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ABSTRACT 

 

Quantification of Uncertainty During History Matching. (August 2003) 

Martin Guillermo Alvarado, B.S., Universidad de Rosario 

Chair of Advisory Committee: Dr. W. John Lee 

       This study proposes a new, easily applied method to quantify uncertainty in production 

production forecasts based on reservoir simulation. The new method uses only observed  

data and mismatches between simulated values and observed values as history matches of 

observations progress to a final “best” match. The method is applicable even when only 

limited information is available from a field. Previous methods suggested in the literature 

require more information than our new method. 

Quantifying uncertainty in production forecasts (i.e., reserve estimates) is 

becoming increasingly important in the petroleum industry. Many current investment 

opportunities in reservoir development require large investments, many in harsh 

exploration environments, with intensive technology requirements and possibly marginal 

investment indicators.  

Our method of quantifying uncertainty uses a set of history-match runs and 

includes a method to determine the probability density function (pdf) of future oil 

production (reserves) while the history match is evolving. We applied our method to the 

lower-Pleistocene 8-Sand reservoir in the Green Canyon 18 field, Gulf of Mexico. 

This field was a challenge to model because of its complicated geometry and 

stratigraphy. 



 iv
 
 
 
 

We objectively computed the mismatch between observed and simulated data 

using an objective function and developed quantitative matching criteria that we used 

during history matching. 

We developed a method based on errors in the mismatches to assign likelihood to 

each run, and from these results, we determined the pdf of reservoir reserves and thus 

quantified the uncertainty in the forecast. 

In our approach, we assigned no preconceived likelihoods to the distribution of 

variables.  Only the production data and history matching errors were used to assess 

uncertainty. Thus, our simple method enabled us to estimate uncertainty during the 

history-matching process using only dynamic behavior of a reservoir.  
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CHAPTER I 

INTRODUCTION 

 

       In recent years the quantification of uncertainty has become critical in the petroleum 

industry because of the dominant role of capital intensive projects, complicated areas of 

exploration and possibly shrinking profits. The uncertainty in production forecasts (and 

associated reserve estimates) is directly related to decision and risk assessment in these 

difficult investment decisions. 

       Complete quantification of uncertainty in hydrocarbon production forecasts would 

involve full knowledge of all the variables involved in the determination of hydrocarbon 

volumes and flow and their individual probability distribution functions. Such detailed 

knowledge is rarely, if ever, available. Thus, the quantification problem is both 

important, and, as a practical matter, unsolved.  

       In the literature, several approaches have been proposed to deal with at least parts 

of the problem of quantifying uncertainty. Berteig, et al. 1 proposed a method to assess 

uncertainty of hydrocarbon pore volume associated with structure, porosity and 

permeability.  

       Others, including Floris et al. 2, Abrahamsen et al., 3, and Samson 4 developed 

techniques to assess probability distribution functions due only to uncertainty in the 

position of the top structure. Floris et al. 5 focused their attention on quantification of the 

production forecast, just as we have in our study.  

       The main sources of uncertainties from a reservoir-engineering point of view are: 

1. A model, which is commonly a poor mathematical representation of reality, uses a 

system of equations to try to simulate the dynamic behavior of fluid in an also imperfect 

static model. 

____________ 

This thesis follows the style and format of Society of Petroleum Engineers Reservoir 
Evaluation & Engineering 
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2. Geological and fluid parameters are uncertain, because of a limited sampling of the 

entire space. 

3. Errors are introduced by measurement procedures. 

       Given the broad spectrum of sources of uncertainty, a statistical treatment of the 

problem of assessing uncertainty given the lack of information about the reservoir and 

its properties is desirable. Despite this apparent need for statistical approaches, most 

production forecasts in practice are based on a single deterministic description of the 

reservoir that can reproduce with a certain quality and confidence the historic production 

and pressure data. The single deterministic model and its description make the model 

adopted and the associated production forecast rather subjective. The problem of 

determining the proper model, given outputs such as pressure and production data, is an 

inverse problem that has no unique solution.   

       Because uncertainty is inherently present in the production forecasting process, and 

because decisions must be made despite this uncertainty, there is considerable incentive 

to quantify this uncertainty. In this quantification effort, we must use the data that are 

actually available routinely. In our study, the data available were limited largely to an 

uncertain geological model and pressures and production data used for history matching. 

       Our proposed method is based on Bayesian inversion, but we had to modify the basic 

Bayesian approach to fill the gaps caused by limited available data. We illustrated 

application of our method with a set of 54 different history-match runs for an actual 

reservoir, with all history matches based on a single geological model. 

       These 54 runs reproduced the observed data with different qualities of fit. After each 

history match, we forecasted future production and we estimated the likelihood of each 

forecast using the deviation between simulated and observed data. We then used all 

production forecasts and their respective likelihoods to determine the pdf of expected 

reserves and estimated the limits of the 90% certainty range of production forecasts. 

       The reservoir that we used in this study was the 8-sand reservoir of the Green Canyon 

18 field in the Gulf of Mexico. This reservoir is lower Pleistocene in origin and has 

complicated geometry and stratigraphy that includes a group of intercalated sands and 
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shales. The lateral extents of and connections between the flow units are unknown and 

thus represented an additional challenge during history matching. Given the geological 

complexity of the reservoir, not only were values of permeability and porosity uncertain; 

in addition, the positions of partial or total flow barriers and origin of the observed level 

of pressure support were unknown. Since the degree of uncertainty in the reservoir 

description was high, and the supporting data were scarce, no a priori probabilities of 

different descriptions could be considered in the quantification of uncertainty for this 

reservoir. 
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CHAPTER II 

BACKGROUND 

 

       Reservoir management decisions have historically been based on predictions from a 

single-realization history-matched reservoir model. Uncertainty assessments are usually 

based on a sensitivity analysis on parameters considered most important in the model. 

However, to make a formal and complete estimation of uncertainty a full range of the 

distribution of the forecasted variable (such as reserves) is needed. 

       Many different variables of different kinds are involved in the total quantification of 

uncertainty in reserves estimation, including the variables that quantify geophysical, 

geological and fluid flow uncertainty. In this study, we focus on uncertainties arising in 

fluid flow modeling. 

       Floris  presented a comparative study in which several research groups were asked to 

estimate the uncertainty in production forecasts from a synthetic case study. In this work, 

Floris  described the different methods used by the different groups. Egbert et al. 6 

presented a uncertainty quantification based on the maximum entropy method and using 

many different realizations of the reservoir that reproduced the historical data with 

satisfactory accuracy. Egbert et al. based their uncertainty quantification on 25 stochastic 

realizations obtained following more than 2,000 automated numerical simulations. 

Roggero7 presented a new methodology that combines Bayesian formalism with the 

extreme scenarios. His methodology is used to identify the extreme behavior models for 

a given production forecasting behavior criterion (e.g., maximum and minimum 

reserves) that are equally probable. The difference between these two extreme 

production values is used as an estimation of uncertainty.  Nepveu 8 presented an 

interesting approach based on Bayesian inversion with special application to cases where 

limited data is available. 

       These methods have many common features that we describe in this chapter. 
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Common Components 

Fig. 2.1 is a general and useful flow chart that shows the common steps in the methods 

of quantifying uncertainty published by the authors summarized above. 

 

 

 
Fig. 2.1—Flow chart used by most existing methods to assess uncertainty. 

 

Six components are common to all the methods we cited that assess uncertainty using 

production data. 

• Probability distributions of parameters and their geographic characteristics (i.e., 

global, regional, pilot point). 

• Parameterization. 
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• Objective function, which quantifies the mismatch between simulated and 

observed data. 

• Posterior distribution determination. 

• Optimization algorithms that may vary from manual history matching to 

complicated optimization algorithms. 

• Uncertainty determination algorithms. 
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A priori model. The initial, or a priori, model is based on previous experience, 

measurements and geological knowledge. Uniform distributions of variables can be 

assumed when only limited data are available.  

Parameterization. Parameterization is the method we use to modify our reservoir model 

to condition it to the available production data. Parameterization usually means 

adjustment of the spatial distribution of permeabilities and porosities within the model to 

obtain a better match of observed data.  

       There are different approaches to parameterize the spatial distribution of variables. Some 

of them are more suitable for later use in the optimization phase.  

Individual Grid Blocks. The most general and probably the oldest method is to consider 

the values of the adjustable parameters in all the grid blocks to be independent 

parameters. The limitations of this approach are that we may not using our previous 

knowledge of deposition and we may not honor known discontinuities in the reservoir 

and the need of a massive computer resources. Furthermore, this method is not suitable 

for use with automatic optimizers. 

Regions. The use of different regions in a reservoir is a common method to reduce the 

number of variables involved in the matching process. Use of regions allows us to 

incorporate, in some degree, geological knowledge of the reservoir. Appropriate regions 

can be defined to account for layers, impermeable barriers and drainage areas of wells. 

Generally, the reduced number of regions may not be sufficient to describe the actual 

heterogeneities and may generate some abrupt changes at borders of the regions. 

Pilot Points. As discussed by Ramarao 9, hydrogeologists developed the pilot point 

method to assess uncertainty in their predictions of groundwater flow and contaminant 

transport. The innovative aspect of the Pilot Point method is the generation of a number 

of conditional simulations of the transmissibility preserving statistical moments and the 

spatial correlation structure of the measured transmissibility field while honoring 

measured transmissivities at their locations. 

       The original pilot point method consists of three main stages. First, using all  

observed information, we determine the parameters of the statistical characterization of  
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the transmissibility (mean, variance and covariance). In the second stage, we estimate the 

transmissibility field by co-kriging. In the third stage, we generate conditional 

simulations of the transmissibility field. 

       Briefly, the pilot point technique provides an objective method to solve inverse 

problems. It consists of calibrating an initial co-kriged transmissibility field, generated 

from the observed values of transmissivities, and generating a set of synthetic 

transmissibility data at selected unmeasured locations referred to as pilot points. 

Ramarao  proposed a method to select pilot points. The pilot points are generally at 

locations with large uncertainties in reservoir properties.   

      This pilot point method solves most of the problems presented by the regions approach. 

Global Parameters. Other methods that cannot be linked to specific locations are called 

global parameter methods. An example of these methods is the gradual deformation 

method described by Manceau.10 

Objective Function. We use the objective function to determine the extent to which the 

behavior of our model differs from the observed data. In automatic history matching, the 

objective function is recalculated in each loop in which values of porosity and 

permeability are varied. The definition of objective function will depend on the observed 

variables available, the purpose of the study, and on the way chosen to normalize the 

function. The objective function usually provides a way to assign more relative weight to 

certain observed data than to others.  

       In the literature, we commonly find studies performed using objectives functions  

based on squared values of the difference between simulated and observed values and 

normalized using the standard deviation of measurement errors. For example, Egberts et 

al.  used the root mean square as an objective function while Roggero 11 used a sum of 

the different variable terms an a matrix of covariance to account for the errors in 

simulation and in measurement. 

       The most common function to describe a mismatch can be stated as: 
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……………………(1) 

StdDev represents the standard deviation of the measurement errors. Weight is the 

relative weight assigned to each different kind of production parameter. 

Optimization algorithms. Optimization algorithms are intended to produce models that 

closely reproduce the observed production data. Manual history matching is performed 

by trial and error using reservoir knowledge, judgment and the visual quality of the 

match. In contrast, most approaches currently used in inversion problems involve an 

automatic generation of values and a recalculation of objective functions through the use 

of an optimization algorithm. 

       The most-used algorithm is the gradient method. This approach can be used with 

smooth functions and when the objective function can be assumed to vary linearly with 

parameter changes. Disadvantages of this method include the possibility of converging 

to a local minimum in the objective function and the long computing time required to 

perform the gradient calculations. Still, the gradient method can be used to improve the 

efficiency of the inversion process. For example in the pilot point method, the gradients 

of the simulation results at the pilot point values are used in the optimization algorithm.  

       Others methods like genetic algorithm and simulating annealing can be used for 

optimization. Simulated annealing minimizes the deviation between the grid statistics 

and target values; this deviation function is usually called the “energy” of the objective 

function. Simulated annealing uses a special algorithm to minimize the energy function, 

implying that the difference between the target and grid statistics has been minimized.  

As a simple example, the objective can be to synthetically produce a sand/shale model 

with a net-to-gross ratio of 70%, an average shale length of 180 ft and an average shale 

thickness of 30 ft. The model starts randomly distributing sands and shales with the 

specified ratio of 70% and then swapping and iterating trying to reach the target 

conditions. This method has also been applied to fit geostatistical models to production 

data. 
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Uncertainty Quantification. Uncertainty quantification can be classified in two main 

categories: maximum likelihood models and methods using multiple models. Maximum 

likelihood models include single value forecasts, which do not provide uncertainty 

quantification, and the gradients method. These methods are based on the computation 

of gradients in selected production variables described with parameter data types. If we 

know the error distribution of the reservoir parameters we can estimate the uncertainty of 

production variables. Limitations of this method are that (1) the relationship between 

predicted quantities and the reservoir model parameters must be linear; (2) the 

error distribution must be known; and (3) the model error must be negligible. 

       Methods using multiple models include Monte Carlo simulation, the extreme 

scenarios method, and Bayesian inversion. Monte Carlo simulation allows the inference  

of a probability distribution of a function from a massive random generation of values 

of the input values. 

       The extreme scenarios method consists of finding extreme, equally probable forecasts 

forecasts corresponding to a most optimistic and a most pessimistic scenario. The 

uncertaintly range is simply the difference between those two extremes. Roggero7 notes 

that the algorithm that implements this method can be formalized to be the search for  

models that identify both (1) Min (Matching Criterion) + Max (Forecasting Criterion)  

and (2) Min (Matching Criterion) + Min(Forecasting Criterion). 

       Other methods using experimental design theory and Response Surface Methodology 

(RSM) can also be used to reduce dramatically the number of simulations and make the 

optimization process simpler.  

       The purpose is to approximate a complex process with a regression polynomial that 

approximate the process within a certain region. The advantage of the method is its 

negligible cost to estimate new values of responses compared to time consuming 

reservoir simulations.  

       The disadvantage of this approach is the implicit assumption of the validity of the 

response surface methodology in that space. 
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       The Bayesian inversion approach systematically combines prior knowledge and 

experience with a system to improve a prediction. In this way Bayesian inversion does 

not rely solely on the size of the data sample. Bayesian inversion is one of the most 

widely used techniques in inversion problems.12 It is based on theorem from probability 

theory first proposed by the eighteenth-century English country clergyman and 

philosopher Thomas Bayes.  To understand this theorem, let B1, B2, …, Bn, be n 

mutually exclusive and collectively exhaustive outcomes of some event B. Let A be an 

outcome of an “information event” or a “symptom” related to B. Note that A is not 

perfect information; it simply correlated to the event B. When A is perfect information 

about B, Bayes’ theorem is not needed, but, in the more usual case, A is just a symptom 

that contains information useful in revising our prior probabilities about B. The revised 

probabilities are calculated using Eq. 2.  

 

ki
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∑
=

……………………………………(2) 

P(A / Bi) is the conditional probability of event A occurs when Bi event has happened. 

P(Bi) and P(Bj) are respectively the probability of events Bi and Bj 

       The result  P(Bi/A) is also called the probability of the causes. Bayes’ theorem can be 

used in many applications in which we need to access the probabilities of the causes. For 

example, Bayesian inversion has achieved strong popularity in geophysical inversion 

problems.   

       Scales 13 explained the use of Bayes’ theorem philosophy as follows. Suppose by 

previous work we know something about a model (e.g., from previous experience) 

before using available data.  The prior knowledge and conjectures are called the a priori 

model. This knowledge is transformed into likelihoods or probabilities. Often 

likelihoods are assumed to follow a Gaussian distribution. Suppose we then have a set of 

data and also the statistical parameters describing the data (variance and covariance). 

The Bayesian approach provides a method to fine-tune the a priori model with the set of 



 

 

12

available data. The posterior distribution tells us how the data correct the prior 

knowledge. 

       Nepveu 8 provides the key point of assessing uncertainty when only limited data are 

available. He presents the problem starting with the conditional probability derived from 

Bayes’ theorem. 

P (parameters/p) = P (p/parameters) x P (parameters) / P (p) …………….…(3) 

P (parameters) is the a priori distribution, P (p/parameters) is the likelihood of the model 

with parameters values parameters, P (parameters/p) is the conditional probability that 

the chosen parameters pertain to the real reservoir given the error p calculated with the 

objective function, and P (p) is the probability that error have a value p, and serves as a 

normalization factor. 

       When only limited data about the reservoir are available, we can assume a constant 

probability distribution and Eq. 3 becomes: 

P (parameters/p) is proportional to P (p/parameters)……………….…………..(4) 

In the PUNQ (Production Forecasting with Uncertainty Quantification) studies, the 

authors assumed this likelihood to be Gaussian. It is then expressed as: 

P (parameters/p) = exp(-p) …………………………………………………..(5) 

Theoretically, the error may assume values from zero to infinity, and the probability 

function can be expressed as 

( ) ∫
∞

−







=

0

)exp( dpp
p

Ppdf µµ …………………………………...……………(6) 

)(
p

P µ is the conditional probability that the reservoir will produce an ultimate volume µ 

given a error p.  

       Eq. 6 does not appear to be helpful unless there is sufficient information to 

determine P(µ/p). If we knew all the produced hydrocarbon volumes µ for all values of p, 

we could determine the pdf(µ) by using Eq. 6. The problem is that we do not have values of 
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hydrocarbon production for all the error values. Fortunately, there are two ways to 

compute the probability density p(µ/p) using the maximum entropy method: 

       First, if there are a large number of a reservoir models, we can subdivide the error 

interval into bins and calculate the average production average and standard deviation 

for each bin. In this case, the maximum entropy solution for P (µ/p) in that bin is the 

Gaussian Distribution N(µ,σ) 

P (µ/p) = N(µ,σ)………………………………………….……….………….(7) 

       Second, when only sparse data are available, we select a value of production from the 

reservoir and assume or estimate the minimum production associated with that error. 

Once we set a scale parameter λ(p) = m-mmin(p) then the maximum entropy distribution 

will be given by: 

P (µ/p) = (1/λ(p))exp(-µ/λ(p)) for m >=mmin (p) …………….…….…….….(8) 

       For values of p for which no model is available we must interpolate. The limitation of 

this method is that the uncertainty calculation can be no better than our estimate of 

minimum production. 
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CHAPTER III 

METHODOLOGY 

 

       I evaluated my proposed method to assess uncertainty using a sequence of manual 

history matches of the 8-sand reservoir in the Green Canyon Block 18 field (GC-18). 

The objective was to quantify the uncertainty of cumulative oil production forecasts 

during the history matching process and to obtain a realistic estimate of the uncertainty 

once the matching was considered finished. 

       The GC-18 field, located some 90 miles off of the Louisiana coast, was discovered  

in early 1982 with well GC-1. All the wells in Green Canyon were drilled from a single 

platform with a water depth of 760 feet.14 

       The GC-18 field came on stream in May 1987. To date, 30 wells have been drilled,  

of which 26 penetrated the 8-reservoir while only 8 penetrated the reservoir’s hydrocarbon 

bearing areas. Despite being penetrated by so many wells, the extent of the 8-reservoir is 

still unknown and the positions of its fluid contacts, if they exist, have never been 

determined. Production from the 8-reservoir has been from six wells: wells 2, 3, 6, 7, 12, 

and 25.14 

       The reservoir is composed mainly of sand/shale intercalations that degenerate to 

inches-thick laminations at shallower depths. Geologists agree that the reservoir was 

geopressured by post-accumulation tectonic events. However, the amount of pressure 

support in the reservoir is not consistent with the original overpressure. Geologists 

explain the higher-than-expected pressures in different ways, including communication 

with other reservoirs, responses of confined shales, or under-estimation of reservoir size.  

       An M.S. student in petroleum engineering at Texas A&M University modeled the 

reservoir with a commercial reservoir simulator using 45,000 grid blocks.  
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       Fig. 3.1 shows a 3-D view of the porosity distribution. Areal distribution of porosity 

and position of the fault are shown in Fig. 3.2.   

       Figs. 3.3 and 3.4 show the horizontal permeability distribution in areal and cross 

section maps respectively. 

 

 

 

Fig. 3.1— 3D image of the Green Canyon 18 8-sand reservoir model. 
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Fig. 3.2—Areal view of the model and its porosity distribution. 
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Fig. 3.3—Cross section of Green Canyon 18 8-sand reservoir model and its permeability 

distribution. 
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Fig. 3.4—Areal view of the model and its permeability distribution. 

 

 

       Observed data available for history matching consisted of static pressures from wells 

3, 6, 7 and 12, and field oil, water, and gas rates from 1987 to 2001. Some wells were shut 

in suddenly and unexpectedly during the production history of the field because of 

sudden increases in sand compaction. The results of those unexpected failures can be 

seen clearly in Fig. 3.5. 
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Fig. 3.5—Oil rates with unexpected shut-ins due to casing failures. 

 

       The history match consisted of 53 different runs, each followed by a visual comparison 

comparision of observed and simulated pressures, water cuts, and gas/oil ratios. During the 

many runs different zones were established to modify the simulated reservoir performance 

and to attempt to match observations better. Table 3.1 presents a description of and some 

comments about some history-match runs.  

 

 

TABLE 3.1 – MODIFICATIONS DURING HISTORY MATCHING 

RUN Comments 

3 No water simulated water production -  
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TABLE 3.1 Continued 

RUN Comments 

4 Well 2 located in permeable layer  

6 Net to gross ratio reduced, oil compressibility reduced  

8, 9 Fluid barriers reducing vertical permeability 

10 Added pinchouts at the west and east 

11,12,13,14 Re-perforation intervals at wells 2, 6 and 12, trying to get better water matches 

15 Increased permeability – better water match 

16 Same as 14 with barrier to the east and west. 

18 Increased net to gross from run 16 

19  Introduced permeable barrier beyond Well 12 from run 14 

20 Reduced perforated interval in well 12 

21 Reperforation schedule in wells 3,5,7 and 12 

22 Using run 14 new reperforation schedule in wells 3,5,7 and 12 

23 Increased net to gGross from run 21 

24 Well 3 is perforated in layer 12  

25 Vertical permeability increased to 0.1 mD 

26 Modifications in perforations of wells 3 and 2 

27 Removed flow barrier (Sector2), well 3 perforated from bottom layers 

28,29 Reperforations in wells 3 and 12 

31 Removed perm barrier in layer 7 from run 26. 

32,33,34,35 Perforated intervals of wells 3 and 12 have been reduced at early times 

36,37 Removed barrier in layers 1 and 2. 

39 A barrier in layer 7 has been set from run 36 

40,41 Reduced vertical permeability 

42 A barrier in layer 7 was re-introduced from run 37 
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TABLE 3.1 Continued 

RUN Comments 

44,45 A barrier is introduced in layer 2 from run 37 

46 Increased vertical permeability in western area 

49 Increased thickness of layer 4 

53 Vertical permeability in layer 9 = 0 from run 49 

54,55,56,57 Vertical permeability in layer 9 = 0 from run 36 

 

 

       We defined an objective function to describe the quality of the observed mismatch 

in the history-match runs. The literature includes a number of definitions of objective 

functions, usually with broad similarities.2 Because we were working with a completed 

history-matching project, we designed our objective function to simulate or capture the 

visually observed mismatches and also to help us determine which parameters were 

given more emphasis in the manual history matches. Fig. 3.6 to Fig. 3.8 illustrate some 

representative history-match runs (numbers 3, 16, 30, and 39) in which the 

improvements in the matches (especially pressure) can be readily observed. 

       Ultimately, we used most of the available information to determine the mismatch 

between the simulated and the observed data. We included in the objective function: 

water cuts (WCT) of wells 2, 3, 6, 7, 9,12, and 25; gas/oil ratios (GOR) for the entire 

field; and static pressures (BHP) of wells 3, 6, 7 and 12. 
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Fig. 3.6—Simulated average pressures and observed static pressures. 

 

 

Fig. 3.7—Simulated and observed water cuts. 
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Fig. 3.8—Simulated and observed GOR, showing no important improvements during history 

matching. 

 

       In each time step in which observed data were available, we computed the absolute 

value of the difference between simulated and observed data. We then summed these 

differences and normalized them with the observed values so that we could sum errors 

from different sources. Since the number of observations was not the same for all 

variables we had to divide the sum by the number of observations to avoid dominating 

some infrequently observed variables with the more frequently observed ones. We 

divided by the sum by the number of actives wells. Our normalized error calculation 

then took the form 

obs

obssim

i j ktp
p

w v
vv

nn
w

n
Error

−
= ∑ ∑ ∑111  …………………………………….…….(9) 
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vsim  and vobs represent simulated and observed values of a variable at the same time step. 

       In Eq. 9, subscripts i and j run over the wells and production data types while k runs 

over the different time steps. The weighting factor wp represents the weight given to a 

variable relative to the others. We gave 70% weight to the error in BHP error, and 15% 

each to WCT and GOR. We selected these weighting factors to quantify the intuitive 

weights given by the student who performed the history matching. Egberts et al. 6 

reported a similar approach.  

       Runs 21, 26, 28, 29, 32, 33, 34 and 35 were further efforts to match early data. To 

take into account the special importance of matching early data, we introduced a weighting  

factor, ek. We tried values of 1, 1.5 and 1.7 for early times for this factor and required 

that the factors for later data sum to unity to avoid modifying the balance between the  

Fig. 3.9—Emphasizing earlier data reduced total error. 

 

different variables. Fig. 3.9 shows the sensitivity of the calculated errors to different 

factors for weighting the early data.  
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       We also need a definition for “early time.” We used and analyzed three different 

values: 700, 1,500, and 3,000 days.   

Fig. 3.10—Setting 3000 days as the end of “early time” minimizes error. 

 

       Fig. 3.10 shows the sensitivity to the definition of “early time” for a fixed  

early-data weighting factor of 1.7. A value of 3000 days as the end of early data and an 

ealy-data weighting factor of 1.7 produced the lowest error of the alternatives considered. 

         We found that we had to treat water cut carefully  to avoid meaningless results. 

Reported values of WCT were as small as approximately 10-6. When we normalized  

the errors, dividing the difference between observed and simulated values by such 

small observed values would have generated enormous errors. Further, such small observed 

values make no sense considering the accuracy and precision of field methods to measure 

water cut. Therefore, to avoid generating misleading errors we included WCT data only 

when the observed water cut was larger than 5%.  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 10 20 30 40 50 60
# of Run

N
or

m
al

iz
ed

 E
rr

or

700 - 1.7
1500-1.7
3000-1.7
Case Base



 

 

26

       In calculating the error in GOR, we found that we needed to include neither 

restrictions, as with WCT, nor time-varying weighting factors, as with BHP.  

       In the error calculation procedure, we generated spreadsheet tables that contained 

all the simulated data for each run. Approximately 150,000 simulated data points 

for all variables, dates and runs were generated. These results had to be correlated 

with the much more modest number of observed data points available, about 1,500 

values. Unfortunately, the simulation results were not reported at the same dates for all 

(i.e., the time step size sequence varied in different runs). This particularity has been 

the runs attributed to different convergence rates in the different runs. We developed 

a Visual Basic routine to compare dates and thus to resolve this difficulty. 

       Calculated errors are shown in Table 3.2 and in Figs. 3.11 to 3.14. 

 

TABLE 3.2 – CALCULATED ERRORS 

RUN ERROR BHP ERROR WCT ERROR GR TOTAL ERROR

3 0.1273 1.6345 0.2133 0.2867

4 0.1273 1.6345 0.2146 0.2868

5 0.1249 1.6341 0.2189 0.2852

6 0.1251 1.6339 0.2202 0.2855

7 0.0695 1.3728 0.2645 0.2193

8 0.0669 1.3253 0.2417 0.2103

9 0.0559 1.1036 0.2576 0.1809

10 0.0632 1.2199 0.2927 0.2018

11 0.0564 1.1740 0.2424 0.1868

12 0.0562 1.1514 0.2308 0.1832

13 0.0543 1.1622 0.2289 0.1826

14 0.0574 1.0839 0.2220 0.1765

15 0.0637 1.0298 0.2262 0.1766

16 0.0702 1.1309 0.2214 0.1914

18 0.0529 1.1528 0.2603 0.1837

19 0.0720 1.0915 0.2167 0.1884

20 0.0633 1.0717 0.2184 0.1796

21 0.0427 1.0902 0.2244 0.1657

22 0.0573 1.1577 0.2203 0.1836

23 0.0378 1.1368 0.2437 0.1683

24 0.0368 1.1232 0.2426 0.1660

25 0.0622 1.3208 0.2522 0.2071

26 0.0440 1.0919 0.2329 0.1677

27 0.0728 1.4838 0.2362 0.2303

28 0.0570 1.3123 0.2463 0.2015
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TABLE 3.2 Continued 
RUN ERROR BHP ERROR WCT ERROR GR TOTAL ERROR

29 0.0415 1.1701 0.2459 0.1748

30 0.0605 1.1513 0.2125 0.1848

31 0.0431 1.1021 0.2336 0.1680

32 0.0455 1.1086 0.2330 0.1706

33 0.0398 1.1985 0.2456 0.1763

34 0.0361 1.2771 0.2412 0.1807

35 0.0364 1.1492 0.2423 0.1682

36 0.0400 1.1365 0.2397 0.1696

37 0.0444 1.1516 0.2466 0.1753

38 0.0373 1.1000 0.2366 0.1635

39 0.0374 1.1000 0.2365 0.1635

40 0.0490 1.1308 0.2434 0.1766

41 0.0542 1.1333 0.2359 0.1803

42 0.0403 1.1822 0.2433 0.1748

43 0.0412 1.1778 0.2464 0.1754

44 0.0443 1.1444 0.2459 0.1744

45 0.0428 1.1652 0.2438 0.1751

46 0.0486 1.2945 0.2479 0.1931

47 0.0439 1.2808 0.2446 0.1877

48 0.0449 1.2951 0.2448 0.1899

49 0.0409 1.2268 0.2408 0.1794

50 0.0411 1.2209 0.2440 0.1794

51 0.0380 1.2221 0.2388 0.1765

52 0.0949 1.2085 0.1903 0.2158

53 0.0430 1.1600 0.2103 0.1714

54 0.0366 1.1114 0.2308 0.1635

55 0.0378 1.1227 0.2298 0.1655

56 0.0555 1.1646 0.2433 0.1852

57 0.0393 1.1190 0.2264 0.1660
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Fig. 3.11—Pressure errors decreasing with time. 

 

Fig.3.12—Water/cut doesn’t show significant improvement. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60

# of Run

N
or

m
al

iz
ed

 E
rr

or

Observed Error 4 per. Mov. Avg. (Observed Error)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 10 20 30 40 50 60

# of Run

No
rm

ali
ze

d 
Er

ro
r

Observed Error 4 per. Mov. Avg. (Observed Error)



 

 

29

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60

# of Run

N
or

m
al

iz
ed

 E
rr

or

Observed Error 4 per. Mov. Avg. (Observed Error)

 

Fig. 3.13—GOR errors do not improve with time. 

 

Fig. 3.14—Total error evolving with runs. 
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       The observations used to compute errors in the mismatches are discussed 

in the following sub-sections. 

Pressures. Static pressures from only 4 wells (3, 6, 7, and 12) were available.  Wells 12 

and 3 are located in Sector 1 of the reservoir which does not exhibit the same pressure 

trend as the rest of the reservoir. The error in the mismatch of these pressures match was 

computed using the average pressure of Sector 1 (dark sector shown in Fig. 3.15). 

 

 

 

Fig. 3.15—Wells 12 and 3 located in Sector 1 (dark area in left side). 

 

       The error in the mismatch of wells 6 and 7 was computed by comparing their 

static pressures with the average pressure for the entire field.  

Water Cuts. Produced water cut data were available for wells 2, 3, 6, 7, 9, 12 and 25. We 

analyzed each well individually.  



 

 

31

Gas-Oil Ratio. We computed the error in GOR from the total field measurements. We 

had no information about where the gas measurements were made.  

       During the history matching process, a predictive run for the time period 1 Sept- 

ember 2001 (end of history) to 1 September 2009 was made. For each of these forecasts, 

the cumulative oil production, called “Marginal Cumulative Oil Production,” was recorded. 

These forecasts are summarized in the second column of the Table 3.3. The column 

“Cumulative Oil Production” represents the cumulative oil produced from 1987 to 2009. 

 

 

TABLE 3.3 – CUMULATIVE OIL PRODUCTION 

RUN
 
 

Marginal Cumulative
Oil Production

(STB)

Cumulative Oil 
Production

(STB)

3 362,170 7,207,510

4 3,122,490 11,670,900

5 3,483,750 11,670,900

6 1,634,590 9,821,740

7 1,569,450 9,756,600

8 1,336,840 9,235,390

9 723,520 7,483,890

10 405,000 3,750,970

11 1,389,160 8,929,880

12 1,337,950 8,862,620

13 1,390,940 8,843,870

14 1,369,930 8,771,900

15 1,443,180 9,252,300

16 611,880 7,231,700

18 876,060 8,024,700

19 1,259,330 8,199,840

20 1,272,490 8,195,340

21 1,317,680 8,165,930

22 1,470,530 8,748,460

23 1,851,680 9,534,620

24 1,821,930 9,564,710

25 1,868,170 9,986,710

26 1,762,360 9,612,960

27 2,765,150 9,912,180

28 2,323,190 10,018,800

29 1,786,200 9,464,470

30 1,915,190 9,502,530

31 1,767,470 9,611,070
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TABLE 3.3 Continued 
RUN

 
 

Marginal Cumulative
Oil Production

(STB)

Cumulative Oil 
Production

(STB)

32 1,766,150 9,618,150

33 1,762,990 9,625,300

34 1,751,770 9,672,500

35 1,712,380 9,634,990

36 1,969,890 9,955,690

37 2,068,110 9,965,590

38 1,988,660 9,870,750

39 1,989,780 9,871,870

40 2,164,530 9,839,970

41 2,075,360 9,895,980

42 1,987,220 9,946,390

43 2,019,860 9,697,930

44 2,070,960 9,968,770

45 2,025,040 10,024,000

46 2,216,740 10,223,600

47 2,173,440 10,220,500

48 2,168,590 10,206,700

49 2,228,920 9,975,780

50 2,203,700 10,115,700

51 2,146,640 10,022,700

52 2,692,090 9,762,750

53 2,405,430 9,855,720

54 1,971,550 9,929,790

55 1,944,270 9,978,860

56 2,150,970 10,310,500

57 1,801,090 9,876,510
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Fig. 3.16—Marginal cumulative oil production correlates well with total error. 

 

 

 

       The values of Marginal Cumulative Oil Production proved to be very sensitive 

to the errors computed from the history match (Fig. 3.16).  

       As we noted in Chapter II, if we assume a Gaussian distribution of the likelihood 

of mismatch errors, the probability function is exponential. In our case we compute the 

likelihood of each run as: 

( ) )]exp[ errorcparametersf −= ……………………………………………….……(10)  

c is a normalization factor and depends on the range of errors considered. With this 

approach, we found calculated the likelihood of weighting factors for all runs and 

summarized them in Table 3.4.  
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TABLE 3.4 – LIKELIHOOD DETERMINATION 

RUN
ERROR
TOTAL

WEIGHTING
FACTOR

3 0.2867 0.5937

4 0.2868 0.5930

5 0.2852 0.6016

6 0.2855 0.6003

7 0.2193 1.0381

8 0.2103 1.1066

9 0.1809 1.3363

10 0.2018 1.1715

11 0.1868 1.2893

12 0.1832 1.3179

13 0.1826 1.3227

14 0.1765 1.3705

15 0.1766 1.3702

16 0.1914 1.2532

18 0.1837 1.3140

19 0.1884 1.2767

20 0.1796 1.3458

21 0.1657 1.4568

22 0.1836 1.3144

23 0.1683 1.4358

24 0.1660 1.4538

25 0.2071 1.1311

26 0.1677 1.4405

27 0.2303 0.9577

28 0.2015 1.1742

29 0.1748 1.3844

30 0.1848 1.3053

31 0.1680 1.4381

32 0.1706 1.4178

33 0.1763 1.3725

34 0.1807 1.3374

35 0.1682 1.4364

36 0.1696 1.4255

37 0.1753 1.3803

38 0.1635 1.4736

39 0.1635 1.4735

40 0.1766 1.3697

41 0.1803 1.3409

42 0.1748 1.3843

43 0.1754 1.3797

44 0.1744 1.3871

45 0.1751 1.3817

46 0.1931 1.2393

47 0.1877 1.2822

48 0.1899 1.2648
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TABLE 3.4 Continued 

RUN
ERROR
TOTAL

WEIGHTING
FACTOR

49 0.1794 1.3474

50 0.1794 1.3477

51 0.1765 1.3708

52 0.2158 1.0645

53 0.1714 1.4109

54 0.1635 1.4740

55 0.1655 1.4583

56 0.1852 1.3022

57 0.1660 1.4543
 
 

 

       The average error and standard deviation for each run included information from 

the run and from all previous runs. For example the average value indicated in Table 3.5 

for run 6 is the average for runs 3, 4, 5 and 6 and the standard deviations for these same  

runs. (We did not include runs 1 and 2 in our analysis.) The weighting factors or 

normalized likelihoods are normalized to sum to unity in calculation of both averages 

and standard deviations.  

       We will consider an example. We completed our analysis of run 4 with forecasted 

oil production of 362,170 STB and a likelihood of 0.5937, and run 5, with a forecasted  

oil production of 3,122,490 STB and a likelihood of 0.5930. Normalizing 0.5937 and 

0.5930 to add to unity results in the weighting factors of 0.50029 and 0.49970 

respectively for these two runs and the weighted average oil forecast is then 1,741,416 

STB.  

       The general formula for the weighted average can be expressed as follows: 

i
n

i iweighted Xw
n

X ∑ =
=

1

1 ……………………………………………………………….(11) 

       We calculated the standard deviations in forecasted oil production in a similar way. 

The theoretical basis for this methodology can be found in Sachs.15  

       The sample variance is generally calculated as follows: 

DHolt
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       We can use the same weighting factor as before for each of the terms in the 

sum. The result is: 

2
1

)()1
1( ∑ =

−−=
n

i iiweighted XXwnS .……………………………………………... (13) 

       Eq. 13 allows us to calculate the weighted standard deviations, tabulated in Table 3.5. 

       Finally, we assumed the cumulative probability distributions are normal, and from 

them we calculated P90 ranges using weighted mean and standard deviations. We present 

and discuss the results later in this chapter. 

       In our analysis of the Green Canyon Field, we found a strong correlation between 

cumulative oil production forecasted for the period 2001-2009 (“Marginal Cumulative 

Production”) and error. In this chapter, we will explain how we used this observation as 

our basis to quantify the uncertainty in our production forecasts. 

       Once errors became available, we assumed a Gaussian distribution for the errors, 

and we computed a likelihood of each run using Eq. 10. 

       We normalized the likelihood to compute the cumulative mean and standard deviation 

of the oil production forecasts. The “cumulative mean” and “cumulative standard 

deviation” include weighted values of means and standard deviations from all the runs 

available at the point that we make the calculation. For example, when we analyze run 

35, we consider all runs from the start (run 3) to run 35. Results obtained in this way are 

summarized in Table 3.5. 
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TABLE 3.5 – AVERAGES AND STANDARD DEVIATIONS 

  
  

RUN

Marginal Cum
Production

STB

Cum. Average
Average 

STB

Weighted
Average

STB

Weighted 
Standard 
Deviation 

Non-Weighted
Standard
Deviation

3 362170 362170 362,170 0 0

4 3122490 1742330 1,741,486 1,951,841 1,951,841

5 3483750 2322803 2,327,632 1,706,609 1,707,539

6 1634590 2150750 2,153,465 1,434,841 1,436,037

7 1569450 2034490 1,976,538 1,199,833 1,270,525

8 1336840 1918215 1,820,390 1,069,445 1,171,540

9 723520 1747544 1,570,678 1,064,648 1,160,885

10 405000 1579726 1,376,732 1,076,235 1,174,919

11 1389160 1558552 1,378,655 980,290 1,100,871

12 1337950 1536492 1,373,095 904,598 1,040,253

13 1390940 1523260 1,375,247 843,062 987,846

14 1369930 1510483 1,374,656 790,878 942,913

15 1443180 1505305 1,381,504 747,093 902,964

16 611880 1441489 1,317,053 747,581 899,800

18 876060 1403794 1,281,456 726,216 879,274

19 1259330 1394765 1,279,847 697,268 850,226

20 1272490 1387572 1,279,323 670,241 823,762

21 1317680 1383689 1,282,068 644,323 799,337

23 1851680 1408321 1,319,595 637,031 784,200

24 1821930 1429001 1,351,010 627,362 768,867

25 1868170 1449914 1,375,004 621,780 755,502

26 1762360 1464116 1,396,616 609,685 740,297

27 2765150 1520683 1,445,562 653,079 772,479

28 2323190 1554120 1,482,431 663,242 773,055

29 1786200 1563404 1,496,766 649,807 758,200

30 1915190 1576934 1,514,591 640,829 746,078

31 1767470 1583991 1,525,927 627,823 732,508

32 1766150 1590496 1,536,095 615,716 719,639

33 1762990 1596444 1,545,026 604,591 707,397

34 1751770 1601622 1,552,662 594,162 695,672

35 1712380 1605195 1,558,757 583,090 684,268

36 1969890 1616592 1,573,758 577,175 676,222

37 2068110 1630274 1,590,627 574,064 670,197

38 1988660 1640815 1,604,618 568,328 662,820

39 1989780 1650785 1,617,696 562,666 655,658

40 2164530 1665056 1,634,428 561,828 651,872

41 2075360 1676145 1,647,251 558,390 646,284

42 1987220 1684331 1,657,161 552,969 639,485

43 2019860 1692935 1,667,401 548,245 633,298

44 2070960 1702385 1,678,538 544,519 627,977

45 2025040 1710255 1,687,810 539,945 622,122

46 2216740 1722314 1,700,206 539,532 619,438

47 2173440 1732805 1,711,410 537,887 615,874

48 2168590 1742710 1,721,843 536,026 612,205
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TABLE 3.5 Continued 
  
  

RUN

Marginal Cum
Production

STB

Cum. Average
Average 

STB

Weighted
Average

STB

Weighted 
Standard 
Deviation 

Non-Weighted
Standard
Deviation

49 2228920 1753514 1,733,877 535,175 609,533

50 2203700 1763301 1,744,772 533,582 606,366

51 2146640 1771457 1,754,032 530,754 602,340

52 2692090 1790637 1,770,522 540,603 610,534

53 2405430 1803184 1,784,979 542,738 610,492

54 1971550 1806551 1,789,314 537,010 604,699

55 1944270 1809251 1,792,795 531,324 598,932

56 2150970 1815823 1,799,841 528,354 594,921

57 1801090 1815545 1,799,868 522,544 589,177
 

 

       The weighted standard deviations are smaller than the non-weighted standard 

deviations. In both cases, standard deviations trend lower as information from more runs 

becomes available (Fig. 3.17).  

       Fig. 3.18 shows the trend in forecasted production (2001-2009). As can be seen both 

weighted and non-weighted average converge to the same values when numerous runs 

with similar errors and predicted production values become available. The final value of 

convergence eventually would be the one forecasted with the best match approach. 
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Fig. 3.17 – Weighted standard deviation is smaller than non weighted. 
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Fig. 3.18 - Shows sets of weighted and non weighted mean values. 

 

       Using the weighted average mean and standard deviation, again assuming a normal 

distribution of Marginal Cumulative Oil or, more simply, reserves, we can compute the 

P-90 range after each history match run. These P-90 range values are shown in Table 3.6 

and Fig 3.19. 

 

 

TABLE 3.6 – RANGES OF P-90 FOR THE CUMULATIVE OIL PREDICTED FOR 2001-2009 

 

RUN Maximum STB Minimum STB Average STB

4 4,951,977 0 1,741,486

5 5,134,754 0 2,327,632

6 4,513,568 0 2,153,465

7 3,950,087 2,990 1,976,538

8 3,579,470 61,310 1,820,390

9 3,321,867 0 1,570,678

10 3,146,980 0 1,376,732

11 2,991,087 0 1,378,655

12 2,861,025 0 1,373,095

13 2,761,960 0 1,375,247
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TABLE 3.6 Continued 
RUN Maximum STB Minimum STB Average STB

14 2,675,535 73,777 1,374,656

15 2,610,362 152,646 1,381,504

16 2,546,714 87,391 1,317,053

18 2,475,974 86,937 1,281,456

19 2,426,749 132,944 1,279,847

20 2,381,770 176,875 1,279,323

21 2,341,884 222,251 1,282,068

22 2,320,899 266,097 1,293,498

23 2,345,375 310,986 1,328,180

24 2,360,615 354,196 1,357,406

25 2,375,213 384,570 1,379,891

26 2,377,491 422,902 1,400,196

27 2,494,273 399,188 1,446,730

28 2,546,916 416,876 1,481,896

29 2,540,336 450,946 1,495,641

30 2,544,145 481,412 1,512,778

31 2,535,249 512,245 1,523,747

32 2,526,571 540,667 1,533,619

33 2,518,172 566,467 1,542,320

34 2,509,554 590,016 1,549,785

35 2,498,384 613,176 1,555,780

36 2,504,187 636,608 1,570,398

37 2,516,318 657,376 1,586,847

38 2,521,416 679,667 1,600,542

39 2,525,718 701,021 1,613,370

40 2,541,374 718,132 1,629,753

41 2,548,954 735,752 1,642,353

42 2,550,449 753,820 1,652,135

43 2,553,382 771,106 1,662,244

44 2,558,808 787,666 1,673,237

45 2,560,997 803,837 1,682,417

46 2,572,979 816,292 1,694,636

47 2,581,790 829,615 1,705,702

48 2,589,475 842,566 1,716,021

49 2,600,408 855,429 1,727,918

50 2,608,996 868,418 1,738,707

51 2,613,952 881,855 1,747,903

52 2,646,611 881,687 1,764,149

53 2,664,809 892,086 1,778,447

54 2,660,147 905,539 1,782,843

55 2,654,682 918,115 1,786,398

56 2,657,147 929,712 1,793,430

57 2,647,997 939,186 1,793,591
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       The range of reserve estimates is almost constant after run 40. We associate this 

behavior with the observed difficulty of achieving better matches. We attribute that 

difficulty, in turn, to the selection of a particular static model that was the basis for all 

history matching in this project. 

 

Fig 3.19 – P 90 ranges of estimated reserves. 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 

       Our study of the Green Canyon field led us to several conclusions that we tentatively 

consider to be general. First, the methodology we discussed in Chapter III should prove 

generally useful to quantify uncertainty in reserve forecasts when only limited data are 

available and limited computational time is allowed for a study. We drew this conclusion 

because the weighted standard deviation was reduced when we assigned likelihoods to 

each history match run based on its closeness to the observed dynamic data. 

       We also conclude that the estimation of likelihood of each model based only on 

posteriori probabilities (observed data) can lead to a poor estimate of uncertainty for a 

given model. Geological knowledge should be included in the likelihood estimates to 

quantify uncertainty more realistically.  

       The determination of uncertainty in our predictions needs to be based on the generation 

of as many realizations as feasible and on making predictions with each realization. All 

realizations are possible from a statistical point of view and must be given certain 

likelihoods. These likelihoods can be assigned when we observe how closely the 

realizations model actual reservoir behavior. 

       Weighting results as new history matching information becomes available allows an 

early evaluation of the uncertainty in forecasts based on history matching performance. 

Further, a complete characterization of uncertainty requires the use of different 

geological realizations with their respective a priori probabilities. 

       Parameters used to define the objective function are chosen from available observed 

data and should efficiently describe pressures and rates combined in such a way that they 

describe the movement of all fluid phases present throughout the reservoir, up the wells 

and through the separators. 

       The objective function used to compute the mismatch during history matching should 

be representative of the variables considered by engineers who perform the history 
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matching, as was the case for the Green Canyon Field. Still, we must recognize that the 

visual improvement in matches from run to run is sometimes rather subjective and we 

may not be able to describe it completely by any objective function. 

       We also reached certain conclusions specific to the Green Canyon Field. Most notably, 

the error in gas/oil ratios and water cuts could not be reduced substantially during history 

matching. We believe that this outcome can be corrected only by modifying the 

geological model.   

       The history matches showed little improvement after run 40. We suspect that, when 

engineers reach a point of “acceptable” results, they become reluctant to make 

substantial modifications to their models. 

       The pressure error decreased markedly as additional runs were made, as Fig. 3.11 shows. 

WCT and GOR oscillated without any substantial improvement with succeeding runs as 

Fig. 3.13 and Fig. 3.14 demonstrate. We attribute this behavior to the selection of an 

incorrect geologic model. The movement of water and gas within the reservoir depend 

on the reservoir geometry and thus cannot be reproduced adequately with an incorrect 

geological model. Pressure behavior within the reservoir is related to the amount of fluid 

in the pore space network and can be modified by varying parameters, such as net-to-

gross ratio and perforation intervals, to obtain better matches.  

       Standard deviation decreased monotonically during history matching for both weighted 

and non-weighted errors. The weighted-standard deviation is smaller than the non-

weighted, whereas the averages converge to a common value after several runs as shown 

in Fig. 3.18. 
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