
    
 
 
 
 
 
 
 
 
 
 
  
ABSTRACT 

The energy efficiency of HVAC systems in 
buildings often degrades with the passage of 
time.  Significant engineering time is normally 
required to determine the cause(s) of the 
degradation. This paper reports a preliminary 
investigation of a remote fault detection 
method using the global optimization program 
Solver® (Frontline Systems, 2000)  coupled to 
a simplified simulation program, which is a 
coding of the ASHRAE ‘Simplified Energy 
Analysis Procedure’ (Knebel, 1983).  This 
approach1 uses the simulation program in 
conjunction with synthetic measured data to 
identify faults in the building operation.  This 
fault detection approach has successfully 
identified all of the faulty parameters with 
noise levels of 1%, 3% and 6%.  It 
successfully detected 117 of 120 faulty 
parameters in the presence of 10% noise. 
These results are based on acceptable errors 
for each parameter defined as ±5°F for Tcl, 
±2°F for Tr, ±0.4cfm/sf for Vs, and ±5% for 
OA(%). If the acceptable errors for each 
parameter are reduced to ±2.5°F for Tcl, ±1°F 
for Tr, ±0.2cfm/sf for Vs, and ±2.5% for 
OA(%), the number of faults successfully 
detected decreases to 118 out of 120 faulty 
parameters with 1% noise, 112 out of 120 with 
3% noise, 102 out of 120 with 6% noise, and 
94 out of 120 with 10% noise that were 
introduced into synthetic “measured data” that 
was generated with the simulation program.  
 
INTRODUCTION 

Previously reported remote fault detection 
methods have required the use of data from 
numerous sensors at the system or subsystem 
level (Piette et al., 2001), (Li and Braun 2002).  
The method introduced here requires only 
whole building heating, cooling and electricity 
consumption data and weather data.  This data 

is used in conjunction with a building 
simulation program and a global optimization 
program to identify probable faults.  This 
method does not require the numerous sensors 
required by most fault detection methods.   It 
has the potential to directly generate a report 
that identifies potential faults for the facility 
operator, including the projected annual cost 
of energy-waste associated with the fault.   

 
METHODOLOGY  

Implementation of this fault detection 
process requires that a calibrated or “correct” 
model of normal system operation be 
developed initially.  

The remote fault-detection process then 
seeks to find faulty HVAC system parameters 
by re-calibrating the “correct” model of 
normal system operation to fit the 
consumption data from the system when 
operating with a fault or faults.  The changes 
in system parameters determined during the 
re-calibration process are then used identify 
the system fault(s).   The energy waste 
associated with the fault is determined by 
comparing the annual consumption predicted 
by the re-calibrated model with the annual 
consumption predicted by the original 
“correct” model of normal operation. 

An automatic calibration method (Lee and 
Claridge 2002) is used to re-calibrate the 
simulation.  This calibration method uses a 
Generalized Reduced Gradient (GRG) global 
optimization process. This ensures that the 
detection steps include iterations of all the 
possible faulty variables included in the 
simulation.  

The global optimization process minimizes 
the error between measured and simulated 
energy consumption. This approach to 
simulation model calibration was thoroughly 
tested by hydrological scientists in searches 
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for the location of a water source using a 
simulation model and several measured data 
points (Duan et al., 1992, 1993, 1994), (Gupta 
et al., 1985, 1998, 1999), (Sorooshian et al., 
1980, 1981, 1983, 1990, 1993). The 
hydrological scientists  used the process to 
find correct x, y, and z coordinate values of 
water sources.  

The following objective function is 
minimized in the auto-calibration of the 
HVAC energy simulations:  
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where CHWsim and HWsim are cooling and 
heating  consumption values generated by the 
simulation that is being calibrated and 
CHWmea and HWmea are the corresponding 
measured consumption values for the building 
being evaluated.  It may be noted that the 
objective function is then the sum of the Root-
Mean-Squared-Error (RMSE) of the simulated 
values of the cooling (CHW) and heating 
(HW) consumption. 

The fault detection process is based on the 
mathematical relationships among the various 
variables and constants in the simulation 
model. This ensures that the fault detection 
steps consider all the variables simultaneously.  
Several investigators (Gertler, 1998; Glass et 
al., 1994; Isermann, 1995; Patton et al., 1995; 
Salsbury et al., 2001) have proposed fault 
detection using simulation models of control 
systems. The method investigated in this paper 
uses an energy consumption simulation model 
and an optimization tool. The Solver® 
(Frontline Systems, 2000) package is one of 
the most advanced optimization tools available 
at relatively low cost.  Multiple investigators 
have used this package to successfully avoid 
local minima that plague optimization 
procedures. Kahn-Jetter et al. (1997), Kane et 
al. (1997), Klukowski et al. (2001), Morrice et 
al. (2001), Nikitas et al. (2000, 2001) 
Okennedy et al. (1994), Thiriez (2001), and 
Walsh et al. (1995) all successfully conducted 
research with Solver® in their own fields.  
Therefore this package (Solver®) was chosen 

to conduct an initial test of remote fault 
detection in the energy management field. 
 
SIMULATION MODEL AND 
PROTOTYPE BUILDING 

The simplified simulation model used here, 
which is a coding of the ASHRAE ‘Simplified 
Energy Analysis Procedure’ (Knebel, 1983), is 
used to investigate the possibility of remote 
fault detection through the optimization 
process. To test the automatic calibration 
performance of this approach, “synthetic” 
measured heating and cooling energy 
consumption data for a prototype building is 
produced by the simulation model. 

The prototype building used to generate the 
synthetic measured consumption data is 
assumed to have a total conditioned area of 
120,000 SF. Building length and width are 240 
ft and 100 ft respectively. The height of the 
building is 65 ft with 5 floors.  13,260 SF of 
windows (30 % of 4 façade areas of the 
building) have a U-value of 1.1 Btu/h-ºF-SF . 
The remaining exterior sidewall area is 30,940 
SF and the roof area is 24,000 SF. The wall U-
value is 0.1 Btu/h-ºF-SF and the roof U-value 
is 0.05 Btu/h-ºF-SF. The occupancy of the 
building is 200 SF/person. Daily average 
lighting and receptacle electrical loads of 1.0 
W/SF and 0.5 W/SF respectively, are 
assumed. The supply-air and outside-air flow 
rates are 1.2 cfm/SF and 0.12 cfm/SF 
respectively. The building is assumed to be 
equally split between interior and exterior 
zones.  Room temperature is maintained at 73 
ºF by a single-duct-constant-volume (SDCV) 
terminal-reheat system. 

 
SYNTHETIC DATA 

Synthetic measured data and multiple 
synthetic faults are generated and used to test 
the fault detection approach.  The 
investigation reported here did not use 
measured energy consumption data from a real 
building or measured data from faulty HVAC 
systems. Instead, simulated energy 
consumption data generated by the simulation 
model was used to detect artificially created 
faults. There are two major advantages to 
using synthetic measured data and artificially 
created faults for testing the fault detection 
approach. First, by using synthetic data, both 
the original and the faulty HVAC operating 
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parameters such as cooling coil temperature, 
cooling coil temperature, supply air volume 
etc. are known exactly.  The results of the test 
can be determined accurately and 
conveniently. The other advantage of using the 
synthetic data is that data for the faulty 
systems can be generated quickly and easily 
with little cost.  This testing method does not 
include the modeling errors or sensor errors 
that are necessarily present when simulating a 
real building.  This was approximated by 
adding random noise which is up to 10% of 
the average energy consumption to the 
synthetic measured heating and cooling data.  

 
REMOTE FAULT DETECTION 

A program was written to implement the 
test of the remote fault detection procedure 
that is reported herein.  The program uses the 
global optimization technique to calibrate the 
building energy performance model to the 
synthetic measured data for the faulty systems 
to find faulty parameters. The test restricted 
the number of parameters that may be varied 
in the calibration process to four. Those are 
Tcl (cooling coil leaving air temperature), Tr 
(room temperature), Vs (supply-air volume), 
and Xoa (outside-air flow fraction).  

The procedure for testing the fault 
detection method is composed of six steps.  
The first step generates the original HVAC 
operating parameters. This first step also 
includes inverse identification of the original 
HVAC system operation parameters from the 
synthetic measured data using the automatic 
calibration of the base simulation model. The 
details of the automatic calibration procedure 
used are thoroughly explained in Lee and 
Claridge (2002). The second step imposes one 
or more artificial fault parameters in the model 
and generates the faulty synthetic measured 
data. The artificially generated synthetic faulty 
parameters are summarized in the left half of 
Tables A-1 through A-4 (APPENDIX A). The 
third step puts artificial noise on the synthetic 
measured data. This step makes the synthetic 
measured data more closely approximate real 
measured data.  The noise represents the 
model uncertainty for the real cases. For a real 
building, the simulation model cannot 
perfectly represent the real building behavior.  
Reddy et al. (1992) observed that a model is 
never “perfect”, and invariably a certain 

amount of the observed variance in the 
response variable is unexplained by the model. 
The fourth step constitutes the main 
computational work required by the fault 
detection process. The global optimization 
program Solver® (Frontline Systems, 2000) 
minimizes the objective function defined in 
the methodology section. The minimization 
finds the HVAC operation parameters 
corresponding to the synthetic faulty 
parameters. The next step compares the 
HVAC operating parameters found in the first 
step with those from the fourth step. The 
differences are examined to check if they are 
large enough to be categorized as a fault or 
not.  Generating the results is the last step of 
the fault detection process. 
 

Figure 1. Remote fault detection procedure. 

Conduct fault detection by minimizing 
combined RMSE between original and faulty 

cases 

Detect the faulty parameters that are 
different from original HVAC operating 

parameters 

Generate the fault detection report 

Finish fault 
detection 

Start fault 
detection 

Get the original HVAC operating 
parameters  

Impose one or more artificial faulty 
parameters in the model and generate 

the faulty synthetic measured data 

Put artificial noise on synthetic 
measured data 
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FAULT DETECTION TEST RESULTS 
120 sets of synthetic data were 

generated using the different combinations of 
faulty parameters as shown in Tables A-1 
through A-4 (APPENDIX A). Each of 30 
different sets of input parameters generating 
output that was modified by adding artificial 
noise levels of 1%, 3%, 6%, and 10% to give 
120 sets of output. The results of the test are 
summarized in Table 1. The program 
successfully detected all of the faulty 
parameters with noise levels of 1%, 3% and 
6%.  It successfully detected 117 of 120 faulty 
parameters in the presence of 10% noise. 
These results are based on acceptable errors 
for each parameter defined as ±5°F for Tcl, 
±2°F for Tr, ±0.4cfm/sf for Vs, and ±5% for 
OA(%). If the acceptable errors for each 
parameter are reduced to ±2.5°F for Tcl, ±1°F 
for Tr, ±0.2cfm/sf for Vs, and ±2.5% for 
OA(%), the number of faults successfully 
detected decreases to 118 out of 120 faulty 
parameters with 1% noise, 112 out of 120 with 
3% noise, 102 out of 120 with 6% noise, and 
94 out of 120 with 10% noise. 

The mean bias errors for the four 
detected parameter values (Tcl, Tr, Vs, 
OA(%)) in all 120 cases are 0.35 (°F), 0.11 
(°F), 0.03 (cfm), and –0.33 (%), respectively. 
Each detection process took less than 5 
minutes with an ordinary Pentium III personal 
computer. The artificial noise on the synthetic 
measured data, which represents model 
uncertainty and sensor noise, appears to 
contribute to the errors in the detected 
parameters. For each of Tables A-1 through A-
4, the RMSE values for the same assigned 

faults are different due to the different levels 
of artificial noise. The dimmed cells on Tables 
A-1 through A-4 are artificial fault parameters 
and detected fault parameters. The artificial 
fault parameters were +10°F and -10°F from 
the original setting of Tcl, ±5°F from the 
original Tr setpoint, -0.8 cfm/ft2 from the 
original Vs, and +20% and –7% from the 
original OA(%). Those variations were 
selected to be within the physically possible 
range and to be large enough to lead to 
increased energy consumption or possibly 
comfort problems. The results of the test are 
shown visually in Figures B-1 through B-4 
(APPENDIX B). 

LOCAL MINIMA 
The calibration process can sometimes 
produce simulated energy consumption values 
rather close to the measured consumption 
when incorrect input parameters are used. In 
terms of optimization, this corresponds to a 
local minimum. The program developed using 
Solver® can filter out the local minima 
solutions, which may be confused as correct 
solutions (Lee and Claridge 2002).  However, 
earlier work using root-mean square 
optimization procedures for parameter 
identification from building energy data has 
sometimes found incorrect and unphysical 
results (Claridge et al., 1987, Reddy and 
Claridge, 1994). Hence further testing of this 
procedure with more variable model 
parameters, more complicated noise and with 
real building faults is recommended. 

 

Low High Correct Low High Correct Low Correct Low High Correct
Assigned Value 45.0 65.0 55.0 68.0 78.0 73.0 0.4 1.2 3.0 30.0 10.0

Average 45.4 66.6 54.2 68.3 78.0 73.1 0.5 1.2 2.9 29.6 9.5
Max 48.0 69.5 56.8 69.6 79.7 73.6 0.8 1.4 4.7 30.9 11.9
Min 43.0 65.0 47.8 67.6 76.6 72.7 0.4 0.7 2.0 22.0 5.6
Max 50.0 70.0 60.0 70.0 80.0 75.0 0.8 1.6 8.0 35.0 15.0
Min 40.0 60.0 50.0 66.0 76.0 71.0 0.0 0.8 0.0 25.0 5.0

1/120 0/120 1/120 1/120

Detected

Tolerance

Mean Bias Error

# Out of tolerance / 
# of test

OA(%)TrTcl Supply air

0.4 0.1 0.0 -0.3

Table 1. The summary of the remote fault detection test.   
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CONCLUSIONS 
A remote fault detection method using an 
optimization technique, which has not been 
previously applied to whole building 
consumption data, is programmed and tested 
with a commercial optimization add-in 
function Solver®.  The remote fault detection 
method provided objective (free from local 
minima), accurate, and rapid fault detection 
using the synthetic “measured” building 
HVAC energy consumption in the 480 cases 
tested with acceptable fault detection 
parameters of ±5°F for Tcl, ±2°F for Tr, 
±0.4cfm/sf for Vs, and ±5% for OA(%).  If the 
acceptable fault detection criteria are tightened 
to ±2.5°F for Tcl, ±1°F for Tr, ±0.2cfm/sf for 
Vs, and ±2.5% for OA(%), the number of 
faults successfully detected then decreased to 
118 out of 120 faulty parameters with 1% 
noise, 112 out of 120 with 3% noise, 102 out 
of 120 with 6% noise, and 94 out of 120 with 
10% noise.  Further testing of the method with 
more realistic sets of permitted faults, larger 
amounts of model mis-specification and with 
real building data appears warranted. 
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Data 
No. Tcl Tr Vs OA(%) RMSE Data 

No. Tcl Tr Vs OA(%) RMSE

1 45 73 1.2 10 2597106.7 1 44.9 73.1 1.19 10.1 5723.3
2 55 78 1.2 10 1797997.6 2 54.8 78.1 1.18 10.1 5735.8
3 55 73 0.4 10 1384965.4 3 55.2 73.0 0.40 10.0 5848.6
4 55 73 1.2 30 1031475.9 4 55.0 73.0 1.20 30.1 5719.6

Data 
No. Tcl Tr Vs OA(%) RMSE Data 

No. Tcl Tr Vs OA(%) RMSE

5 45 68 1.2 10 1821707.5 5 44.9 68.1 1.19 10.1 5724.9
6 65 68 1.2 10 1506124.0 6 65.1 68.1 1.20 10.0 5851.2
7 45 73 0.4 10 1097413.9 7 45.1 73.1 0.40 10.0 5766.4
8 65 73 0.4 10 1700423.0 8 65.9 72.9 0.46 8.9 5693.8
9 45 73 1.2 3 2638741.9 9 44.7 73.1 1.18 3.0 5724.3
10 65 73 1.2 30 528193.8 10 65.1 73.0 1.22 29.7 5675.7
11 55 68 0.4 10 1567411.9 11 55.1 68.1 0.40 10.0 5836.5
12 55 78 0.4 10 1209007.4 12 55.0 78.1 0.40 10.1 5816.7
13 55 68 1.2 3 997006.9 13 54.8 68.1 1.17 3.1 5720.1
14 55 78 1.2 30 1684638.0 14 55.0 78.0 1.20 30.1 5719.6
15 55 73 0.4 3 1453220.9 15 53.2 73.2 0.36 3.3 5825.0
16 55 73 0.4 30 1202213.6 16 55.0 73.0 0.40 30.0 5866.4

Data 
No. Tcl Tr Vs OA(%) RMSE Data 

No. Tcl Tr Vs OA(%) RMSE

17 45 68 0.4 10 1244871.7 17 45.3 68.0 0.41 9.9 5854.8
18 65 78 0.4 10 1561815.3 18 65.9 77.8 0.44 9.3 5525.1
19 45 68 1.2 3 1862536.2 19 44.8 68.1 1.19 3.0 5722.9
20 65 78 1.2 30 5961.8 20 65.1 77.9 1.21 29.7 5694.5
21 55 68 0.4 3 1635691.0 21 53.3 68.1 0.35 3.4 5812.1
22 55 78 0.4 30 1021032.6 22 55.0 78.0 0.40 30.1 5808.8
23 45 73 0.4 30 856883.7 23 45.0 73.1 0.40 30.1 5754.9
24 65 73 0.4 3 1737258.4 24 67.1 73.0 0.55 2.3 5707.2
25 65 68 1.2 3 1694783.7 25 65.1 68.1 1.20 3.0 5859.4
26 45 78 1.2 30 3431439.7 26 45.0 78.0 1.20 30.0 5723.0

Data 
No. Tcl Tr Vs OA(%) RMSE Data 

No. Tcl Tr Vs OA(%) RMSE

27 65 68 0.4 3 1872289.7 27 66.1 68.1 0.63 2.0 5796.5
28 45 78 0.4 30 741068.2 28 45.0 78.1 0.40 30.1 5772.3
29 65 78 0.4 3 1598727.3 29 67.8 77.8 0.52 2.5 5522.7
30 65 78 0.4 30 1416510.5 30 65.3 77.9 0.41 29.2 5621.5

1%
Assigned Fault Detected Fault

One 
Variable 

Fault

1%
Assigned Fault Detected Fault

Two 
Variable 

Fault

1%
Assigned Fault Detected Fault

Three 
Variable 

Fault

1%
Assigned Fault Detected Fault

Four 
Variable 

Fault

1%  
Artificial 

Fault 

1%  
Artificial 

Fault 

1%  
Artificial 

Fault 

1%  
Artificial 

Fault 

APPENDIX A 
Table A-1. Assigned and detected fault parameters with 1% artificial noise. 

* The dimmed cells are assigned or detected fault parameters, others are original parameters and it’s detected 
values. 
* Circled values are unacceptable detection values. 
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Data 
No. Tcl Tr Vs OA(%) RMSE Data 

No. Tcl Tr Vs OA(%) RMSE

1 45 73 1.2 10 2594632.8 1 44.8 73.2 1.18 10.1 17245.4
2 55 78 1.2 10 1795664.1 2 54.7 78.2 1.17 10.2 17235.7
3 55 73 0.4 10 1387089.9 3 55.5 73.0 0.41 9.8 17573.2
4 55 73 1.2 30 1029060.4 4 54.9 73.1 1.19 30.3 17234.8

Data 
No. Tcl Tr Vs OA(%) RMSE Data 

No. Tcl Tr Vs OA(%) RMSE

5 45 68 1.2 10 1819305.5 5 44.8 68.2 1.18 10.2 17245.4
6 65 68 1.2 10 1508416.7 6 65.2 68.3 1.20 10.0 17553.5
7 45 73 0.4 10 1099158.8 7 45.2 73.2 0.40 10.1 17389.6
8 65 73 0.4 10 1702585.3 8 67.5 72.8 0.62 7.0 17081.7
9 45 73 1.2 3 2636398.9 9 44.6 73.2 1.17 3.1 17246.3
10 65 73 1.2 30 530948.1 10 65.2 72.9 1.25 29.0 17123.4
11 55 68 0.4 10 1569564.4 11 55.3 68.1 0.41 9.9 17550.5
12 55 78 0.4 10 1211027.3 12 54.9 78.2 0.40 10.2 17449.8
13 55 68 1.2 3 997777.4 13 52.9 68.5 1.00 3.5 16845.3
14 55 78 1.2 30 1681937.2 14 54.9 78.1 1.19 30.2 17234.8
15 55 73 0.4 3 1455328.5 15 52.7 73.2 0.35 3.4 17459.5
16 55 73 0.4 30 1204390.9 16 55.1 73.0 0.40 29.9 17599.2

Data 
No. Tcl Tr Vs OA(%) RMSE Data 

No. Tcl Tr Vs OA(%) RMSE

17 45 68 0.4 10 1246825.5 17 45.9 67.9 0.42 9.7 17575.4
18 65 78 0.4 10 1564032.4 18 67.6 77.3 0.55 8.0 16576.2
19 45 68 1.2 3 1860313.8 19 44.3 68.3 1.15 3.1 17245.9
20 65 78 1.2 30 17885.3 20 65.2 77.8 1.25 29.1 17047.4
21 55 68 0.4 3 1637832.2 21 53.2 68.1 0.35 3.4 17398.7
22 55 78 0.4 30 1023132.8 22 54.9 78.1 0.40 30.3 17426.4
23 45 73 0.4 30 858551.5 23 45.0 73.2 0.40 30.2 17364.4
24 65 73 0.4 3 1739421.5 24 68.3 73.0 0.69 2.0 17296.7
25 65 68 1.2 3 1696940.3 25 65.2 68.3 1.20 3.1 17578.2
26 45 78 1.2 30 3428700.0 26 44.9 78.1 1.20 30.1 17245.2

Data 
No. Tcl Tr Vs OA(%) RMSE Data 

No. Tcl Tr Vs OA(%) RMSE

27 65 68 0.4 3 1874432.9 27 66.2 68.1 0.64 2.0 17610.6
28 45 78 0.4 30 742194.9 28 44.9 78.2 0.40 30.2 17316.9
29 65 78 0.4 3 1600939.0 29 68.6 77.7 0.58 2.4 16844.2
30 65 78 0.4 30 1418893.1 30 65.8 77.6 0.44 27.5 16912.6

3%
Assigned Fault Detected Fault

One 
Variable 

Fault

3%
Assigned Fault Detected Fault

Two 
Variable 

Fault

3%
Assigned Fault Detected Fault

Three 
Variable 

Fault

3%
Assigned Fault Detected Fault

Four 
Variable 

Fault

3%  
Artificial 

Fault 

3%  
Artificial 

Fault 

3%  
Artificial 

Fault 

3%  
Artificial 

Fault 

Table A-2. Assigned and detected fault parameters with 3% artificial noise. 

* The dimmed cells are assigned or detected fault parameters, others are original parameters and it’s detected 
values. 
* Circled values are unacceptable detection values. 
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Data 
No. Tcl Tr Vs OA(%) RMSE Data 

No. Tcl Tr Vs OA(%) RMSE

1 45 73 1.2 10 2591026.3 1 44.6 73.4 1.17 10.3 34559.8
2 55 78 1.2 10 1792316.6 2 52.6 79.1 1.04 11.2 33984.2
3 55 73 0.4 10 1390464.7 3 56.1 72.9 0.43 9.5 35162.9
4 55 73 1.2 30 1025746.0 4 54.8 73.2 1.18 30.6 34538.9

Data 
No. Tcl Tr Vs OA(%) RMSE Data 

No. Tcl Tr Vs OA(%) RMSE

5 45 68 1.2 10 1815865.5 5 44.6 68.3 1.17 10.3 34559.8
6 65 68 1.2 10 1512026.6 6 65.4 68.6 1.20 10.1 35106.9
7 45 73 0.4 10 1102023.9 7 48.0 72.9 0.45 9.2 34634.9
8 65 73 0.4 10 1705982.8 8 68.6 72.8 0.80 5.6 34235.8
9 45 73 1.2 3 2632988.2 9 47.7 73.0 1.33 2.8 34406.4
10 65 73 1.2 30 535550.7 10 65.4 72.9 1.30 28.0 34297.0
11 55 68 0.4 10 1572957.9 11 55.6 68.2 0.42 9.7 35122.7
12 55 78 0.4 10 1214277.5 12 54.9 78.3 0.39 10.3 34899.0
13 55 68 1.2 3 999267.8 13 51.0 69.0 0.86 4.0 33769.3
14 55 78 1.2 30 1678043.9 14 54.8 78.2 1.18 30.4 34538.9
15 55 73 0.4 3 1458671.2 15 52.6 73.2 0.35 3.5 34696.8
16 55 73 0.4 30 1207870.4 16 55.2 73.0 0.41 29.8 35198.3

Data 
No. Tcl Tr Vs OA(%) RMSE Data 

No. Tcl Tr Vs OA(%) RMSE

17 45 68 0.4 10 1249966.2 17 48.0 67.6 0.47 8.8 34794.1
18 65 78 0.4 10 1567525.0 18 68.6 77.0 0.64 7.1 33307.2
19 45 68 1.2 3 1857141.9 19 47.7 68.0 1.36 2.7 34404.8
20 65 78 1.2 30 35770.6 20 65.5 77.7 1.29 28.2 34086.5
21 55 68 0.4 3 1641203.2 21 53.0 67.9 0.35 3.5 34814.4
22 55 78 0.4 30 1026534.7 22 54.8 78.3 0.39 30.5 34852.7
23 45 73 0.4 30 861356.6 23 45.0 73.3 0.40 30.3 34786.2
24 65 73 0.4 3 1742818.1 24 68.6 73.1 0.72 2.0 34890.5
25 65 68 1.2 3 1700328.9 25 65.5 68.6 1.20 3.1 35150.8
26 45 78 1.2 30 3424666.8 26 44.9 78.2 1.19 30.2 34559.8

Data 
No. Tcl Tr Vs OA(%) RMSE Data 

No. Tcl Tr Vs OA(%) RMSE

27 65 68 0.4 3 1877789.6 27 66.4 68.2 0.67 2.0 35349.3
28 45 78 0.4 30 744247.0 28 44.8 78.3 0.39 30.5 34633.8
29 65 78 0.4 3 1604420.7 29 68.6 77.6 0.59 2.5 34264.8
30 65 78 0.4 30 1422649.3 30 66.5 77.3 0.50 25.1 33854.6

6%
Assigned Fault Detected Fault

One 
Variable 

Fault

6%
Assigned Fault Detected Fault

Two 
Variable 

Fault

6%
Assigned Fault Detected Fault

Three 
Variable 

Fault

6%
Assigned Fault Detected Fault

Four 
Variable 

Fault

6%  
Artificial 

Fault 

6%  
Artificial 

Fault 

6%  
Artificial 

Fault 

6%  
Artificial 

Fault 

Table A-3. Assigned and detected fault parameters with 6% artificial noise. 

* The dimmed cells are assigned or detected fault parameters, others are original parameters and it’s detected 
values. 
* Circled values are unacceptable detection values. 

* The dimmed cells are assigned and detected fault parameters. 
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Data 
No. Tcl Tr Vs OA(%) RMSE Data 

No. Tcl Tr Vs OA(%) RMSE

1 45 73 1.2 10 2586413.8 1 44.4 73.6 1.15 10.4 57651.6
2 55 78 1.2 10 1788140.6 2 51.2 79.7 0.96 11.9 56451.7
3 55 73 0.4 10 1395312.3 3 56.8 72.7 0.46 9.2 58635.9
4 55 73 1.2 30 1021912.8 4 54.7 73.4 1.16 30.9 57616.7

Data 
No. Tcl Tr Vs OA(%) RMSE Data 

No. Tcl Tr Vs OA(%) RMSE

5 45 68 1.2 10 1811586.3 5 44.4 68.6 1.14 10.5 57651.5
6 65 68 1.2 10 1517156.4 6 65.8 69.1 1.20 10.1 58387.0
7 45 73 0.4 10 1106302.2 7 48.0 73.1 0.45 9.3 57600.3
8 65 73 0.4 10 1710798.7 8 68.6 72.9 0.78 5.9 57549.3
9 45 73 1.2 3 2628635.0 9 47.7 73.2 1.32 2.9 57229.0
10 65 73 1.2 30 542544.3 10 65.6 72.8 1.37 26.8 57195.7
11 55 68 0.4 10 1577788.2 11 52.9 67.9 0.35 11.3 58416.2
12 55 78 0.4 10 1219018.7 12 54.8 78.5 0.39 10.4 58164.4
13 55 68 1.2 3 1001875.0 13 47.8 69.6 0.71 4.7 56424.1
14 55 78 1.2 30 1673150.0 14 54.7 78.4 1.17 30.7 57616.7
15 55 73 0.4 3 1463464.2 15 52.4 73.2 0.35 3.6 58032.3
16 55 73 0.4 30 1212904.8 16 55.3 73.1 0.41 29.6 58663.7

Data 
No. Tcl Tr Vs OA(%) RMSE Data 

No. Tcl Tr Vs OA(%) RMSE

17 45 68 0.4 10 1254542.7 17 48.0 67.6 0.47 8.8 58000.6
18 65 78 0.4 10 1572491.5 18 69.5 76.6 0.77 6.2 56069.0
19 45 68 1.2 3 1853217.7 19 43.0 68.8 1.07 3.4 57735.5
20 65 78 1.2 30 59617.6 20 65.0 78.2 1.20 30.0 58265.5
21 55 68 0.4 3 1645993.1 21 52.9 67.9 0.35 3.6 58072.5
22 55 78 0.4 30 1031535.6 22 54.7 78.5 0.39 30.9 58087.7
23 45 73 0.4 30 865657.4 23 45.0 73.5 0.40 30.5 58016.3
24 65 73 0.4 3 1747628.2 24 68.6 73.3 0.70 2.2 58445.1
25 65 68 1.2 3 1705132.4 25 65.9 69.0 1.20 3.2 58576.0
26 45 78 1.2 30 3419432.6 26 44.8 78.3 1.19 30.4 57651.5

Data 
No. Tcl Tr Vs OA(%) RMSE Data 

No. Tcl Tr Vs OA(%) RMSE

27 65 68 0.4 3 1882528.4 27 66.6 68.4 0.71 2.0 59002.2
28 45 78 0.4 30 747652.6 28 44.6 78.6 0.39 30.8 57723.0
29 65 78 0.4 3 1609367.3 29 69.5 77.3 0.69 2.3 57465.8
30 65 78 0.4 30 1427994.9 30 67.4 76.8 0.58 22.0 56449.5

Four 
Variable 

Fault

Assigned Fault

Assigned Fault

One 
Variable 

Fault

Three 
Variable 

Fault

10%

10%

Detected Fault

10%
Detected Fault

Assigned Fault Detected Fault

Assigned Fault Detected Fault

10%

Two 
Variable 

Fault

10%  
Artificial 

Fault 

10%  
Artificial 

Fault 

10%  
Artificial 

Fault 

10%  
Artificial 

Fault 

Table A-4. Assigned and detected fault parameters with 10% artificial noise. 

* The dimmed cells are assigned or detected fault parameters, others are original parameters and it’s detected 
values. 
* Circled values are unacceptable detection values. 
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