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ABSTRACT

Essays on Risk Aversion. (August 2006)

Paan Jindapon, B.A., Thammasat University;

M.A., Southern Methodist University;

M.B.A., Thammasat University

Chair of Advisory Committee: Dr. William S. Neilson

This dissertation contains three essays on risk aversion. In the first essay, we an-

alyze comparative risk aversion in a new way, through a comparative statics problem

in which, for a cost, agents can shift from an initial probability distribution toward

a preferred distribution. The Ross characterization arises when the original distri-

bution is riskier than the preferred distribution and the cost is monetary, and the

Arrow-Pratt characterization arises when the original distribution differs from the

preferred distribution by a simple mean-preserving spread and the cost is a utility

cost. Higher-order increases in risk lead to higher-order generalizations, and the com-

parative statics method yields a unified approach to the problem of comparative risk

attitudes.

In the second essay, we analyze decisions made by a group of terrorists and a

government in a zero-sum game in which the terrorists minimize a representative

citizen’s expected utility and the government maximizes it. The terrorists’ strategy

balances the probability and the severity of the attack while the government chooses

the level of investment reducing the probability and/or mitigating the severity. We

find that if the representative citizen is risk neutral, the terrorists’ response is not

associated with the government’s action and the representative citizen’s risk attitudes

affect the strategies of the government and the terrorists. Risk aversion always in-

creases equilibrium severity but does not always increase equilibrium expenditure of
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the government.

In the last essay, we consider a situation in which an individual has to pay for

a good before he realizes the state-dependent surplus of the good. This ex-ante

willingness to pay is called the option price and the difference between the option

price and the expected surplus is the option value. We find that the option value

actually is the buying price for a fixed payment of the expected surplus, and there is

a special case in which the option value equals the negative of the compensating risk

premium. We also find the effects on the option price and the option value when the

expected utility assumption is replaced by a rank-dependent expected utility.
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CHAPTER I

INTRODUCTION

This dissertation contains three chapters on risk aversion. In the next chapter, we

consider a problem in which two agents are endowed with one payoff probability dis-

tribution, but for a set monetary cost can move toward another, less risky payoff

distribution. Which individual spends more on improving his payoff distribution?

Intuition suggests that the more risk averse individual is willing to spend more to

improve the distribution. The literature, however, contains two notions of more risk

averse. The Arrow-Pratt characterization is consistent with one individual with non-

stochastic initial wealth being willing to pay more than another to avoid a mean-zero

risk, while the Ross characterization is consistent with one individual with random

initial wealth being willing to pay more than another to avoid a conditionally mean-

zero risk. But which characterization is consistent with the more risk averse individual

choosing a less risky final payoff distribution in the comparative statics problem?

In Chapter III, we study the impact of risk aversion of a representative citizen

in a game played by a government and a terrorist organization. Suppose that the

terrorist organization believes that if a representative member of the target population

becomes sufficiently dissatisfied, a policy change is enacted. The well-being of the

representative citizen is measured by her expected utility. Therefore the terrorist

uses his resources to minimize the target citizen’s expected utility. In response to

threat of the terrorists, the government of the target country may undertake some

costly actions that help prevent attacks or mitigate their severity. The strategic

variable of the terrorists is the severity level of the attack, which is negatively related

This dissertation follows the style of Journal of Economic Theory.
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to the probability of an attack because of resource constraints. The government

chooses an optimal level of action that mitigates the severity and/or reduces the

attack probability.

In Chapter IV, we consider a situation in which an individual has to pay for

a good before he knows whether or not he will consume the good in the future, or

before he realizes the true surplus of consuming the good. If the surplus depends

on the state of nature which is unknown at the moment, what will be his ex-ante

willingness to pay for this good? This ex-ante willingness to pay is called the option

price because it can be thought of the price for an option to consume this good in

the future. It is possible that the individual’s option price is greater or less than the

expected surplus. The difference between the option price and the expected surplus

is the option value. The goals of this chapter are to find a relationship between the

option value and individual’s risk premium, and to see how the option price and the

option value change when the individual is not an expected utility maximizer. We

present the summary of the dissertation in Chapter V.
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CHAPTER II

HIGHER-ORDER GENERALIZATIONS OF RISK AVERSION

A. Introduction

Consider a problem in which two agents are endowed with one payoff probability

distribution, but for a set monetary cost can move toward another, less risky payoff

distribution. Which individual spends more on improving his payoff distribution?

Intuition suggests that the more risk averse individual is willing to spend more to

improve the distribution. The literature, however, contains two notions of more risk

averse. The Arrow-Pratt characterization is consistent with one individual with non-

stochastic initial wealth being willing to pay more than another to avoid a mean-zero

risk, while the Ross characterization is consistent with one individual with random ini-

tial wealth being willing to pay more than another to avoid a conditionally mean-zero

risk.1 But which characterization is consistent with the more risk averse individual

choosing a less risky final payoff distribution in the comparative statics problem?

We find that the stronger, Ross characterization of comparative risk aversion

governs behavior in the comparative statics problem, thereby providing a new method

of deriving the Ross characterization. This derivation raises two other issues. First,

since the Arrow-Pratt characterization is not sufficiently strong to govern behavior in

the simple comparative statics problem given above, is there a different comparative

statics problem for which the Arrow-Pratt characterization does govern behavior?2

The answer turns out to be affirmative, and the Arrow-Pratt characterization can

1See Pratt [33], Arrow [1], and Ross [36]. Machina and Neilson [26] extend the
notions to a differentiable non-expected utility setting.

2Chiu [13] provides a different approach to generating both the Arrow-Pratt and
Ross characterizations of risk aversion.
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be recovered if the cost of moving from the risky initial distribution toward the less

risky distribution is a utility cost instead of a monetary one. The problem leading

to the Ross characterization is more natural than the one leading to the Arrow-

Pratt characterization, though, because the former requires that two individuals with

different utility functions face the same monetary cost but the latter requires that

two individuals with different utility functions face the same utility cost, which may

be problematic. Second, can similar comparative statics problems be used to derive

characterizations of higher-order risk attitudes? Again the answer is affirmative,

and the paper derives higher-order versions of both the Ross and the Arrow-Pratt

characterizations.

The comparative statics approach to deriving characterizations of comparative

risk attitudes has several advantages. The primary one is that the approach provides

a unified method of getting all of the higher orders of both the Ross and the Arrow-

Pratt characterizations. This is not the only advantage, though. The higher-order

analysis provides a link between the properties of probability distributions (such as

mean preserving spreads) and the derivatives of the utility functions. Ekern [18] and

Eeckhoudt and Schlesinger [16] also establish links between properties of probabil-

ity distributions and the derivatives of the utility functions, but in an absolute, as

opposed to comparative, sense.3 Eeckhoudt and Schlesinger provide a unified frame-

work for constructing the different higher order notions of risk aversion based on the

change in expected utility from alternately adding noise and disaggregating risks in

successive gambles. We provide a different unified framework for achieving the same

3For example, they provide links analogous to that between a desire for mean-
preserving decreases in risk and the concavity of the utility function, while this paper
provides links analogous to that between one agent having more of a desire for mean-
preserving decreases in risk and one agent having a more concave utility function (in
the Ross sense).
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result, based on a comparative statics exercise.

A second advantage of the comparative statics approach is that Machina [25]

shows that comparative statics results like these extend to differentiable non-expected

utility preferences. Finally, the approach can be thought of as a higher-order version

of Ehrlich and Becker’s [17] self-protection problem. In their original problem agents

faced a binary payoff distribution and could pay to reduce the probability of the low

outcome and raise the probability of the high outcome. Dionne and Eeckhoudt [15],

and Briys and Schlesinger [5] show that the willingness of one agent to pay for more

self-protection than another is not monotonically related to risk attitudes. The nega-

tive result is driven by the fact that the individuals pay for a first-order stochastically

dominating shift in the original self-protection problem, but our paper shows that

when individuals pay for higher-order improvements behavior is governed by risk

attitudes.

The paper proceeds as follows. In Section 2 we illustrate how comparative statics

problems can uncover the Ross and Arrow-Pratt measures of risk aversion. Section 3

generalizes the Ross measure to higher order risks, and Section 4 does the same for

the Arrow-Pratt measure. Section 5 offers some concluding remarks.

B. Two Measures of Comparative Risk Aversion

An expected utility maximizing agent’s initial monetary payoff is determined by the

distribution function F with support contained in [0,M ]. Let G be another distribu-

tion with support contained in [0,M ] and which the agent strictly prefers to F . The

betweenness property of expected utility implies that for any t ∈ [0, 1] he prefers G

to the mixture (1− t)F + tG, which in turn he prefers to F . Furthermore, repeated

application of the betweenness property implies that if t1 > t2 then he strictly prefers
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(1− t1)F + t1G to (1− t2)F + t2G. Now suppose that the agent can choose to improve

his payoff distribution from F (·) to H(·, t) = (1−t)F (·)+tG(·) for a cost of c(t), where

c(0) = 0, c(1) = M ,4 and c′ > 0. We are interested in conditions governing when one

agent chooses a higher value of t than another. The agent’s objective function is

U(t) =

∫ M

0

u(x− c(t))dH(x, t),

and he chooses t to maximize U(t). The utility function u is assumed to be strictly

increasing, concave, and twice continuously differentiable. We assume throughout

that U ′′ < 0 so that the first-order condition identifies a maximum. The first-order

condition is

∫ M

0

u(x− c(t∗))d[G(x)− F (x)]−
∫ M

0

u′(x− c(t∗))c′(t∗)dH(x, t∗) = 0. (2.1)

Suppose that G differs from F by a mean-preserving decrease in risk, as in

Rothschild and Stiglitz [37]. Integration by parts yields

∫ M

0

u(x− c(t∗))d[G(x)− F (x)] = −
∫ M

0

u′′(x− c(t∗))
∫ x

0

[F (y)−G(y)]dydx,

and
∫ x

0
[F (y) − G(y)]dy > 0, for all x ∈ [0,M ]. Consequently, (2.1) can be

rewritten

−
∫ M

0
u′′(x− c(t∗))

∫ x

0
[F (y)−G(y)]dydx∫ M

0
u′(x− c(t∗))dH(x, t∗)

− c′(t∗) = 0. (2.2)

Compare two agents with utility functions u and v and optimal values tu and tv,

4The sole purpose of this assumption is to guarantee the existence of an interior
solution.
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respectively. Agent u is more Ross risk averse than v if

−u′′(y)

u′(z)
≥ −v′′(y)

v′(z)

for all y, z ∈ [−M,M ]. Under this condition,

− u′′(y)∫ M

0
u′(z)dH(z)

≥ − v′′(y)∫ M

0
v′(z)dH(z)

for all y ∈ [−M, M ], and therefore the first term in (2.2) is larger for u than it is

for v, and

−
∫ M

0
v′′(x− c(tu))

∫ x

0
[F (y)−G(y)]dydx∫ M

0
v′(x− c(tu))dH(x, t∗)

− c′(tu) ≤ 0.

It follows that tu ≥ tv, and the more Ross risk averse agent chooses a less risky,

but costlier distribution.

While the Ross measure of risk aversion is sufficient for comparing the chosen t

for any F that is a mean-preserving increasing in risk of G, the Arrow-Pratt measure

of risk aversion is not. Agent u is more Arrow-Pratt risk averse than v if

−u′′(x)

u′(x)
≥ −v′′(x)

v′(x)

for all x ∈ [−M,M ]. For example, let u(w) = −e−9w and v(w) = −e−7w, so that

u is more Arrow-Pratt risk averse than v. Let x ∈ [0, 1], F (x) = x, and

G(x) =





0 if 0 ≤ x < 0.4;

5x− 2 if 0.4 ≤ x < 0.6;

1 if 0.6 ≤ x ≤ 1,

with c(t) = t2, which yields an interior solution for both agents. Agents u and v

maximize expected utility when tu = 0.087 and tv = 0.103, so that the more Arrow-



8

Pratt risk averse agent chooses the lower value of t.

Now consider an alternative problem characterized by the objective function

Ū(t) =

∫ M

0

u(x)dH(x, t)− c(t),

where, as before, it is assumed that Ū ′′ ≤ 0 so the first-order condition identifies

a maximum. The first-order condition is

∫ M

0

u(x)d[G(x)− F (x)] = c′(t). (2.3)

This time assume that F differs from G by a simple mean-preserving spread as in

Rothschild and Stiglitz [37], so that F and G have the same mean and there exists a

payoff x0 such that F (x) ≥ G(x) for all x ∈ [0, x0] and F (x) ≤ G(x) for all x ∈ [x0,M ],

and the cost function is increasing and convex. Let tu and tv be the optimal values of

t for u and v, respectively, and scale u and v so that u′(x0) = v′(x0) > 0 . Consider

the expression

θ =

[∫ M

0
u(x)d[G(x)− F (x)]

u′(x0)

]
−

[∫ M

0
v(x)d[G(x)− F (x)]

v′(x0)

]
.

If θ ≥ 0, then c′(tu)/u′(x0) ≥ c′(tv)/v′(x0). Because u′(x0) = v′(x0) and c(t) is

convex, it follows that tu ≥ tv. Integrating by parts yields

θ = −
∫ M

0

[
u′(x)

u′(x0)
− v′(x)

v′(x0)

]
[G(x)− F (x)]dx.

Pratt [33] proves that u is more Arrow-Pratt risk averse than v if and only if

u′(x)/u′(y) ≤ v′(x)/v′(y) for all y < x. Consequently, when x < x0 the term in

large brackets is nonnegative but G(x)− F (x) is nonpositive, while when x > x0 the

term in large brackets is nonpositive but G(x) − F (x) is nonnegative, and therefore
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the integrand is always nonpositive. Therefore θ ≥ 0 and tu ≥ tv, so that the more

Arrow-Pratt risk averse agent chooses a less risky, but more costly distribution.

The first maximization problem leads to Ross risk aversion, while the second

problem leads to Arrow-Pratt risk aversion. In the first optimization problem costs

are monetary and subtracted from the monetary payoff inside the utility function. In

the second problem costs are utility costs and subtracted outside the utility function,

which is troubling because the problem assumes that the utility cost function is

the same for both agents. Monetary costs must therefore be different for the two

individuals, making the second problem far less natural than the first one.

C. Higher-Order Ross Measures of Risk Aversion

In this section, we generalize the problem of maximizing U(t) to higher orders of risk.

Let u(n) denote the nth derivative of u(x). For convenience, define F1(x) = F (x) and

Fk(x) =
∫ x

0
Fk−1(z)dz for k = 2, 3, . . . , n. If Fk(M) = Gk(M) for k = 2, 3, . . . , n, then

integration by parts yields

∫ M

0

u(x− c(t∗))d[F (x)−G(x)] = (−1)n−1

∫ M

0

u(n)(x− c(t∗))[Fn(y)−Gn(y)]dx.

We can rewrite (2.1), the first-order condition for maximizing U(t), as

(−1)n−1
∫ M

0
u(n)(x− c(t∗))[Fn(x)−Gn(x)]dx∫ M

0
u′(x− c(t∗))dH(x, t∗)

− c′(t∗) = 0. (2.4)

Adopting Ekern’s [18] definition of having more nth degree risk, for n ≥ 2, we

say that F has more nth degree risk than G if (i) Fk(M) = Gk(M) for k = 1, . . . , n;

and (ii) Fn(x) ≥ Gn(x) for all x ∈ [0,M ] and Fn(x) > Gn(x) for some x ∈ (0,M).

Note that if F has more nth degree risk than G, then the first n − 1 moments of F
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and G are equal. In this and the next section, we assume that F (0) = G(0) = 0 and,

where applicable, F is the distribution with more nth degree risk.

The utility function u is assumed to be strictly increasing and infinitely contin-

uously differentiable. An agent u is nth degree risk averse if (−1)nu(n)(x) < 0 for all

x ∈ [−M, M ]. This definition also follows Ekern [18].5 In his paper, Ekern shows that

F has more nth degree risk than G if and only if every nth degree risk averter prefers

G to F . Similar to the previous section, we assume that U is concave in t so that

the second-order condition holds, and that the cost function c(t) is increasing with

c(0) = 0 and c(1) = M so that the chosen t falls in the [0, 1] interval. Consequently,

H(·; t) = (1− t)F (·) + tG(·) is a distribution function that has more nth degree risk

than G and less nth degree risk than F .

Proposition 1 Let t∗ maximize U(t) =
∫ M

0
u(x−c(t))dH(x, t). For any distribution

function F which is nth degree riskier than G, t∗ > 0 if and only if the agent is nth

degree risk averse.

Proof. The result follows immediately from Proposition 2 below.

Proposition 1 identifies the relationship between nth degree risk aversion and the

chosen value of t when F has more nth degree risk than G. For n = 2, Proposition

1 implies that for any distribution function F that is a mean-preserving increase in

risk of G, t∗ > 0 if and only if the agent is risk averse.6

5The utility function u exhibits mixed risk aversion, as defined by Caballe and
Pomansky [7], if it exhibits nth degree risk aversion for every n. Caballe and Pomansky
claim that most utility functions used in examples exhibit mixed risk aversion.

6Meyer and Ormiston [29] use comparative statics analysis to address a different
problem, identifying distributional changes preferred by every risk averse expected
utility maximizer. Their result takes the form: [Assume the agent is risk averse.
Then F differs from G by a shift of type if and only if t∗ > 0.] Our result, in
contrast, takes the form: [Assume that F is riskier than G. Then u is risk averse if
and only if t∗ > 0.]
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For n = 3, Menezes, Geiss, and Tressler [27] define F having more 3rd degree

risk than G as F having more downside risk than G, and 3rd degree risk aversion as

downside risk aversion. Therefore, from the Theorem 1, for any distribution function

F that has more downside risk than G, t∗ > 0 if and only if the agent is downside risk

averse. The definition of 3rd degree risk aversion also coincides with Kimball’s [22]

definition of prudence, by which he means the motive for precautionary saving. Eeck-

houdt and Schlesinger [16] state that a prudent agent prefers adding zero-mean risk

to a higher wealth level than to a lower wealth level. Similarly, our result shows that

a prudent agent always prefers a probability distribution function that is less risky

at the lower wealth level, in other words, a distribution function with less downside

risk.

For n = 4, Menezes and Wang [28] define F having more 4th degree risk than G

as F having more outer risk than G. Theorem 1, then, shows how outer risk aversion

is governed by the fourth derivative of the utility function. Bigelow and Menezes [4]

provide a comparative statics approach, albeit one different from the one used here,

to analyzing outer risk.

This section’s main result compares the optimal t chosen by different agents.

Theorem 2 describes the necessary and sufficient condition for one agent to choose to

shift the probability distribution closer to G than another, or in other words, choose

a larger t∗.

Definition 1 u is more nth degree Ross risk averse than v if

(−1)n−1u(n)(x)

u′(y)
≥ (−1)n−1v(n)(x)

v′(y)

for all x, y ∈ [−M, M ].

Proposition 2 Let u and v be nth degree risk averse, and let tu and tv maximize
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U(t) =
∫ M

0
u(x − c(t))dH(x, t) and V (t) =

∫ M

0
v(x − c(t))dH(x, t), respectively. For

any distribution function F which is nth degree riskier than G, tu ≥ tv if and only if

u is more nth degree Ross risk averse than v.

Proof. If: Let Hu and Hv denote the distributions chosen by agents u and v, respec-

tively, and let yu solve u′(yu) =
∫ M

0
u′(x− c(tu))dHu(x). Rescale the utility function

v so that v′(yu) =
∫ M

0
v′(x− c(tu))dHu(x). The first-order conditions of agents u and

v can be written as

(−1)n−1

∫ M

0

u(n)(x− c(tu))

u′(yu)
[Fn(x)−Gn(x)]dx− c′(tu) = 0 (2.5)

and

(−1)n−1

∫ M

0
v(n)(x− c(tv))[Fn(x)−Gn(x)]dx∫ M

0
v′(x− c(tv))dHv(x)

− c′(tv) = 0 (2.6)

respectively.

Consider the expression

θ =

[
(−1)n−1

∫ M

0

u(n)(x− c(tu))

u′(yu)
[Fn(x)−Gn(x)]dx

]

−
[
(−1)n−1

∫ M

0

v(n)(x− c(tu))

v′(yu)
[Fn(x)−Gn(x)]dx

]
.

We have tu ≥ tv if and only if θ ≥ 0. Since (−1)n−1 u(n)(x)
u′(yu)

≥ (−1)n−1 v(n)(x)
v′(yu)

for all

x ∈ [−M, M ] and Fn(x) ≥ Gn(x) for all x ∈ [0,M ], then θ ≥ 0, and hence tu ≥ tv.

Only if: Suppose that there exist y, z ∈ (−M, M) such that (−1)n−1 u(n)(z)
u′(y)

<

(−1)n−1 v(n)(z)
v′(y)

. Because u ∈ C∞ , this must hold for all z in some neighborhood Z.

Construct F̄ and Ḡ so that F̄ is nth degree riskier than Ḡ and F̄n − Ḡn is a function

whose support is in Z. Choose t so that u′(y) =
∫ M

−M
u′(z)d[(1− t)F̄ (z) + tḠ(z)]. Fix

c so that the chosen t is tu. Let x = z + c(tu), and let X be the open set obtained by
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adding c(tu) to all z ∈ Z. Then (−1)n−1 u(n)(x−c(tu))
u′(y)

< (−1)n−1 v(n)(x−c(tu))
v′(y)

all x ∈ X.

Define F (x) = F̄ (x− c(tu)). Then F is nth degree riskier than G and the support of

Fn−Gn is in X. It follows that θ < 0. By construction u′(y) =
∫ M

0
u′(x−c(tu))dHu(x)

and v′(y) =
∫ M

0
v′(x− c(tu))dHu(x), hence tu < tv. ¤

For n = 2, F differs from G by a mean-preserving increase in risk. The necessary

and sufficient condition for tu ≥ tv is u more Ross risk averse than v, as discussed

in the previous section. For n = 3, the definition of F having more 3rd degree risk

than G coincides with F having more downside risk than G. Following Modica and

Scarsini [30], u is more downside risk averse than v when u′′′(x)/u′(y) ≥ v′′′(x)/v′(y)

for all x and y. Proposition 2 states that when u and v are downside risk averse

agents, for any distribution function F having more downside risk than G, tu ≥ tv if

and only if u is more downside risk averse than v. In the context of self-protection, an

agent who is more downside risk averse will protect himself more by reducing further

the amount of downside risk, thereby bearing higher cost.

D. Higher-Order Arrow-Pratt Measures of Risk Aversion

Next we consider the problem of maximizing Ū(t), in which the cost of shifting the

probability distribution is disutility subtracted from the expected utility of the out-

comes. The disutility c(t) is assumed to be increasing and convex with c(0) = 0,

c(1) = u(M). In Section 2 we found the sufficient condition for comparing the

optimal t for F differing from G by a simple mean-preserving spread, that is, a mean-

preserving increase in risk satisfying the single crossing property. Here we generalize

this property to nth degree risk. We say that F differs from G by a simple increase

in nth degree risk if (i) F has more nth degree risk than G; and (ii) there exists

x0 ∈ [0,M ] such that Fn−1(x) ≥ Gn−1(x) for all x ≤ x0 and Fn−1(x) ≤ Gn−1(x) for
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all x ≥ x0.

Definition 2 u is more nth degree Arrow-Pratt risk averse than v if

− u(n)(x)

u(n−1)(x)
≥ − v(n)(x)

v(n−1)(x)

for all x ∈ [0,M ].

Proposition 3 Let u and v be nth and n − 1th degree risk averse, and let tu and tv

maximize Ū(t) =
∫ M

0
u(x)dH(x, t)− c(t) and V̄ (t) =

∫ M

0
v(x)dH(x, t)− c(t), respec-

tively. For any distribution function F which differs from G by a simple increase in

nth degree risk, tu ≥ tv if and only if u is more nth degree Arrow-Pratt risk averse

than v.

Proof. If: Rescale the utility function u so that u(n−1)(x0) = v(n−1)(x0). The solution

of Ū(t) maximization is the same as the solution from maximizing (−1)n Ū(t)

u(n−1)(x0)
. The

first-order condition yields

(−1)n EGu(x)− EF u(x)

u(n−1)(x0)
= (−1)n c′(tu)

u(n−1)(x0)
(2.7)

Define

θ =

[
(−1)n EGu(x)− EF u(x)

u(n−1)(x0)

]
−

[
(−1)n EGv(x)− EF v(x)

v(n−1)(x0)

]
.

Integration by parts yields

θ =

∫ M

0

[
u(n−1)(x)

u(n−1)(x0)
− v(n−1)(x)

v(n−1)(x0)

]
[Fn−1(x)−Gn−1(x)]dx.

Following an argument in Pratt [33], since u(n)(x)

u(n−1)(x)
= d

dx
log u(n−1)(x), then from

u(n)(x)

u(n−1)(x)
≤ v(n)(x)

v(n−1)(x)
, integrating from x0 to x, we have log u(n)(x)

u(n−1)(x)
≤ log v(n)(x)

v(n−1)(x)
,

and hence u(n−1)(x)

u(n−1)(x0)
≤ v(n−1)(x)

v(n−1)(x0)
, for all x ≥ x0. Similarly u(n−1)(x)

u(n−1)(x0)
≥ v(n−1)(x)

v(n−1)(x0)
,
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for all x ≤ x0. Since Fn−1 and Gn−1 cross only once at x0, then θ ≥ 0. Since

u(n−1)(x0) = v(n−1)(x0), then c′(tu) ≥ c′(tv) and hence tu ≥ tv.

Only if: Suppose that there exists some x ∈ (0,M) such that − u(n)(x)

u(n−1)(x)
<

− v(n)(x)

v(n−1)(x)
. Because u ∈ C∞ there exists a neighborhood Z of x such that − u(n)(z)

u(n−1)(z)
<

− v(n)(z)

v(n−1)(z)
for all z ∈ Z. Choose F and G such that Fn−1(z) − Gn−1(z) is a function

with support in Z, and F differs from G by a simple increase in nth degree risk

with a crossing at x0 = x. For all z ∈ Z such that z < x0,
u(n)(z)

u(n−1)(x0)
< v(n)(z)

v(n−1)(x0)

and Fn−1(z) > Gn−1(z).For all z ∈ Z such that z > x0,
u(n)(z)

u(n−1)(x0)
> v(n)(z)

v(n−1)(x0)
and

Fn−1(z) < Gn−1(z). Therefore θ < 0. It follows that tu < tv. ¤

When n = 2, Proposition 3 yields the same result as in Section 2, a more risk

averse agent chooses a larger value of t for any F that is a simple mean-preserving

spread of G. For n = 3, Kimball [22] defines the absolute prudence of agent u as

pu(x) = −u′′′(x)/u′′(x) to measure the strength of the precautionary saving motive.

We obtain the following results from the Proposition 3: if u and v are risk averse and

prudent, and F2 and G2 cross only once, then for any F having more downside risk

than G, tu ≥ tv if and only if pu(x) ≥ pv(x) for all x ∈ [0, M ].7

E. Conclusion

We characterize comparative measures of Arrow-Pratt and Ross risk aversion through

a comparative statics problem. The Ross characterization arises when two risk averse

agents optimally choose their shifts in probability distribution toward a preferred

distribution that differs from the original one by a mean preserving decrease in risk,

and the cost of shifting probabilities is monetary. The Arrow-Pratt characterization

arises when the original distribution differs from the preferred distribution by a simple

7Chiu [12] shows that a more prudent individual invests in more self-protection
under certain circumstances.
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mean-preserving spread, and the cost is a utility cost.

Using the same approach, we generalize the comparative statics problem to the

difference in nth degree risk between two probability distributions and the nth degree

of risk aversion. For the third degree risk comparison in the monetary cost problem,

our characterization of more Ross risk averse in the third degree coincides with more

downside risk averse, as recently defined by Modica and Scarsini [30]. On the other

hand, in the utility cost problem, the Arrow-Pratt risk aversion measures in the 3rd

degree coincide with the absolute prudence measures defined by Kimball [22].



17

CHAPTER III

OPTIMAL TERRORISM AND COUNTERTERRORISM

A. Introduction

Terrorist organizations use violent attacks, and the threat of further violent attacks,

to provoke fear and intimidation among the target population with the ultimate goal

of affecting policy change. In response to a threat of the terrorists, the government

of the target country may undertake some costly actions that help prevent attacks

or mitigate their severity. In this paper, the decisions of terrorism and counterter-

rorism are modeled in a two-person zero-sum game. The terrorists aim to minimize

the representative citizen’s expected utility, while the government maximizes it. The

strategic variable of the terrorists is the severity level of the attack, which is nega-

tively related to the probability of an attack because of resource constraints. The

government chooses an optimal level of an activity that mitigates the severity and/or

reduces the attack probability. The problem that the government faces is similar to

Ehrlich and Becker’s [17] self-insurance and self-protection problem.

We examine the effect of changes in the representative citizen’s degree of risk

aversion on the choice variables of the terrorists and the government. Then we find

an equilibrium of this game from the best response functions of both players when

the representative citizen is risk neutral, and then extend the result to the case of

risk aversion. We find that risk aversion increases the the terrorists’ choice of severity

and the government’s choice of mitigation, but does not always increase the level

of prevention. When the representative citizen is risk neutral, the terrorists always

choose the level of severity that maximizes the cost of counterterrorism activity and

does not depend on the nature of the action chosen by the government.
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In the next section, we discuss related literature in the economics of terrorism.

In Section 3 and 4, we analyze the effect of risk aversion on the terrorists’ and the

government’s strategies, respectively. We present the equilibrium of the game in

Section 5 and conclude in Section 6.

B. Economics of Terrorism

Enders and Sandler [19] define terrorism as “the premeditated use, or threat of use, of

extra-normal violence or brutality to obtain a political objective through intimidation

or fear directed at a large audience.” These political objectives of terrorists include

the promotion of religious freedoms, economic equality, income equality, income re-

distribution, nationalism, etc. The motive of the terrorist attacks can be explained

by Berry’s [3] theory of overreaction. Berry argues that terrorists can achieve their

political goal by weakening the government. Terrorists want the government to over-

react to the attack because when the government overreacts to the terrorist attack,

it weakens itself. Overreaction, for example, a very strict homeland security policy

resulting in a loss of liberty and privacy, can lessen public support and can be very

expensive. As a result, the choice of policy can be easily influenced.

The first economic analysis of terrorism is the study of Sandler, Tschirhart, and

Cauly [39]. Using interaction between government and terrorists who have their own

objective functions and constraints, Sandler et al examine the negotiation process

between government and terrorists when hostages are seized and demands are issued.

However, this negotiation model cannot explain bombings and assassinations which

are most incidents pursued by terrorists. Since there are strategies involved in terror-

ism and counterterrorism decisions, and each player’s payoff depends on the chosen

strategy of the other player, a game theoretical approach to the terrorism problem
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has recently received more attention.

Konrad [23] applies a simple game of extortion to the investment problem in

terrorism. Terrorists decide whether or not to invest in an attack, which is not

observed by government, before they use the threat of violence to pursue political or

monetary goals. The paper discusses the credibility of terrorist threats in a repeated

game but does not bring up any counterterrorism policy. On the other hand, there

are two papers that do focus on counterterrorism actions taken by target firms and

target governments. Kunreuther and Heal [24] examine the interdependent security

problem in which two target firms consider whether to invest in security precautions

whose effects depend on the actions of others. Sandler [38] studies a game in which

the two players are governments choosing whether to pursue preemption policy or

deterrence policy against terrorists. Since the threat of terrorism is global, the payoff

from the adopted policy depends on the policy adopted by another government.

A few other studies of counterterrorism aim to empirically investigate the impact

of enhanced security policy on terrorism. Cauley and Im [9] apply the intervention

analysis to the data on international terrorist events from 1968 to 1979 and find

that the installation of metal detectors has reduced the number of skyjackings but

increased other types of terrorist events. Enders and Sandler [20] suggest two appeal-

ing points based on a vector autoregressive analysis (VAR). First, terrorists try to

achieve a greater impact from fewer events. Despite a decline in terrorism since the

post-cold war era, each incident is more likely to result in death or injury. Second,

there is evidence that if the government responds by installing metal detectors, the

terrorists will substitute to less-protected targets with more deadly consequences.
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C. The Terrorist’s Decision in a World without Counterterrorism

The United States Code of Regulations defines terrorism as “...the unlawful use of

force and violence against persons or property to intimidate or coerce a government,

the civilian population, or any segment thereof, in furtherance of political or social

objectives.” The U.S. Department of Defense defines it as “the calculated use of

unlawful violence or threat of unlawful violence to inculcate fear; intended to coerce

or to intimidate governments or societies in the pursuit of goals that are generally

political, religious, or ideological.” Terrorist organizations use violent attacks, and

the threat of further violent attacks, to provoke fear and intimidation among the

target population with the ultimate goal of affecting policy change.

For example, purported political objectives behind al-Qaeda attacks against the

U.S. include ending the U.S. military presence in the Middle East, ending U.S. sup-

port of Israel, and ending U.S. support for corrupt regimes in the Muslim world

(Byman [6]). In this paper we focus on situations in which terrorists try to intimi-

date or coerce a democratically-elected government, because in those cases it makes

the most sense for the terrorists to target the population. After all, in a democratic

system, policy changes can occur when the electorate becomes dissatisfied with the

current policy choices.

To that end, suppose that the terrorist organization (referred to simply as the

terrorist in the remainder of the paper) believes that if a representative member of

the target population becomes sufficiently dissatisfied, a policy change is enacted.

The well-being of the representative citizen is measured by her expected utility. The

terrorist does not know how far the representative citizen’s expected utility must fall

before she votes for a policy change, and therefore uses his resources to minimize the

target citizen’s expected utility.
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Because fear and intimidation work only against those who are not the direct

victims of terrorist attacks, the threat of a future attack is the primary terrorism tool.

Like everyone else, the terrorist has limited resources to devote to the production of

fear. More severe attacks require more resources, and more frequent attacks require

more resources. Thus, the terrorist faces a tradeoff between the severity and the

frequency of attacks. This is reminiscent of Becker’s [2] classic treatment of a gov-

ernment choosing between the certainty and severity of punishment to deter crime.

Borrowing his terminology, the terrorist chooses the certainty and severity of an at-

tack in order to minimize the expected utility of a representative citizen in the target

country.

To capture the tradeoff induced by the terrorist’s limited resources, let p(s) be

the probability of attack that fully utilizes the terrorist’s resources when the chosen

severity of attack is s. Thus, p(s) describes a production possibility set for the

terrorist, and ps(s) < 0. There is a least severe attack that can be considered a

terrorist attack, and let s denote the least severe attack. Also, assume that there is

a most severe attack to which the representative citizen assigns positive probability,

and denote that level of severity by s̄. Then p(s̄) > 0, and let p = p(s̄) . Finally, let

p̄ = p(s) < 1. The production possibility frontier is shown in Figure 1.

The terrorist chooses a combination of certainty and severity to minimize the

expected utility of a representative citizen in the target country. Let her initial

wealth be w, and let u(·) be her von Neumann-Morgenstern utility function, with

u′ > 0, u′′ ≤ 0. Then her expected utility is given by

EU = (1− p(s))u(w) + p(s)u(w −D(s)), (3.1)

where D(s) captures the monetary equivalent of the damage caused by an attack of

severity s, with 0 < D(s) < w, Ds(s) > 0, and Dss(s) ≤ 0.



22 
 
 
 
 
 
 

 

p 

s 

EU2 

EU1 

EU1 < EU2 p  

s  s 

p 

p* 

s* 

Fig. 1. Optimal solution of the terrorist

In Figure 1, the terrorist chooses the point on the production possibilities frontier

that minimizes the representative citizen’s expected utility. To find the shape of

the terrorist’s (and the citizen’s) indifference curves, fix Ū and let π(s) satisfy (1 −
π)u(w) + πu(w −D(s)) = Ū . Then one can compute

dπ

ds
= − u(w)− Ū

[u(w)− u(w −D(s))]2
· u′(w −D(s))Ds(s) < 0,

and

d2π

ds2
=− u(w)− Ū

[u(w)− u(w −D(s))]2
· [(u′(w −D(s))Dss(s)− u′′(w −D(s))(Ds(s))

2)

− 2[u′(w −D(s))(Ds(s))]
2

u(w)− u(w −D(s))
].

If the agent is risk neutral, then d2π/ds2 > 0. Therefore, as long as the agent is not

too risk averse her iso-expected-utility curves in p− s space are convex, as in Figure

1.

The terrorist chooses s to minimize the agent’s expected utility. The first-order
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condition is

∂EU

∂s
= −ps(s)[u(w)− u(w −D(s))]− p(s)u′(w −D(s))Ds(s) = 0. (3.2)

The second-order condition of the terrorist’s minimization problem is

d2EU

ds2
=− pss(s)[u(w)− u(w −D(s))]− 2ps(s)u

′(w −D(s))Ds(s)

+ p(s)[u′′(w −D(s))Ds(s))
2 − u′(w −D(s))Dss(s)].

If the agent is risk neutral, we have

d2EU

ds2
= −u′(·)[pss(s)D(s) + 2ps(s)Ds(s) + p(s)Dss(s)] > 0.

Therefore if the representative citizen is not too risk averse the value of s that satis-

fies (3.2) minimizes the representative citizen’s expected utility. This is exactly the

intuition from the graphical approach.

Our first result concerns how the representative citizen’s risk attitudes affect the

choice made by the terrorist.

Proposition 4 The level of severity chosen by the terrorist is higher when the rep-

resentative citizen is more risk averse.

Proof. Let u and v be two utility functions with u a concave transformation of v.

Let su and sv be the values of s that satisfies the first-order condition (3.2) for the two

different utility functions. Rearrange the first-order condition for the utility function

v to get

ps(sv)D(sv) · v(w)− v(w −D(sv))

v′(w −D(sv))D(sv)
+ p(sv)Ds(sv) = 0. (3.3)

Normalize the two utility functions so that u(w−D(sv)) = v(w−D(sv)) = k > 0 and

u′(w−D(sv)) = v′(w−D(sv)) = 1. Define the function ρ to satisfy u(x) = ρ(v(x)) for

all x. Then by hypothesis ρ is concave, and by construction ρ′(k) = 1. Consequently,



24

ρ′(z) ≤ 1 for all z > k. Now note that

u(w) = k +

∫ D(sv)

0

u′(w −D(sv) + t)dt

= k +

∫ D(sv)

0

ρ′(v(w −D(sv) + t)) · v′(w −D(sv) + t)dt

≤ k +

∫ D(sv)

0

v′(w −D(sv) + t)dt

= v(w),

and therefore, remembering that ps < 0,

ps(sv)D(sv) · u(w)− u(w −D(sv))

u′(w −D(sv))D(sv)
+ p(sv)Ds(sv) ≥ 0. (3.4)

Plugging (3.4) back into (3.2) yields ∂EU/∂s ≤ 0 at s = sv, and because ∂EU/∂s is

increasing in s and equal to zero at s = su, it follows that su ≥ sv. ¤

Thus, when compared with a risk neutral population, a risk averse population

in the target country leads terrorists to commit more damaging, but less frequent,

attacks.

This result is similar in spirit to Becker’s [2] observation that risk-averse expected-

utility-maximizing criminals are more sensitive to changes in the severity than cer-

tainty of punishment. Under these circumstances, in order to make a criminal worse

off in an attempt to deter him from committing a crime, the authorities should de-

crease the likelihood of capturing the criminal but increase the punishment if caught.

D. Optimal Counterterrorism

The analysis of the preceding section covered only part of the story. The government

of the target country is unlikely to sit idly under the threat of terrorist attacks.

Instead, the government can undertake costly actions that either help prevent attacks,
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mitigate their severity, or both. To that end, assume that the government can take

action a ≥ 0 to reduce the damage from and the probability of a successful attack.

Hence the level of damage and the probability of success are functions of both a and

s.

We assume that the representative citizen’s share of the cost of the action is

c(a), where c′(a) > 0 and c′′(a) > 0. The costs include the financial cost of the

action as well as costs associated with any possible loss of liberty and privacy to the

agent resulting from the chosen action. The government’s objective is to choose a to

maximize the representative citizen’s expected utility. In addition, we assume that

Da(a, s) ≤ 0, Daa(a, s) ≥ 0, pa(a, s) ≤ 0, paa(a, s) ≥ 0. These conditions say that

increases in a make a given attack both less likely to succeed and less damaging if

it does succeed, and that the impact of further increases in a diminishes as a rises.

Finally, D(a, s) > 0 and p(a, s) > 0 for all values of a and s, so that the government

can never completely eliminate the threat of terrorism.

The representative citizen’s expected utility can be written as

EU = (1− p(a, s))u(w − c(a)) + p(a, s)u(w −D(a, s)− c(a)). (3.5)

The government chooses a to maximize (3.5). The first-order condition is

∂EU

∂a
=− pa(a, s)[u(w − c(a))− u(w −D(a, s)− c(a)] (3.6)

− (1− p(a, s))u′(w − c(a))c′(a)

− p(a, s)u′(w −D(a, s)− c(a))[Da(a, s) + c′(a)] = 0.

If the agent is risk neutral, then the first-order condition becomes

−[pa(a, s)D(a, s) + p(a, s)Da(a, s)] = c′(a), (3.7)
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which has the standard interpretation that the marginal benefit of the counterterror-

ism activity equals the marginal cost.

Differentiating the government’s objective function a second time yields

∂2EU

∂a2
=− paa(a, s)[u(w − c(a))− u(w −D(a, s)− c(a)]

+ 2pa(a, s)[u′(w − c(a))c′(a)− u(w −D(a, s)− c(a))(Da(a, s) + c′(a)]

+ (1− p(a, s))[u′′(w − c(a))(c′(a))2 − u′(w − c(a))c′′(a)]

+ p(a, s)[u′′(w −D(a, s)− c(a))(Da(a, s) + c′(a))2

− u′(w −D(a, s)− c(a))(Daa(a, s) + c′′(a))].

If the representative agent is risk neutral, we have

∂2EU

∂a2
= −u′(·)[paa(a, s)D(a, s) + 2pa(a, s)Da(a, s) + p(a, s)Daa(a, s) + c′′(a)] < 0.

Therefore if the representative citizen is not too risk averse the second-order condition

for a maximum is satisfied.

The government’s problem is analogous to the self-insurance and self-protection

problem introduced by Ehrlich and Becker [17]. The mitigation of the damage from

terrorism and the reduction in the probability of a successful attack are analogous to

self-insurance and self-protection, respectively. Dionne and Eeckhoudt [15] and Briys

and Schlesinger [5] show that an increase in risk aversion increases the optimal level of

self-insurance, but does not always increase the optimal investment in self-protection.

We say that the government’s action is purely mitigating if it affects the damages

D but not the success probability p, that is, Da(a, s) < 0 but pa(a, s) = 0. In

contrast, the action is purely preventive if it affects the success probability p but not

the damages D. We now treat the two cases separately.
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1. Mitigating activities

In this subsection assume that the action a affects only the level of damages from

an attack but not the probability of success. In particular, assume that D(a, s) =

g(a)D(s), with g′(a) ≤ 0, g′′(a) ≥ 0, and p(a, s) = p(s). Under these circumstances,

the first-order condition (3.6) can be written

− [g′(a)D(s) + c′(a)]p(s)

c′(a)(1− p(s))
=

u′(w − c(a))

u′(w − g(a)D(s)− c(a)
. (3.8)

Proposition 5 Assume that the government’s action is purely mitigating. The level

of counterterrorism activity chosen by the government rises when the representative

agent becomes more risk averse.

Proof. By Pratt [33], when the representative citizen becomes more risk averse, the

right-hand side of (3.8) falls. Differentiating the left-hand side by a yields

∂LHS

∂a
= − [c′(a)g′′(a)− c′′(a)g′(a)]D(s)p(s)

(c′(a))2(1− p(s))
≤ 0.

Therefore, when the representative citizen becomes more risk averse, a must increase

to maintain equality in (3.8). ¤

Proposition 5 states that increased risk aversion leads to increased counterter-

rorism activities when those activities mitigate the damages of an attack but do not

prevent an attack. It is reminiscent of existing results that increased risk aversion

leads to increased self-insurance. The intuition behind the result is that by increasing

the mitigating activity the government increases the representative citizen’s payoff in

the bad state (an attack occurs) but reduces it in the good state (no attack). When

the representative citizen becomes more risk averse, the government desires the two

payoff levels to be closer together, which it achieves by spending more on mitigating

the damages from an attack.
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2. Preventive activities

Now assume that the government’s actions affect only the attack’s success probability

and not the extent of damages. In particular, assume that D(a, s) = D(s) and

p(a, s) = f(a)p(s) with f ′(a) ≤ 0, f ′′(a) ≥ 0. Now the first-order condition in (3.6)

reduces to

∂EU

∂a
=− f ′(a)p(s)[u(w − c(a))− u(w −D(s)− c(a)]

− (1− f(a)p(s))u′(w − c(a))c′(a)

− f(a)p(s)u′(w −D(s)− c(a))c′(a) = 0.

This can be rearranged to get

− c′(a)

f ′(a)p(s)
=

u(w − c(a))− u(w −D(s)− c(a))

(1− f(a)p(s))u′(w − c(a)) + f(a)p(s)u′(w −D(s)− c(a))
. (3.9)

Proposition 6 Assume that the government’s action is purely preventive. If the

probability of attack is sufficiently low, the level of counterterrorism activity chosen

by the government rises when the representative agent becomes more risk averse.

Proof. Consider two utility functions u and v with u more risk averse than v. Fix

s, and let av be the value that maximizes v’s expected utility. Assume, without loss

of generality, that u(w − c(av)) = v(w − c(av)) = 1 and that u(w −D(s) − c(av)) =

v(w − D(s) − c(av)) = 0. Furthermore, because u is a concave transformation of v,

u′(w −D(s)− c(av)) ≥ v′(w −D(s)− c(av)) ≥ v′(w − c(av)) ≥ u′(w − c(av)). Then

there exists p∗ such that

(1−p∗)u′(w−c(av))+p∗u′(w−D(s)−c(av)) = (1−p∗)v′(w−c(av))+p∗v′(w−D(s)−c(av)),

and for any p < p∗,

(1−p)u′(w−c(av))+pu′(w−D(s)−c(av)) ≤ (1−p)v′(w−c(av))+pv′(w−D(s)−c(av)).
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Consequently, if p(s) is so low that f(av)p(s) < p∗ then

u(w − c(av))− u(w −D(s)− c(av))

(1− f(av)p(s))u′(w − c(av)) + f(av)p(s)u′(w −D(s)− c(av))
≥

v(w − c(av))− v(w −D(s)− c(av))

(1− f(av)p(s))v′(w − c(av)) + f(av)p(s)v′(w −D(s)− c(av))
.

Therefore, when p(s) is sufficiently small, the increase in risk aversion from v to u

makes the right-hand side of equation (3.9) rise. The left-hand side of (3.9) increases

in a because both c and f are convex, and it follows that au ≥ av. ¤

Proposition 6 states that if an attack is not too likely, when the representative

citizen becomes more risk averse the government spends more to prevent an attack.

Intuitively, when an attack is not too likely, expected marginal utility of income is

closer to u′(w− c(a)) than to u′(w−D(s)− c(a)), and the former is smaller than the

latter. An increase in risk aversion makes the utility function more concave, which

increases marginal utility close to the left endpoint of the interval [w−D(s)−c(a), w−
c(a)] and decreases marginal utility near the right endpoint. When the probability

of attack is small, expected marginal utility decreases as the citizen becomes more

risk averse. Because the citizen values income less, the government finds it optimal

to spend more of the income on preventing terrorism attacks.

Conversely, if the probability of attack is high, an increase in risk aversion

increases expected marginal utility of income, and the government spends less on

preventing attacks. The ambiguity of the result is consistent with the findings of

Dionne and Eeckhoudt [15] and Briys and Schlesinger [5] that the optimal level of

self-protection may or may not increase with risk aversion.
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E. Equilibrium Terrorism and Counterterrorism

This section contains our primary results, which concern the equilibrium of the game

between the terrorist organization and the target government. In light of the results

of Sections 3 and 4, we can begin the analysis with the risk neutral case and then use

Propositions 1 through 3 to discuss how the equilibrium behavior changes when the

representative citizen becomes risk averse.

In Section 4 we found that the impact of increased risk aversion on the govern-

ment’s choice of the level of counterterrorism activity depends on the nature of that

activity. In particular, the direction of the effect is unambiguous if the activity is

purely mitigating but ambiguous if the activity is purely preventive. To aid in the

identification of the counterterrorism activity into one of these two categories, we as-

sume that the probability-of-attack function p(a, s) and the damage function D(a, s)

are both multiplicatively separable:

p(a, s) = f(a)m(s),

and

D(a, s) = g(a)n(s),

where f and g are decreasing and convex, m is decreasing and concave, and n is

increasing and concave. If f ′ < 0 but g′ = 0 the counterterrorism activity is purely

preventive, but if g′ < 0 and f ′ = 0 it is purely mitigating.

Begin with the terrorist’s decision. When the representative citizen is risk neu-

tral, the first-order condition from Section 3 becomes

p(a, s)Ds(a, s) + ps(a, s)D(a, s) = 0,

which implicitly defines the terrorist’s best-response function s∗(a). As the next
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proposition shows, in the risk-neutral case the terrorist’s best-response function is

single-valued.

Proposition 7 Assume that the representative citizen is risk neutral and the probability-

of-attack function p(a, s) and the damage function D(a, s) can be written as f(a)m(s)

and g(a)n(s), respectively. Then the terrorist organization has a dominant strategy,

that is, the severity level it chooses does not depend on the action chosen by the

government.

Proof. The first-order condition of the terrorists can be written as

f(a)g(a)[m′(s)n(s) + m(s)n′(s)] = 0

Implicitly differentiating with respect to a and rearranging yields

ds∗

da
= − (f ′g + fg′)(mn′ + m′n)

fg(m′′n + 2m′n′ + mn′′)

and the numerator is zero by the first-order condition. ¤

The result that the terrorist’s activities are independent of the government’s

attempts to combat them is surprising. After all, if the government undertakes purely

mitigating activities, for example, thereby raising the price of severity, one would

expect the terrorists to respond by “purchasing” more certainty and less severity.

Proposition 7 shows that this is not the case when the representative citizen of the

target country is risk neutral. Instead, the terrorists choose the same severity level,

call it s∗, no matter what the target government does.

Turning attention to the target government’s decision, when the representative

citizen is risk neutral the first-order condition is given by equation (3.7). The next

proposition describes the shape of the government’s best-response function.

Proposition 8 Assume that the representative citizen is risk neutral and the probability-
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of-attack function p(a, s) and the damage function D(a, s) can be written as f(a)m(s)

and g(a)n(s), respectively. Then the government’s best-response function a∗(s) is in-

creasing when s < s∗ and decreasing when s > s∗.

Proof. Implicitly differentiating (3.7) with respect to s and rearranging yields

da∗

ds
= − (f ′g + fg′)(mn′ + m′n)

c′′ + mn(f ′′g + 2f ′g′ + fg′′)
(3.10)

The terrorist organization chooses s to minimize

EU(a, s) = w − p(a, s)D(a, s) = w − f(a)m(s)g(a)n(s).

Then ∂EU(a, s)/∂s = −fg[m′n + mn′], and by the second-order condition for a

minimum, m′n + mn′ > 0 when s < s∗ and m′n + mn′ < 0 when s > s∗. The second-

order condition also guarantees that the denominator of (3.10) is positive, and so the

sign of da∗/ds is the opposite of the sign of the numerator of (3.10). Finally note

that, by construction, f ′ and g′ are both negative, and so da∗/ds has the same sign

as m′n + mn′. ¤

Figure 2 shows the best-response curves for the multiplicatively-separable risk

neutral case described in Propositions 7 and 8. The terrorist organization’s best-

response curve is vertical, consistent with the dominant strategy found in Proposi-

tion 7. The target government’s best-response curve is hump-shaped, and the Nash

equilibrium of the game lies at the intersection of the two curves.

As shown in the figure, in equilibrium the terrorist chooses the level of severity

that provokes the highest level of counterterrorism activity. At first glance this may

seem counterintuitive. After all, if the terrorist wants the attacks to succeed, why

would they try to generate a large amount of counterterrorist activity? The answer

lies in the nature of the terrorist organization’s objective function. The goal of the
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Fig. 2. Best response functions when the representative agent is risk neutral

terrorist is to make the representative citizen as poorly off as possible, and this can

be achieved either through the threat of attack or by making the citizen bare a large

counterterrorism burden.

The impact of risk aversion on the levels of terrorism and counterterrorism ac-

tivities can now be easily derived using the results of Propositions 4 through 8. By

Proposition 4, when the representative citizen becomes risk averse the terrorist’s best

response curve shifts rightward, and therefore risk aversion leads to more severe, but

less likely attacks (holding the government’s response fixed). By Propositions 5 and

6, if counterterrorism is purely mitigating or if it is purely preventive but attacks are

sufficiently unlikely, risk aversion causes the government’s best-response curve to shift

upward. Because the risk-neutral equilibrium was at the peak of the government’s

best-response curve, however, the effect of risk aversion on the level of counterter-

rorism is ambiguous in this case, as shown in panel (a) of Figure 3. If, on the other

hand, counterterrorism is purely preventive and attacks are sufficiently likely, risk

aversion causes the government’s best-response curve to shift downward, in which

case risk aversion unambiguously causes the level of severity to rise and the level of
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Fig. 3. Best response functions when the representative agent is risk averse
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counterterrorism activity to fall, as shown in panel (b) of Figure 3.

F. Conclusion

We analyze decisions made by a group of terrorists and a government in a zero-sum

game where the terrorists minimize a representative citizen’s expected utility and the

government maximizes it. The terrorists’ strategy balances the probability and the

severity of the attack while the government chooses the level of investment reducing

the probability and/or mitigating the severity. We find that, if the representative

agent is risk neutral, the terrorists choose the level of severity that does not depend

on the government’s choice of activities, but provokes the highest level of counterter-

rorism activity. We also find that the citizen’s risk attitudes affect the strategies of

the terrorists and the government. When compared with a risk neutral population,

a risk averse population in the target country leads the terrorists to commit more

damaging, but less frequent, attacks.

When the government’s activities mitigate the damages of an attack but do

not prevent an attack, increased risk aversion leads to increased counterterrorism

activities. However, when the government’s activities only prevent an attack but do

not mitigate the damages, the effect of risk aversion on the counterterrorism activities

depends on the probability of an attack. If an attack is not too likely, the government

spends more to prevent an attack when the representative citizen becomes more risk

averse. If an attack is likely, then the government spends less to prevent an attack

when the representative citizen becomes more risk averse.
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CHAPTER IV

A RISK ANALYSIS OF EX-ANTE WILLINGNESS TO PAY

A. Introduction

Consider a situation in which an individual has to pay for a good before he knows

whether or not he will consume the good in the future, or before he realizes the true

surplus of consuming the good. If the surplus depends on the state of nature which

is unknown at the moment, what will be his ex-ante willingness to pay for this good?

This ex-ante willingness to pay is called the option price because it can be thought

of the price for an option to consume this good in the future.

Ex-ante welfare measures are important. For example, Presidential executive

orders and federal regulations urge policy makers to consider benefits and costs of

various policy programs that involve risks and unknowns. If policy makers collect

information on the wrong set of ex-ante welfare measures, then programs will not

reflect social desires, let alone be in any sense efficient. The concept of option price

has received much attention since Graham [21] adopted it in cost-benefit analysis and

suggested that the option price is an appropriate welfare measure for a public good

under uninsurable risk. Following Graham’s framework, economists have used the

option price as an ex-ante measure of benefits in several health and environmental

studies.1

Cicchetti and Freeman [14] show that an option price exists for a private good

in a market of a perfectly discriminating monopolist who sells options for the good in

advance by charging each individual his willingness to pay. For example, if there are

two states of nature, a sunny or a rainy day, and a perfectly discriminating monopolist

1For example, Smith and Devousges [45]; Cameron [8]; Riddel and Shaw [35].
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knows each individual’s willingness to pay for a baseball ticket for a game in each

weather condition, the option price is the willingness to pay for the ticket when it is

sold in advance–the true state is not yet known. If the individual does not buy the

ticket in advance, on the game day he will be charged the willingness to pay given that

it shines or it rains. Specifically, the monopolist knows both the ex-ante willingness to

pay (or the option price) and the ex-post surplus in each state. It is possible that the

individual’s option price is greater or less than the expected surplus. The difference

between the option price and the expected surplus has been called option value.

Even though the appropriate ex-ante benefit measure is the option price, the

option value may play a crucial role in a cost-benefit analysis. Smith [44] suggests

that it is possible that expected surplus might be measured more easily than option

price and one can use option value in order to gauge the error in using expected

surplus in an ex-ante analysis. Cicchetti and Freeman[14] state that the option value

is an individual’s risk premium, and thus it is positive for any risk-averse agent. Even

though the latter part of the statement has been proved to be wrong by showing that

the option value can take either a positive or a negative sign (see Schmalensee [40]

and Graham [21]), no one to my knowledge has demonstrated how the option value

and the risk premium are related.

It is obvious that the option value cannot equal the risk premium because a risk-

averse agent must have a nonnegative risk premium, but may have a negative option

value. Nonetheless, economists still use Cicchetti and Freeman’s interpretation of

the option value (for example, Chavas and Mullarkey [10] p.23-24). In this paper, I

examine the relationship between the option value and the risk premium by applying

a methodology suggested by Nau [31] to Graham’s model of option price and option

value. I find that the option value actually is similar to Nau’s buying price for a fixed

payment of the expected surplus, and there is a special case where the option value
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is a negative of the compensating risk premium.

Another goal of this paper is to relax the expected utility assumption in Graham’s

model. Since many experiments show that individual behavior does not always agree

with the independence axiom of expected utility theory, it is important to determine

how the option price and the option value change when one assumes a nonexpected

utility theory rather than the conventional expected utility theory. I find that if

an expected utility maximizer and a rank-dependent expected utility agent who is

pessimistic have the same state-dependent surplus for a good, the pessimistic agent’s

option value is larger in magnitude.

In the next section, I discuss how the option value is related to the risk premium.

In Section 3, I generalize Graham’s model to rank-dependent expected utility. I

conclude in Section 4.

B. The Relationship between Risk Premium and Option Value

1. Background

Weisbrod [48] introduces the concept of option demand in a classic example, the

willingness to pay for preserving a national park that an individual may or may not

visit in the future. Cicchetti and Freeman [14] formulate the option demand in a

problem of two periods. First an individual decides whether to buy an option to

consume a good, and later, learns whether he demands the good. Cicchetti and

Freeman define option price as the willingness to pay for the option, and define

option value as the difference between the option price and the expected surplus.

They interpret the option value as a risk premium and suggest that it is nonnegative

for a risk-averse person.

Assuming expected utility theory, Schmalensee [40] defines option price as the
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maximum amount an individual is willing to pay with certainty to guarantee that a

preferred price system will prevail in all states of nature. Let P and P∗ denote two

price systems where P is preferred to P∗. Assume that there are n states of nature,

and the probability that state i occurs is pi. Let wi and ui denote income and utility

function in state i, respectively. The option price, T , is defined by

n∑
i=1

piui(wi − T,P) =
n∑

i=1

piui(wi,P
∗).

If si denotes the consumer’s surplus (the Hicksian compensating variation) in state i,

then

ui(wi − si,P) = ui(wi,P
∗).

Similar to Cicchetti and Freeman’s definition of option value, Schmalensee’s option

value, t, is defined by

t = T −
n∑

i=1

pisi.

Schmalensee argues that the option value can be positive or negative for a risk-averse

agent.

Graham [21] adopts Schmalensee’s model for cost-benefit analyses. If u∗i (wi) and

ui(wi) are utility levels of income wi when a good (or a public project) is unavailable

and available, respectively, then the willingness to pay for such a good in state i, si,

satisfies this condition:

ui(wi − si) = u∗i (wi).

Let p = [p1, . . . , pn] be a vector of probabilities, w = [w1, . . . , wn] be a vector

of income levels, and s = [s1, . . . , sn] be a vector of surplus levels. Let u[w] =

[u1(w1), . . . , un(wn)] be a utility vector. The expected surplus of the good is then

Ep(s), and denote the (state-dependent) expected utility of the income vector w by



40

U(w). Let 1 be a unit vector. The option price given the surplus vector T (s) satisfies

U(w− s) = Ep(u[w− s]) = Ep(u[w− T (s)1]). (4.1)

Since the sign of the option value (or risk premium as interpreted by Cicchetti

and Freeman) is ambiguous, the role of risk premia in the ex-ante payment problem

deserves further explanation. If the option value is akin to the risk premium, how

can a risk averse agent have a negative risk premium? After Cicchetti and Freeman’s

exposition, no other paper has explicitly discussed this matter. 2

Kimball [22] calls the premium that an agent is willing to pay for avoiding a zero-

mean risk an equivalent risk premium, and the premium that an agent requires as a

compensation for bearing a zero-mean risk a compensating risk premium.3 Nau [31]

generalizes Kimball’s framework to allow for state-dependent utility and derives a

selling risk premium and a buying risk premium that relate to Kimball’s equivalent

risk premium and compensating risk premium, respectively. However, in his article,

Nau uses the buying risk premium rather than the selling risk premium in measuring

local risk aversion because it directly measures the local quasi-concavity of utility.

Nau defines a risk-neutral probability distribution, a buying price and a buying

risk premium as follow. The normalized gradient of U at wealth w, which is known

as the risk-neutral probability distribution, is defined as

q(w) =
∇U(w)

‖∇U(w)‖ ,

where ‖ · ‖ is the L1 norm. The buying price for a risky asset z, denoted B(z), is

2Schlee and Schlesinger [41] show a similarity between risk premium and option
price for accessing a contingent claim market.

3Pratt’s [33] risk premium is the equivalent risk premium.
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determined by

Ep(u[w + z−B(z)1]) = Ep(u[w]).

In the above expression, if B(z)1 is instead added in the brackets in the right hand

side, B(z) would be interpreted as the certainty equivalent for the asset z. Finally,

the buying risk premium for the asset z, b(z), is defined by

b(z) = Eq(w)(z)−B(z).

Nau adopts Yarri’s [49] definition of risk aversion, specifically, a risk-averse in-

dividual has preferences that are payoff-convex.4 He concludes that the individual is

risk averse if and only if the buying risk premium is nonnegative for every asset at

every wealth distribution. In the ex-ante payment problem, I also use the buying risk

premium in the analysis because it fits the situation better than the selling risk pre-

mium. Specifically, the individual is assumed to pay a constant payment in advance

and he is asked how much he needs to be compensated to make him indifferent to

when he pays the state-dependent surplus.

2. Results

I assume that the utility function ui is twice differentiable. In this paper, I follow

Nau’s [31] approach in identifying buying price and risk premium, but slightly change

notations as follows. The risk-neutral probability distribution at surplus s, is defined

as

q(s) =
∇U(w− s)

‖∇U(w− s)‖ .

4The preference relation % is payoff-convex if x % z and y % z imply αx + (1 −
α)y % z for α ∈ (0, 1).
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For some payment vector y, if an individual’s payment vector is changed from s to

y, then his buying price for this change, denoted B(y), is determined by

Ep(u[w− y−B(y)1]) = Ep(u[w− s]). (4.2)

The buying risk premium for the change from s to y is defined by

b(y) = Eq(s)(s− y)−B(y). (4.3)

In the ex-ante payment problem, I assume that initially an individual must pay

the state-dependent surplus for a good, represented by the payment vector s. Then

the problem is changed so that the individual is assumed to pay the constant amount

Ep(s) before he knows the state of nature. Defining s̄ = Ep(s)1, this is equivalent to

saying that the individual’s payment vector has been changed from s to s̄, which might

increase or decrease the individual’s expected utility from the initial position. To keep

this individual’s expected utility unchanged, the individual must pay a buying price

in addition to the constant amount Ep(s). Proposition 1 describes how the option

value is related to the buying price.

Proposition 9 The option value is equal to the buying price for changing the pay-

ment from s to s̄, i.e., t(s) = B(s̄).

Proof. Equating (4.1) and (4.2) yields:

Ep(u[w− T (s)1]) = Ep(u[w− y−B(y)1]).

Let y = s̄. Then, T (s) = Ep(s) + B(s̄), and therefore B(s̄) = t(s). ¤

Following Graham’s [21] approach, Proposition 9 can be illustrated in the 2-state

payment space in Figures 4 and 5. For example, assume that the state is determined

by the individual’s health, with 1 for sick and 2 for healthy. For simplicity, let
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Fig. 4. Willingness-to-pay locus for a hospital (s1 > s2)

w1 = w2 = w. Based on a previous survey by Viscusi and Evans [47], u′1(w) < u′2(w)

for all w. If the good in this problem is a hospital or a health care service, we should

expect that s1 > s2. The willingness-to-pay locus (x1, x2), defined by

p1u1(w − x1) + p2u2(w − x2) = p1u1(w − s1) + p2u2(w − s2),

is shown in Figure 4. Along the willingness-to-pay locus, ∂x2

∂x1
= − p

1−p
· u′1(w1−x1)

u′2(w2−x2)
, and

∂2x2

∂x2
1

= p
1−p

· u′′1 (w1−x1)

u′2(w2−x2)
. Any payment in the upper contour set (between the willingness-

to-pay locus and the origin) is preferred to the willingness-to-pay locus. The expected

surplus and the option price denoted Ep(s) and T (s) yield a negative option value.

In Figure 5 the good is a sport facility in which I assume that s1 < s2. In this case,

the option value is positive. The sign of the option value can be explained by Nau’s

buying price. In the hospital example, s % s̄ and the individual must be compensated

by a positive amount of money if he has to pay s̄. Therefore the buying price (or the

option value) must be negative. In the sport facility example, s̄ % s, the individual’s
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Fig. 5. Willingness-to-pay locus for a sport facility (s1 < s2)

expected utility would increase if he did not pay for this change. To keep his expected

utility unchanged, the buying price must be positive. In both cases, the risk premia,

Eq(s)(s)− T (s), are positive.

From Proposition 9, it is clear that the option value should not be interpreted

as a risk premium. However, there is a special case where the option value can be

derived directly from the buying risk premium. To get the result, following Graham’s

definition, I define the fair-bet payment of surplus s, f(s), as a vector x that maximizes

Ep(x) subject to Ep(u[w− x]) = Ep(u[w− s]). If f(s) = [f1, . . . , fn], then from the

maximization problem, u′i(wi − fi) = u′j(wj − fj) for all i, j = 1, . . . , n. The surplus

vector is a fair-bet vector of itself when s = f(s).

Proposition 10 Assume that the surplus vector is a fair-bet vector of itself. The

option value is the negative of the risk premium, i.e., t(s) = −b(s̄), and the individual

is risk averse if and only if t(s) ≤ 0.
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Proof. Let z = s − s̄. If s = f(s), then Eq(s)(z) = Ep(z) = 0. Hence, from

(4.3), b(s̄) = −B(s̄). The second part of the proposition follows immediately from

Proposition 1 in Nau [31]. ¤

Now I assume that s = f(s). The result can be illustrated in Figure 6. The

option value is T (s)−Ep(s) which is negative, and the risk premium is Ep(s)−T (s).

C. Rank-Dependent Expected Utility

1. Background

Economists and psychologists agree that individuals tend to substitute decision weights

for probabilities so that expected utility theory cannot always explain individuals’

behavior. An appropriate utility theory that embodies probability transformation

without violating the first-order stochastic dominance is a rank-dependent expected

utility proposed by Quiggin [34]. Let x = (x1, . . . , xn) and, without loss of generality,
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x1 < . . . < xn. The rank-dependent expected utility function is given by

V (x;p) = h(p1)u(x1) +
n∑

i=2

[
h(

i∑
j=1

pj)− h(
i−1∑
j=1

pj)

]
u(xi), (4.4)

where h : [0, 1] → [0, 1] is a probability transformation function with h(0) = 0,

h(1) = 1, and h′ ≥ 0. Tversky and Kahneman [46] suggest a single parameterized

form of the probability transformation function,

h(p) =
pγ

(pγ + (1− p)γ)1/γ
,

where γ ∈ (0, 1). With certain values of the parameter, one obtains the popular

inverted-S weighting function which implies that the individual overweights extreme

outcomes with small probabilities. As a result, the four-fold pattern of risk attitudes,

risk-seeking for small-probability gains and large-probability losses, and risk aversion

for small-probability losses and large-probability gains, can be explained.

2. Results

First I assume that expected utility (EU) theory holds. There are two states and the

utility function is the same in both states, but income varies. Assume throughout this

section that w1 < w2 and surplus si depends on wi, for i = 1, 2, with 0 ≤ w1 − s1 ≤
w2 − s2. This is a special case of state-dependent utility. Therefore the option value

is the buying price in the sense of Nau [31]. The fair-bet payment in this case is the

vector f such that w1 − f1 = w2 − f2. Changing the payment vector from s = f to s̄

is an increase in risk in the sense of Rothschild and Stiglitz [37]. Therefore s % s̄ and

the option value t(s) is negative.

Two other interesting cases are a normal good and an inferior good. For a

normal good, s1 ≤ s2, and paying the expected surplus is an increase in risk. Thus

the option value is negative. In contrast, for an inferior good, s1 ≥ s2, paying the
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Fig. 7. Willingness-to-pay locus of the EU agent

expected surplus is an increase in risk and the option value is positive. These results

are illustrated in Figure 7. The payment vectors s1 and s2 are the surplus vectors of

a normal good and an inferior good, respectively. Both goods have the same option

price (T ). The option values t(s1) is negative and t(s2) is positive.

Now let the agent be a rank-dependent expected utility (RDEU) maximizer, and

the probabilities that the wealth level is w1 and w2 are p and (1 − p), respectively.

Then (4.4) can be written as

V (w1, w2; p) = h(p)u(w1) + [1− h(p)]u(w2). (4.5)

If h(p) > p, the individual overweights the lower outcome, and the individual is said

to be pessimistic. If h(p) < p, the individual overweights the higher outcome, and the

individual is said to be optimistic (see also Quiggin [34] and Neilson [32]). Suppose

that two agents, an EU agent and a RDEU agent have the same surplus. Who has a

higher option value?
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Proposition 11 If an EU agent and a pessimistic (an optimistic) agent have the

same surplus, then the pessimistic (optimistic) agent’s option value is larger (smaller)

in magnitude.

Proof. Define u(s1, s2) = pu(w1− s1)+ (1− p)u(w2− s2) and v(s1, s2) = h(p)u(w1−
s1) + (1 − h(p))u(w2 − s2) so that u is an EU agent and v is a pessimistic agent.

Since w1 − s1 < w2 − s2 and h(p) > p, then u(s1, s2) > v(s1, s2). Let Tu and

Tv be the option price of agent u and v, respectively. Then u(s1, s2) = u(Tu, Tu)

and v(s1, s2) = v(Tv, Tv) ≡ v̄. Hence u(Tv, Tv) > v(Tv, Tv). We have the following

equations.

u(s1, s2)− v̄ = [h(p)− p][u(w2 − s2)− u(w1 − s1)] (4.6)

u(Tv, Tv)− v̄ = [h(p)− p][u(w2 − Tv)− u(w1 − Tv)] (4.7)

Let g(x1) be a continuous function such that v(x1, g(x1)) = v̄. We know that dg(x1)
dx1

<

0. Hence d
dx1

[u(w2 − g(x1))− u(w1 − x1)] > 0. If the good is normal for both agents,

i.e., s2 > s1, then Tv > s1 and the RHS of (4.7) is greater than the RHS of (4.6).

Therefore u(Tv, Tv) > u(s1, s2) = u(Tu, Tu), and Tv < Tu. Since the good is normal

for both agents, Tv < Tu < E(s). Let tu and tv be the option value of agent u and v,

respectively, it follows that tv < tu < 0. Similarly, if the good is inferior, tv > tu > 0.

In either case, |tv| > |tu|. If the agent is optimistic, then h(p) > p and the signs are

reversed. ¤

Fix the level of the RDEU at v̄ = h(p)u(w1 − s1) + [1 − h(p)]u(w2 − s2). The

willingness-to-pay locus (x1, x2) for a RDEU agent is derived from

v̄ =





h(p)u(w1 − x1) + [1− h(p)]u(w2 − x2) if w1 − x1 ≤ w2 − x2;

h(1− p)u(w2 − x2) + [1− h(1− p)]u(w1 − x1) if w1 − x1 > w2 − x2.

The willingness-to-pay locus now has a kink at (k1, k2), where w1 − k1 = w2 − k2.
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Along the willingness-to-pay locus, ∂x2

∂x1
= − h(p)

1−h(p)
·u′(w1−x1)
u′(w2−x2)

and ∂2x2

∂x2
1

= h(p)
1−h(p)

·u′′(w1−x1)
u′(w2−x2)

when x1 ≥ k1; and ∂x2

∂x1
= −1−h(1−p)

h(1−p)
· u′(w1−x1)

u′(w2−x2)
and ∂2x2

∂x2
1

= 1−h(1−p)
h(1−p)

· u′′(w1−x1)
u′(w2−x2)

when

x1 < k1. If I assume that the surplus of a normal good for the RDEU agent is the

same as for the EU agent, the RDEU willingness-to-pay locus is the bold curve with a

kink at k crossing the EU willingness-to-pay locus at s as shown in Figure 8. This is

similar to the kink on a indifference curve of an individual who is risk averse of order

1 defined by Segal and Spivak [42].5 Segal and Spivak [43] prove that the first-order

risk aversion at k is equivalent to the local utility function that is not differentiable

at k.

The result described above is based on state-independent utility, while Graham’s

model is based on state-dependent utility. To apply the RDEU assumption to a state-

dependent utility, I follow Chiu’s methodology. Chiu [11] ranks the prospective out-

5For a random variable ε with E(ε) = 0. Let µ(tε) be the risk premium that the
agent is willing to pay to avoid the risk tε. The agent is risk averse of order 1 if
∂µ(tε)/∂t|t=0 6= 0.
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comes according to their state-dependent utility levels instead of their state-dependent

income levels. Now assume that there are two states of nature, u1(w) < u2(w) for all

w1 = w2 = w, and u1(w1−s1) ≤ u2(w2−s2). If the utility function is state-dependent,

the RDEU can be written as

W (w1, w2; p) = h(p)u1(w1) + [1− h(p)]u2(w2), (4.8)

where u1(w1) < u2(w2). Fix the level of the RDEU at w̄ = h(p)u1(w1 − s1) + [1 −
h(p)]u2(w2 − s2). The willingness-to-pay locus (x1, x2) is derived from

w̄ =





h(p)u1(w1 − x1) + [1− h(p)]u2(w2 − x2) if u1(w1 − x1) ≤ u2(w2 − x2);

h(1− p)u2(w2 − x2) + [1− h(1− p)]u1(w1 − x1) if u1(w1 − x1) > u2(w2 − x2).

Let (k1, k2) be a payment vector on the willingness-to-pay locus such that u1(w1−
k1) = u2(w2 − k2). If w1 < w2, then k1 < k2. The analysis is similar to the state-

independent case (see Figure 8), except that with state-dependent utility, k1 may be

negative.

D. Conclusion

The option price is the ex-ante willingness to pay for a good whose surplus is depen-

dent on state of nature. The difference between the option price and the expected

surplus is called option value. The option price has been used as an appropriate

welfare measure under risk under the assumption of expected utility, while the option

value has been interpreted as the risk premium. This interpretation is arguable since

the option value can be positive or negative, but the risk premium must be positive

for a risk-averse agent. I show that actually the option value is the buying price for

changing the payment from the state-dependent surplus to the expected surplus, and

it can be positive or negative.
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I also show that Graham’s model can be generalized to rank-dependent expected

utility. When there are two states of nature and two agents, an EU agent and a

pessimistic agent. If both have the same surplus, then the pessimistic agent’s option

value is larger in magnitude. In contrast, if an EU agent and an optimistic agent have

the same surplus, then the optimistic agent’s option value is smaller in magnitude.



52

CHAPTER V

SUMMARY

In Chapter II, we characterize comparative measures of Arrow-Pratt and Ross risk

aversion through a comparative statics problem. The Ross characterization arises

when two risk averse agents optimally choose their shifts in probability distribution

toward a preferred distribution that differs from the original one by a mean preserving

decrease in risk, and the cost of shifting probabilities is monetary. The Arrow-Pratt

characterization arises when the original distribution differs from the preferred dis-

tribution by a simple mean-preserving spread, and the cost is a utility cost.

Using the same approach, we generalize the comparative statics problem to the

difference in nth degree risk between two probability distributions and the nth degree

of risk aversion. For the third degree risk comparison in the monetary cost problem,

our characterization of more Ross risk averse in the third degree coincides with more

downside risk averse, as recently defined by Modica and Scarsini [30]. On the other

hand, in the utility cost problem, the Arrow-Pratt risk aversion measures in the 3rd

degree coincide with the absolute prudence measures defined by Kimball [22].

In Chapter III, we analyze decisions made by a group of terrorists and a gov-

ernment in a zero-sum game where the terrorists minimize a representative citizen’s

expected utility and the government maximizes it. The terrorists’ strategy balances

the probability and the severity of the attack while the government chooses the level

of investment reducing the probability and/or mitigating the severity. We find that,

if the representative agent is risk neutral, the terrorists choose the level of severity

that does not depend on the government’s choice of activities, but provokes the high-

est level of counterterrorism activity. We also find that the citizen’s risk attitudes

affect the strategies of the terrorists and the government. When compared with a risk
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neutral population, a risk averse population in the target country leads the terrorists

to commit more damaging, but less frequent, attacks.

When the government’s activities mitigate the damages of an attack but do

not prevent an attack, increased risk aversion leads to increased counterterrorism

activities. However, when the government’s activities only prevent an attack but do

not mitigate the damages, the effect of risk aversion on the counterterrorism activities

depends on the probability of an attack. If an attack is not too likely, the government

spends more to prevent an attack when the representative citizen becomes more risk

averse. If an attack is likely, the government spends less to prevent an attack when

the representative citizen becomes more risk averse.

In Chapter IV, we discuss the option price which is defined by Cichetti and

Freeman [14] as an ex-ante willingness to pay for a good whose surplus is dependent

on state of nature. The difference between the option price and the expected surplus

is called option value. The option price has been used as an appropriate welfare

measure under risk under the assumption of expected utility, while the option value

has been interpreted as the risk premium. This interpretation is arguable since the

option value can be positive or negative, but the risk premium must be positive for

a risk-averse agent. We show that actually the option value is the buying price for

changing the payment from the state-dependent surplus to the expected surplus, and

it can be positive or negative.

We also show that Graham’s [21] model can be generalized to rank-dependent

expected utility. When there are two states of nature and two agents, an EU agent

and a pessimistic RDEU agent. If both have the same surplus, then the pessimistic

RDEU agent’s option value is larger in magnitude. In contrast, if an EU agent and

an optimistic RDEU agent have the same surplus, then the optimistic RDEU agent’s

option value is smaller in magnitude.
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