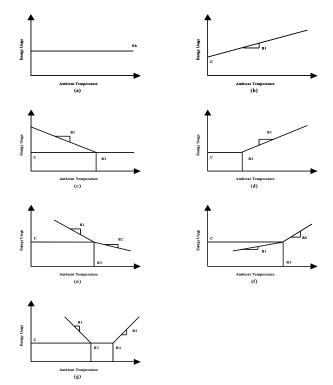
DEVELOPMENT OF A MONITORING AND VERIFICATION (M&V) PLAN AND BASELINE FOR THE FORT HOOD ESPC PROJECT

Jeff Haberl, Zi Betty Liu, Juan-Carlos Baltazar-Cervantes Energy Systems Laboratory Texas A&M University College Station, TX 77843 Bobby Lynn Fort Hood Energy Office 77th & Warehouse Ave. Fort Hood, TX 76544 David Underwood U.S. Army Corps of Engineers Energy Systems Division Champaign, IL 61820


ABSTRACT

Fort Hood has selected an Energy Services Performance Contract (ESPC) contractor to help achieve its energy reduction goals as mandated by Executive Order. This ESPC is expected to be a \$3.8 million, 20 year contract, which includes five primary types of Energy Conservation Measures (ECMs) in 56 buildings, and includes boiler insulation, control system upgrades, vending machine controls, cooling tower variable frequency drives (VFDs), and lighting retrofits. The plan of action for the ESPC includes cost effective M&V, using IPMVP Options B and C for the first two years after the retrofits are installed, and Option A combined with annual performance verification for the remainder of the contract. This paper discusses the development the Measurement and Verification (M&V) Plan for the Fort Hood Energy Services Performance Contract, and includes results of the baseline calculations (Haberl et al. 2002, 2003b).

INTRODUCTION

Fort Hood has selected an Energy Services Performance Contract contractor to help achieve its energy reduction goals as mandated by Executive Order. This ESPC is expected to be a \$3.8 million, 20 year contract, which includes five primary types of Energy Conservation Measures (ECMs) in 56 buildings, and includes boiler insulation, control system upgrades, vending machine controls, cooling tower variable frequency drives (VFDs), and lighting retrofits. The plan of action for the ESPC includes cost effective M&V, using IPMVP Options B and C for the first two years after the retrofits are installed, and Option A combined with annual performance verification for the remainder of the contract.

To accomplish this, a cost-effective data collection effort was initiated in the early stages of the ESPC contractual process, which included permanently installed data loggers, portable data loggers and manual weekly readings on those buildings that had been identified as candidates for retrofits. These data were then used as the basis for the baseline models using linear and change-point linear models as shown in Figure 1 and Table 1 for the whole-building weather-dependent and weatherindependent models and component-level models for the thermal plant.

Figure 1: Models used for the Whole-building Analysis. Included in this figure is: (a) mean or 1 parameter model, (b) 2 parameter model, (c) 3 parameter heating model (similar to a variable based degree-day model (VBDD) for heating), (d) 3 parameter cooling model (VBDD for cooling), (e) 4 parameter heating model, (f) 4 parameter cooling model, and (g) 5 parameter model.

The weather-dependent and weatherindependent regression models used for this effort were linear and change-point linear models calculated with ASHRAE's Inverse Model Toolkit (IMT) (Haberl et al. 2002; Kissock et al. 2002), to satisfy the requirements of the International

Name	Section	Independent Variable(s)	Form	Examples
No Adjustment /Constant Model	6.1.4.1	None	$\mathbf{E} = \mathbf{E}_{\mathbf{b}}$	Non weather sensitive demand
Day Adjusted Model	6.1.4.2	None	$E = E_b x \frac{day_b}{day_c}$	Non weather sensitive use (fuel in summer, electricity in summer)
Two Parameter Model	6.1.4.3	Temperature	$\mathbf{E} = \mathbf{C} + \mathbf{B}_1(\mathbf{T})$	· · · · · · · · · · · · · · · · · · ·
Three Parameter Models	6.1.4.4	Degree days/Temperature	$\begin{split} & E = C + B_1(DD_{BT}) \\ & E = C + B_1(B_2 - T)^+ \\ & E = C + B_1(T - B_2)^+ \end{split}$	Seasonal weather sensitive use (fuel in winter, electricity in summer for cooling) Seasonal weather sensitive demand
Four Parameter, Change Point Model	6.1.4.5	Temperature	$E = C + B_1(B_3 - T)^+$ - $B_2(T - B_3)^+$ $E = C - B_1(B_3 - T)^+$ + $B_2(T - B_3)^+$	
Five Parameter Models	6.1.4.6	Degree days/Temperature	$E = C - B_{1}(DD_{TH}) + B_{2}(DD_{TC}) + B_{2}(DD_{TC}) + B_{3}(T - B_{4})^{+}$	Heating and cooling supplied by same meter.
Multi-Variate Models	6.1.4.7	Degree days/Temperature, other independent variables	Combination form	Energy use dependent non-temperature based variables (occupancy, production, etc.).

Table 1: ASHRAE Guideline 14 Regression Models(ASHRAE 2002).

Performance Monitoring and Verification Protocols (IPMVP 2001), and ASHRAE's Guideline 14 (ASHRAE 2002), which were specified as part of this contract. These models include:

- (a) mean or 1 parameter model,
- (b) 2 parameter model,
- (c) 3 parameter heating model (similar to a variable based degree-day model (VBDD) for heating),
- (d) 3 parameter cooling model (VBDD for cooling),
- (e) 4 parameter heating model,
- (f) 4 parameter cooling model, and
- (g) 5 parameter model.

RETROFITS

The retrofits identified by the ESPC contractor covered 56 buildings on the Ft. Hood army base as shown in Table 2. These buildings encompassed 1.8 million square feet of conditioned space¹, including office buildings, dormitories, kitchens, recreation centers, and a large number of motor pools. The retrofits were intended to save 7.4 million kWh/year in electricity (\$312,390/year), 11.2 MW in electric peak demand (\$49,214/year), and 8.6 million cubic feet of natural gas (\$31,302/year), for a total project savings of (\$392,906/year), which averaged \$0.38/ft². As shown in Table 3 there were five primary types of retrofits, including:

- 1) upgrades to boiler insulation,
- 2) improved building controls with a Utility Management Control System (UMCS),
- 3) vending machine controls,

- 4) cooling tower retrofits, and
- 5) lighting retrofits.

DATA COLLECTION

As a first step in the data collection effort, existing hourly metering equipment at Ft. Hood were recalibrated² and new equipment were installed in the more consumptive buildings, including the III Corp HQ building, and the 87000 block thermal plant. In order to save metering costs Watt transducers with manual readouts were installed in selected 87000 block buildings. Manual readings of these meters and other existing meters were taken weekly to develop a record of energy use (kWh/week), which was to be used to calculate energy savings for electricity use savings. Hourly demand readings (kW) were to taken with portable loggers that recorded the instantaneous signal from the Watt-hour meters for short periods. These demand readings were needed to measure and calculate electric demand savings in those buildings were demand savings were anticipated.

In Table 2, the fourth column indicates the intended baseline data for each building, including buildings with permanently installed data loggers (indicated by "logger"), buildings with Watt transducers and portable data loggers (man & ACR), and buildings with manual weekly readings only (manual). All buildings in the 87000 block (87000 block) had Watt transducers installed to record the whole-buildings electricity use. The thermal energy use (i.e., heating and cooling), was also recorded for

¹ In most buildings this represented heated and cooled space. In some buildings, for example the motor pool buildings, this space was only heated.

² This included loggers in the main electrical substation, north base electrical substation and the Darnal hospital.

Building Number	Building Name	Building Size	Electricity Meter	Gas Meter Status	Type of Elec	Type of Gas	Annual kWH	Total Annual	Total Annual	Total	Total
		(ft2)	Status		Metering Needed	Metering Needed	Savings	kW Savings	Gas Savings	Annual	Annual
					(kWh,kW)				(MCF)	Savings	Savings
										kWh, kW,	kWh,
			Туре							& Gas/ft2	kW/ft2
194	NCO Club (Phant	19,023	Man & ACR	YES	WBE(kWh,kW)		511,903	47	-	\$1.15	\$1.15
410	Headquarters Bui	102,391	Man & ACR	YES	WBE(kWh,kW)	WBNG	931,344	1,025	1,376	\$0.52	\$0.47
1001	Third Corp Heade	312,800	Logger	YES	WBE(kWh,kW)		821,700	2,363	-	\$0.18	\$0.18
4351	Motor Pool	16,317	Manual	YES	WBE(kWh,kW)		25,314	75	-	\$0.11	\$0.11
5485	Pershing Youth C	17,519	Manual	YES	WBE(kWh,kW)	WBNG	34,329	68	51	\$0.13	\$0.12
5764	Officers Club	36,649	Man & ACR	YES	WBE(kWh,kW)	WBNG	319,596	152	533	\$0.46	\$0.40
6602	Bronco Youth Ce	22,100	Man & ACR	YES	WBE(kWh,kW)	WBNG	85,034	125	114	\$0.23	\$0.21
9112	Motor Pool	20,832	Man & ACR	NO	WBE(kWh,kW)		106,906	431	-	\$0.40	\$0.40
9122	Motor Pool	20,832	Man & ACR	NO	WBE(kWh,kW)		117,344	477	-	\$0.44	\$0.44
9127	Motor Pool	20,240	BLINK	NO	WBE(kWh,kW)		58,304	222	-	\$0.22	\$0.22
9212	Patton Inn	1,612	Manual	YES	WBE(kWh,kW)	WBNG	13,221	53	1	\$0.64	\$0.63
9513	Motor Pool	20,832	Man & ACR	NO	WBE(kWh,kW)		90,926	362	-	\$0.34	\$0.34
9535	Motor Pool	20,240	BLINK	NO	WBE(kWh,kW)		67,860	260	-	\$0.25	\$0.25
9553	Motor Pool	24,560	BLINK	NO	WBE(kWh,kW)		40,097	140	-	\$0.12	\$0.12
15060	Motor Pool	20,240	Man & ACR	NO	WBE(kWh,kW)		83,276	329	-	\$0.32	\$0.32
19012	Motor Pool	20,240	BLINK	NO	WBE(kWh,kW)			150	-		\$0.03
22020	Admin	21,096	Man & ACR	YES	WBE(kWH)	WBNG	195,943	180	304	\$0.52	\$0.46
28000	Headquarters Bld	129,635	Man & ACR	YES	WBE(kWh,kW)	WBNG	300,217	0	501	\$0.11	\$0.10
30015	Motor Pool	20,240	BLINK	NO	WBE(kWh,kW)		63,486	218	-	\$0.23	\$0.23
30017	Motor Pool	20,240	BLINK	NO	WBE(kWh,kW)		58,581	219	-	\$0.22	\$0.22
30033	Motor Pool	20,240	BLINK	NO	WBE(kWh,kW)		69,343	256	-	\$0.26	\$0.26
35014	Motor Pool	20,480	BLINK	NO	WBE(kWh,kW)		52,109	191	-	\$0.19	\$0.19
35023	Motor Pool	23,040	BLINK	NO	WBE(kWh,kW)		41,741	135	-	\$0.13	\$0.13
38003	Motor Pool	20,240	BLINK	NO	WBE(kWh,kW)		64,908	247	-	\$0.24	\$0.24
38014	Motor Pool	20,240	BLINK	NO	WBE(kWh,kW)		50,299	183	-	\$0.18	\$0.18
42000	Sports USA	23,341	Man & ACR	YES	WBE(kWH)	WBNG	406,107	92	340	\$0.82	\$0.76
50012	Community Even	4,203	Manual	YES	WBE(kWh,kW)	WBNG	13,713	0	1	\$0.14	\$0.14
52019	Comanche Comm	13,450	Manual	YES	WBE(kWh,kW)	WBNG	196,510	108	196	\$0.74	\$0.68
52381	Golf Pro Shop	3,061	Manual	YES		WBNG			-		
52024	COMMAND Chi	34,779	Man & ACR	YES	WBE(kWh,kW)	WBNG	376,866	217	506	\$0.56	\$0.51
70005	Longhorn Saloon	5,718	Manual	YES	WBE(kWh,kW)		134,677	53	83	\$1.12	\$1.07
85018	Walker Youth Ser	15,652	Manual	YES	WBE(kWh,kW)		50,954	113	-	\$0.20	\$0.20
85020	Commissary	105,659	Man & ACR	YES	WBE(kWh,kW)		165,961	470	-	\$0.11	\$0.11
87003	BN HQ Building	12,314	87000 Block	STEAM	WBE(kWh,kW)		51,320	146	-	\$0.28	\$0.28
87004	CO HQ Building	18,818	87000 Block	STEAM	WBE(kWh,kW)		46,779	126	-	\$0.16	\$0.16
87005	BDE HQ Buildin	9,840	87000 Block	STEAM	WBE(kWH)		26,450	114	-	\$0.22	\$0.22
87006	Offices	4,073	87000 Block	STEAM	WBE(kWh,kW)		11,047	44	-	\$0.21	\$0.21
87007	Enlisted UPH	31,470	87000 Block	STEAM	WBE(kWh,kW)		5,887	0	-	\$0.01	\$0.01
87008	BN HQ Building	6,371	87000 Block	STEAM	WBE(kWh,kW)	WDVC	18,412	70	-	\$0.22	\$0.22
87009	BN HQ Building	12,381	87000 Block	STEAM	WBE(kWh,kW)	WBNG	49,190	162	-	\$0.28	\$0.28
87010	Physical Fitness C	23,631	87000 Block	STEAM	WBE(kWh,kW)		98,108	172	344	\$0.29	\$0.24
87011	CO HQ Building	25,618	87000 Block	STEAM	WBE(kWH)		55,680	157	0	\$0.15	\$0.15
87012	Enlisted UPH	42,306	87000 Block	STEAM	WBE(kWh,kW)		9,719	5	0	\$0.01 \$0.01	\$0.01
87013	Enlisted UPH	31,740 14,162	87000 Block	STEAM	WBE(kWh,kW)		6,439	0	0		\$0.01
87014 87015	CO HQ Building Enlisted UPH	42,306	87000 Block 87000 Block	STEAM	WBE(kWh,kW)		32,892	96 3	0	\$0.16 \$0.01	\$0.16 \$0.01
87015 87016	CO HQ Building	42,306	87000 Block 87000 Block	STEAM STEAM	WBE(kWh,kW) WBE(kWh,kW)		6,502 50,197	3 157	0	\$0.01 \$0.14	\$0.01
87016 87017	Dining Facility	25,168	87000 Block 87000 Block			WDNC		89	0		
87017 87018	Physical Plant - 8	3,327		STEAM STEAM	WBE(kWh,kW) WBE(kWh,kW)	WBNG	41,390 522,971	15	2,120	\$0.16	\$0.16
87018 87019	CO HQ Building	18,818	Logger BLINK	STEAM	WBE(kWh,kW) WBE(kWh,kW)		33,628	15	2,120	\$0.13	\$0.13
87019	Enlisted UPH	42,306	BLINK	STEAM	WBE(kWh,kW)		33,628	79	0	\$0.15	\$0.15
87020	Enlisted UPH	42,300	BLINK		WBE(kWh,kW)		6,523	19	0	\$0.05	\$0.05
87021	Enlisted UPH Enlisted UPH	42,306	BLINK	STEAM STEAM	WBE(kWh,kW)	STEAM	23,936	54	U	\$0.00	\$0.00
91002	Headquarters Bld	42,300	Man & ACR	YES	WBE(kWh,kW)	WBNG	218,137	121	560	\$0.03	\$0.03
91002	Admin/ Operation	38,462 86,292	Man & ACR Man & ACR	YES	WBE(kWh,kW)	WBNG	391,136	388	1,186	\$0.32 \$0.28	\$0.27
91012	Admin/ Operation	26,224	Man & ACR	YES	WBE(kWH,kW)	WBNG	162,590	184	385	\$0.28	\$0.23
21014	Total	1,858,390	man & nek	11.5	(KIII)	110110	7,455,614	11,269	8,600	<i>40.50</i>	φ0.J2
	1000	1,000,000				1	138,067	205	307		\$ 0.26

 Table 2: Metering Status of the Buildings in the ESPC Versus Estimated Savings.

all buildings in the 87000 block at the thermal plant. (i.e., 87018 thermal plant). Buildings that did not have meters, and where the estimated savings were small, did not have meters installed (blink). In these buildings the electricity use was to be recorded early in the retrofit project by the ESPC contractor for several weeks prior to the retrofit, including a "blink" test³ or hourly recordings to measure 24-hour demand profiles before the retrofits were installed.

BASELINE ANALYSIS METHODOLOGY

In Table 3 the analysis methods are listed for each building, depending upon energy conservation retrofit measure (ECRM) and metering data available, including:

1) (Option Ch/A), which indicates Option C of the IPMVP (before/after whole-building method) to be assembled from hourly data for the first two years, to change to Option A (i.e., measured performance stipulated use) of the IPMVP in year three of the contract.

2) (Option Ch/D*), which indicates Option C of the IPMVP (before/after whole-building method)

³ In a blink test, the building's electricity use is recorded with a data logger at a 1-minute or 5-minute level for a period of several hours. During this time the building's loads are cycled on/off, and the change in consumption noted to record the connected load associated with the device or sub-system.

3uilding Number	Building Name	Building Size (ft2)	Recommended M&V Option for Ft. Hood Energy Services Contract									
			1.2 Boil.Ins.	3.1 UMCS	3.3 Vend	4.2 Cool	5.1 Light					
194	NCO Club (Phantom Warrior Club)	19,023	Option Ch/A	Option Ch/D*	Option Ch/A		Option Ch/A					
410	Headquarters Building	102,391	-1	Option Ch/D*	Option Ch/A	Option Ch/A	Option Ch/A					
1001	Third Corp Headquarters	312,800		-1	-1		Option Cm/					
4351	Motor Pool	16,317			Option Cm/A		Option Cm/					
5485	Pershing Youth Center	17,519	Option Ch/A	Option Ch/D*	Option Ch/A		Option Ch/A					
5764	Officers Club	36,649	Option Ch/A	Option Ch/D*	•	Option Ch/A	Option Ch/A					
6602	Bronco Youth Center	22,100	Option Ch/A	Option Ch/D*	Option Ch/A		Option Ch/A					
9112	Motor Pool	20,832		Option Ch/D*	Option Ch/A		Option Ch/					
9122	Motor Pool	20,832			Option Cm/A		Option Cm/.					
9127	Motor Pool	20,240			Option Cm/A		Option Cm/					
9212	Patton Inn	1,612					Option Cm/					
9513	Motor Pool	20,832			Option Cm/A		Option Cm/					
9535	Motor Pool	20,240			Option Cm/A		Option Cm/.					
9553	Motor Pool	24,560			Option Cm/A		Option Cm/					
15060	Motor Pool	20,240			Option Cm/A		Option Cm/					
19012	Motor Pool	20,240			Option Cm/A		Option Cm/					
22020	Admin	21,096		Option Ch/D*	Option Ch/A		Option Ch/A					
28000	Headquarters Bldg	129,635		Option Ch/D*	Option Ch/A	Option Ch/A						
30015	Motor Pool	20,240			Option Cm/A		Option Cm/					
30017	Motor Pool	20,240			Option Cm/A		Option Cm/					
30033	Motor Pool	20,240			Option Cm/A		Option Cm/					
35014	Motor Pool	20,480			Option Cm/A		Option Cm/					
35023	Motor Pool	23,040			Option Cm/A		Option Cm/					
38003	Motor Pool	20,240			Option Cm/A		Option Cm/					
38014	Motor Pool	20,240			Option Cm/A		Option Cm/					
42000	Sports USA	23,341	Option Ch/A	Option Ch/D*	Option Ch/A	Option Ch/A	Option Ch/A					
50012	Community Event Center	4,203		Option Ch/D*	Option Ch/A							
52019	Comanche Community Activity Center	13,450	Option Ch/A	Option Ch/D*	Option Ch/A		Option Ch/2					
52381	Golf Pro Shop	3,061										
52024	COMMAND Child Care	34,779	Option Ch/A	Option Ch/D*		Option Ch/A	Option Ch/					
70005	Longhorn Saloon	5,718	Option Ch/A	Option Ch/D*			Option Ch/					
85018	Walker Youth Service Center	15,652		Option Ch/D*	Option Ch/A		Option Ch/					
85020	Commissary	105,659		Option Ch/D*	Option Ch/A		Option Ch/					
87003	BN HQ Building and Org Classroom	12,314		Option Ch/D*	Option Ch/A		Option Ch/					
87004	CO HQ Building	18,818		Option Ch/D*	Option Ch/A		Option Ch/					
87005	BDE HQ Building	9,840		Option Ch/D*			Option Ch/					
87006	Offices	4,073		Option Ch/D*			Option Ch/					
87007	Enlisted UPH	31,470		Option Ch/D*	Out of CL/A		Option Ch/					
87008	BN HQ Building BN HQ Building and Org Classroom	6,371 12,381		Option Ch/D*	Option Ch/A		Option Ch/					
87009 87010	Physical Fitness Center	23,631	Option Ch/A	Option Ch/D* Option Ch/D*	Option Ch/A Option Ch/A		Option Ch/2 Option Ch/2					
87010	CO HQ Building	25,631	Option Cil/A	Option Ch/D*	Option Ch/A	ł	Option Ch/					
87012	Enlisted UPH	42,306		Option Ch/D*	Option Ch/A		Option Ch/					
87012	Enlisted UPH	42,300		Option Ch/D*		1	Option Ch/.					
87013	CO HQ Building	14,162		Option Ch/D*	Option Ch/A		Option Ch/.					
87014	Enlisted UPH	42,306		Option Ch/D*	Option Ch/A		Option Ch/.					
87015	CO HQ Building	25,168		Option Ch/D*	Option Ch/A		Option Ch/.					
87010	Dining Facility	15,695		Option Ch/D*	opuon curr		Option Ch/					
87018	Physical Plant - 87000 Block	3,327	Option Ch/A			Option Ch/A	Option Ch/					
87010	CO HQ Building	18,818	opuon curr	Option Ch/D*		option curr	Option Ch/					
87020	Enlisted UPH	42,306		Option Ch/D*	Option Ch/A		Option Ch/					
87021	Enlisted UPH	87,021		Option Ch/D*			Option Ch/					
87022	Enlisted UPH	42,306		Option Ch/D*	Option Ch/A	1	Option Ch/					
91002	Headquarters Bldg	38,462	Option Ch/A	Option Ch/D*			Option Ch/					
91012	Admin/ Operational Testing	86,292	Option Ch/A	Option Ch/D*		1	Option Ch/					
91012	Admin	26,224	Option Ch/A	Option Ch/D*			Option Ch/					

 Table 3: Proposed Analysis of the Buildings in the ESPC Versus ECRM Type.

3) to be assembled from hourly data for the first two years, to change to Option D (i.e., calibrated

simulation) of the IPMVP in year three of the $contract^4$.

⁴ This is to be accomplished by using data from the UMCS that tracks the changes in the control settings with differences tracked

4) (Option Cm/A), which indicates Option C of the IPMVP (before/after whole-building method) to be assembled from manual data for the baseline period, and hourly data after the retrofit recorded by the UMCS, to change to Option A (i.e., measured performance stipulated use) of the IPMVP in year three of the contract.

For the entire project, annual savings are to be measured during the first year according to the following equation

Annual Measured Cost Savings Fort Hood Task Order #1 = \$kWhsavings + \$kWsavings +\$NGsavings <u>+</u> \$Adjustments

Equation 1

Where savings for electricity use (kWh), electric demand (kW), and natural gas use (NG) are to be measured separately and the dollar values added into a total annual project savings. For electricity use savings, which are estimated to be 7.4 million kWh/year in electricity (\$312,390/year), savings are to be calculated using whole-buildings models of the individual buildings, using the following equation:

 $kWh_{savings} = kWh-194 + kWh-410 + kWh-1001 + kWh-4351 + kWh-5485$

```
+ $kWh-5764 + $kWh-6602 + $kWh-9112
+ $kWh-9122 + $kWh-9127 + $kWh-9212
+ $kWh-9513 + $kWh-9535 + $kWh-9553
+ $kWh-15060 + $kWh-19012 + $kWh-22020
+ $kWh-28000 + $kWh-30015 + $kWh-30017
+ $kWh-30033 + $kWh-35014 + $kWh-35023
+ $kWh-38003 + $kWh-38014 + $kWh-42000
+ $kWh-50012 + $kWh-52019 + $kWh-52381
+ $kWh-52024 + $kWh-70005 + $kWh-85018
+ $kWh-85020 + $kWh-87003 + $kWh-87004
+ $kWh-87005 + $kWh-87006 + $kWh-87007
+ $kWh-87008 + $kWh-87009 + $kWh-87010
+ $kWh-87011 + $kWh-87012 + $kWh-87013
+ $kWh-87014 + $kWh-87015 + $kWh-87016
+ $kWh-87017 + $kWh-87018 + $kWh-87019
+ $kWh-87020 + $kWh-87021 + $kWh-87022
+ $kWh-91002 + $kWh-91012 + $kWh-91014
                             Equation 2
```

Similar expressions were developed for the electric demand savings, and natural gas savings. Each year, for the first two years after the retrofit, the energy use of the buildings will be measured, and the savings calculated using whole-building, weather normalized models (Haberl et al. 2002; 2003b). In years 3 thru the end of the contract equipment performance will be verified using on-site inspections, usage and

savings will be stipulated using savings calculated in year 2. In the case that suitable baseline models cannot be developed before the end of year 2 (i.e., where the model uncertainty is greater than the savings), or cannot be developed due to inadequate baseline data, savings will be calculated using Option A of the IPMVP (i.e., equipment performance will be verified using on-site inspections, usage and savings will be stipulated using the ESPC contractor's estimated savings for each individual building as calculated by the contractor).

RESULTS

Table 4 contains the results of the baseline modeling efforts for the whole-building electricity and natural gas models. Column 3 lists the type of model chosen to represent the baseline energy use for the energy type indicated by column 14 (electricity use: kWh/day, natural gas use kBtu/day), column 4 shows the predicted annual energy use for the building, and column 5 shows the model uncertainty expressed in similar units for each fuel type, with the model uncertainty shown in column 5 as energy use per day, and as a annual uncertainty in column 15.

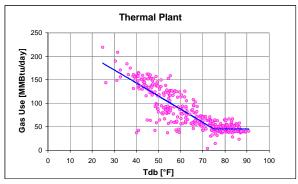
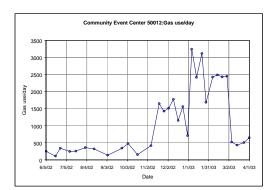


Figure 2: Thermal Plant Natural Gas Weatherdependent Daily Model From Hourly Data Logger.

Linear and change-point linear models of whole-building electricity use (kWh). As previously discussed, weather-dependent and weatherindependent regression models were developed for the buildings that were scheduled to be retrofitted. These models used linear and change-point linear models calculated with ASHRAE's Inverse Model Toolkit (IMT) (Haberl et al. 2002; Kissock et al. 2002), to satisfy the requirements of the International Performance Monitoring and Verification Protocols (IPMVP 2001), and ASHRAE's Guideline 14 (ASHRAE 2002), which were specified in the contract.

with a calibrated simulation.

Building			WBE -Consumption (kWh) or Natural Gas					1 1		[] []				
			Predicted Ann	Model	Model		RMSEpreor	CVARMEE or	Vine an or					Vearty
Number	Building Name	model	9/2002-8/2003	HWHINDAY	Uncertainty %	Noré	STidDevere	CV-StdDev	YCB	LB	RS	XIII	Usits	Uncertaint
194	Phantom Warrier Club	2P	788.038	2,187	0.28%	23	1070	51.68%	448	25.9	1.1.1.1.1.1.1		k\Wh/day	5.303
194	Phontom Warrier Club	3P	13,538,592	33,290	0.25%	31	16482	36.12%	12718	-1577.8	0.0	90.6	kBbu/day	4.703
410	Headquarters Building	3P	2,789,054	2,926	0.10%	20	1424	19.28%	6694	0.0	63.7		ki/Vh/day	2.003
410	Headquarters Building	3P	8,479,200	26,390	0.31%	31	13050	40.63%	3002	-1755.3	0.0		kBbu/day	6.953
1001.2	Third Corp Headquarters	1P	2,948,317	10,490	0.36%	. 24	5137	83,64%	8072	2003		1.20	ki/Vh/day	6.90%
1001.3	Whele-(MCC+Whcool) week	2P	3,029,993	1,991	0.06%	253	968	8.20%	10372	19.4		-	ki/Vh/day	1.191
1001.4	Whele-(MCC+Whcool) week	2P	891,092	1,383	0.16%	103	699		7728	11.4	-		Id/Vh/day	2.975
1001.5	MCC	3P	878,097	594	0.07%	356	302	12.55%	1973	0.0	10.9	26.1	lowh/day	1.283
1001.6	Challer	3P	2,245,076	1,251	0.06%	356	637	10.38%	4164	0.0	106.8		10/Vh/day	1.069
1001.7	Gas	3P	17,328,519	14,412	0.08%	354	7332	15.38%	34737	-786.0	0.0		kBtu/day	1,593
1001.8	Third Corp Headquarters	3P	16.358	34	0.21%	31	17	33.25%	29	-0.9	0.0		kBb./day	3.933
4351	Motor Pool	3P	1,285,079	2,453	0.19%	31	1213	24.31%	295	-295.0	0.0		kBtu/day	3.655
5485	Pershing Youth Center	30	217,521	671	0.31%	21	392	87.07%6	318	0.0	29.4	60.8	k\/h/day	5.90%
5485	Pershing Youth Center	3P	219,134	769	0.35%	31	380	46.91%	122	-41.5	0.0	74.9	kBbu/day	8.713
5764.1	Officers Club	1P	488,315	1.094	0.23%	31	541	42.33%	1278				ki/Vh/day	4,483
5764.2	Officers Club	2P	487,063	2,557	0.52%	24	1253	125.18%	-1384	41.1	0		ki/Vh/day	10.035
5764.3	Officers Club	3P	22,842,385	33,007	0.14%	31	16322	23.44%	46662	-1318.7	0.0	75.9	kBbu/day	2.759
6602	Broace Youth Center	3P	466,315	813	0.13%	24	301	36 16%	572	0.0	854		k)//h/day	2.513
6602	Breace Youth Center	38	328,931	1,108	0.34%	31	548	45.38%	321	-133.6	0.0		kBbu/day	8.413
9212	Patton Inn	3P	189,399	563	0.30%	30	278	63.35%	258	0.0	36.7		ki/vh/dav	5,683
9212	Patten Ian	3P	422,878	368	0.23%	30	488	30.99%	186	-83.9	00		kEbu/day	4.463
28000	Headquarters Didg	1P	3,929,322	28,630	0.73%	22	13985	129.91%	10785	-00.0	01	(94	ki/Vh/day	13.925
28000		3P	770,668	3,773	0.49%	30	1884	57.06%	-1	-227.8	00	71.4	kBbu/day	9.353
50012	Headquarters Bidg	30	318,032	460	0.15%	29	227	32.21%	452	-227.4	33.5		lovh/day	
	Community Event Center													1.785
50012	Community Event Center	3P	305,593	992	0.32%	31	490	42.74%	278	-110.7	00		kBtu/day	6.203
52024	COMMAND Child Care	3P	7,804	16	0.28%	22	8		13	0.0	05		ki/Vh/day	3.813
52024	COMMAND Child Care	3P	1,718,769	5,874	0.34%	23	2675		1504	-875.8	0.0		kBbu/day	6.543
52381	GelfPre Shop	3P	376,020	851	0.23%	31	421	44.94%	733	0.0	487		k/Wh/day	4.323
52381	Gelf Pre Shop	3P	297,260	950	0.32%	31	470	39.94%	153	-129.1	0.0		kBbu/day	8.113
70005	Longhom Saloon	3P	272,733	338	0,12%	30	167	24.43%	548	0.0	57.6		ki/Vitriday	2.373
10005	Longhern Saloon	3P	948,252	1,874	0.28%	31	828	28.57%	1278	-164.1	0.0		kBbu/day	3.775
85018	Walker Youth Service Center	3P	300,661	591	0.20%	- 30	292	39.97%	455	0.0	95.4	72.0	ki/vh/day	3.755
\$5018	Walker Vouth Service Center	3P	29,029	63	0.22%	31	31	37.22%	67	-0.9	0.0	78.7	kBbu/day	4.173
\$5020	Commissury	1P	28,470	42	0.16%	- 11	20	25.37%	78		1 - 22 C	1.00	k\Vh/day	2.835
\$5020	Commissary	1P	3,885,755	8,851	0.22%	31	4278	40.18%	10646					4.253
\$7000.1	MCC	3P	1,238,149	249	0.02%	176	126	3.67%	3314	:0.0	10.3	64.5	ki/Vh/day	0.385
87000.2	Chiller	3P	2,243,730	3,349	0.15%	178	1699	24.77%	5051	0.0	269.4	71.6	k\vh/ilav	2.855
87000.3	Car	3P	28,340,328	42,223	0.16%	341	21480	28.35%	45299	-2792.2	0.0		kBbu/day	2.853
\$7003	BN HQ Building and Org Ch	1P	188,930	128	0.07%	117	85		512		1 1 1	100	ki/Vh/day	1.315
\$7005	BDE HQ Building	3P	160.804	187	0.12%	114	95		406	0.0	50.5	817	ki/Vividay	2.223
\$7006	Offices	1P	47,522	41	0.09%	117	21	15.84%	130		40.0	201	ki/Vh/day	1.843
\$7007	Enlisted UPH	4P	307.002	136	0.04%	B1	69		729	-3.7	91	59.0	ki/vh/day	0.853
\$7008	BN HO Building	10	131,272	94	0.04%	117	47	13.18%	360	-0.1		00.0	ko/vh/day	1.363
\$7009	BN HO Building and Org Clr	1P	237.153	343	0.14%	116	174		650		-		ki/vh/day	1.365
\$7010		1P	375,705	343	0.14%	106	1/4	18.66%	1029		-	-	ki/vh/day	1.935
\$7011	Physical Fitness Center									0.7		-		1.835
	CO HQ Building	2P	191,261	176	0.09%	107	89	16.97%	343	2.7	-	-	ló/Vh/day	
\$7012	Enlisted UPH	2P	438,961	236	0.05%	117	119		903	4.5			ki/Vh/day	1.033
\$7014	CO HQ Building	2P	122,666	118	0.10%	108	59		182	2.3			lowh/day	1.833
\$7015	Enlisted UPH	3P	143,475	105	0.07%	105	53		371	0.0	59		ki/Vh/day	1.40
\$7016	CO HQ Building	3P	178,675	237	0.13%	117	120	24.87%	433	.0.0	4.9		k/Wh/day	2.53
\$7017	Dissing Facility	3P	504,854	331	0.07%	106	187	12.18%	1292	0.0	13.0		ki/Vh/day	1.25
\$7018	REFA-C Building	3P	3,337,348	5,409	0.16%	79	2726	31.98%	8	-280.9	0.0		kBtu/day	3.10
91012	Admin/ Operational Texting	зP	2,584,248	3,491	0.13%	22	1706	23.51%	6678	0.0	407.4		Whitey	2.49
91012	Admin' Operational Testing	3P	52,430,699	118,074	0.23%	29	59266	33.11%	67638	-4895.9	0.0	818	kBbulday.	4.30
91014	Admin	3P	814,329	1,714	0.21%	21	838	40.51%	1648	0.0	38.8		ki/Vh/day	4.02
91014	Admin	3P	566,995	2,103	0.37%	28	1037	46.89%	303	-103.1	0.0		kBbu/day	7.09
1001.1	Third Corp Headquarters	1P	4,149,246		0.17%	31			11308				lowh/day	3.23


 Table 4: Weather Dependent Models Calculated for the ESPC Baseline.

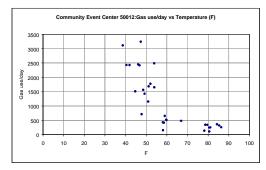
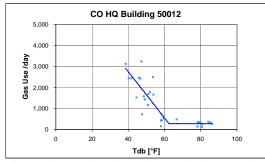
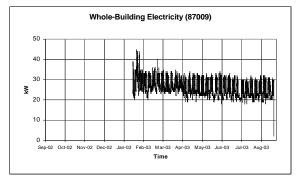
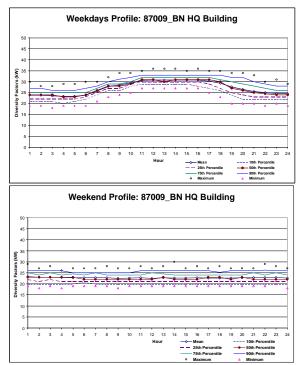

Figure 2 shows an example of one of the change-point linear models used to measure the daily natural gas use of the boiler in the thermal plant in the 87000 block. The data for this model used measured hourly data from the permanently installed logger in the thermal plant, which were then converted to daily totals and regressed against average daily temperature. Models of this type were calculated for the 87000 block thermal plant, and the III Corp building.

Figure 3 and Figure 4 show the data that were collected through manual readings of the existing gas meters in the Community Event Center (building 50012). These meters were read each week over a series of months, and then were regressed against the average weekly temperature as shown in Figure 4.


Quite surprisingly, these models were found to be acceptable in a large number of the buildings, which helped to reduce the costs of installing loggers and developing the baseline models from hourly data.

Diversity factor models for whole-building electric demand (kW). In Figure 5 and Figure 6 data are shown from a portable logger that recorded the hourly electricity use from the Watt-hour meter installed in the 87000 block Headquarters building (building 87009) for a short period. These data represent 7 months of hourly data that were used to develop the diversity factors models using ASHRAE's Diversity Factor Toolkit, developed as part of Research Project 1093- RP (Abushakra et al. 2001). The 24-hour profiles from the diversity factor analysis are to be used to assess the demand savings


Figure 3: Natural Gas Use for Building 50012 From Manual Weekly Readings.


Figure 4: Weather-dependent Model for Building 50012 From Manual Readings.

in weather-independent buildings. Diversity factor models were developed for those buildings where significant electric demand savings were expected.

<u>Chiller performance models.</u> To model the boilers and chillers in the 87000 block thermal plant, special purpose models needed to be developed. As a first step, for the chillers, data were first separated into performance data for periods when each chiller was running separately, as shown in Figure 7. This was accomplished by sorting the hourly chilled water production data into groups that corresponded to the electricity use for each chiller, which included periods when both chillers were running, when

Figure 5: Building #87009 Electricity Usage From Portable Watt-hour Meter.

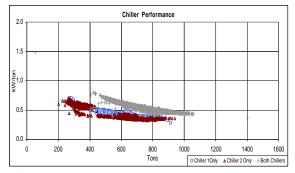
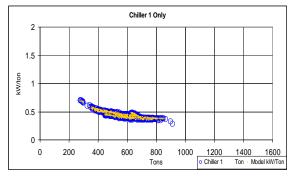


Figure 6: 1093-RP Diversity Factor Analysis for 87009 Building.


chiller #1 was running and when chiller #2 was running. Next, for periods when one chiller was running, tri-quadratic models were used to model the performance of the chillers (Haberl et al. 1997, LBNL, 1980, 1981, 1982, 1989), which have the following format:

Quadratic: kW/ton = a + b x Tons + c x Tcond + d $x Tevap + e x Tons^2 + f x Tcond^2 + g x Tevap^2$ + h x Tons x Tcond + I x Tevap x Tons + j x Tcondx Tevap + k x Tons x Tcond x Tevap.

Equation 6

Figure 7: *Chiller Performance Data From 87000 Block Thermal Plant.*

Figure 8: Tri-quadratic Model for Chiller 1 in 87000 Block Thermal Plant.

An example of the tri-quadratic model is shown in Figure 8. These non-linear models normalized the chiller performance for the load on the chiller (tons), evaporator temperature supply temperature, and condenser temperature return. Similar performance models were developed for the boilers.

<u>Model uncertainty.</u> An important aspect of the baseline modeling was the accuracy or uncertainty of the baseline models. Since the baseline models are statistical models, there is always some degree of statistical uncertainty associated with the model's ability to represent the data upon which it was regressed. In the case that the uncertainty of the model is greater than the estimated energy savings, then the usefulness of the model to calculate energy savings comes into question. On the other hand, if the uncertainty of the model is quite low, when compared to the estimated savings, then the model can be considered a reliable predictor of savings.

These uncertainties in Table 4 were calculated using the formulas defined by Kissock et al. (1998)⁵ as shown in the following equations:

$$Error_{savings} = (Error_{pred}^{2} + Error_{meas}^{2})^{1/2}$$

Equation 3

$$Error_{pred} = 1.96 \ x \ RMSE_{pre} \ x \ (1 + 2/N_{pre})^{1/2} \ x \ (N_{post})^{1/2}$$

Equation 4

Where

- *Error*_{pred} = prediction error for the pre-retrofit regression model,
- *Error_{meas}* = prediction error for the post-retrofit measured data,
- Measured = Measured data for the post-retrofit period,
- $Measured_{error} = 2\%$, recommended by Kissock et al. (1998).

These uncertainties were used to determine whether or not the baseline model is suitable for calculating savings. In cases where the uncertainty is greater than the expected savings, then the savings are to be calculated using the ESPC contractor's estimates. These formulas are calculated with the goodness-of-fit indicators available with ASHRAE's IMT.

SUMMARY

Fort Hood has selected an Energy Services Performance Contract contractor to help achieve its energy reduction goals as mandated by Executive Order. This ESPC is expected to be a \$3.8 million, 20 year contract, which includes five primary types of Energy Conservation Measures (ECMs) in 56 buildings, and includes boiler insulation, control system upgrades, vending machine controls, cooling tower variable frequency drives (VFDs), and lighting retrofits. This paper has presented the development the Measurement and Verification (M&V) Plan for the Fort Hood Energy Services Performance Contract, and includes results of the baseline calculations.

In the Spring of 2004, the ESPC contractor will begin implementing the performance contract, with savings expected to follow shortly thereafter. An independent evaluation of the ESPC contract at Ft. Hood is expected to be completed one year after the completion of the retrofits. This evaluation will utilize the baseline modeling presented in this paper, which represents one of the first efforts to actually independently measure energy savings from an ESPC contract using measured data and procedures that are

⁵ Kissock, K., Reddy, A., and Claridge, D. 1998. "Ambient Temperature Regression Analysis for Estimating Retrofit Savings in Commercial Buildings", Journal of Solar Energy Engineering, ASME, Vol. 120.

compatible with the USDOE's IPMVP and ASHRAE's Guideline 14.

ACKNOWLEDGEMENTS

Support for this work by the United States Army Construction Engineering Research Laboratories (USCERL), is gratefully acknowledged. This work would not have been possible without the participation and input of Mr. John Reasoner and Mr. Kevin Rury, and others at Johnson Controls, Inc. Thanks also for the support provided by Dave Schwenk (USACERL), Danny Shaff and Myron Cook (Ft. Hood Energy Office).

Thanks also to the following individuals who helped keep the computers running, the data flowing, and the printers printing at the ESL, including: Mr. Jim Sweeney, Mr. Peter Klima, and Mr. Stephen O'Neal, and thanks to Yong Hoon Song and Sopa Visitsak for providing weekly inspection plots. Thanks to Ms. Shelly Price (SiTEX), and Mr. John McBride (NHT) who diligently installed the monitoring equipment under contract to the Energy Systems Laboratory (ESL). Finally, thanks to Mr. Brandon Dooley, Mr. Kelly Milligan, Mr. Mike Davis, and Ms. Tehesia Powell for assistance coordinating the metering equipment installation.

REFERENCES

- ASHRAE 2002. "Guideline 14: Measurement of Energy and Demand Savings", ASHRAE, Atlanta Georgia.
- Haberl, J. S., Reddy, T. A., Figueroa, I., Medina, M. 1997. "Overview of LoanSTAR ` Monitoring and Analysis of In-Situ Chiller Diagnostics Using ASHRAE RP827 Test Method", Proceedings of the PG&E Cool Sense National Integrated Chiller Retrofit Forum (September).
- Haberl, J., Baltazar-Cervantes, J-C, Sung, Y-H, Claridge, D., Turner, D. 2002. "Baseline Report for the Fort Hood Army Base: September 1st, 2001 to August 31st, 2002", Energy Systems

Laboratory Report No. ESL-TR-02/12-02, (December).

- Haberl, J., Claridge, D., Kissock, K. 2003a. "Inverse Model Toolkit (1050RP): Application and Testing, ASHRAE Transactions-Research, Vol. 2 (June).
- Haberl, J., Baltazar-Cervantes, J-C, Liu, Z., Claridge, D., Turner, D. 2003b. "Baseline Report for the Fort Hood Army Base: September 1st, 2002 to August 31st, 2003", Energy Systems Laboratory Report No. ESL-TR-03/12-02, (December).
- IPMVP 2001 "International Performance Measurement and Verification Protocols -IPMVP", United States Department of Energy.
- Kissock, K., Reddy, A., and Claridge, D. 1998.
 "Ambient Temperature Regression Analysis for Estimating Retrofit Savings in Commercial Buildings", Journal of Solar Energy Engineering, ASME, Vol. 120.
- Kissock, K., Haberl, J., Claridge, D. 2003. "Inverse Model Toolkit (1050RP): Numerical Algorithms for Best-Fit Variable-Base Degree-Day and Change-Point Models", ASHRAE Transactions-Research, Vol. 2 (June).
- LBL. 1980. DOE-2 User Guide, Ver. 2.1. Lawrence Berkeley Laboratory and Los Alamos National Laboratory, Rpt No. LBL-8689 Rev. 2; DOE-2 User Coordination Office, LBL, Berkeley, CA.
- LBL. 1981. DOE-2 Engineers Manual, Ver. 2.1A, Lawrence Berkeley Laboratory and Los Alamos National Laboratory, Rpt No. LBL-11353; DOE-2 User Coordination Office, LBL, Berkeley, CA.
- LBL. 1982. DOE-2.1 Reference Manual Rev. 2.1A. Lawrence Berkeley Laboratory and Los Alamos National Laboratory, Rpt No. LBL-8706 Rev. 2; DOE-2 User Coordination Office, LBL, Berkeley, CA.
- LBL. 1989. DOE-2 Supplement, Ver 2.1D. Lawrence Berkeley Laboratory, Rpt No. LBL-8706 Rev. 5 Supplement. DOE-2 User Coordination Office, LBL, Berkeley, CA.