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ABSTRACT

On the Synthesis of Fixed Order Stabilizing Controllers. (December 2005)

Sin Cheon Kang, B.S., Korea University;

M.S., Korea Advanced Institute of Science and Technology

Chair of Advisory Committee: Dr. Darbha Swaroop

In this dissertation, we consider two problems concerning the synthesis of fixed or-

der controllers for Single Input, Single Output systems. The first problem deals with the

synthesis of absolutely stabilizing fixed order controllers for Lure-Postnikov systems. The

second problem deals with the synthesis of fixed order stabilizing controllers directly from

the empirical frequency response data and from some coarse information of the plant.

Lure-Postnikov systems are frequently encountered in mechanical engineering appli-

cations. Analytical tools for synthesizing stabilizing fixed structure controllers, such as the

PID controllers examining the absolute stability of Lure-Postnikov systems, have recently

been studied in the literature. However, tools for synthesizing controllers of arbitrary order

have not been studied yet. We propose a systematic method forsynthesizing absolutely

stabilizing controllers of arbitrary order for the Lure-Postnikov systems. Our approach is

based on recent results in the literature on approximation of the set of stabilizing controller

parameters that render a family of real and complex polynomials Hurwitz. We provide an

example of a robotic system to illustrate the procedure developed.

Exact analytical models of plants may not be readily available for controller design.

The current approach is to synthesize controllers through the identification of the analyt-

ical model of the plant from empirical frequency response data. In this dissertation, we

depart from this conventional approach. We seek to synthesize controllers directly (i.e.

without resort to identification) from the empirical frequency response data of the plant
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and coarse information about it. The coarse information required is the number of non-

minimum phase zeros of the plant(or the number of poles of theplant with positive real

parts) and the frequency range beyond which the phase response of the LTI plant does not

change appreciably and the amplitude response goes to zero.We also assume that the LTI

plant does not have purely imaginary zeros or poles. The method of synthesizing stabiliz-

ing controllers involves the use of generalized Hermite-Biehler theorem for counting the

roots of rational functions and the use of recently developed Sum-of-Squares techniques

for checking the nonnegativity of a polynomial in an interval through the Markov-Lucaks

theorem. The method does not require an explicit analyticalmodel of the plant that must

be stabilized or the order of the plant, rather, it only requires the empirical frequency re-

sponse data of the plant. The method also allows for measurement errors in the frequency

response of the plant. We illustrate the developed procedure with an example. Finally, we

extended the technique to the synthesis of controllers of arbitrary order that also guarantee

performance specifications such as the phase margin and gainmargin.
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CHAPTER I

INTRODUCTION

This dissertation deals with two problems of fixed order controller synthesis for Single

Input, Single Output(SISO) systems. The first problem is that of synthesizing a fixed or-

der controller that absolutely stabilizes a Lure-Postnikov system. The second problem

deals with the synthesis of fixed order stabilizing controllers directly from the empirical

frequency response data and some coarse information about the SISO system being con-

trolled.

One encounters nonlinear systems in engineering applications where the nonlineari-

ties are sector-bounded. Such nonlinear systems are typically referred to as Lure-Postnikov

systems which are important and common, see [1, 2]. Linear control systems which have

actuator/sensor nonlinearity(saturation) also can be represented as Lure-Postnikov sys-

tems [3]. Analytical tools examining the absolute stability of Lure-Postnikov systems ex-

ist [4, 5, 6, 7, 8, 9, 10, 11, 12]. However, the tools for synthesizing stabilizing controllers,

especially that of fixed structure such as the PID or low-order controllers, have not received

as much attention. Since the (sufficient) conditions for stabilizing a Lure-Postnikov sys-

tem involve the Positive Realness (PR ness) or Strict Positive Realness (SPR ness) of the

product of two transfer functions - one describing the linear part of the Lure-Postnikov

System and the other a multiplier, it is conceivable that a direct parametric method may be

employed. It is this approach that was adopted recently by Hoand Lu [2] for synthesizing

PID controllers for Lure-Postnikov systems. The systematic synthesis of PID controllers

exploits the special structure of the characteristic polynomial [13]. Although a first order

controller also has three control parameters, the method for PID controller synthesis cannot

The journal model isIEEE Transactions on Automatic Control.
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be directly applied for the synthesis of a first order controller. Recently, Malik, Darbha and

Bhattacharyya have proposed a systematic method for approximating the set of controller

parameters that render a family of real and complex polynomials Hurwitz [14, 15, 16]. This

method involves separating the roots of the real and imaginary parts of the characteristic

polynomial to systematically construct linear programs inthe controller parameters - the

union of the feasible sets of the linear programs constructed is an approximation to the set

of controller parameters that can enable a certain transferfunction either to be SPR or to

have aH∞ less than a specified value. Based on the results of Malik, Darbha and Bhat-

tacharyya [14, 15, 16], we propose a method to construct setsof fixed order stabilizing

controllers of arbitrary order for Lure-Postnikov systems.

The synthesis of fixed order/structure controllers for LTI plants is an important open

problem with a wide variety of practical applications [17, 18]. It is also widely recognized

that an accurate analytical model of the plant may not be available to a control designer.

However, it is reasonable in many applications that one willhave an empirical model of the

plant in terms of its frequency response data and from physical considerations or from the

empirical time response data, one may have some coarse information about the plant such

as the number of non-minimum phase zeros of the plant etc. In view of this, we consider

the problem of synthesizing sets of stabilizing controllers directly from the empirical data

and such coarse information about the plant.

A systematic attempt to synthesize PID and first order controllers for delay-free SISO

Linear Time Invariant (LTI) plants was first presented in [19]. However, we are unaware of

any systematic attempt at synthesizing sets of stabilizingcontrollers of arbitrary order from

the frequency response data and this work is a first attempt inthat direction. The proposed

method also allows for measurement errors in the frequency response of the plant. The

method requires the computation of a set of parameters that guarantee the nonnegativity of

a polynomial on interval when the coefficients of the polynomial are affinely dependent on
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the parameters. Recently, the Sum-of-Squares technique has received significant attention

for checking the nonnegativity of a polynomial. For example, Roh and Vandenberghe have

presented a new semidefinte programming(SDP) formulation of sum of squares represen-

tations of nonnegative polynomials of one variable in [20].This method is based on the

Markov-Lucaks theorem and discrete polynomial transform and can be solved by using of

the well developed SDP solvers such as SeDuMi [21]. We used the procedure formulated

in [20] for checking the nonnegativity of a polynomial in anyinterval.

A. Contributions of the Dissertation

Recently, Ho and Lu [2] proposed a synthesis method to designfixed structure(PID) con-

trollers for Lure-Postnikov systems which is common and important in mechanical appli-

cations. Since the synthesis of PID controllers exploits the special structure of the charac-

teristic polynomial the same method cannot be directly applied to fixed order controllers.

Bhattacharyya and Keel [22] have developed a method for synthesizing first order con-

trollers. However, this method does not easily extended to the synthesis of controllers of

order greater than one. In this dissertation, we propose a new method that can be extended

to the synthesis of controllers of order greater than one forLure-Postnikov systems using

a recent systematic method for approximating the set of controller parameters that render

a family of real and complex polynomials Hurwitz proposed byMalik, Darbha and Bhat-

tacharyya [14, 15, 16].

We also propose a novel method for synthesizing set of fixed order stabilizing con-

trollers of strictly proper, SISO LTI plants directly from their empirical frequency response

data and with two pieces of information about them. One is thenumber of non minimum

phase zeros of the plant and the other is frequency range beyond which the phase response

of the LTI plant does not change appreciably and the amplitude response goes to zero. The
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method does not require an explicit analytical model of the plant that must be stabilized

or the order of the plant, rather, it only requires the empirical frequency response data of

the plant. The method also allows for measurement errors in the frequency response of the

plant. It is remarkable that these results indicate the possibility of fixed order controller

synthesis using only frequency response measurements. Theproposed method can also

be extended to the synthesis of controllers of arbitrary order that guarantee performance

specifications such as the gain/phase margin and upper boundon theH∞ norm.

B. Organization of the Dissertation

In chapter II, a method to synthesize the fixed order/structure controllers that absolutely sta-

bilize a Lure-Postnikov system is proposed. We also providean example of Lure-Postnikov

system(one-link robot with a flexible joint) and construct the set of fixed structure(PID) and

first order controllers which absolutely stabilize the example system. In chapter III, we re-

view a technique which can check the nonnegativity of a real polynomial on an interval

using SDPs. We use the well known Chebyshev polynomials to approximate the real and

imaginary parts of the frequency response of the LTI plant and we provide a brief review

of Chebyshev approximation. In chapter IV, we formulate theproblem of fixed order con-

troller as the feasibility of a robust SDP, based on the methods reviewed in chapter III. The

proposed formulation does not require an explicit analytical model of the plant that must

be stabilized or the order of the plant, rather, it only requires the empirical frequency re-

sponse data of the plant. The method of synthesizing stabilizing controllers involves the

use of generalized Hermite-Biehler theorem for rational functions for counting the roots

and the nonnegativity of a polynomial in some intervals. We also show in some case the

nonnegativity of a polynomial in some intervals can be replaced as nonnegativity of the

end points of the intervals. In chapter V, a method to synthesize a controller that make a
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system guaranteeing certain level of performance as well asstability with finite frequency

response data is proposed. Those performance criteria can be gain margin, phase margin,

upper bound on theH∞ norm of a weighted sensitivity transfer function, or a requirement

that a certain closed loop transfer function be SPR etc. The results of this dissertation are

summarized and recommendations for future work are presented in In chapter VI.
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CHAPTER II

ON THE SYNTHESIS OF FIXED ORDER CONTROLLERS FOR LURE-POSTNIKOV

NONLINEAR SYSTEMS

A. Introduction

One encounters nonlinear systems in engineering applications where the nonlinearities are

sector-bounded, for example, see [1, 2]. A one-link robot with a flexible joint in [1], as

will be seen later, is an example of a Lure-Postnikov system.Linear systems with actua-

tor/sensor nonlinearity can also be represented as Lure-Postnikov systems. Such nonlinear

systems are typically referred to as Lure-Postnikov systems.

Analytical tools examining the absolute stability of Lure-Postnikov systems exist,

see [4, 5, 6, 7, 8, 9, 10, 11, 12]. However, the tools for synthesizing stabilizing controllers,

especially that of fixed structure such as the PID or low-order controllers, have not received

as much attention.

The synthesis of PI controllers for general nonlinear systems was considered by Des-

oer and Lin [23]. In this work, the nonlinear system is assumed to be stabilized exponen-

tially through some means and an integral action is providedin the feedforward path of

the outer loop so that step inputs could be tracked with zero steady state error. Using this

method, the problem of synthesizing a stabilizing controller can be performed in two steps

- the first one involves the synthesis of a stabilizing controller and the second one involves

the design of a PI controller in the outer loop. The problem ofstabilizing a general nonlin-

ear system with output feedback is a daunting task. For this reason, we restrict ourselves to

this class of important nonlinear system. One encounters nonlinear systems which consist

of a linear system in the feed forward path and a output nonlinearity in the feedback path.

If the output nonlinearity is sector bounded, such systems are referred to as Lure-Postnikov
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systems (see Narendra and Taylor [5]). The problem of stabilizing Lure-Postnikov systems

has received significant attention since it was posed in early 1940s. The first solution (a

sufficient condition) was provided by Popov and subsequently various other sufficient con-

ditions were provided [4, 5]. All the sufficient conditions involve the positive realness (PR)

or strictly positive realness (SPR) of the product of two transfer functions - one related to

the linear part of the transfer function and the other a multiplier of a certain class. Three

characterizations of SPR transfer functions have been developed - In state space form, the

KYP lemma and its variants provide conditions on a transfer function being SPR. In the

frequency domain, a transfer function is SPR if it is analytic in the RHP and the Nyquist

plot of the transfer function is always in the1st and4th quadrants of the complex plane. In

the parametric approach, a transfer function is SPR if (1) the DC gain is positive (2) the

numerator is Hurwitz and a function of complex polynomial isHurwitz. It is the latter char-

acterization that has recently been used by Ho and Lu (2005) to synthesize stabilizing PID

controllers for Lure-Postnikov systems. The first use of parametric approach to analyze

robustness of an absolutely stabilizing controller is given in [24]. We adopt the parametric

approach for synthesizing stabilizing controllers for Lure-Postnikov systems in much the

same way as Ho and Lu have recently used.

Central to the method of Ho and Lu [2] are two recent ideas: (1)the systematic syn-

thesis of PID controllers [25] for SISO systems that exploitinterlacing properties of real

and complex Hurwitz polynomials, and (2) the reduction of the SPR condition of trans-

fer function to that of rendering Hurwitz a one-parameter family of complex polynomials

[26]. Using the circle criterion [3, 27], Ho and Lu convert the problem of PID controller

synthesis to that of synthesis of PID gains that render a family of complex polynomials

Hurwitz [2]. The advantage of the parametric approach is that the set of all stabilizing PID

controllers that make a specified transfer function SPR can be approximated computation-

ally and be made available graphically to the control algorithm designer who may be faced
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with other constraints.

The systematic synthesis of PID controllers exploits the special structure of the char-

acteristic polynomial. Although a first order controller also has three control parameters,

the same method cannot be directly applied. Bhattacharyya and Keel [22] have developed

a method for synthesizing first order controllers based on the D-decomposition technique;

however, this method does not readily extend to the synthesis of controllers of order greater

than one. Recently, Malik, Darbha and Bhattacharyya have proposed a systematic method

for approximating the set of controller parameters that render a family of real and complex

polynomials Hurwitz [14, 15, 16]. This method involves separating the roots of the real

and imaginary parts of the characteristic polynomial to systematically construct linear pro-

grams in the controller parameters - the union of the feasible sets of the linear programs

constructed is an approximation to the set of controller parameters. The criteria for the

rational function either to be SPR or to have aH∞ less than a specified value can be posed

as the determination of controller parameters that render afamily of complex polynomials

Hurwitz. In this chapter, we use this method for constructing sets of stabilizing controllers

for Lure-Postnikov systems.

This chapter is organized as follows: section B provides a review of the relevant math-

ematical preliminaries, section C details the systematic methodology for the construction of

stabilizing controllers, in section D, an example of a Lure-Postnikov system (one-link robot

with a flexible joint) is considered and the set of PID and firstorder stabilizing controllers

for the example system are constructed and graphically illustrated.

B. Preliminaries

Consider a SISO Lure-Postnikov system with saturation nonlinearity as shown in Figure 1.

The nonlinear scalar functionψ(y) is assumed to satisfy the sector bound0 ≤ yψ(y) ≤
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Fig. 1.: An Example of a Lure-Postnikov System

βy2. Many physical systems can be represented by the feedback connection of Figure 1

with the sector bounded nonlinearity [1, 2].

In general, a Lure-Postnikov system can be represented by :

ẋ = Ax+Bu

y = Cx+Du

u = −ψ(y)

G(s) = C(sI − A)−1B +D

The absolute stability for Lure-Postnikov systems can be defined as follows [5]:

Definition II.1. Absolute Stability

If the equilibrium solution onx ≡ 0 is asymptotically stable for every nonlinearity satisfy-

ing the sector bound, thenx ≡ 0 is absolutely stable (Lure-Postnikov system is absolutely

stable).

In this chapter, we deal with the synthesis of absolutely stabilizing fixed order con-
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trollers of arbitrary order for Lure-Postnikov systems.

An important condition that arises in the solution of this absolute stability problem is

the property of strictly positive realness (SPR) of a transfer function. The SPR property is

defined as follows [26] :

Definition II.2. (SPR)

A proper, rational, scalar, transfer functionG(s) is SPR if

1. G(s) has no poles in the closed right half plane.

2. Re[G(jw)] > 0, ∀w ∈ (−∞,+∞).

The following results are well-established in the literature [4, 5, 6, 7, 8].

Theorem II.1. (Circle Criterion)

Consider the Lure-Postnikov system in Figure 1. IfG(s) + 1
β

is SPR, then the equilibrium

pointsx ≡ 0 is asymptotically stable for every sector bounded nonlinearity ψ satisfying

0 ≤ yψ(y) ≤ βy2.

Another sufficient condition for absolutely stability is given through the Popov crite-

rion.

Theorem II.2. (Popov)

If the linear part of the Lure-Postnikov system is describedby the transfer functionG(s),

where

G(s) =
d

s
+ c(sI −A)−1B (2.1)

with d > 0, A Hurwitz, and the triplet(A,B, c) is minimal, then the equilibrium

solutionx = 0 of the Lure-Postnikov system is globally asymptotically stable if the transfer

function(γ1s + γ0)(G(s) + 1
β
) is SPR for someγ1 ≥ 0 andγ0 > 0.

Without any loss of generality, one may setγ0 = 1. The term(γ1s+ γ0) is referred to

as a multiplier.
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Fig. 2.: Controller Synthesis

For monotone nonlinearities which form a subset of the sector bounded nonlinearities

and are described by0 ≤ (y1−y2)(ψ(y1)−ψ(y2) ≤ M̄(y1−y2)
2, the sufficient conditions

that guarantee the global asymptotic stability of the equilibrium require a transfer function

of the formM(s)G(s) to be PR, whereM(s) = s+γ0

s+γ1

, γ0 > 0 andγ1 > 0 [5]. In general,

the sufficient conditions requireM(s)G(s) to be SPR for some multiplier transfer function

of a certain class.

The problem of synthesizing a stabilizing controller for a Lure-Postnikov problem can

be understood from the block diagram as shown in Figure 2.

If one were to apply the Popov’s stability criterion or any other criteria for absolute

stability, one requires checking if a certain transfer function M(s)Gcl(s) is SPR, where

Gcl is a upper linear fractional transformation obtained by closing the loop. As such, the

coefficients of the numerator and denominator ofGcl(s) will affinely depend on the con-

troller coefficients. Application of a Routh-like procedure, due to Siljak [28] will result
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in a system of polynomial inequalities; at present, the methods such as Tarski and Seiden-

berg Theory [29, 30] that check the feasibility of a system ofpolynomial inequalities are

computationally difficult.

There are difficulties with synthesizing controllers usingother characterizations :

1. Kalman-Yakubovich-Popov (KYP) Lemma states that

Gcl(s) = C(sI − Acl)
−1B is SPR if there exists a positive definite symmetric

matrix,P , matrixL andǫ > 0 such thatAT
clP +PAcl < −LLT − ǫP andBTP = C.

We have an unknown controller vectorK and an unknown positive definite symmet-

ric matrixP . Acl is affine inK. The closed loop matrix inequality is bilinear inK

andP and currently there is no general algorithm to solve this type of bilinear matrix

inequalities.

2. We also can consider in frequency domain characterization for synthesizing con-

trollers. Essentially this will require

Gcl(s,K) =
N(s,K)

D(s,K)
, Re [Gcl(jw,K)] > 0

Re [Gcl(jw,K)] =
Dr(w,K)Nr(w,K) −Di(w,K)Ni(w,K)

D2
r(w,K) +D2

i (w,K)
> 0, ∀w ∈ ℜ

The numerator polynomial ofRe [Gcl(jw,K)] has coefficients that are quadratic in

the controller vectorK. As we will see in chapter III, the nonnegativity of a polyno-

mial can be checked using a linear matrix inequality in the coefficients. This implies

that the frequency domain approach leads to quadratic matrix inequalities. There are

no general algorithms for solving them at current time.

For this reason, we will use the results in [26], which provides the following charac-

terization of SPR transfer functions:
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Theorem II.3. (SPR)

GT (s,K) = NT (s,K)
DT (s,K)

is SPR if and only if

(1) GT (0, K) > 0,

(2) NT (s,K) is Hurwitz, and

(3) ∆(α, s,K) = DT (s,K) + jαNT (s,K) is Hurwitz for everyα ∈ ℜ.

This characterization is useful for our work becauseGT (0, K), NT (s,K) and∆(α, s,K)

are affine in controller vectorK with fixedα. We will show that this will lead to linear in-

equalities. For this reason, the third characterization ofSPR in [26] is useful in constructing

absolutely stabilizing controllers through the solution of a family of linear programs.

Essentially, for the purposes of controller synthesis, this result reduces the problem to

determining the set of controller parameters,K = (k1, . . . , kn) that render Hurwitz (1) a

real polynomial,N , of the following form :

N(s,K) = N0(s) + k1N1(s) + · · · + knNn(s).

and(2) a complex polynomial,∆, of the following form :

∆(s,K) = ∆0(s) + k1∆1(s) + · · · + kl∆l(s).

The polynomialsNi, i = 0, . . . , n and∆j , j = 0, . . . , l may be assumed known (from the

plant data and the structure of the controller chosen).

The Hermite-Biehler theorem for a real polynomial providesa characterization when

a real polynomial is Hurwitz [31, 32]. IfN(s,K) is a real polynomial of degreen and

N(jw) may be expressed asNe(w
2, K)+jwNo(w

2, K) for some real polynomialsNe(w
2)

andNo(w
2). The degrees of polynomialsNe andNo arene andno respectively inw2;

specifically, ifn is odd,ne = no = n−1
2

and ifn is even,ne = n
2

andno = ne − 1. Letwe,i,

wo,i denote theith positive real roots ofNe andNo respectively.
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The Hermite-Biehler theorem for real polynomials may be stated as in Theorem II.4.

For the sake of clarity, and for the general case, the dependence onK is suppressed.

Theorem II.4. Hermite-Biehler Theorem for real polynomials

A real polynomialN(s) is Hurwitz iff

1. The constant coefficients ofNe(w
2) andNo(w

2) are of the same sign,

2. All roots ofNe(w
2) andNo(w

2) are real and distinct; the positive roots interlace

according to the following:

• if n is even:

0 < we,1 < wo,1 < · · · < wo,ne−1 < we,ne

• if n is odd:

0 < we,1 < wo,1 < · · · < we,ne
< wo,ne

A proof of the Hermite-Biehler theorem can be found in [26].

The following version [14, 15, 16] of the Hermite-Biehler theorem poses the problem

of renderingN(s,K) Hurwitz through a choice ofn − 1 frequencies. LetCk, Sk, k =

1, 2, 3, 4 denote diagonal matrices of dimensionn; the(m + 1)st diagonal elements ofCk

andSk are respectivelycos((2k − 1)π
4

+ mπ
2
) and sin((2k − 1)π

4
+ mπ

2
). By way of

notation, we represent the polynomialsNe andNo compactly in the following form, owing

to the affine dependence of their coefficients on the controller parameter vectorK.

Note thatNe(0, K) andNo(0, K) denote constant coefficients ofNe(w
2, K) andNo(w

2, K)

respectively.

Theorem II.5.

There exists a real control parameter vectorK = (k1, k2, · · · , kl) so that the real
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polynomial

N(s,K) := N0(s) + k1N1(s) + . . .+ klNl(s)

= nn(K)sn + nn−1(K)sn−1 + · · ·+ n0(K)

is Hurwitz iff there exists a set ofn − 1 frequencies,0 = w0 < w1 < w2 < w3 < · · · <

wn−1, so that one of the two Linear Programs (LPs) corresponding to k = 1 andk = 3 is

feasible:

Ck



















Ne(0, K)

Ne(w
2
1, K)

...

Ne(w
2
n−1, K)



















> 0 and Sk



















No(0, K)

No(w
2
1, K)

...

No(w
2
n−1, K)



















> 0. (2.2)

The union of the feasible sets of the above LPs correspondingto all such sets of fre-

quencies (0 < w1 < w2 < . . . < wn−1) is the set of all stabilizing controllers.

Proof.

The first condition of the Hermite-Biehler theorem requiresthat the constant coefficients of

Ne andNo be of the same sign. This condition implies thatNe(0, K) > 0, No(0, K) > 0

or Ne(0, K) < 0, No(0, K) < 0. The second condition of the Hermite-Biehler theorem is

equivalent to the existence ofn− 1 frequencies,0 < w1 < w2 < · · · < wn−1 such that the

roots of the even polynomial,Ne, lie in (0, w1), (w2, w3), (w4, w5), . . . , while the roots of

the odd polynomial,No, lie in (w1, w2), (w3, w4), . . . .

If Ne(0, K) > 0, No(0, K) > 0, then the placement of roots will requireNe(w
2
1, K) <

0, Ne(w
2
2, K) < 0, Ne(w

2
3, K) > 0, Ne(w

2
4, K) > 0, . . . andNo(w

2
1, K) > 0, No(w

2
2, K) <

0, No(w
2
3, K) < 0, No(w

2
4, K) > 0, . . . as shown in Figure 3, whereN(s) is of degree8

and the constant coefficient ofN(s) is positive. In other words, the signs ofNe(w
2
i , K) and
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Fig. 3.: Phase Property for Hurwitz Polynomials

No(w
2
i , K) are the same as that ofcos(π

4
+ iπ

2
) andsin(π

4
+ iπ

2
) respectively. Therefore, for

the case whenNe(0, K) > 0, No(0, K) > 0, we have

cos(
π

4
+ i

π

2
)Ne(w

2
i , K) > 0 and sin(

π

4
+ i

π

2
)No(w

2
i , K) > 0.

Similarly whenNe(0, K) < 0, No(0, K) < 0, we have

cos(
5π

4
+ i

π

2
)Ne(w

2
i , K) > 0 and sin(

5π

4
+ i

π

2
)No(w

2
i , K) > 0

Putting the inequality conditions together, there exists astabilizing controllerK iff there

exists a set of(n − 1) frequencies0 < w1 < . . . < wn−1 such that one of the two Linear

Programs (LPs) given by equations (2.2) is feasible. ∇∇∇

The third condition for SPR in Theorem II.3 requires that a complex polynomial be

Hurwitz. A characterization of a complex Hurwitz polynomial is presented in [26, 31, 33].
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For the sake of completeness we provide a characterization below. If ∆(s) is a complex

polynomial of degreen and∆(jw) may be expressed as∆r(w) + j∆i(w) for some real

polynomials∆r(s) and∆i(s). Without any loss of generality, one may assume that∆r and

∆i to be of degreen. Letwr,1, wr,2, . . . , wr,n be the roots of∆r andwi,1, wi,2, . . . , wi,n are

the roots of∆i.

Theorem II.6. (Hermite-Biehler Theorem for complex polynomials)

The polynomial∆(s) is Hurwitz if and only if all roots of∆r and∆i are real and interlace

according to the following:

• If the leading coefficients of∆r and∆i are of the same sign, then

−∞ < wr,1 < wi,1 < wr,2 < wi,2 < · · · < wr,n < wi,n <∞,

and

• if the leading coefficients of∆r and∆i are of opposite sign, then

−∞ < wi,1 < wr,1 < wi,2 < wr,2 < · · · < wi,n < wr,n <∞.

If ∆(s,K) is a complex polynomial whose coefficients are affine inK, then the coef-

ficients of∆i(w,K) and∆r(w,K) are also affine in controller parameters inK. Let δr,n

andδi,n denote the leading coefficients of∆r and∆i respectively. LetCk, Sk, k = 1, 2, 3, 4

denote diagonal matrices of dimension2n; the(m + 1)st diagonal elements ofCk andSk

are respectivelycos((2k − 1)π
4

+mπ
2
) andsin((2k − 1)π

4
+mπ

2
).

The following result [14, 15, 16] exploits the interlacing property of Hurwitz polyno-

mials, as described by the Hermite-Biehler theorem, to provide conditions for the existence

of a controller parameterK that renders a complex∆(s,K) Hurwitz in terms of the exis-

tence of separating frequencies and the feasibility of linear programs:
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Theorem II.7.

There exists a stabilizing controller parameter vectorK such that∆(s,K) is Hurwitz if and

only if there exists a set of separating frequencies−∞ < w1 < w2 < · · · < w2n−1 < ∞

such that at least one of the four linear programs corresponding tok = 1, 2, 3, 4 is feasible:

Ck



















δr,n(K)

∆r(w1, K)

...

∆r(w2n−1, K)



















> 0 and Sk



















δi,n(K)

∆i(w1, K)

...

∆i(w2n−1, K)



















> 0. (2.3)

The proofs follow the same pattern as that of Theorem II.5 as shown in [14, 15, 16].

In the next section, we will combine all the results to provide a computational method

for an inner approximation of the set of absolutely stabilizing controllers of a fixed order

for a SISO Lure-Postnikov System.

C. Main Results

Consider a Lure-Postnikov system of Figure 2. The linear part of the system may be de-

scribed by the following equation:

Y (s) = G1(s)U1(s) +G2(s)U2(s), (2.4)

whereG1(s) is the transfer function relating the control input,u1(t) to the output,y(t)

and the transfer functionG2(s) relates how the disturbanceu2(t) affects the outputy(t).

We assumeG1(s), G2(s) to be proper rational transfer functions. If a controller,−C(s) of

orderr is used to stabilize the system, thenU1(s) = −C(s)Y (s), and the relation from the
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disturbance,u2, to the outputy may be described as:

Y (s) =
G2

1 +G1C(s)
U2(s) = G(s)U2(s), G(s) =

G2

1 +G1C(s)
(2.5)

If C(s) is expressed as

C(s) =
n0 + n1s+ . . .+ nrs

r

d0 + d1s+ . . .+ dr−1sr−1 + sr
,

then the coefficients of the numerator and denominator polynomials of the transfer function

G(s) are affine functions of the controller parameter vector,K := (n0, n1, . . . , nr, d0, . . . , dr−1).

SinceG(s) depends onK, we will highlight the dependence through the use ofK as

an additional argument asG(s,K). We will expressG(s,K) as N(s,K)
D(s,K)

and any multiplier

M(s) as NM (s)
DM (s)

.

Clearly, from the absolute stability theory, ifM(s)G(s,K) is SPR for an appropriate

multiplierM(s), then the closed loop system is absolutely stable. We will consider a family

of polynomials,F as:

F := {∆(s, α,K) := D(s,K)DM(s) + jαN(s,K)NM(s), α ∈ ℜ} (2.6)

Let the degree of each polynomial ben. We will write ∆(jw, α,K) as∆r(w, α,K)+

j∆i(w, α,K). The termsδr,n(α,K) andδi,n(α,K) denote the leading coefficients of∆r

and∆i respectively.

We now formally state the main result:

Theorem II.8.

There exists an absolutely stabilizing controllerC(s) of order r if there exists aK that

renders

1. NM (0)
DM (0)

N(0,K)
D(0,K)

> 0

2. NM(s)N(s,K) is Hurwitz and
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3. Each member of the familyF of polynomials Hurwitz, i.e., for everyα ∈ ℜ, there

exists a set of frequencies−∞ < w1(α) < w2(α) < · · · < w2n−1(α) <∞, such that

K is in the feasible set of at least one ofk = 1, 2, 3, 4:

Ck



















δr,n(α,K)

∆r(w1, α,K)

...

∆r(w2n−1, α,K)



















> 0 and Sk



















δi,n(α,K)

∆i(w1, α,K)

...

∆i(w2n−1, α,K)



















> 0. (2.7)

D. Example

Fig. 4.: One-Link Robot with a Flexible Joint

We will consider a one-link robot with a flexible joint as an example of Lure-Postnikov

systems as shown in Figure 4 [1].

Iθ̈1 + b1θ̇1 +mgL sin θ1 + k(θ1 − θ2) = 0

Jθ̈2 + b2θ̇2 − k(θ1 − θ2) = τ (2.8)

We can obtain a state space representation of the system (2.8) by choosing state vari-

ables :
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x1 = θ1 x2 = θ̇1

x3 = θ2 x4 = θ̇2 (2.9)

Then :

ẋ1 = x2

ẋ2 =
1

I
{−k(θ1 − θ2) − b1θ̇1 −mgL sin θ1}

= −k
I
x1 −

b1
I
x2 +

k

I
x3 −

mgL

I
sin x1

ẋ3 = x4

ẋ4 =
1

J
{k(θ1 − θ2) − b2θ̇2 + τ}

=
k

J
x1 −

k

J
x3 −

b2
J
x4 +

τ

J
(2.10)

ẋ = Ax+B1u− Bψ(y)

y = Cx, (2.11)

where

A =



















0 1 0 0

−k
I

− b1
I

k
I

0

0 0 0 1

k
J

0 − k
J

− b2
J



















, B1 =



















0

0

0

1



















, B =



















0

1

0

0



















(2.12)

C =

[

1 0 0 0

]

(2.13)

ψ(y) =
mgL

I
sin y, u =

τ

J
(2.14)
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Suppose the joint system parameters are given as follows :

J = 0.5kg ·m2, b1 = 0.0N −m · s/rad, k = 50.0N −m/rad

I = 25.0kg ·m2, b2 = 1.0N −m · s/rad,m = 1.0kg, L = 5.0m

1. PID Controller

Let us consider a PID controller :

C(s) = kp +
ki

s
+ kds (2.15)

u = kp(r − y) + kd(ṙ − ẏ) + kiw (2.16)

ẇ = r − y, (2.17)

whereC(s) is the PID controller,w is the integral of the error andr is reference which is

set to be0. Figure 5 shows a control structure for the one-link robot with a flexible joint

which has a sector-bounded nonlinearity.

Fig. 5.: Control Structure of One-Link Robot with a Flexible Joint

Now, the overall system can be represented as a augmented system as follows :
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ż = Az − Bψ(y) (2.18)

y = Cz, (2.19)

wherez =

[

x w

]′

A =

























0 1 0 0 0

−k
I

− b1
I

k
I

0 0

0 0 0 1 0

k
J
− kp −kd − k

J
− b2

J
ki

−1 0 0 0 0

























, B =

























0

1

0

0

0

























(2.20)

C =

[

1 0 0 0 0

]

(2.21)

ψ(y) =
mgL

I
sin y, (2.22)

G(s) = = C(sI − A)−1
B

=
Ncl(s)

Dcl(s)

=
s3 + 2s2 + 100s

s5 + 2s4 + 102s3 + (4 + 2kd)s2 + 2kps+ 2ki

(2.23)

From the popov theorem, above system is absolutely stable ifthere isη ≥ 0, with−1
η

not an eigenvalue ofA such thatGT (s) = NGT (s)
DGT (s)

= 1+(1+ηs)βG(s) = Dcl(s)+(1+ηs)βNcl(s)
Dcl(s)

is strictly positive real [3].

For strictly positive realness of theGT (s), the following conditions should be held
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from Theorem II.3.

1. GT (0) = NGT (s)
DGT (s)

> 0,

2. NGT (s) = Dcl(s) + (1 + ηs)βNcl(s)) is Hurwitz for someη ≥ 0, and

3. P (s,K) = DGT (s)+jαNGT (s) = Dcl(s)+jα{Dcl(s)+(1+ηs)βNcl(s)} is Hurwitz

for someη ≥ 0, ∀α ∈ ℜ.

We will illustrate how to find the set of all controllers so that above SPR conditions satisfy

underη = 1, β = 2.

1. For condition1:

GT (s) =
NGT (s)

DGT (s)

=
Dcl(s) + (1 + ηs)βNcl(s))

Dcl(s)

=
s5 + 4s4 + 108s3 + (208 + 2kd)s

2 + (2kp + 200)s+ 2ki

s5 + 2s4 + 102s3 + (4 + 2kd)s2 + 2kps+ 2ki

and we clearly see thatGT (0) = 1 > 0

2. For condition2:

NGT (s) = Dcl(s) + (1 + ηs)βNcl(s))

= s5 + 4s4 + 108s3 + (208 + 2kd)s
2 + (2kp + 200)s+ 2ki

The real and imaginary parts of theNGT at jw are given by

NGT (jw,K) = NGT,e(w,K) + jwNGT,o(w,K)

NGT,e(w,K) = 4w4 − (208 + 2kd)w
2 + 2ki

NGT,o(w,K) = w4 − 108w2 + 200 + 2kp
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For the polynomialNGT to be Hurwitz, there must exist a set of frequencies0 =

w0 < w1 < w2 < w3 < w4 for eitherC1 andS1 orC3 andS3

Ck

























1 0 0

1 w2
1 w4

1

1 w2
2 w4

2

1 w2
3 w4

3

1 w2
4 w4

4





































0 0 2 0

−208 0 0 −2

4 0 0 0































1

kp

ki

kd



















> 0,

and

Sk

























1 0 0

1 w2
1 w4

1

1 w2
2 w4

2

1 w2
3 w4

3

1 w2
4 w4

4





































200 2 0 0

−108 0 0 0

1 0 0 0































1

kp

ki

kd



















> 0

Figure 6 shows the set of controller which hold SPR condition2.

3. For condition3:

P (s) = DGT (s) + jαNGT (s)

= Dcl + jα{Dcl(s) + (1 + ηs)βNcl(s)}

= (1 + jα)s5 + (2 + j4α)s4 + (102 + j108α)s3 + {4 + 2kd + j(208 + 2kd)α} s2

+ {2kp + j(2kp + 200)α} s+ 2ki + j2αki
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Fig. 6.: Set of PID Controllers Satisfying SPR Condition2

P (jw,K) = Pr(w,K) + jPi(w,K)

Pr(w,K) = −αw5 + 2w4 + 108αw3 − 2(2 + kd)w
2 − 2α(100 + kp)w + 2ki

Pi(w,K) = w5 + 4αw4 − 102w3 − 2α(104 + kd)w
2 + 2kpw + 2α

Ck

































0 0 . . . −1

1 w1 . . . w5
1

1 w2 . . . w5
2

...

...

1 w9 . . . w5
9






















































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Figure 7 shows the set of controller for which the SPR condition3 holds.

Fig. 7.: Set of PID Controllers Satisfying SPR Condition3

Figure 8 shows the set of controller for which the transfer function is SPR and this set

of controller absolutely stabilize the one-link robot witha flexible joint.
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Fig. 8.: Set of Absolutely Stabilizing PID Controllers

From the admissible region shown in Figure 8, we selected thePID gain values to be

kp = 50, ki = 5, andkd = 15. Figure 9 shows the response for the one-link robot system

with the selected PID controller.
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Fig. 9.: Response of the Robot’s Angular Position with a PID Controller (kp = 50, ki = 5, kd =

15)

2. First Order Controller

Let us consider the first order controller

C(s) =
k2s+ k∗1
s+ k3

(2.24)

u = k1w + k2y (2.25)

ẇ = −k3w + y

k∗1 = k1 + k2k3,

whereC(s) is the first order controller,w is a output filter andr is reference which is set to

be0. Now, the overall system can be represented as a augmented system.

ż = Az − Bψ(y)

y = Cz, (2.26)
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wherez =


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0 0

0 0 0 1 0

k
J

+ k2 0 − k
J

− b2
J

k1

1 0 0 0 −k3

























, B =

























0

1

0

0

0

























(2.27)

C =

[

1 0 0 0 0

]

(2.28)

ψ(y) =
mgL

I
sin y, (2.29)

G(s) = C(sI − A)−1
B

= Ncl(s)
Dcl

= s3+(2+k3)s2+(100+2k3)s+100k3

s5+(2+k3)s4+(150+2k3)s3+(150k3+100)s2+(−50k2+100k3)s−50k∗

1

,

wherek∗1 = k1 + k2k3

From the Popov theorem, the above system is absolutely stable if there isη ≥ 0,

with −1
η

not an eigenvalue ofA such thatGT (s) = NGT (s)
DGT (s)

= 1 + (1 + ηs)βG(s) =

Dcl(s)+(1+ηs)βNcl(s)
Dcl(s)

is strictly positive real.

We will illustrate how to find the set of all first order controllers so that SPR conditions

satisfy underη = 1, β = 2 as before.

1. For condition1: GT (s) = NGT (s)
DGT (s)

= Dcl(s)+(1+ηs)βNcl(s))
Dcl(s)



31

=
s5+(4+k3)s4+(156+4k3)s3+(304+156k3)s2+(−50k2+304k3+200)s−50k∗

1
+200k3

s5+(2+k3)s4+(150+2k3)s3+(150k3+100)s2+(−50k2+100k3)s−50k∗

1

GT (0) = 1 − 4k3

k∗1
> 0

Figure 10 shows the set of controller which satisfying SPR condition 1 of Theorem

II.3.

Fig. 10.: Set of First Order Controllers Satisfying SPR Condition1

2. For condition2:

NGT (s) = Dcl(s) + (1 + ηs)βNcl(s))

= s5 + (4 + k3)s
4 + (156 + 4k3)s

3 + (304 + 156k3)s
2

+(−50k2 + 304k3 + 200)s− 50k∗1 + 200k3
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NGT (jw,K) = NGT,e(w,K) + jwNGT,o(w,K)

NGT,e(w,K) = (4 + k3)w
4 − (304 + 156k3)w

2 − 50k∗1 + 200k3

NGT,o(w,K) = w4 − (156 + 4k3)w
2 − 50k2 + 304k3 + 200
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Figure 11 shows the set of first order controller for which satisfying the SPR condi-

tion 2.
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Fig. 11.: Set of First Order Controllers Satisfying SPR Condition2

3. For condition3:

P (s) = DGT (s) + jαNGT (s)

= Dcl + jα{Dcl(s) + (1 + ηs)βNcl(s)}

= (1 + jα)s5 + {2 + k3 + j(4 + k3)α} s4 + {150 + 2k3 + j(156 + 4k3)α} s3

+ {100 + 150k3 + j(304 + 156k3)α} s2

+ {−50k2 + 100k3 + j(−50k2 + 304k3 + 200)α} s

−50k∗1 + j(−50k∗1 + 200k3)α



34

P (jw,K) = Pr(w,K) + jPi(w,K)

Pr(w,K) = −αw5 + (2 + k3)w
4 + 4α(39 + k3)w

3 − 50(2 + 3k3)w
2

+α(−200 + 50k2 − 304k3)w − 50k∗1

Pi(w,K) = w5 + α(4 + k3)w
4 − 2(75 + k3)w

3 + α(−304 − 156k3)w
2

+50(−k2 + 2k3)w − 50α(k∗1 − 4k3)
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Figure 12 shows the set of first order controller for which theSPR condition3 holds.



35

Fig. 12.: Set of First Order Controllers Satisfying SPR Condition3

Figure 13 shows the set of the first order controller for whichall the conditions hold

and this set of controller absolutely stabilize the one-link robot with a flexible joint. From

the admissible region shown in Figure 13, we selected the first order gain values to be

k∗1 = −20, k2 = −50 andk3 = 1. Figure 14 shows the response for the one-link robot

system with the selected first order controller.
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Fig. 13.: Set of Absolutely Stabilizing First Order Controllers
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Fig. 14.: Response of the Robot’s Angular Position with a First Order Controller (k∗
1 = −20, k2 =

−50, k3 = 1)
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CHAPTER III

SUM-OF-SQUARES REPRESENTATIONS OF NONNEGATIVE POLYNOMIALS

AND SEMIDEFINITE PROGRAMMING

A. Introduction

A method for synthesizing of fixed order stabilizing controllers directly from the empiri-

cal frequency response data and some coarse information about the SISO system will be

proposed in chapter IV.

We utilize the well known Chevyshev polynomial [34, 35, 36, 37, 38, 39] to approx-

imate the frequency response function in chapter IV. For this reason, we will provide a

brief review of Chebyshev approximation, in section B. We also apply some recent results

that sums of squares can be formulated as a linear inequalityover the cone of positive

semidefinite matrices(LMI) [20, 40, 41, 42, 43, 44].

The method to be proposed requires the nonnegativity of a real polynomial on some

intervals. In section C of this chapter, we review the formulation for checking the nonneg-

ativity of a real polynomial on an interval as a semidefinte program(SDP) through the use

of Markov-Lucaks theorem [20].

B. Polynomial Approximation of Continuous Functions

1. Chebyshev Polynomials of the First and Second Kinds

We start with Weierstrass’s result on approximation of a continuous function by polynomi-

als.

Theorem III.1. (Weierstrass Approximation)

If f is a continuous real-valued function on[a, b] and if anyǫ > 0 is given, then there exists
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a polynomialP on [a, b] such that

| f(x) − P (x) | < ǫ ∀ x ∈ [a, b] (3.1)

In words, any continuous function on a closed and bounded interval can be uniformly

approximated on that interval by polynomials to any degree of accuracy. Proofs of the

Weierstrass approximation theorem can be found in [45, 46].

The algebraic polynomialsTn(x) satisfying

Tn(cosx) = cos(nx), for n = 0, 1, 2, . . . (3.2)

are called the Chebyshev polynomials of the first kind [34, 35, 36, 37, 38]. This formula

uniquely definesTn as a polynomial of degree exactlyn. The Chebyshev polynomialTn is

of degreen and its leading coefficient is1 if n = 0, and2n−1 if n ≥ 1. We describe some

properties of Chebyshev polynomials of the first kind.

1. Sincecos(nx) = 2 cosx cos(n− 1)x− cos(n− 2)x, Tn(x) has the following recur-

rence relation [36].

Tn+1(x) = 2xTn(x) − Tn−1, n ≥ 2,

whereT0(x) = 1, T1(x) = x. This recurrence relation may be taken as a definition

for the Chebyshev polynomial of the first kind.
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T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

...

2. Chebyshev polynomials of the first kind are orthogonal with respect to the weight

function(1 − x2)−1/2 on the interval(−1, 1).

∫ 1

−1

Tn(x) Tm(x)√
1 − x2

dx =

∫ π

0

cos nθ cosmθ dθ

=























0, n 6= m

π, n = m = 0

π/2, n = m 6= 0























3. The polynomialTn(x) hasn zeros in the interval[−1, 1], and they are located at the

points

x = cos

(

π(k − 1/2)

n

)

, k = 1, 2 . . . , n (3.3)

4. The Chebyshev polynomials also satisfy a discrete orthogonal property. Ifxk (k =
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1, 2, . . . , m) are them zeros ofTm(x) given by (3.3) and ifi, j < m, then

m
∑

k=1

Ti(xk)Tj(xk) =























0, i 6= j

m, i = j = 0

m/2, i = j 6= 0























(3.4)

The Chebyshev polynomialsUn(x) of the second kind are some polynomials of degree

n in x and are defined by

Un(x) =
sin(n+ 1)θ

sin θ
, x = cos θ (3.5)

This formula uniquely definesUn(x) as a polynomial of degree exactlyn.

We describe some properties of Chebyshev polynomials of thesecond kind.

1. Sincesin(n+1)θ+sin(n−1)θ = 2 cos θ sinnθ, Un(x) has the following recurrence

relation [36].

Un+2(x) = 2xUn+1(x) − Un(x), n ≥ 2,

whereU0(x) = 1, U1(x) = 2x. This recurrence relation may be taken as a definition

for the Chebyshev polynomials of the second kind.

U0(x) = 1

U1(x) = 2x

U2(x) = 4x2 − 1

U3(x) = 8x3 − 4x

U4(x) = 16x4 − 12x2 + 1

U5(x) = 32x5 − 32x3 + 6x

...
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2. Chebyshev polynomials of the second kind are orthogonal with respect to the weight

function(1 − x2)1/2 on the interval(−1, 1).

3. The derivative of Chebyshev polynomials of the first kind can be represented as

Chebyshev polynomials of the second kind:

dTn(x)

dx
= − 1

sin θ

cosnθ

dθ

=
cosnθ

dθ
/
cos θ

dθ

=
n sinnθ

sin θ

= nUn−1(x) (3.6)

2. Chebyshev Approximation

The Chebyshev approximation uses Chebyshev polynomials asa basis for the approximat-

ing polynomials [39].

Theorem III.2. (Chebyshev Approximation)

Let f(x) be an arbitrary continuous function in the interval[−1, 1] thenf(x) can be ap-

proximated using the first”N + 1” Chebyshev polynomials as:

pn(x) =

[

N
∑

k=0

CkTk(x)

]

− 1

2
C0, (3.7)

where

Cj ≡ 2

N

N
∑

k=1

f(xk)Tj(xk)

=
2

N

N
∑

k=1

f

[

cos

(

π(k − 1
2
)

N

)]

cos

(

πj(k − 1
2
)

N

)

, (3.8)

It is not difficult to verify theorem III.2 with (3.3) and (3.4).
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For Chebyshev polynomial approximation, it is necessary tonormalize the frequency

rangew ∈ [a, b] to x ∈ [−1, 1] as follows:

x = −1 + 2
w − a

b− a
, w ∈ [a, b] (3.9)

Let δ(s) = ∆(s) Np(−s)
Dp(s)Dp(−s)

, where∆(s) is characteristic polynomial for a system and

Dp(s) andNp(s) are the denominator and numerator of a plant will be seen in chapter IV.

Now, we are ready to approximateδr(jw,K)
|Dp(jw)|2

and δi(jw,K)
|Dp(jw)|2

with finite frequency data to the

Chebyshev polynomial of degreeN .

1. The approximation of the real partfr(x,K) ≈ δr(jw,K)
|Dp(jw)|2

δr(jw,K)

| Dp(jw) |2 = ∆r(w, |G(jw)|2, Gr(w), Gi(w)) [K ′]

fr(x,K) = Cr
0(K)T0(x) + Cr

1(K)T1(x) + . . .+ Cr
N(K)TN (x) (3.10)

2. The approximation of the imaginary partfi(x,K) ≈ δi(jw,K)
|Dp(jw)|2

δi(jw,K)

| Dp(jw) |2 = ∆i(w, |G(jw)|2, Gr(w), Gi(w)) [K ′]

fi(x,K) = Ci
0(K)T0(x) + Ci

1(K)T1(x) + . . .+ Ci
N(K)TN(x) (3.11)

3. To approximate derivative of the imaginary partfi(x,K), we use the relation between

dTn(x)
dx

andUn(x) as shown in equation (3.6).

dTn(x)

dx
= nUn−1(x)

dfi(x,K)

dx
= Cd

0 (K)U0(x) + Cd
1 (K)U1(x) + . . .+ Cd

N−1(K)UN−1(x),

whereCr
j (K), Ci

j(K), j = 1, N andCd
k(K), k = 1, N − 1 are affine inK.
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3. Discrete Polynomial Transforms

Let pn(x) be a orthogonal and normalized polynomial on a bounded or unbounded interval

I ⊆ ℜ, with respect to a nonnegative weight functionw(x).

∫

I

pn(x)pm(x)w(x)dx =











0, n 6= m

1, n=m.

The Chebyshev polynomials of the first kind are orthogonal onthe interval(−1, 1)

with respect to a weight function(1 − x2)−1/2.

∫ 1

−1

Tn(x)Tm(x)√
1 − x2

dx =























0, n 6= m

π, n = m = 0

π/2, n = m 6= 0























(3.12)

Then the normalized Chebyshev polynomials are as follows:

p0(x) =

√

1

π
T0(x)

p1(x) =

√

2

π
T1(x) (3.13)

p2(x) =

√

2

π
T2(x)

...

Now, the approximation polynomialsfr(x,K) or fi(x,K) can be rewritten aspi(x).

f(x,K) = Cp
0 (K)p0(x) + Cp

1 (K)p1(x) + . . .+ Cp
N(K)pN(x) (3.14)

We define the discrete polynomial transformsVp for f(x) = Cp
0p0(x) + Cp

1p1(x) +

. . .+Cp
NpN (x) which offers a way to map the coefficients of a polynomial to its polynomial

values.
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Definition III.1.

Letλ0, λ1, . . . , λN are the roots ofpN+1. then we defineVp [20, 35].

Vp =



















p0(λ0) p1(λ0) · · · pN(λ0)

p0(λ1) p1(λ1) · · · pN(λ1)

...
...

...

p0(λN) p1(λN) · · · pN(λN)



















(3.15)

The linear transformationVp maps the coefficients of the polynomial

f(x) = Cp
0p0(x) + Cp

1p1(x) + . . .+ Cp
NpN(x) (3.16)

toN + 1 values atλ0, λ1, · · · , λN and vice-versa.

y = VpC
p =



















p0(λ0) p1(λ0) · · · pN(λ0)

p0(λ1) p1(λ1) · · · pN(λ1)

...
...

...

p0(λN) p1(λN) · · · pN(λN)





































Cp
0

Cp
1

...

Cp
N



















, (3.17)

wherey = [f(λ0), f(λ1) , . . . , f(λN)]T .

Then the coefficientsCp can be determined as follows:

Cp = W T
p y, (3.18)

whereWp is such thatW T
P Vp = I.

We can similarly defineq(x), Vq, Wq andCq for dfi(x,K)
dx

corresponding top(x), Vp,

Wp andCp respectively.

dfi(x,K)

dx
= Cq

1q0(x) + Cq
2q1(x) + . . .+ Cq

NqN−1(x), (3.19)

whereqi(x) =
√

2
π
Ui(x), i = 0, . . . , N − 1.
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C. Semidefinite Representations for Nonnegative Polynomials

It is well known that nonnegative polynomials can be represented as sums of squares(SOS) [47,

48]. The condition that a polynomial is sums of squares can beformulated as a linear in-

equality over the cone of positive semidefinite matrices(LMI) [20, 40, 41, 42, 43, 44].

1. Sum of Squares

A basic problem that appears in many areas of control and optimization is that of checking

global, or local nonnegativity of a function of several variables [43, 44].

Theorem III.3.

If a real polynomialf(x) of degreen is nonnegative for allx ∈ ℜ, thenf(x) can be written

as sum of squares.

f(x) = f 2
1 (x) + f 2

2 (x) (3.20)

for some polynomialsf1 andf2 such thatdeg(f1) ≤ n/2 anddeg(f2) ≤ n/2

Proof.

If f(x) ≥ 0 ∀ x ∈ ℜ then it cannot have real roots. this impliesf(x) must be even degree,

i.e. n = 2m for somem. Letσi + jwi, i = 1, m be the2m roots off(x). In the factored

form:

f(x) =

{

√
α

m
∏

i=1

(x− σi − jwi)

} {

m
∏

i=1

(x− σi + jwi)
√
α

}

= [R(x) + jI(x)] [R(x) − jI(x)]

= R2(x) + I2(x)

∇∇∇
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2. Semidefinite Representations

Let g1, g2, . . . , gs be all monomials of degreer or less. A monomial is a product of positive

integer powers of a fixed set of variables.

Theorem III.4.

A polynomialf(x) of degreen is a sum of squares if and only if there exist a positive

semidefinite matrixX and a vector of monomialsg(x), each row of degree no more than

n/2 such that

f(x) = gT (x)Xg(x), for someX � 0 (3.21)

Proof.

Let q(x) = [q1(x) q2(x) . . .]
T = Lg(x). L is a compatible coefficient matrix andg(x) is a

vector of monomials containing all monomials inq(x). Then

f(x) = qT (x)q(x) = gT (x)LTLg(x)

andX = LTL, X � 0. Now suppose there existsf(x) = gT (x)Xg(x). A positive

semidefinite matrixX can be represented by the eigenvalue decompositionX = MT ΛM

as shown in [44]. Then

f(x) = gT (x)MT ΛMg(x) =
∑

i=1

λi(Mg(x))2
i

∇∇∇

Sincef(x) being sum of squares is equivalent toX � 0, the problem to find aX

which proves thatf(x) is a sum of squares can be put a linear matrix inequality. We can

show this through an example.
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Example

Consider a fourth-order polynomialf(x) and defineg(x) = [x2 x 1]T .

f(x) = 2x4 + 4x3 + 10x2 − 8x+ 5

=

[

x2 x 1

]

X

[

x2 x 1

]T

=

[

x2 x 1

]













α11 α12 α13

α21 α22 α23

α31 α32 α33













[

x2 x 1

]T

= α11x
4 + (α11 + α21)x

3 + (α13 + α22 + α31)x
2 + (α23 + α32)x+ α33

Comparing the coefficients, we can get followings:

X =













2 −2 α13

−2 10 − 2α13 −4

α13 −4 5













=













2 −2 0

−2 10 −4

0 −4 5













+ α13













0 0 1

0 −2 0

1 0 0













Now,f(x) can be decomposed as a sum of squares by searching forα13 such thatX � 0.

In other words,X � 0 if and only if f is sums of squares. In particular, forα13 = 3, the

matrixX will be positive semidefinite and we have

X =













2 −2 3

−2 4 −4

3 −4 5













=













1 1

0 −2

1 2



















1 0 1

1 −2 2







= LLT
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This yields a sum of squares decomposition.

f(x) = (x2 + 1)2 + (x2 − 2x+ 2)2.

Since we have to find nonnegative conditions of a real polynomial in the specific fre-

quency intervals, local nonnegativity of a polynomial has to be considered.

Theorem III.5. (Markov-Lucaks)

Letf be a polynomial of degreenwith real coefficients. Supposef(x) ≥ 0 for all x ∈ [a, b],

then one of the following holds.

1. If deg(f) = n = 2m is even, then

f(x) = f 2
1 (x) + (x− a)(b− x)f 2

2 (x) (3.22)

for some polynomialsf1 andf2 such thatdeg(f1) ≤ m anddeg(f2) ≤ m− 1

2. If deg(f) = n = 2m+ 1 is odd, then

f(x) = (x− a)f 2
1 (x) + (b− x)f 2

2 (x) (3.23)

for some polynomialsf1 andf2 such thatdeg(f1) ≤ m anddeg(f2) ≤ m

Proofs can be found in [47, 48, 49].

Recently, Roh and Vandenberghe provided a technique for checking the local non-

negativity problem through the feasibility of a positive semidefinite matrix satisfying a set

of Linear Matrix Inequalities. The proof requires the following definition and the use of

Markov-Lucaks Theorem.

Definition III.2.

A o B denotes the Hadamard product of two matrices A and B of the same dimension,

i.e., the matrix with elements(A o B)ik = AikBik. The same notation is used for vectors
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(x o y)i = xiyi. For real matricessqr(A) = A o A, For complex matricessqr(A) =

A o Ā, (Ā is complex conjugate ofA).

Theorem III.6. (Roh and Vandenberghe)

f(x) ≥ 0 for x ∈ [x1, x2] iff there existX1 ∈ Sm1+1, X2 ∈ Sm2+1 such that

Cp(K) = W T
p

[

d1 o diag(V1X1V1
T ) + d2 o diag(V2X2V2

T )
]

, X1 � 0, X2 � 0 (3.24)

m1 = ⌊N/2⌋, m2 = ⌊N−1
2

⌋. The matricesV1 andV2 are formed by the firstm1 + 1 and

m2 + 1 columns ofVp respectively.⌊z⌋ is the largest integer which does not exceedz. The

vectorsd1, d2 ∈ ℜN+1 are defined as

d1 =











1̄, for even N

λ− x11̄, for odd N











, d2 =











(λ− x11̄) o (x21̄ − λ), for even N

x21̄ − λ, for odd N











(3.25)

λ = [λ0 λ1 . . . λN ]T are the roots ofpN+1, the normalized Chebyshev polynomial of

degreeN + 1.

Proof.

Let us suppose the degree off(x) is even(N = 2m). Then by Markov-Lucaks Theorem,

the nonnegativef(x) ≥ 0 for x ∈ [x1, x2] can be represented as sums of squares:

f(λ) = g2(λ) + (λ− x1)(x2 − λ)h2(λ)



















f(λ0)

f(λ1)

...

f(λN)



















=



















g2(λ0) + (λ0 − x1)(x2 − λ0)h
2(λ0)

g2(λ1) + (λ1 − x1)(x2 − λ1)h
2(λ1)

...

g2(λN) + (λN − x1)(x2 − λN)h2(λN)



















Let the polynomialsg andh be such thatdeg(g) ≤ m anddeg(h) ≤ m− 1. Letg(λ)
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has the form

g(λ) =
m

∑

i=0

uipi(λ)

Let ū = [u0 u1 . . . um]T andpi(λ), i = 0, m be a orthogonal polynomial.



















g(λ0)

g(λ1)

...

g(λN)



















=



















∑m
i=0 uipi(λ0) = ūTp(λ0)

∑m
i=0 uipi(λ1) = ūTp(λ1)

...
∑m

i=0 uipi(λN) = ūTp(λN)





































g2(λ0)

g2(λ1)

...

g2(λN)



















=



















{ūTp(λ0)}T{ūTp(λ0)} = p(λ0)
T ūūTp(λ0)

{ūTp(λ1)}T{ūTp(λ1)} = p(λ1)
T ūūTp(λ1)

...

{ūTp(λN)}T{ūTp(λN)} = p(λN)T ūūTp(λN)



















= diag(V1X1V
T
1 )

The matrixV1 is x formed by the firstm+1 columns ofVp andX1 ∈ S
m+1 is a positive

semidefinite matrix.

Similarlyh(λ) can be represented



















h2(λ0)

h2(λ1)

...

h2(λN)



















= diag(V2X2V
T
2 ),

whereV2 is a matrix formed by the firstm columns ofVp andX2 ∈ S
m is a positive
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semidefinite matrix. Thenf(λ) can be written as:

f(λ) = 1̄ o diag(V1X1V
T
1 ) + (λ− x11̄) o (x21̄ − λ)diag(V2X2V

T
2 )

Finally, we can get the equation (3.24) in Theorem III.6 byCp = W T
p f(λ).

Cp(K) = W T
p

[

1̄ o diag(V1X1V
T
1 ) + (λ− x11̄) o (x21̄ − λ)diag(V2X2V

T
2 )

]

∇∇∇

In essence, the problem of checking if a polynomial is nonnegative on an interval can

be accomplished by ascertaining the existence of two positive semidefinite matrices, the

entries of which constrained by the coefficients of the polynomials through linear equality

constraints.
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CHAPTER IV

SYNTHESIS OF FIXED ORDER STABILIZING CONTROLLERS USING

FREQUENCY RESPONSE MEASUREMENTS

A. Introduction

It is widely recognized that an accurate analytical model ofthe plant may not be available

to a control designer. However, it is reasonable in many applications that one will have

an empirical model of the plant in terms of its frequency response data and from physical

considerations or from the empirical time response data, one may have some coarse infor-

mation about the plant such as the number of non-minimum phase zeros of the plant etc.

In view of this, we consider here the problem of synthesizingsets of stabilizing controllers

directly from the empirical data and such coarse information about the plant.

The frequency response information can have a variety of applications for the analysis

and design of control systems. For example, the Nyquist stability criterion enables us

to investigate both the absolute and relative stabilities of linear closed-loop systems from

the knowledge of their open-loop frequency response characteristics [50]. The frequency

response information can also be used for system identification and controller design in

time domain [51].

There are many techniques for synthesizing controllers from empirical data of the

plant, see [52, 53, 54, 55, 56, 57, 58]. In [55], Oaki used the frequency response infor-

mation to determine force control parameters in a robot manipulator force control. A PID

controller design method based on frequency-response datafor process control was intro-

duced in [58]. A systematic attempt to synthesize PID and first order controllers for LTI

plants using frequency response measurements was first presented in [19]. However, we

are unaware of any systematic attempt at synthesizing sets of stabilizing controllers of arbi-
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trary order directly from the frequency response data and this work is a first attempt in that

direction. We propose a new method to synthesize a stabilizing fixed order controller with

finite frequency response data and the number of non-minimumzeroes of a plant. We pose

the problem of synthesizing the sets of stabilizing controllers as that of sets of controllers

satisfying some robust SDPs. The robust SDPs take into account measurement errors in

frequency response.

The following are the standing assumptions about the plant:

Assumption IV.1.

1. The transfer functionG(s) of the plant is rational and strictly proper, i.e.,G(s) =

Np

Dp
(s), for some co-prime polynomials,Np(s) andDp(s), with the degreen ofDp(s)

greater than the degreem ofNp(s). We may not know eitherm or n.

2. There are no poles and zeros of the plant on the imaginary axis, i.e.,Dp(jw) 6= 0

andNp(jw) 6= 0 for everyw ∈ ℜ.

3. This assumption and the following assumptions concern the knowledge of frequency

response of the plant: There is a frequencywb beyond which the phase of the plant

does not change appreciably and the amplitude response of the plant is negligible.

To quantify this statement, letG(jw) be expressed asGr(w) + jwGi(w), whereGr

andGi are real, rational functions ofw. For some knownǫ > 0, we assume that

|G(jw)| ≤ ǫ ∀w ≥ wb. This is a reasonable assumption since the plant is strictly

proper.

4. The relative degreen−m is known. This can be inferred from the amplitude response

of the plant at sufficiently high frequencies.

5. We will assume that the functions|G(jw)|2, Gr(w), Gi(w) have been approximated

using polynomialsP0(w), P1(w), P2(w) respectively and the maximum estimation
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errors are bounded byµ0, µ1, µ2 and the maximum derivatives of the estimation

errors are bounded byη0, η1, η2 respectively. Mathematically, for allw ∈ [0, wb], we

have

||G(jw)|2 − P0(w)| ≤ µ0,

|Gr(w) − P1(w)| ≤ µ1,

|Gi(w) − P2(w)| ≤ µ2,

|d(|Gp(jw)|2 − P0(w)|)
dw

≤ η0,

|d(Gr(w) − P1(w))

dw
| ≤ η1,

|d(Gi(w) − P2(w))

dw
| ≤ η2.

We assume thatµi, ηi, i = 0, 1, 2 and the polynomialsP0(w), P1(w), P2(w) are

known.

6. We will assume that the number of non-minimum phase zeros,zr of the plant are

known.

We are interested in synthesizing a rational, proper stabilizing controllerC(s), i.e.,

for some monic polynomialDc(s) of degreer and a polynomialNc(s) of degree at mostr,

C(s) = Nc

Dc
(s). LetNc(s) = n0+n1s+. . .+nrs

r andDc(s) = d0+d1s+. . .+dr−1s
r−1+sr.

LetK be the vector of controller coefficients:

[

n0 n1 . . . nr d0 d1 . . . dr−1

]T

.

The determination of the vectorK is equivalent to the determination of the stabilizing

controllerC(s).

This chapter is organized as follows: In section B, we provide basic ideas to derive

main results. In section C, we present the main results and provide a numerical example.
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In section D, we propose some robust SDPs to handle the measurement errors. In section

E, we deal with a special case in which case the nonnegativityin intervals can be posed to

linear inequalities.

B. Basic Ideas

The basic ideas used in the construction of stabilizing setsare as follows:

1. We first construct a rational function:

δ(s) = G(s)G(−s)Nc(s) +G(−s)Dc(s) (4.1)

In fact, if ∆(s) := Np(s)Nc(s) +Dp(s)Dc(s) is the characteristic polynomial of the

closed loop system, then it is easy to see that:

δ(s) = ∆(s)
Np(−s)

Dp(s)Dp(−s)
(4.2)

If ∆(s) has coefficients that are affine in the controller coefficients, then the rational

function,δ(s), is also affine in the controller coefficients.

2. All controllers,C(s), that stabilize∆(s), are such that the total phase accumulation

of δ(jw) asw varies from0 to∞ is the same and equals(n−m+ r + 2zr)
π
2
.

∠δ(jw)|w=∞
w=0 =

π

2
(n−m+ r + 2zr) (4.3)

Sincen−m, r andzr are known, the total desired phase accumulation is known.

3. Letδ(jw) = δr(w)+ jwδi(w), whereδr(w) andδi(w) are real, rational functions. In

Lemma IV.2, we relate how the total accumulation of phase is related to the roots of

δi(w) and the sign ofδr(w) at those roots.
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Essentially, the numerator ofδ(s) must have a certain number of roots with nega-

tive real parts. This can happen only if the Nyquist plot ofδ(s) is one of finitely

many patterns, where each pattern can be identified with the signs of the real part

of the Nyquist plot when the imaginary part is zero. The set ofsuch patterns can be

characterized using the generalized phase formula developed in [25, 59].

4. The existence of a stabilizing controller for the plant can be expressed in terms of

the existence of an appropriate set of frequency intervals which admit exactly one

or zero roots of the imaginary part of the Nyquist plot and no roots of the real part.

This is shown in Theorem IV.1. For every set of frequency intervals, these conditions

can be translated into linear inequality constraints or linear matrix inequality (LMI)

constraints involving the controller parameters. This step involves the Chebyshev ap-

proximation of the frequency response in the frequency band[0, wb]. It subsequently

involves the use of Markov-Lucaks theorem to convert the conditions into a LMI

form.

C. Main Results

Let δ(s) = δ0 + δ1s+ · · · + δds
d be a real polynomial. Then the following Lemma relates

the net phase change∠δ(jw) asw increases from zero to infinity [25, 32].

Lemma IV.1. (Net Phase Change Property for real polynomials)

1. The phase of the real Hurwitz polynomial,δ(s) = δ0+δ1s+ · · ·+δdsd monotonically

increases asw : 0 → +∞. The plot ofδ(jw) moves strictly counterclockwise and

goes throughd quadrants asw : 0 → +∞.

2. The plot of thedth order real polynomial (not necessary Hurwitz),δ(jw) = δr(w) +

jwδi(w) goes throughl(δ(s)) − r(δ(s)) quadrants asw : 0 → +∞.
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∠δ(jw)|w=∞
w=0 =

π

2
[l(δ) − r(δ)] , (4.4)

wherel(δ), r(δ) denote the numbers of roots ofδ(s) in the left half plane and in the

right half plane respectively.

Following the outline of the basic ideas presented in the earlier section, we begin with

a generalization of Hermite-Biehler theorem for rational functions in Lemma IV.2.

Lemma IV.2.

Considerδ(s) = ∆(s)Np(−s)
Dp(s)Dp(−s)

. Let the nonnegative real roots ofδi(w) bew1, . . . , wl and the

sign ofδr(w) at these frequencies be correspondinglyi1, . . . , il. Then∆(s) is Hurwitz if

and only if

1. forn−m+ r : even

n−m+ r + 2zr = sgn[δi(0)]{i0 − 2i1 + . . .+ 2(−1)lil + (−1)l+1il+1} (4.5)

2. forn−m+ r : odd

n−m+ r + 2zr = sgn[δi(0)]{i0 − 2i1 + 2i2 + . . .+ 2(−1)lil} (4.6)

Proof.

We first note that the degree of the polynomial∆(s)Np(−s) isn+r+m. Hence, the parity

of the degree of the polynomial∆(s)Np(−s) is the same as that ofn−m+ r.

Let the sign ofd(wδi(w))
dw

at w = wl be Il. The change in the phase ofδ(jw) fromwl

to w1+1 is given by: Il(il − il+1)
π
2
. Letw0 = 0 andwl+1 = ∞. SinceIi = −Ii−1 for

i = 1, 2, . . . , l, the phase change inδ(jw) fromw = w0 tow = wl can be expressed as:

∠δ(jw)|w=wl

w=0 = I0
{

(i0 − i1) − (i1 − i2) + (i2 − i3) + . . .+ (−1)l−1(il−1 − il)
} π

2
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The phase change inδ(jw) from w = wl to ∞ will depend on the degree of the

polynomial∆(s)Np(−s); if the degree is odd, it will beIl π
2
il as shown in Figure 15, and

if the degree is even , it will beIl(il − il+1)
π
2

as also shown in Figure 16. SinceI0 =

sign(δi(0)) andIl = (−1)lI0, we have the change in the phase ofδ(jw) asw changes from

0 to∞ is:

1. forn−m+ r : even

∠δ(jw)|w=∞
w=0 = sgn[δi(0)]{i0 − 2i1 + . . .+ (−1)l2il + (−1)l+1il+1}

π

2
(4.7)

2. forn−m+ r : odd

∠δ(jw)|w=∞
w=0 = sgn[δi(0)]{i0 − 2i1 + 2i2 + . . .+ (−1)l2il}

π

2
(4.8)

SinceDp(s) does not have any zeros on the imaginary axis, the phase change inδ(jw)

asw changes from0 to∞ is the same as that of∆(jw)Np(−jw) asw changes from0 to∞.

The accumulation or change of phase of∆(jw)Np(−jw) is (n−m+r+2zr)
π
2

if and only

if ∆(s) is Hurwitz. With this observation(n−m+ r + 2zr) equals the quantity expressed

in equations (4.5) or (4.6). ∇∇∇

The following theorem uses Lemma IV.2 to characterize a stabilizing controller of a

fixed order in terms of frequency response of the plant.

Theorem IV.1.

A controllerC(s) stabilizes the plant if and only if

1. There exists a sequencei0, i1, . . . , il satisfying equation (4.5) or (4.6), and

2. For the sequence of integersi1, . . . , il, there exists correspondinglyl disjoint fre-

quency bands or intervals,[wp,1, wp,2], p = 1, . . . , l such that
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(a) there exists exactly one root ofδi(w) in (wp,1, wp,2),

(b) the sign ofδr(w) in [wp,1, wp,2] is the same as that ofip, p = 1, l andi0δr(0) > 0,

and

(c) there is no sign change ofδi(w) in the disjoint intervals[0, w1,1], [wl,2,∞] and

[wp,2, wp+1,1], p = 1, . . . , l − 1.

Proof.

Let the root ofδi(w) in (wp,1, wp,2) bewp. Since the sign ofδr(w) atwp is ip, the change in

phase ofδ(jw) asw varies from0 to∞ is (n−m+r+2zr)
π
2
, indicating that∆(s)Np(−s)

hasm−zr roots with positive real part. However, this is the case if and only if∆(s) is Hur-

witz. ∇∇∇

Remark IV.1.

1. We first observe thatδ(s) may be expressed asδ0(s) +
∑2r+1

p=1 δp(s)kp, wherekp

is thepth component of the controller vector,K, and δ0, δ1, . . . , δ2r+1 are rational

functions, which can be determined once the expression forG(s) is known. Similarly,

δr andδi are affinely dependent on the controller parameter vector,K. To emphasize

the dependence onK, we will use the notationδr(w,K) andδi(w,K) as appropriate.

One may express the affine dependence ofδr(w,K) andδi(w,K) as:

δr(w,K) = ∆r(w, |G(jw)|2, Gr(w), Gi(w))







K

1






(4.9)

δi(w,K) = ∆i(w, |G(jw)|2, Gr(w), Gi(w))







K

1






(4.10)
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for some vectors∆r and∆i that depend affinely on|G(jw)|2,Gr(w) andGi(w).

2. The conditions in Theorem IV.1 may be replaced as follows:

(a) The condition (a) of 2 may be replaced by:δi(wp1
, K)δi(wp,2, K) < 0 and

dδi(w,K)
dw

has the signI0(−1)p in [wp,1, wp,2]. This ensures thatδi(w,K) has

exactly one root in the interval of interest. If the frequency response at frequen-

cies,wp,1 andwp,2 are known, we note that the first conditionδi(wp1
, K)δi(wp2

, K) <

0 can be written as two sets of linear inequalities.

(b) The conditions (b) and (c) of 2 may similarly be replaced as:

i0δr(0) > 0, w = 0 (4.11)

ipδr(w) > 0, ∀w ∈ [wp,1, wp,2] (4.12)

I0δi(w) > 0, ∀w ∈ [0, w1,1] (4.13)

(−1)lI0δi(w) > 0, ∀w ∈ [wl,2,∞) (4.14)

(−1)qI0δi(w) > 0, ∀w ∈ [wq,2, wq+1,1], (4.15)

wherep = 1, 2, . . . , l, q = 1, . . . , l − 1 and dependence onK is suppressed.

If G(jw) is exactly known, the condition of(−1)pI0
dδi(w,K)

dw
being nonnegative in

[wp,1, wp,2] can be posed as a SDP using Markov-Lucaks theorem.

The nonnegativity off(x) for x ∈ [x1, x2] becomes a feasibility problem as shown

in chapter III and in [20, 40]. We also have to consider an additional condition to satisfy

the nonnegativity of thef(x) at specific value of frequency. Finally, This leads to a new

feasibility problem combined with the nonnegativity of thederivatives off(x) in an interval

of frequency.
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Remark IV.2.

The above Linear Matrix Inequality (LMI) conditions for nonnegativity of polynomials can

be used to synthesize the controllerC(s) in Theorem IV.1.

1. The constrainti0δr(0) > 0 is a linear inequality constraint onK.

2. All other constraints can be posed as nonnegativity of a polynomial on an interval.

As seen in the previous chapter, constraints (4.12 - 4.15) lead to LMIs; the feasibility

problem of a controller satisfying LMIs.

This problem can be solved by applying interior point methods (Feasibility and Phase

1 method) with SeDuMi [21].

1. Examples

Let us suppose we have the frequency response data for a plantG(s) by experiments as

shown in Figure 17 and the actual plant transfer function is

G(s) =
Np(s)

Dp(s)

=
s4 + 4s3 + 23s2 + 46s− 12

s5 + s4 + 20s3 + 36s2 + 99s+ 100
(4.16)

For our simulations we assume that the plant structure is notknown. We collect fre-

quency response measurements from this ‘unknown’ plant.

We can know thatn − m = 1 from the magnitude rate with respect to frequency at

high frequency and assume thatzr = 1 is known. If we know thatpr = 2 instead ofzr then

zr = 1 can be determined from the equation (4.27) in section E. and the net accumulated

phase change asw = 0 → ∞.
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∠G(jw)|w=∞
w=0 = −π

2
[(n−m) + 2{zr − pr}]

π

2
= −π

2
[1 + 2{zr − 2}] (4.17)

The frequency data is upper bounded bywb = 10.

We aim to find a first order controller which stabilizes the closed loop system. The

controller is given as:

C(s) =
k1s+ k2

s+ k3

Currently, we do not consider any measurement errors.

Let us multiplyNp(−s) on characteristic equation,∆(s) = Dp(s)Dc(s)+Np(s)Nc(s).

δ(s) = ∆(s)Np(−s)

= Dp(s)Np(−s)Dc(s) +Np(s)Np(−s)Nc(s)

For stable∆(s), δ(jw) have to satisfy the following condition for the net phase change



64

since all the roots of∆(s) should be in the left half plane.

∠δ(jw)|w=∞
w=0 =

π

2
[l(δ) − r(δ)]

=
π

2
[n+ r − zl + zr]

=
π

2
[n−m+ r + 2zr]

=
π

2
[1 + 1 + 2(1)]

=
π

2
[4]

We do not know the maximum number of the real, nonnegative, distinct finite roots of

δi(w) since we have no information of the degree of the plant.

Let us start with in case ofl = 1. The signature for evenn−m+ r = 2 will be as follows.

σ(δ(s,K)) = sgn[δi(0)]{i0 − 2i1 + 2i2 + · · ·+ (−1)l−12il−1 + (−1)lil} · (−1)l−1

= −sgn[δi(0)]{i0 − 2i1 + i2} ·

= 4

The set of feasible stringAf becomes.

Af =











{−1 + 1 − 1}

{+1 − 1 + 1}











For this example, Theorem IV.1 can be interpreted as follows.

There exists a real control parameter vectorK that render∆(s,K) Hurwitz if and

only if there exists : (1) a sequence ofi0, i1, i2 such that the equation (4.5) in Lemma IV.2

holds, and (2) there exists a set of frequencies0 = w0,1 < w0,2 < w1,1 < w1,2 < w2,1 = wb

such that the following inequalities hold:

1. δi(w1,1, K) · δi(w1,2, K) < 0

−I0δi(w1,2, K) · dδi(w,K)
dw

≥ 0 for all w ∈ [w1,1, w1,2]
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2. i0 · δr(w,K) > 0 for w = w0,1

i1 · δr(w,K) > 0 for all w ∈ [w1,1, w1,2]

i2 · δr(w,K) > 0 for w = w2,1

3. δi(w0,2, K) · δi(w,K) > 0 for all w ∈ (w0,2, w1,1)

δi(w1,2, K) · δi(w,K) > 0 for all w ∈ (w1,2, w2,1)

We can illustrate the above conditions graphically using Figure 18.

We consider the frequency information at31 discrete points corresponding to the

Chebyshev’s nodes. The procedure introduced in the previous section was used to solve
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the SDP [20]. The computer packages SeDuMi [21] and YALMIP [60] are used to obtain

a solution.

The following stabilizing controller was obtained in13 iterations:

C(s) =
16.4329s+ 41.4416

s+ 26.6348
.

For this controller, the roots of closed loop are at(−40.9354, −1.1790±1.4901i, −0.0228±

4.4853i, −0.7285).

A projection algorithm was used to obtain an idea about the feasible set of the SDP

and hence find a set of stabilizing controllers. This set is shown in Figure 19. In the set

shown, controllers on or near the surface boundary may not bestabilizing and might have

unstable poles very close to the imaginary axis. These are numerical issues which needs to

be overcome.

D. Robustness

If the frequency response data,G(jw) is approximately known as is typically the case

when fitting a rational function approximation to the given data contaminated with noise,

the nonnegativity condition can be posed as a robust SDP.

In the pursuit of posing nonnegativity conditions of the polynomial approximations

of rational functions, we will require Lemma IV.3. To prepare for Lemma IV.3, letP̃0 :=

|G(jw)|2−P0(w), P̃1 := Gr(w)−P1(w), P̃2 := Gi(w)−P2(w), whereP1(w), P2(w), P3(w)

are approximate polynomials stated in Assumption IV.1 and let Q̃i := dP̃i

dw
, i = 0, 1, 2. Let

Bµ be the box,|P̃i| ≤ µi, i = 0, 1, 2 andBη be the box,|Q̃i| ≤ ηi, i = 0, 1, 2. We will

definew0,1 = w0,2 = 0 andwl+1,1 = ∞.

The following lemma provides a sufficient condition for checking the nonnegativity

of a rational function through its polynomial approximation and the approximation error
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Fig. 19.: Set of Stabilizing First Order Controllers.
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bounds. Let∆∗
r(w, µ0,e, µ1,e, µ2,e) represent∆r(w, P0(w) + µ0,e, P1(w) + µ1,e, P2(w) +

µ2,e), whereµi,e, i = 0, 1, 2 are the vertices of the boxBµ.

Lemma IV.3.

Let [wlow, whigh] ⊂ [0, wb]. LetK be such that for all vertices of(µ0,e, µ1,e, µ2,e) the box

Bµ,

∆∗
r(w, µ0,e, µ1,e, µ2,e)







K

1






> 0, ∀w ∈ [wlow, whigh] (4.18)

Then,K satisfies.

δr(w,K) = ∆r(w, |G(jw)|2, Gr(w), Gi(w))







K

1






> 0 ∀w ∈ [wlow, whigh] (4.19)

Proof.

The proof is by contraposition. Supposeδr(w̄,K) < 0 for somew̄ ∈ [wlow, whigh].

Setµ̃i = P̃i(w̄), i = 0, 1, 2. Therefore, we have

∆∗
r(w̄, µ̃0, µ̃1, µ̃2)







K

1






< 0.

Since|µ̃i| ≤ µi, and since∆r depends affinely oñµi, i = 0, 1, 2, it must be that at some

vertex(µ0,e, µ1,e, µ2,e) of the box|P̃i| ≤ µi,

∆∗
r(w̄, µ0,e, µ1,e, µ2,e)







K

1






< 0.

∇∇∇

Remark IV.3.

The polynomial condition given by equation (4.18) is a sufficient condition for the the
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rational functionδr(w,K) to be nonnegative on the interval[wlow, whigh] for the given

value ofK. In particular, the set ofK ’s that satisfy the polynomial condition at every vertex

of the box also render the rational functionδr(w,K) to be nonnegative on[wlow, whigh].

The set ofK ’s satisfying the polynomial condition at a vertex of the boxcan be written

as a SDP; for example, one may use the recent formulation of [20] or that of [40]. Since

there are only eight vertices for the box|P̃i| ≤ µ0, this means that the set ofK ’s that

simultaneously satisfy eight SDP’s (which can be cast as a bigger SDP) also render the

rational functionδr(w,K) to be nonnegative on[wlow, whigh].

Similar conditions can be derived for the nonnegativity of rational functionsδi(w,K)

and dδi(w,K)
dw

.

The following lemma deals with the non negativity ofδi(w,K) on [wb,∞), where the

polynomial approximation does not hold.
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Lemma IV.4.

Let Bǫ := {(ǫ0, ǫ1, ǫ2) : 0 ≤ ǫ0 < ǫ2, max{|ǫ1|, |ǫ2|} < ǫ}. Let (ǫ0,e, ǫ1,e, ǫ2,e), e =

1, . . . , 8 be the vertices of the boxBǫ. If, for someK andl and fore = 1, . . . , 8, we have

(−1)l∆i(w, ǫ0,e, ǫ1,e, ǫ2,e)







K

1






> 0, ∀w ∈ [wb,∞)

then

(−1)l∆i(w, |G(jw)|2, Gr(w), Gi(w))







K

1






> 0, ∀w ∈ [wb,∞)

The proof for this lemma is similar to that of Lemma IV.3.

We will require the last lemma before stating our main result. Let∆∗
i (wp,1, µ0,e, µ1,e, µ2,e) =

∆i(wp,1, P0(wp,1) + µ0,e, P1(wp,1) + µ1,e, P2(wp,1) + µ2,e)).

Lemma IV.5.

Let [wp,1, wp,2] ⊂ [0, wb] andI0 ∈ {−1,+1}. If, for someK, and for alle = 1, . . . , 8, we

have

I0(−1)p−1∆∗
i (wp,1, µ0,e, µ1,e, µ2,e)







K

1






> 0

I0(−1)p∆i,e(wp,2, µ0,e, µ1,e, µ2,e)







K

1






> 0

then

I0(−1)p−1δi(wp,1) > 0, I0(−1)pδi(wp,2) > 0.

Proof.

The proof is by contraposition. SupposeI0(−1)p−1δi(wp,1, K) < 0. Let µ̃i := P̃i(wp,1).
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Then,

I0(−1)p−1∆i(wp,1, µ̃0, µ̃1, µ̃2) > 0.

However, this cannot happen unless at some vertexe, we have

I0(−1)p−1∆i(wp,1, µ0,e, µ1,e, µ2,e) > 0.

A similar reasoning can be applied to the second condition inthe Lemma IV.5 to complete

the proof. ∇∇∇

Remark IV.4.

If I0, p, wp,1, wp,2 are known in the above lemma, the sufficient conditions are linear in-

equalities inK. In particular, everyK that satisfies the system of linear inequalities at the

vertices of the boxBµ, also satisfies the linear inequalities(−1)p−1I0δi(wp,1, K) > 0 and

(−1)pI0δi(wp,2, K) > 0. We emphasize thatδi(w,K) is not required to be known exactly,

but only polynomial approximations of|G(jw)|2, Gr(w), Gi(w) are available.

Since the second condition in Theorem IV.1 also requires thenonnegativity ofdδi

dw
, we

will first express it as:

∆d,i(w, |G(jw)|2, Gr(w), Gi(w),
d|G(jw)|2

dw
,
dGr

dw
,
dGi

dw
)







K

1







for some array∆d,i that is polynomial inw and is dependent affinely on|G(jw)|2, Gr(w), Gi(w)

and its derivatives.

The following is the main result and provides a sufficient condition for the direct

synthesis of sets of stabilizing controllers from the frequency response data:

Theorem IV.2.

Let i0, i1, . . . , il be a sequence of integers from the set{−1, 1} satisfying equations (4.5) or
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(4.6). Let(µ0,e, µ1,e, µ2,e), e = 1, . . . , 8 be the vertices of boxBµ and(η0,f , η1,f , η2,f), f =

1, . . . , 8 be the vertices of the boxBη. LetK satisfy the every constraint in the following

set of constraints forI0 = −1 or for I0 = +1 and for everye = 1, . . . , 8 andf = 1, . . . , 8:

I0(−1)p−1∆∗
i (wp,1, µ0,e, µ1,e, µ2,e)







K

1






> 0, p = 1, . . . , l (4.20)

I0(−1)p∆∗
i (wp,2, µ0,e, µ1,e, µ2,e)







K

1






> 0, p = 1, . . . , l (4.21)

I0(−1)p∆∗
d,i(w, µ0,e, µ1,e, µ2,e, η0,f , η1,f , η2,f )







K

1






> 0, (4.22)

∀w ∈ [wp,1, wp,2], p = 1, . . . , l

I0(−1)p∆∗
i (w, µ0,e, µ1,e, µ2,e)







K

1






> 0, ∀w ∈ [wp,2, wp+1,1], p = 0, 1, . . . , l (4.23)

ip∆
∗
r(w, µ0,e, µ1,e, µ2,e)







K

1






> 0, ∀w ∈ [wp,1, wp,2], p = 1, . . . , l (4.24)

(−1)l∆i(w, ǫ0,e, ǫ1,e, ǫ2,e)







K

1






> 0, ∀w ∈ [wb,∞) (4.25)

Then,K is a stabilizing controller for the plant.

This theorem covers all the cases discussed in this section and provides a sufficient

condition for the synthesis of sets of stabilizing controllers.

1. Equations (4.20) and (4.21) together ensures thatδi(wp,1, K)δi(wp,2, K) < 0. This

follows from Lemma IV.5.

2. Equation (4.22) guarantees thatdδi(w,K)
dw

has the signI0(−1)p in [wp,1, wp,2]. This is
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an application of Lemma IV.3 todδi(w,K)
dw

.

3. Equations (4.20), (4.21) and (4.22) provide the condition for δi(w,K) to have only

one real root in the interval[wp,1, wp,2].

4. Equations (4.23) and (4.25) provide the condition for thereal roots ofδi(w,K) to

not lie outside the intervals[wp,1, wp,2]. This is necessary for the correct application

of Lemma IV.2. This condition is satisfied by ensuring that the polynomial is either

positive or negative in the complete range of[wp,2, wp+1,1].

5. Equation (4.24) ensures that at the real roots ofδi(w,K), the sign ofδr(w,K) is

correct and is given by the sequence of integers satisfying equations (4.5) or (4.6).

We consider the same plant as 4.16. The frequency response data,G(jw) is approxi-

mately known. The controller is found using the robust SDPs procedure outlined in Theoem

IV.2.

The following robust stabilizing controller was obtained in 15 iterations:

C(s) =
70.4268s+ 8.2073

s+ 114.4617
.

For this controller, the roots of closed loop are at(−183.69, −0.05 ± 4.23i, −0.32 ±

1.5i, −1.46).

E. Special Case

1. Special Case (zl = 0, 1)

The nonnegativity conditions which have to be satisfied in some intervals in Theorem IV.1

or Theorem IV.2 can be replaced by linear inequalities if additional assumptions are made.
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Assumption IV.2.

1. The degree of a plant,n is known.

2. The number,zl, of non-minimum phase zeroes of the plant is at-most one.

Since we assumed the degree of a plant ben, the degree of the polynomial of the

numerator ofδ(s), i.e. ∆(s)Np(−s) is:

d = n+m+ r = 2n− (n−m) + r (4.26)

n − m is the relative degree of a plantG(s) which can be determined from the fre-

quency response data of the plant.r is the degree of controller. Now, letl be the number of

nonnegative distinct real roots of theδi(w).

We explain why the interval conditions can be relaxed to linear inequalities in detail

whenzl < 2. We observe the following:

Let us supposed is even. Then the maximum number of nonnegative distinct real

roots of theδr(w) andδi(w) ared/2 andl = d/2 − 1 respectively.

1. For the equation (4.5) to hold whenzl = 1, l nonnegative distinct real roots of the

δr(w) are required.

n−m+ r + 2zr = n +m+ r − 2zl

= n +m+ r − 2

= sgn[δi(0)]{i0 − 2i1 + . . .+ 2(−1)lil + (−1)l+1il+1}

• Whend = 6, l becomes2. Then

n+m+ r − 2 = 4 = sgn[δi(0)]{i0 − 2i1 + 2i2 − i3}
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For positiveδi(0), the set of feasible stringAf becomes.

Af =











A1(i0 i1 i2 i3)

A2(i0 i1 i2 i3)











=











{+1 − 1 + 1 + 1}

{−1 − 1 + 1 − 1}











Since there are2 sign changes inip, (p = 0, 3), 2 nonnegative distinct real

roots of theδr(w) are required. It can be easily verified that the same number

of nonnegative distinct real roots of theδr(w) are required for negativeδi(0).

• Whend = 8, l becomes3. Then

n+m+ r − 2 = 6 = sgn[δi(0)]{i0 − 2i1 + 2i2 − 2i3 + i4}

For positiveδi(0), the set of feasible stringAf becomes.

Af =











A1(i0 i1 i2 i3 i4)

A2(i0 i1 i2 i3 i4)











=











{+1 − 1 + 1 − 1 − 1}

{−1 − 1 + 1 − 1 + 1}











Since there are3 sign changes inip, (p = 0, 4), 3 nonnegative distinct real

roots of theδr(w) are required. It can be easily verified that the same number

of nonnegative distinct real roots of theδr(w) are required for negativeδi(0).

For a real polynomialf(w), if f(w1) andf(w2) are of same sign then in the interval

w ∈ [w1, w2] there exist either no roots or an even number of roots. Since we have at

mostl + 1 nonnegative distinct real roots ofδr(w), if δr(w1) andδr(w2) are of same

sign then there exist no roots in the intervalw ∈ [w1, w2].

2. Whenzl = 0

There are no roots ofδr(w) between roots ofδi(w) sinceδ(s) becomes Hurwitz

polynomial forzl = 0.

For oddd, this can be explained on similiar lines.
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Now, we can simplify the theorem IV.1 under Assumption IV.2.

Theorem IV.3.

There exists a real control parameter vectorK = (k1, k2, · · · , kq) such that the real

closed-loop characteristic polynomial∆(s,K) is Hurwitz if (1) There exists a sequence

i0, i1, . . . , il satisfying equations (4.5) or (4.6) and for the sequence of integersi0, i1, . . . , il,

there exists there exists a set of frequencies,0 = w0,1 < w0,2 < w1,1 < w1,2 < · · · < wl,1 <

wl,2 < wl+1,1 = ∞ for δ(s,K) = δd(K)sd + δd−1(K)sd−1 + · · · + δ0(K), the number of

nonnegative, distinct, real roots ofδi(w), l is the smallest integer greater than or equal to

d/2 − 1, so that the following sets of linear inequality conditionshold :

1. δi(wp,1, K) · δi(wp,2, K) < 0, p = 1, . . . , l

2. ip · δr(wp,1, K) > 0 andip · δr(wp,2, K) > 0, p = 1, . . . , l

3. i0 · δr(w0,2, K) > 0 andil+1,1 · δr(wl+1,1, K) > 0

We can rewrite the LPs in terms of frequency response data, bydividing them with

|Dp(jw)|2. Let us suppose we are considering a first order controller asan example of

fixed order controller and separate the controller real and imaginary parts.

C(jw) =
Nc(jw,K)

Dc(jw,K)
=

Nc,r(w,K) + jNc,i(w,K)

Dc,r(w,K) + jDc,i(w,K)

=
jk1w + k2

jw + k3

The frequency response of a plant can be expressed asG(jw) = Gr(w) + jGi(w). We can

represent the polynomials δr

|Dp(jw)|2
and δi

|Dp(jw)|2
compactly in the following form, owing to
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the affine dependence of their coefficients on the controllerparameter vectorK.

δr
|Dp(jw)|2 = |G(jw)|2Nc,r(w,K) +Gr(w)Dc,r(w,K) −Gi(w)Dc,i(w,K)

= |G(jw)|2k2 +Gr(w)k3 − wGi(w)

=

[

wGi(w) 0 |G(jw)|2 Gr(w)

]







1

K







=

[

∆r(w, |G(jw)|2, Gr(w), Gi(w))

] [

K ′

]

δi
|Dp(jw)|2 = |G(jw)|2Nc,i(w,K) +Gr(w)Dc,i(w,K) −Gi(w)Dc,r(w,K)

= |G(jw)|2k1w + wGr(w) −Gi(w)k3

=

[

wGr(w) w|G(jw)|2 0 −Gi(w)

]







1

K







=

[

∆i(w, |G(jw)|2, Gr(w), Gi(w))

] [

K ′

]

,

where

1. ∆r(w, |G(jw)|2, Gr(w), Gi(w)) =

[

wGi(w) 0 |G(jw)|2 Gr(w)

]

2. ∆i(w, |G(jw)|2, Gr(w), Gi(w)) =

[

wGr(w) w|G(jw)|2 0 −Gi(w)

]

3. K ′ = [1 k1 k2 k3]
T .

Then, the LP conditions can be put in a nice compact matrix form, which only involves

the set of frequencies chosen and the frequency response data at those points.

Lemma IV.6.

In case ofzl < 2, there exists a real control parameter vectorK = (k1, k2, · · · , kq)

so that the real closed-loop characteristic polynomial∆(s,K) is Hurwitz if there exists
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a set of frequencies,0 = w0,2 < w1,1 < w1,2 < · · · < wl,1 < wl,2 < wl+1,1 = ∞ for

δ(s,K) = δd(K)sd + δd−1(K)sd−1 + · · · + δ0(K), wherel is the smallest integer greater

than or equal tod/2−1, so that one of the following two Linear Programs(LPs) is feasible:

LP 1 : (a)

[

I(wp,1)

] [

K ′

]

> 0 and

[

I(wp,2)

] [

K ′

]

< 0, p = 1, . . . , l

(b) i0 ·
[

R(w0,2)

] [

K ′

]

> 0 andil+1 ·
[

R(wl+1,1)

] [

K ′

]

> 0

(c) ip ·
[

R(wp,1)

] [

K ′

]

> 0 andip ·
[

R(wp,2)

] [

K ′

]

> 0 , p = 1, . . . , l

LP 2 : (a)

[

I(wp,1)

] [

K ′

]

< 0 and

[

I(wp,2)

] [

K ′

]

> 0, p = 1, . . . , l

(b) i0 ·
[

R(w0,2)

] [

K ′

]

> 0 andil+1 ·
[

R(wl+1,1)

] [

K ′

]

> 0

(c) ip ·
[

R(wp,1)

] [

K ′

]

> 0 andip ·
[

R(wp,2)

] [

K ′

]

> 0 , p = 1, . . . , l

2. Examples

Let us suppose we have the frequency response data for a plantG(s) by experiments as

shown in Figure 20 and the actual plant transfer function is as follows

G(s) =
Np(s)

Dp(s)

=
s3 + 3s2 + s+ 8

s4 + 2s3 + 3s2 + 7s+ 14
, zl = 1

We can know thatn − m = 1 from the magnitude rate with respect to frequency at

high frequency. Suppose we know thatn = 4 andzr = 2. If we knowpr = 2 instead ofzr

thenzr can be determined from the equation (4.27) and the net accumulated phase change

asw = 0 → ∞.
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Fig. 20.: Frequency Response of a Plant

∠G(jw)|w=∞
w=0 = −π

2
[(n−m) + 2(zr − pr)]

−π
2

= −π
2

[1 + 2(zr − 2)] (4.27)

Now, we consider the first order controller which stabilizesthe closed loop character-

istic polynomial.

C(s) =
Nc(s)

Dc(s)

=
k1s+ k2

s+ k3

Let us multiplyNp(−s) on characteristic equation,∆(s) = Dp(s)Dc(s)+Np(s)Nc(s).

δ(s) = ∆(s)Np(−s)

= Dp(s)Np(−s)Dc(s) +Np(s)Np(−s)Nc(s)

For stable∆(s), δ(jw) have to satisfy the following condition for the net phase change
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since all the roots of∆(s) should be in the left half plane.

∠δ(jw)|w=∞
w=0 =

π

2
[l(δ) − r(δ)]

=
π

2
[n+ r − zl + zr]

=
π

2
[n−m+ r + 2zr]

=
π

2
[1 + 1 + 2(2)]

=
π

2
[6]

The maximum number of the real, positive, distinct finite roots of δi(w) with odd multi-

plicities, l becomes 3 sinceδ(s) is of order 8 and an even polynomial. The signature for

even polynomial having 3 real, positive, distinct finite roots will be as follows.

σ(δ(s,K))
.
= sgn[δi(0)]{i0 − 2i1 + 2i2 + · · ·+ (−1)l2il + (−1)l+1il+1}

= sgn[δi(0)]{i0 − 2i1 + 2i2 − 2i3 + i4}

= 6

The set of feasible stringAf becomes.

Af =



































A1(i0 i1 i2 i3 i4)

A2(i0 i1 i2 i3 i4)

A3(i0 i1 i2 i3 i4)

A4(i0 i1 i2 i3 i4)



































=



































{+1 + 1 − 1 + 1 − 1}

{−1 + 1 − 1 + 1 + 1}

{+1 − 1 + 1 − 1 − 1}

{−1 − 1 + 1 − 1 + 1}



































Now, the problem becomes to find a real stabilizing control parameter vectorK = (k1, k2, k3)
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so that the real closed-loop characteristic polynomial∆(s,K) is Hurwitz.

If there exists a set of frequencies,0 = w0,2 < w1,1 < w1,2 < · · · < w4,1 = wb for

δ(s,K) = δd(K)sd + δd−1(K)sd−1 + · · · + δ0(K), wherel is the smallest integer greater

than(or equal to)= d/2 − 1, so that one of the following twoLinear Programs(LPs)for

any feasible set of strings is feasible:

LP 1 : (a)

[

I(wp,1)

] [

K ′

]

> 0 and

[

I(wp,2)

] [

K ′

]

< 0, p = 1, 2, 3

(b) i0 ·
[

R(w0,2)

] [

K ′

]

> 0 andi4 ·
[

R(w4,1)

] [

K ′

]

> 0

(c) ip ·
[

R(wp,1)

] [

K ′

]

> 0 andip ·
[

R(wp,2)

] [

K ′

]

> 0 , p = 1, 2, 3

LP 2 : (a)

[

I(wp,1)

] [

K ′

]

< 0 and

[

I(wp,2)

] [

K ′

]

> 0, p = 1, 2, 3

(b) i0 ·
[

R(w0,2)

] [

K ′

]

> 0 andi4 ·
[

R(w4,1)

] [

K ′

]

> 0

(c) ip ·
[

R(wp,1)

] [

K ′

]

> 0 andip ·
[

R(wp,2)

] [

K ′

]

> 0 , p = 1, 2, 3,

where

1. ∆r(w, |G(jw)|2, Gr(w), Gi(w)) =

[

wGi(w) 0 |G(jw)|2 Gr(w)

]

2. ∆i(w, |G(jw)|2, Gr(w), Gi(w)) =

[

wGr(w) w|G(jw)|2 0 −Gi(w)

]

3. K ′ = [1 k1 k2 k3]
T .

The set of stabilizing first order controller was obtained with 22 frequency response data at

w = {0.1, 0.2, 0.4, 0.6, . . . , 3.6, 3.8, 4.0, 1000} as shown in Figure 21.

Figure 21 also shows the set of stabilizing first order controller obtained with 41 fre-

quency response data atw = {0.1, 0.2, 0.3, . . . , 3.9, 4.0, 1000}. As we expect, it

is observed that we can get more accurate results(a larger set of stabilizing controller) by

taking more frequency response data.
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Fig. 21.: Set of Stabilizing First Order Controller with 20 and 41 DataPoints
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CHAPTER V

CONTROLLER DESIGN WITH PERFORMANCE SPECIFICATIONS

A. Introduction

In this chapter, we consider the problem of synthesizing sets of controllers which satisfy

some performance criteria using the frequency response measurements under the similiar

assumptions that were made in chapter III. Those performance criteria can be gain margin,

phase margin, upper bound on theH∞ norm of a weighted sensitivity transfer function, or

a requirement that a certain closed loop transfer function be SPR etc. A large class of per-

formance problems such as those listed here can be reduced tothe problem of determining

a set of stabilizing controllers that render a set of complexpolynomials Hurwitz [15, 26].

1. The criterion for guaranteeing a gain margin for a SISO plant with a transfer function

Np

Dp
(s) stabilized by a fixed order controller,Nc

Dc
(s) is that, for everyKg ∈ (K−

g , K
+
g ),

the polynomial

Dp(s)Dc(s) +KgNp(s)Nc(s)

must be Hurwitz.

2. The criterion for guaranteeing a phase margin ofφ for a SISO plant with a transfer

function Np

Dp
(s) stabilized by a fixed order controller,Nc

Dc
(s) is that, for everyθ ∈

(−φ, φ), the polynomial

Dp(s)Dc(s) + ejθNp(s)Nc(s)

must be Hurwitz.

3. For the same controller to achieve aH∞ norm of the complementary sensitivity trans-

fer function less thanγ is equivalent to having the following family of complex poly-
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nomials

γ{Dp(s)Dc(s) +Np(s)Nc(s)} + ejθNp(s)Nc(s)

is Hurwitz, for everyθ ∈ (0, 2π).

4. A real proper transfer functionG(s,K) = N(s,K)
D(s,K)

is Strictly Positive Real (SPR) if

and only if the following three conditions are satisfied:

(a) G(0, K) > 0,

(b) N(s,K) is Hurwitz, and

(c) D(s,K) + jαN(s,K) is Hurwitz for everyα ∈ ℜ.

In fact, this problem arises in guaranteeingabsolute stability, that is, robust stability

to sector bounded nonlinearities, as was shown in chapter II.

Thus to satisfy the performance criteria, we need to make complex polynomials Hur-

witz. For example, in the performance criterion 3, we have tomake the complex polynomial

Hurwitz for all the possible values ofθ ∈ [0, 2π]. In most cases, it suffices to check whether

the polynomial is Hurwitz for a few values ofθ. This is because the set of the control vector

which make polynomials Hurwitz change smoothly with respect to θ.

In this chapter, we propose a method to synthesize a controller that make a system

guaranteeing certain level of performance with the frequency response measurements under

similar assumptions as before.

By way of notation, we denote the transfer function of the plant to beG(s). The

following are the assumptions about the plant:
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Assumption V.1.

1. The transfer functionG(s) of the plant is rational and strictly proper, i.e.,G(s) =

Np

Dp
(s), for some co-prime polynomials,Np(s) andDp(s), with the degree,n, ofDp(s)

greater than the degreem ofNp(s). We may not know eitherm or n.

2. There are no poles and zeros of the plant on the imaginary axis, i.e.,Dp(jw) 6= 0,

Np(jw) 6= 0 for everyw ∈ ℜ.

3. This assumption and the following assumptions concern the knowledge of frequency

response of the plant: There are frequency boundswlb for lower bound andwub

for upper bound beyond which the phase of the plant does not change appreciably

and the amplitude response of the plant is negligible. To quantify this statement, let

G(jw) be expressed asGr(w)+jGi(w), whereGr andGi are real, rational functions

ofw. For a knownǫ > 0, we assume that|G(jw)| ≤ ǫ for all w ≥ wub andw ≤ wlb.

This is a reasonable assumption since the plant is strictly proper.

4. The relative degreen−m is known. This can be inferred from the amplitude response

of the plant at sufficiently high frequencies.

5. We will assume that the functions|G(jw)|2, Gr(w), Gi(w) have been approximated

using polynomialsP0(w), P1(w), P2(w) respectively and the maximum estimation

errors are bounded byµ0, µ1, µ2 and the maximum derivatives of the estimation

errors are bounded byη0, η1, η2 respectively.

6. We will assume that the number of non minimum phase zeros,zr of the plant are

known.

Now let’s suppose we design a fixed order controllerC(s) satisfyingH∞ specification

under Assumption V.1.
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This chapter is organized as follows: In section B, we provide basic ideas to derive

main results. In section C, we present the main results. In section D, we deal with a special

case in which case the nonnegativity in intervals can be relaxed to the nonnegativity of the

end points of the interval and give a numerical example.

B. Basic Ideas

The basic ideas used in the construction of sets which satisfy some performance criteria are

as follows:

1. The problem to design the controller to achieve aH∞ norm of the complementary

sensitivity transfer function less thanγ is equivalent to having the following family

of complex polynomials∆c(s) = γ {Dp(s)Dc(s) +Np(s)Nc(s)} + ejθNp(s)Nc(s)

is Hurwitz, for everyθ ∈ (0, 2π) as shown before.

2. We construct a rational function

δ(s) = ∆c(s)
Np(−s)

Dp(s)Dp(−s)
(5.1)

= γ(G(s)G(−s)Nc(s) +G(−s)Dc(s)) + ejθG(s)G(−s)Nc(s)

If ∆c(s) has coefficients that are affine in the controller coefficients, then the rational

function,δ(s) is also affine in the controller coefficients.

3. All controllers,C(s), that make∆c(s) Hurwitz, are such that the total phase accumu-

lation ofδ(jw) asw varies from−∞ to+∞ is the same and equals(n−m+r+2zr)π.

∠δ(jw)|w=+∞
w=−∞ = π(n−m+ r + 2zr) (5.2)

Sincen−m, r andzr are known, the total desired accumulation of phase is known.
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4. Let δ(jw) = δr(w) + jδi(w), whereδr(w) andδi(w) are real, rational functions. In

Lemma V.2, we relate how the total accumulation of phase is related to the roots of

δi(w) and the sign ofδr(w) at those roots.

5. The existence of a stabilizing controller for the complexpolynomial can be expressed

in terms of the existence of an appropriate set of frequency intervals which admit ex-

actly one or zero roots of the imaginary part of the Nyquist plot and no roots of the

real part. This is shown in Theorem V.1. For every set of frequency intervals, these

conditions can be translated into linear inequality constraints or linear matrix in-

equality (LMI) constraints involving the controller parameters. This step involves the

Chebyshev approximation of the frequency response in the frequency band[wlb, wub].

It subsequently involves the use of Markov-Lucaks theorem to convert the conditions

into a LMI form.

We are interested in synthesizing a rational, proper controller C(s) satisfyingH∞

specification, i.e., for some monic polynomialDc(s) of degreer and a polynomialNc(s)

of degree at mostr, C(s) = Nc

Dc
(s). Let Nc(s) = n0 + n1s + . . . + nrs

r andDc(s) =

d0 + d1s+ . . .+ dr−1s
r−1 + sr. LetK be the vector of controller coefficients:

[

n0 n1 . . . nr d0 d1 . . . dr−1

]T

. The determination of the vectorK is equivalent to the determination of the stabilizing

controllerC(s).

C. Main Results

The net phase change property for complex polynomials can berepresented similarly with

that for real polynomials as follows [25, 32].
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Lemma V.1.

1. The phase of the complex Hurwitz polynomial,δ(s) = δ0 + δ1s + · · · + δds
d mono-

tonically increases asw : −∞ → +∞ and the plot ofdth order complex Hurwitz

polynomialδ(jw) = δr(w) + jδi(w) has to move strictly counterclockwise and go

through2d quadrants asw : −∞ → +∞.

2. The plot of thedth order complex polynomial(not necessary Hurwitz),δ(jw) =

δr(w) + jδi(w) has to go through2{l(δ(s)) − r(δ(s))} quadrants asw : −∞ →

+∞.

∠δ(jw)|w=∞
w=−∞ = π [l(δ) − r(δ)] , (5.3)

wherel(δ), r(δ) denote the numbers of roots ofδ(s) in the left half plane and in the

right half plane respectively.

Following the outline of the basic ideas of the chapter presented in the earlier section,

we begin with a generalization of Hermite-Biehler theorem for rational functions in Lemma

V.2.

Lemma V.2.

Considerδ(s) = ∆c(s)
Np(−s)

Dp(s)Dp(−s)
. Let the real roots ofδi(w) bew1, . . . , wl, w0 =

−∞, wl+1 = +∞ and the sign ofδr(w) at these frequencies be correspondinglyi0, i1, . . . , il, il+1.

Then∆c(s) is Hurwitz if and only if

1. forn−m+ r : even

n−m+ r + 2zr =
1

2
sgn[δi(w0)]{i0 − 2i1 + . . .+ (−1)l2il + (−1)l+1il+1} (5.4)
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2. forn−m+ r : odd

n−m+ r + 2zr = −sgn[δi(w0)]{i1 − i2 + . . .+ (−1)l−1il} (5.5)

Proof.

We first note that the degree of the polynomial∆c(s)Np(−s) is n + r + m. Hence, the

parity of the degree of the polynomial∆c(s)Np(−s) is the same as that ofn−m+ r.

Let the sign ofdδi(w)
dw

at w = wl be Il. The change in the phase ofδ(jw) fromwl to

w1+1 is given by:Il(il − il+1)
π
2

whenil andil+1 are the roots ofδi(w). Letw0 = −∞ and

wl+1 = +∞. SinceIi = −Ii−1 for i = 2, 3, . . . , l , the phase change inδ(jw) fromw = w1

tow = wl can be expressed as:

∠δ(jw)|w=wl
w=w1

=
π

2
{I1(i1 − i2) + I2(i2 − i3) + . . .+ Il−1(il−1 − il)}

=
π

2
I1

{

i1 − 2i2 + 2i3 − . . .+ (−1)l−22il−1 + (−1)l−1il
}

We note that the degree of the polynomial∆c(s)Np(−s) is n+ r+m. Hence, the parity of

the degree of the polynomial∆c(s)Np(−s) is the same as that ofn−m+ r.

1. forn−m+ r : even

The phase change inδ(jw) from w = w0 = −∞ to w = w1 will depend on the

degree of the polynomial∆c(s)Np(−s). If the degree of the is even,

∠δ(jw)|w=wl
w=−∞ = −π

2
I1(i0 − i1)

The phase change inδ(jw) fromw = wl tow = wl+1 = +∞ becomes

∠δ(jw)|w=+∞
w=wl

=
π

2
Il(il − il+1)

=
π

2
(−1)l+1I1(il − il+1)
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Finally, we get the phase change inδ(jw) from w = w0 to w = wl+1 with I1 =

−sign(δi(0)) as follows :

∠δ(jw)|w=+∞
w=−∞ = ∠δ(jw)|w=w1

w=−∞ + ∠δ(jw)|w=wl
w=w1

+ ∠δ(jw)|w=+∞
w=wl

= −π
2

[

I1(i0 − i1) − I1
{

i1 − 2i2 + . . .+ (−1)l−22il−1 + (−1)l−1il
}]

−π
2

[

−(−1)l+1I1(il − il+1)
]

= −π
2
I1

{

i0 − 2i1 + 2i2 − . . .+ (−1)l2il + (−1)l+1il+1

}

n−m+ r + 2zr =
1

2
sgn[δi(w0)]{i0 − 2i1 + . . .+ (−1)l2il + (−1)l+1il+1}

2. forn−m+ r : odd

If the degree is odd, The phase change inδ(jw) fromw = w0 tow = w1 becomes

∠δ(jw)|w=wl
w=−∞ =

π

2
I1i1

The phase change inδ(jw) fromw = wl tow = wl+1 becomes

∠δ(jw)|w=+∞
w=wl

=
π

2
Ilil =

π

2
(−1)l−1I1il

We can get the phase change inδ(jw) from w = w0 to w = w1+1 with I1 =

−sign(δi(0)) as follows :

∠δ(jw)|w=+∞
w=−∞ = ∠δ(jw)|w=w1

w=−∞ + ∠δ(jw)|w=wl
w=w1

+ ∠δ(jw)|w=+∞
w=wl

=
π

2

[

I1i1 + I1
{

i1 − 2i2 + . . .+ (−1)l−22il−1 + (−1)l−1il
}]

+
π

2

[

(−1)l−1I1il
]

= πI1
{

i1 − i1 + i2 − . . .+ (−1)l−1il
}

n−m+ r + 2zr = −sgn[δi(w0)]
{

i1 − i2 + . . .+ (−1)l−1il
}

SinceDp(s) does not have any zeros on the imaginary axis, the phase change inδ(jw)

asw changes from−∞ to +∞ is the same as that of∆c(jw)Np(−jw) asw changes from
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−∞ to+∞. The accumulation or change of phase of∆c(jw)Np(−jw) is (n−m+r+2zr)π

if and only if∆c(s) is Hurwitz. With this observation(n−m+ r+2zr) equals the quantity

expressed in equations (5.4) or (5.5). ∇∇∇

The following theorem will use Lemma V.2 to characterize a stabilizing controller of

a fixed order in terms of frequency response of the plant.

Theorem V.1.

A controllerC(s) stabilizes∆c(s,K) if and only if for a givenγ and everyθ ∈ [0, 2π],

1. There exists a sequencei0, i1, . . . , il satisfying equation (5.4) or (5.5), and

2. For the sequence of integersi0, i1, . . . , il, there exists correspondinglyl disjoint fre-

quency bands,[wp,1, wp,2], p = 1, . . . , l such that

(a) there exists exactly one root ofδi(w) in (wp,1, wp,2),

(b) the sign ofδr(w) in [wp,1, wp,2] is the same as that ofip, and

(c) there is no sign change ofδi(w) in the disjoint intervals[−∞, w1,1], [wl,2,∞]

and [wp,2, wp+1,1], p = 1, . . . , l − 1.

Proof.

Let the root ofδi(w) in (wp,1, wp,2) bewp. Since the sign ofδr(w) at wp is ip, the change

in phase ofδ(jw) asw varies from−∞ to +∞ is (n − m + r + 2zr)π, indicating that

∆c(s)Np(−s) hasm−zr roots with positive real part. However, this is the case if and only if

∆c(s) is Hurwitz. ∇∇∇
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Remark V.1.

1. We first observe thatδ(s) may be expressed asδ0(s) +
∑2r+1

p=1 δp(s)kp, wherekp

is thepth component of the controller vector,K, and δ0, δ1, . . . , δ2r+1 are rational

functions, which can be determined once the expression forG(s) is known. Similarly,

δr andδi are affinely dependent on the controller parameter vector,K. To emphasize

the dependence onK, we will use the notationδr(w,K) andδi(w,K) as appropriate.

One may express the affine dependence ofδr(w,K) andδi(w,K) as:

δr(w,K) = ∆r(w, |G(jw)|2, Gr(w), Gi(w))







K

1






(5.6)

δi(w,K) = ∆i(w, |G(jw)|2, Gr(w), Gi(w))







K

1






(5.7)

for some vectors∆r and∆i that depend affinely on|G(jw)|2,Gr(w) andGi(w).

2. The conditions in Theorem V.1 may be replaced as follows:

(a) The condition (a) of 2 may be replaced by:δi(wp1
, K)δi(wp,2, K) < 0 and

dδi(w,K)
dw

has the sign(−1)p+1I1 in [wp,1, wp,2]. This ensures thatδi(w,K) has

exactly one root in the interval of interest. If the frequency response at frequen-

cies,wp,1 andwp,2 are known, we note that the first conditionδi(wp1
, K)δi(wp2

, K) <

0 can be written as two sets of linear inequalities.

(b) The conditions (b) and (c) of 2 may similarly be replaced as:
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ipδr(w) > 0, ∀w ∈ [wp,1, wp,2] (5.8)

−I1δi(w) > 0, ∀w ∈ [−∞, w1,1] (5.9)

(−1)l+1I1δi(w) > 0, ∀w ∈ [wl,2,+∞) (5.10)

(−1)q+1I1δi(w) > 0, ∀w ∈ [wq,2, wq+1,1], (5.11)

wherep = 1, 2, . . . , l, q = 1, . . . , l − 1 and dependence onK is suppressed.

If G(jw) is exactly known, the condition of(−1)p+1I1
dδi(w,K)

dw
being nonnegative in

[wp,1, wp,2] can be posed as a SDP using Markov-Lucaks theorem as shown in chapter III

and in [20, 40]. IfG(jw) is approximately known as is typically the case when fitting ara-

tional function approximation to the given data contaminated with noise, the nonnegativity

condition can be posed as a robust SDP as shown in chapter IV.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have addressed the problem of synthesizing fixed order controllers

which absolutely stabilize a Lure-Postnikov system. We have also proposed a method

to synthesize sets of stabilizing controllers of strictly proper, delay-free, SISO LTI plants

directly from their empirical frequency response data and some coarse information about

them.

Analytical tools for synthesizing stabilizing fixed structure controllers such as the PID

or low-order controllers examining the absolute stabilityof Lure-Postnikov systems which

have sector-bounded nonlinearities have been studied in the literature, but tools for synthe-

sizing higher order controllers have not been studied as yet. We have proposed a systematic

method designing fixed higher order controllers which absolutely stabilize Lure-Postnikov

systems with the recent results which approximate the set ofcontroller parameters that

render a family of real and complex polynomials and providedan example.

The advantage of the proposed approach is that sets of absolutely stabilizing con-

trollers can be presented to a control engineer. The controlengineer may further based on

other constrains

It is widely recognized that an accurate analytical model ofthe plant may not be avail-

able to a control designer. However, it is reasonable in manyapplications that one will have

an empirical model of the plant in terms of its frequency response data and from physical

considerations or from the empirical time response data, one may have some coarse infor-

mation about the plant such as the number of non minimum phasezeros of the plant etc.

We have proposed a systematic method to synthesize arbitrary order controllers for delay-

free SISO LTI plants from the frequency response data and thenumber of non minimum

phase zeros of the plant. We posed the problem of synthesizing the sets of stabilizing con-
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trollers as that of sets of controllers satisfying some robust SDPs considering the frequency

response measurement errors. It indicates the possibilityof fixed order controller synthesis

using only frequency response measurements.

A. Summary of Results

In chapter II, we have proposed a method to synthesize fixed order controllers as well as

PID controllers that absolutely stabilize a Lure-Postnikov system. We also provided an

example of Lure-Postnikov system(one-link robot with flexible joint) and constructed the

set of PID and first order controllers which absolutely stabilize the example system.

In chapter III, the recently developed Sum-of-Squares techniques for checking the

nonnegativity of a real polynomial in an interval have been reviewed.

In chapter IV, we have proposed a method for synthesizing sets of stabilizing con-

trollers of strictly proper, delay-free, SISO LTI plants directly from their empirical fre-

quency response data and from some coarse information aboutthem. The coarse informa-

tion that is required is the following: the number of non minimum phase zeros of the plant

and the frequency range beyond which the phase response of the LTI plant does not change

appreciably and the amplitude response goes to zero. The proposed method in this chapter

involves nonnegativity of real polynomials in some intervals. We also posed the problem of

synthesizing the sets of stabilizing controllers as that ofsets of controllers satisfying some

robust SDPs considering the frequency response measurement errors.

In chapter V, the problem of fixed order stabilizing controller design has been extended

to the design of controllers which guarantee some performance criteria. Those performance

criteria can be gain margin, phase margin, upper bound on theH∞ norm of a weighted

sensitivity transfer function, or a requirement that a certain closed loop transfer function be

SPR etc.
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B. Future Work

• The proposed methods are computationally intensive. Hence, efficient numerical

algorithms that exploit the structure of SDPs resulting from those problems will be

practically very useful.

• The extension of the developed techniques to multivariablesystems is a challenging

problem.
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