 2003). Until 

recently most analysis was conducted assuming the seabed is rigid or that it exhibits a 

linear stiffness. A rigid surface generally gives a conservative result since it is 

unyielding, while the linear elastic surface is a better approximation of a seabed.  
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This thesis concentrates on conducting numerical studies to understand basic 

interaction mechanisms and on developing a simplified model for a seafloor interaction 

with steel catenary risers within the touchdown zone. The response of the seafloor to 

SCR movements will be studied to formulate a proper boundary condition at the seafloor 

touchdown zone for structural analysis of a riser subjected to vertical loading 

representing the vessel motion and seabed current. The relative importance of various 

seafloor and loading conditions on bending stresses of the riser pipe resting on nonlinear 

spring supports will also be investigated. This research concentrates on only vertical 

motions of riser pipe, although axial and lateral motions may have to be considered in 

the future. 

 

1.3 THESIS CONTENTS 

A brief description of the organization of the chapters that form this thesis 

follows:  

Chapter II provides a summary of previous work reviewed for this investigation 

in the area of the steel catenary riser and basic concepts of the analysis such as the finite 

difference method. 

Chapter III presents a finite element (FE) model and a finite difference (FD) 

model of SCR behavior for variable conditions of seafloor support and riser pipe 

properties.  

Chapter IV presents parametric studies using developed FE model and FD 

model with nonlinear soil spring. The parametric studies include load-deformation (P-δ) 
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curve characteristics, effect of soil and riser pipe stiffness, and amplitude of steel 

catenary riser motions. 

Finally, Chapter V presents summary, conclusions, and recommendations for 

future research. 

 



 6

CHAPTER II 

BACKGROUND 

 

2.1 LITERATURE REVIEW 

A number of studies have been directed toward understanding the mechanism of 

steel catenary riser behavior. The first, the full-scale test to research the effects of fluid, 

riser and soil interaction on catenary riser and stresses in riser pipe at the touch down 

point (TDP) was conducted over 3 months at Watchet Harbor in the west of England by 

the STRIDE Ⅲ JIP, 2H Offshore Engineering Ltd in 2000 (Willis and West, 2001). The 

purpose of the full-scale test was to estimate the significance of fluid, riser and soil 

interaction and to develop finite element analysis techniques to predict the measured 

response. 

A 110m (360ft) long 0.1683m (6-5/8inch) diameter riser pipe was used for this 

experiment. The riser was connected with an actuator on the harbor wall to an anchor 

point on the seabed. A programmable logic controller (PLC) to simulate the vessel drift 

and the wave motions of a platform in 1000m (3,300ft) water depth was used to actuate 

the top of the pipe string. Tensions and bending moments were monitored by installing 

strain gauges along the pipe length.  

The seabed is made up of soft clay with an undrained shear strength of 3 to 5 

kPa, a sensitivity of 3, a plasticity index of 39% and a normally consolidated shear 

strength gradient below the mud layer. Table 2.1 shows the geotechnical parameters for 

seabed soil in detail. 
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Table 2. 1 Geotechnical Parameters of Clay Soil at Watchet Harbor (Bridge and Willis, 
2002) 

 
 

Bridge et al. (2003) reviewed the results of full-scale riser test by 2H Offshore 

Engineering Ltd. The authors concluded that the soil suction force, repeated loading, pull 

up velocity and the length of the consolidation time can affect the fluid, riser and soil 

interaction from the test data. Also it stated the possible causes for mechanisms for the 

trench creation as follows:  

 

 The up and down motions of the pipe driven by actuator can form the trench. 

Also, water rushing out form beneath the riser can scour out a trench. 

 Scouring and washing away of the sediment around the riser may be caused by 

the flow of the tides. 
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 The vortex induced vibration (VIV) motions which was observed when the tide 

came in or went out can result in the flow of the seawater across the riser. The 

high frequency motion would act such as a saw, slowly cutting into the seabed. 

 The buoyancy force causes the riser to lift away from the seabed when the test 

riser is submerged. Any loose sediment in the trench or attached to the riser 

would be washed away. 

 

Bridge and Willis (2002) conducted the analytical modeling to calibrate the soil 

suction model of 2H Offshore Engineering Ltd. The upper bound curve (Fig. 2.1) based 

on the STRIDE 2D pipe and soil interaction analysis (Wills and West, 2001) was 

employed as the soil suction curve in the analytical modeling. They stated that the soil 

suction curve consists of three parts which are suction mobilization, the suction plateau 

and suction release like Figure 2.1.  

 
Figure 2. 1 Soil Suction Model (Bridge and Willis, 2002) 
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In addition, the each test measurement from a strain gauge location was 

compared to that of a similar point on the analytical model. Computed bending moments 

were bracketed by analytical predictions for with suction and no suction. The results of 

comparison showed good agreement as illustrated Figure 2.2. Further, they compared 

pull up and lay down response owing to the difference in bending moment between two 

response occurred by soil suction. The results of these comparisons are as follows: 

 

 A sudden vertical displacement of a catenary riser at its touchdown point 

(TDP) after a period at rest could cause a peak in the bending stress. 

 Soil suction forces are subject to hysteresis effects. 

 The soil suction force is related to the consolidation time. 

 Pull up velocity does not strongly correlate with the bending moment 

response on a remolded seabed. 

 Soil suction can cause effects such as a suction kick. 
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Figure 2. 2 Comparison of Test Data and Analytical Bending Moment Envelope (Bridge 
and Willis, 2002) 
 
 
 

Thethi and Moros (2001) considered three aspects of soil-catenary riser 

interaction; the effect of riser motions on the seabed associated the vertical movement of 

the riser, the effect of water on the seabed related to pumping action, and the effect of the 

seabed on the riser related to vertical, lateral and axial soil resistance. Because of the 

complexity of the problem, Thethi and Moros recommend that trench depth and width 

profiles were selected in the riser analysis based on the deepest trenches and 

conservative soil strength assumptions.  

Usually, riser-soil response curves can be described in terms of a soil spring. 

However, representing the soil response at a riser element by time-independent soil 

support spring is not possible due to time varying behavior related to the repeated 
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loading and plastic deformation of soils. Instead, the shape of the spring may change 

with time from a virgin curve of soil response to a degraded response. In addition, a riser 

element can have no contact over a large displacement range until the displacement 

becomes greater than previously experienced at which point the element may suddenly 

regain to contact with the virgin response curve. Riser and soil response curves may be 

considered as a load path bounded by the backbone curve. The concept is illustrated in 

Figure 2.3. The characteristics of this riser-seabed load deflection curve depend on the 

burial depth as well as the soil and riser properties.  

 

Possible load-displacement paths 
for successive load reversals 

Backbone curves for initial displacements into virgin soil

Initial load-displacement path 
along backbone curve 

Unit Resistance (kN/m) 

Displacement (m) 

 

Figure 2. 3 Concept of Backbone & Load-Deformation Curves (Thethi and Moros, 
2001) 
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Bridge et al. (2004) developed advanced models using published data and data 

from the pipe and soil interaction experiments conducted within the STRIDE and 

CARISIMA JIP’s. They describe an example of the development of a pipe and soil 

interaction curve with an unloading and reloading cycle, as presented in Figure 2.4 and 

the mechanism of pipe and soil interaction such as following steps:  

 

(1) The pipe is initially in contact with a virgin soil.  

(2) The pipe penetrates into the soil, plastically deforming it. The pipe and soil 

interaction curve tracks on the backbone curve. 

(3) The pipe moves up and the soil acts elastically. The pipe and soil interaction 

curve move apart from the backbone curve, the force decreases over a small 

displacement.  

(4) The pipe resumes penetrating the soil, deforming it elastically. The pipe and soil 

interaction curve follows an elastic loading curve.  

(5) The pipe keeps going to penetrate into the soil, plastically deforming it. The pipe 

and soil interaction curve meets again with the backbone curve and tracks it. 
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Figure 2. 4 Illustration of Pipe/Soil Interaction (Bridge et al., 2004) 
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In addition, they updated the force and displacement curve and consider the soil 

suction effect, as shown in Figure 2.5 and described below. 

  
(1) Penetration – the pipe penetrates into the soil to a depth where the soil force 

equals the penetration force.  

(2) Unloading – the penetration force reduces to zero allowing the soil to swell. 

(3) Soil suction – as the pipe continues to elevate the adhesion between the soil and 

the pipe causes a tensile force resisting the pipe motion. The adhesion force 

quickly increases to a maximum then decreases to zero as the pipe pulls out of 

the trench. 

(4) Re-penetration – the re-penetration force and displacement curve has zero force 

when the pipe enters the trench again, only increasing the interaction force when 

the pipe re-contacts the soil. The pipe and soil interaction force then increases 

until it rejoins the backbone curve at a lower depth than the previous penetration.  

 

 

 
Figure 2. 5 Re-penetration Pipe/Soil Interaction Curves (Bridge et al., 2004) 
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C.P. Pesce, J.A.P. Aranha and C.A. Martins (1998) researched soil rigidity effect 

in the touch down boundary layer of riser on static problem. Their work developed 

previous analysis performed on the catenary riser TDP static boundary-layer problem by 

considering a linearly elastic soil. A non-dimensional soil rigidity parameter was defined 

as follows: 

4 2

2
0 0

k k kEK
EI T T
λ λ

= = =
I                                          (2.1) 

Where = the rigidity per unit area. k

EI = the bending stiffness. 

0T = the static tension at TDP 

λ = the flexural-length parameter representing the TDP boundary later length scale. 

 
A typical oscillatory behavior for the elasticity on the supported part of the pipe line was 

showed by the constructed solution. Also, it indicated how this behavior matched 

smoothly the catenary solution along the suspended part, removing the discontinuity in 

the shear effort, attained in the infinitely rigid soil case. In that previous case, the 

flexural length parameter 0/EI Tλ =  had been shown to be a measure for the position 

of the actual TDP, with regard to the ideal cable configuration.  

Unlike the previous case, in the linearly elastic soil problem, the parameter λ  

has been shown to measure the displacement of the point of horizontal tangency about 

corresponding TDP attained in the ideal cable solution, in rigid soil. Having K as 

parameter some non-dimensional diagrams have been presented, showing, for K≥10, the 
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local elastic line, the horizontal angle, the shear effort, and the curvature, as functions of 

the local non-dimensional arc-length parameter /sε λ= . Also, another non-dimensional 

curve was presented, enabling the determination of the actual TDP position as a function 

of soil rigidity K. 

 

2.2 FINITE DIFFERENCE METHOD 

 

 

Figure 2. 6 Beam Resting on an Elastic Foundation 
 

 
Assume a beam with bending stiffness EI rests on a foundation of elastic springs 

of stiffness k (Fig 2.6). The applied load is a concentrated load P acting on a location 

from the left end of the beam. Using standard method (Boresi and Schmidt, 2003) for 

calculating beam deflections: 

 
dV

q
dx

= −                                                  (2.2) 

dM
V

dx
= −                                                 (2.3) 

2

2

d
M EI

dx
y

=                                               (2.4) 
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2 2

2 2 ( )d d yEI q x
dx dx

⎛ ⎞
=⎜ ⎟

⎝ ⎠
                                       (2.5) 

where  is the intensity of applied load and/or soil reaction,  is the internal shear 

force, 

q V

M  is the internal moment,  is the modulus of elasticity of pipe, E I  is the 

second moment of area of pipe,  is the deflection of the beam, and  is the uniform 

size of elements into which the beam is subdivided. 

y dx

For beams on elastic foundation and laterally loaded piles, the load intensity  is a 

function of lateral deflection y. For linear springs, 

( )q x

( )q x ky= −                                              (2.6) 

where k is the spring constant of soil reaction which have a force per unit area. Also, 

each order differential equation can be expressed as follows: 

1 1 ~
2( )

i i i i 1y y y ydy
dx dx dx

+ − −− −
=                                              (2.7) 

2
1 1 1

2

21 i i i i i i iy y y y y y yd y
dx dx dx dx dx

+ − +− − − +⎡ ⎤= − =⎢ ⎥⎣ ⎦
1

2
−                            (2.8) 

3
2 1 1 1 2 1

3 2 2 3

2 2 3 31 i i i i i i i i i 1iy y y y y y y y y yd y
dx dx dx dx dx

+ + + − + +− + − + − + −⎡ ⎤= − =⎢ ⎥⎣ ⎦
−           (2.9) 

4
2 1 1 1 1 2 2 1 1

4 3 3 4

3 3 3 3 4 6 41 i i i i i i i i i i i i i 2y y y y y y y y y y y y yd y
dx dx dx dx dx

+ + − + − − + + −− + − − + − − + − +⎡ ⎤= − =⎢ ⎥⎣ ⎦
−   (2.10) 

 
Finally, a finite difference form for a beam on elastic foundation (Desai and Christion, 

1977) can be written 

2 1 1 2
4

4 6 4i i i i i
i

y y y y yEI ky
dx

− − + +− + − +⎛ ⎞ = −⎜
⎝ ⎠

⎟                     (2.11) 
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Boundary conditions can be imposed as follows: 

 Fixed displacement: i imposey u d=                                  (2.12) 

       Fixed slope: 1i i
imposed

y ydy u
dx dx

−− ′≈ ≈                               (2.13) 

 Fixed curvature: 
2

1 1
2 2

2i i i
imposed

y y yd y u
dx dx

+ −− + ′′≈ ≈                     (2.14) 

       For the case of a simple support, the displacement, and curvature 

(moment),  are set to zero. For the case of a fixed support, the displacement, 

 and slope,  are set to zero. 

imposedu

imposedu′′

imposedu imposedu′
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CHAPTER III 

NUMERICAL MODELING 

 

3.1  INTRODUCTION 

The actual SCR problem involves a pipe embedding itself into a soil continuum 

as shown in Figure 3.1. Rigorous analysis of this process would involve a full three-

dimensional soil-structure interaction finite element analysis. This would involve 

intensive computational effort that is not justified at this early stage of the research. 

Therefore, an simplified approach is followed in this research.  

The soil-pipe interaction is modeled as a pipe supported on springs as shown in 

Figure 3.2. Stiffness for the springs are obtained from 2D FEM analyses on soil-trench 

systems as illustrated in Figure 3.3, The FEM studies to calculate these spring constants 

are being determined in parallel study, separate from that presented in this thesis. The 

simplified model involves the following variables: 

 

 Pipe properties: diameter of pipe (D), thickness of pipe (t),  

                     modulus of elasticity of pipe (Ep) 

 Soil properties: undrained shear strength of soil (Su), modulus of soil (Es) 

 Geometry parameter: length of touch down zone (L), 

                     pipe embedment (H), width of trench (W) 

 Riser motion parameter: amplitude of riser movement (u) 
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Figure 3. 1 Conceptual Sketch of Touchdown Zone 
 

 

 

 

Figure 3. 2 Simplified Spring Support Model 
 

 

 

 
Figure 3. 3 Trench Configuration 
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3.2 FINITE ELEMENT ANALYSIS 

FE analyses of SCR on seafloor support were conducted using the finite element 

code ABAQUS V6.4 (2003). ABAQUS is a versatile program which has used in a lot of 

fields required FE analysis because it can be capable of handling a wide range of 

problems and it shows the considerably reliable results. In addition, this program was 

selected because of easy accessibility on the computers as well as its wide range of 

material and element modeling capabilities. The ABAQUS program requires grouped 

data such as node, element, boundary, material and loading to solve any FEM problem. 

 

3.2.1 ABAQUS Formulation 

Node 

The code block for node defines the coordinates of all nodes in the used mesh 

with respect to a reference coordinate system. The simplified model with linear spring 

constant, k0 is dx lb/in (k0=[k0]norm*Su*dx, [k0]norm is 1psi), which applied a displacement 

of 1in at the left end of the beam and hinged at the right end was simulated with the pipe 

and soil properties; length (L) is 300ft, diameter (D) is 6in, thickness (t) is 0.5in, 

modulus (Ep) of pipe is 30,000ksi, and undrained shear strength (Su) is 1psi as shown 

Figure 3.4. In addition, the number of nodes was increased from 10 nodes to 300 nodes 

to get a convergent maximum bending moment in the pipe riser from the model 

simulations. Figure 3.5 shows the result. 
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Figure 3. 4 The simplified two-dimensional model 
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Figure 3. 5 Effect of Mesh Refinement on the Maximum Bending Stress in Riser Pipe 

 

Element 

A set of elements that act as a structural member are built by connecting the 

defined nodes. Basically, the simplified model consists of two different kinds of 

elements, a pipe element (PIPE21) which is a 2-dimensional, 2-node linear pipe and a 

spring element (SPRING1) which is the spring between a node and ground acting in a 

fixed direction. Each of the spring elements were connected to the all of pipe nodes 

except the last pipe node affected by boundary condition.  

PIPE21 element is defined as a hollow, thin-walled, circular section beam 
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element obeying the beam theory in ABAQUS and it employs linear interpolation for 

displacements and constant interpolation for slope. Bending moments in this pipe section 

are always calculated about the centroid of the pipe section. The pipe axis is a line 

joining the nodes that define the beam element and it need not pass through the centroid 

of the beam section. Geometric input data such as outside radius (r) and wall thickness 

(t) of pipe is required to describe the pipe section. Figure 3.6 illustrates a pipe section 

which has five integration points by Simpson’s rule. 

The relative displacement across a SPRING1 element (Fig. 3.7) can be 

represented by the ith component of displacement of the spring's node:  

iu uΔ =                                                    (3.1) 

where  is displacement in a vertical direction. The SPRING1 element can be linear or 

nonlinear. Linear spring behavior is defined by specifying constant spring stiffness, force 

per relative displacement (F/L), used as input data. However, when simulating the 

simplified FE model, the soil spring constant (F/L

iu

2) obtained from the normalized load-

deformation curve must be multiplied by the unit length (dx) of the pipe to get units of 

F/L. For nonlinear spring, a sufficiently wide range of force values and relative 

displacement values used as input data are provided in ascending order of relative 

displacement so that the behavior is defined correctly as shown in Figure 3.8.  
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Figure 3. 6 Default Integration of Pipe Section in a Plane. (ABAQUS manual, 2004) 

 

 
Figure 3. 7 SPRING1 Element (ABAQUS manual, 2004) 

 
 

 

Figure 3. 8 Nonlinear Spring Force and Relative Displacement Relationship. (ABAQUS 
manual, 2004) 
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Material 

Material models for all the materials were defined in this code block. Also, the 

elements were associated with corresponding material properties. This model consisted 

of two different kinds of materials, steel riser pipe and soil spring representing soil 

behavior. For steel riser pipe, a linear elastic model was used with an input variable, 

Young’s modulus of pipe. For soil behavior, nonlinear spring that can yield was used 

with non-dimensional load-deformation (P-δ) curves. 

 A set of normalized load-deformation (P-δ) curves developed by Partha 

Sharma (personal communicator). He did a plane strain analysis with Elasto-Perfectly 

Plastic (EPP) model with Von Mises yield criteria to get the curves representing soil 

behavior. In addition, these curves considered some variables to see the effect of the 

trench geometry and ratio of elastic to plastic on the ultimate bearing capacity of the 

riser. The variables are the riser pipe embedment to the diameter of pipe (H/D ranging 

from 0.5 to 4.0), the trench width to the diameter of pipe (W/D ranging from 1.0 to 3.0) 

and the soil modulus to the undrained shear strength (Es/Su).  Es/Su ranging from 100 to 

1500 is employed as elastic parameter to see the effect on the force-displacement curve. 

Also, The Normalized value of 
u

P
S D

, where P is the ultimate load at failure, is used as 

plastic capacity. 

The normalized nonlinear P-δ curves for soil spring were changed into simple 

bi-linear curves to characterize the springs in the simplified model as shown in Figure 

3.9. For various material properties and geometric parameters, initial spring constant, 
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(k0)norm , as well as a maximum load, (Pmax)norm, and a yield deformation, (δy)norm, are 

selected. For normalized loads below a certain (Pmax)norm, the spring is linear and is 

described by a spring constant, (k0)norm. When the (Pmax)norm is reached, the spring 

resistance remains constant at (Pmax)norm  and independent of the magnitude of 

deformation. In addition, the input data used in model can be obtained by the following 

calculation. 

 
max max]  [ ( )norm uFP P S D= ⋅ ⋅ dx⋅

dx⋅

                                   (3.2) 

0 0[ / ]  ( )norm uF Lk k S= ⋅                                       (3.3) 

maxmax

0

[ ]
( )

  norm u
y L

P SP
k

δ
⋅

= =
0( )norm u

D
k S

⋅

⋅
max

0 norm

P D
k

⎛ ⎞
= ⋅⎜ ⎟
⎝ ⎠

                    (3.4) 

    
Figure 3. 9 Capped Normalized P-δ Curve 
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Boundary Conditions 

A prescribed vertical displacement was imposed on the left-hand side, while the 

right-hand side was constrained vertically as shown in figure 3.10. In addition, all of 

spring nodes connected ground are fixed to vertical direction. This boundary condition 

can be formulated as 

    (   0)yu u at x= =

L

             

0    (   )yu at x= =  

 

 

Figure 3. 10 Boundary Conditions of the Model 
 

Loading 

Load application is defined after establishing all the required conditions. In this 

simplified model, all kinds of loading which affect riser pipe are simply divided by two 

types of loading, upward and downward. These loadings are represented as 

displacements in the model, and also it is specified at the left end point in pipe. 
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3.2.2 FEM Results 

 All figures in this section result from FE model simulation with variable 

conditions as following Tables 3.1 and 3.2. 

 

Table 3. 1 Fixed Input Data for Figures in Section 3.2.2 

L Ep E/Su H/D Su knorm (Pmax)norm (δy)norm

(ft) (ksi) (psi) (psi) (lb/in) (in)

300 30,000 100 1.0 1.0 272 6.40 0.0235  
 

 
 

Table 3. 2 Input Data for Figures in Section 3.2.2 

dx (in) 180 18 18 18 18 18 18 18 18 18
D (in) 6 6 6 12 6 6 6 6 6 6
t (in) 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5
u (in) 6 6 6 6 6 6 6 12 6 6

linear linear nonlinear nonlinear nonlinear nonlinear nonlinear nonlinear linear nonlinear
k0 (lb/in) 49015 4902 4902 4902 4902 4902 4902 4902 4902 4902

Pmax (lbs) 6916 692 692 1383 692 692 692 692 692 692
δy (in) 0.141 0.141 0.141 0.282 0.141 0.141 0.141 0.141 0.141 0.141

spring type

Figure No. 3.11 & 3.12 3.13 3.14 3.15 3.16

 
 

 

 

Influence of Nodal Densities 

Figure 3.11 illustrates the effect of mesh refinement. The maximum bending 

stress of fine mesh is higher than the one of coarse mesh for the same displacements. 

Also, fine mesh has the high curvature as showed Figure 3.12. 
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Figure 3. 11 Bending Stress Variation for Nodal Densities 
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Figure 3. 12 Deflection Variation for Nodal Densities 
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Influence of Pipe Properties 

The changes for different pipe properties such as diameter (D) and thickness (t) 

of pipe are showed in Figure 3.13 and 3.14. The more section area of pipe is small, the 

more bending stress in pipe is high as showed. 
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Figure 3. 13 Bending Stress Variation for Diameter of Riser Pipe 
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Figure 3. 14 Bending Stress Variation for Thickness of Riser Pipe 
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Influence of Amplitude of Load 

Figure 3.15 illustrates effect for different sizes of load. The model is made by 

displacement control. Therefore, the displacement represents the load. The larger 

displacement makes higher bending stress. 
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Figure 3. 15 Bending Stress Variation for Amplitude of Load 

 

 

Influence of Spring Type 

Figure 3.16 explains influence of spring type. For a linear spring model, the 

entire load is transmitted to the relative displacement in proportion to spring constant; 

however, nonlinear spring model can not reach the value over the maximum load and 

displacement. Therefore, the nonlinear spring model has lower bending stress. 
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Figure 3. 16 Bending Stress Change for Spring Type 
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3.3  FINITE DIFFERENCE ANALYSIS 

The starting point of FD studies is a one-dimensional finite difference analyses 

of a beam fixed at two ends without spring supports. In this FD simulation, uniformly 

distributed loads are applied along the pipe. The simulated result was compared with the 

analytical solution and the FE result to verify the accuracy of the FD model. Afterwards, 

the FD analyses are conducted in following order: pipe on the linear spring, pipe on the 

nonlinear spring having both compression and tension and pipe on the nonlinear tension 

cut-off spring. 

 

3.3.1 Construction of FD Model 

 

 

Figure 3. 17 Node Numbering in the Pipe when the Number of Element is 200 
 

Assume a riser pipe hinged at the right-hand side and free at the left-hand side having 

200 elements. The node number begins at 0 and the last node number is 200 upon hinged 

support like Figure 3.17. As mentioned in section 2.2, the finite difference equation can 

be following: 

 

[ ]2 1 1 24 4 6 4i i i i i
EI

iy y y y y k
dx − − + +− + − + = − y  
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A fourth-order differential equation requires specification of 4 boundary 

conditions. The first 2 equations are based on assumption of zero bending moment (zero 

curvature) at the supports. This is described in FD form as follows:  

For free end (M=0) :   
2

1 0 12 ( 0) 0       2 0d y x y y
dx −y= = → − + =            (3.5) 

For hinged end (M=0) : 
2

201 200 1992 ( ) 0       2 0d y x L y y y
dx

= = → − + =         (3.6) 

0y  and 200y  in the equation 3.5 and 3.6 are substituted by the other boundary 

conditions ( 0y u=  and ) stated in section 3.2.1. 200 0y =

1 02 1y y y− = −   and  201 200 1992y y y= −                           (3.7) 
 

1y−  and 201y  in the differential equation for each node is replaced by equation 3.7 as 

follows: 

 
At node #1 

[ ]1 0 1 2 34

4

1 2 3

4 6 4

5 4 2

EI
1y y y y y k

dx
dxk y y y u
EI

− − + − + = − ⋅

⎛ ⎞
+ ⋅ ⋅ − + =⎜ ⎟

⎝ ⎠

y
 

At node #2 

[ ]0 1 2 3 44

4

1 2 3

4 6 4

4 6 4

EI
2

4

y y y y y k y
dx

dxy k y y y
EI

− + − + = − ⋅

⎛ ⎞
− + + ⋅ ⋅ − + = −⎜ ⎟

⎝ ⎠
u

 

At node # 3 
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[ ]1 2 3 4 5 34

4

1 2 3 4 5

4 6 4

4 6 4

EI

0

y y y y y k y
dx

dxy y k y y y
EI

− + − + = − ⋅

⎛ ⎞
− + + ⋅ ⋅ − + =⎜ ⎟

⎝ ⎠

 

At node # 198 

[ ]196 197 198 199 200 1984

4

196 197 198 199

4 6 4

4 6 4 0

EI y y y y y k y
dx

dxy y k y y
EI

− + − + = − ⋅

⎛ ⎞
− + + ⋅ ⋅ − =⎜ ⎟

⎝ ⎠

 

At node # 199 

[ ]197 198 199 200 201 1994

4

197 198 199

4 6 4

4 5 0

EI y y y y y k y
dx

dxy y k y
EI

− + − + = − ⋅

⎛ ⎞
− + + ⋅ ⋅ =⎜ ⎟

⎝ ⎠

 

Matrixes are made by these finite difference equations. 

 
4

4

4

4

4

5 4 1 0 ... ... ... ... ... 0

4 6 4 1 0 ... ... ... ... 0

1 4 6 4 1 0 ... ... ... 0

... ... ... ... ... ... ... ... ... ...

0 ... ... ... ... 0 1 4 6 4

0 ... ... ... ... ... 0 1 4 5

dx
k

EI

dx
k

EI

dx
k

EI

dx
k

EI

dx
k

EI

+ ⋅ −

− + ⋅ −

− + ⋅ −

− + ⋅ −

− + ⋅
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0
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y u
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−

=

⎡ ⎤ ⎡ ⎤
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⎢ ⎥ ⎢ ⎥
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This equation of matrixes can be expressed as [ ][ ] [ ]K y p= . The deflection matrix [ ]y  

is calculated by .  [ ] [ ] [ ]1y K p−
=
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Accuracy of FD Model 

 

 

Figure 3. 18 Rectangular Beam Fixed Two Ends 
 

The deflection at center for beam of two fixed ends with the distribution load as shown 

Figure 3.18 is 

4 4

max 7 2 4

(1)(360) 0.0015 ( )
384 384(3 10 12 )(3 /12)

wL ft
EI

δ = = =
× ×

 

Also, the bending moment is 

2 2(1)(360) 10800 ( )
12 12end
wLM lb ft= = = ⋅  

Figure 3.19 and 3.20 are the result from simulating FE Model and FD Model. The 

analytical results agree well with the simulation results of FEA and FDA. 
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Figure 3. 19 Deflection Change along Pipe Length for Figure 3.18 
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Figure 3. 20 Bending Moment Change along Pipe Length for Figure 3.18 
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Using the basic concept for FDM stated above, the basic features of the model with 

nonlinear spring include the following: 

   •  Input variables include E, I, k0 (F/L2), Pmax and δy.  

   •  Construct stiffness matrix of spring using the boundary conditions and differential 

      equation stated earlier. 

    2 1 1 2
4

4 6 4i i i i i
i

y y y y yEI ky
dx

− − + +− + − +⎛ ⎞ = −⎜ ⎟
⎝ ⎠

 

•  Perform the first iteration using the elastic spring constant (k0) to compute 

    deformation (δ). 

   •  Determine equivalent spring constant (k) consistent with the deformation (δ) 

from the first iteration. 

- If the current deformation (δ) is larger than the yield deformation (δy), then 

   update spring constant to secant spring constant (k*=Pmax/δ). Otherwise, if the  

   present deformation (δ) is lower than the yield deformation (δy), use the initial  

   spring constant (k0). 

   •  Iterate the previous step until (δi - δi-1)/δi-1 is lower than 0.01. 

   •  Calculate the moment with the deflection results for each node. 

    1 1
2

2i i iy y yM EI
dx

− +− +⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 

   •  Calculate the bending stress,  

    bending
Mc
I

σ =      

where, c is the distance from the neutral axis to the outer edge of the beam. 
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Figure 3.21 shows the flow chart of FD model with nonlinear soil spring. 

  

Figure 3. 21 Flow Chart of FD Model with Nonlinear Soil Spring 
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3.3.2 FD Model with Linear Spring 

As illustrated in Figure 3.22, soil spring stiffness (k0) is constant and its unit is 

force per square length. Up-load displacement is equal to down-load displacement. 

Because of influence of linear spring, the foundation support force increases without 

limit with increasing relative displacement in proportion to the spring constant. Figure 

3.23 show good agreement between FE and FD result. The input data in Table 3.3 is used 

for all figures in the FD model section. 

 

 

 

Figure 3. 22 P-δ Curve of Linear Spring 
 

 

Table 3. 3 Input Data for Figures in Section 3.3 (Es/Su=100, H/D=1.0, W/D=1.0) 

L
(in)

dx
(in)

Ep

(ksi)

D
(in)

t
(in)

Su

(psi)

[Pmax]norm

(lb/in)

[k0]norm

(psi)

[δy]norm

(in)

u
(in)

3600 18 30,000 6 0.5 1 6.4 272 0.0235 1  
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Figure 3. 23 Comparison between FEA and FDA for Bending Stress along Pipe Length 

 

 
3.3.3 FD Model with Nonlinear Spring 

The soil spring shows linear elastic behavior under δy, but it will behave 

nonlinear if a relative deformation excesses δy unlike linear spring. Under perfectly 

plastic state, the initial spring constant is substituted as secant modulus k which is 

calculated from Pmax divided by δy. Figure 3.24 shows the nonlinear spring and Figure 

3.25 illustrates the result for comparison between FE and FD model with nonlinear 

spring. 

     

 

Figure 3. 24 P-δ Curve of Nonlinear Spring 
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Figure 3. 25 Comparison between FEA and FDA for Bending Stress along Pipe Length 

 
 
 
3.3.4 FD Model with Tension Cut-off Spring 

In reality, the seafloor can support the riser pipe when the riser motion was 

downward after the riser pipe contacts with the seafloor. Otherwise, when the riser pipe 

moves up from the seafloor, the soil spring which represents the seafloor would 

disappear directly or after applied load passes over a value of load due to the effect of a 

pipe pulling out of contact with the soil such as Figure 3.26. In the model, a tension cut-

off parameter (tco) is defined by the ratio of the maximum load in tension to that in 

compression such as 10%, 50%, and 100%. 

 

 
Figure 3. 26 P-δ Curve of Tension Cut-off Spring 
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3.3.5 FDM Results 

 As showed in Figure 3.27 and 3.28, the maximum bending stress decreases 

depending on the degree of model development for different kinds of soil spring. It is 

because the characteristic of each P-δ curve appear on the bending stress values. In 

addition, the tension cut-off parameter (tco) affects on the maximum bending stress and 

the distribution of bending stress along the pipe as illustrated in Figure 3.29 and 3.30.  
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Figure 3. 27 Bending Stress for Variable Types of Soil Spring 
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Figure 3. 28 Deflection for Variable Types of Soil Spring 
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Figure 3. 29 Bending Stress Variation for Influence of tco
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Figure 3. 30 Deflection Variation for Influence of tco
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CHAPTER IV 

PARAMETRIC STUDIES 

 

4.1 INTRODUCTION 

The main factors to control the magnitude of bending stress in the riser pipe are 

riser movement characteristics, seafloor stiffness, and touchdown zone characteristics. 

Parametric studies relevant to these factors were conducted with the pipe-nonlinear soil 

spring support model as shown Figure 4.1.  

The length of riser pipe (L) is 300ft (3600in) and the number of elements in the 

model is 200 except section 4.5. The properties of riser pipe are like following: the 

modulus of pipe (Ep) is 30,000ksi, the yield stress of pipe (σy) is 60ksi, the diameter of 

pipe (D) is 6in, and the thickness of pipe (t) is 0.5in. In addition, the only case for trench 

width to diameter of pipe, W/D=1.0, was simulated because this simplified model do not 

consider the lateral soil spring effect.  

 
 

 

  

Figure 4. 1 Pipe-Nonlinear Soil Spring Support Model 
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4.2 LOAD-DEFORMATION (P-δ) CURVE CHARACTERISTICS 

 The broad limits on the range of P-δ curves associated with various condition of 

seafloor stiffness were considered in this parametric study. For example, the ratio for 

embedment depth of pipe to the diameter of the riser pipe (H/D), the width of trench to 

the diameter of the riser pipe (W/D), the soil modulus to the undrained shear strength of 

soil (Es/Su) were considered in P-δ curves. It should be noted that spring stiffness can be 

varied along the length of the pipe to simulate variable trench depth conditions. Table 4.1 

shows the values for each ratio. 

 
Table 4. 1 Range of Ratio for H/D, Es/Su (W/D=1.0) 

Es/Su H/D knorm (Pmax)norm (δy)norm

0.5 237 5.70 0.0240  

1.0 272 6.40 0.0235  

2.0 321 7.19 0.0224  

3.0 331 7.82 0.0236  

100 

4.0 331 8.25 0.0249  

0.5 1072 5.70 0.00532 

1.0 1167 6.42 0.00550 

2.0 1237 7.22 0.00584 

3.0 1263 7.85 0.00622 

500 

4.0 1536 8.30 0.00540 

0.5 2366 5.70 0.00241 

1.0 2705 6.42 0.00237 

2.0 3013 7.22 0.00240 

3.0 3080 7.85 0.00255 

1000 

4.0 3072 8.30 0.00270 

0.5 3443 5.70 0.00166 

1.0 3791 6.42 0.00169 

2.0 4052 7.22 0.00178 

3.0 4138 7.86 0.00190 

1500 

4.0 4129 8.30 0.00201 
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Figure 4.2 illustrates influence of Es/Su on elastic stiffness in the normalized P-δ 

curve for conditions of W/D=1.0 and H/D=0.5. It shows that the normalized soil spring 

constant (knorm) is increasing by increasing ratio of Es/Su. 
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Figure 4. 2 Effect of Es/Su on Elastic Stiffness (H/D=0.5) 

 

Figure 4.3 shows the deflection along the pipe made from simulating the 

simplified model (Fig. 4.1) with conditions of Es/Su ranging from 100 to 1500,  

H/D=1.0, Su=1 (psi), and u=1 (in). The higher value of Es/Su has a little bit bigger 

curvature. Otherwise, the smaller ratio of Es/Su makes a little longer touch down zone. 

Figure 4.4 illustrates the bending stress change along the pipe length with same 

conditions with Fig. 4.3. The maximum bending stress for Es/Su =1000 is a little bigger 

than others. However, the point which occur the maximum bending stress looks similar 

for each other.  
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Figure 4. 3 Deflection Change along Pipe Length for Various Es/Su (H/D=1.0, u=1 in) 
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Figure 4. 4 Bending Stress Change along Pipe Length for Various Es/Su (H/D=1.0, u=1 in) 
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Figure 4.5 shows effect of trench depth in the normalized P-δ curves for 

conditions of W/D=1.0 and Es/Su =100. This illustrates positive correlation between the 

normalized force and the ratio, H/D. 
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Figure 4. 5 Effect of Trench Depth (Es/Su =100) 

 

Figure 4.6 illustrates the deflection change along the riser pipe for the various 

H/D ranging from 1.0 to 4.0 with conditions of Es/Su =100, Su=1 (psi), and u=1 (in). The 

deeper trench embedment has a little bit higher curvature.  

Figure 4.7 shows the bending stress change along the riser pipe with same 

conditions with Figure 4.6. The maximum bending stress is increasing when the pipe 

embedment is deeper. 
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Figure 4. 6 Deflection Change along Pipe Length for Various H/D (H/D=1.0, u=1 in) 
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Figure 4. 7 Bending Stress Change along Pipe Length for Various H/D (H/D=1.0, u=1 
in) 
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Finally, Figure 4.8 shows effect of trench width in the normalized P-δ curves for 

conditions of H/D=1.0 and Es/Su =100. It illustrates that the wider trench width make the 

normalized force reduced. This result would be because of the effect of soil softening.   
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Figure 4. 8 Effect of Trench Width (H/D=1.0, Es/Su=100) 
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4.3 SOIL TO PIPE STIFFNESS 

The soil stiffness is one of significant factors which affect the bending stress in 

the riser pipe. The each ratio such as H/D, Es/Su and W/D can change soil stiffness in the 

simplified model. Therefore, this section focuses on the change of the maximum bending 

stress in riser pipe depend on the variation of normalized parameter such as the relative 

stiffness of pipe and soil (k0D4/EpI); here, the unit of k0 is force per square length. The 

modulus of soil is calculated from multiplying the ratio, Es/Su, by Su. 

The parameter, λ= k0D4/EpI, describes the ratio of soil stiffness to pipe stiffness. 

Pipe stiffness is conveniently expressed in terms of pipe modulus (Ep) and moment of 

inertia (I), the soil stiffness (k0) is a function of a series of soil and trench geometry 

variables, including Es/Su, H/D, W/D. For this study, only W/D=1 was considered. 

In performing a parametric study on the effects of k0, a range of soil moduli 

Es/Su=100~1500 was considered, and a range of trench depths H/D=0.5~4.0 was 

considered. k0 and λ based on these ranges of parameters are as following tables 4.2 and 

4.3. 

 

Table 4. 2 A Range of k0 (psi) Depend on the Ratio H/D and Es/Su (Su=1psi) 
                   Es/Su
H/D 100 500 1000 1500

0.5 237 1072 2366 3443
1.0 272 1167 2705 3791
2.0 321 1237 3013 4052
3.0 331 1263 3080 4138
4.0 331 1536 3072 4129  
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Table 4. 3 A Range of λ Depend on the Ratio H/D and Es/Su (Su=1psi) 
                   Es/Su
H/D 100 500 1000 1500

0.5 0.000311 0.00141 0.00310 0.00452
1.0 0.000357 0.00153 0.00355 0.00497
2.0 0.000421 0.00162 0.00395 0.00531
3.0 0.000434 0.00166 0.00404 0.00543
4.0 0.000434 0.00201 0.00403 0.00542  

 

 

 

 Based on this range of k-values predicted bending stress (σb)max/σy for various 

conditions of soil to pipe stiffness are shown in Figure 4.9. 

Figure 4.9 illustrates the relation between (σb)max/σy and λ depends on various 

H/D ranging from 0.5 to 4.0 for conditions of Es/Su is 100, Su ranging from 0.25 to 7.0 

(psi), Es ranges from 25 to 700 (psi), and u is 1in.  

Figure 4.10 indicates the relation between the maximum bending stress to the 

yield stress, (σb)max/σy, and λ depend on various Es/Su ranging from 100 to 1500 for 

conditions of H/D=1.0, Su ranging from 0.25 to 7.0 (psi), and u=1 (in). Es has the 

following ranges; 25~700, 125~3500, 250~7000, and 375~10500 (psi) for each ratio of 

Es/Su. 
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Figure 4. 9 Effect of Ratio for Variable Ratio λ (W/D=1.0, u=1 in) 
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Figure 4. 10 Effect of Ratio Es/Su for Variable Ratio λ (H/D=1.0, u=1 in) 
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Figure 4.11 shows the deflection change along the riser pipe for the various Su 

ranging from 0.25 to 7.0 (psi) with conditions of H/D=1.0, Es/Su=100, and u=1 (in). The 

higher undrained shear strength gets the higher curvature when the up-ward 

displacement occurs. In addition, the TDP moves to left side by increasing Su and the 

buried zone of riser pipe is shorter. 

Figure 4.12 shows the bending stress change along the riser pipe with same 

conditions with Fig. 4.11. The maximum bending stress is gone up by increasing Su and 

moves to the origin in the coordinate.  
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Figure 4. 11 Deflection Change along Pipe Length for Various Su (H/D=1.0, Es/Su=100, 
u=1 in) 
 

 

 



 56

-5000

0

5000

10000

15000

20000

25000

30000

0 100 200 300 400 500

The Length along Pipe (in)

Th
e 

B
en

di
ng

 S
tre

ss
 (p

si
)

su=0.25
su=1.0
su=7.0

 
Figure 4. 12 Bending Stress Change along Pipe Length for Various Su (H/D=1.0, 
Es/Su=100, u=1 in) 
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4.4 AMPLITUDE OF STEEL CATENARY RISER MOTIONS 

The SCR-seafloor behavior can be strongly influenced by the amplitude of riser 

motions around the touchdown zone. Thus, the amplitude of riser motions can affect 

yielding of the soil as well as the bending stress in riser pipe. As a simple example, large 

amplitude riser motions can lead to formation of a trench in the seafloor that can 

considerably increase the effective resistance of the seafloor to riser movements. Tables 

4.4 and 4.5 show the range of δy and u/δy based on the Ratio H/D and Es/Su. 

 

Table 4. 4 A Range of δy (in) Depend on the Ratio H/D and Es/Su 
 

                   Es/Su
H/D 100 500 1000 1500

0.5 0.144 0.0319 0.0145 0.0100

1.0 0.141 0.0330 0.0142 0.0101

2.0 0.134 0.0350 0.0144 0.0107

3.0 0.142 0.0373 0.0153 0.0114

4.0 0.149 0.0324 0.0162 0.0121  

Table 4. 5 A Range of u/δy Depend on the Ratio H/D and Es/Su

u= 1 in
                   Es/Su
H/D 100 500 1000 1500

0.5 6.94 31.3 69.2 100

1.0 7.09 30.3 70.3 98.6

2.0 7.44 28.5 69.4 93.6

3.0 7.06 26.8 65.4 87.7

4.0 6.69 30.9 61.7 82.9

u= 6 in
                   Es/Su
H/D 100 500 1000 1500

0.5 42 188 415 602

1.0 43 182 422 592

2.0 45 171 417 562

3.0 42 161 392 526

4.0 40 185 370 498

u= 12 in
                   Es/Su
H/D 100 500 1000 1500

0.5 83 376 830 1205

1.0 85 364 844 1183

2.0 89 342 833 1124

3.0 85 322 784 1053

4.0 80 370 741 995  
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Figure 4.13 illustrates the maximum bending stress is going up when the ratios, 

λ and u/δy increase. Based on this range of k0 values as mentioned before, predicted 

bending stress (σb)max/σy for various conditions of soil to pipe stiffness use shown in the 

figure. The influence of magnitude of riser motion is much more significant than the one 

of pipe embedment depth as shown in the fig.  
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Figure 4. 13 Effect of Displacement of Pipe for Variable Ratio λ (W/D=1.0, Es/Su=100) 
 

 
 

Figure 4.14 shows the deflection change along the riser pipe for the various 

displacement, u ranging from 0.25 to 7.0 (psi), with conditions of H/D=1.0, E/Su=100, 

and Su=1 (psi). The higher amplitude of loading makes much higher curvature. In 

addition, TDP move to right-side by increasing magnitude of loading.  

Figure 4.15 illustrates the bending stress change along the riser pipe. The 

maximum bending stress is gone up by increasing magnitude of loading and moves to 

opposite direction to the origin in the coordinate.  
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Figure 4. 14 Deflection Change along Pipe Length for Various Displacement, u 
(W/D=1.0, E/Su=100) 
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Figure 4. 15 Bending Stress Change along Pipe Length for Various Displacement, u 
(W/D=1.0, E/Su=100) 
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CHAPTER V 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

5.1 SUMMARY AND CONCLUSIONS 

 The interaction between steel catenary risers and the seafloor involves a number 

of complexities including non-linear soil behavior, soil yielding, softening of seafloor 

soils under cyclic loading, variable trench width and depth, a wide range of possible riser 

displacement amplitudes, and conditions in which the riser pipe can actually pull out of 

contact with the soil. With a view toward making this complex problem more tractable, 

this research adopts a simplified model comprised of a riser pipe supported on a series of 

equivalent soil springs. The problem is then investigated through two sets of parallel 

studies: 

1. Models for equivalent soil springs are developed based on two-dimensional 

finite element studies of a pipe embedded in a riser trench. In the long-term, soil 

spring models will be developed for various conditions of trench depth, trench 

width, soil elastic modulus, soil shear strength, trench backfill, and soil 

softening under cyclic loading. At the present time, only trench depth, soil 

elastic modulus, and trench width, that of the trench width equaling the pipe 

diameter. These studies were performed independently of the work presented in 

this thesis (Sharma, 2005), and the parametric studies presented in this thesis 

utilize the final product of that research effort. 

2. Soil-pipe interactions are modeled through one-dimensional studies of a spring-
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supported pipe subjected to displacements at one end of the pipe. Development 

of this model is a primary focus of this research. Primary outputs from this 

model include the deflected shape of the riser pipe, bending moments, and 

maximum bending stresses. 

 

Direct inputs into the soil-pipe interaction model include parameters to 

characterize the soil springs, the riser pipe, the length of the touchdown zone, and the 

amplitude of imposed displacements. 

A simple bi-linear model is used to characterize the springs. For loads (force per 

unit length) below a certain maximum, Pmax, the spring is linear and is described by a 

spring constant, k. When the load Pmax is reached, the spring resistance remains constant 

at Pmax and independent of the magnitude of deformation. In the case of tension (uplift), 

the model recognizes the possibility that the riser pipe can pull out of contact with the 

soil, in which case the riser-soil contact force declines to zero. A tension cutoff parameter, 

tco, is introduced to express the ratio of the maximum load in tension to that in 

compression. In summary, three parameters describe the soil springs, k, Pmax, and tco. It is 

noted that these parameters are a function of soil stiffness and strength properties, and 

trench geometry. 

However, soil properties and trench geometry are indirect rater than direct inputs 

into the simplified model. It is possible to specify variable spring constants along the 

length of the pipe to simulate variable conditions of pipe embedment, although this 

option was not utilized in the parametric studies performed in this research. 
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The riser pipe input parameters include the elastic modulus of the pipe material 

(usually steel), pipe diameter, and the moment of inertia of the pipe cross-section. The 

pipe is modeled as a linearly elastic material. 

The amplitude of imposed motions is specified as a single vertical displacement. 

The imposed displacement can be either upward or downward. Similarly, the length of 

the touchdown zone is specified as a single horizontal distance. 

The preliminary studies performed in this study indicate the following: 

1. The seafloor stiffness (as characterized by the three spring parameters), the 

magnitude of pipe displacement, and the length of the touchdown zone all 

influence bending stresses in the pipe and should be considered in future studies. 

2. The tension cutoff effect, i.e., the pipe pulling away from the soil, can have a 

very large effect on bending stresses in the pipe. Neglecting this effect can lead to 

serious over-estimate of stress levels and excessive conservatism in design. 

 

5.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

Topics for future research include the following: 

1. Repeated load cycles can lead to remolding and softening of the seafloor soils. 

This will lead to reduced effective seafloor spring stiffness with reduced levels 

of bending stresses in the pipe. This effect can be particularly important for 

cases of stiff seafloor soils where remolding is likely to lead to substantial 

reductions in stiffness. 

2. The current research only considers vertical pipe motions. Actual pipe motions 
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include a lateral component, the effects of which should be considered. 

3. Displacement magnitudes are clearly critical to pipe bending stresses. This study 

considered a general range of displacements which risers are likely to 

experience. 

4. The tension cutoff is clearly important. Future studies should address how an 

appropriate value for the tension cutoff should be estimated. 

5. The riser pipe is not a straight line, but has a curved shape. The existing soil-

riser interaction model should be modified to accommodate curved riser 

configurations. 
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APPENDIX A 

NORMALIZED LOAD-DEFORMATION CURVES 
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E/S u =500, W /D=1.0, H/D=2.0
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E/S u =500, W /D=1.0, H/D=3.0
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E/S u =500, W /D=1.0, H/D=4.0

8.30

ko = 1536
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E/S u =1000, W /D=1.0, H/D=0.5

5.702

ko = 2365.8
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E/S u =1000, W /D=1.0, H/D=1.0

6.422
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E/S u =1000, W /D=1.0, H/D=2.0
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E/S u =1000, W /D=1.0, H/D=3.0
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E/S u =1000, W /D=1.0, H/D=4.0
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E/S u =1500, W /D=1.0, H/D=0.5
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E/S u =1500, W /D=1.0, H/D=1.0
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E/S u =1500, W /D=1.0, H/D=2.0
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E/S u =1500, W /D=1.0, H/D=3.0
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E/S u =1500, W /D=1.0, H/D=4.0
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APPENDIX B 

A TYPICAL ABAQUS INPUT FILE: NONLINEAR SOIL SPRING MODEL 
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*HEADING 
 W/D=1.0, H/D=1.0, Es/Su=100 (unit : lb, in) 
*PRE PRINT, ECHO=NO, MODEL=NO, CONTACT=NO, HISTORY=NO 
*PARAMETER 
 L=3600 
 ele=200 
 n=ele+1 
 Ep=3e7 
 D=6 
 r=D/2 
 t=0.5 
 u=1 
 su=1 
 Pmax=6.4*su*D*dx 
 dy=0.0235*D 
*NODE 
1,0,-3 
<n>,<L>,-3 
*NGEN 
1,<n> 
*NSET, NSET=PIPENODE 
1,<n> 
*ELEMENT, TYPE=PIPE21 
1,1,2 
*ELGEN, ELSET=PIPE 
1,<ele> 
*BEAM SECTION, SECTION=PIPE, ELSET=PIPE, MATERIAL=STEEL 
<r>, <t> 
*MATERIAL, NAME=STEEL 
*ELASTIC 
<Ep> 
*ELEMENT, TYPE=SPRING1  
10001,1 
*ELGEN, ELSET=SOILSPRING 
10001,<ele> 
*SPRING, ELSET=SOILSPRING, NONLINEAR 
2 
-<Pmax>,  -<dy> 
      0,      0 
 <Pmax>,   <dy> 
************************************************** 
*STEP, INC=1000, NLGEOM 
*STATIC 
*BOUNDARY 
<n>,2,2 
*BOUNDARY, TYPE=DISPLACEMENT 
1,2,2,<u> 
*OUTPUT, FIELD, FREQ=100 
*ELEMENT OUTPUT, ELSET=PIPE 
 COORD, S 
*EL PRINT, ELSET=PIPE 
 COORD 
 S11 
*END STEP 
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APPENDIX C 

MATLAB PROGRAM: LINEAR SOIL SPRING MODEL 
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clc 
clear all 
  
%===== Input Variables =====% 
  
L=3600;           % Length of touchdown zone (pipe length)      
ele=1000;         % Number of elements  
dx=L/ele;         % Unit length of pipe 
  
E=3e7;            % Modulus of pipe 
D=6;              % Diameter of pipe  
t=0.5;            % Thickness of pipe  
  
u=1;              % Displacement  
  
Su=1;             % Undrained shear strength  
kn=272;           % Normalized spring constant 
ko=kn*Su;         % Spring constant [F/L^2] 
  
  
%==== Basic Calculation ====% 
  
c=0.5*D-t/2;                  % Distance from center to end of pipe 
I=pi/64*(D^4-(D-2*t)^4);      % Second moment inertia 
  
  
%======= Initialize ========% 
  
K=zeros(ele-1,ele-1); 
p=zeros(ele-1,1); 
  
%======= Main Loop =========% 
  
for i=3:(ele-3)     
    for j=1:(ele-1) 
        if j==i-2 
            K(i,j)=1; 
        elseif j==i-1 
            K(i,j)=-4; 
        elseif j==i  
            K(i,j)=6+ko*dx^4/(E*I);          
        elseif j==i+1 
            K(i,j)=-4  ;
        elseif j==i+2 
            K(i,j)=1; 
       nd  e
    end 
end 
  
p(1,1)=2*u; p(2,1)=-u; 
K(1,1:5)=[(5+ko*dx^4/(E*I)) -4 1 0 0]; 
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K(2,1:5)=[-4 (6+ko*dx^4/(E*I)) -4 1 0]; 
K(ele-2,ele-5:ele-1)=[0 1 -4 (6+ko*dx^4/(E*I)) -4]  ;
K(ele-1,ele-5:ele-1)=[0 0 1 -4 (5+ko*dx^4/(E*I))]; 
yy=inv(K)*p; 
  
y(1,1)=u; 
y(2:ele,1)=yy  ;
y(ele+1,1)=0; 
  
  
%======= Moment Calculation ========% 
  
for i=2:ele 
    ddy(i,1)=(y(i-1,1)-2*y(i,1)+y(i+1,1))/dx^2; 
    M(i,1)=-E*I*ddy(i,1); 
    Bsigma(i,1)=M(i,1)*-c/I; 
end 
  
  
%===== Plot =====% 
  
xNODE(1)=0; xELE(1)=0; 
for j=2:(ele+1) 
    xNODE(j)=xNODE(j-1)+dx; 
end 
for j=2:ele 
    xELE(j)=xELE(j-1)+dx; 
end 
  
figure(1)  
plot (xNODE,y,'b-','LineWidth',2) 
axis auto 
title('The Deflection along the pipe 
length','fontsize',12,'fontweight','bold')  
xlabel('The Length along the pipe','fontsize',10,'fontweight','bold') 
ylabel('The Deflection','fontsize',10,'fontweight','bold') 
  
figure(2) 
plot (xELE,Bsigma,'b-','LineWidth',2) 
axis auto 
title('The Bending Stress along the pipe 
length','fontsize',12,'fontweight','bold')  
xlabel('The Length along the pipe','fontsize',10,'fontweight', old') 'b
ylabel('The Bending Stress','fontsize',10,'fontweight','bold') 
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APPENDIX D 

MATLAB PROGRAM: NONLINEAR SOIL SPRING MODEL 
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clc 
clear all 
  
%===== Input Variables =====% 
  
L=3600;           % Length of touchdown zone (pipe length)      
ele=1000;         % Number of elements  
dx=L/ele;         % Unit length of pipe 
  
E=3e7;            % Modulus of pipe 
D=6;              % Diameter of pipe  
t=0.5;            % Thickness of pipe  
  
u=1;              % Displacement  
  
Su=1;             % Undrained shear strength   
Pn=6.40;          % Normalized maximum force 
kn=272;           % Normalized spring constant 
  
Pmax=Pn*Su*D;      % Maximum force [F/L]  
ko=kn*Su;          % Spring constant [F/L^2] 
deltay=Pmax/ko;    % Deformation [L] 
  
  
%==== Basic Calculation ====% 
  
c=0.5*D-t/2;                  % Distance from center to end of pipe 
I=pi/64*(D^4-(D-2*t)^4);      % Second moment inertia; 
  
  
%======= Initialize ========% 
z=100; 
a=1; 
count=1; 
K=zeros(ele-1,ele-1); 
p=zeros(ele-1,1); 
yy=zeros(ele-1,1); 
by=zeros(ele-1,z); 
  
  
%====== MAIN LOOP ======% 
  
while ( a~=0 ) 
     
    K=zeros(ele-1,ele-1); 
    p=zeros(ele-1,1); 
    k=zeros(ele-1,1); 
     
    if count>1 
        for m=1:(ele-1)            
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            by(m,count-1)=yy(m,1);                         
            if yy(m,1)>deltay 
                k(m,1)=Pmax/yy(m,1); 
            elseif yy(m,1)<-deltay 
                k(m,1)=-Pmax/yy(m,1); 
            else 
                k(m,1)=ko; 
           nd  e
        end 
    else 
        for m=1:(ele-1  )
            k(m,1)=ko; 
        end 
    end 
     
    %=== decide k(spring constant) ===%         
    yy=zeros(ele-1,1); 
    for i=3:(ele-3)     
        for j=1:(ele-1) 
            if j==i-2 
                K(i,j)=1; 
            elseif j==i-1 
                K(i,j)=-4; 
            elseif j==i  
                K(i,j)=6+k(i,1)*dx^4/(E*I);          
            elseif j==i+1 
                K(i,j)=-4; 
            elseif j==i+2 
                K(i,j)=1; 
            end 
        end 
  
        p(1,1)=2*u; p(2,1)=-u; 
        K(1,1:5)=[(5+k(1,1)*dx^4/(E*I)) -4 1 0 0]; 
        K(2,1:5)=[-4 (6+k(2,1)*dx^4/(E*I)) -4 1 0]; 
        K(ele-2,ele-5:ele-1)=[0 1 -4 (6+k(ele-2,1)*dx^4/(E*I)) -4]; 
        K(ele-1,ele-5:ele-1)=[0 0 1 -4 (5+k(ele-1,1)*dx^4/(E*I))]; 
    end 
     
    yy=inv(K)*p;  
  
    if count>1 
        a=0; 
    end 
     
    for n=1:(ele-1) 
        if count>1 
            ij(n,count)=abs(yy(n,1)-by(n,count-1))/abs(by(n,count-1)); 
            if ij(n,count)>0.01 
                a=a+1;  
            end 
        end      
    end 
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    count=count+1; 
       
end 
  
y(1,1)=u; 
y(2:ele,1)=yy  ;
y(ele+1,1)=0; 
  
%======= Moment Calculation ========% 
for i=2:ele 
    ddy(i,1)=(y(i-1,1)-2*y(i,1)+y(i+1,1))/dx^2; 
    M(i,1)=-E*I*ddy(i,1); 
    Bsigma(i,1)=M(i,1)*-c/I; 
end 
  
%====== plot ======% 
xNODE(1)=0; xELE(1)=0; 
for j=2:(ele+1) 
    xNODE(j)=xNODE(j-1)+dx; 
end 
for j=2:ele 
    xELE(j)=xELE(j-1)+dx; 
end 
   
figure(1)  
plot (xNODE,y,'b-','LineWidth',2) 
axis auto 
title('The Deflection along the pipe 
length','fontsize',12,'fontweight','bold')  
xlabel('The Length along the pipe','fontsize',10,'fontweight','bold') 
ylabel('The Deflection','fontsize',10,'fontweight','bold') 
  
figure(2) 
plot (xELE,Bsigma,'b-','LineWidth',2) 
axis auto 
title('The Bending Stress along the pipe 
length','fontsize',12,'fontweight','bold')  
xlabel('The Length along the pipe','fontsize',10,'fontweight','bold') 
ylabel('The Bending Stress','fontsize',10,'fontweight','bold') 
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APPENDIX E 

MATLAB PROGRAM: TENSION CUT-OFF SOIL SPRING MODEL 
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clc 
clear all 
  
%===== Input Variables =====% 
  
L=3600;            % Length of touchdown zone (pipe length)      
ele=1000;          % Number of elements  
dx=L/ele;          % Unit length of pipe 
  
E=3e7;             % Modulus of pipe 
D=6;               % Diameter of pipe  
t=0.5;             % Thickness of pipe  
  
u=1;               % Displacement  
  
Su=1;              % Undrained shear strength   
Pn=6.40;           % Normalized maximum force 
kn=272;            % Normalized spring constant 
  
Pmax=Pn*Su*D;      % Maximum force [F/L]  
ko=kn*Su;          % Spring constant [F/L^2] 
deltay=Pmax/ko;    % Deformation [L] 
ratio=0.5;         % ratio of Pmax in tension to Pmax in compression 
  
%==== Basic Calculation ====% 
  
c=0.5*D-t/2;                  % Distance from center to end of pipe 
I=pi/64*(D^4-(D-2*t)^4);      % Second moment inertia 
  
  
%======= Initialize ========% 
z=100; 
a=1; 
count=1; 
K=zeros(ele-1,ele-1); 
p=zeros(ele-1,1); 
yy=zeros(ele-1,1); 
by=zeros(ele-1,z); 
  
  
%====== MAIN LOOP ======% 
  
while ( a~=0 ) 
     
    K=zeros(ele-1,ele-1); 
    p=zeros(ele-1,1); 
    k=zeros(ele-1,1); 
     
    if count>1 
        for m=1:(ele-1)            
            by(m,count-1)=yy(m,1);                         
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            if yy(m,1)>deltay*ratio 
                k(m,1)=0; 
            elseif yy(m,1)<-deltay 
                k(m,1)=-Pmax/yy(m,1); 
            else 
                k(m,1)=ko; 
            end 
        d en
    else 
        for m=1:(ele-1) 
            k(m,1)=ko; 
        end 
    end 
     
    %=== decide k(spring constant) ===%         
    yy=zeros(ele-1,1); 
    for i=3:(ele-3)     
        for j=1:(ele-1) 
            if j==i-2 
                K(i,j)=1; 
            elseif j==i-1 
                K(i,j)=-4; 
            elseif j==i  
                K(i,j)=6+k(i,1)*dx^4/(E*I);          
            elseif j==i+1 
                K(i,j)=-4; 
            elseif j==i+2 
                K(i,j)=1; 
            end 
        end 
  
        p(1,1)=2*u; p(2,1)=-u; 
        K(1,1:5)=[(5+k(1,1)*dx^4/(E*I)) -4 1 0 0]; 
        K(2,1:5)=[-4 (6+k(2,1)*dx^4/(E*I)) -4 1 0]; 
        K(ele-2,ele-5:ele-1)=[0 1 -4 (6+k(ele-2,1)*dx^4/(E*I)) -4]; 
        K(ele-1,ele-5:ele-1)=[0 0 1 -4 (5+k(ele-1,1)*dx^4/(E*I))];      
    end 
  
    yy=inv(K)*p; 
  
    if count>1 
        a=0; 
    end 
     
    for n=1:(ele-1) 
        if count>1 
            ij(n,count)=abs(yy(n,1)-by(n,count-1))/abs(by(n,count-1)); 
            if ij(n,count)>0.01 
                a=a+1;  
            end 
        end   
    end 
    count=count+1; 
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end 
  
y(1,1)=u; 
y(2:ele,1)=yy; 
y(ele+1,1)=0; 
  
%======= Moment Calculation ========% 
for i=2:ele 
    ddy(i,1)=(y(i-1,1)-2*y(i,1)+y(i+1,1))/dx^2; 
    M(i,1)=-E*I*ddy(i,1); 
    Bsigma(i,1)=M(i,1)*-c/I; 
end 
  
%====== plot ======% 
xNODE(1)=0; xELE(1)=0; 
for j=2:(ele+1) 
    xNODE(j)=xNODE(j-1)+dx; 
end 
for j=2:ele 
    xELE(j)=xELE(j-1)+dx; 
end 
  
figure(1)  
plot (xNODE,y,'b-','LineWidth',2) 
axis auto 
title('The Deflection along the pipe 
length','fontsize',12,'fontweight','bold')  
xlabel('The Length along the pipe','fontsize',10,'fontweight','bold') 
ylabel('The Deflection','fontsize',10,'fontweight','bold') 
  
figure(2) 
plot (xELE,Bsigma,'b-','LineWidth',2) 
axis auto 
title('The Bending Stress along the pipe 
length','fontsize',12,'fontweight','bold')  
xlabel('The Length along the pipe','fontsize',10,'fontweight', old') 'b
ylabel('The Bending Stress','fontsize',10,'fontweight','bold') 
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