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ABSTRACT

On the Synthesis of Fixed Order Stabilizing Controllerse¢Bmber 2005)
Sin Cheon Kang, B.S., Korea University;
M.S., Korea Advanced Institute of Science and Technology

Chair of Advisory Committee: Dr. Darbha Swaroop

In this dissertation, we consider two problems concernivegdynthesis of fixed or-
der controllers for Single Input, Single Output systemse Tikst problem deals with the
synthesis of absolutely stabilizing fixed order contrdlfr Lure-Postnikov systems. The
second problem deals with the synthesis of fixed order statglcontrollers directly from
the empirical frequency response data and from some cadmseniation of the plant.

Lure-Postnikov systems are frequently encountered in argchl engineering appli-
cations. Analytical tools for synthesizing stabilizingditkstructure controllers, such as the
PID controllers examining the absolute stability of Lureskhikov systems, have recently
been studied in the literature. However, tools for synttingicontrollers of arbitrary order
have not been studied yet. We propose a systematic methayrithesizing absolutely
stabilizing controllers of arbitrary order for the Luredoikov systems. Our approach is
based on recent results in the literature on approximafitimeoset of stabilizing controller
parameters that render a family of real and complex polyatshiurwitz. We provide an
example of a robotic system to illustrate the procedure ldpeel.

Exact analytical models of plants may not be readily avégldbr controller design.
The current approach is to synthesize controllers throbghdentification of the analyt-
ical model of the plant from empirical frequency responsedan this dissertation, we
depart from this conventional approach. We seek to syrtbesintrollers directly (i.e.

without resort to identification) from the empirical frequoy response data of the plant



and coarse information about it. The coarse informatiomwired is the number of non-
minimum phase zeros of the plant(or the number of poles optaet with positive real
parts) and the frequency range beyond which the phase resjpbthe LTI plant does not
change appreciably and the amplitude response goes to\Xeralso assume that the LTI
plant does not have purely imaginary zeros or poles. The adethsynthesizing stabiliz-
ing controllers involves the use of generalized HermitekBer theorem for counting the
roots of rational functions and the use of recently devalopam-of-Squares techniques
for checking the nonnegativity of a polynomial in an intdrtraough the Markov-Lucaks
theorem. The method does not require an explicit analyticadel of the plant that must
be stabilized or the order of the plant, rather, it only reggithe empirical frequency re-
sponse data of the plant. The method also allows for measmtesnrors in the frequency
response of the plant. We illustrate the developed proeadith an example. Finally, we
extended the technique to the synthesis of controllershifrary order that also guarantee

performance specifications such as the phase margin andhgagin.
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CHAPTER |

INTRODUCTION
This dissertation deals with two problems of fixed order oaigr synthesis for Single
Input, Single Output(SISO) systems. The first problem i$ ¢iaynthesizing a fixed or-
der controller that absolutely stabilizes a Lure-Postmikgstem. The second problem
deals with the synthesis of fixed order stabilizing con&n@ldirectly from the empirical
frequency response data and some coarse information d@®$O system being con-
trolled.

One encounters nonlinear systems in engineering appisatvhere the nonlineari-
ties are sector-bounded. Such nonlinear systems are liypiei@rred to as Lure-Postnikov
systems which are important and common, see [1, 2]. Lineatralosystems which have
actuator/sensor nonlinearity(saturation) also can beesgmted as Lure-Postnikov sys-
tems [3]. Analytical tools examining the absolute stapitif Lure-Postnikov systems ex-
ist[4,5,6,7,8,9, 10, 11, 12]. However, the tools for systhmg stabilizing controllers,
especially that of fixed structure such as the PID or low-ocdatrollers, have not received
as much attention. Since the (sufficient) conditions fobifitang a Lure-Postnikov sys-
tem involve the Positive Realness (PR ness) or Strict Redtealness (SPR ness) of the
product of two transfer functions - one describing the Imeart of the Lure-Postnikov
System and the other a multiplier, it is conceivable thateafiparametric method may be
employed. It is this approach that was adopted recently bgamtbLu [2] for synthesizing
PID controllers for Lure-Postnikov systems. The systeongynthesis of PID controllers
exploits the special structure of the characteristic poigial [13]. Although a first order

controller also has three control parameters, the methdeld controller synthesis cannot

The journal model ISEEE Transactions on Automatic Control.



be directly applied for the synthesis of a first order cotgéroRecently, Malik, Darbha and
Bhattacharyya have proposed a systematic method for aippeitirg the set of controller
parameters that render a family of real and complex polyatsurwitz [14, 15, 16]. This
method involves separating the roots of the real and imagiparts of the characteristic
polynomial to systematically construct linear programshi@ controller parameters - the
union of the feasible sets of the linear programs constdustan approximation to the set
of controller parameters that can enable a certain trafigfetion either to be SPR or to
have aH,, less than a specified value. Based on the results of Malikplizaand Bhat-
tacharyya [14, 15, 16], we propose a method to constructaddiged order stabilizing
controllers of arbitrary order for Lure-Postnikov systems

The synthesis of fixed order/structure controllers for LIS is an important open
problem with a wide variety of practical applications [18].1lt is also widely recognized
that an accurate analytical model of the plant may not bdablaito a control designer.
However, it is reasonable in many applications that onelvade an empirical model of the
plant in terms of its frequency response data and from phlsansiderations or from the
empirical time response data, one may have some coarsenation about the plant such
as the number of non-minimum phase zeros of the plant etcielm of this, we consider
the problem of synthesizing sets of stabilizing contralléirectly from the empirical data
and such coarse information about the plant.

A systematic attempt to synthesize PID and first order ctlatsofor delay-free SISO
Linear Time Invariant (LTI) plants was first presented in][1l9owever, we are unaware of
any systematic attempt at synthesizing sets of stabilizimgrollers of arbitrary order from
the frequency response data and this work is a first attentpatrdirection. The proposed
method also allows for measurement errors in the frequeesyanse of the plant. The
method requires the computation of a set of parameters tizaagtee the nonnegativity of

a polynomial on interval when the coefficients of the polymarare affinely dependent on



the parameters. Recently, the Sum-of-Squares techniguebeived significant attention
for checking the nonnegativity of a polynomial. For exampleh and Vandenberghe have
presented a new semidefinte programming(SDP) formulafieum of squares represen-
tations of nonnegative polynomials of one variable in [20his method is based on the
Markov-Lucaks theorem and discrete polynomial transfonich @an be solved by using of
the well developed SDP solvers such as SeDuMi [21]. We useg@ribcedure formulated

in [20] for checking the nonnegativity of a polynomial in aimgerval.

A. Contributions of the Dissertation

Recently, Ho and Lu [2] proposed a synthesis method to désigd structure(PID) con-
trollers for Lure-Postnikov systems which is common andangnt in mechanical appli-
cations. Since the synthesis of PID controllers exploisspecial structure of the charac-
teristic polynomial the same method cannot be directlyiadptb fixed order controllers.
Bhattacharyya and Keel [22] have developed a method fohsgiting first order con-
trollers. However, this method does not easily extendetiecsynthesis of controllers of
order greater than one. In this dissertation, we propos&amethod that can be extended
to the synthesis of controllers of order greater than oné.fwe-Postnikov systems using
a recent systematic method for approximating the set ofrotbait parameters that render
a family of real and complex polynomials Hurwitz proposed\iglik, Darbha and Bhat-
tacharyya [14, 15, 16].

We also propose a novel method for synthesizing set of fixddrastabilizing con-
trollers of strictly proper, SISO LTI plants directly frorneir empirical frequency response
data and with two pieces of information about them. One istlaber of non minimum
phase zeros of the plant and the other is frequency rangatiayisich the phase response

of the LTI plant does not change appreciably and the am@itedponse goes to zero. The



method does not require an explicit analytical model of tlaafpthat must be stabilized
or the order of the plant, rather, it only requires the enspirfrequency response data of
the plant. The method also allows for measurement errotseifrequency response of the
plant. It is remarkable that these results indicate theipibi$g of fixed order controller
synthesis using only frequency response measurementspropesed method can also
be extended to the synthesis of controllers of arbitrareotbat guarantee performance

specifications such as the gain/phase margin and upper loouth@? ., norm.

B. Organization of the Dissertation

In chapter Il, a method to synthesize the fixed order/streatantrollers that absolutely sta-
bilize a Lure-Postnikov system is proposed. We also proaidexample of Lure-Postnikov
system(one-link robot with a flexible joint) and construet set of fixed structure(PID) and
first order controllers which absolutely stabilize the epdgrsystem. In chapter Ill, we re-
view a technique which can check the nonnegativity of a redfrppmial on an interval

using SDPs. We use the well known Chebyshev polynomialspooxpnate the real and
imaginary parts of the frequency response of the LTI pladt\&a provide a brief review

of Chebyshev approximation. In chapter 1V, we formulatepgh&blem of fixed order con-

troller as the feasibility of a robust SDP, based on the natheviewed in chapter Ill. The
proposed formulation does not require an explicit anadtinodel of the plant that must
be stabilized or the order of the plant, rather, it only reggithe empirical frequency re-
sponse data of the plant. The method of synthesizing stalglicontrollers involves the

use of generalized Hermite-Biehler theorem for rationalkfions for counting the roots
and the nonnegativity of a polynomial in some intervals. \l¢® ghow in some case the
nonnegativity of a polynomial in some intervals can be repthas nonnegativity of the

end points of the intervals. In chapter V, a method to syntiees controller that make a



system guaranteeing certain level of performance as weliamslity with finite frequency
response data is proposed. Those performance criteriaecgaib margin, phase margin,
upper bound on th&{,, norm of a weighted sensitivity transfer function, or a reguient
that a certain closed loop transfer function be SPR etc. &belts of this dissertation are

summarized and recommendations for future work are predentn chapter VI.



CHAPTER I

ON THE SYNTHESIS OF FIXED ORDER CONTROLLERS FOR LURE-POSKRIV
NONLINEAR SYSTEMS

A. Introduction

One encounters nonlinear systems in engineering applicathere the nonlinearities are
sector-bounded, for example, see [1, 2]. A one-link robdhwi flexible joint in [1], as
will be seen later, is an example of a Lure-Postnikov systemear systems with actua-
tor/sensor nonlinearity can also be represented as LusgRov systems. Such nonlinear
systems are typically referred to as Lure-Postnikov system

Analytical tools examining the absolute stability of LuPestnikov systems exist,
see[4,5,6,7,8,9, 10, 11, 12]. However, the tools for sysittieg stabilizing controllers,
especially that of fixed structure such as the PID or low-ocdatrollers, have not received
as much attention.

The synthesis of Pl controllers for general nonlinear syste/as considered by Des-
oer and Lin [23]. In this work, the nonlinear system is asstiioebe stabilized exponen-
tially through some means and an integral action is provideitie feedforward path of
the outer loop so that step inputs could be tracked with zierady state error. Using this
method, the problem of synthesizing a stabilizing congratan be performed in two steps
- the first one involves the synthesis of a stabilizing cdfgr@and the second one involves
the design of a PI controller in the outer loop. The problerstabilizing a general nonlin-
ear system with output feedback is a daunting task. Foréaisan, we restrict ourselves to
this class of important nonlinear system. One encountammear systems which consist
of a linear system in the feed forward path and a output nealty in the feedback path.

If the output nonlinearity is sector bounded, such systemsederred to as Lure-Postnikov



systems (see Narendra and Taylor [5]). The problem of staiylLure-Postnikov systems
has received significant attention since it was posed iry d®&40s. The first solution (a
sufficient condition) was provided by Popov and subsequenatiious other sufficient con-
ditions were provided [4, 5]. All the sufficient conditioms/dlve the positive realness (PR)
or strictly positive realness (SPR) of the product of twasfar functions - one related to
the linear part of the transfer function and the other a rplidti of a certain class. Three
characterizations of SPR transfer functions have beenass@ - In state space form, the
KYP lemma and its variants provide conditions on a trangiecfion being SPR. In the
frequency domain, a transfer function is SPR if it is analyti the RHP and the Nyquist
plot of the transfer function is always in th¢ and4** quadrants of the complex plane. In
the parametric approach, a transfer function is SPR if (&)DR gain is positive (2) the
numerator is Hurwitz and a function of complex polynomidHigrwitz. It is the latter char-
acterization that has recently been used by Ho and Lu (2@08)rthesize stabilizing PID
controllers for Lure-Postnikov systems. The first use ofpeetric approach to analyze
robustness of an absolutely stabilizing controller is giire[24]. We adopt the parametric
approach for synthesizing stabilizing controllers for &dRostnikov systems in much the
same way as Ho and Lu have recently used.

Central to the method of Ho and Lu [2] are two recent ideasth{@)systematic syn-
thesis of PID controllers [25] for SISO systems that expiaiérlacing properties of real
and complex Hurwitz polynomials, and (2) the reduction e 8PR condition of trans-
fer function to that of rendering Hurwitz a one-parametenifg of complex polynomials
[26]. Using the circle criterion [3, 27], Ho and Lu converethbroblem of PID controller
synthesis to that of synthesis of PID gains that render alyaoficomplex polynomials
Hurwitz [2]. The advantage of the parametric approach istti@set of all stabilizing PID
controllers that make a specified transfer function SPR easypproximated computation-

ally and be made available graphically to the control alfponidesigner who may be faced



with other constraints.

The systematic synthesis of PID controllers exploits thecsd structure of the char-
acteristic polynomial. Although a first order controlles@lhas three control parameters,
the same method cannot be directly applied. Bhattachamnyg&ael [22] have developed
a method for synthesizing first order controllers based erDtfdecomposition technique;
however, this method does not readily extend to the syrgloésiontrollers of order greater
than one. Recently, Malik, Darbha and Bhattacharyya hawpqsed a systematic method
for approximating the set of controller parameters thatleemm family of real and complex
polynomials Hurwitz [14, 15, 16]. This method involves segteg the roots of the real
and imaginary parts of the characteristic polynomial taesysatically construct linear pro-
grams in the controller parameters - the union of the feasbts of the linear programs
constructed is an approximation to the set of controlleapeaters. The criteria for the
rational function either to be SPR or to havé(g less than a specified value can be posed
as the determination of controller parameters that renéeeméy of complex polynomials
Hurwitz. In this chapter, we use this method for construgsets of stabilizing controllers
for Lure-Postnikov systems.

This chapter is organized as follows: section B provideveveof the relevant math-
ematical preliminaries, section C details the systemagithmdology for the construction of
stabilizing controllers, in section D, an example of a Le@stnikov system (one-link robot
with a flexible joint) is considered and the set of PID and farster stabilizing controllers

for the example system are constructed and graphicallstitited.

B. Preliminaries

Consider a SISO Lure-Postnikov system with saturationineality as shown in Figure 1.

The nonlinear scalar function(y) is assumed to satisfy the sector bounel yi(y) <



A 4

_,©_> x=Ax+ Bu

A y=Cx

G(s) : Linear Part

w(y)[ :ﬁy
,‘ >y [

Sector Bounded Nonlinearity

Fig. 1.: An Example of a Lure-Postnikov System

By?. Many physical systems can be represented by the feedbaclection of Figure 1
with the sector bounded nonlinearity [1, 2].

In general, a Lure-Postnikov system can be represented by :

r = Ax+ Bu
y = Cx+ Du

u = —P(y)
G(s) = C(sI-A)"'B+D

The absolute stability for Lure-Postnikov systems can bimee as follows [5]:

Definition II.1. Absolute Stability
If the equilibrium solution on: = 0 is asymptotically stable for every nonlinearity satisfy-
ing the sector bound, then= 0 is absolutely stable (Lure-Postnikov system is absolutely

stable).

In this chapter, we deal with the synthesis of absolutelpibzang fixed order con-
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trollers of arbitrary order for Lure-Postnikov systems.
An important condition that arises in the solution of thisalote stability problem is
the property of strictly positive realness (SPR) of a transdinction. The SPR property is

defined as follows [26] :

Definition 11.2. (SPR)

A proper, rational, scalar, transfer functiofd(s) is SPR if
1. G(s) has no poles in the closed right half plane.
2. Re|G(jw)] > 0, Yw € (—o0,+00).
The following results are well-established in the literat[4, 5, 6, 7, 8].

Theorem 11.1. (Circle Criterion)
Consider the Lure-Postnikov system in Figure 1G/(k) + % is SPR, then the equilibrium

pointsz = 0 is asymptotically stable for every sector bounded nonlityga) satisfying
0 < y¥(y) < By”.

Another sufficient condition for absolutely stability isvgh through the Popov crite-

rion.

Theorem 11.2. (Popov)
If the linear part of the Lure-Postnikov system is describgdhe transfer functiow:(s),
where

G(s) = c;l +c(sI —A)'B (2.1)

with d > 0, A Hurwitz, and the triplet(A, B, ¢) is minimal, then the equilibrium
solutionz = 0 of the Lure-Postnikov system is globally asymptoticalipk if the transfer

function(yis + ) (G(s) + %) is SPR for some; > 0 and~, > 0.

Without any loss of generality, one may sgt= 1. The term(v;s + ) is referred to

as a multiplier.
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Fixed Order Controller

Cis) o

x=Ax+Bu, + Du,
v=Cx+ Du,

L

I

—w(y)

Sector bounded nonlinearity

Fig. 2.: Controller Synthesis

For monotone nonlinearities which form a subset of the sdmianded nonlinearities
and are described iy < (y; — ) (¥ (y1) — ¥ (y2) < M (y, —y2)?, the sufficient conditions
that guarantee the global asymptotic stability of the elgim require a transfer function
of the form M (s)G(s) to be PR, wheré/(s) = % 7 > 0 andy; > 0[5]. In general,
the sufficient conditions requit® (s)G(s) to be SPR for some multiplier transfer function
of a certain class.

The problem of synthesizing a stabilizing controller foraé-Postnikov problem can
be understood from the block diagram as shown in Figure 2.

If one were to apply the Popov’s stability criterion or anjet criteria for absolute
stability, one requires checking if a certain transfer tiowc M (s)G(s) is SPR, where
G, is a upper linear fractional transformation obtained bysitlg the loop. As such, the
coefficients of the numerator and denominatoGof(s) will affinely depend on the con-

troller coefficients. Application of a Routh-like procedurdue to Siljak [28] will result
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in a system of polynomial inequalities; at present, the m@shsuch as Tarski and Seiden-
berg Theory [29, 30] that check the feasibility of a systenpalfiynomial inequalities are
computationally difficult.

There are difficulties with synthesizing controllers usatlger characterizations :

1. Kalman-Yakubovich-Popov (KYP) Lemma states that
Gua(s) = C(sI — A,)"'B is SPR if there exists a positive definite symmetric
matrix,P, matrix L ande > 0 such thatd’, P+ PA, < —LL" —eP andBTP = C.
We have an unknown controller vectarand an unknown positive definite symmet-
ric matrix P. A, is affine in K. The closed loop matrix inequality is bilinear i
and P and currently there is no general algorithm to solve thig typbilinear matrix

inequalities.

2. We also can consider in frequency domain characterizdtio synthesizing con-

trollers. Essentially this will require

(s, K) ggig | RelGuljw, K)] > 0
Re [Galjw, K)] = D, (w, K)N,(w, K) — D;(w, K)N;(w, K) S0, VweR

D%(w, K) + D?(w, K)
The numerator polynomial ake [G(jw, K)] has coefficients that are quadratic in
the controller vectofs. As we will see in chapter Ill, the nonnegativity of a polyno-
mial can be checked using a linear matrix inequality in thefficients. This implies

that the frequency domain approach leads to quadraticxmaggqualities. There are

no general algorithms for solving them at current time.

For this reason, we will use the results in [26], which pr@adhe following charac-

terization of SPR transfer functions:
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Theorem 11.3. (SPR)

Gr(s, K) = NT<S’K; is SPRif and only if

Dr(s,
(1) Gr(0,K) >0,
(2) Nr(s, K) is Hurwitz, and

(3) A(a, s, K) = Dr(s,K) + jaNr(s, K) is Hurwitz for everyn € .

This characterization is useful for our work becatsg0, K'), Nr(s, K) andA(a, s, K)
are affine in controller vectak with fixed . We will show that this will lead to linear in-
equalities. For this reason, the third characterizatid®RIR in [26] is useful in constructing
absolutely stabilizing controllers through the solutidradamily of linear programs.
Essentially, for the purposes of controller synthesis tbsult reduces the problem to
determining the set of controller parameteiS,= (k1, ..., k,) that render Hurwitz (1) a

real polynomial NV, of the following form :
N(s,K) = No(s) + ki Ni(s) + - - - + knNu(s).
and(2) a complex polynomial], of the following form :
A(s, K) = Ao(s) + k1AL (s) + - - - + ki A(s).

The polynomialsV;,7 = 0,...,nandA;,j = 0,...,l may be assumed known (from the
plant data and the structure of the controller chosen).

The Hermite-Biehler theorem for a real polynomial providesharacterization when
a real polynomial is Hurwitz [31, 32]. IfV(s, K) is a real polynomial of degree and
N (jw) may be expressed @& (w?, K)+ jwN,(w?, K) for some real polynomialg’, (w?)
and N,(w?). The degrees of polynomials, and N, aren, andn, respectively inw?;
specifically, ifn is odd,n. = n, = "T‘l and ifn is evenn, = § andn, = n, — 1. Letw,,

w,; denote the'™ positive real roots ofV, and N, respectively.
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The Hermite-Biehler theorem for real polynomials may beestas in Theorem I1.4.

For the sake of clarity, and for the general case, the depeed®n K is suppressed.

Theorem 11.4. Hermite-Biehler Theorem for real polynomials

A real polynomialN (s) is Hurwitz iff

1. The constant coefficients df (w?) and N, (w?) are of the same sign,

2. All roots of N (w?) and N,(w?) are real and distinct; the positive roots interlace

according to the following:

e if nis even:

0 < We1 <Wop < vv < Woppa1 < Wep,

e if nis odd:

0 <Wei <Wop <00 < Wep, < Wop,

A proof of the Hermite-Biehler theorem can be found in [26].

The following version [14, 15, 16] of the Hermite-Biehleetirem poses the problem
of renderingN (s, K') Hurwitz through a choice of. — 1 frequencies. LeCy, Sy, k =
1,2,3, 4 denote diagonal matrices of dimensionthe (m + 1)* diagonal elements af,
and Sy are respectivelyos((2k — 1)7 + m3) andsin((2k — 1)7 + m3). By way of
notation, we represent the polynomials and NV, compactly in the following form, owing
to the affine dependence of their coefficients on the coetrplirameter vectak'.

Note thatV, (0, K') andN, (0, K') denote constant coefficients 8 (w?, K) andN,(w?, K)

respectively.

Theorem I1.5.

There exists a real control parameter vecter = (ky, ks, ---, k;) so that the real
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polynomial

N(s,K) = No(s)+ kiNi(s)+ ...+ kNi(s)

= n,(K)s" +np 1 (K)s" 1+ + ng(K)

is Hurwitz iff there exists a set af — 1 frequencies) = wy < w; < wy < w3 < +++ <

w,_1, SO that one of the two Linear Programs (LPS) corresponding + 1 andk = 3 is

feasible:
N.(0, K) No(0, K)
Ne(wiK) NO(w%>K>
Ck > 0 and Sk > 0. (22)
Ne(w?@—laK) No(w%_l,K)

The union of the feasible sets of the above LPs correspondialj such sets of fre-

quencies({ < wy, < wq < ... < w,_1) is the set of all stabilizing controllers.

Proof.

The first condition of the Hermite-Biehler theorem requitest the constant coefficients of
N, and N, be of the same sign. This condition implies thato, K) > 0, N,(0, K) > 0

or N.(0,K) < 0,N,(0, K) < 0. The second condition of the Hermite-Biehler theorem is
equivalent to the existenceof- 1 frequencies) < w; < w, < --- < w,_1 such that the
roots of the even polynomial,, lie in (0, w;), (wy, w3), (w4, ws), . . ., while the roots of
the odd polynomial]N,, lie in (wq, ws), (w3, wy), . . ..

If N.(0,K) > 0,N,(0,K) > 0, then the placement of roots will requif€,(vw?, K) <

0, No(w2, K) < 0, N.(w2, K) > 0, N.(w? K) > 0,...and N,(w? K) > 0, N,(w3, K) <

0, N, (w3, K) < 0, N,(w? K) > 0,... as shown in Figure 3, wher&/(s) is of degrees

and the constant coefficient &f(s) is positive. In other words, the signs¥f(w?, K) and



16

d=8 and 60 >0
100t
er
80 /
60 /W
1
=T 40t
S N\
£ 20t
- w
r3 W
ok i1 Wi3q5k\ i2
w=0
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Fig. 3.: Phase Property for Hurwitz Polynomials

N,(w?, K) are the same as that obs(5 +i5) andsin(§ +43) respectively. Therefore, for

the case whev, (0, K') > 0, N,(0, K) > 0, we have

cos(] +i5)N.(w, K) > 0 and sin( T +i7)N(wd, K) > 0.

Similarly whenN. (0, K') < 0, N,(0, K) < 0, we have

5 5
cos(% + ig)Ne(wE,K) > 0 and sin(% + ig)No(wizv K)>0

Putting the inequality conditions together, there existabilizing controllerK iff there
exists a set ofn — 1) frequencied) < w; < ... < w,_; such that one of the two Linear

Programs (LPs) given by equations (2.2) is feasible. \VAYAY/

The third condition for SPR in Theorem 1.3 requires that enptex polynomial be

Hurwitz. A characterization of a complex Hurwitz polynomimpresented in [26, 31, 33].
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For the sake of completeness we provide a characterizagéifmwb If A(s) is a complex
polynomial of degree: and A(jw) may be expressed &s,(w) + jA;(w) for some real
polynomialsA, (s) andA;(s). Without any loss of generality, one may assume thaand
A, to be of degree. Letw, 1, w, o, ..., w,, be theroots of\, andw; 1, w; s, ..., w;, are

the roots ofA,.

Theorem 11.6. (Hermite-Biehler Theorem for complex polynomials)
The polynomialA(s) is Hurwitz if and only if all roots of\,. and A; are real and interlace

according to the following:

¢ If the leading coefficients @k, and A; are of the same sign, then
—00 < W Wi 1 < Wpo < Wi <0 < Wy < Wi < OO,

and

e if the leading coefficients @k, and A; are of opposite sign, then
—00 < Wil Wy < Wi < Wpo <0 < Wi < Wy < OO0,

If A(s, K) is a complex polynomial whose coefficients are affinéinthen the coef-
ficients of A;(w, K') and A, (w, K) are also affine in controller parametersin LetJ,.,
ando, ,, denote the leading coefficients Af andA; respectively. LeC, Sk, k =1,2,3,4
denote diagonal matrices of dimension the (m + 1)** diagonal elements af), and.S;
are respectivelyos((2k — 1) +m7) andsin((2k — 1)§ +m7%).

The following result [14, 15, 16] exploits the interlacingpperty of Hurwitz polyno-
mials, as described by the Hermite-Biehler theorem, toigdewgonditions for the existence
of a controller parametek™ that renders a compleX(s, K') Hurwitz in terms of the exis-

tence of separating frequencies and the feasibility oflirrograms:



Theorem I1.7.

18

There exists a stabilizing controller parameter vediosuch thatA (s, K') is Hurwitz if and

only if there exists a set of separating frequencies < w; < wy < -+ < Wop_1 < 00

such that at least one of the four linear programs correspogtb & = 1, 2, 3, 4 is feasible:

Ck

Or.n(K)
Ar(wl, K)

Ar(wZn—la K)

> 0 and S},

5z,n(K)
Ai(wl, K)

Ai(wZn—la K)

> 0. (2.3)

The proofs follow the same pattern as that of Theorem Il.5wasvs in [14, 15, 16].

In the next section, we will combine all the results to prevedcomputational method

for an inner approximation of the set of absolutely stalmitizcontrollers of a fixed order

for a SISO Lure-Postnikov System.

C. Main Results

Consider a Lure-Postnikov system of Figure 2. The linear piathe system may be de-

scribed by the following equation:

Y (s) = Gi(s)Ui(s) + Ga(s)Ua(s),

(2.4)

where G, (s) is the transfer function relating the control input,(t) to the output,y(¢)

and the transfer functiotv,(s) relates how the disturbaneg(t) affects the outpuy(t).

We assumé- (s), Ga(s) to be proper rational transfer functions. If a controlle€)(s) of

orderr is used to stabilize the system, thép(s) = —C(s)Y (s), and the relation from the
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disturbancey,, to the outputy may be described as:

&

YO =15 Gom

Usy(s) = G(s)Us(s), G(s)

If C(s) is expressed as

B ng+ns+...+n.s"
S dy+dis+ ..o+ de_gsT + 57

C(s)

then the coefficients of the numerator and denominator potyals of the transfer function
G(s) are affine functions of the controller parameter vedt= (ng, n1, ..., 1., do, ..., d.—1).

SinceG(s) depends o, we will highlight the dependence through the use<oés

an additional argument a8(s, K). We will expressG(s, k) as™y S:Q and any multiplier

(
D(s

Nas(s)
M(s) as IO
Clearly, from the absolute stability theory, M (s)G(s, K) is SPR for an appropriate
multiplier M (s), then the closed loop system is absolutely stable. We wilsitter a family

of polynomials,F as:
F:={A(s,a,K) := D(s, K)Dp(s) + jaN(s, K)Ny(s), a € R} (2.6)

Let the degree of each polynomial beWe will write A(jw, a, K) asA, (w, a, K) +
JjA(w, a, K). The terms),.,(«, K) andd; ,(a, K') denote the leading coefficients o,
andA; respectively.

We now formally state the main result:

Theorem I1.8.
There exists an absolutely stabilizing controlt&(s) of order r if there exists ak" that

renders

1. Num(0) N(0.K)

© Du@ DO.K) > Y

2. Ny (s)N (s, K) is Hurwitz and
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3. Each member of the famil§y of polynomials Hurwitz, i.e., for every € R, there

exists a set of frequenciesx < w (o) < we(a) < - -+ < wa,—1(a) < 00, such that

K isin the feasible set of at least onekok 1,2, 3, 4:

S, K) din(a, K)
Ar(wl,a,K) Ai(wl,a,K)
Ch > 0 and Sy, > 0. (27)
Ar(w2n—17a7K) Ai(w2n—17a7K)
D. Example

Fig. 4.: One-Link Robot with a Flexible Joint

We will consider a one-link robot with a flexible joint as araexple of Lure-Postnikov

systems as shown in Figure 4 [1].

Iél + blél + mgL sin91 + k:(01 - 92) =0

JOy + boly — k(6 — 05) =T (2.8)

We can obtain a state space representation of the systejib{2cBoosing state vari-

ables :



Then :
I
Ty =
T3 =
Ty =
where
0 1
_k _bu
A= I 1
0 0
k
70

x1 =0,
x3 = 05
Z2
1
1
ko b
TR
Ty

1 .
j{k(el —03) — byt + 7}

k k

=Ty — ZT3 — — T4+

J J

y = Cu,
0 0
k
i 0
0 1
_k b2
J 7]

1’2:91

1’4:92

k
I

by
J

B,

~{—k(0y — 65) — b6y — mgLsinb,}

sin x

21

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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Suppose the joint system parameters are given as follows :

J =0.5kg -m? bl = 0.0N —m - s/rad, k = 50.0N —m/rad

I =25.0kg-m? b2=10N —m-s/rad,m = 1.0kg, L = 5.0m

1. PID Controller

Let us consider a PID controller :

ki
C(S) = ]{Zp + ? + kgs (215)
u=ky(r—vy)+ka(r —y) + kw (2.16)
w=r-—1y, (2.17)

where(C'(s) is the PID controllerw is the integral of the error andis reference which is
set to bed. Figure 5 shows a control structure for the one-link robdhva flexible joint

which has a sector-bounded nonlinearity.

= 0 y
_@_. Cls) G(s) >
Controller Linear
W) |e—
Nonlinear

Fig. 5.: Control Structure of One-Link Robot with a Flexible Joint

Now, the overall system can be represented as a augmentecthsas follows :



23

3 Az — Bi(y) (2.18)
Yy Cz, (2.19)
/
wherez = [x w}
0 1 0 0 0] [0 ]
S B B !
A= 0 o o0 1 01],B=]o0 (2.20)
Eeky —ka —% -2 K 0
-1 0 0 0 0| | 0
C:[10000} (2.21)
L
Yy -9 siny, (2.22)
4 I
G(s)= = C(sI-A)"'B
_ NCZ(S)
DCZ(S)
3425241
_ s° + 2s° + 100s (2.23)

$5 4+ 254 4+ 10253 + (4 + 2kq)s% + 2k,s + 2k;

From the popov theorem, above system is absolutely statbleré isy > 0, with —%

not an eigenvalue of such thatGiy(s) = 55 = 1+ (141s) 3G (s) = Lol CHANa ()

is strictly positive real [3].

For strictly positive realness of th@r(s), the following conditions should be held
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from Theorem I1.3.

1. Gr(0) = 33 >0,

2. Ngr(s) = Da(s) + (1 +ns)BNu(s)) is Hurwitz for somey > 0, and

3. P(S, K) = DGT(8)+jOéNGT(S) = DCZ(S)+jOé{Dcl(S)—F(l—i—nS)ﬂNcl(S)} is Hurwitz

for somen > 0, Va € R.

We will illustrate how to find the set of all controllers so tladove SPR conditions satisfy

undern =1, g = 2.

1. For conditiont:

NGT(S)
DGT(S)
De(s) + (1 +ns)BNa(s))
DCI(S)
s° + 45 +108s% + (208 + 2k4)s? + (2k, + 200)s + 2k;
s5 4+ 2s% + 10283 + (4 4 2ky)s? + 2k,s + 2k;

GT(S) =

and we clearly see th&ét-(0) = 1> 0

2. For conditior2:

Ner(s) = Da(s) + (1+ns)BNy(s))

= 57 +4s" + 1085 + (208 + 2k,)s* + (2k, + 200)s + 2k;
The real and imaginary parts of tii&; at jw are given by

NGT(jw, K) = NGT,G(’LU, K) + j’LUNGT,O(’LU, K)
Nere(w, K) = 4w* — (208 + 2kq)w? + 2k;

Nero(w, K) = w* — 108w? + 200 + 2k,
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For the polynomialVsr to be Hurwitz, there must exist a set of frequendcies

woy < wy < wy < wsg < wy for eitherC; andS; or Cs; andSs

1 0 0 - -
- 111
1w} wi 0 02 0
k
Cr| 1 wl wi|]| —208 00 —2 1 >0
ki
1wl w; 4 00 O
- - kd
_1wi wy | -7
and
1 0 0 -
1
1 w? wl 200 2 0 0
k
Sel 1 w? wi || —108 0 0 0 1 >0
ki
1 w2 wi 1 000
kq
_1wZ wff_ -7

Figure 6 shows the set of controller which hold SPR condition

3. For conditiors:

P(S) = DGT(S) —|'jOéNGT(S)
= D+ ja{Du(s)+ (1 +ns)BNy(s)}
= (14 ja)s’ + (2 + j4a)s* + (102 + j108a)s® + {4 + 2kq + 7(208 + 2k4)a} s>

+ {2k, + j(2k, + 200)a} s + 2k; + j2k;
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200

Fig. 6.: Set of PID Controllers Satisfying SPR Conditian

P(jw,K) = P.(w,K)+ jP(w, K)
P(w,K) = —aw®+2w*+ 108aw® — 2(2 + ky)w® — 2a(100 + k,)w + 2k;

Pi(w,K) = w’+4daw* —102w® — 2a(104 + kg)w* + 2k,w + 2a

- 0 0 -1 11 0 0 2 0 -
1wy w} —200ac —2a 0 O | 1 ]
cr 1wy ws —4 0 0 -2 k, 0
108« 0 0 O ki
2 0O 0 O I kq |
1wy w —a 0 0 0
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and

0 0 -1 0 0 2« 0

1w w? 0 2 0 0 1

1 wy ... wd —208c¢ 0 0 —2« k

Sk ? 2 P >0

—-102 0 O 0 k;
4o 0 0 0 kq

1wy w 1 0 0 0

Figure 7 shows the set of controller for which the SPR coaditiholds.

150

Fig. 7.: Set of PID Controllers Satisfying SPR Conditi®n

Figure 8 shows the set of controller for which the transfeiction is SPR and this set

of controller absolutely stabilize the one-link robot wiétllexible joint.
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140

Fig. 8.: Set of Absolutely Stabilizing PID Controllers

From the admissible region shown in Figure 8, we selecte®tbegain values to be
k, =50, k; = 5, andk, = 15. Figure 9 shows the response for the one-link robot system

with the selected PID controller.



29

Pid Controller
0.2 T T T T

0.15f

0.1

0.05F

_02 Il Il Il
0 10 20 30 40 50

Time(sec)

Fig. 9.: Response of the Robot’'s Angular Position with a PID Corerolk, = 50, k; = 5, kg =
15)

2. First Order Controller

Let us consider the first order controller

]{528 + ]{?T
== 1 2.24
c(s) = 22 (224)
u = kiw + kay (2.25)

]{ZT — k?l + k?g]{?g,

whereC(s) is the first order controllery is a output filter and is reference which is set to

be0. Now, the overall system can be represented as a augmerstedsy

i = Az-By(y)

y = Cz, (2.26)
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X
wherez =
w
0 1 0 o 0 | [0 |
O 1
A= 0 o 0 1 o0 |,B=1]0 (2.27)
ik, 0 & 2 [ 0
1 0 0 0 k| 0 |
02[1 00 0 0} (2.28)
mglL .
Yly) = ——siny, (2.29)

53 4(24k3)s2+(100+2k3)s+100k3
$2+(24k3)s*+(150+2k3) s34 (150k3+100) 52 +(—50k2 +100k3 ) s—50k] *

wherek] = ky + koks

From the Popov theorem, the above system is absolutelyesifathlere isn > 0,

with —% not an eigenvalue ofl such thatGr(s) = ﬁ%iii = 14 (1+17s)BG(s) =

Dei(s)+(14ms)BNei(s)
Dcl (8)

is strictly positive real.

We will illustrate how to find the set of all first order contiexs so that SPR conditions

satisfy under) = 1, 3 = 2 as before.

1. For conditionl: G7(s) = ggigzg

— Dcl(s)+(1+ns)ﬁNcl (S))
Dcl(s)
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8%+ (4+ks) st +(156+4k3) s34+ (304+156k3 ) 52 +(—50k2 +304k3+200) s — 50k +200ks3
$9+4(24k3)s*+(150+2k3) s34 (150k3+100) 52 +(—50k2 +100k3 ) s— 50k}

ks
ki

Gr(0) =1 >0

Figure 10 shows the set of controller which satisfying SPRditon 1 of Theorem

1.3.

200
100
4" 0

-100 .-

200.L
200

200

K 200 -200 .

Fig. 10.: Set of First Order Controllers Satisfying SPR Condition

2. For conditior2:

NGT(S) - Dcl(s) + (1 + ns)ﬁNcl(s))
= 5%+ (4+ k3)s* + (156 + 4k3)s® + (304 + 156k3)s>

+(—50ks + 304k + 200)s — 50kT -+ 200ks
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NGT(jw7 K) - NGT,e(wa K) + j'LUNGT,o(wa K)
Nere(w, K) = (4+ ks)w* — (304 + 156k3)w? — 50k} + 200k;

Nero(w, K) = w* — (156 + 4k3)w?® — 50k, + 304k3 + 200

10 0 -
1
1 w? w 0 —50 0 200
k*
Cr| 1 w? wh|| 304 0 0 —156 o>,
ko
1 w? wi 4 0 0 1
ks
1 w? wi‘_ -7
and
10 0 -
1
1w wh || 200 0 —50 304
k:*
Sel1 w2 wh || -156 0 0 —4 oo
ko
1wl w; 10 0 0
ks
1wl wy | .

Figure 11 shows the set of first order controller for whichsging the SPR condi-

tion 2.
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K -100 200 .

Fig. 11.: Set of First Order Controllers Satisfying SPR Conditibn

3. For conditiors:

P(s) = Dgr(s) + jaNgr(s)
= Dy + jaf{Dy(s) + (1 +ns)3Nu(s)}
= (14 ja)s® + {2+ ks + j(4 4 ks)a} s* + {150 + 2ks + j(156 + 4k3)a} s°
+ {100 + 150k3 + (304 + 156k3)a} s>
+ {50k, + 100ks + j(—50ky + 304ks + 200)a} s

—50k* + j(—50kT + 200ks )



P(jw, K) = P(w,K)+ jF(w,K)

P(w,K) = —aw’+ (2+ k3)w" + 4a(39 + k3)w® — 50(2 + 3k3)w?
+a(—200 4 50ky — 304k3)w — 50k}

Pi(w,K) = w®+ a4+ k3)w* —2(75 + ks)w® + a(—304 — 156ks)w?

+50(—ks + 2k3)w — 50a(kt — 4ks)

0o 0 ... —1 0 -50 0 0
1wy ... w} =200 0 50a —304a 1
1 wy ... wj —100 0 0 =150 kY
Ch > 0,
: 156 0 0 4oy ko
2 0 0 1 ks
1wy w —a 0 0 0
and
0o 0 ... -1 0 =50 0 200
1w ... w? 0 0 =50 100 1
1wy ... w —304ac 0 0 —156c kY
Sk >0
—150 0 0 —2 ko
%Y 0 0 « ks
1 wy ... wy 1 0 0 0

Figure 12 shows the set of first order controller for which&RrR conditior8 holds.
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Fig. 12.: Set of First Order Controllers Satisfying SPR Conditin

Figure 13 shows the set of the first order controller for whatihthe conditions hold
and this set of controller absolutely stabilize the on&-tiobot with a flexible joint. From
the admissible region shown in Figure 13, we selected thedider gain values to be
ky = —20, ky = —50 andk; = 1. Figure 14 shows the response for the one-link robot

system with the selected first order controller.
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Fig. 13.: Set of Absolutely Stabilizing First Order Controllers

First Order Controller
0.2 ‘ ‘

0.15f i
0.1 .

0.051 b

0 20 40 60 80 100
Time(sec)

Fig. 14.: Response of the Robot’s Angular Position with a First Ordentller (k7 = —20, kg =
=50, k3 =1)
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CHAPTER III

SUM-OF-SQUARES REPRESENTATIONS OF NONNEGATIVE POLYNOMILA
AND SEMIDEFINITE PROGRAMMING

A. Introduction

A method for synthesizing of fixed order stabilizing conlieo$ directly from the empiri-
cal frequency response data and some coarse informatiarn #i@SISO system will be
proposed in chapter IV.

We utilize the well known Chevyshev polynomial [34, 35, 38, 38, 39] to approx-
imate the frequency response function in chapter IV. F& thason, we will provide a
brief review of Chebyshev approximation, in section B. Weapply some recent results
that sums of squares can be formulated as a linear inequaidy the cone of positive
semidefinite matrices(LMI) [20, 40, 41, 42, 43, 44].

The method to be proposed requires the nonnegativity oflgpodgnomial on some
intervals. In section C of this chapter, we review the foratioln for checking the nonneg-
ativity of a real polynomial on an interval as a semidefintegpam(SDP) through the use

of Markov-Lucaks theorem [20].

B. Polynomial Approximation of Continuous Functions

1. Chebyshev Polynomials of the First and Second Kinds

We start with Weierstrass'’s result on approximation of aicaous function by polynomi-

als.

Theorem 111.1. (Weierstrass Approximation)

If fis a continuous real-valued function ¢n b] and if anye > 0 is given, then there exists
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a polynomialP on [a, b] such that
| f(z) = P(z) | < e Ya € [a,b] (3.1)

In words, any continuous function on a closed and boundeaviak can be uniformly
approximated on that interval by polynomials to any degreacouracy. Proofs of the
Weierstrass approximation theorem can be found in [45, 46].

The algebraic polynomials, (x) satisfying
T, (cosx) = cos(nz), forn=0,1,2,... (3.2)

are called the Chebyshev polynomials of the first kind [34,3% 37, 38]. This formula
uniquely defined’, as a polynomial of degree exactly The Chebyshev polynomidl, is
of degreen and its leading coefficient isif n» = 0, and2"~! if n > 1. We describe some

properties of Chebyshev polynomials of the first kind.

1. Sincecos(nx) = 2cosz cos(n — 1)z — cos(n — 2)zx, T,,(x) has the following recur-

rence relation [36].
Toi1(x) = 22T, () — Ty, n > 2,

whereTy(z) = 1, T (z) = x. This recurrence relation may be taken as a definition

for the Chebyshev polynomial of the first kind.
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To(z) = 1

Ti(z) = =z
Ty(z) = 22*—1
T3(z) = 42° -3z
Ty(z) = 8x*—8x* +1

Ts(x) = 162° —202° + 52

2. Chebyshev polynomials of the first kind are orthogonahwéspect to the weight

function(1 — 2%)~'/2 on the interval —1, 1).

1 ™
/_lwolx = /Ocosné) cosmb df

0, n#m
= ™, n=m=0

/2, n=m#0

3. The polynomiall},(z) hasn zeros in the interval-1, 1], and they are located at the

points

x:cos(M>, k=1,2....n (3.3)

n

4. The Chebyshev polynomials also satisfy a discrete odhalgproperty. Iz, (k =
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1,2,...,m) are them zeros ofT,,(z) given by (3.3) and if, ; < m, then
0, i#J
S L) Ti(a) =3 m, i=j=0 (3.4)
k=1
m/2, i=7#0
The Chebyshev polynomial$, (z) of the second kind are some polynomials of degree
n in z and are defined by

_ sin(n+1)0

Up(x) = , © =cosf (3.5)

sin 6
This formula uniquely define§,,(z) as a polynomial of degree exactly

We describe some properties of Chebyshev polynomials cfebend kind.

1. Sincesin(n+1)0 +sin(n—1)0 = 2 cos sinnd, U, (z) has the following recurrence

relation [36].

Upio(x) = 22Up 1 (x) — Up(x), n > 2,

whereUy(z) = 1, U;(z) = 2z. This recurrence relation may be taken as a definition

for the Chebyshev polynomials of the second kind.

Up(z) = 1

Ui(z) = 2z

Uy(z) = 42 —1

Us(z) = 8a° —4x

Uyz) = 162* — 1227 +1

Us(r) = 322° —322° + 62
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2. Chebyshev polynomials of the second kind are orthogoitalrespect to the weight

function(1 — 2%)'/2 on the interval —1, 1).

3. The derivative of Chebyshev polynomials of the first kirath e represented as

Chebyshev polynomials of the second kind:

dT,(x) 1 cosnf

dz Csinf  df
cosnf ,cosf

= ~w @

n sin nb

sin 6

= nU,_(z) (3.6)

2. Chebyshev Approximation

The Chebyshev approximation uses Chebyshev polynomial$asis for the approximat-

ing polynomials [39].

Theorem 111.2. (Chebyshev Approximation)
Let f(z) be an arbitrary continuous function in the intervat1, 1] then f(z) can be ap-

proximated using the first’V + 1”7 Chebyshev polynomials as:

N
pa(z) = | ) CiTi() —%co, (3.7)
k=0
where
9 N
G =5 ;f(l"k)Tj(xk)
N 1 . 1
= %Zf {Cos (W(k]; 5))} Ccos (W) ; (3.8)
k=1

It is not difficult to verify theorem II1.2 with (3.3) and (3)4
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For Chebyshev polynomial approximation, it is necessarotonalize the frequency

rangew € [a,b] toz € [—1, 1] as follows:

- 14 2%, w € [a, b] (3.9)
Letd(s) = A(s)[)?”;(ﬁ whereA(s) is characteristic polynomial for a system and

D,(s) andN,(s) are the denominator and numerator of a plant will be seenapten V.

Now, we are ready to approxima (”(w [;2 and “;i”(w [;2 with finite frequency data to the

Chebyshev polynomial of degree.

1. The approximation of the real pafit(z, K) ~ &)&%
5 (Jw, K) . /
I ———— AT w, G Jw , Gr w), GZ w K
| D,(jw) |2 (w, |G(jw)] (), Gi(w)) [K']

fr(x, K) = Co(K)To(x) + CT(K)Ti(x) + ... + Oy (K) T (x) (3.10)

2. The approximation of the imaginary pdftz, K) ~ |D3(§”wfi)
52(.]w7K) . 2 /
—_— A;j(w, |Gjw)|*, Gr(w), Gi(w)) [K
DG T (1w, |G, G (w), Gi(w)) [K]

filz, K) = Ci(K)To(x) + C{{K)Ti(x) + ... + Cy(K)Tn(z) (3.11)

3. To approximate derivative of the imaginary pAft:, K), we use the relation between

Tulz) andU,(x) as shown in equation (3.6).

dT,(z)
dx

=nU,_1(x)

T2 = G Uo(a) + CHIOU@) + .+ Oy (KU (),

whereC}(K), Ci(K), j =1,N andC{(K), k =1, N — 1 are affine ink..
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3. Discrete Polynomial Transforms

Let p,(x) be a orthogonal and normalized polynomial on a bounded cowmded interval

I C R, with respect to a nonnegative weight functiofi).

JECTETETEE, R

1 1, n=m.

The Chebyshev polynomials of the first kind are orthogonatheninterval(—1, 1)

with respect to a weight functiofi — z2)~1/2.

0, n#m

LT (2) T () B
/_1ﬁdx_ T, n=m=>0 (3.12)

/2, n=m#0

Then the normalized Chebyshev polynomials are as follows:

po(z) = - To(x)
pi(z) = %Tl(:c) (3.13)
p2($) = %TQ(.T)

Now, the approximation polynomiafé(x, K) or f;(x, K) can be rewritten ag;(z).
fz, K) = C§(K)po(x) + CT(K)pi(z) + ... + CR(K)pn () (3.14)

We define the discrete polynomial transforijsfor f(x) = Clpo(z) + Cp1(x) +
...+ C%pn(x) which offers a way to map the coefficients of a polynomial $givlynomial

values.



Definition I11.1.

Let Ao, A1, ..., Ay are the roots opy ;. then we defin&/, [20, 35].
po()\o) pl()\o) pN()\O)
p0(>\1) p1()\1) pN()\l)

‘/;) pr—
i pO()\N) pl()\N) pN()\N) ]

The linear transformatiolt, maps the coefficients of the polynomial
f(x) = Cfpo(x) + Cipi(z) + ...+ CRpn(2)

to NV + 1 values at\y, \q, - - - , Ay and vice-versa.

po(Xo)  P1(Ao) pn(Ao) &t
Y= V,CP = po()\1) pl()\l) pN()q) Cf
| po(An) p1(An) pn(An) | | Ox |

wherey = [f(Xo), f(M) ..., f(AN)]".

Then the coefficient€'” can be determined as follows:
. T
cr =W, v,

whereW,, is such thatViV,, = I.

dfi(z,K)
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(3.15)

(3.16)

(3.17)

(3.18)

We can similarly defing(z), V,, W, andC? for === corresponding te(x), V,,

W, andC? respectively.

dx

whereg;(z) = \/gUi(x), i=0,...,N—1.

= Clgo(z) + Ciqu(x) + ... + Clgn-1(x),

(3.19)
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C. Semidefinite Representations for Nonnegative Polynismia

Itis well known that nonnegative polynomials can be repnesgas sums of squares(SOS) [47,
48]. The condition that a polynomial is sums of squares cafobeulated as a linear in-

equality over the cone of positive semidefinite matrices(L|20, 40, 41, 42, 43, 44].

1. Sum of Squares

A basic problem that appears in many areas of control andhigation is that of checking

global, or local nonnegativity of a function of several adnles [43, 44].

Theorem 111.3.
If a real polynomialf (x) of degreen is nonnegative for alt € R, thenf(x) can be written

as sum of squares.

fl@) = fi(@) + f3 (@) (3.20)

for some polynomialg; and f, such thatieg(f1) < n/2 anddeg(f2) < n/2

Proof.
If f(z) > 0V x € R then it cannot have real roots. this impli¢gsx) must be even degree,
i.e. n = 2m for somem. Leto; + jw;, i = 1, m be the2m roots of f(z). In the factored

form:

flz) = {fo—aZ—]wz}{Hx—amtjwz)\/_}

= [R(z) + jI(2)] [R(z) — jI(z)]
= R*(x) + I*(z)

VVV
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2. Semidefinite Representations

Letgy, g0, ..., gs be all monomials of degreeor less. A monomial is a product of positive

integer powers of a fixed set of variables.

Theorem 111.4.
A polynomial f(z) of degreen is a sum of squares if and only if there exist a positive
semidefinite matriXX and a vector of monomialg(z), each row of degree no more than
n/2 such that

f(z) =g"(2)Xg(z), forsomeX > 0 (3.21)

Proof.
Letq(z) = [q1(z) g2(x) ...]" = Lg(x). L is a compatible coefficient matrix andz) is a

vector of monomials containing all monomialsgifx). Then
f(x) =q" (2)q(x) = g" (x) L" Lg(x)

and X = LTL, X = 0. Now suppose there exisf§z) = ¢’ (z)Xg(x). A positive
semidefinite matri¥X can be represented by the eigenvalue decomposkica M7 AM
as shown in [44]. Then
f(z) = g" (@) M AMg(x) = > N(Mg(x));
=1

VVV

Since f(z) being sum of squares is equivalentXo > 0, the problem to find aX
which proves thaf (x) is a sum of squares can be put a linear matrix inequality. \We ca

show this through an example.
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Example

Consider a fourth-order polynomiélz) and defing;(z) = [z* = 1]7.

f(z) = 22" +42° 4+ 102 — 8z +5
- 1 T
= 22z 1 X{xz T 1}

Q11 Qg (g3

T
= vl | (g1 Qigp (93 [xle}

Q31 (i3g (33

= 0411.7}4 + (0411 + Oé21)$3 + (0413 + Qo9 + 0431).7}2 + (0423 + Oégg)l’ + Q33

Comparing the coefficients, we can get followings:

2 -2 13 2 -2 0 0 0 1
X=| -2 10—-2a;35 -4 |=|-2 10 -4 |+a3|0 -2 0
13 —4 5 0 —4 5) 1 0 0

Now, f(x) can be decomposed as a sum of squares by searchiagsfeuch thatX > 0.
In other words X > 0 if and only if f is sums of squares. In particular, for; = 3, the

matrix X will be positive semidefinite and we have

2 -2 3
X = | -2 4 —4
3 -4 5
11
1 0 1
= |0 —2
1 -2 2
1 2
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This yields a sum of squares decomposition.
f(z) = (2% +1)* + (2% — 22 + 2).

Since we have to find nonnegative conditions of a real polyabimthe specific fre-

quency intervals, local nonnegativity of a polynomial habé considered.

Theorem 111.5. (Markov-Lucaks)
Let f be a polynomial of degreewith real coefficients. Suppogéz) > 0forall = € [a, b],

then one of the following holds.

1. Ifdeg(f) =n =2m s even, then

f@) = fi(@) + (z — a)(b— @) f(2) (3.22)

for some polynomialg, and f, such thatdeg(f;) < m anddeg(fs) <m —1

2. Ifdeg(f) =n =2m+ 1is odd, then

flz) = (z —a)fi(x) + (b—2) f5(x) (3.23)
for some polynomialg, and f, such thatieg(f;) < m anddeg(f2) < m

Proofs can be found in [47, 48, 49].

Recently, Roh and Vandenberghe provided a technique farkalg the local non-
negativity problem through the feasibility of a positiversdefinite matrix satisfying a set
of Linear Matrix Inequalities. The proof requires the follog definition and the use of

Markov-Lucaks Theorem.

Definition I11.2.
A o B denotes the Hadamard product of two matrices A and B of theesdimension,

i.e., the matrix with elementsi o B);. = A;B;x. The same notation is used for vectors
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(r o y); = z;y;. For real matricessqr(A) = A o A, For complex matricesqr(A) =

Ao A, (Ais complex conjugate of).

Theorem 111.6. (Roh and Vandenberghe)

f(z) > 0forz € [z, z,] iff there existX; € S™ T X, € S™2*! such that
CP(K) =W, [dy 0 diag(Vi X, V\") + da 0 diag(VaXoVa")] , X1 = 0, X = 0 (3.24)

my = [N/2], my = |¥1]. The matriced/; and V5 are formed by the first:; + 1 and
msy + 1 columns of, respectively. z| is the largest integer which does not exceed he

vectorsd;, d, € RV*! are defined as

4 — 1, for even N o (A —mz11) 0 (221 — N), for even N
A —x1, forodd N 2ol — N, for odd N
(3.25)
A= [d M ... Ay]T are the roots ofpy 1, the normalized Chebyshev polynomial of
degreeN + 1.
Proof.

Let us suppose the degree fifr) is even(lN = 2m). Then by Markov-Lucaks Theorem,

the nonnegative (z) > 0 for x € [z, x2] can be represented as sums of squares:

FO) = )+ (A —a)(@2 = MR*(N)

00 | | 200+ Do e @ =200 ]
() _ g*(M) + (M = 21) (2 — M)A (\)
| fA) ] | 92 (Av) + (A — 1) (w2 = Aw)P* (M) |

Let the polynomialg and i be such thatleg(g) < m anddeg(h) < m — 1. Letg(\)
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has the form

g(\) = Z u;pi(\)

Letu = [ug uy ... un,)” andp;(N), i =0, m be a orthogonal polynomial.

(o) S o uwipi(Ao) = u'p(No)
g(\1) _ Soitguipi(Ar) = a"p(A1)
i g(An) | i S o uipi(An) = u'p(Ay) |
[ 200 || @O0} = pO)TEa p(N)
g*(A\1) _ {a"p(\) P {a"p(M)} = p(M)Taa"p(\)
| $? (W) | | {a"p(w) e p(Aw)} = p(Aw)Taa"p(Aw) |
= diag(Vi X, V")

The matrixV; is x formed by the first:+ 1 columns o/, and X; € S™*! is a positive
semidefinite matrix.

Similarly () can be represented

h*(Xo)
h2(\
() — diag(Va X Vi),

h*(An)

whereV; is a matrix formed by the first: columns of/, and X, € S™ is a positive
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semidefinite matrix. Thefi\) can be written as:
f) =1 odiag(ViX1Vih) + (A — 211) 0 (z21 — N)diag(VaXoVyh)
Finally, we can get the equation (3.24) in Theorem IIl.6d3y= Wpr()\).
CP(K) =W} [1odiag(ViXiVi") + (A — 211) 0 (221 — N)diag(VaXo V)]

VVV

In essence, the problem of checking if a polynomial is noatieg on an interval can
be accomplished by ascertaining the existence of two pessemidefinite matrices, the
entries of which constrained by the coefficients of the poiyrals through linear equality

constraints.



52

CHAPTER IV

SYNTHESIS OF FIXED ORDER STABILIZING CONTROLLERS USING
FREQUENCY RESPONSE MEASUREMENTS

A. Introduction

It is widely recognized that an accurate analytical modehefplant may not be available
to a control designer. However, it is reasonable in manyiegibns that one will have
an empirical model of the plant in terms of its frequency oese data and from physical
considerations or from the empirical time response data,noay have some coarse infor-
mation about the plant such as the number of non-minimumepbeaos of the plant etc.
In view of this, we consider here the problem of synthesizets of stabilizing controllers
directly from the empirical data and such coarse infornmaéibout the plant.

The frequency response information can have a variety dicgpipns for the analysis
and design of control systems. For example, the Nyquistlgyabriterion enables us
to investigate both the absolute and relative stabilitfdeear closed-loop systems from
the knowledge of their open-loop frequency response cteratics [50]. The frequency
response information can also be used for system identificaind controller design in
time domain [51].

There are many techniques for synthesizing controllens fesnpirical data of the
plant, see [52, 53, 54, 55, 56, 57, 58]. In [55], Oaki used thguency response infor-
mation to determine force control parameters in a robot mdator force control. A PID
controller design method based on frequency-responsdatgb@ocess control was intro-
duced in [58]. A systematic attempt to synthesize PID and dirder controllers for LTI
plants using frequency response measurements was firsnpedsin [19]. However, we

are unaware of any systematic attempt at synthesizing sstslwlizing controllers of arbi-
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trary order directly from the frequency response data arsdabrk is a first attempt in that
direction. We propose a new method to synthesize a staiglfexed order controller with
finite frequency response data and the number of non-minimaroes of a plant. We pose
the problem of synthesizing the sets of stabilizing coltgrslas that of sets of controllers
satisfying some robust SDPs. The robust SDPs take into atcoegasurement errors in
frequency response.

The following are the standing assumptions about the plant:

Assumption IV.1.

1. The transfer functioii:(s) of the plant is rational and strictly proper, i.eG(s) =
g—Z(s), for some co-prime polynomiald],(s) and D,(s), with the degree. of D,,(s)
greater than the degree: of N, (s). We may not know either or n.

2. There are no poles and zeros of the plant on the imaginais; ar., D,(jw) # 0

and N, (jw) # 0 for everyw € R.

3. This assumption and the following assumptions concerkilowledge of frequency
response of the plant: There is a frequengybeyond which the phase of the plant
does not change appreciably and the amplitude responseegflént is negligible.

To quantify this statement, |&t(jw) be expressed &5, (w) + jwG;(w), whereG,
and G; are real, rational functions ofv. For some knownr > 0, we assume that
|G(jw)| < e Yw > wy. This is a reasonable assumption since the plant is strictly

proper.

4. The relative degree—m is known. This can be inferred from the amplitude response

of the plant at sufficiently high frequencies.

5. We will assume that the functiofG(jw)|?, G,(w), G;(w) have been approximated

using polynomials?(w), Pi(w), P»(w) respectively and the maximum estimation
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errors are bounded by, 11, o and the maximum derivatives of the estimation
errors are bounded by, 11, 72 respectively. Mathematically, for alt € [0, w], we

have

|G (jw)|* = Py(w)] < po,
|G (w) = Pi(w)] < pua,

|Gi(w) = Py(w)| < po,

G = Bl _

We assume thai;, 7;, ¢ = 0, 1,2 and the polynomials®(w), P (w), P»(w) are

known.

6. We will assume that the number of non-minimum phase zerad,the plant are

known.

We are interested in synthesizing a rational, proper szt controllerC(s), i.e.,
for some monic polynomiaD..(s) of degree- and a polynomialV.(s) of degree at most,
C(s) = 3=(s). LetNe(s) = no+nis+...+n.s” andDe(s) = do+dys+. . .+dp15" "+
Let K be the vector of controller coefficients:

T
Ng Ny ... Np do dl d,n_l
The determination of the vectds is equivalent to the determination of the stabilizing
controllerC(s).
This chapter is organized as follows: In section B, we prewidsic ideas to derive

main results. In section C, we present the main results amdd® a numerical example.
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In section D, we propose some robust SDPs to handle the nesasat errors. In section
E, we deal with a special case in which case the nonnegaitivitiervals can be posed to

linear inequalities.

B. Basic ldeas

The basic ideas used in the construction of stabilizingaetss follows:

1. We first construct a rational function:

6(s) = G(s)G(=s)Ne(s) + G(—=s)De(s) (4.1)

In fact, if A(s) := N,(s)N.(s) + D,(s)D.(s) is the characteristic polynomial of the

closed loop system, then it is easy to see that:

(4.2)

If A(s) has coefficients that are affine in the controller coeffidetiten the rational

function,d(s), is also affine in the controller coefficients.

2. All controllers,C'(s), that stabilizeA(s), are such that the total phase accumulation

of §(jw) asw varies from0 to oo is the same and equals — m +r + 2z,) 7.

w=0

Z0(jw)|o=5° = g(n—m+r+22r) (4.3)

Sincen — m, r andz, are known, the total desired phase accumulation is known.

3. Leté(jw) = 0,(w) + jwd;(w), whered, (w) andé;(w) are real, rational functions. In
Lemma IV.2, we relate how the total accumulation of phaseleted to the roots of

9;(w) and the sign ob,.(w) at those roots.
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Essentially, the numerator ofs) must have a certain number of roots with nega-
tive real parts. This can happen only if the Nyquist ploty¢f) is one of finitely
many patterns, where each pattern can be identified withigms f the real part
of the Nyquist plot when the imaginary part is zero. The sedunh patterns can be

characterized using the generalized phase formula deseliog25, 59].

4. The existence of a stabilizing controller for the plant e expressed in terms of
the existence of an appropriate set of frequency intervaisiwadmit exactly one
or zero roots of the imaginary part of the Nyquist plot and oots of the real part.
This is shown in Theorem IV.1. For every set of frequencyrivaks, these conditions
can be translated into linear inequality constraints agdimmatrix inequality (LMI)
constraints involving the controller parameters. Thip &tgolves the Chebyshev ap-
proximation of the frequency response in the frequency B@nd,]. It subsequently
involves the use of Markov-Lucaks theorem to convert thedd@ns into a LMI

form.

C. Main Results

Letd(s) = &y + 615 + - - - + 645 be a real polynomial. Then the following Lemma relates

the net phase chang®é(jw) asw increases from zero to infinity [25, 32].
Lemma IV.1. (Net Phase Change Property for real polynomials)

1. The phase of the real Hurwitz polynomidls) = 6y + 6,5+ - - - +6,45¢ monotonically
increases as : 0 — +oo. The plot ofd(jw) moves strictly counterclockwise and

goes throughl quadrants asv : 0 — +oc.

2. The plot of thel” order real polynomial (not necessary Hurwité)jw) = 6, (w) +

Jjwd;(w) goes throughi(d(s)) — r(d(s)) quadrants asv : 0 — +oo.
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25(jw)lizy = S 16) = ()], (4.4)

wherel(d), r(5) denote the numbers of roots &fs) in the left half plane and in the
right half plane respectively.
Following the outline of the basic ideas presented in theezaection, we begin with

a generalization of Hermite-Biehler theorem for rationaidtions in Lemma IV.2.

Lemma IV.2.

Consideri(s) = %. Let the nonnegative real roots &fw) bews, . .., w, and the
sign ofd,.(w) at these frequencies be correspondingly. . .,7,. ThenA(s) is Hurwitz if

and only if
1. forn —m+r: even
n—m+7r+ 2z = sgn[6;(0){io — 2i1 + ... + 2(= D" + (=), ) (4.5)
2. forn—m+r:odd

n—m-+r—+2z = Sgn[@(o)]{io — 201+ 20+ ...+ 2<_1)lil} (4.6)

Proof.
We first note that the degree of the polynomdigh) N, (—s) isn +r +m. Hence, the parity
of the degree of the polynomial(s)N,(—s) is the same as that af — m + r.

Let the sign OW atw = w; be I;. The change in the phase &fjw) from w,
to w141 is given by: [;(i; — 441)5. Letwy = 0 andw;y; = oo. Sincel; = —1;_; for

i=1,2,...,1,the phase change if(jw) fromw = w, to w = w; can be expressed as:

™

L8(jw)|a=t" = Io {(io — i1) — (i1 — i2) + (i —i3) + ...+ (=1)' (5= — @) } o)
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Fig. 15.: Phase Change Property for an Odd Degree Polynomial
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Fig. 16.: Phase Change Property for an Even Degree Polynomial
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The phase change it\(jw) from w = w; to co will depend on the degree of the
polynomial A(s)N,(—s); if the degree is odd, it will bd;74; as shown in Figure 15, and
if the degree is even , it will bé(i; — 4,41)% as also shown in Figure 16. Sindg =
sign(6;(0)) andI, = (—1)'I,, we have the change in the phasé @fw) asw changes from

0to o is:

1. forn—m+r:even

£5(jw) M= = sgn[5:(0)]{io — 201 + ... + (—1)'24, + (—1)l+1i1+1}g (4.7)

w=0
2. forn —m +r: odd

£6(jw)|"=3 = sgn[5:(0)]{io — 2y + 2is + ... + (—1)%}% (4.8)

w=0

SinceD,(s) does not have any zeros on the imaginary axis, the phase efiasigw)
asw changes fron to oo is the same as that & (jw)N,(—jw) asw changes fron to co.
The accumulation or change of phaseXfjw) N, (—jw) is (n —m+r+22,)7 if and only
if A(s)is Hurwitz. With this observatiofm — m + r + 2z,) equals the quantity expressed

in equations (4.5) or (4.6). VvV

The following theorem uses Lemma IV.2 to characterize ailgtaty controller of a

fixed order in terms of frequency response of the plant.

Theorem IV.1.
A controllerC(s) stabilizes the plant if and only if
1. There exists a sequengeiy, . . ., 1; satisfying equation (4.5) or (4.6), and

2. For the sequence of integeis . . ., ;, there exists correspondinglydisjoint fre-

quency bands or interval&y, 1, w, 2|, p = 1, ..., 1 such that
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(a) there exists exactly one root&fw) in (w1, wy2),

(b) the sign ob,.(w) in [w, 1, w, 2] is the same as that @f, p = 1, andiy,.(0) > 0,

and
(c) there is no sign change 6f(w) in the disjoint intervalg0, wy 1], [w; 2, oo} and

[wpvg,wpﬂ,l], P = 1, ey [ —1.

Proof.

Let the root ofy; (w) in (w1, w,2) bew,. Since the sign af, (w) atw, isi,, the change in
phase of (jw) asw varies from0 to oo is (n —m+1r+2z,) 7, indicating thatA (s) N, (—s)
hasm — z, roots with positive real part. However, this is the case iflamly if A(s) is Hur-

witz. \YAYAY/

Remark IV.1.

1. We first observe that(s) may be expressed a§(s) + > o' 5,(s)k,, wherek,
is the p'* component of the controller vectdk’, anddy, d1, . .., d,.o; are rational
functions, which can be determined once the expressida# foris known. Similarly,
0, andd; are affinely dependent on the controller parameter vectorTo emphasize
the dependence dk, we will use the notatiof,. (w, K') andd;(w, K) as appropriate.

One may express the affine dependencee(af, K) andd;(w, K) as:

K

5w, K) = Ap(w,|G(jw)]?, G (w), Gi(w)) 1 (4.9)
-K

di(w, K) = Ai(w,|G(jw)|2,Gr(w),Gi(w)) 1 (4.10)
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for some vectord\, and A, that depend affinely oft7(jw)|?, G, (w) and G;(w).
2. The conditions in Theorem IV.1 may be replaced as follows:

(a) The condition (a) of 2 may be replaced by(w,,, K)d;(w,2, K) < 0 and
W has the sign/y(—1)” in [wy1,w,]. This ensures thai;(w, K') has
exactly one root in the interval of interest. If the frequgnesponse at frequen-
cies,w,; andw, , are known, we note that the first conditi®w,, , K)d;(w,,, K) <

0 can be written as two sets of linear inequalities.

(b) The conditions (b) and (c) of 2 may similarly be replaced a

i00,(0) > 0, w =0 (4.11)

ip0r(w) > 0, Yw € [wp1, wp2] (4.12)

Iyo;(w) > 0, Vw € [0, w1 1] (4.13)

(—1) Io6;(w) > 0, Yw € [wy 9, 00) (4.14)
(—1)I0;(w) > 0, Yw € [wy2, Wy1.1]s (4.15)

wherep =1,2,...,l,g=1,...,1 —1and dependence ai is suppressed.

If G(jw) is exactly known, the condition cn(f—l)f’low being nonnegative in
[wp.1, W, 2] CaN be posed as a SDP using Markov-Lucaks theorem.

The nonnegativity off (x) for = € [z, 2] becomes a feasibility problem as shown
in chapter 11l and in [20, 40]. We also have to consider an taltal condition to satisfy
the nonnegativity of thef(x) at specific value of frequency. Finally, This leads to a new
feasibility problem combined with the nonnegativity of therivatives off (x) in an interval

of frequency.
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Remark I1V.2.
The above Linear Matrix Inequality (LMI) conditions for nwegativity of polynomials can

be used to synthesize the controlféfs) in Theorem IV.1.

1. The constraintyd,.(0) > 0 is a linear inequality constraint of .

2. All other constraints can be posed as nonnegativity of lgrmomial on an interval.
As seen in the previous chapter, constraints (4.12 - 4.X8) te LMIs; the feasibility

problem of a controller satisfying LMIs.
This problem can be solved by applying interior point megh@€keasibility and Phase
1 method) with SeDuMi [21].
1. Examples

Let us suppose we have the frequency response data for a(planby experiments as

shown in Figure 17 and the actual plant transfer function is

G(s) =

B s* 4+ 483 + 2352 + 465 — 12 (4.16)
T 5+ 5%+ 2083 4+ 3652 4+ 99s + 100 '

For our simulations we assume that the plant structure ikmotn. We collect fre-
qguency response measurements from this ‘unknown’ plant.

We can know thatr — m = 1 from the magnitude rate with respect to frequency at
high frequency and assume that= 1 is known. If we know thap, = 2 instead ofz,. then
z, = 1 can be determined from the equation (4.27) in section E. lamehét accumulated

phase change as= 0 — .



Frequency Response for a Plant
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Fig. 17.: Frequency Response of a Plant

LGGu)i = —5 [(n—m) +2{z —p.)]
7 = —g+2{z-2)

The frequency data is upper boundedigy= 10.
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(4.17)

We aim to find a first order controller which stabilizes theseld loop system. The

controller is given as:
o ]{718 + ]{72

C(S> s+ ]{33

Currently, we do not consider any measurement errors.

Let us multiplyN,,(—s) on characteristic equatio\(s) = D,(s)D.(s)+N,(s)N.(s).

5(s) = Als)Ny(—s)

= Dy(s)Np(=5)De(s) + Np(s) Np(—5) Ne(s)

For stableA(s), (jw) have to satisfy the following condition for the net phasendea
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since all the roots oA\ (s) should be in the left half plane.

Lo(u)lizy = S0 = ()]
- g[nw—zlﬂr]
- g[n—m+7‘+2,zr]
= SI+1+2(1)]
= Sl

We do not know the maximum number of the real, nonnegatigtindi finite roots of
d;(w) since we have no information of the degree of the plant.

Let us start with in case df= 1. The signature for evem— m + r = 2 will be as follows.

o(6(s,K)) = sgn[0;(0)]{io — 201 + iy + -+ (=1)"71 2%y + (=14} - (=1)"?
= —sgn|[0;(0)|{ip — 2i; + @2} -
= 4

The set of feasible string ; becomes.

(-1 +1 -1}
{+1 -1 +1}

A =

For this example, Theorem IV.1 can be interpreted as follows

There exists a real control parameter vediotthat renderA(s, K') Hurwitz if and
only if there exists : (1) a sequenceigfiy, i» such that the equation (4.5) in Lemma IV.2
holds, and (2) there exists a set of frequenoiesw; < wp2 < w11 < Wi2 < Wo1 = W

such that the following inequalities hold:

1. 5i(w1,1,K) . 52‘(11)172, K) <0

—1052'(’LU172, K) . W >0 for all w € ['LU171,’LU172]
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140
N P 5,)

120f C — W) |1

100} Dol -

Fig. 18.: Signs of Real and Imaginary Part

2. 0g - 5T(U},K> > 0 forw = Wo,1
1 - 57»(111, K) > (O forallw e [w171, w172]

ig - 0p(w, K) > 0forw = wsy;

3. 5i(w0,2,K) . 52(U},K> > (O forallw e (wo’g,wl,l)
5i(w1,2,K) . 52(U},K) > (O forallw e (wl’g,wg,l)

We can illustrate the above conditions graphically usirguFe 18.
We consider the frequency information @t discrete points corresponding to the

Chebyshev’s nodes. The procedure introduced in the predeation was used to solve
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the SDP [20]. The computer packages SeDuMi [21] and YALMI®| @e used to obtain
a solution.

The following stabilizing controller was obtainedif iterations:

16.4329s + 41.4416
N s+ 26.6348

C(s)
For this controller, the roots of closed loop ar¢-at0.9354, —1.1790+1.4901¢, —0.0228+
4.4853i, —0.7285).
A projection algorithm was used to obtain an idea about thsifide set of the SDP
and hence find a set of stabilizing controllers. This set awhin Figure 19. In the set
shown, controllers on or near the surface boundary may netaielizing and might have

unstable poles very close to the imaginary axis. These arencal issues which needs to

be overcome.

D. Robustness

If the frequency response daté@jw) is approximately known as is typically the case
when fitting a rational function approximation to the giveatalcontaminated with noise,
the nonnegativity condition can be posed as a robust SDP.

In the pursuit of posing nonnegativity conditions of theymamial approximations
of rational functions, we will require Lemma IV.3. To prepdor Lemma IV.3, let?, :=
|G(jw)]’=Po(w), Pr =G (w)=Pi(w), Ps:= Gy(w)—Ps(w), whereP,(w), Py(w), P3(w)

4P =0,1,2. Let

are approximate polynomials stated in Assumption IV.1 @@} :=
B, be the box|P,| < y;, i = 0,1,2 and B, be the box|Q;| < n;, i = 0,1,2. We will
definewy; = wp2 = 0 andw;;;; = oo.

The following lemma provides a sufficient condition for ckieg the nonnegativity

of a rational function through its polynomial approximatiand the approximation error



Fig. 19.: Set of Stabilizing First Order Controllers.
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bounds. LetA’(w, foe, i1, f2.) representh, (w, Po(w) + pige, Pr(w) + pi1.e, Po(w) +

o), Wherep, ., i = 0,1, 2 are the vertices of the bak,,.

Lemma IV.3.

Let [wWiow, Whign] C [0,ws]. Let K be such that for all vertices dfig e, ft1,e, f12,c) the box

Bu’
. K
AT (w, fo,es 1,65 [12,e) >0, Yw € [Wiow, Whigh) (4.18)
1
Then, K satisfies.
K
or(w, K) = Ay (w, |G(jw)|2, G (w), Gi(w)) >0 Yw € [Wiow, Whigh) (4.19)
1

Proof.
The proof is by contraposition. Suppaséw, K) < 0 for somew € [wipw, Whigh)-
Setji;, = P(w), i = 0, 1,2. Therefore, we have

K

A7 (w, fig, fl1, fi2) < 0.
1

Since|i;| < u;, and sinceA, depends affinely ofi;, ¢ = 0, 1,2, it must be that at some

VerteX(MO,ea H1e; :u2,e) of the bOXIpZ| S iy

. K
Ar(wa ,UO,ea ,Ul,ea ,u2,e) < 0.
1

VVV

Remark IV.3.

The polynomial condition given by equation (4.18) is a sfficcondition for the the
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rational functiond, (w, K) to be nonnegative on the interval,,,, wsgn) for the given
value of K. In particular, the set of<’s that satisfy the polynomial condition at every vertex
of the box also render the rational function(w, K) to be nonnegative ofw;u, Whign)-
The set ofK’s satisfying the polynomial condition at a vertex of the lsax be written
as a SDP; for example, one may use the recent formulation@jfd2that of [40]. Since
there are only eight vertices for the bq)f?l-| < o, this means that the set &f's that
simultaneously satisfy eight SDP’s (which can be cast agygdni SDP) also render the
rational functions, (w, K') to be nonnegative ofw;u.,, whign)-

Similar conditions can be derived for the nonnegativityaifanal functions); (w, K)

and 2K,
w

The following lemma deals with the non negativity®%fw, K) on [w,, o), where the

polynomial approximation does not hold.
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Lemma IV.4.
Let B. := {(co,€1,€2) : 0 < 6o < €2, max{|e1],|e2|} < €}. Let (o, €1e,€2e), € =

1,...,8 be the vertices of the bady.. If, for someK and/ and fore =1, ..., 8, we have

K

<_1>lAi<w7 €0.es €l ey €2.¢) >0, Yw € [wy, o)
1
then
K
(_1)lAi(wa |G<jw)|27 G, (w), Gi(w)) >0, Yw € [wy, 00)
1

The proof for this lemma is similar to that of Lemma IV.3.
We will require the last lemma before stating our main redtdt A’ (wy, 1, flo e, f1.e, Ho,e) =

Aj(wp1, Po(wp 1) + poe, Pr(wp1) + pre, Po(wpa) + pioe))-

Lemma IV.5.

Let w1, wpo] C [0,w,] @andly € {—1,+1}. If, for somek, and foralle = 1,...,8, we

have
—1 A * K
To(=1)P 7 Af (w1, fo,es Ha,es fi2,e) > 0
1
K
To(—=1)PA; e(wp2, foe, Hi,es f2,e) > 0
1
then
Io(=1)P 8 (wp1) > 0, Io(—1)P;(wp2) > 0.
Proof.

The proof is by contraposition. Suppokg—1)"—'6;(w,1, K) < 0. Letji; := P;(w,,).
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Then,

IO<_1)p_1Ai(wp,17 laOu ﬂl? /12) > O

However, this cannot happen unless at some vertere have

IO(_l)p_lAi (w;l),b Ho,e, H1,e, ,u2,e) > 0.

A similar reasoning can be applied to the second conditiothéenLemma IV.5 to complete

the proof. VvV

Remark IV.4.

If Iy, p, w,1,w,o are known in the above lemma, the sufficient conditions aeali in-
equalities inK. In particular, everyK that satisfies the system of linear inequalities at the
vertices of the bo®,,, also satisfies the linear inequalitiés-1)7~* Iy6;(w, 1, K) > 0 and
(—1)PIyd;(wp 2, K) > 0. We emphasize thaf(w, K') is not required to be known exactly,

but only polynomial approximations & (jw)|?, G.(w), G;(w) are available.

Since the second condition in Theorem IV.1 also requiresitmnegativity of%, we
will first express it as:

dGGw)|? dG, dG,. | K

Ad,i(w7 |G(jw>|27 GT<w)7 Gl(w>7 dw dw | dw )
1

for some array\ ;; that is polynomial inv and is dependent affinely ¢&'(jw)|?, G, (w), G;(w)
and its derivatives.
The following is the main result and provides a sufficient ditaon for the direct

synthesis of sets of stabilizing controllers from the frexgey response data:

Theorem IV.2.

Letio, i1, ..., 4 be a sequence of integers from the{set, 1} satisfying equations (4.5) or
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(4.6). Let(poe, ft1e, o), € =1,...,8be the vertices of bak, and (1o s, 1.7, m2.5), f =
1,...,8 be the vertices of the bak,. Let K satisfy the every constraint in the following

set of constraints fof, = —1 or for [, = +1 andforevere =1,....,8andf =1,...,8:

K
Io(—l)p_lA:(pr, ,UO,ea ,uLe, ,u276) > O, P = 1, ey l (420)
1
. K
Io(—l)pAz (w%g, Ho,er H1,e; ,u276) > O, P = 1, e [ (421)
1
. K
IO(_]')pAd,i(w7:u(),ea:ul,ea:u2787770,f7771,f7772,f) > 07 (422)
1

Yw € (w1, wpal, p=1,...,1

K
IO(_l)pA;k(w7 Ho,e> H1,e5 :u2,6> > 07 Vw € [wp,27 wp—i—l,l]a p= 07 17 AR l (423)
1
. * K
ZpAr (’UJ, Ho,es H1,es :u2,8) > 07 Vw € [w;l),h wp,2]7 b= 17 R [ (424)
1
. K
(—1)'Aj(w, €, €16, €2.¢) >0, Yw € [wp,00) (4.25)
1

Then, K is a stabilizing controller for the plant.

This theorem covers all the cases discussed in this seatidp@vides a sufficient

condition for the synthesis of sets of stabilizing congil

1. Equations (4.20) and (4.21) together ensuresdffat, ;, £)d;(w,2, K) < 0. This

follows from Lemma IV.5.

2. Equation (4.22) guarantees tHa£2") has the sigiy(—1) in [w,,1,w,,]. Thisis
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an application of Lemma IV.3 t8{25),

3. Equations (4.20), (4.21) and (4.22) provide the condifar ¢;(w, K') to have only

one real root in the intervalu,, ;, w, »].

4. Equations (4.23) and (4.25) provide the condition for ribed roots ofd;(w, K) to
not lie outside the intervalsv, 1, w, »]. This is necessary for the correct application
of Lemma IV.2. This condition is satisfied by ensuring tha golynomial is either

positive or negative in the complete ranggwy o, w,41.1].

5. Equation (4.24) ensures that at the real roots; @b, K), the sign ofd,(w, K) is

correct and is given by the sequence of integers satisfyqogteons (4.5) or (4.6).

We consider the same plant as 4.16. The frequency respotesé&:d#w) is approxi-
mately known. The controller is found using the robust SDiBs@dure outlined in Theoem

V.2

The following robust stabilizing controller was obtained b iterations:

_ 70.4268s + 8.2073
s+ 114.4617

C(s)

For this controller, the roots of closed loop are(atl83.69, —0.05 + 4.23i, —0.32 £
1.5, —1.46).

E. Special Case

1. Special Case:(=0,1)

The nonnegativity conditions which have to be satisfied medntervals in Theorem IV.1

or Theorem IV.2 can be replaced by linear inequalities ifitoltal assumptions are made.
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Assumption V.2,

1. The degree of a plant, is known.

2. The number;;, of non-minimum phase zeroes of the plant is at-most one.

Since we assumed the degree of a plantbéhe degree of the polynomial of the

numerator ob(s), i.e. A(s)N,(—s) is:

d=n+m+r=2n—(n—m)+r (4.26)

n — m is the relative degree of a pla6t(s) which can be determined from the fre-
qguency response data of the planis the degree of controller. Now, Ieébe the number of
nonnegative distinct real roots of thgw).

We explain why the interval conditions can be relaxed todmeequalities in detail
whenz, < 2. We observe the following:

Let us supposd is even. Then the maximum number of nonnegative distindt rea

roots of they,.(w) andd,;(w) ared/2 andl = d/2 — 1 respectively.

1. For the equation (4.5) to hold whenp= 1, [ nonnegative distinct real roots of the

d,(w) are required.

n—m+r+2z = n+m+tr—2
= n+m+r—2

= sgn[6;(0)]{io — 26y + ...+ 2(=1)"; 4+ (1) iy}
e Whend = 6, [ becomeg. Then

n+m+r—2=4=sgn[d;(0)]{io — 2i1 + 2iy — i3}
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For positive); (0), the set of feasible string ; becomes.

Ai(ig iy 1o i3) {+1 -1 +1 +1}
Ay = =

Ay(ig iy iy i3) {-1 -1 +1 —1}
Since there are@ sign changes in,, (p = 0,3), 2 nonnegative distinct real

roots of thed, (w) are required. It can be easily verified that the same number

of nonnegative distinct real roots of thgw) are required for negativg(0).

e Whend = 8, [ becomes}. Then
n+m-+rnr— 2=06= sgn[éz((])]{zo — 27,1 + 27,2 — 2’&3 + 7,4}
For positive); (0), the set of feasible string ; becomes.

y Ailio iy io i3 i4) {41 =1 +1 —1 —1}
f: pr—
As(ig iy iy i3 i4) (-1 -1 +1 -1 +1}

Since there ar@ sign changes i,, (p = 0,4), 3 nonnegative distinct real
roots of thed, (w) are required. It can be easily verified that the same number

of nonnegative distinct real roots of thgw) are required for negativg(0).

For a real polynomiaf (w), if f(w;) and f(w,) are of same sign then in the interval
w € [wy, ws] there exist either no roots or an even number of roots. Sirkckave at
mostl + 1 nonnegative distinct real roots &f(w), if 6,.(w;) andd, (w-) are of same

sign then there exist no roots in the intervak [wy, ws).

2. Whenzl =0
There are no roots of,.(w) between roots ob;(w) sinced(s) becomes Hurwitz

polynomial forz; = 0.

For oddd, this can be explained on similiar lines.
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Now, we can simplify the theorem V.1 under Assumption IV.2.

Theorem IV.3.

There exists a real control parameter vectsr = (ky, ko, ---, k,) such that the real
closed-loop characteristic polynomial(s, K') is Hurwitz if (1) There exists a sequence
i0, 11, - . . , 1; Satisfying equations (4.5) or (4.6) and for the sequencetefiersy, i1, . . ., i,
there exists there exists a set of frequendies,wy; < wp2 < Wi < w2 < -+ < wy <
wio < w1y = oo for 6(s, K) = 64(K)s? + 641 (K)s¥ + - -+ + §(K), the number of
nonnegative, distinct, real roots 6f(w), [ is the smallest integer greater than or equal to

d/2 — 1, so that the following sets of linear inequality conditidredd :

1. (SZ'('LUPJ,K) . 5i(wp72,K) < 0, p= ]_,. . .,l
2. 0y 0p(wy, K) > 0andiy, - 6, (wp2, K) >0, p=1,....1

3. 10 - 5,»(111072, K) >0 andz’l“,l . 6r(wl+1,1, K) >0

We can rewrite the LPs in terms of frequency response datdjviging them with
|D,(jw)[*. Let us suppose we are considering a first order controll@masxample of

fixed order controller and separate the controller real aragjinary parts.

Ne(jw,K)  Ney(w,K)+ jNei(w, K)
D.(jw,K) — D.,(w,K)+ jD,.;(w, K)
j/{:lw + ]{32

jw + ]{73

Clw) =

The frequency response of a plant can be express€djas) = G, (w) + jG;(w). We can

represent the polynomlafﬁﬁ and|D P compactly in the following form, owing to
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the affine dependence of their coefficients on the contrpieameter vectok .

O = w)|? w w w — Gy (w (w
W - |G(j )| Nc,r( 7K)+Gr( )Dc,v"( 7K> Gl( )DC,Z( 7K>
= |G(jw)|*ks + Gr(w)ks — wGi(w)
I 1
= _ wGi(w) 0 |G(jw)|* Gr(w) } .
= | A (w,|G(jw) P, Gr(w), Gi(w)) } [ K’ }
0 = iw)|>N,.;(w w (w — Gi(w w
m - |G(] )| Nc,l( 7K) +Gr( )DC,Z( 7K) Gl( )Dc,r( >K)

= |G(jw)|*kw + wG,(w) — Gi(w)ks

i 1
= _wGr(w) w|G(jw)]? 0 —Gi(w)} .

= :Ai(w,\G(jw)\z,Gr(w),Gz(w)) } [K’ } )
where

L A (w, |G(jw) [, Gr(w), Gi(w))

[sz(w) 0 |G(jw)l? Gr(w)]

[wGr(w) w|G(jw)[* 0 —Gi(w)}
3. K/: [1 ]{71 ]{32 l{ig]T.

Then, the LP conditions can be put in a nice compact matrix farhich only involves

the set of frequencies chosen and the frequency resporesatdabse points.

Lemma IV.6.
In case ofz; < 2, there exists a real control parameter vectr = (ky, ko, ---, k,)

so that the real closed-loop characteristic polynomisls, K') is Hurwitz if there exists
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a set of frequencies) = wps < Wiy < w1 < -+ < Wy < W < Wiy = oo for
§(s, K) = 0q(K)s? + 64_1(K)s™t + -+ + 6o(K), wherel is the smallest integer greater

than or equal tal/2 — 1, so that one of the following two Linear Programs(LPs) issibke:

LP1: (a) |:I(wp,1) } [K/

®) io- | Ao | | 10
K

(©) i, - R(w,,) } l[(/} >0 andz’p-{R(wM)} [K’] >0, p=1,...,1

>0 and [I(wp,g)} [Kf] <0, p=1,...,1

>0 andi; - [ R(wis11) } [ K’ } >0

LP2: (a)[ (wpl)} [K'

<0 and [I(wp,g)} [K’] >0, p=1,...,1

(b)¢o~[Rw02 HK

>0 andi; - [ R(wis11) } [ K’ } >0

(© z'p-{prl } {K’} >0 andip-[R(wM)} [K’] >0, p=1,...,1

2. Examples

Let us suppose we have the frequency response data for a(planby experiments as

shown in Figure 20 and the actual plant transfer functiors ifohows

G(s) = p(s)

s34+ 3524548 .
= Z o
st 1253 1352+ 7s+ 14" 7!

We can know thatr — m = 1 from the magnitude rate with respect to frequency at
high frequency. Suppose we know that 4 andz, = 2. If we knowp, = 2 instead ofz,
thenz, can be determined from the equation (4.27) and the net adatedyphase change

asw = 0 — oo.
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Frequency Response for a Plant
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Fig. 20.: Frequency Response of a Plant

LGNz = —5 [(n—m) +2(z —p,)]
—5 = —5[+2(x-2) (4.27)

Now, we consider the first order controller which stabilites closed loop character-
istic polynomial.

Ne(s)

D.(s)
]{518 + ]{32
S+ k’g

Let us multiplyN,,(—s) on characteristic equatio\(s) = D,(s)D.(s)+N,(s)N.(s).

o(s) = A(s)Np(—s)

= Dy(s)Ny(=5)Dels) + Ny(5)Ny(—5)Nels)

For stableA(s), (jw) have to satisfy the following condition for the net phasengea
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since all the roots oA\ (s) should be in the left half plane.

Lo(u)lizy = S0 = ()]
- g[nw—zlﬂr]
- g[n—m+7‘+2,zr]
= Sl+1+2(2)
= [

The maximum number of the real, positive, distinct finitetsoof §;(w) with odd multi-
plicities, I becomes 3 sincé(s) is of order 8 and an even polynomial. The signature for

even polynomial having 3 real, positive, distinct finite towill be as follows.
o(6(s,K)) = sgn[0;(0){io — 261 + 2iy + - - -+ (—=1)'20 + (=1)" i, }
= 0
The set of feasible string ; becomes.
Ai(ig 1 12 13 g
io 11 iy i3 iy

1 U1 T2 13 14

Ay(io 11 92 U3 1

Vs

Now, the problem becomes to find a real stabilizing contrehpeeter vectol’ = (ky, ko, k3)
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so that the real closed-loop characteristic polynomi@l, ) is Hurwitz.

If there exists a set of frequencied,= wps < w1 < wie < -+ < wyy = wy for
5(s, K) = 8q(K)s? + 641 (K)sTt + -+ + §(K), wherel is the smallest integer greater
than(or equal to}= d/2 — 1, so that one of the following twainear Programs(LPsjor

any feasible set of strings is feasible:

LP1: (a) [ I(w,,) ] [ K’

>0 and [f(wp,z)] [K’] <0, p=1,2,3

>0

(b) i - [ R(woz) } [K’ > 0 andiy - [ R(wy,) } [K’

LP 2: (a)[](wp,l)][ "1 <0 and [[(wp72)][[(’}>0,p:1,2,3

>0

>0 andiy - { R(wy) } {K’

where

1. Ay (w,|G(jw)|?, G (w), Gi(w))

{wGi(w) 0 |G(jw)? GT(W)]

[wGr(w) w|G(jw)[* 0 —Gi(w)}
3. K,: [1 ]{71 ]{32 l{ig]T.

The set of stabilizing first order controller was obtainethwvi@2 frequency response data at
w=4{0.1, 0.2, 0.4, 0.6, ..., 3.6, 3.8, 4.0, 1000} as shown in Figure 21.

Figure 21 also shows the set of stabilizing first order cdigr@btained with 41 fre-
quency response dataat= {0.1, 0.2, 0.3, ..., 3.9, 4.0, 1000}. As we expect, it
is observed that we can get more accurate results(a largef s&bilizing controller) by

taking more frequency response data.
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CHAPTER V

CONTROLLER DESIGN WITH PERFORMANCE SPECIFICATIONS

A. Introduction

In this chapter, we consider the problem of synthesizing setontrollers which satisfy
some performance criteria using the frequency responssuregaents under the similiar
assumptions that were made in chapter Ill. Those performariteria can be gain margin,
phase margin, upper bound on tHe, norm of a weighted sensitivity transfer function, or
a requirement that a certain closed loop transfer functe8BR etc. A large class of per-
formance problems such as those listed here can be redutieglgooblem of determining

a set of stabilizing controllers that render a set of complalynomials Hurwitz [15, 26].

1. The criterion for guaranteeing a gain margin for a SIS@fphath a transfer function
g—i(s) stabilized by a fixed order controllegf(s) is that, for everyi(, € (K, K1),
the polynomial

Dp(s)De(s) + Ko Ny(s)Ne(s)

must be Hurwitz.

2. The criterion for guaranteeing a phase margin édr a SISO plant with a transfer
function g—Z(s) stabilized by a fixed order controlle%z(s) is that, for everyd €

(—¢, ¢), the polynomial
D,(8)D.(s) + €’ N,(s)N.(s)
must be Hurwitz.

3. Forthe same controller to achievé{a, norm of the complementary sensitivity trans-

fer function less than is equivalent to having the following family of complex pely
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nomials

Y{Dy(5)Dels) + Ny(s)Nels)} + €Ny (s) Ne((s)

is Hurwitz, for everyd € (0, 27).

4. A real proper transfer functiof(s, K) = ggzg; is Strictly Positive Real (SPR) if

and only if the following three conditions are satisfied:

(@) G(0,K) >0,
(b) N(s, K) is Hurwitz, and

() D(s,K)+ jaN(s, K) is Hurwitz for everya € R.

In fact, this problem arises in guaranteeatgsolute stabilitythat is, robust stability

to sector bounded nonlinearities, as was shown in chapter |l

Thus to satisfy the performance criteria, we need to makegxtmapolynomials Hur-
witz. For example, in the performance criterion 3, we havaase the complex polynomial
Hurwitz for all the possible values éfc [0, 27]. In most cases, it suffices to check whether
the polynomial is Hurwitz for a few values 6f This is because the set of the control vector
which make polynomials Hurwitz change smoothly with respeé.

In this chapter, we propose a method to synthesize a cagrtithiat make a system
guaranteeing certain level of performance with the fregueaesponse measurements under
similar assumptions as before.

By way of notation, we denote the transfer function of thenpl® beG(s). The

following are the assumptions about the plant:
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Assumption V.1.

1. The transfer functioid-(s) of the plant is rational and strictly proper, i.eG(s) =

Ny

o (s), for some co-prime polynomiald],(s) andD,(s), with the degreey, of D,(s)

greater than the degree: of N, (s). We may not know either or n.

2. There are no poles and zeros of the plant on the imaginaig; ag., D,(jw) # 0,

N,(jw) # 0 for everyw € R.

3. This assumption and the following assumptions concerkitlowledge of frequency
response of the plant: There are frequency bouagsfor lower bound andw,,
for upper bound beyond which the phase of the plant does rastgehappreciably
and the amplitude response of the plant is negligible. Tangjfyathis statement, let
G(jw) be expressed &s, (w)+7G;(w), whereG, andG; are real, rational functions
of w. For a knowne > 0, we assume that (jw)| < e for all w > w,;, andw < wy,.

This is a reasonable assumption since the plant is stricthper.

4. The relative degree—m is known. This can be inferred from the amplitude response

of the plant at sufficiently high frequencies.

5. We will assume that the functiofG(jw)|?, G,(w), G;(w) have been approximated
using polynomials?(w), Pi(w), P»(w) respectively and the maximum estimation
errors are bounded by, 11, 1o and the maximum derivatives of the estimation

errors are bounded by, 71, 72 respectively.
6. We will assume that the number of non minimum phase zerad,the plant are

known.

Now let’'s suppose we design a fixed order contrallés) satisfyingH.,, specification

under Assumption V.1.
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This chapter is organized as follows: In section B, we prewidsic ideas to derive
main results. In section C, we present the main results.dinoseD, we deal with a special
case in which case the nonnegativity in intervals can beeel#o the nonnegativity of the

end points of the interval and give a numerical example.

B. Basic ldeas

The basic ideas used in the construction of sets which gatishe performance criteria are

as follows:

1. The problem to design the controller to achievE @ norm of the complementary
sensitivity transfer function less thanis equivalent to having the following family
of complex polynomialg\.(s) = v {D,(s)D.(s) + N,(s)N.(s)} + €7’ N, (s)N.(s)

is Hurwitz, for everyd € (0, 27) as shown before.

2. We construct a rational function
6 = MG
= Y(G(5)G(=5)Ne(s) + G(=5)D(s)) + ¢’ G(s)G(=s) Ne(s)

(5.1)

If A.(s) has coefficients that are affine in the controller coefficetiten the rational

function,d(s) is also affine in the controller coefficients.

3. All controllers,C(s), that makeA.(s) Hurwitz, are such that the total phase accumu-

lation of 6 (jw) asw varies from—oo to +oc is the same and equdls—m—+r+2z,.)7.

Z6(Jw)|P=r 2 = w(n —m + 1+ 22,) (5.2)

wW=—00

Sincen — m, r andz, are known, the total desired accumulation of phase is known.
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4. Leté(jw) = o.(w) + jo;(w), whereo,.(w) ando;(w) are real, rational functions. In
Lemma V.2, we relate how the total accumulation of phasel#eé to the roots of

0;(w) and the sign of,.(w) at those roots.

5. The existence of a stabilizing controller for the compdekynomial can be expressed
in terms of the existence of an appropriate set of frequemieyvals which admit ex-
actly one or zero roots of the imaginary part of the Nyquist pind no roots of the
real part. This is shown in Theorem V.1. For every set of feemy intervals, these
conditions can be translated into linear inequality caists or linear matrix in-
equality (LMI) constraints involving the controller paraters. This step involves the
Chebyshev approximation of the frequency response in #ugiéncy banfluy,, w.,).

It subsequently involves the use of Markov-Lucaks theom@ponvert the conditions

into a LMI form.

We are interested in synthesizing a rational, proper ctatré’(s) satisfying H,,
specification, i.e., for some monic polynomial(s) of degreer and a polynomialV,(s)
of degree at most, C(s) = 3=(s). Let No(s) = ng + nis + ... + n.s” and D (s) =
do+dis+...+d,_1s""' + s". Let K be the vector of controller coefficients:

T
Ng N1 ... Ny do dl dr—l

. The determination of the vectdr is equivalent to the determination of the stabilizing

controllerC(s).

C. Main Results

The net phase change property for complex polynomials caagresented similarly with

that for real polynomials as follows [25, 32].
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Lemma V.1.

1. The phase of the complex Hurwitz polynomié) = 5 + 15 + - - - + 645 mono-
tonically increases as : —oo — oo and the plot of/*" order complex Hurwitz
polynomialdé(jw) = 4,(w) + j;(w) has to move strictly counterclockwise and go

through2d quadrants asv : —oo — +o0.

2. The plot of thed* order complex polynomial(not necessary HurwitZ)jw) =
d.(w) + 76;(w) has to go througte{l(d(s)) — r(d(s))} quadrants asv : —o0 —

“+00.

20(jw)| =" = [I(6) = 7(d)], (5.3)

W=—00

wherel(§),(5) denote the numbers of roots &fs) in the left half plane and in the
right half plane respectively.
Following the outline of the basic ideas of the chapter preegkin the earlier section,

we begin with a generalization of Hermite-Biehler theoremr&tional functions in Lemma

V.2.
Lemma V.2.
Considerd(s) = Ac(s)%. Let the real roots ob;(w) be wy, ..., w;, wy =

—00, w11 = +oo and the sign of,.(w) at these frequencies be correspondingly;, . . ., i, i;11.

ThenA.(s) is Hurwitz if and only if
1. forn —m+r:even

1
n—m+r+2z = isgn[éi(wo)]{io — 201 4 (=D)120 + (D)) (5.4)
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2. forn—m+r: odd
n—m+r+ 2z = —sgn[d;(wo)|{ir — iz + ... + (=1)' i} (5.5)

Proof.
We first note that the degree of the polynomtals) N,(—s) is n + r + m. Hence, the
parity of the degree of the polynomidl.(s)N,(—s) is the same as that of — m + r.

Let the sign of”g’l—g”) atw = w; be I;. The change in the phase &fjw) from w, to
w41 IS given by:I;(i; — 44.1)5 wheni; andi;, are the roots ob, (w). Letw, = —oco and
Wiy = +oo. Sincel; = —1;_; fori =2,3,...,1, the phase change if{jw) fromw = w,

tow = w; can be expressed as:

e T . . . .
éé(jw) w:wll = 5{]1(21—22)—|—IQ(Z2—13)—|—...+11_1(’Ll_1—Zl)}

™ . . . 9 _1.
- 511 {iv — 20y + 205 — ..+ (=1) 7220y + (-1)" 4}

We note that the degree of the polynontial(s) N,(—s) isn + r +m. Hence, the parity of

the degree of the polynomial.(s) N,(—s) is the same as that of — m + .

1. forn—m+r:even
The phase change if(jw) fromw = wy = —oco to w = w; will depend on the

degree of the polynomial.(s) NV, (—s). If the degree of the is even,

wW=—00

C\wew T
éé(jw) L= —511(20 — ’Ll)
The phase change if{jw) fromw = w; to w = w;y; = +00 becomes

Lo(jw)[nZo” =

w0, I(6 — i)

(=D)L (4 — 1)

(O O
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Finally, we get the phase change dfjw) fromw = wy to w = w;y With I; =

—sign(0;(0)) as follows :

Z(S(]’LU) w=+o00 _ Z(S(]'LU)VU w1 +45(]w)|w wy _‘_45( )gz;oo

= =5 [Ilio— i) = I {ir = 2ia + .. (—1)' 2200 + (<)) i)
5 [FD" )]
_ —gll{i0—2i1+2i2—. + (=1)'2i + (=1)F i }
nemb 2 = Ssgnlbi(wo)l{io — 2 4+ (—1)20 + (—1) i)

2

2. forn —m +r: odd

If the degree is odd, The phase changé(ifw) fromw = w, to w = w; becomes

Z0(Jw)|p=tte = ghil

The phase change if{jw) fromw = w; to w = w;+; becomes

: wW=4-00 T i - ;
45(]111) _+ = —Illl = 5(—1)1 1]1@1

w=w 2

We can get the phase changedfjw) from w = wy to w = w1y with I; =

—sign(0;(0)) as follows :

Lo(jw)|w=r% = Z6(jw)[nZth + Z6(jw)[nZu + Z0(jw) s
_ g[[lz'1+ll {iy = 20+ ..+ (=1)"722i,y + (=1)710,}]
™ .
+§ [(—1)"" Ly

= 7wl {iy—ii+io— ...+ (1)}

n—m+r+2z = —sgn[d(wo)] {i1 —iz+ ...+ (=1)'""i}

SinceD,(s) does not have any zeros on the imaginary axis, the phase etiasigw)

asw changes from-oo to +oc0 is the same as that & . (jw)N,(—jw) asw changes from



91

—o0 to +00. The accumulation or change of phase\of jw)N,(—jw) is (n—m~+r+2z, )
if and only ifA.(s) is Hurwitz. With this observatiofn. —m + r + 2z,.) equals the quantity

expressed in equations (5.4) or (5.5). \YAVAYS

The following theorem will use Lemma V.2 to characterizeabgizing controller of

a fixed order in terms of frequency response of the plant.

Theorem V.1.
A controllerC(s) stabilizesA,.(s, K) if and only if for a giveny and every € [0, 27],

1. There exists a sequengei., . . ., i; satisfying equation (5.4) or (5.5), and

2. For the sequence of integeks iy, . . ., i;, there exists correspondinglydisjoint fre-

quency bandsw, 1, w,2],p = 1,..., 1 such that
(a) there exists exactly one root&fw) in (w1, wy2),
(b) the sign ob,.(w) in [w, 1, w, 2] is the same as that @f, and

(c) there is no sign change 6f(w) in the disjoint intervald—oo, wy 1], [w; 2, o]

and [wp,g,wpﬂ,l], p=1,...,1—1.

Proof.

Let the root ofj; (w) in (w1, w,2) bew,. Since the sign aof, (w) at w, is ,, the change
in phase of§(jw) asw varies from—oo to +oo is (n — m + r + 2z,)7, indicating that
A.(s)N,(—s) hasm—z, roots with positive real part. However, this is the case dlamly if

A.(s) is Hurwitz. \AYAY%
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Remark V.1.

1. We first observe that(s) may be expressed a§(s) + Y o' 6,(s)k,, wherek,
is the p!” component of the controller vectdk, andd, d1, . . ., J»,1; are rational
functions, which can be determined once the expressidd(foris known. Similarly,
0, andé; are affinely dependent on the controller parameter vedtorTo emphasize
the dependence dx, we will use the notatiof,. (w, K') andd;(w, K) as appropriate.

One may express the affine dependence(af, K') andd;(w, K) as:

K

0r(w, K) = Ap(w,|G(jw)l*, G (w), Gi(w)) ' (5.6)
Kk

di(w, K) = Ai(w,|G(jw)*, Gr(w), Gi(w)) ' (5.7)

for some vectora\, and A, that depend affinely oft7(jw)|?, G, (w) and G;(w).
2. The conditions in Theorem V.1 may be replaced as follows:

(a) The condition (a) of 2 may be replaced by{w,,, K)d;(w,2, K) < 0 and
W has the sign(—1)?"'1; in [w,1,w,»]. This ensures that;(w, K) has
exactly one root in the interval of interest. If the frequgnesponse at frequen-
cies,w,; andw, , are known, we note that the first conditi®w,, , K)d;(w,,, K) <

0 can be written as two sets of linear inequalities.

(b) The conditions (b) and (c) of 2 may similarly be replaced a
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ipor(w) >0, Yw € [wy1, wp,] (5.8)
—L6;(w) >0, YVw € [—00,w; ] (5.9)
(=) Lo (w) >0, Yw € [wye, +00) (5.10)
(=) L5 (w) >0, Yw € [wyo, Wer14], (5.11)

wherep =1,2,...,l,g=1,...,1—1and dependence ai is suppressed.

If G(jw) is exactly known, the condition af-1)»*'7, (%) heing nonnegative in
[wp.1, w, 2] can be posed as a SDP using Markov-Lucaks theorem as shovagptec |11
and in [20, 40]. IfG(jw) is approximately known as is typically the case when fitting-a
tional function approximation to the given data contamedawith noise, the nonnegativity

condition can be posed as a robust SDP as shown in chapter IV.



94

CHAPTER VI

CONCLUSIONS AND FUTURE WORK
In this dissertation, we have addressed the problem of egittimg fixed order controllers
which absolutely stabilize a Lure-Postnikov system. Weehalso proposed a method
to synthesize sets of stabilizing controllers of stricttpger, delay-free, SISO LTI plants
directly from their empirical frequency response data ames coarse information about
them.

Analytical tools for synthesizing stabilizing fixed struot controllers such as the PID
or low-order controllers examining the absolute stabity ure-Postnikov systems which
have sector-bounded nonlinearities have been studiee iliténature, but tools for synthe-
sizing higher order controllers have not been studied as/ethave proposed a systematic
method designing fixed higher order controllers which altety stabilize Lure-Postnikov
systems with the recent results which approximate the sebofroller parameters that
render a family of real and complex polynomials and providedxample.

The advantage of the proposed approach is that sets of &ddgodtabilizing con-
trollers can be presented to a control engineer. The coatgiheer may further based on
other constrains

It is widely recognized that an accurate analytical modéhefplant may not be avail-
able to a control designer. However, it is reasonable in nagmjications that one will have
an empirical model of the plant in terms of its frequency cese data and from physical
considerations or from the empirical time response data,noaly have some coarse infor-
mation about the plant such as the number of non minimum prares of the plant etc.
We have proposed a systematic method to synthesize aybutrder controllers for delay-
free SISO LTI plants from the frequency response data anddih@er of non minimum

phase zeros of the plant. We posed the problem of synthgdizénsets of stabilizing con-
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trollers as that of sets of controllers satisfying some sbBIDPs considering the frequency
response measurement errors. It indicates the possitiitityed order controller synthesis

using only frequency response measurements.

A. Summary of Results

In chapter II, we have proposed a method to synthesize fixger @ontrollers as well as
PID controllers that absolutely stabilize a Lure-Postrikgstem. We also provided an
example of Lure-Postnikov system(one-link robot with fld&ijoint) and constructed the
set of PID and first order controllers which absolutely diabithe example system.

In chapter lll, the recently developed Sum-of-Squaresmiegles for checking the
nonnegativity of a real polynomial in an interval have besriewed.

In chapter IV, we have proposed a method for synthesizing alestabilizing con-
trollers of strictly proper, delay-free, SISO LTI plantgebtly from their empirical fre-
quency response data and from some coarse information isout The coarse informa-
tion that is required is the following: the number of non minim phase zeros of the plant
and the frequency range beyond which the phase responseofitplant does not change
appreciably and the amplitude response goes to zero. Tipesed method in this chapter
involves nonnegativity of real polynomials in some intésva\Ve also posed the problem of
synthesizing the sets of stabilizing controllers as thatet$ of controllers satisfying some
robust SDPs considering the frequency response measuremas.

In chapter V, the problem of fixed order stabilizing conteollesign has been extended
to the design of controllers which guarantee some perfocenariteria. Those performance
criteria can be gain margin, phase margin, upper bound oft{thenorm of a weighted
sensitivity transfer function, or a requirement that aaertlosed loop transfer function be

SPR etc.
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B. Future Work

e The proposed methods are computationally intensive. Hegftieient numerical
algorithms that exploit the structure of SDPs resultingrfrinose problems will be

practically very useful.

e The extension of the developed techniques to multivarigyéems is a challenging

problem.
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