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ABSTRACT

Ultrasound-modulated
Optical Tomography. (August 2002)
Haewon Nam, B.S., Ewha Women’s University;
M.S., Ewha Women’s University

Chair of Advisory Committee: Dr. David C. Dobson

Ultrasound-modulated optical tomography is modeled by a linear integral equa-
tion and an inverse problem involving a diffusion equation in n spatial dimensions,
n = 2, 3. Based on measured data, the optical absorption coefficient p is recon-
structed inside of a given domain. We make a two-step mathematical model. First,
we solve a linear integral equation. Assuming the energy fluence rate has been recov-
ered from the previous equation, the absorption coefficient u is then reconstructed by
solving an inverse problem. Numerical experiments are presented for the case n = 2.
Two methods are used for the numerical experiments, gradient descent and levelset.

At the end, advantages and disadvantages of those two methods are mentioned.
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CHAPTER I

INTRODUCTION
In this thesis we study ultrasound-modulated optical tomography (UMOT), a rela-
tively new imaging technology which attempts to combine some of the advantages
of ultrasound imaging with those of optical tomography. We will make a mathemat-
ical model of UMOT and study mathematical properties of the model, along with
reconstruction algorithms. Our ultimate goal is to make a precise reconstruction of
physically important material parameters using UMOT.

Optical imaging of biological tissues has been an active research area recently.
Since biological tissues are highly scattering media, sophisticated reconstruction meth-
ods are required. The main advantages of optical tomography are that it has a good
contrast between healthy and diseased tissue and it is inexpensive, nonionizing, and
noninvasive. The primary disadvantage is that reconstructions are generally unstable
and have low resolution. Ultrasound is essentially harmless, noninvasive, nonionizing,
inexpensive, and has good resolution. Unfortunately, ultrasound has low contrast
between healthy and diseased tissue, thus it is of limited usefulness for diagnosing
conditions like breast cancer. Ultrasound-modulated optical tomography attempts
to combine the good resolution of ultrasound with the high contrast of optical imag-
ing. In ultrasound-modulated optical tomography, some of the diffuse light inside the
biological tissue is modulated by a partially-localized ultrasonic wave. Modulated
photons carry the ultrasonic frequency. The intensity of tagged photons for a given
position of the ultrasonic column can be used to derive the optical absorption coef-

ficient at that point [28]. As illustrated in Figure 1, we denote E the aperture of

The journal model is STAM Journal on Applied Mathematics.



CCD camera which is used for measuring modulated signals. Ultrasound-modulated
tomography was developed by Lihong Wang [25, 27, 28]. The experimental setup is
as shown in Figure 2. The Z axis lies along the optical axis pointing to the CCD
camera. The Y axis lies along the acoustic axis pointing towards the sample. The X
axis is perpendicular to both the acoustic and the optical axes. The ultrasonic col-
umn is generated by a focused ultrasonic transducer. The tissue sample is partially
immersed in water for good acoustic coupling. Two function generators are used to
excite the ultrasonic transducer and to modulate the diode laser. The two function
generators and the CCD camera are controlled by a personal computer [28].

In Chapter 2, we describe background information regarding models of photon
transport, and the interaction between acoustic and optical fields. This information
is used to derive a mathematical model of this inverse problem. This problem can
be divided into two steps. The first step comes from the effect of the ultrasound
transducer [14, 17]. The second step comes from diffusion theory. The diffusion
equation is originated from the Boltzmann equation, which describes photon transport
in the medium [19, 26]. The first section of this chapter gives some notation and basic
definitions and theorems. The second part of this chapter explains the Boltzmann
equation, which is also called the linear transport equation. Instead of using the
Boltzmann equation directly, we simplify using the diffusion equation in this thesis.
The third part of this chapter shows the derivation of diffusion equation from the
Boltzmann equation. We also study the interaction between acoustic and optical
fields, explaining the first step of our model.

In Chapter 3, we study some mathematical properties of the model. We set a
minimization problem and study the properties of the objective function. We show
the existence and local uniqueness of solutions to this problem. To formulate the

diffusion equation, we divide the boundary into two parts. One part is where the
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optical field comes in; the other incorporates a transmission condition. We show the
continuity, and differentiability of the “forward map” which takes a given absorption
coefficient to a solution of the diffusion problem. We obtain the existence of solutions
to the minimization problem by showing that the space of admissible absorption
coefficients is compact. The uniqueness problem is not as easy as the existence. In
[21] it is proved that ¢ uniquely determines a, if V - aV¢ = 0 and some properties
of ¢ and «a are satisfied. Knowles improved uniqueness for more general case [15].
But our model is more complicated than this. We use the analyticity of the objective
function to show local uniqueness. We show that the objective is analytic on the
small neighborhood. Then we show local uniqueness using the Taylor series.

In Chapter 4, we present numerical results of certain reconstruction methods
applied to UMOT. We use two approaches to attempt to obtain better reconstruc-
tions. The first section of this chapter shows reconstruction results from the gradient
descent method. The gradient descent method is one of the most famous function
minimization methods. In gradient descent, the derivative of the function to be min-
imized is used to calculate an adjoint object called the “gradient”. Once we calculate
the derivative of the function, then the approximate solution is moved in the negative
direction of the gradient. That will reduce the value of the function. We combine
the gradient descent method with a total variation regularization in an attempt to
recover blocky shapes, following methods described in [4, 5, 6]. In the second sec-
tion we use the levelset method to reconstruct the absorption coefficient. We assume
that the absorption coefficient is a characteristic function rather than a general L™
function to use the levelset method. The levelset method was first given by Osher
and Sethian for describing the motion of curves and surfaces [20]. Dorn [9] used the
levelset method for optical tomography. He used the Boltzmann equation directly

rather than the diffusion approximation, but did not consider the case of ultrasound



modulation. The levelset method is fast and accurate compared to gradient descent.
It typically converges to the actual solution within 30 iterations. But it is unstable in
the sense that if we add a small amount of noise in the data, then the reconstruction
deteriorates. We again use total variation as a regularization to improve stability.
The final Chapter summarizes the results of this paper and indicates some di-

rections for future research.



CHAPTER II

BACKGROUND INFORMATION
This chapter provides background information on mathematical models for photon
transport in biological media. This information will be used later in the thesis to
model the ultrasound-modulated optical tomography problem. This chapter also

introduces notations and mathematical concepts to be used later.

A. Notation and Concepts

Throughout this thesis €2 will denote an open, bounded domain in R*, n = 2, 3 with

Lipschitz continuous boundary.

Definition A.1 Let k be a nonnegative integer or k = oo. CF(Q) is the set of

functions having all derivatives of order less than or equal to k continuous on Q [11].

Definition A.2 Let G be an open set in R", n > 1. We let L2(G) denote the classical

Banach space consisting of measurable functions on G that are square integrable.
L(G)={u:Q—R| / lu|?dz < oo},
a
Furthermore, for all u, v € L*(G) we set the inner product of L* is defined by
< U,V >p2(g)= / wv dz,
el
and the norm ||u|2. =< u,u >r2q) [11].

Definition A.3 Let G be a nonempty open set in R*, n > 1. The Sobolev space

HY(G) consists precisely of all functions

u € L3(G)



that have generalized derivatives
Ou € L*(G) for all j=1,..n.
Furthermore, for all u, v € H'(G), we set the inner product
< U,V >pi= / (uv + Zﬁjuﬁjv)dx,
and the norm ||u3, =< u,u >y [11].
More generally, we can define as follows.

Definition A.4 Let us denote by WF(Q) the set of k times weakly differentiable

functions on . The W*?(Q) spaces are Banach spaces defined as
WHhP(Q) = {u € W*(Q); D*u € LP(Q) for all |a| < k},
with norm |[ullyre@y = (fo 2o jaj<x [P ulPde) P [11].

Definition A.5 (Fréchet Derivative[22]) Let X and Y be Banach spaces and x
be a point in X. Let F' be a mapping from a neighborhood of xq into Y. Then F is
called (Fréchet) differentiable at xq if there exists a linear operator A from X to'Y

with the property that
F(x) = F(xo) + Az — x0) + G(x),
where
T GG/ 7~ wollx = 0.

If such an A exists, we call it the Fréchet derivative of F' at xq. We call a function

F differentiable if it is differentiable at all points of its domain.



We shall use familiar notations from calculus, such as F'(xy) or DF(zg) to denote

Fréchet derivatives.

Definition A.6 (Normal Operator[16]) A bounded linear operator T : H — H

on a Hilbert space H is said to be normal if TT* = T*T.

Definition A.7 (Compact Operator[29]) Let X and Y be normed spaces over R
or C. The operator
A:MCX—>Y

is called compact if and only if

1. A is continuous, and

2. A transforms bounded sets into relatively compact sets.

Throughout this thesis we define X as a subset of £2(€2) such that

X={pel>*Q):0< u <plr)<up < oo, u is Lipschitz continuous with

Lip(p) < c and p = q on 092},

for some given Lipschitz continuous function ¢, and a given constant c.

In this thesis we use the gradient descent method for the numerical results. The
gradient descent method is a function optimization method which uses the derivative
of a function and the idea of steepest descent. According to Definition A.5, the
derivative of a function J : X — R at the point x5 € X is a linear operator A
mapping X into R. If X is a Hilbert space, then by the Riesz representation, the
derivative operator must have a “representative” a € X, i.e. Ar =< a,x >x for
all z € X. The representative a is usually called the gradient. We will denote
DJ(zo) = a. The derivative of a function in a particular unit direction is the slope.

The slope is maximized in the gradient direction, and minimized in the negative
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gradient direction. Moving slightly in the direction of the negative gradient reduces

the value of the function [3]. The gradient descent method is described as follows;

1. Let J be the function to be minimized. Let xy be the initial guess. Compute

the gradient of J, DJ(zy). Set n=0.

2. update z,.; = x,, — hDJ(z,), where h is a step size which must be chosen so
that we don’t take too big or too small of a step. Too big step will overshoot

the function minimum and too small step will result in slow convergence.

3. Update n=n+1. Repeat the above two steps until we converge to a local mini-

mum of the function J(z).

The gradient descent method is conceptually straightforward. With proper stepsize
control h, and mild assumptions on J, it can be shown to converge to a local minimum

[3].

B. Boltzmann Equation

The Boltzmann transport equation describes the migration of photons in biological
tissues: [7, 8, 9, 12]
QD) S(00) = (U0 (i + ) B C) + e [ W OIC- N =0,

A7

where r € R? is the position vector and ¢ € R® a unit vector pointing in the direction

2 1

of photon propagation. Here, U(r, () is the energy radiance in units of Wem™2sr™".
The source term S(r, ¢) is the power injected into a solid angle centered on ( in a unit
volume at r. The quantities p, and p4 are the absorption and scattering coefficients
which are the inverse of the mean free path for absorption and scattering, respectively.

The phase function p((, {’) is the probability that during a scattering event a photon
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with direction (' is scattered in the direction ¢ per unit receiving solid angle. The
phase function usually depends only on the change in direction of photon. Therefore
p(¢, ") = p(C-¢’') and the anisotropy, the average of the cosine of the scattering angle
g = f47r ¢-Np(¢-¢) d¢. Let o(r f47r ¢) d¢. The function ¢ is the energy
fluence rate with units of W/cm?. The quantity J(r) = | 4. C¥(r, ) d( is the flux or
current density. It is a net energy flow per unit area per unit time. The transport
equation model can be used to perform accurate computer simulations of photon

transport in biological tissue [25].

C. Diffusion Approximation

We use the diffusion approximation to simplify subsequent theory [7, 8, 9, 19]. In the
diffusion approximation, it is assumed that photon scattering is the dominant process
in the material, which is mathematically expressed as p,/pus < 1.

Our derivation here follows [26]. In the diffusion approximation, the radiance is
expanded in spherical harmonics truncated at the first order. Thus the radiance can

be rewritten as [26]

= Z Z Ln’m(T)Yn,m(S),

n=0 m=—n

where r € R? is the position vector and s € R® a unit vector pointing in the direction

of photon propagation. Y, ,,(s) denotes spherical harmonic function as

Yn,m(s) = Yn,m(07 QZS)

- (—1)"‘\/(2n4;(;)$rg)r)!Pmm(cos 0) exp(ime),

where P, ,(cosf) denotes the associated Legendre polynomial. Here 6 and ¢ are

the radial and azimuthal angles associated with s, respectively. By substituting the
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expansion of U into ¢(r) = |,

4 Y(r,5) ds, we obtain

o(r) = 4nLyo(r)Yoo(s).

Let J(r) be the flux. By substituting the expansion of ¥ into J(r) = [, sW¥(r,s) ds,
we get
AT
J(T) ’ C = ? Z Ll,m(T)Yi,m(C)'
m=—1

Therefore
22) ¥(r0) = o) + 320 ¢

. Q) = ) + =J(r) - ¢

The phase function depends only on the change in direction of photon and can be

expanded in Legendre polynomials as

p¢-¢N =) 2n4:rr PG
(2.3) T
:Z Z gnYmm(CI)Yn,m(C),

n=0 m=—n

where P, = P, o are Legendre polynomials and Yn,m denotes the complex conjugate

of Y. By using [, p(¢-¢')=1and [, ¢-¢ p(¢-¢') =1, we obtain gy = 1 and

g1 = g, respectively. Thus we have

(2.4) p(C-¢) = 41 (1 4+ 3gcosb).

4z
By substituting (2.2) and (2.4) into the Boltzmann equation (2.1) and integrating

over the full 47 solid angle, we obtain
(2.5) pap(r) + V- J(r) = S(r).

Similarly, using (2.2) and (2.4) in the Boltzmann equation (2.1), multiplying by s and
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integrating over the solid angle, we have

(0 1)) + 596(7) =0,

where p;, = (1 — g)pus which is called the reduced scattering coefficient. Thus we

obtain
1
J(r) = ———Vo(r),
(r) 3(tta + 1) (r)
which is called Fick’s law. Therefore we have
(2.6) Ve Vo) + () = ()
. - : 90 r ,anD r)= r).
3(ta + 124)

For simplicity, let us denote p, = p and pl, = pu;.

The diffusion equation (2.6) is very practical when used in the inverse transport
problem arising in optical tomography. It is well understood and can be discretized
efficiently. On the other hand, the transport model (2.1) is more general and can be

applied in situations where the diffusion approximation fails to give good results [7].

D. Interaction of Optical Field and Ultrasound Column

We are interested in the interaction of an acoustic beam with an optical field inside
a body [17]. The correlation function is given by [14];

— k2

2.7 G(r,71) = 5

/](r')P(T, A% (1) (1 — cosw,T) < exp(iAG (7)) > dr’,

where » € R? is the position vector, k is the optical wave vector, wy is the frequency,
A(r) is the amplitude of the displacement. The quantity A(r) is the distance the
material at point r gets displaced by the acoustic field. It is related to the acoustic
pressure. Here [(r') is the intensity of the optical field. For our diffusion model,

I(r") = ¢(r') where ¢ satisfies (2.6). The quantity [ is an average distance of the
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transport mean free path, 7 is a time. The function P(r,r’) is the probability of
arriving at r from »’. The function

n(a)
< exp(ing'(r)) >=[] < explig; - A7) >,
j=1

where Ar; is the fluctuation in the displacement of the jth scatterer related to its
random motion, and ¢; is the scattering vector. Here « is the path between the
observation times ¢ and t+7 with the displacement of n scatterers. The angle brackets
indicate the average over time. The term < exp(iA¢ (7)) > would be observed in
the absence of the acoustic field, where ¢ is the part of the accumulated phase that
is associated with the path length.

By taking the average over time 7, we can rewrite (2.7) as

(2.8) Gi(r) = c/P(r, ) A% (Yo (r")dr’,

where the ¢ is a constant. Here, the quantity Gi(r) is the time-averaged correlation
at r. Let E be the aperture of the detector used for measuring the modulated signal.

Then the measurement taken with the acoustic column located at x = 0 is

/E Ci(r) dr = ¢ /E /Q P(r, ") A2()p(r") di'dr,
—c [ PO ar

where P(r') = [, P(r,r")dr. Assuming that the acoustic column does not change

shape upon translation, the measurement at arbitrary location z is

(2.9) G(x) = c/Q P(r"YA*(r' — z)p(r')dr'.

A quantity related to the field correlation function can be measured by beating

the transmitted signal with a local oscillator field derived from the laser [14]. For our
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purpose, we assume that the quantity G(x) itself is measured at each acoustic column

position x.
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CHAPTER III

MATHEMATICAL MODEL
Given some domain 2 C R*, n=2 or 3, with Lipschitz boundary, we are interested
in the problem of recovering the absorption coefficient p inside {2 from the measured
ultrasound-modulated photons captured outside 2. In the following we assume that

n=2. This problem can be divided into two steps, discussed next.

A. Recovering the Optical Field

The first step is to recover the optical field ¢ from the measured data G(z) defined

in (2.9). Let us define the convolution operator

(3.1) (Tu)(z) = / oz — y)u(y)dy,

where u(y) = P(y)p(y) and g(z) = cA?(—z), where A and the constant ¢ are from
(2.9).

Recall that the quantity (T'w)(x) is from the interaction of a narrow acoustic
beam with an optical field inside the medium [14]. We assume that the acoustic
column can be translated anywhere within the medium, so that x € 2. The problem
is to recover the optical field ¢ from (7'u)(x). Observe that (3.1) is a convolution of

g and u. Let gy be a given measurement. Then (3.1) becomes

(3.2) (Tw)(x) = (g * u)(x) = go(x).

The displacement A(x) is the solution to a simple acoustic wave equation, hence
the kernel g is a continuous function with g € £3(€2). Then the function 7' is a linear
bounded compact operator from £2(€2) into £2(€2) [29]. Also, there exists the adjoint

operator 7™ [29]. Instead of solving (3.2) directly, we consider a regularized form of
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the normal equation [10]
(3.3) (T*T + el )u = T go,

where € is a small positive number. Then the existence and uniqueness of solutions
for (3.3) follows immediately from the fact that 77 + el is a normal operator [16].
As a self-adjoint linear equation, problem (3.3) can also be discretized and solved for
example by the conjugate gradient method. For the remainder of this work, we will

assume that (3.3) has been solved to yield an approximate optical field

@ = (T*T + el)"'T* gy / P.

B. Recovering the Absorption Coefficient

The second step is to recover the absorption coefficient from the function ¢ from the
first step. The class of “admissible” absorption coefficients X should be chosen to
include all possible expected p.

Consider the model

1
V. —Vo+up=>=..
3k + ps)

The boundary of €2 can be written as a disjoint union, 92 = I'y U T';. As illustrated
in Figure 3, [y is the part of the boundary which the laser beam illuminates and I’y
denotes the other part. Note that the source term S = 0 in €. Define y(pu) = ?)(Tlus)
Then, the diffusion equation becomes

(

=V -y (1)Ve + pp =0in Q,

(3.4) 7(1)% = f on T,

W(M)g—i +ap=0onTy.
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1

[o [1

1

Fig. 3. Sketch of the Boundary

Note that v(u)g—i denotes the input flux. The boundary condition on Iy means
that the input flux at the boundary I'y is given as a function f, determined by the laser
source. The other part of the boundary condition means that the energy fluence rate
at the boundary I'; is proportional to the output flux, with proportionality constant
a. This model is by no means perfect, but essentially all of the analysis which follows
is applicable with minor changes in boundary conditions. We set this problem in a

minimization problem.

C. Minimization Problem

Let F be a function from X to H!(Q) defined by F(u) = o, where ¢ solves (3.4). Let

¢ be given. We assume ¢ has been recovered from measured data by solving (3.3).
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We wish to recover p by solving the least-squares minimization problem

: _ =12
(3.5) gggJ(u) = [|F (1) — &ll72(0)-

Let X be a subset of £7(Q2) such that X = {u € £2(2) : 0 < g < p(z) < po <
00, p 18 Lipschitz continuous with Lip(p) < ¢ and p = q on 0Q2}. We assume p
is the known function ¢ on the boundary, since 2 is accessible there. The “forward
map” F is a function from X C £>*() into H'().

1. Properties of the Forward Map

In this section we will study properties of the function F. By standard energy esti-

mates [11], ||[F' (1) g1 < C for all p € X.
Proposition C.1 F': X — HY(Q) is Lipschitz continuous.
Proof. Assume (u+ s) € X. Let F(u+ s) = ¢ + s where F(u) = ¢. Then
(3.6) =V y(p+s)V(e+ o)+ (p+s)e+¢s) =0, onfl,
(3.7) —V-v(p)Ve+pp =0, on .
By subtracting (3.7) from (3.6), we have
=V 1+ 8)Veps + (1t s)ps + s = V- (71 + 8) = 7(1) Ve = 0.

Expand (u+s) as y(u+s) = () +sDy(1) (s)+O0(|s[|%), where Dy (i) = — 57",

the derivative of vy(u) with respect to pu. By multiplying by ¢, integrating by parts
using s = 0 on 052, and the fact that ||| g1 () is uniformly bounded, we find |[¢;[#2 <

(||| for some constant C. This shows that F'is a Lipschitz continuous function. O

Proposition C.2 F is Fréchet differentiable. Furthermore, the Fréchet derivative

DF(u) : £2(Q2) — L2(Q) is a compact operator.
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Proof. From the previous proposition, F is Lipschitz continuous. Let F(u + s) =
p+ @, as above. If the Fréchet derivative exists, it must equal the Gateaux derivative
DF(p)(s) = limyg—o ﬁ% := 1) and hence solves

(

~V () VY 4+ uap = V - sDy(n) Vo — s,

(3.8) () 5% = 0 on T,

k7(/1)‘3—16 +a =0 onI}.

It is obvious that DF(u)(-) is linear function on X. First we show that DF(u)(-)
is bounded operator, i.e. ||{]x: < C|s]|« for some constant C'. From the equation

(3.8) by multiplying by %, it becomes

69 [awivers [uvp+ [ aluft = | v-sprwven - [ seu.

Since p and ps are bounded below from a positive constant, the left hand side of the
equation (3.9) can be bounded below from ¢||¢||;1. By integrating by parts the right
hand side of (3.9) can be bounded above by ¢/||s|, Where ¢ = ¢/(f). Thus we obtain

Y|l ) < C|s]|s- Now, it only remains to show that

[F(n+s) = F(p) = DE(p)(s)|
sl

as ||s|| — 0. By subtracting (3.8) from (3.6), and multiplying by (¢s — %), we have

(3.10) — 0,

les = Yllm@ < cllsllsollesllm@)-

Since F'is continuous, [|s||m1@) — 0 as ||s|| — 0. Thus we obtain (3.10).
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Now, we show that DF(u) is a compact operator. Let DF(u)(d;) = ¥y, where

i+ 0 € X and 1y solves

/

V -y (1)Viby + paby = V - 6Dy () Vip — O in L,

V(1) %2 = 0, 0n I,

\7(:“)66% + Oﬂ/Jk - 07 on Fla
where ¢ = F() and [|6;]|oc < C. Then integrating by parts,
[awivud+ [wnf o [ ol = [ 6Dvwe- Vi - [ i
Q Q I Q Q

Thus

el el < / )Vl + / ulil® + a / il
—/5kD7(M)V90'V¢k—/5k901/1k7
Q Q
D Vo -V Ok || oo
s(/ﬂ MO wk|+/9|sowk|>|| Al

< co([lpllllewlle + o llal[ )10k oo

= csl|@l|1l|¥nll1] Okl co-

Thus {¢3} is a bounded sequence in H*(2). Since H'(Q) — L*(Q) is a compact

embedding, {¢;} has a convergent subsequence in £2(Q). O
2. Compactness of Admissible Solution Space
Proposition C.3 X is L -compact.

Proof. Let {ux} € X. Then py, € W°(Q) with ||gr]leo < pi2 # 0o. By Theorem

7.10 in [11], there exists a subsequece {y,, } which converges to some p € C°(€2) with
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respect to L>°-norm. Then,

() — ()] < () = o, ()| + [y () = o ()] + | () — (),
<2l — g lloo + cllz =yl

— cllz =yl as k; — oo,

where ¢ is the Lipschitz bound in the definition of X. Thus, u € X, which shows X

is L>°-compact. [

3. Existence and Uniqueness of Solutions

Since X is £~ compact (by Proposition C.3) and F'is £ continuous(by Proposition

C.1), the minimization problem has a solution, by the Weierstrass theorem|[29].
Theorem C.1 The minimization problem (3.3) has a solution.

Now we will study the uniqueness of the minimization problem. We will try to
prove the uniqueness of solutions result using Taylor expansion. As in the complex
plane, a Taylor series converges if the remainder terms |R,,| = WT” — 0, where
r = ||[v — p||. We show that ||D"F(u)|| < cA™n! for some constant ¢ and A. Thus, we
can conclude that F is analytic in the small neighborhood of p with radius less than
1

The following theorem is proved in [1]

Theorem C.2 Let X, Y be Banach spaces, U C X open, x € U. Let ' : U — Y

be p-times differentiable and the derivatives up to the order p-1 continuous. Then for

every € > 0 there is a 0 > 0 such that for all h € X with ||h|| < 0,

1F (e +h) =) ]fl!DjF(fE)(h, W) < el[Al.

J=0
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Here, DVF(x)(h,...,h) denotes the j-th order derivative of F at x, in the direction

h.

Proposition C.4 D"F(1)(s1, 82, ..5,) = @™, where o™ solves

(

=V () V'™ + pp™ = —s, 00V

+ 300 V584185, DI (1) Vipli=b in Q)
(3.11)

(n)
()%= =0, on Iy,

y(p) a‘g:) +ap™ =0, on T,
\

Proof. The proof is by induction. By Proposition C.2, (3.11) is true for i =
1. Suppose it is true for ¢ < n and prove this for ¢ = n + 1. Let D"F(u +
5n+1)($1: SR Sn) = Sp(n) + ©s. i-e'a

=V (1) + 8041 DY (1) + O[5 [5)V (™ + 0,) + (1 + s001) (™) + )

= ="+ DV sy 11su (DI () o+ 500 DI ()
j=1
+ Ollsns1]2)) VgD,

Divide by |[$n+1]lec and let |[sp41]/ec — 0. Then (3.11) is true for i=n+1. O

Proposition C.5 There exists constants A = A(u, ) and co such that
1™ [lpa10) < coA™0|[81]loc--[|Snllocs for all n,

i.e., |[D"F ()] < cgA™nl.

Proof. Let ¢, = ||D"F(u)||. The proof is by induction. Obviously, this is true
for i=0. Assume that it is true for i < n — 1. We prove it for i = n.
Let

1 1
m = max < .
w€Q p(x) 4+ ps 1+ W
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Since D"y(u) = (—1)"W, 1Dy (1) ]|oe < $m™nl. Multiply (3.11) by ™.

Integrating by parts, (3.11) becomes

/v(u)lvw(”)|2+/u|so(”)l2+/ afp]?
Q Q To
_ / 510D ()
Q

- / §jeesn D" Iy () VU™ v
=1 Q

— E DIt ™),
/F .8 (1) 5P

Then, the left hand side of (3.12) can be bounded below by %ng(")”%l(m, where

(3.12)

— = min( ! )u(:z;)) > min( !

N 1) > 0.
P AT ES R )

3(:“2 + s
On the other hand, if we denote ¢, = ||s1]|cl|S2//co---||Sn|lcc; then (3.12) is bounded

above by

cam18a 9™ 11+ ¢n Y e I D" ()1l

Jj=1

+qna2|| ||520J ™Il

where 3 is the constant from the trace inequality: || f||z290) < B||fll# @) [11]. Thus

we obtain

1 ¢ . e - . e
™1 < afen 1+ 3 Z cj1(n—j+1)m" 7% 4 a3 chfl(n — i+ )Im™ Ity
j=1 j=1

=af{c,—1 + chn_]] m! + af? ch ijim?}.
7j=1
Hence we have the inequality

e < aco{A™ (n — 1)) + <§m+aﬁ2>i<n — j)g1AT I},

=1
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Note that

(n—7yt <nl, forall j <n.

We can conclude that

cn < acy (A"l(n -+ (%m + af®)n! ZA"jmJ) :

(3.13) = acy (A”l(n — I+ (%m + aﬁ%n!%) :

Choose A sufficiently large such that A —m >1A. e.g. A > 2m. Then (3.13) yields

m(A™ —m")
sA
2mA"
A b

= acg{A" (n — 1)! + (%m + aB*)nl2mA™ Y,

2

1
cn < aco{A" t(n — 1) + (gm + af®)n!

< aco{A" (n — 1) + (%m + aB*)n!

a 2m2a 2ma
- notf_ 4 2077 2
coA n.{nA + 3 +ap T }-

Choose A sufficiently large to make

a 2m*a ,2ma
el Sy
At sa Tt

Then we obtain the desired result ¢, < cgA™n!. O
Let us consider the case where F is linearized. i.e. F(u+d,) = F(p)+DF(1)(d,).
The following result is proved in [21]. Proving uniqueness for the linearized inverse

problem is often the first step to a full uniqueness result [2].

Lemma C.3 Let Q) C R" be a connected bounded domain. Assume thatu € C*(Q2), v €
C(Q) and f € L>(Q). Assume a € L>(Q) is continuous and differentiable. For given

u and v, a satisfies

(3.14) Vu-Va+wva=f in .
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Suppose |Vu| > k for some positive number k in Q. Then for any f, (3.14) has a

unique solution o assuming prescribed values along 052, and

(3.15) laflec < C(u, v) - {sup |af + %Hfllooh
o0

where [u] = supg u — infg u.

Proof. We include the proof for completeness. The characteristics of (3.14) are

curves of steepest ascent in u given by

dx _ Vu
ds  |Vul’

where s denotes arclength in the direction of increasing u. Since all characteristics
have finite length, they must originate and terminate on the boundary.

Let p € Q be an arbitrary interior point. Let C be the corresponding characteris-
tic through p and a € 052, the boundary point at which C originates. Along C, (3.14)

becomes to an ordinary differential equation in a:
da
|\Vu|— +va = f.
ds

Since |Vu| > k > 0, we can divide by |Vu|. Then we have

v

d 0w 0 ,
%{O‘exp{_/s |VU|}} = fexp{_/s |vu|d5 }7

where s = 0 at p. By integrating from ¢ to p, we have

v

) oy g 0y
o) = a@en(= [ iy [ Lol [ goasas

where [ is the arclength of C between ¢ and p. Let r = supﬂ{ﬁ}. Then we obtain

the inequality

rl 1
< . rl ||f||0o . €
la(p)| < |a(q)| - e +ian|Vu| "
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Note that

la(q)] - e < g§§|04-fnaX{1,e”},

and for any p € ()
rl __ 1
‘ < max{1,e"} < max{1,e ™},

rl

where [,,,., is the length of the longest characteristic.
By the assumption infq |Vu| > 0, a well-defined characteristic passes through

each point of 2. Also, it yields a bound [,,,,,. on the length of the longest characteristic,

[u] .
lmax >~ - y = —inf u.
infalVl [u] s%pu infu

Thus we obtain the desired inequality (3.15). O

Lemma C.4 Suppose that
V| >k in €,

for some positive number k then the linearized problem DF(u)(0,) = v has a unique

solution such that p+ 9, € X.
Proof. First assume that = 1. Let 1+ 6, € X. Then (3.8) becomes
=Y (DAY +¢ = Dy(1)V -5,V = dup, in Q

We want to show that the kernel of the Fréchet derivative at p = 1 is trivial. That
is, show that DF'(1)(6,) = 0 implies 6, = 0. Suppose DF'(1)(d,) = 0. Then we have

0=Dy(1)V -6,V —0d.p

= Dvy(1)Vé, - Vo + Dy(1)0,A¢ — 6.
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Thus we have

1
3.16 Vo, - Vo+0,(Ap———¢) =0
(3.16) we Vo +0,(Ap D7(1)‘p>

By the previous lemma, we could obtain 4, = 0, since d, = 0 on the boundary.
Now we show the same result for an arbitrary p € X. For the arbitrary p € X

(3.8) becomes
=V ()V + pp = V- Dy(p)6,Vo = 0,

for p+9, € X. If » = 0 then

0=V-Dy(u)s,Vo—d.p
= VDy(p)d, -V —dup

(3.17) = Dy(p)Vé, - Vo +6,{VDy(n) - Vo + Dy(p) Dy — o}
Since Dy(u) is below from zero, we could divide (3.17) by Dv(u). Then
V6, Vi +8,P =0,

where P is

D

Dy(p) (k)
Then similarly we have by Lemma C.3 that §, = 0 since ¢, = 0 on the boundary.[]

To get a local uniqueness result, we wish to show if F(pu + 6,) = F(u) for
pu+ 06, € X, then 6, = 0, for sufficiently small ||0,]|. Since F' is analytic in a small
neighborhood, it suffices to show if DF(u)(8,) + 5. D*F(p)(6,,6,) + ... = 0, then

0, = 0. First, we show if

(318)  DF(u)(5,)+ %DQF(M)@, 5,) 4 o+ %D”F(u)(éu, Ss e 8,) = 0

for any n, then o, = 0.
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Lemma C.5 Let n be given. Let Fy be such that

n— . 1 i—
Fy(p, 0" ) = Dy(n) ), =Y.
i=1

Suppose |V Fy| > k, for some positive number k. Suppose (3.18) is true. Then é, =0

provided 1+ 6,, € X.
Proof. First assume that 4 = 1. From Proposition C.4, we get
0=—s i Z,—l!go(i_l) + i % Z V - s/ DIiny(1) V=9
:—SZ '902 2 —I—Z ZD*’ s]Ago(’ D4 js Vs Vgolj))
+ Z 1)Vs - Vl'™ 4 Dy(1)sApt=)
(3.19) = sk, + Vs - VF;,
where
Fy = Fi(s, ¢, ..p" )
=— ZX:; Z,—llgo(i_l) + ;:; %{; Diy(1)(s7 Al 4 js772Vs - Vipli=D)
+ Dy(1) A=Y,

The result follows immediately by applying Lemma C.3 to (3.19).

Now let’s prove it for arbitrary u € X. We have

LT "1 o o

_ = A(i-1) = . (i—7)

0= SE Z,!go + E A E Vs DIy(p) V™
i—1 i=1 =1

= SF1 + Vs - VFQ,
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where
, LIS NG . .
oD - AVA (i—J)
Z P + Z f Zs V- DIy (p) Ve
Z Dy (p)jVs' ™ Vpti=)
1=2 =
-3 D
7!
Even though Fj depends on s, estimate (3.15) implies s = 0 since supyg, |s| = || f]lec =
0. 0O

Theorem C.6 Let Fs be such that

n - 1 i—
Fy(p, g™, ) = Dy(p) Y =™
i=1

Suppose [N Fy| > k, for some positive number k. Then the minimization problem

(3.5) has a locally unique solution.

Proof. Suppose that F(p) = F(u+s) for p, p+s € X. Assume ||| is

sufficiently small that the Taylor series converges. Then
1 n
(3.20) DF(p) + ... + HD 'F(p)+...=0,

Multiplying (3.11) by # and summing from n = 1 to co, we have

<1 B - o -
(3.21) Z ﬁ{—sgo(” Uy ZV - 5! DIy () VY = 0.
n=1 """ j=1
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We can write (3.21) as
_ g1 ) (n—j)
O;M{ s +;1V s/ DIy(p) Vo)

o0 1 ~ o0 1 n o o

O RS ) SR
n=t " 1 j=1
00 1 ~ 00 1 n ' ' o

_ Z ESSD(TL D4 Z - Z{sav . DJ?’(H)VSO( 7)
n=1 n=1 " j=1

+ DIy (p) Vs’ - V93

00 1 . 00 1 n . ' o
n=1 " n=2  j=2

, , » =1 -
+ DIy(p)Vs’ - VU 4+ Y = Dy(u) Vs - Vil
n=1

= sF) + Vs - VF,
where
1 N , _
Flz—zgm@( ”*2;52;{83 V- DIy () Vel
n= n= 1=

+js' 2 DIy (n) Vs - V)
%) 1 .
F=)" ED’Y(#)SD( b,
n=1

By Lemma C.3 we obtain the local uniqueness result. [
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CHAPTER IV

NUMERICAL RESULTS

As a computational strategy for solving the reconstruction problem, we used the finite
element method (FEM). In all our numerical experiments we consider a domain of
the size 1 x 1 em? which is uniformly divided into 64 x 64 cells on a fixed grid. We
assume that the absorption coefficient p is piecewise constant with positive upper and
lower bounds 2 and 1 respectively. We set the scattering coefficient ps as a constant
4.

The discretized minimization problem (3.5) is approached using two different

strategies: the gradient descent method, and the levelset method.

A. QGradient Descent Method

We used the gradient descent method in two ways. The first section shows the result of
the regular gradient descent method. The next section describes the gradient descent

method with total variation regularization.

1. Gradient Descent

Proposition A.1 Let J(u) be defined as in (3.5). There exists the Fréchet derivative
DJ(u) of J: X — R. Furthermore DJ(u) € L%(R2), for all p.

Proof. It was established in the previous chapter that F' : X — H' () is Fréchet
differentiable. Since the squared £? norm is differentiable on H!, it follows that

J(p) = ||[F(p) — ¢||%2(Q) is Fréchet differentiable.  We now compute the Fréchet
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derivative of J(pu).

J(+6,) = J(u) = [[F(n+8,) — 1> = | F(p) — &l
=< F(p+6,) — ¢, F(u+6,) — F(p) >

+ <F(p) =@, Fp+0,) — Fp) >.
Divide by 4, and let ||0, |~ approach 0. Then,

DI()(3,) =2 < DF(u)(3,). F(u) — >,

(4.1) =2<9,, DF*(F(p)—9)>.

Thus we can identify the operator DJ(p)(-) with the “gradient” function DJ(u) =
2DF (p)*(F (i) — ¢). Let DF(1)(8,) = ¥ where 1 solves (3.8). Then, 2DJ(u)(8,) =

Jo (e — @) = g by setting g = ¢ — @. Let u € H*(2) solve
(

=V -y (p)Vu+ pu = g in §,

(4.2) V()G = f on T,

V()2 + au=0onT;.

\

Then using (3.8),

30T, = [ v
- /Qw(—V (W) Vu + pu)
_ /ﬂu(_v A VY + ab)
— /Q (V -8, Dy(p)Vip — 6,9)
=— /Q Ou(up — Dy(p)Ve - Vu)

=<6, —(up + Dy(u)Ve - Vu) > .
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Combine with (4.1). Then we have

DJ(p) = 2DF ()" (F(p) — )

(4.3) = —2(up + Dy()Vy - Vu).

By Theorem 8.8 in [11], u, ¢ € W?%?*(Q). Thus u, ¢, Vu, Vo € WH3Q). By
Theorem 7.26 in [11], there is a compact embedding from W12(Q) to £4(2). Thus
up and Vu - Vi are in £2(€) and we can conclude that DJ(u) € £3(2). O

Note that by using (4.3), the gradient DJ(pu) can be calculated with only two
solutions of the diffusion equation.

Our basic implementation of the gradient descent method is :

1. Choose initial guess pg and initial stepsize c. Set j=0.

Define 5Jj = DJ(/,L])
2. While ||6J;]] > tol, do

(a) If J(u; —c*dJ;) < J(u;), then
Mj41 = py — €% 0J;
else,
c=c/2,

end

(b) Set j = j+ 1, compute dJ;=DJ(u;) from equation (4.3).

Figure 4(b) shows a typical reconstruction result from the gradient descent
method, using the initial guess g = 1. The original solution of this reconstruc-
tion is shown in Figure 4(a). Even though the original solution has maximum value
2, the reconstruction result has maximum value approximately 1.5. This is because

the derivative of J, DJ(u) = 2DF*(F(u) — @), where DF and hence DF™* are com-



(a) Real Solution

415

41.45

41.4

=41.3

(b) Gradient Decent Method

Fig. 4. Result of the Gradient Descent Method
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pact operators. Thus most of the eigenvalues are close to zero, and the gradients tend
to be overly smoothed.

As in Figure 4(b), this method reconstructs the “blocky” model into a blurry
model. Here “blocky” means that the conductivity is a piecewise constant function

for which the set of discontinuities has relatively small measure in codimension 1 [4].

2. Minimal Total Variation Regularization

One way to reduce the blurring effect is an “image enhancement” technique which
was applied to the linearized electrical impedance tomography problem by Dobson
and Santosa [4, 6]. The technique is essentially a nonlinear regularization by total
variation, following ideas introduced by Rudin, Osher, and Fatemi for image denoising
[23]. Measuring the total variation has long been recognized as an effective way to
quantify the “simplicity” of a given signal or function. It measures the oscillations
of a given function, but still admits discontinuities. This technique has been used in
various applications such as image reconstruction, inverse problems, optimal design,
and electrical impedance tomography [4, 23].

Consider

min J () = |F () — @2y + 3 / V.

pnex
where V1 denotes the gradient of 1 in the sense of distributions; Vu is a vector valued

Radon measure and
1V() = [ [V
Q
is the total variation of u. We denote by BV (2) the space of functions of bounded

variation with the norm

lllBve) = llulleie) + TV (w)-
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We see that p € X C BV(Q2). The quantity 8 is a positive number, called the
regularization parameter.

The main computational difficulty is due to the nondifferentiablility of the total
variation functional, which precludes direct application of derivative-based minimiza-
tion methods. For this reason, we modify the total variation functional with a small

smoothing parameter and solve the resulting problem. The problem can be written

i () = 170 = @l + 8 [ (10,

pneX

where

s if s>ce¢
he(s) =

2

> ts5 ifs<e

Then h, is C*(2) for € > 0. We call € a smoothing parameter. The function A, rounds
off the corner in the absolute value.

In our numerical experiments, we discretize the absorption coefficient u to lie in
the space of piecewise constant functions on a uniform grid with m x n cells. In this
case h(|Vp|) is a measure supported on the lines of the grid. If we denote 1y ;) the

value of p on the (7, j)-th cell, then we have

m—1n—1
1

/Q (|Vul) = — he(|peigr5) — Bagl) + Pe(lia 1) — Hagpl)-

=1 j=1

S,

The (i,j)-th gradient, for 1 <4 < m, 1 < j < n, of the functional Jy := [, he(|Vpl|)
is [4]

dJy
O g

=qe(| gy — 1. ) (Bag) — Bi-1.5)) — @1y — 16p]) (Bt — i)

+qe(| gy =m0 (g — #e-1)) = @e(bie1) = Hep|) (a1 — Hag),
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Fig. 5. Blocky Model

where
b (s = if s>€
= if s <k,
and 68‘10 =0ifi=1orm,j=1orn.
H(ig) ’

For the same exact solution and starting guess in Figure 4, Figure 5 illustrates
the result of the total variation regularized method, with the regularization parameter
B =5 x 107 and the smoothing parameter ¢ = 10~%. It is “more blocky” than the
unregularized method, but it has fat block compared to the real solution. Since the
total variation term also favors small function values, the maximum value of the

reconstruction is too small (approximately 1.25).
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B. Levelset Method

The main goal of this problem is to get an accurate reconstruction of optical absorp-
tion in biological tissue. That is, to separate diseased tissue from the healthy tissue.
If we assume that the absorption coefficient is piecewise constant, e.g., that u = gy,
indicates healthy tissue and p = p4 indicates diseased tissue, it could be reconstructed
by using levelset method.

The levelset approach was first given by Osher and Sethian for describing the
motion of curves and surfaces [20]. Recently, the levelset method has been used in
various problems, for example image enhancement, computer vision, interface prob-
lems, crystal growth, or etching and deposition in the microchip fabrication [13, 18].
Santosa used the levelset representation as a part of a solution scheme for inverse
problems involving obstacles [24]. More recently, this method is applied to a recon-
struction for diffuse optical tomography by Dorn [9]. The differences between [9] and
the present work are that Dorn does not consider the ultrasound modulation, and
he uses the Boltzmann equation rather than the diffusion approximation. Also, his
algorithm is to find the absorption and scattering coefficients simultaneously. Our
model is to find only the absorption coefficient for a given scattering coefficient. This
method has a powerful reconstruction result in this problem.

As we did in the previous chapter in section 2, we add the total variation regu-
larization term in the levelset method. To our knowledge, this is the first time total

variation has been used to regularize a levelset method.
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1. Levelset

Suppose the measured data is given. Assume that the solution function has two values

in the region 2. The goal of this problem is find the region D in the equation

Fp) = ¢,
where
pq for x € D,
(4.4 u(x) =
pup for x & D.

The levelset approach is fast and accurate compared to the gradient descent
method. It attempts to reconstruct a two-valued piecewise constant function, rather
than a general L*° function. In the levelset method, the region D is represented
by a continuous function, called a levelset function. There are many advantages to
represent the unknown region through a levelset function. We don’t need to make a
priori assumptions about the connectedness and the nature of D [24]. In the levelset
approach, we generate a sequence of functions 7, such that D, — D, where 0D, =
{z : ni(z) = 0}. The function p in (4.4) can be represented through a levelset function

as follows.

a for {x :n(x) < 0},
(45) pay =" {z:n(z) <0}
pr, for {z :n(x) > 0}.

Under this description, problem (4.4) becomes:
Find n(x) in the equation (4.5) such that F(u) = .

We need to calculate the variation of p caused by variation in 1. To do this

calculation, let x be a point on the curve n(z) = 0. Assume that n(z) is perturbed
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by a small variation dn(x). Let dx be the resulting variation of the point z. That is,
(4.6) (n+ on)(z + ox) = 0.

Let D" be the resulting variation in the region, which is the set of x which satisfies

(4.6). By expanding (4.6) by Taylor series, we obtain
(4.7) on+ Vn-oéx =0.

By using (4.7), we find the update for p as [24]

Vi
4.8 op = — Up)=—"0

€0D

The algorithm for the levelset method as proposed in [24] is,
1. Choose ny(x); Set j=0.

2. Compute associated u;

if J(p) >tol, do

(a) Solve DF(u)*DF(u)(0,) = DF(p)* (@ — F(p)) = —5DJ ().

(b) Set drp(z) = — 2 Vi)

Hd—Hh

(¢) Set j=j+1, update ;41 = n; + 0n.

In the numerical experiments, we assume the absorption coefficient p is piecewise
constant on each grid cell while the discrete levelset function 7 is piecewise bilinear.
This leads to the problem of how to approximate p given the update formula (4.5),

as illustrated in Figure 6.
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Fig. 6. Volume Fraction

For simplicity, we calculate a volume fraction over each cell €;:

o o) > o)

! 1€ ’
and set
wp  if V} > (.5,
M =

Also, in step (b), we approximate the model value of 47 by averaging over neighboring
cells.

The levelset method for this problem is fast and accurate compared with the
gradient descent method. This method typically converges to the actual solution
within 30 iterations while the gradient descent method needs thousands of iterations
to get a small tolerance. Figure 7 shows the reconstruction of the shape of the letter
A. We start with the Gaussian function as an initial guess for the levelset function.
Figure 8 and Figure 9 show the initial and the final levelset functions for the A-shape

example. It has an exact reconstruction with 22 iterations.



Fig. 7. Reconstruction of A-shaped Block.

(using levelset approach at 1, 3, 4, 8, 12, 22)
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(a) Associated p for the Levelset Func-
tion Below

0.5
0 0‘0’ ’0’0’0,:‘0'0,"
\\ 0 'lz'o'u
?\\ 0 " 'O'l: 1177
“3*$‘I\\t‘:o:mtzc, il
M’Mll

(b) The Initial Levelset Function

Fig. 8. Initial Levelset Function
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Although the result is good, it is not stable in the sense that if a small amount of
noise is added to the data ¢, the reconstruction deteriorates. To see the instability of
this problem, we add blurred noise in Figure 10 to the energy fluence rate ¢. Figure
11 shows reconstructions of the simple block image, with varying amount of noise.
We observe that the reconstruction deteriorates rapidly when we add a small amount
of noise.

We will address this problem with regularization by a total variation penalty in

the next section.

2. Levelset Method with Total Variation Regularization

As we did in the gradient descent method, one way to reduce noise sensitivity in the
reconstructions is to add a total variation regularization. That is, we consider the

new minimization problem becomes

: 2
iy ()~ el + 9 | hlI7u).

The regularization parameter § can be varied to get the best reconstruction.
Figure 12 shows the reconstruction of the simple block image with the regularization
parameter 3 = 0.01 and the smoothing parameter ¢ = 0.001, with same real solution
as in Figure 4(a). Compared with Figure 11, Figure 12 shows much more stable
reconstructions. Even though the results are good for the simple block shape, which
has relatively small total variation, the reconstruction of images for which the total
variation is large are not necessarily good. As illustrated in Figure 13, the recon-
structions with and without total variation are not much different. Figure 13(c) was

the “best” reconstruction obtained for several values of 3.



(a) Real Solution

(b) Blurred Noise

Fig. 10. Blocky Solution and Blurred Noise

47



(a) with 2% noise

(b) with 5% noise

(c) with 10% noise

Fig. 11. Levelset Reconstructions with Noisy Data
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(a) 2% noise

(b) 5% noise

(c) 10% noise

Fig. 12. Simple Block Reconstructions with Total Variation Regularization
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(a) real solution

(b) 2% mnoise without total
variation

(¢) 2% noise with total vari-

ation

Fig. 13. Complicated Shape Reconstruction with Total VariationRegularization
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CHAPTER V

SUMMARY AND CONCLUSIONS

In this thesis, we have studied the problem of ultrasound-modulated optical tomogra-
phy, mostly from a mathematical point of view. Our aim has been to understand the
basic principles of the reconstruction problem, using simplified mathematical models
where necessary. To this end, we modeled photon transport in the biological medium
by the diffusion approximation and the interaction of photons with the ultrasound col-
umn by a simple integral operator. Such an approach allows us to naturally separate
the study of the reconstruction problem into two steps.

The first step is to solve a linear integral equation, and the second is to solve
an inverse problem involving the diffusion equation. The linear integral equation
has an unbounded inverse, but approximation methods involving regularization are
well-known and very well understood.

The second step is formulated as a least-squares minimization problem. We have
shown some analytic properties of the cost functional of the minimization problem,
and proved that it admits solutions which are locally unique. We have also investi-
gated several reconstruction methods and presented some numerical results for the
inverse problem. We have used gradient descent and levelset methods. We have ob-
served that the levelset method is quite fast and accurate. For stability, we have used
total variation for regularizing both methods. The two methods each have advan-
tages and disadvantages. The gradient descent approach allows the reconstruction
of arbitrary absorption coefficient functions, but tends to give blurred, miscalibrated
results. The levelset method gives faster, more accurate reconstructions, but assumes
a two-component medium, and also has the potential to indicate false results (e.g.,

diseased tissue where none exists and vise versa) in the presence of noise.
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Overall improvements in UMOT will probably be driven more from advances in
experimental techniques than from improved computational techniques. Nevertheless,
we feel that there are significant opportunities to improve the reconstruction methods
described here.

For future work, we could combine the two reconstruction steps as follows. Let

go be given measured data satisfying
Tu = 4o,

where T is the linear integral operator (3.1) and u = Py. Define

where p(u)(x) = P(z)u(z) is a multiplication operator. The function H directly maps

i to the measured data gy. Then a new minimization problem becomes

(5.1) min Jo(p) = | H (1) = gol|2(0-

pneX

Since the new function H is a composition of linear operators and F', H satisfies the
same analytic results which F' satisfies, e.g., existence and uniqueness of minimization

problem, and the differentiability of H. Since the Fréchet derivative of H is

DH(i)(s) = T o po (DF(1))(s).

the Fréchet derivative of J, becomes

D Jo(p)(s) = 2DF ()" (p o T (H () — 90))-

This formulation has the advantage that only one problem needs to be solved, and only
one regularization performed. More importantly, it implicitly “forces” the solution

@ of the first problem to be a solution of the diffusion equation, thereby eliminating
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problems with localized noise leading to spurious “diseased spots” in the reconstruc-
tions. The methods presented here will apply to minimization problem (5.1) with
simple modifications.

The numerical experiments in this paper were done for the 2-dimensional case.
But the main idea of the reconstruction method presented in this paper are not
restricted to a 2-dimensional case. Thus, we think that it is possible to extend the
method to the 3-dimensional case which is more realistic. For both 2-d and 3-d
experiments, the data set is essentially two-dimensional. Thus, the primary new
difficulty in the 3-d case is that some form of tomography or other experimental
technique must be employed to get depth information.

Finally, to validate the ideas developed here, we want to carry out reconstructions

with real experimental data.
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