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 ABSTRACT 
 

The Design of GaAs HEMT and HBT Bessel-Type Transimpedance Amplifiers. 

(December 2006) 

Oluwafemi Ibukunoluwa Adeyemi, B.S., University of Houston 

Chair of Advisory Committee: Dr. Aydin Karsilayan 

 

The need of the everyday user to transfer large amounts of data is driving the need for 

larger data transfer capacity. Optical communication networks can satisfy this need. To 

be economically viable, optical transceivers must be integrated onto chips at low cost, 

using relatively cheap semiconductor processes. 

 

The optical preamplifier (transimpedance amplifier) receives optical information and 

converts it to a useful electrical form. It must operate at high speed, contribute little 

distortion to the input signal, and add little electrical noise to the incoming signal. 

 

This thesis investigates the design techniques in the literature, and proposes new 

architectures. Two high performance preamplifiers are designed, one using GaAs 

HEMTs, and the other using GaAs HBTs, each with different circuit techniques. 

 

The HEMT preamplifier has a transimpedance gain of 1.4 kΩ, the highest in the 

literature for 10 Gb/s operation, along with a low input referred noise current of about 15 

pA/Hz1/2 at a bandwidth of 6.3 GHz. The HBT preamplifier also has a transimpedance 

gain of 1.5 kΩ, with a low input referred noise current of about 7 pA/Hz1/2. Both have 

clear, open eye-diagrams with a 10 Gb/s bit stream input, and are suitable for integration 

on a chip. 
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The HEMT preamplifier was implemented as a common-gate, common-source amplifier 

cascade with a darlington output driver for a 50 Ω load. The HBT preamplifier was 

implemented as common-emitter darlington amplifier with shunt peaking, and a simple 

emitter degenerated output driver for a 50 Ω load. 

 

Both implementations exceeded the bandwidth, transimpedance gain and noise 

performance typically expected of the transistor technologies used. It is shown that the 

transimpedance limit can be circumvented by the use of novel architectures and shunt 

peaking.  
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 CHAPTER I 
 INTRODUCTION  

 

The exponential growth of Information Technology applications drives the need to 

transmit larger amounts of information faster. Traditionally, information has been 

transmitted wirelessly from point to point. While capable of transmitting data at fast 

speeds, these are inefficient for present-day demands. 

 

The need for high-speed, high-capacity communications is more widespread today, due 

to the need of the average user. Real-time streaming applications such as 

teleconferencing, and the need to transfer larger multimedia files quicker drives the need 

for communications systems that are low cost, easy to integrate and immune to 

interference from weather conditions such as lightning, and electromagnetic interference 

from other high-speed data links. Optical fiber communication, using light to transmit 

information, satisfies the need for speed, capacity and interference immunity  [1]. 

 

1.1.      Overview of Fiber Optic Communication Systems 
 

The potential information carrying capacity of light dwarfs all other known methods of 

communication. One popular wavelength for optical communication is 1.5μm, 

corresponding to a frequency of about 200THz [1]. Considering that the bandwidth of 

the human voice is about 20KHz, approximately 10 billion conversations can be 

transmitted at once. Even if only a fraction of this bandwidth is used due to practical 

constraints, the capacity is still large. 

 

 

This thesis follows the style of the IEEE Journal of Solid-State Circuits. 
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Fig. 1.1 illustrates a digital fiber-optic communication system. 
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Fig. 1.1.  Illustration of a Digital Fiber-Optic Communication System. 

 

Fig. 1.1 shows how a laser diode capable of emitting light under the electrical stimulus 

of a laser driver is modulated with input digital information, and transmitted over optical 

fiber.  Due to the large distances involved, optical repeaters are placed along the optical 

fiber path to restore signal strength due to attenuation in the optical fiber [2]. These 

repeaters are optical amplifiers, regenerating the incoming optical signals without the 

need for opto-electronic and electro-optical signal conversions. 

 

The light signal reaches the receiver, with a front-end consisting of a photodiode and a 

preamplifier. The photodiode converts the input light signal into electrical current 

impulses, which are converted to voltage pulses by the preamplifier. Since the 

preamplifier converts an input current into an output voltage, it will be referred to as a 

transimpedance amplifier (TIA). The input signal strength is unknown, and can range 
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from a few microamperes to several milliamperes, so an automatic gain control (AGC) 

circuit is placed after the preamplifier to modify the effective gain of the receiver 

according to the input signal strength. 

 

 1.2      Requirements of Transimpedance Amplifiers 
 

After traveling long distances, the light signal becomes weak due to attenuation. The 

signal conversion to current by the photodiode results in weak current pulses. 

Furthermore, frequency dispersion in the optical fiber introduces distortion into the 

digital signal [2]. This signal characteristic places limitations on the nature of the TIA. 

 

The TIA must contribute very little current noise, otherwise it risks swamping the weak 

signal current, causing information loss. Furthermore, the bandwidth of the TIA must be 

wide enough to allow for good reproduction of the high-speed current pulses, usually 

transmitted at a rate of 2.5Gb/s - 40Gb/s. These restrictions impose challenges in the 

design of high-speed TIAs. 

 
1.3     Aim and Organization of Thesis 
 

The objective of this thesis is to design TIAs with low noise signature, comparable to 

that in the research literature, and capable of operating at high speeds with little signal 

distortion. The TIA architectures designed will allow high-speed operation without the 

need for expensive semiconductor processes. 

 

Chapter II reviews the Figures of Merit (FOM) for optical receivers, and their 

relationships to physical transistor parameters. 
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Chapter III deals with the Gallium Arsenide (GaAs) semiconductor technology used, 

various TIA topologies, and their theory of operation. The advantages and shortcomings 

of these TIA topologies are highlighted. 

 

Chapter IV introduces the TIAs designed in the course of research, along with the design 

methodologies used. Schematic and layout simulation results are then presented. 

 

Chapter V will compare the design results with other designs in the literature, draw 

conclusions based on the new designs, and highlight possible uses and future 

improvements. 

 
 
 
 

 
 



5 
 
 
 

  CHAPTER II 
 FIGURES OF MERIT FOR TRANSIMPEDANCE AMPLIFIERS 

 
2.1      Analog and Digital Receivers 
 

Receivers can be broadly classified as analog or digital, based on the manner in which 

the information transmitted is coded into the signal waveform. Analog receivers are 

concerned with the reception of continuous time waveforms, and are typically used in 

broadband systems where analog to digital conversion is impractical [1]. Examples 

include traditional TV and cable systems. Analog receiver performance is concerned 

with signal reception and reproduction with little distortion and noise. 

 

Digital receivers, on the other hand, are used when information is transmitted as a stream 

of bits. Digital receiver performance, is therefore concerned with the error involved in 

misinterpreting the bits in a digital stream. The bit error rate (BER) quantifies this, and is 

defined as the average number of misinterpreted bits per a certain number of bits 

transmitted. A BER of 10-9 for example, implies one erroneous bit per 1 billion bits in a 

digital stream. 

 

2.2     The Bit Error Rate 
 

A digital receiver’s performance can be measured by how low its BER is. It should be 

noted that the BER is an average quantity, and in reality, is a time varying quantity. This 

is because optical signals experience a time varying signal attenuation due to turbulent 

weather and polarization in the optical fibers used for transmission [1]. Still, the average 

BER provides a good figure of merit for digital receivers. 

An alternative term to the BER is sensitivity. It is defined as the minimum input signal 

required to generate a given BER. 
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2.3     Digital Receiver Data Formats 
 

The input signal to a receiver consists of a series of binary pulses representing either a 1 

or a 0. There are several modulation schemes for the transmission of these pulses, 

including the non-return-to-zero (NRZ) and return-to-zero (RZ) schemes.  

 

In the NRZ scheme, a pulse is generated to signify a 1, and no pulse is generated to 

signify a 0, as illustrated in Fig. 2.1. 

 

1 0010110 10
 

Fig. 2.1.  NRZ Representation of the Binary Sequence 1011010001. 

 

The RZ modulation scheme represents a binary 1 by a pulse for half the signal period, 

and then returns to zero for the remainder of the period. A 0 is represented by an absence 

of any pulse over the whole bit period. The RZ format is illustrated in Fig. 2.2. 

 

1 0010110 10
 

Fig. 2.2.  RZ Representation of the Binary Sequence 1011010001. 
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For a 10Gb/s bit pattern, the NRZ format produces a 5GHz pulse train, while the RZ 

format produces a 10GHz pulse train. The NRZ format therefore eases the bandwidth 

requirement, and more information can be packed into a channel.  

 

However, the RZ format is more suitable for long distance transmission, as the 

narrowness of each bit pulse causes it to stand out, making it easier to detect the signal in 

the presence of significant noise and frequency dispersion [2]. The data format assumed 

in this thesis will be random NRZ signals, except where noted. The results are equally 

applicable to most data coding schemes. 

 

2.4     Data Recovery and Its Effect on TIA Design 
 

In amplifying the input digital signal, the front-end of a digital receiver, the TIA, will 

add some noise to the amplified signal. This noise corrupts the digital signal levels, as 

well as the zero crossing of the data. There are two main methods of extracting clean 

signals from the output of the TIA/AGC block: asynchronous and synchronous. Both 

determine the bandwidth requirements of the TIA. 

 

Vo

Input Signal Preamplifier
/AGC

Vthreshold

Vo +

-

 

Fig. 2.3.  Asynchronous Data Recovery. 

 

In asynchronous data recovery (Fig. 2.3), the noisy signal at the output of the TIA is 

compared with a threshold voltage, which is usually midway between the high and low 
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signal levels. The output is a clean digital signal, which can be used by further 

processing blocks.  

 

A disadvantage of this scheme is that the TIA’s bandwidth must be about twice that of 

the signal, in order for the rise time (0.17 times the bit period [3]) of the output digital 

pulse to be small enough to allow the pulse to settle quickly. As will be seen later, this 

wide bandwidth requirement makes the TIA design difficult, as it introduces substantial 

noise into the circuit. 

 

The synchronous detection scheme eases TIA design requirements, and is illustrated in 

Fig 2.4. 

 

Input Signal

Preamplifier
/AGC Clock Recovery/

Phase Shifter

D

CLK

Q

 

Fig. 2.4.  Synchronous Data Recovery. 

 
In Fig. 2.4, a clock recovery circuit is used to generate a clock signal at the frequency of 

the digital signal. This clock is then phase shifted by 90°, and used to sample the noisy 

data at its midpoint. 

 

The midpoint sampling method is better, because slower rise times can be tolerated. For 

such synchronous receivers, the bandwidth of the TIA only has to be 0.5-0.7 times the 

bandwidth of the input signal. If the TIA bandwidth is 0.56 times of the signal 
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bandwidth of the  NRZ data, the rise time is now 0.6 times the bit interval, but the noise 

bandwidth is now only 28% of the asynchronous detector [3]. 

 
2.5     Factors Affecting BER and Sensitivity 
  

Two quantities that indicate the BER and sensitivity of a receiver are noise and 

bandwidth. Sensitivity relates to the inherent receiver noise, and quantifies the smallest 

signal that can be detected by the receiver, without being swamped by the receiver noise. 

Bandwidth is a measure of the speed of a receiver, an indication of the fastest pulse it 

can amplify without significant distortion.  

 

2.5.1 Noise 
 

The TIA in the digital receiver is the primary source of noise added to the output signal, 

which can result in bit errors, as in Fig. 2.5. 

 

Isignal + Inoise

TIA

Vo

Vnoise

Vnoise

0

1

Ambiguous
region

VTH

 

Fig. 2.5.  Illustration of the Gaussian Spread of the Output Voltage of a Noisy TIA. 

 

An input NRZ current signal  and some photodiode current noise signalI noiseI  are applied 

to the input of the TIA. The TIA converts this input current to a voltage , along with ov
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some noise voltage noisev . The output noise voltage comes from the TIA and the 

amplified current noise of the photodiode. If the noise distribution is assumed Gaussian 

and signal independent [2], the variance of the output voltage level can be represented by 

two overlapping Gaussian curves, one for a binary 1, and another for a binary 0. The 

Gaussian curves represent the spread of the instantaneous output voltage level due to 

noise at any point in time. The peaks of the Gaussian curves correspond to voltage levels 

without any noise, the ideal case.  

 

In order to determine if a binary signal is a 1, or a 0, the signal is sampled midway 

through the period of each pulse. For an ideal NRZ signal without noise, a voltage above 

the threshold voltage can be reliably detected as a 1, and a voltage below can be 

reliably detected as a 0. The addition of noise to the output voltage corrupts this 

certainty, and if the noise fluctuation is large enough, a binary 1 can be misinterpreted as 

a binary 0 and vice versa. The probability of this bit-error occurring is represented 

numerically by the overlap of the two Gaussian curves in Fig. 2.5, designated as the 

ambiguous region. 

THV THV

 

Summing up the overlapping area, the BER can be derived as [2]: 

 

( )
Q
QQerfcBER 2/exp

2
1

22
1 2−

≈⎟
⎠
⎞

⎜
⎝
⎛=

π
 

(2.1) 

 

where rms
n

pp
s

i
i

Q
2

= ,  is the peak-to-peak signal current, and is the average input 

referred noise current. 

pp
si

rms
ni
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Equation (2.1) suggests that lowering the output noise voltage, or increasing the peak-to-

peak signal level can reduce the BER. Although (2.1) shows that we can arbitrarily 

reduce the BER, this is not the case in practice. A BER plot for a typical receiver is 

shown in Fig. 2.6. 

 

B
ER

Received Signal Power (mW)

10-18

10-10

BER curve follows
Eqn 2.1

BER floor BER increases
due to overload

0.0001 10

 

Fig. 2.6.  Practical BER Curve Showing Deviation of Actual BER From (2.1). 

 

The BER floor indicates that beyond a certain input signal power, the BER cannot be 

made smaller. This is missing from (2.1) because it assumes signal independent noise, an 

assumption that does not hold for avalanche photodiodes for example [1]. Other causes 

of the BER floor include clock jitter and setup/hold-time violations in digital circuits [2]. 

A further increase of signal power overloads the receiver, which has a finite dynamic 

range. This results in a BER increase. 
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2.5.2     Bandwidth 
 

2.5.2.1     Low pass Filtering and Inter-Symbol Interference 

The bandwidth of the receiver, and in particular, the input TIA affects the quality of the 

digital signal produced at the output of the receiver. Consider a bandwidth-limited TIA 

with a first-order transfer function that can be modeled by H(s) in (2.2).  

 

o

T

in

o

s
R

I
V

sH

ω
+

==
1

)(  
(2.2)

 

where  

oV  is the output voltage, 

inI  is the input current of the TIA, 

TR  is DC transimpedance gain, 

and oo fπω 2=  is bandwidth of the TIA represented by the transfer function H(s). 

 

Using Simulink, the output voltage Vo in response to an input current  at 1 bit/s is 

plotted for several values of the bandwidth , varying from 0.1Hz to 1Hz in Fig. 2.7. 

The DC transimpedance gain  has been set to unity. 

inI

of

TR
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Fig. 2.7.  Effect of Bandwidth-Limited TIA On Output Voltage Signal. 

 

It can be seen that the effect of a low bandwidth is to prevent the waveform from rising 

fast enough, causing a synchronous detector to potentially misread a 0 as a 1. This 

waveform distortion is known as Inter Symbol Interference (ISI). Typically, the 

bandwidth of the TIA is chosen to be about 0.75 times the bit rate of the input digital 

signal. However, practical input signals for photodiodes are not rectangular pulses, but 

have a rise/fall time that is about 40% of the bit period [2]. Therefore, a bandwidth as 

low as 0.6 times the bit rate is sufficient to capture the high frequency energy [3]. 
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)

2.5.2.2     High pass filtering and baseline wander [4] 

In high-speed amplifier design, critical amplifying transistors are typically biased with 

off-chip DC voltages through an inductor. The inductor is chosen such that its AC 

impedance is large at signal frequencies. The input signal is then coupled through a large 

coupling capacitor. This causes a zero at DC in the transimpedance transfer function 

H(s). In integrated circuits, this coupling capacitor cannot be made arbitrarily large, due 

to area constraints. This means that the low frequency pole associated with the coupling 

cannot be made arbitrarily low. Modifying (2.2) to include a zero, and an additional low 

frequency pole, the transfer function of the TIA can be re-written as: 

 

( )( biaso

T

ss
RssH

ωω ++
=)(  

(2.3)

 

where  

biasbias fπω 2=  is pole associated with the bias implementation. 

 

Again, a test input current is at 1 bit/s is applied to the modified TIA with unity DC gain. 

Here  is set to 1Hz, with  varied from 0.05Hz to 0.1Hz. The results are plotted in 

Fig. 2.8. 

of biasf
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Fig. 2.8.  Effect of Low Frequency Pole and Zero at DC on Signal Output. 

 

As biasbias fπω 2=  becomes significant, the DC content of the output signal starts to 

droop. This is also referred to as baseline wander [4]. Conservative designs usually set 

the bias pole to be about 30kHz, for a 10Gb/s TIA. For this reason, it is desirable to DC-

couple the input signal to the TIA to avoid any drooping, or wasting of large chip area 

for coupling. 

 

2.6     Eye Diagrams 
 

Eye diagrams are useful visual aids, to see the effects of noise and bandwidth on a digital 

signal. An eye diagram is formed by folding the time axis of the digital signal on itself,  

a whole number of bit periods at a time. 

 

 
 



16 
 
 
 

 

2.6.1     Transfer Functions and Jitter Analysis Using Eye Diagrams 

 

To demonstrate the usefulness of eye diagrams, a typical 10Gb/s TIA is analyzed with 

Simulink using Fig. 2.9, and the results are interpreted with eye diagrams. In Fig. 2.9 

below, a pseudo-random bit signal generator is used to mimic a typical 10Gb/s NRZ 

signal. The bit pattern is random for the first 210-1 bits. The results are displayed in Fig. 

2.10. 

 

 

Fig. 2.9.  Simulink Simulation Setup. 
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Fig. 2.10.  TIA Output Voltage Eye Diagrams. 

 

The eye opening of the eye diagrams indicates the level of ISI. The eye diagrams also 

reveal the amount of jitter present in the output voltage, which is the randomness of the 

zero crossing of the NRZ data. This is caused by additive Gaussian noise. 

 

Fig. 2.10 illustrates the usefulness of the eye diagram. The eye closure and jitter give 

quick information about the frequency and noise performance of a TIA. 
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 CHAPTER III 
 COMPOUND SEMICONDUCTORS AND TIA DESIGN 

  TECHNIQUES 
 

3.1     Compound Semiconductor Technology 
 

Compound semiconductors such as Gallium Arsenide (GaAs) and Indium Phosphide 

(InP) are widely used in optical devices, because they are direct bandgap materials. This 

makes them more efficient at emitting and absorbing photons. Ternary compounds like 

Gallium Aluminum Arsenide (GaAlAs) have high quantum efficiency in the 1.0μm to 

1.6μm wavelength region [5] used for optical communications. These ternary 

compounds can be combined in stoichiometric ratios that allow them to be lattice-

matched to semi-insulating GaAs substrates. This lattice matching is critical for optimal 

carrier mobility [5]. Silicon (Si) is not a direct-bandgap material. This implies that 

optical devices like photodiodes, which require GaAs or InP substrates, have to be 

fabricated on a separate wafer, and then connected to a Si-based TIA on a Si wafer. The 

interconnect parasitics are large, and severely degrade TIA performance 

 

This thesis uses GaAs-based technology. High-speed photoreceivers with a P-I-N 

photodiode integrated on the chip have been demonstrated in GaAs [6]. Laser diodes 

have also been fabricated on chip, alongside integrated circuits. This, along with the 

development of optical waveguides and modulators on chip means that integrated optical 

transceivers can be fabricated on the same GaAs substrate [7]. 
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3.2      High Electron Mobility Transistors (HEMT) 
 

HEMTs are field-effect transistors, with the gate in direct contact with a heterostructure 

(compound) semiconductor. It is known that high levels of doping reduce carrier 

mobility due to impurity scattering. The HEMT architecture circumvents this by placing 

a doped wide bandgap material (AlGaAs) underneath a metal gate. This is followed by a 

layer of narrow bandgap GaAs [5]. Application of a voltage to the gate causes carriers to 

be deflected from the doped AlGaAs into the undoped GaAs, where they can be used as 

carriers with high mobility.  

 

The major source of noise is channel noise, which can be referred to the input as an 

equivalent voltage noise source, as shown in Fig. 3.1. 

 

*
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Fig. 3.1.  Noise Models for the HEMT. 

 

In Fig. 3.1, 2
nI  is the HEMT channel current noise spectral density in A2/Hz, 

2
nV  is the input-referred voltage noise spectral density in V2/Hz, 

Γ  is the HEMT channel noise factor which is slightly less than unity, 

and  is the transconductance in A/V. mg
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3.3     Heterojunction Bipolar Transistors (HBT) 
 

In bipolar transistors, it is desirable that the base resistance rb be small, to increase the 

transistor’s maximum frequency of oscillation 
bcb

T

Cr
ff

π22
1

max = , and reduce its noise 

contribution. To do so, the base can be highly doped. This measure will however 

increase the carrier transit time Fτ  through the base, and reduce the unity gain frequency 

F
tf

τ
1

≈ .  

 

To ease these design constraints, HBTs have their base and emitter formed from 

materials with different bandgaps. This can be engineered to create a steep well in the 

energy band between emitter and base, allowing carriers from the emitter to flow into the 

base very easily, while the carriers from the base cannot overcome the energy barrier and 

flow into the emitter. This improves emitter injection efficiency and allows the base to 

be doped more heavily to reduce the base resistance of the transistor, and improve fmax. 

The heterojunction also allows the base to be made thinner, improving the base transit 

frequency. This shows up as an increase in ft.  

 

The HBT has several major noise sources, but an equivalent transformation can be done, 

as in the case of HEMTs [8], to refer them to the input. Fig. 3.2 below shows a 

corresponding noise transformation for the HBT. 
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Fig. 3.2.  Noise Models for the HBT. 
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3.4     Advantages of HBTs Over HEMTs 
 

In spite of its worse noise properties, HBTs enjoy more popularity for optical receiver 

design. HBTs have better current carrying capabilities, as the current through the 

transistor flows vertically, perpendicular to the plane of the substrate. In HEMTs, the 

flow is lateral, along the surface of the substrate in a relatively thin conducting channel. 

 

Furthermore, the critical dimensions of the HBT are formed by epitaxial growth, rather 

than by lithographic processes as is the case for FETs. Therefore the critical dimensions 

(such as base width) can be made much smaller with a cheaper process. This results in 

HBTs being more cost-effective than HEMTs and sub-micron CMOS. 

 

3.5      Output Noise Dependence on Bandwidth 
 

The noise currents and voltages represent spectral power density functions, and have 

units of A2/Hz and V2/Hz. This is because noise is statistical in nature, and its value at 

any instant is random. For comparison with circuit voltages and currents, a root-mean-

square value can be obtained by integrating the noise spectra over the bandwidth of 

interest, as in (3.1). 

 

∫=
BW

nRMSn dfII 2
,  

(3.1)

 

Equation (3.1) emphasizes the need to keep the bandwidth of the TIA as low as possible, 

to reduce the output noise. 
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3.6      TIA Architectures 
 

3.6.1     Open-Loop Resistive TIA 
 

The simplest TIA is a resistor, which performs the necessary conversion of current to 

voltage. A schematic is shown in Fig. 3.3. 

 

CinRTCd

Vo

Photodiode
model

Id

 

Fig. 3.3.  Open-Loop Resistive TIA. 

 

The photodiode can be modeled as a current source Id with a parasitic capacitance Cd. RT  

is the transimpedance resistance, and Cin represents the input capacitance of the next 

stage amplifier.  

 

The transimpedance gain can be derived as 
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where  is the total capacitance the node VindT CCC += o. 
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The resistance RT contributes noise, which degrades the TIA sensitivity. We can find the 

equivalent input-referred noise current of this TIA by finding the output noise voltage 

due to RT, and dividing by the transimpedance gain of the TIA.  The output noise voltage 

can be derived as: 
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(3.3)

 

Since other architectures will be considered, for a fair comparison, the output noise 

voltage is referred to the input. Equation (3.4) is the same as the current noise density of 

RT. This result is expected since this current noise is parallel to the input current signal. 

 

TT

no
refn R

kT
sZ

V
I 4

)( 2

2
2

, ==  
(3.4)

 

To increase the sensitivity of the TIA, RT must be large to reduce the input referred 

noise, from (3.4). However, (3.1) shows that doing so reduces the bandwidth of the TIA, 

as the pole 
TT

o CR
1=ω  decreases. Therefore, this architecture, while simple, suffers 

from severe design constraints. It cannot be made sensitive and fast at the same time. 

 

3.6.2     Open-Loop Common-Gate TIA 
 

To allow for a larger transimpedance bandwidth, a common-gate architecture is often 

used, as depicted in Fig. 3.4. An N-channel HEMT has been used in this design. 
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M1

Cin Rbias
Cd

Id

RT
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Fig. 3.4.  Open-Loop Common-Gate TIA. 

 

The input impedance looking into the transistor is now 
1

1
mg , where gm1 is the 

transconductance of transistor M1. Therefore the input pole is at a very high frequency. 

Solving for the transimpedance gain, 
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(3.5)

 

Fig. 3.5 below can be used for noise analysis. 
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Fig. 3.5.  Schematic for Noise Analysis of Open-Loop Common-Gate TIA. 

 

To simplify the noise analysis, several assumptions are made. The bias resistor Rbias is 

much greater 1/gm1, and the impedance of the total input capacitance CT = Cin + Cd is 

smaller than Rbias at high frequencies. This is the primary reason for using the bias 

resistor in place of a current source, as its noise contribution can be neglected. The 

output noise voltage is given by (3.6). 

 

2
2

,

2

2

1

12
1,

2 1||1||
11

1

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
≈

OUT
TRTn

OUT
T

mT

m
Mnno sC

RI
sC

R

gsC

g
IV  

(3.6)

 

The input referred noise current can therefore be approximated as: 
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Equation (3.7) shows that the channel noise of the HEMT adds directly to the input 

referred noise current. Even though the pole at the input is now at a high frequency, RT 

cannot be increased arbitrarily, since the capacitance COUT at the output will cause a new 

low frequency pole to appear. If COUT is the gate-source capacitance of an amplifying 

transistor, the frequency response of this architecture is degraded. 

 

Furthermore, all the noise sources of the subsequent stage, like RT, will appear at the 

input without attenuation. Therefore, the open-loop common-gate amplifier is not 

substantially better than its resistive counterpart. Its main advantage is to isolate the 

photodiode and wiring parasitics from the transimpedance load. 

 

3.6.3     Feedback TIAs 
 

By using feedback, high sensitivity and bandwidth can be obtained at the same time. Fig. 

3.6 shows the concept of the feedback TIA. 
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Fig. 3.6.  Feedback TIA. 
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In Fig. 3.6, a bandwidth limited amplifier has been placed in a feedback loop. The role 

of the amplifier is to take the voltage Vin, amplify it and reverse its phase, so that Vin and 

Vo are out of phase.  

 

If the bandwidth ωA of the amplifier and the capacitances are initially ignored, it can be 

seen that this amplifier causes a current of magnitude 
f

inoin

R
VAV +

to flow through the 

resistor Rf to the output. This forced current comes primarily from the photodiode. 

Therefore, at DC and low frequencies,  
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(3.8)

 

Equation (3.8) is an advantage of the feedback TIA. The capacitors CD and Cin act as low 

impedances at high frequency, and share the photodiode current with Rf.  The output 

voltage is generated only by the current which passes through the feedback resistance Rf. 

As the frequency of operation increases, the capacitive impedances become smaller, and 

less useful current reaches the output. If this is taken into account, (3.8) can be rewritten 

as 
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ID,Rf is the useful current flowing through Rf. From (3.9), the gain of the amplifier can be 

used to offset the low frequency pole formed at the input of the TIA, to produce more 

useful current at the output. 
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Equivalently, the input impedance of the TIA has been reduced, from Rf to 
o

f

A
R
+1

and 

therefore achieves low noise and wide bandwidth simultaneously. 

 

The limitation to the feedback TIA comes from the bandwidth of the amplifier itself, 

which has been neglected. The bandwidth limitation of the amplifier causes its gain to 

decrease with frequency, which causes the input impedance of the TIA to increase with 

frequency. It can therefore be said that the input impedance of the TIA is inductive in 

nature. To illustrate, the TIA in Fig. 3.6 is simulated using an amplifier with a 1GHz 

bandwidth and a voltage gain of 10. The input capacitance is 0.1pF, and the feedback 

resistance is 500Ω. The result is shown in Fig. 3.7. 

 

 

Fig. 3.7.  Feedback TIA Characteristics. 
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As the amplifier open loop gain starts to decrease due to the pole at 1GHz, the 

transimpedance transfer function starts to rise. This is because the input impedance starts 

to rise, as the amplifier gain decreases. Eventually, the parasitic capacitances cause the 

input impedance and transimpedance to start to decrease again. The equivalent input 

referred noise current has also been plotted. It increases with frequency, because the gain 

decreases with frequency while the input current noise is constant. Fig. 3.7 indicates that 

for a realistic feedback TIA, the transfer function is at least second-order. 

 

Solving the amplifier structure for the transimpedance gain [2], 
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To design a TIA with a maximally flat (Butterworth) response (
2

1=Q ) and prevent 

peaking, from (3.10) [2],  
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Therefore the amplifier bandwidth must be twice the open-loop gain-bandwidth (GBW). 

For a Bessel response, the amplifier bandwidth must be three times the open-loop GBW 

[2]. This highlights the need for very fast amplifiers if ISI is to be avoided. 

 

The amplifier bandwidth is not independent of its gain. They are related by the unity 

gain frequency AoT A ωω ≈ . It can be shown that the limit of the feedback resistor for a 

TIA response without peaking is given by [2]: 

 

2
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f
T A

R
C
ω
ω

≤  (3.12)

 

We therefore expect transistors in faster technologies to allow greater feedback 

resistance, with improved sensitivity and BER. 

 

Common-source HEMT and common-emitter HBT versions of the TIA are shown 

below.  
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Fig. 3.8. HEMT and HBT Feedback TIAs. 
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The input referred noise of Fig. 3.8 TIAs can be approximated as: 
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3.7     Difficulties Designing HEMT and HBT TIAs 

 

3.7.1     Amplifier Front-End Capacitance 
 

Equation (3.13) shows an f2 component, caused by the total capacitance CT at the input. 

This increases the importance of reducing the front-end capacitance. The photodiode 

capacitance is typically fixed, and the other option is to size the input transistor M1 for a 

small gate-source or base-emitter capacitance. However, reducing this capacitance will 

also decrease gm, for a fixed unity gain frequency 
GS

m

be

m
T C

g
C

g ≡≈ω . The lower gm 

will cause the noise quantities in (3.13) to increase. 

 

If the derivative of (3.13) is taken with respect to CT and equated to zero, it can be 

proven that the minimum input-referred noise current density is obtained when the input 

capacitance of M1 is equal to the photodiode capacitance. This is easier to implement 

with HEMTs than HBTs.  

 

For HEMTs, the input capacitance CGS is proportional to the transistor width. The width 

can be reduced to match CGS to CD. The drain current can then be increased, to keep gm 

constant (within the limits of transistor saturation).  
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For HBTs, the base-emitter capacitance consists of a fixed depletion capacitance, and a 

diffusion capacitance that increases with current. For a particular emitter size, the 

capacitance has a minimum value. Attempting to increase the drain current to increase 

gm will also increase the total capacitance. It is therefore harder to manipulate the input 

capacitance of the HBT TIA. 

 

3.7.2     Effect of Resistive Load on Voltage Supply, Noise and Bandwidth 
 

The loads of the amplifiers are resistors, instead of current sources. P-type HEMTs and 

HBTs are very slow, and are not used in high frequency design. These resistors also 

exhibit lower noise properties than corresponding current sources. However, they 

occupy more voltage headroom than active current sources, which only need a saturation 

voltage drop. This affects HEMTs more than HBTs. For HEMTs, the drain current of 

M1 must be high, to ensure sufficient transconductance. This will drop a large voltage 

across RL, necessitating a larger voltage supply. 

 

Although HBTs can use smaller currents to achieve the same transconductance, leading 

to a reduction in the voltage across the load resistor, the supply voltage tends to be 

larger. The base-emitter threshold voltage is about 1.3V for AlGaAs HBTs, while the 

threshold voltage for E-Mode HEMTs is about 0.3V. Therefore, typical HBT designs use 

6.5V power supplies, compared to 5V for HEMTs. 

 

Also, since HBTs have higher transconductances per unit collector current, the load 

resistance can be reduced to achieve a particular gain. This smaller resistance forms a 

higher frequency pole with the capacitance of the next stage emitter follower. Therefore, 

HBT TIAs have better frequency performance per unit power than HEMTs. 
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3.7.3     P-I-N Diode Input Impedance 
 

The input impedance of the P-I-N diode has been assumed to be purely capacitive. 

However, parasitics such as bondwires and P-I-N diode packaging make the input 

impedance more complex. A more accurate model is shown in Fig. 3.9 [2]. 

 

IPIN CPD=0.15pF

RPD=10Ohms 0.1nH

0.05pF

Bare Die Package  

Fig. 3.9.  Photodiode Equivalent. 

 

The inductance cannot always be ignored, especially for receivers pushing the limits of 

the technology. This inductance causes a second-order TIA response to become a fourth 

order one.  The effect of the inductance can be approximated using Simulink, by 

replacing a second order Butterworth TIA with a fourth order Butterworth TIA. The 

coefficient of the highest power in the denominator is then increased by 50% to simulate 

ringing caused by bondwire inductance. The second-order Butterworth TIA is compared 

with the new TIA transfer function in Fig. 3.10. 
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7GHz Butterworth TIA

7GHz Butterworth TIA with inductive front-end

 

Fig. 3.10.  Effect of Bondwire Inductance on 10Gb/s Eye-Diagrams. 

 

The presence of the bondwire causes ringing, and degrades the eye diagram. 

 

3.8     Techniques for Improving TIA Performance 
 

3.8.1      Bandwidth Enhancement 
 

If the bandwidth of the amplifier can be increased without decreasing gain, we can 

potentially increase the TIA’s sensitivity and reduce ISI. Techniques such as positive 

feedback [9] and Vadipour’s base-collector capacitance nullification [10], while capable 

of increasing bandwidth, are hard to control, and tend to cause too much gain peaking in 

the transimpedance transfer function, leading to ISI.  
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Inductors and ft-doubler architectures are typically used to partially cancel the effects of 

parasitic capacitances and reduce them respectively. Two examples are shown in Fig. 

3.11. 
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Fig. 3.11.  Bandwidth Enhancement Techniques. 

 

The HEMT amplifier in Fig. 3.11(a) uses an inductor to partially cancel the effect of the 

output capacitance. The price for this bandwidth extension is that the first order voltage 

gain transfer function becomes second order. This is an example of increasing bandwidth 

at the output of the amplifier. 

 

The ft-doubler in Fig. 3.11(b) is popular in HBT designs, due to the HBT’s inherently 

high transconductance. The voltage at the degeneration resistor is approximately half 

that at the input (neglecting Q2’s base resistance). This is an example of increasing 

bandwidth by compensating parasitics at the input of the amplifier. The input 

capacitance is approximately half of Q1’s input capacitance. A cascode transistor can be 

added to both designs to reduce the Miller effect. 
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 CHAPTER IV 
 HEMT AND HBT BESSEL-TYPE TIA DESIGN 

 

4.1.     Advantages of a Bessel-Type TIA 
 

If the circuit parasitics and bondwire inductance are taken into account, and used to 

design a Bessel TIA, ISI can be significantly reduced. Using Simulink, second-order and 

fourth-order Bessel TIAs are simulated. Also, the fourth-order TIA transfer function is 

modified to simulate the addition of a bondwire. Fig. 4.1 illustrates the results. 

 

Second-order Bessel TIA

Fourth-order Bessel TIA

Fourth-order Bessel TIA with front-end bondwire inductance

 

Fig. 4.1.  Effect of Bondwire Inductance on Bessel TIAs. 
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Fig. 4.1 shows that the ISI is minimal, compared to the Butterworth TIA. There is little 

degradation from second-order to fourth-order in the presence of inductive parasitics, as 

the eye diagrams for both fourth-order transfer functions are almost the same.  

 

The nature of the Bessel transfer function makes it relatively immune to parasitics that 

can cause ringing. This is a huge advantage for integrated circuit design, where the 

circuit parameters of the fabricated chip vary from the ideal schematic simulation, and 

output terminations are never purely resistive. 

 

The fourth-order Butterworth TIA is compared with a fourth-order Bessel TIA, both 

operating at 5GHz. Lower bandwidths imply lower integrated noise, at the expense of 

increased ISI. Fig. 4.2 investigates the effect of low TIA bandwidth on Butterworth and 

Bessel TIAs. 

 

5GHz Bessel TIA

5GHz Butterworth TIA

 

Fig. 4.2.  Effect of Low Bandwidth on Butterworth and Bessel TIAs. 
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Even with a bandwidth at half the speed of the input signal, the Bessel TIA still has an 

open eye, compared with that for a Butterworth TIA. This is because as the order of the 

Bessel  TIA increases, the constancy of its group delay over its bandwidth gets better. 

 

4.2.     Approach to Bessel TIA Design 
 

Several attempts have been made in the literature to design Bessel TIAs. One method 

was to tune the poles and zeros of the TIA transfer function to obtain a constant group 

delay over the TIA bandwidth [11]. This approach requires accurate knowledge of all 

parasitics, otherwise the group delay will not be constant after fabrication. 

 

Another approach is to solve the transfer function of the TIA with parasitics included 

explicitly, and then match the coefficients of a fourth-order Bessel function to the 

transfer function derived [12]. The method requires the use of a common source 

amplifier, with the bandwidth pushed to the limit. The bondwire inductance must also be 

known beforehand, and the sensitivity of the architecture is low due to a low feedback 

resistance. 

 

This work uses a two-stage architecture, in which a fourth-order Bessel TIA is realized 

from two low-Q second-order stages. The stages interact in such a way that the peaking 

occurring in one stage can be compensated for in the other stage. Two stages, a 

common-base stage, and a common-emitter feedback TIA stage are used. 
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4.2.1     Re-Analysis of the Feedback TIA and the Resistive Peaking Effect 
 

A popular variant of the feedback TIA introduced by Ohhata et al [13] is shown in Fig. 

4.3(a). 

 

Q1

RL

Rf

Isignal

Q2
Zin Zin

Cbe

rb
Cbe rbe

(a) (b) (c)

Vo

 

Fig. 4.3.  Feedback TIA and Input Impedance. (a) Ohhata’s Emitter Feedback TIA. (b) 
Input Impedance of HBT Used in [13]. (c) Input Impedance of HBT Used in This Work. 

 

Q1 and RL form the core amplifier, with Q2 acting as an emitter follower. In analyzing 

this architecture, Ohhata et. al. used Fig. 4.3(b) to represent the input impedance of 

transistor Q1. The TIA transfer function was found to be second-order. However, the 

input impedance used neglects the base resistance, and instead includes the base-emitter 

resistance. 

 

The base resistance is typically about 60Ω-100Ω and cannot be neglected in high-speed 

design. Furthermore, the base-emitter resistance is shunted by the base-emitter 

capacitance and is insignificant after a few hundred megahertz.  

 

 
 



40 
 
 
 

Secondly, the analysis in [13] assumes only one pole, at the input, formed by the base 

resistance and the base-emitter capacitance. The pole at the load resistor is assumed to be 

at a very high frequency and is ignored. This assumption is only justifiable if the load 

resistor RL is small. The reasoning behind this is the intuitive need to make the frequency 

response of the core amplifier as fast as possible. 

 

Re-solving the equations with Fig. 4.2(c) results in a first-order transfer function. Yet, 

we observe from simulation that the TIA does exhibit peaking similar to that of second-

order functions. The second-order behavior comes from the input impedance of the 

emitter of Q2, which has been assumed to be 1/gm2. Due to gyration by an HBT with 

finite transit frequency, the load resistance RL will cause an inductive component in the 

input impedance of Q2’s emitter. We can designate this inductance as  
T

L
f

R
L

ω
= . 

 

This suggests that increasing RL, and therefore, making the pole at that node significant, 

will not degrade the amplifier performance as much as was originally thought. The new 

transfer function parameters are displayed along with Ohhata’s equations. 
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From (4.1a), the natural frequency ω0 is the geometric mean of the unity gain frequency 

ωT  and ωRfCL  . In the Ohhata’s solution, this other pole is dependent on the parasitic 
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parameters of the HBT (rb, Cbe). This is not as flexible for design. Equation (4.1a) 

suggests that we can increase Rf beyond the transimpedance limit in (3.12).  

 

In [13], only the terms rb, Cbe and gm can be used to form valid simultaneous equations to 

solve for ω0 and Q. In the literature, the effect of using the assumptions in [13] is that the 

feedback resistance designed by different authors with different processes is almost the 

same for a particular operating speed. 

 

The new equations give more freedom to use Rf and RL in achieving a transfer function. 

To see the advantage of this derivation, a new transimpedance limit is derived by setting 

ω0 equal to the TIA bandwidth. It should be noted that both limits are valid only for 

bandwidths well below the transition frequency. 

 

dBT

T
f fC

f
R

32π
≤   - old transimpedance limit 

dBL

T
f fC

f
R

32π
≤  - this work’s transimpedance limit 

(4.2a) 

 

(4.2b)

 

where CT is the total capacitance at the photodiode node, and CL is the total capacitance 

at the common-emitter amplifier load node. 

 

The new transimpedance limit depends on the parasitic load capacitance, while the old 

limit depended on the total capacitance at the input of the TIA. The new limit is 

therefore an order of magnitude greater than the old limit. 

 

An intuitive way to see why this is so is to imagine the large load resistance RL as a 

counterpart of the capacitive peaking method [14]. Capacitive peaking extends 
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bandwidth by placing a pole in an open loop amplifier with an explicit capacitance. 

When the amplifier is connected in feedback, this pole appears as a zero in the feedback 

function. To an extent, the increase in RL also creates a lower frequency pole that can be 

used to peak the feedback transfer function. A larger Rf is then needed to prevent the 

frequency response from peaking. The same derivations can be performed using 

HEMTs, with the difference being that the input gate resistance and gate pole can be 

ignored (small gate resistance). The results are the same. Using the analysis in [13] will 

result in a different transfer function for HEMTs. 

 

4.2.2     Analysis of the Common-Base Stage With Bondwire at the Input 
 

Although the two stages of the fourth-order Bessel TIA can be implemented with two 

cascaded sections of the second-order architecture described earlier, a better alternative 

that will be immune to the front-end parasitics, while maintaining good ISI performance 

is needed. 

 

The common-base architecture can achieve some parasitic immunity by keeping the 

signal in current mode. To this end, the common-base stage in Fig. 4.4 is investigated.  
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Fig. 4.4.  Common-Base Input With Bondwire and Dampening Resistor. 
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A resistor RQ has been added to dampen the peaking that will otherwise occur due to Ld 

and Cd interacting. Ld can include bondwire, packaging and explicit inductances. The 

resistance RQ represents the parasitic emitter resistance, and the parasitic series 

resistance of the inductance Ld. 

 

The transfer function can be expressed as: 
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(4.4b)

 

Equation (4.4) shows that the second-order transfer function parameters can also be 

thought of in terms of an L-C natural frequency and characteristic impedance. 
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4.3     Two-Stage Bessel TIA With HEMTs 
 

The two second-order stages (common-gate and common-source) investigated in 4.2 are 

combined to form a fourth-order Bessel TIA as in Fig. 4.5. 
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Fig. 4.5.  Schematic Representation of the Two-Stage HEMT Bessel TIA. 

 

4.3.1     Overview of HEMT Bessel TIA 
 

The common-gate input of the TIA, along with the bondwire inductance and dampening 

resistor RQ forms a second-order transfer function as discussed before. Transistor M2 is 

used as a current source to supply transistor M1. The alternative is to allow the drain 

current of M1 to flow through the feedback resistor Rf [15]. This requires Rf to carry a 

voltage . Since MfDRf RIV 1= 1 must be biased with a high current to present a low input 

impedance at its source, the power supply Vdd would have to be increased significantly.  

 

 
 



45 
 
 
 

The peaked current flows from the drain of M1 into the common-source amplifier, 

consisting primarily of common-source transistor M3, load R2, feedback source-follower 

M7 and resistor Rf. The cascode transistor M4 broadens the frequency response of the 

common-source amplifier by reducing the Miller effect at the gate of M3. 

 

GaAs processes are relatively immature compared to their silicon counterparts. For 

HEMTs especially, transistor size precision is low, and can vary up to 40%. However, 

the precision of the ratio of the HEMT transistor sizes is high. In order to reduce the 

quiescent point variability due to manufacturing, transistors M4, M5 and M6 are added to 

the common-source amplifier. Transistor M6 is a current source. The amount of current 

flowing through the common-source amplifier is determined by the voltage vtune at the 

gate of M4. M5 is used to drop the voltage at the drain of M4. This method is preferred to 

using level-shifting diodes to bias the source of transistor M3. These level shifting diodes 

have to be bypassed with a large capacitor, otherwise, they severely degrade the 

amplifier’s group delay. The input impedance of the source of M4 can be made 

arbitrarily low, and has little effect on the group delay. Similarly, the voltage drop at the 

source follower is implemented with a gate-drain connected transistor rather than a level 

shifting diode, due to the self-bypassing action of its gate-source capacitance. 

 

Typically, the output of a standalone TIA chip is a common-source driver, which must 

be capable of driving 25Ω - 50Ω [4]. The driver transistor must be large enough to 

sustain a substantial drain current. This large driver input capacitance interacts with the 

source-follower of the TIA, causing peaking and degrading the group delay. In the 

literature, several source followers are used to isolate this driver. This is usually 

ineffective, as the drain current of these source followers must be reduced to dampen 

peaking. Cascading several of these results in severe gain and bandwidth loss.  Instead, a 

resistor R3 was used as the current source to provide more damping. The driver M10 is 

degenerated, to reduce the input capacitance presented to the source follower. In order to 
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reduce quiescent current consumption, the output of the driver is open-collector, to be 

connected to an external 50Ω output. A disadvantage of the open-collector configuration 

is the possibility of jitter and ringing at the output [4]. 

  

In order to fully realize the bandwidth of the TIA, the gates of the input and cascode 

transistors must be at a low impedance over a broad range of frequency [16]. Fig. 4.6 

shows several methods used for cascode and common-gate transistor biasing. 
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Fig. 4.6.  Techniques for Cascode and Common-Gate Transistor Biasing. 

 

Fig. 4.6(a) is typical for low frequency biasing. However, the impedance at the gate is 

not low enough at high frequencies. Fig. 4.6(b) is a resistive divider, with a capacitor to 

roll off the impedance of 21 RR  at high frequencies. In order to maintain low AC 

impedance, this capacitance must be large. Since resistors R1, R2 are usually large to 

reduce current consumption from the power supply, the capacitance must be on the order 

of 50pF-100pF.  

 

Fig. 4.6(c) uses a current mirror biasing technique for BJTs, along with a capacitance 

reduction concept from Rodwell [16]. The source follower presents a low, relatively 

frequency-independent input impedance over a broad range of frequencies. The bias 
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resistor R1 appears as an inductance at the source of M2. Its effect is reduced by a small 

capacitance, about 5pF. This architecture performs better than the regulated cascode 

approach [17], [18] from a group delay and noise performance perspective. 

 

4.3.2     Fourth-Order Bessel Filter Design 
 

A fourth-order Bessel transfer function can be separated into a cascade of two second-

order transfer functions as in (4.5). 
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(4.5) 

 

 

Using MATLAB, the parameters ωo1, Q1, ωo2, Q2 were determined for (4.5) using 

MATLAB for a bandwidth of 7GHz in Table 4.1. 

 

The common-gate stage of 4.2.2 is more suited to high bandwidth, high Q amplifier 

design and is used to implement stage 1. The common-source stage of 4.2.1 is used to 

implement stage 2.  
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TABLE 4.1 

SECOND ORDER FILTER PARAMETERS FOR A FOURTH–ORDER BESSEL 
FILTER WITH A BANDWIDTH OF 7GHZ 

 
Second-order 

parameter 

Calculated value 

ωo1  (stage 1) 11 GHz 

Q1  (stage 1) 0.81 

ωo2  (stage 2) 9.9 GHz 

Q2  (stage 2) 0.52 

 

 

Stage 1 in Fig. 4.5 comprises of the photodiode model (Cd, Ld, and RQ), and the 

common-gate amplifier (M1, M2, R1). The second-order transfer function parameters 

(ωo1, Q1) for the current gain from the photodiode to the drain  of M1 are expressed in 

(4.4). Stage 2 in Fig. 4.5 comprises of the common-source amplifier (M2 - M8, R2, R3, 

and Rf). The second-order transfer function parameters (ωo2, Q2) for the voltage gain 

from the gate of M3 to the source of M8 is expressed in (4.1).  Table 4.2 lists the circuit 

parameters calculated according to Table 4.1, (4.1) and (4.4). 
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TABLE 4.2 

COMPONENT DESIGN PARAMETERS FOR THE HEMT TIA IN FIG. 4.5 

M1 60μm/6 

M2* 18μm /6 

M3, M4, M5, M5a, 

M7, M8, M10 

30μm /6 

M6 54μm /6 

M9 54μm /6 

M11 - M14 30μm /6 

Lbond 1.1nH 

RQ 10 Ω 

Cd 100fF 

Rf 2.8kΩ 

R1 500Ω 

R2 400Ω 

R3 800Ω 

 

* A small 5μm DFET not shown was inserted above M2, to provide bias and prevent DC 

current flow through Rf. 

 

4.3.3     Layout of the HEMT Bessel TIA  
 

The layout, extraction and verification  of the HEMT Bessel TIA in Fig. 4.7 were done 

using Cadence. 
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Fig. 4.7.  Layout of the Bessel Type HEMT TIA. 

 

The photodiode was implemented on chip with a 10kΩ resistor and 100fF capacitance 

[11]. The bondwire was implemented as a spiral inductor. Since the inductor’s parasitic 

resistance can be lumped with RQ, more attention was paid to reducing its parasitic 

capacitance by reducing the line width to the minimum allowed by the technology. 

 

The input and output signals use a Ground-Signal-Ground (G-S-G) configuration to 

minimize parasitic inductance in their paths. 

 

4.3.4     Simulation and Results 
 

The TIA was simulated using Triquint’s 0.5μm 33GHz HEMT process in Cadence and 

Agilent’s ADS. S-parameter simulations and curve fitting in ADS were used to extract 

the transistor’s physical parameters. The layout was drawn in Cadence, exported to a 

GDSII format, and the parasitics extracted with an electromagnetic simulation in 
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Momentum ADS. Only node capacitances were extracted to reduce simulation time. The 

metal-insulator-metal (MIM) capacitors were found to be fairly ideal and were simulated 

separately to verify their properties. The anticipated parasitic inductance of the long 

NiCr resistors was reduced by using a serpentine structure. 

  

In optimizing the design, more attention was paid to optimizing the group delay than to 

the bandwidth. Fig. 4.8  shows the AC response. 

 

Fig. 4.8.  AC Response of the HEMT TIA. 

 
The bandwidth reduces drastically with the inclusion of layout parasitics. It is difficult to 

reduce this effect, due to the multiple-gated transistors used. The multiple gates are 

connected with the lowest level metal (local interconnect), and make up an un-

modifiable bulk of the layout capacitance [19]. 
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Fig. 4.9 compares the step response of the schematic and layout. 

 

Step Response to 100uA step input

 

Fig. 4.9.  Step Response of the HEMT TIA. 

 

As expected, there is little overshoot in the step response due to the constant group delay 

over the amplifier bandwidth. Fig. 4.10 shows the output voltage noise power spectra of 

the HEMT TIA layout. 

 

Fig. 4.10.  Output Noise of the HEMT TIA (Layout). 

 
 



53 
 
 
 

As expected, in Fig. 4.10, the output noise decreases with frequency due to the shunting 

effect of parasitic capacitances. 

 

Fig. 4.11 shows the eye diagram of the TIA layout output in response to a 211 –1 pseudo-

random bit sequence at 10Gb/s. Fig. 4.11 shows that the TIA exhibits almost no eye 

closure 

 

 

Fig. 4.11.  Eye Diagram of the HEMT TIA. 

 

The results are tabulated in Table 4.3. 
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TABLE 4.3 

 POST-LAYOUT SIMULATION RESULTS FOR THE HEMT TIA 
 

Bandwidth 6.3 GHz 

Input Referred Current Noise 11 HzpA /  

Transimpedance Gain 1.4kΩ  (Rf=2.8kΩ) 

Group Delay Variation Over 

Bandwidth 

4.5ps 

Power Consumption 200mW 

Power Supply 5V 

Risetime 47.7ps 

Chip Area 3mm2

 

 

4.4.     Ft-Doubler Bessel-Type HBT TIA With Shunt Peaking 
 

The architecture used for the HEMT TIA can also be applied to HBTs. However, it is 

not as efficient. The base-emitter capacitance of the HBT is much larger, and increases 

with collector current. This leads to significant bandwidth reduction at the common-

base/common-emitter TIA interface.  

 

Furthermore, a low-noise, single transistor current source is not possible with HBTs, as 

only n-p-n transistors are available. This presents biasing problems. Finally, the input 

impedance of the AlGaAs HBT is more complicated and the assumptions made in 

Section 4.2 are only valid until about a third of the unity gain frequency [20]. 
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It is difficult to derive simple transfer functions with sufficient accuracy for the 

performance level needed. Instead, the HBT TIA is designed with an alternate definition 

of the Bessel transfer function. 

 

As long as the group delay is fairly constant over the bandwidth of interest, we can 

approximate a Bessel type response with little overshoot. This is evident from Gaussian 

and Pade  group delay approximations, which are not Bessel transfer functions, but 

nevertheless have good group delay and time response characteristics. 

 

The common emitter TIA (CETIA) is re-investigated. The primary problem with the 

CETIA is that the capacitance of the input transistor adds directly to the capacitance of 

the photodiode, and reduces the size of the feedback resistor for a particular bandwidth. 

This in turn reduces the TIA’s sensitivity. 

 

A current-mirror ft-doubler configuration is used, to reduce the input capacitance. The 

Darlington configuration, while providing a very low input capacitance, suffers from 

stability problems, resulting in severe ringing [21]. Fig. 4.12 illustrates several 

architectures. 
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Fig. 4.12. Design Evolution of the Current-Mirror Ft-Doubler. 
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Fig. 4.12(a) shows the Darlington configuration. Although the input capacitance can be 

reduced to very small values, it comes at the price of severe ringing. The transfer 

function for the each of the architectures can be approximated by 
1

1)(
1

2
2 ++

=
sasa

sH  

[22]. Using the method of open-time constants (MOTC), Agarwal [23] showed that 

although the Darlington configuration increased the bandwidth, a2 increases too, 

resulting in severe peaking in the transfer function.  Since the emitter-follower Q1 is 

driving a capacitance, the input impedance has a frequency dependent negative 

resistance, which can only be compensated for with a huge series base resistance [21]. 

 

To reduce the peaking, Fig. 4.12(b) can be used, where R1 is a small bias resistor. This 

significantly improves switching time. This can be modified by using transistor Q3 for 

bias, and connecting the collector of Q1 and Q2 together. It can be shown by MOTC and 

current gain analysis that this introduces a zero, which partially offsets the pole 

introduced by the configuration [22], [23]. This is referred to as the current-mirror ft-

doubler. This second-order front-end can be used in a common-emitter TIA to give a 

fourth-order Bessel type response. The full architecture is shown in Fig. 4.13. 
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Fig. 4.13. HBT TIA Using an Ft-Doubler and Shunt Peaking. 

 

4.4.1      Overview of HBT Bessel TIA 
 

In Fig. 4.13, the input bondwire is considered to be negligible. This is the case if the 

shortest possible bondwire is used, or flip-chip bonding is used. In either case, 

simulations show that a larger feedback resistor can offset the effect of the bondwire. In 

order to reduce the noise added by the extra front-end transistor, shunt peaking is used at 

the collector of Q4 to broaden bandwidth, allowing a larger feedback resistor to be used. 

This in turn improves noise performance.  

 

Transistors Q1, Q2, Q3 form the input current-mirror ft-doubler, and the cascode 

transistor Q4 reduces the Miller effect, thereby broadening bandwidth. Inductor L1 allows 

the collector current of Q4 to charge the load capacitance more quickly, by initially 

isolating the load resistor R1 from the current coming out of the collector of Q4. 
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The source follower Q5 is biased with a resistor instead of a current source. This helps 

reduce the ringing that occurs in driving the large base emitter capacitance of the driver 

Q8. The output load is 100Ω, to interface to a 50Ω load. The load is 100Ω instead of 

50Ω, to reduce the quiescent current requirement [4], and dampen possible jitter caused 

by off-chip inductances [11]. Q9 is used for biasing, and to reduce the input capacitance 

of the driver. 

 

All transistors run at about 65% of the maximum current density allowed (0.2mA/μm2), 

for peak ft. 

 

4.4.2     Fourth-Order Bessel Filter Design 
 

As in 4.3, a fourth-order Bessel transfer function can be derived from Fig. 4.13. The 

transconductance of the current-mirror ft-doubler (Q1, Q2, and Q3) can be approximated 

by [22] 
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Solving for the transimpedance gain of  Fig. 4.13,  
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CL = Total node capacitance at the base of Q5 and 

Cin = Total node capacitance at the base of Q1. 

 

Ignoring the high frequency zero in (4.7), the coefficients in (4.7) must be matched to 

the coefficients of the MATLAB derived fourth-order Bessel filter with a bandwidth of 

7GHz in (4.8). 
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(4.8) 

 

 

Four simultaneous equations, in which Rf, R1, CL and L1 are unknowns can be 

formulated. Since CL is dependent on parasitic capacitances, several iterations are 

needed. The parasitic substrate capacitances of L1 which were ignored in the derivation 

of (4.7) cause the simulated transfer function to deviate from that expected, necessitating 

further tuning of Rf and R1. To ease tuning, the constancy of the group delay of the 

transimpedance gain is used as the benchmark, rather than the gain. The values designed 

are tabulated in Table 4.4. 
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TABLE 4.4 

COMPONENT DESIGN PARAMETERS FOR HBT TIA IN FIG. 4.13 
(TRANSISTOR DIMENSIONS ARE OF THE FORM FINGERS X EMITTER 

WIDTH X EMITTER LENGTH)

Q1, Q2, Q3 1x3μmx5μm 

Q4 2x3μmx5μm 

Q5, Q6, Q7 1x3μmx7μm 

Q8, Q9 2x3μmx5μm 

Rf 1.6kΩ 

R1 170Ω 

R2 1.2kΩ 

R3 1kΩ 

L1 1nH 

 

4.4.3     Layout of the HBT Bessel TIA  
 

The layout illustrated in Fig. 4.14 was drawn, extracted and verified with Cadence. 

 

 

Fig. 4.14. HBT TIA Layout. 

 
 



61 
 
 
 

The photodiode in the layout above has a huge input capacitance (100pF) for DC bias 

blocking, as the base current of the HBT is large enough to cause a DC shift at the input. 

 

4.4.4     Simulation and Results 
 

Triquint’s 40GHz AlGaAs HBT process was used for the design, simulation and layout 

of the HBT TIA. Fig. 4.15 shows the AC response of the HBT TIA. 

 

 

Fig. 4.15. AC Response of the HBT TIA. 

 
The group delay with the parasitics exhibits better Bessel properties because the 

feedback resistance was purposely increased to reduce the peaking effect of the parasitic 

capacitances. The bandwidth of the layout was close to that of the schematic because the 

highest level interconnect (Metal2) was used as often as possible. The local interconnect 

Metal0 was avoided as much as possible. 

 
 



62 
 
 
 

Fig. 4.16 shows the step response of both the schematic and layout. 

 
Step Response to a 0-100uA step input

 

Fig. 4.16. Step Response of the HBT TIA. 

 
There is very little ringing in the step response as expected. Fig. 4.17 shows the output 

noise spectral density of the HBT TIA layout. 

 

Output noise spectral density

 

 

Fig. 4.17. Output Noise of the HBT TIA (Layout). 
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Fig. 4.17 shows that the output voltage noise power spectra of the HBT TIA layout 

increases initially. This is expected, as the inductor creates a zero in the transfer function 

from the channel noise of Q1 to the output. Fig. 4.18 shows the eye diagram of the  HBT 

TIA output, under simulation conditions similar to that of the HEMT TIA. 

 

Eye Diagram at 10Gb/s

 

Fig. 4.18. Eye Diagram of the HBT TIA (Layout). 

 

The eye diagram again exhibits almost no eye closure, as expected. The results are 

tabulated in Table 4.5. 
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TABLE 4.5 

 POST-LAYOUT SIMULATION RESULTS FOR THE HBT TIA 

Bandwidth 6.85 GHz 

Input Referred Current Noise 7 HzpA /  

Transimpedance Gain 1584Ω (Rf=1.6kΩ) 

Group Delay Variation Over 

Bandwidth 

1ps 

Power Consumption 140mW 

Power Supply 6V 

Risetime 51.4ps 

Chip Area 0.84mm2
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  CHAPTER V 
 CONCLUSION 

 

5.1.     Comparison With Results in the Literature 
 

Table 5.1 shows that the bandwidth and noise performance of the TIAs designed are 

comparable to those in the literature. 

 

TABLE 5.1 

 COMPARATIVE LISTING OF THE PERFORMANCE OF VARIOUS TIA 
DESIGNS 

Technology Bandwidth Gain Input-

Referred 

Noise (rms) 

Input 

Capacitance 

Cd 

[24] 0.3μm Si Bipolar/ 

ft = 35GHz (measured) 

10.5GHz 1kΩ 12pA/Hz1/2 

 

150fF 

[25] 0.1μm HEMT/ 

ft = 85GHz (measured) 

8GHz 600Ω 6.5pA/Hz1/2 

 

250fF 

[11] Si Bipolar/ 

ft = 23GHz (measured) 

7.8GHz 710Ω 9pA/Hz1/2 100fF 

[26] SiGe HBT/ 

ft = 47GHz (measured) 

9.8GHz 233 Ω 12pA/Hz1/2 280fF 

This work: 0.5um HEMT 

ft = 33GHz (simulated post-layout) 

6.3GHz 1.4kΩ 11pA/Hz1/2 100fF 

This work: AlGaAs HBT 

ft = 40GHz (simulated post-layout) 

6.85GHz 1.58kΩ 7pA/Hz1/2 100fF 
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The lower bandwidth of this work’s designs is attributed to the low ft of the transistors 

used, and the need to have the amplifier response be a Bessel type. The simulation 

results of this thesis are being compared with experimental results. It is expected that the 

experimental results of this thesis will show some performance degradation. 

 

The designed TIAs  have the highest transimpedance gain for 10Gb/s to date. The input 

referred noise was not commensurately low, due to the low ft transistors used. The 

equivalent input referred noise density considers output noise over the bandwidth of the 

TIA, as is the practice in the literature. 

 

The HBT TIA uses less power than the HEMT TIA as expected, and has a lower input 

referred noise due to its common-emitter architecture. The HEMT TIA highlights the 

effectiveness of the common-gate TIA. Using a process with lower ft, the performance of 

the HBT TIA was nearly matched. 

 
 

5.2.     Possible Uses of the Designed TIAs 
 

The relatively inexpensive semiconductor process used to design the 10Gb/s TIAs means 

that these TIAs can be produced in large quantities, for low-end users. It should be noted 

that while an excellent 10Gb/s TIA can be designed in a 33GHz ft process, a wide 

dynamic range AGC operating at 10Gb/s may be impossible to design in the same 

process. These designs are therefore more suited to optical receivers that will use 

limiting post-amplifiers. 
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5.3.     Improvements to the TIA Design 
 

The inductors used in the HBT TIA could be replaced with air-bridge inductors to 

reduce parasitic capacitance. With reduced capacitance, shunt-series peaking and T-coil 

compensation techniques [21] become effective. This also highlights the need for 

semiconductor processes with thick interconnects high above the substrate. In optical 

communications design,  the limiting factor in amplifier performance is therefore the 

quality of the passives, and not the transistors themselves. 
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