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ABSTRACT 

Turn-of-the-Nut Tightening of Anchor Bolts. (May 2004) 

Jason Halbert Richards, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Peter Keating 

 
Double-nut anchor bolt systems are used in the erection of traffic signal poles, 

high-mast luminaries, and other highway appurtenances. An absence of a tightening 

standard for such systems decreases the confidence in their performance under fatigue 

loading. Past research has shown that a tightening standard should include the 

development of preload in the anchor bolt sufficient to provide adequate resistance to 

fatigue failure. Preload should be measured by a turn-of-the-nut method. 

Laboratory progressive tightening tests were performed in order to monitor the 

stress ranges occurring in the bolt at various locations of interest at various degrees of 

turn-of-the-nut tightness. Tests were performed on six diameters of anchor bolt ranging 

from 1 to 2-1/4 inches in diameter and two different categories of thread pitch: UNC and 

8UN. Plots of stress range versus degree of tightness were developed for each test and 

evaluated to find the minimum degree of turn-of-the-nut at which stress range inside the 

nuts dropped below that outside the nuts. This shift was considered to be the principle 

theoretical indication of adequate performance. A fatigue test which saw failure outside 

the double-nut connection was set down as the practical indicator of adequate fatigue 

performance.  

The 2 inch 8UN bolt was chosen as the critical specimen due to its overall low 

generation of preload during tightening tests. Theoretical testing showed that 1/24 turn-

 



iv 
 

 

of-the-nut would guarantee sufficient fatigue performance. Two practical fatigue tests of 

the bolt at that tightness saw one positive and one negative failure. 

After actual lab tests, finite element modeling was used to investigate the 

behavior of the bolt. It was found that performance did not see improvement until 1/12 

turn-of-the-nut. 

After all results were considered, a standard of 1/6 turn-of-the-nut or refusal of 

tightening by specified methods was recommended, provided a minimum of 1/12 turn-

of-the-nut was achieved. This value allows for ease of measurement, sufficient tightness, 

degree of safety, and has been shown in past testing not to cause failure through over-

tightening. However, tightening to only 1/12 turn-of-the-nut still provided adequate 

performance. 
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1 INTRODUCTION 

In recent years, the Texas Department of Transportation (TxDOT) has sponsored 

research into the fatigue performance of anchor bolts. This research was undertaken for 

two reasons: one, a lack of tightening standards for double-nut connections used in 

roadside structures and two, the failure of cantilevered highway signs in various places 

across the country, particularly in Michigan. These two issues gave rise to questions 

about the practices used in Texas for assembling highway-side structures such as traffic 

signal poles, high-mast luminaries, and other similar highway appurtenances. 

 

1.1 Definitions 

A number of terms require definition, as an understanding of them is required for 

comprehension of the thesis. The following definitions were taken from the TxDOT 

Manual of Testing Procedures. 

• Double-nut anchor bolt system – An anchor bolt with two nuts that sandwich 

the structure’s base-plate. The bottom nut is positioned under the base plate 

to level, support, and provide the reaction for the force applied by tightening 

the top nut located above the base plate. 

• Impact tightening – The tightening of nuts with a box end ‘slug’ or ‘knocker’ 

wrench and an approximate 16 lb sledgehammer. The wrench, matching the 

size of the nut to be tightened, is driven with the sledgehammer to rotate the 

nut. Wrenches used in testing associated with the current study are shown in 

Figure 1.1. 

________________________ 
This thesis follows the style of the Journal of Structural Engineering. 
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Figure 1.1 – Slug wrenches 

  
 
 
• Snug tight – The condition when the nut is in full contact with the base-plate. 

It may be assumed that the full effort of a workman on a 12 inch wrench 

results in a snug tight condition. 

• Turn-of-the-nut-method – The tightening of a nut to snug tight condition then 

establishing reference positions by marking one flat on the nut with a 

corresponding reference mark on the base-plate at each bolt. The nut is then 

turned to the prescribed rotation from the referenced snug tight position. A 

nut marked with 1/24 turn-of-the-nut increments for reference is shown in 

Figure 1.2. 

 

 



3 
 

 

Figure 1.2 – Nut marked for turn reference 

 
 
 

1.2 Problem history 

To understand the purposes behind, and application of, the current study, it is 

necessary to understand the conditions that brought it about and the research leading up 

to it. The current study is a continuation of research and studies beginning in 1990. The 

failure of two cantilever highway signs in January and February of that year in Michigan 

prompted research into fatigue failure of anchor bolts in Michigan as well as across the 

country. Fatigue was found responsible in those failures, and issues were raised 

regarding proper tightening of the anchor bolt connections, as tightening has been 

determined to affect performance under cyclic loading. The chief concerns of the Texas 

Department of Transportation (TxDOT) were stated in a report published in 1997 by the 

Texas Transportation Institute (TTI): “How tight do the anchor bolt nuts need to be? 
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What techniques and procedures are best suited for tightening? How can tightness be 

inspected?” (James et al. 1997).  

 

1.3 Fatigue 

The effects of fatigue in any material are very difficult to predict. Unlike most 

material responses, small imperfections and geometry most often influence fatigue 

failure. Typically major factors such as material yield strength or bolt diameter have 

little, if any, impact on fatigue life of anchor bolts (Frank 1980). At the very least, such 

issues that are normally principal predictors of structural behavior play a much smaller 

role in determining fatigue performance. 

Fatigue failure consists of two components. One is the formation or initiation of 

cracks. This typically occurs at areas of stress concentration. Such concentrations always 

exist to some degree, and the magnitude determines how influential it is in affecting 

fatigue performance. These are most often found at imperfections in the material or at 

geometric stress risers such as holes or edges. In the case of anchor bolts, the critical 

stress concentration is most likely to be found at the initial interface of the threads of the 

bolt and nut. However, in real situations, flaws such as thread damage, machined holes, 

or cuts in the bolt can control the formation of cracks that lead to failure. 

The second issue, and that of greater importance, is that of stress range. It is the 

loading and unloading of the bolt in a cyclical fashion that mitigates and propagates the 

cracks that can lead to the eventual failure of the structure. In the case of the anchor bolts 

examined in this study, such loading is primarily caused by wind. Even in the absence of 
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significant stress concentrations, fatigue can cause failure in materials (Ugural and 

Fenster 1995). 

Wind-induced fatigue loading is typically seen in conjunction with other forms of 

loading. The primary elements in anchor bolt loading include the fatigue combined with 

a constant tensile axial load as a result of the dead load. The axial load affects the mean 

stress level seen during fatigue loading. These components are noted in Figure 1.3 

below. Other loads may include compressive axial load, bending, torsion, or other types 

depending on the use and configuration of the structure.  

It has been previously mentioned that stress range is the most critical aspect of 

fatigue. Even at a mean stress of zero, the application of stress range can cause failure. 

This illustrates the importance of stress range as greater than that of mean stress. 

 

Time

St
re

ss

Mean 
Stress

Stress 
Range

 

Figure 1.3 – Components of fatigue 
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1.4 Typical anchor bolt setup 

The anchor bolts examined in the current study and in much of the research 

concerning double-nut fixtures are used for affixing the base of roadside illumination 

structures or cantilevered highway signs to concrete foundations. A typical assembly of 

anchor bolts used by TxDOT is shown in Figure 1.4. 

 

 

Figure 1.4 – Anchor bolt assembly 

 
 
 
The double-nut assembly of an individual anchor bolt can be seem more clearly 

in a schematic illustration of a test specimen, Figure 1.5. The bottom nut is often called 

the leveling nut, since it is used to level the base-plate and thus ensure the vertical 
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erection of the structure. The top nut is the nut that is tightened, securing the base-plate 

against the bottom nut and preventing uplift or overturning of the structure. Washers 

between the nuts and the base-plate better distribute the bearing forces and facilitate the 

turning of the nut. 

  
 

 

Figure 1.5 – Individual assembled anchor bolt 

  
 
In actual installations, the base-plate is a large circular or rectangular plate with 

holes around it to allow for the anchor bolts. A typical plan view of a base-plate is given 

in Figure 1.6. For the current study, the base-plate was a simple ring used as a spacer, 

necessary to the development of preload over the length of the bolt between the nuts. 

Maximum allowable TxDOT details were used as a basis for the plates used in testing. 

Further details on base-plate dimensions can be found in Section 2. 
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Figure 1.6 – Typical base-plate detail 

 
  

1.5 Basic preload theory 

Understanding the usefulness and advantage of preloading, and why such a 

condition affects fatigue performance, is critical to understanding the tests that were 

performed for the current study. When turning the top nut past a snug tight condition, the 

resulting preload shields the double-nut connection from external loading. Any applied 

force, such as that due to the uplift caused by wind load, must first overcome the initial 

tensile preload to have any affect on the bolt length within the double-nut connection. 

This reduces the stress range experienced within the double-nut connection and causes 

the likely location of failure to shift from below the top nut to below the bottom nut, as 
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has been shown by Frank (1980), Van Dien et al. (1996), James et al. (1997), and 

Keating et al. (2004). The end effect is that the addition of static tensile load along a 

given length of the bolt reduces the effect of cyclic load along that same region, 

preventing premature failure.  

 

1.6 Adequate fatigue performance 

Bolts without sufficient preload are determined to perform inadequately under 

the cyclic loading. The high stress range located at the interface of the base-plate and the 

top nut, coupled with the high levels of stress seen there, leads to premature fatigue 

failure. The measurement of these stress ranges and stress concentrations are discussed 

in detail in Sections 3 and 4. 

The fatigue behavior of a sufficiently-preloaded double-nut connection is 

considered to be adequate performance. That is, adequate performance of an anchor bolt 

can be measured by the reduction in stress range between the nuts to a level below that 

seen by the rest of the bolt. The best case for fatigue failure is to have it occur below the 

double-nut assembly. This case is the minimum that is expected from anchor bolts in the 

field. Again, the measurement of stress ranges and concentrations is discussed in 

Sections 3 and 4. 

 

1.7 Past research, nationwide 

Fundamentals for double-nut connection research include studies dating back to 

1980. In that year, Frank (1980) performed a general study of anchor bolt fatigue in his 
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article, “Fatigue Strength of Anchor Bolts”, and came to a number of important 

conclusions. He concluded that steel grade, thread size, bar diameter, thread forming 

method, and galvanizing do not significantly influence the fatigue strength of anchor 

bolts. Diameters tested ranged from 1-3/8 to 2 inches, and thread pitch ranged from 4-

1/2 to 8 threads per inch. Steel ranged from 26.7 to 171 ksi yield strength. He also came 

to an important conclusion about preload. In his tests, Frank found that tightening the 

double-nut connection 1/3 of a turn-of-the-nut beyond snug tight significantly improved 

fatigue life and moved the failure location to the outside of the connection. Snug tight 

was defined by Frank as 200 ft-lbs of applied torque. 

In the 1996 article, “Fatigue Testing of Anchor Bolts”, Van Dien et al. (1996) 

concurred with Frank’s findings, including the value of preloading the anchor bolts. The 

migration of failure location to the outside of the fixture was noted in specimens turned 

to 1/3 turn-of-the-nut beyond snug tight. The snug tight definition from Frank’s earlier 

study was used. This article raised concerns about inspection of the anchor bolts for 

cracks “[d]ue to the inherent configuration of bolted connections.” This statement 

highlights one of the great advantages of applying turn-of-the-nut preload to anchor 

bolts: the facilitation of inspection. 

After the failures that prompted much of the research into anchor bolts since 

1990, in-depth inspection and testing of anchor bolts took place in Michigan. In a report 

from the Michigan Department of Transportation (MDOT) in 1990, “Action Plan for 

Cantilever Sign Problem” and the final report in 1992, inspection again became a major 

issue. MDOT found that the methods then used for inspection in most states were 
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antiquated, inadequate, or even non-existent. After inspection of Michigan’s own 

highway structures, an anchor bolt in one cantilever sign pole was found completely 

broken inside the connection, at the first fully engaged thread of the top nut, a failure 

that would have gone unnoticed save for the intense and comprehensive inspections after 

the accidents. Again, inspection and failure location came to the forefront of the issues. 

Publications such as these clearly demonstrate the benefits of turn-of-the-nut 

preload. This leads into the question of how to best introduce preload and how much 

preload to apply to achieve adequate fatigue performance. 

 

1.8 Past research, TxDOT 

The question of required preload for double-nut anchor bolt fixtures has been 

addressed in several publications associated with the Texas Transportation Institute and 

Texas A&M University, which are well-represented by Abraham (1997). Abraham cited 

optimum levels of preload with respect to desired fatigue characteristics as shown in 

Table 1.1. 

 

Table 1.1 – Optimum preload as determined by Abraham 

Nominal Preload Stress Factor 
(maximum axial stress 

multiplier) 

Tensile Stress 
Range reduced by: 

Thread 
Roots in: Failure Location 

0 to 33% 0 to 25% Tension Below top nut 
33% to 200% 25 to 40% Tension Below bottom nut

200% + 40% Compression Below bottom nut
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Methods by which preload was generated varied in the study. Abraham, that 

using a cheater pipe and wrench, was unable to consistently generate the turn-of-the-nut 

desired. Also, the torque required to turn a nut to a certain rotation varied significantly 

from bolt to bolt, making a torque wrench an unreliable method. The best method was 

found to be using a 16 lb sledgehammer and knocker wrench to achieve the specified 

turn-of-the-nut.  

Hodge (1996) studied other aspects of tightening and fatigue as a part of his work 

on the fatigue of high-mast luminare anchor bolts. He studied the effects of snug 

tightening and preloading anchor bolts and misalignment. Preloading of anchor bolts 

was again found to cause a shift in probable failure location, this time through finite 

element modeling. When subjected to loading, stress concentrations and stress ranges 

were observed on the model, which determined the probable location of failure. This 

analytical confirmation of the behavior reaffirms experimental results found by Frank, 

Van Dian et al., and other research.  

The work of Abraham and Hodge was summarized in TTI Report 1472-1F 

entitled “Tightening Procedures for Large-Diameter Anchor Bolts”, where results were 

reported and new procedures and standards for anchor bolts recommended. The 

connection between preload, stress range, and failure location was clearly stated in this 

report, “The location of the maximum axial stress range is [at the outside of the 

connection], which explains why the mode of failure shifts to this region. (James et al. 

1997).” 
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A continuing study, “Supplemental Laboratory Testing to Extend Scope of 

Proposed Standard Method of Tightening of Anchor Bolts”, was performed by TTI for 

TxDOT looking more closely at issues of tightening and fatigue for a much larger range 

of issues including lubricants, a wide range of bolt diameters, thread pitch, material 

grade, and reuse of bolts. Results confirmed the findings of Frank (1980) and Van Dien 

et al. (1996) regarding improved performance of anchor bolts in fatigue when preloaded 

by a turn-of-the-nut standard. The study also showed the previously observed migration 

in failure location when so preloaded. Electrically conducting lubricant was found to be 

the lubricant of choice, and 8UN bolts of 2-1/4 diameter and larger were recommended 

for exclusion from TxDOT specifications due to fatigue issues. Bolt reuse, even after 

yielding in preload, was shown to not be a significant factor in fatigue life. 

In dealing with a large variety of bolt diameters, ranging from 1 inch to 3 inches, 

issues arose with previous research. Research by Frank (1980) and Van Dien et al. 

(1996) discussed migration of failure location in terms of 1/3 turn-of-the-nut beyond 

snug tight. It was found in Keating et al. (2004) that for some coarse thread pitches and 

large diameters, or a combination of the two, achieving 1/3 turn-of-the-nut was not 

possible through practiced methods. Most fatigue tests were performed in the new study 

with bolts tightened only 1/6 turn-of-the-nut, sometimes less, and still achieved the 

favorable behavior of preloading found in past research. This led to questions regarding 

the precise amount of preload required to achieve enhanced performance under fatigue. 

Eventually an extension of this research developed into the testing performed for the 

current study. 
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1.9 Continuing research 

By piecing together the current body of knowledge on preload in anchor bolts, 

the current study was performed to directly relate the issues of interest: turn-of-the-nut 

tightening and adequate fatigue performance. Previous tests that demonstrated such 

improvement have most often been performed at 1/3 turn-of-the-nut beyond snug tight, 

or recently at only 1/6 turn-of-the-nut or less. The next logical question is, “At what 

turn-of-the-nut does one see the advantage of preload?” This is a valid question for each 

bolt diameter and thread pitch used by TxDOT. 

 

1.10 Importance of failure location migration 

The migration of failure location to a point outside the double-nut fixture is 

important for purposes of inspection, as frequently noted in past research and reports. In 

an anchor bolt without preload, failure typically occurs at Location 1 as noted in Figure 

1.7. A sufficiently preloaded bolt sees the failure location migrate to Location 2. As can 

be seen in Figure 1.4 above, Location 2 is visible and inspectable as opposed to Location 

1, which is within the double-nut assembly. If failure occurs within the fixture at 

Location 1, inspection requires the disassembly of the structure or the use of costly 

equipment, limiting the ability and frequency of the Department of Transportation 

inspections, and increasing their cost. While cracking at Location 2 may still be difficult 

to detect, at the very least failure outside of the double-nut assembly is easier to detect 

and allows for the possibility that anchor bolt failures may be observed and the bolt 

replaced instead of going unnoticed as was the case in Michigan as mentioned above. 
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Figure 1.7 – Bolt failure locations 

 

The most important aspect of the migration of failure location is as an indicator 

of desirable behavior. The shift in failure location to outside the double-nut connection 

implies the existence of significant preload in the tightened section of the anchor bolt 

and a reduction in stress range in the interior of the double-nut assembly, which have 

been shown to extend fatigue life within the tightened section. The relationship between 

preload, stress range, and failure location is discussed extensively in Sections 3 and 4. 

 

1.11 Problem summary 

The problem may be summarized by the following question: “What turn-of-the-

nut generates enough preload to lower stress ranges to a level that moves the likely 

failure location move from Location 1 to Location 2 on the double-nut anchor bolt?” 

This question is valid for each diameter used by TxDOT in roadside applications. This 
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study evaluates six different bolt diameters as shown in Table 1.2, and performs tests to 

determine the answer to the above question for each case. 

 

Table 1.2 – Test matrix for progressive 
tightening tests 

 
 Number of Specimens Tested 

Bolt Diameter 
(in.) A193 Gr. B7 

 UNC 8UN  
1 - 1 

1-1/4 1 1 
1-1/2 1 1 
1-3/4 1 1 

2 1 1 
2-1/4 1 1 

 
 
1.12 Objective and criteria 

The final objective of the current study is a minimum turn-of-the-nut tightening 

standard that demonstrates the improved fatigue characteristics shown in previous 

research utilizing 1/3 or 1/6 turn-of-the-nut. The comprehensive testing of all diameters 

and thread pitches of the bolt samples to failure would be unrealistic. To substitute, two 

criteria for the effective improvement of fatigue characteristics have been established. 

The principal and theoretical criterion is the observed reduction in stress range 

experienced between the nuts of the double-nut connection. The practical criterion is the 

witnessed failure of an assembly at a point outside the connection when tightened to the 

specified minimum turn-of-the-nut. This location is labeled as Location 2 in Figure 1.7. 

The reduction in stress range and the shift in failure location are both seen as indicators 

of sufficient preload to ensure adequate fatigue performance.  
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2 METHODS 

 

2.1 Progressive tightening test 

Progressive tightening is the term used to describe the tests performed to gather 

data on stress ranges at incremental levels of turn-of-the-nut tightness. Bolt specimens 

were subjected to a series of short fatigue tests at increasing degrees of turn-of-the-nut as 

detailed below.  

 

2.1.1 Bolt selection 

Test specimens were chosen to fit a number of criteria and to represent the range 

of available options for anchor bolts in the field. The following variables were 

considered in the selection of specimens: 

• Bolt diameter 

• Thread pitch 

• Material grade 

• Bolt and thread length 

• Galvanizing 

• Availability 

 

2.1.1.1 Bolt diameter 

Bolt diameters were chosen based on those specified by the Texas Department of 

Transportation (TxDOT) for the installation of highway signage. From this list were 
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taken all that were capable of testing by the fatigue fixture available in the lab. 

Diameters ranged from 1 inch to 2-1/4 inch by 1/4 inch increments. 

 

2.1.1.2 Thread pitch 

TxDOT utilizes two categories of thread pitch. The first of these is Unified 

National Coarse, more commonly known as UNC. UNC bolts vary in number of threads 

per inch with diameter of the bolt. Unified National 8 is more often known as 8UN and 

has 8 threads per inch for all bolt diameters. For the 1 inch bolt, UNC and 8UN have the 

same thread pitch. A comparison of both thread types is found in Table 2.1. For a full 

range of data, each thread pitch was tested for each diameter. 

 

Table 2.1 – Bolt thread pitches by diameter 
 

Bolt Diameter 
(inches) 

UNC 
(threads per inch)

8UN 
(threads per inch) 

1 8 8 
1-1/4 7 8 
1-1/2 6 8 
1-3/4 5 8 

2 4-1/2 8 
2-1/4 4-1/2 8 

 
 
 
2.1.1.3 Material grade 

Only high-strength A193 Gr. B7 steel was used in the testing. Grade B7 steel has 

a nominal yield strength of 105 ksi. This level of yield strength allows elastic stress data 

to be collected to high degrees of turn-of-the-nut. Lower grades of steel are allowed by 

TxDOT, but were not deemed necessary to test because steel yield strength has been 
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found to be unimportant to fatigue performance in a number of studies (Frank 1980, Van 

Dien et al. 1996, Keating et al. 2004). 

 

2.1.1.4 Bolt and thread length 

All bolts for testing were required to be sufficiently long to accommodate the 

necessary strain gaging and thread length, and of appropriate length to fit into the testing 

apparatus. Thread length was governed by the need to fit on both nuts, washers, and the 

base-plate on the double-nut side. While the opposite end only required space for one 

nut, washer, and the base-plate, it was cut with the same length of thread as the double-

nut side. This was done to simplify assembly and offer redundancy should machining or 

other events damage the double-nut side and make it unsuitable for testing.  

 

2.1.1.5 Galvanizing 

In the field, all bolts, nuts, and washers are galvanized to protect them from 

corrosion due to the elements. In the test, all new specimens acquired were without any 

galvanizing on the bolts, nuts, or washers. The presence of galvanizing is unimportant 

for fatigue applications (Frank 1980). 

 

2.1.1.6 Availability 

As the progressive tightening test was a continuation study of research funded by 

TxDOT, efforts were made to save time and money by utilizing existing specimens left 
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over from previous research. Substitutions were only made in cases known to be 

acceptable based on past research. Substitutions were made in the following cases: 

• All tests carried out for development of the procedure were 1-3/4 inch 

specimens with galvanizing and non-standard bolt and threaded lengths. 

These were developmental specimens not included in the final results. 

• The 2-1/4 inch 8UN specimen was galvanized and fully threaded. 

• The 1-3/4 inch UNC specimen was reused after modification from 

developmental tests. It was galvanized and had non-standard bolt and thread 

lengths. 

• The 1-3/4 inch 8UN specimen was previously used in a tightening test, 

without fatiguing. It was galvanized and had non-standard bolt length and 

was fully threaded. 

Consequently, a group of specimens was put together as shown in Table 2.2. All bolt 

specimens were of steel grade A193 Gr. B7 with a nominal yield strength of 105 ksi. 

 

Table 2.2 – Progressive tightening test specimens 
 

Bolt Diameter 
(in.) 

Thread 
type 

Thread 
pitch Galvanizing Bolt Length 

(in.) 
Thread Length 1 

(in.) 
Thread Length 2 

(in.) 
1 8UN 8 N 22 6 6 

1-1/4 UNC 7 N 22 8 8 
1-1/4 8UN 8 N 22 8 8 
1-1/2 UNC 6 N 22 8 10 
1-1/2 8UN 8 N 22 10 10 
1-3/4 UNC 5 Y 28 11 3 
1-3/4 8UN 8 Y 22 Full Full 

2 UNC 4-1/2 N 28 11 10.5 
2 8UN 8 N 28 10 10 

2-1/4 UNC 4-1/2 N 28 12 10 
2-1/4 8UN 8 Y 28 Full Full 
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2.1.1.7 Base-plate selection 

The base-plates involved in the assembly of a test specimen were adapted from 

TxDOT specifications and Keating et al. (2004). Each base-plate was circular with a 

hole machined through the middle. From each of these references was gathered the 

following basis for the test plan: 

 

Table 2.3 – Original specified base-plate dimensions 
 

Bolt Diameter 
(in.) 

Base-plate Inner 
Diameter (in.) 

Base-plate Outer 
Diameter (in.) 

Base-plate Thickness 
(in.) 

1 1.25 4.50 1.25 
1-1/4 1.50 4.50 1.50 
1-1/2 1.75 4.50 1.88 
1-3/4 2.06 4.50 2.25 

2 2.31 8.19 2.38 
2-1/4 2.56 8.19 2.75 

 

 
 The original base-plate dimensions above in Table 2.3 were designed for use in 

two separate test setups as detailed in Keating et al. (2004). Base-plate thicknesses were 

taken from the maximum allowable by TxDOT specifications. They were also used to 

collect tightening data as discussed later in this section. The above base-plates were 

readily available for use in testing and were adapted for use in the progressive tightening 

tests. The following changes were made: 

• The large plate for the 2 inch bolt specimen was substituted with the plate 

from the 1-3/4 inch bolt specimen. The lower tolerance, while causing 

problems in field setup, is workable in a laboratory situation. This increase in 
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thickness for the 1-3/4 inch bolt specimen plate is conservative since a 

greater plate thickness results in less preload for the equivalent turn-of-the-

nut. 

• The large plate for the 2-1/4 inch specimen was machined to a diameter 

acceptable for use in the smaller test fixture. Calculation of rupture load 

limits confirmed the modification as acceptable. 

The plate dimensions used for progressive tightening are listed in Table 2.4. 

 

Table 2.4 – Final base-plate dimensions 
 

Bolt Diameter 
(in.) 

Base-plate Inner 
Diameter (in.) 

Base-plate Outer 
Diameter (in.) 

Base-plate Thickness 
(in.) 

1 1.25 4.50 1.25 
1-1/4 1.50 4.50 1.50 
1-1/2 1.75 4.50 1.88 
1-3/4 2.06 4.50 2.25 

2 2.06 4.50 2.25 
2-1/4 2.56 4.50 2.75 

 

 

2.1.2 Specimen preparation 

 

2.1.2.1 Machining 

To allow for the application of strain gages to the surface of the bolts being 

tested, it was necessary to machine longitudinal grooves along the bolt to provide a 

workable surface. Groove dimensions varied according to bolt diameter to accommodate 

the various sizes of the strain gages and to allow sufficient room for wires to be run 
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without interfering with the threading of nuts onto the bolts. Grooves were cut to a 

minimum of two inches beyond the length of thread to prevent stress concentrations near 

strain gage readings. The actual dimensions of the grooves are shown in Table 2.5.  

Machining often left burrs or other imperfections on the threads that hindered the 

ability of a nut to be turned onto the bolt by hand. In such cases, threads were improved 

and burrs removed with a small metal file. 

 

Table 2.5 – Groove dimensions 
 

Bolt Dimensions Groove Dimensions (in.) 
Left Right Diameter 

(in.) 
Thread Pitch 
(threads/in.) Width Depth Width Depth 

1 8 0.250 0.281 0.250 0.281 
1-1/4 7 0.313 0.344 0.313 0.406 
1-1/4 8 0.313 0.375 0.313 0.375 
1-1/2 6 0.375 0.375 0.375 0.372 
1-1/2 8 0.313 0.369 0.313 0.375 
1-3/4 5 0.438 0.328 0.438 0.313 
1-3/4 8 0.438 0.359 0.438 0.391 

2 4-1/2 0.500 0.406 0.500 0.406 
2 8 0.500 0.375 0.500 0.438 

2-1/4 4-1/2 0.625 0.438 0.625 0.469 
2-1/4 8 0.563 0.250 0.563 0.250 

 

 

2.1.2.2 Strain gaging 

Specimens were prepared for strain gaging after machining by cleaning grooves 

with methanol and a clean rag or cotton swabs until running a cotton swab over the 

groove produced no dirt or oil. A clean specimen was vital to achieving good readings 
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with the strain gage and for good contact for the epoxy used to affix the gages to the 

bolt. 

The gages used for data collection were Micro-Measurements CEA-06-250UW-

120 with 0.25 inch gage length. Size varied with the diameter of the bolt and the 

allowance of the machined grooves in which the gages were placed. Strain gages were 

affixed centered at the locations and measurements shown in Figure 2.1 and Table 2.6, 

respectively. 

 

 

Figure 2.1 – Gage location 

 

Table 2.6 – Gage placement 
 

 Gage placement from end of bolt (in.) 
Bolt Diameter (in.) Top Middle Bottom Outside Exterior 

1 1.63 2.25 2.88 4.00 6.000 
1-1/4 1.88 2.63 3.38 4.75 6.75 
1-1/2 2.13 3.00  4.00 5.63 7.63 
1-3/4 2.19 3.31 4.44 6.13 8.13 

2 2.63 3.80 5.00  7.13 9.13 
2-1/4 3.00 4.33 5.67 8.13 10.13 
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2.1.3 Experimental procedure 

After a specimen was gaged and wired, it was assembled without a bottom nut so 

that a fatigue test could be performed in the absence of preload. This configuration is 

shown in Figure 2.2. The nut and base-plate on the double-nut side was carefully aligned 

with the appropriate strain gages. The specimen was then cyclically loaded to determine 

the stress ranges at each gage location. 

 

 

 
Figure 2.2 – Single nut configuration for progressive tightening 
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The complete specimen, with the bottom nut and washer, was then put through 

the assembly process that follows, as developed in Section 2 of Keating et al (2004). To 

begin, the nuts, washers, and base-plates were removed, leaving only the bolt itself. The 

bolt was clamped in a 500 kip MTS test machine to simulate the fixed condition 

experienced in the field due to the anchor bolt being implanted into the concrete base. A 

bolt can be seen clamped in the MTS in Figure 2.3. The clamping force was enough to 

keep the bolt from rotating during the tightening process, typically between 75 and 125 

kips depending on the bolt diameter. A shim was placed under the bolt to allow the base-

plate and nuts to be added, and a plate was placed on top of the non-threaded portion of 

the bolt to help distribute the clamping force and protect the threads from damage. 

 

 

Figure 2.3 – Clamped bolt ready for assembly 

 

The bottom nut, washer, and base-plate were installed on the specimen and 

aligned with the strain gages. A preliminary zero strain gage reading was taken. The top 
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nut and washer were then installed and the overall placement of the strain gages was 

confirmed. The top nut was tightened to snug tight, as previously defined, and a strain 

gage reading taken.  

The top nut was then removed and another zero reading taken. At this point, the 

threads of the bolt and nut, and the contact faces of the washer were lubricated with an 

electrically conducting lubricant and then reassembled and once again brought to a snug 

tight condition and a strain reading recorded. This can be seen in Figure 2.4, Figure 2.5, 

and Figure 2.6. The final bolt setup is seen in Figure 2.7. 

 

 

Figure 2.4 – Lubricating bolt threads 
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Figure 2.5 – Lubricating nut threads 

 

 

Figure 2.6 – Lubricating washer faces 
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Figure 2.7 – Fully assembled bolt specimen 

 

Once at that final snug tight condition, the specimen was installed in the 100 kip 

test machine as seen in Figure 2.8, cycled for a minimum of three seconds while 

recordings of strain were taken. Maximum and minimum fatigue loads were calibrated 

so that the minimum stress was 1 ksi and the maximum stress was 15 ksi. 
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Figure 2.8 – Assembled bolt fatiguing in 100 kip MTS machine 

 

The specimen was then again fixed in the 500 kip MTS machine and tightened 

1/24 of a turn using a 16-lb sledgehammer and box-end slug wrench as shown in Figure 

2.9. The 1/24 increment was defined by marked intervals on the nut as seen in Figure 

1.2. This technique was identified as the most reliable form of tightening by Abraham 

(1997) and further specified in Keating et al. (2004). Once tightened, a reading of 

preload was recorded, then the specimen was reinstalled in the 100 kip MTS test 

machine for fatiguing at the new turn-of-the-nut tightness. 
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Figure 2.9 – Tightening with a slug wrench and sledgehammer 

 

This procedure of tightening and fatiguing was carried out until either a 

minimum of 1/6 of a turn-of-the-nut was achieved or the connection refused further 

tightening. Once the final condition was reached, the nuts were loosened utilizing the 

slug wrench and sledgehammer and a final zero reading taken. 

 

 



32 
 

2.1.4 Data collection and assembly 

 

2.1.4.1 Preload data 

Throughout the tests, preload data was taken by strain gages as described above 

in the experimental procedures. The gage noted as Middle in Figure 2.1 was used to 

record preload. Strain gage data was converted to stress using Hooke’s law in a 

spreadsheet. Since data was taken at two different gages, on the same diameter of the 

bolt, two stress values were measured, which were averaged to get a mean preload value 

for that given turn-of-the-nut. This procedure was repeated for each turn-of-the-nut 

tested. 

Due to machining of the bolts required for stain gaging, some adjustment of these 

values was required. Both the original and adjusted values are found in the tables in the 

Results section. An explanation of the methods used for adjusting the data is found in 

Section 4. 

 

2.1.4.2 Fatigue data 

Fatigue data was collected at a frequency of approximately 10 Hz. From the 

collected data, the first one-third of a second, or approximately three cycles, was 

excluded to allow for any settling of the specimen. The five maximum and five 

minimum values during a representative sample duration were recorded and averaged for 

each strain gage. The difference of these was found to gain a representative strain range 

for the test. The strain values were converted to stresses in the same manner as the 
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preload data, and the pairs of gages on each side of the bolt were averaged to get a mean 

stress value for that location. This was done for each turn-of-the-nut. 

The resulting data was plotted as stress range versus degree of tightening, with a 

separate data line for each gage location. The charts discussed in Section 3 are the result 

of this data analysis. All stress range data for every turn-of-the-nut of every specimen 

can be found summarized in Appendix A. 

 

2.2 Tightening tests 

In addition to the preload generation data gathered from the tightening portion of 

the progressive tests detailed above, additional bolts of various diameters and thread 

pitches were subjected to incremental turn-of-the-nut tightening and the preload 

measured at each degree of tightness. 

 

2.2.1 Bolt selection 

Diameters, material grades, and thread pitches conformed to the same values as 

were tested in the progressive tightening tests. There were no set standards for 

galvanizing, bolt length or thread length in the tightening tests beyond what was required 

to carry out the tests. These properties do not affect the generation of preload in the bolt 

and were therefore not a concern in the testing. Table 2.7 lists the number of specimens 

with tightening data used in the current study. This number includes the progressive 

tightening tests for completeness. Summaries of the preloads generated by each turn-of-

the-nut for each bolt diameter-thread pitch combination are found in Section 3. 
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Table 2.7 – Tightening test matrix 

 Number of Specimens Tested 
Bolt Diameter 

(in.) UNC 8UN 

1 - 3 
1-1/4 2 2 
1-1/2 1 2 
1-3/4 5 3 

2 2 2 
2-1/4 3 2 

 

 
2.2.2 Base-plate selection 

Tests which were exclusively for the purpose of gathering preload data at degrees 

of turn-of-the-nut tightening were carried out with the base-plate specified in Table 2.3. 

Tightening data collected as a part of the progressive tightening tests use the base-plates 

specified in Table 2.4. The specific base-plate thickness used in each test are noted in 

Table 2.8. 

 

2.2.3 Specimen preparation 

As tightening tests were performed over an extended duration throughout the 

research, many of the values that were held constant during progressive tests varied 

during the tightening tests. Among these were groove dimensions and plate thickness. 

These values varied principally between the progressive and the tightening tests. 
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Also, the additional tightening specimens were only gaged in the middle location, 

centered between the nuts so to capture the average preload experienced by the section 

of the bolt spanned by the base-plate. The majority of the gaging was done as in the 

progressive tightening tests; there were two gages on opposite sides of the bolt, which 

were averaged to obtain the nominal preload. 

Some tests were carried out using a center gage method either in addition to, or 

in place of the two-gage approach used throughout the rest of the research effort. This 

was done in order to gather data in a manner that had less impact on bolt geometry. A 

0.078 inch diameter hole was drilled in the bolt and filled with epoxy, into which a strain 

gage was inserted at a depth corresponding to the midpoint of the base-plate where 

preload readings were observed. It was found to be accurate or slightly underestimate 

preload, which is conservative (Keating et al. 2004). Thus, the preload data gathered by 

the center gage approach is also included. Data on each tightening specimen is found in 

Table 2.8. 
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Table 2.8 – Tightening specimen information 

Diameter 
(in.) 

Thread 
Pitch 

Gage Type (Two gage, 
center, or both) 

Reduced 
area (in.2) 

Base-plate 
thickness (in.) 

1 8 Both 0.392 1.25 
1 8 Two gage 0.544 1.25 
1 8 Two gage 0.503 1.25 

1-1/4 7 Center 0.964 1.50 
1-1/4 7 Two gage 0.788 1.50 
1-1/4 8 Center 0.995 1.50 
1-1/4 8 Two gage 0.821 1.50 
1-1/2 6 Two gage 1.199 1.88 
1-1/2 8 Center 1.487 1.88 
1-1/2 8 Two gage 1.315 1.88 
1-3/4 5 Both 1.705 2.25 
1-3/4 5 Two gage 1.740 2.25 
1-3/4 5 Two gage 1.730 2.25 
1-3/4 5 Two gage 1.730 2.25 
1-3/4 5 Two gage 1.730 2.25 
1-3/4 8 Center 2.075 2.25 
1-3/4 8 Two gage 1.831 2.25 
1-3/4 8 Center 2.075 2.25 

2 4-1/2 Two gage 2.417 2.38 
2 4-1/2 Two gage 2.226 2.38 
2 8 Two gage 2.666 2.38 
2 8 Two gage 2.438 2.38 

2-1/4 4-1/2 Two gage 2.935 2.75 
2-1/4 4-1/2 Two gage 2.972 2.75 
2-1/4 4-1/2 Two gage 2.849 2.75 
2-1/4 8 Two gage 3.458 2.75 
2-1/4 8 Two gage 3.358 2.75 

 
 
 
2.2.4 Experimental procedure 

The procedure for the tightening tests was fundamentally the same as the turn-of-

the-nut tightening portion of the progressive tests. Bolts were lubricated and tightened in 

the manner specified above, with all appropriate preload readings for the middle gage 
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location taken at each turn-of-the-nut. However, no fatiguing was done at any point 

during the test. 

 

2.2.5 Data collection and assembly 

Strain readings were taken and transformed into readings of stress, the preload in 

the bolt at the given turn-of-the-nut. In the case of the two gage setup, the stresses taken 

at each location for the given degree of tightness were averaged. From the collected 

values of preload, bar charts were developed to observe the average preloads generated 

for any turn-of-the-nut at each diameter-thread pitch combination. The charts also 

displayed the range of preload data for each diameter-thread pitch combination. 

As with the progressive tightening data, adjustment of recorded values was 

necessary due to the grooves or holes machined for strain gage application. The process 

for adjusting the preload values is found in Section 4. 

 

2.3 Fatigue test 

For the purposes of verification, a single fatigue test was carried out on a bolt 2 

inches in diameter with an 8UN thread pitch. The selection of this bolt as the critical 

condition is discussed in Section 4. The method used to fatigue the bolt was similar to 

the fatigue portion of the progressive tightening test detailed above, except the tightening 

to the appropriate turn-of-the-nut was carried out in a single event instead of the given 

incremental procedure.  
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For the fatigue testing, loads were applied to generate a minimum of 1 ksi in the 

bolt and a maximum of 15 ksi for a stress range of 14 ksi. This loading is the same as 

was used in the progressive tightening test of that specimen. 
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3 LABORATORY RESULTS 

Through the methods presented in Section 2, laboratory tests were carried out on 

all specimens. Data was collected and presented in a set of graphs and tables showing 

stress range versus turn-of-the-nut tightening. 

 

3.1 1 inch, 8UN specimen 

 

3.1.1 Presentation of graph 

The graph for the 1 inch, 8UN specimen is found as Figure 3.1. The key for the 

strain gage labels is found in Figure 2.1. With these two figures as references, one may 

begin to understand the change in fatigue behavior observed in the bolt as a function of 

preload. 

In the figure, degrees of turn-of-the-nut tightening make up the x-axis, and 

represent a field-measurable estimation of preload. The relationship between turn-of-the-

nut and preload is discussed later in the section. The values plotted consist of the stress 

range experienced by the bolt at each location, at each turn-of-the-nut. There is no data 

plotted for the Avg Middle value at 1/6 turn-of-the-nut because the strain gages at that 

location both failed. Numerical strain gage readings are found in the data tables, 

discussed below.  
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Figure 3.1 – 1 inch, 8UN stress range vs. turn-of-the-nut plot 

 

Section 1 discussed two indicators of adequate fatigue performance. The first of 

these, and most important to the testing, is the reduction of stress range inside the 

double-nut connection. The figure above illustrates such reduction. It can be clearly seen 

that as the connection is tightened, the stress ranges experienced by the section of the 

bolt between the nuts decreases. By lowering the stress range experienced in the interior 

of the double-nut assembly, fatigue life of the bolt can be improved from the single nut 

case to one of adequate fatigue performance.  

Over the course of tightening, the exterior location sees a relatively constant 

stress range. This stress range is equal to the applied loading and serves as a point of 
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reference for the stress ranges experienced at the other gage locations. Slight variation 

exists in each of the tests due to the imperfect data collection method identified in 

Section 2. The variations are acceptable, however, and even with the imperfections the 

reading serves as a reliable basis of comparison. 

Experimentally in Frank (1980) and Van Dien et al. (1996), and analytically in 

Hodge (1996) it has been shown that without significant preload, failure is likely to 

occur at the location of the top gages. The degree of tightness in the line graph labeled 

“Single Nut” is the fatigue response at zero preload. In the single nut configuration, as 

shown in Figure 3.2, it is observed that the top gage location is the only point at which 

the geometry is such that there is a stress concentration where cracks would be expected 

to initiate.  

 

 

Figure 3.2 – Single nut gage locations 

 

The inclusion of preload into the system rapidly and dramatically changes the 

stresses throughout the preloaded section of the bolt. Also, when the bottom nut is added 
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to the geometry of the fixture, it introduces a stress concentration. Stress range also 

drops rapidly in the interior regions of the double-nut fixture, leaving the location of the 

outside gage the critical location.  

 

3.1.2 Presentation of stress range table 

The data found below in Table 3.1 corresponds to that plotted in Figure 3.1 

above. These values illustrate numerically what the graphs show by inspection: stress 

ranges drop as preload is increased, with the outside stress dropping less rapidly than the 

other probable failure locations.  

 

Table 3.1 – 1 inch, 8UN stress range vs. turn-of-the-nut table 

Stress range (ksi) per turn-of-the-nut Gage 
Location Single 

Nut 
Snug 
Tight 1/24 1/12 1/8 1/6 

Top 10.0 4.7 3.5 3.2 3.2 3.2 
Middle 14.3 5.3 3.9 4.0 3.9 Lost Gage 
Bottom 14.2 6.9 5.4 4.6 4.6 4.7 
Outside 14.1 13.5 12.9 13.2 12.5 13.3 
Exterior 12.8 13.3 13.1 13.8 13.2 13.8 

 

 

3.1.3 Interpretation of stress range data 

 

3.1.3.1 Questions raised 

There are several interesting behaviors to note from both the plot and the data 

table found above. The first of these is the separation of the data at gages measuring the 

same theoretical stress level. It could easily be expected for the top, middle, and bottom 

 



43 
 

gages to read the same stress levels, as they all were intended to capture the measure of 

preload in the bolt between the nuts. Instead, the top gages read values lower than the 

middle gages at every point, and considerably lower at the single nut reading. This 

behavior is perplexing, since if there were to be variation, it seems far more likely that 

the top gages would read the largest stress ranges since it is the threads at that location 

that bear the immediate loading and unloading during testing. Similarly unusual is the 

fact that the bottom gage location reads values slightly higher than the middle location 

for all turn-of-the-nut. These behaviors were set to study via finite element analysis, 

which is discussed in Section 4. 

Another interesting phenomenon in the gradual reduction in stress range 

experienced at the outside gage location. Since that gage was placed at the absolute 

exterior of the double-nut connection, it would be reasonable to expect the same stress 

levels there as at the exterior location, two inches down the bolt. This behavior was also 

examined in the finite element analysis discussed in Section 4. 

 

3.1.3.2 Behavior inferences 

Even with the unexpected stress range separation seen in the analysis of the 

laboratory results, several important observations can be taken from the graph and 

corresponding data table for the 1 inch, 8UN specimen. It is shown by inspection that a 

snug tight condition lowers stress ranges in the fixture interior to a point far below that 

of the exterior and outside locations. This indicates that a minimum level of tightening is 

required achieve an adequate level of fatigue performance of the bolt. 
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Also indicated by the progressive tightening test is that stress range decreases to 

a minimum value ranging between 3 and 5 ksi. For the 1 inch specimen, this minimum 

seems to have occurred at 1/12 turn-of-the-nut and tightening beyond that point yielded 

insubstantial changes in stress range seen between the nuts. 

 

3.1.4 Presentation of preload table 

Table 3.2 summarizes the static tightening data for each specimen, which states 

the nominal preload at each turn-of-the-nut and corresponds with Figure 3.1 and Table 

3.1. Readings were taken at the middle location labeled in Figure 2.1 and represent an 

average preload for the specimen. Each of the two gages at that location is located 

directly between the two nuts responsible for the preloading. Those two gages, located 

opposite one another as detailed in Section 2, are averaged to find the mean stress found 

in the row marked “Recorded”.  

 

Table 3.2 – 1 inch, 8UN preload table 

 Preload (ksi) per turn-of-the-nut 
 Zero 1 Snug 1 Zero 2 Snug 2 1/24 1/12 1/8 1/6 Zero 3 

Recorded 0.3 23.2 1.6 24.3 24.8 63.9 Lost Gage 
Adjusted  --- --- --- --- 20.2 61.5 Lost Gage 

 
 
 
The row labeled “Adjusted” is a modification of the directly recorded values. As 

discussed in Section 2, grooves were cut into each bolt to allow for the affixing of strain 

gages. This reduction of area non-conservatively affects the amount of stress seen in the 

bolt, increasing it due to the decrease in area. The adjusted preload is the stress that 
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would exist in the bolt if the area had not been reduced due to machining. The equation 

for determining this value was developed in Appendix B of Keating et al. (2004) and is 

located below as Equation 3.1. Since the adjustments are dependant on a reference to a 

snug tight condition, adjustments were not made for snug or zero readings. 

 

 1
1b snug

b
b

T
PL A C

E

σ

 
 
 =
 + 
 

σ+   (3.1) 

where:  

σb = adjusted bolt tensile stress 

σsnug = bolt tensile stress at a snug tight condition 

T = turn-of-the-nut past snug tight 

P = thread pitch (number of threads per inch) 

L = preloaded length (base-plate thickness) 

Eb = Modulus of Elasticity of the bolt 

Ab = nominal tensile cross-sectional area of the bolt  

and: 

 
( )

1test

b testedbolttestedbolt test snug

TC
E AA PL σ σ

=
−

−   (3.2) 

where:  

Ttest = turn-of-the-nut 

Atestedbolt = net area of the bolt tested (accounting for grooves) 
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σtest = stress experienced at a given turn-of-the-nut, Ttest, by a grooved specimen  

 

3.2 Initial conclusions 

Evaluation of the remaining ten specimens yields results that are very similar to 

those found above for the 1 inch case. Many of the same generalizations can be made for 

all remaining diameter-thread pitch cases. Examining exclusively the laboratory 

progressive tightening data, the following statements can be made. All final and 

complete conclusions are found in Section 6. 

1. A snug tight condition was sufficient to lower stress ranges in the top, 

middle, and bottom locations to a point below that experienced at the outside 

and exterior locations. The reduction of stress ranges indicates that fatigue 

life at a snug tight condition would be extended beyond that seen at the single 

nut case and that, if fatigued to failure, the failure location would occur 

outside the double-nut connection. (This conclusion is modified through 

finite element analysis. See Section 4.) 

2. By 1/6 turn-of-the-nut, all diameters and thread pitches see stress ranges 

reduced between the nuts of the connection to a value between 2.0 and 5.5 

ksi. This takes into account the top, middle, and bottom gages.  

 

3.3 Tightening test data 

To further expand on the correlation of preload and turn-of-the-nut, data taken 

from tightening tests was considered. The methodology for these tests, which excluded 
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any cyclic loading and only measured preload at the middle location, is found in Section 

2.  

 

3.3.1 Preload generation 

The following charts show the average preload for 1/24 and 1/6 turn-of-the-nut 

tightness for both the UNC and 8UN thread pitches. This bounds the turn-of-the-nut 

tightening data for both thread pitch cases. A full accounting of such data, ranging from 

snug tight to 1/6 turn-of-the-nut is found in Appendix B. Error bars show the range of 

data collected. All preload values were adjusted using the methods described above. 

Figure 3.3 shows the minimum turn-of-the-nut tightening data for the UNC 

thread case. A number of useful observations can be made from the above graph 

regarding tightening trends and preload variance. Generally, it is clear that equivalent 

turn-of-the-nut tends to generate less preload with increase in plate thickness according 

to the bolt diameter. This is true despite the fact that as bolt diameter and plate thickness 

increase, the thread pitch becomes coarser. Base-plates increase in thickness as bolts 

increase in diameter as shown in Table 2.4. This seems to indicate that the plate 

thickness is a more important indicator of preload development than the thread pitch. 
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Figure 3.3 – UNC minimum turn-of-the-nut preload data 

 

There is still some question that remains regarding the impact of thread pitch 

versus that of plate thickness on preload generation. The data for the 1-1/2 inch UNC 

case shows a significantly lower preload generated than seen in the next larger specimen, 

the 1-3/4 inch UNC. However, if one references Table 2.8, it can be seen that only one 

specimen was tested for that diameter-thread pitch combination. That particular 

specimen saw uncharacteristically low preloads throughout testing, as can be seen in 

Table 3.3. Circumstances seem to point toward an aberrant test, however this does 

highlight a highly significant fact about turn-of-the-nut tightening; while it may be the 

best and most consistent method available, preload generation using turn-of-the-nut 
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tightening varies greatly and is difficult to predict. This must be considered in any form 

of tightening standard proposed. 

 

Table 3.3 – 1-1/2 inch, UNC preload 

Turn-of-the-nut Recorded Preload 
(ksi) 

Adjusted Preload 
(ksi) 

Zero1 -1.3 - 
Snug1 4.9 - 
Zero2 -1.4 - 
Snug2 5.4 - 
 1/24 11.4 10.6 
 1/12 14.1 12.9 
 1/8  17.7 15.9 
 1/6  19.0 17.1 

Zero3 2.1 - 
 

Due to the constant thread pitch between bolt diameters, the 8UN 1/24 turn-of-

the-nut data found in Figure 3.4 complies much better with the expected reduction in 

preload with increase in diameter, and therefore plate thickness. The data set for the 

8UN case was also a bit more complete, with at least two specimens tested for each 

diameter, lessening the influence of any seemingly abnormal test as in the UNC case. 

The data for the 1 inch column is the same as in Figure 3.3 because thread pitch is the 

same for both UNC and 8UN cases. 
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Figure 3.4 – 8UN minimum turn-of-the-nut preload data 

 

Figure 3.5 shows the same basic representation of data as did the 1/24 case 

shown in Figure 3.3. The 1-1/2 inch bolt shows unusually low preload as discussed 

above. One of the 1 inch specimens reached the yield point of the steel at 1/6 turn-of-the-

nut, but yielding did not occur for any other tightening tests. There is no data for the 2 

inch case because neither of the tested specimens achieved 1/6 turn-of-the-nut 

tightening. This issue is discussed below. 
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Figure 3.5 – UNC maximum turn-of-the-nut preload data 

 

Again the 8UN case, shown for 1/6 turn-of-the-nut in Figure 3.6, follows the 

predicted trend of decreasing preload with increasing bolt diameter and plate thickness. 

As above, the 1 inch data is the same as found in Figure 3.5 because both UNC and 8UN 

categories have the same thread pitch for the 1 inch case. Aside from the aforementioned 

1 inch case, no bolts were brought to yield at 1/6 turn-of-the-nut. 
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Figure 3.6 – 8UN maximum turn-of-the-nut preload data 

 

3.3.2 Turn-of-the-nut feasibility 

In addition to the generation of preload, the feasibility of attaining up to 1/6 turn-

of-the-nut was examined. In all tests except for the 2 inch UNC case, the 1/6 turn-of-the-

nut was achieved, as noted above. In the two tests carried out on this diameter, the 

feasible limit was slightly greater than 1/8 turn-of-the-nut. The 2 inch 8UN bolt and both 

the UNC and 8UN thread pitches for the 2-1/4 inch bolt achieved 1/6 turn-of-the-nut in 

every case. 

No conclusions can be drawn from the data collected in the current study. The 

two specimens tested for the diameter-thread pitch combination in question are not 
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sufficient to state with certainty the feasibility of turning the 2 inch UNC bolts to 1/6 

turn-of-the-nut. Recommendations for further tests are discussed in Section 5. 

 

3.3.3 Initial conclusions 

Evaluation of the tightening data allows for the development of several initial 

conclusions about preload as it related to thread pitch and bolt diameter. All final and 

complete conclusions are found in Section 5. 

1. UNC thread pitches generate more preload than 8UN thread pitches of 

the same diameter. This is directly related to the slope of the threads in 

each pitch, since a coarser pitch displaces more of the bolt with the 

same turn-of-the-nut. 

2. Equivalent turn-of-the-nut generates greater preload in tests performed 

on smaller diameter bolts. This is the result of greater plate thickness 

with increasing diameter. This behavior is more easily seen in 8UN 

bolts, which holds thread pitch constant with increasing diameter. An 

equivalent turn-of-the-nut displacement of bolt generates less preload 

with greater plate thickness. 

3. Tightening by 1/6 turn-of-the-nut will not develop yielding in the 

preloaded section of the bolt for tested diameters greater than 1 inch. 

4. A tightening level of 1/6 turn-of-the-nut is attainable for all diameter-

thread pitch combinations with the possible exception of 2 inch UNC, 
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which saw in testing a feasible limit of slightly greater than 1/8 turn-

of-the-nut. 

 

3.4 Verification 

As discussed in Section 1, two criteria were laid out as indicators of adequate 

fatigue behavior. The first of these was the observation of decreased stress ranges in the 

preloaded section of the bolt. To this end, the above progressive tightening tests were 

carried out. The second was the migration of failure location to the exterior of the 

double-nut connection, below the bottom nut. Such a shift is a practical confirmation of 

reduced stress ranges within the preloaded section of the bolt. 

Given these two criteria, verification of the results was desired. This was carried 

out through two processes: a fatigue test and finite element modeling. To maximize the 

efficiency of such testing, both processes were carried out on the critical bolt diameter-

thread pitch combination. 

 

3.4.1 Selection of the critical specimen 

The critical specimen was identified as the diameter-thread pitch combination 

that generated the minimum preload for the minimum turn-of-the-nut. The snug tight 

condition was deemed to provide too wide a variance of results and too subjective a 

measurement of tightness to be specified by any form of turn-of-the-nut standard. Thus, 

1/24 turn-of-the-nut was specified as the minimum tightness to be considered.  
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Several considerations were given to the selection of the test case that fit this 

criterion. To begin, all specimens evaluated in the progressive tightening were 

considered, except the 2-1/4 inch, 8UN bolt. This case was recommended for exclusion 

from TxDOT specification by Keating et al. (2004) due to unreliable fatigue 

performance at any turn-of-the-nut tightness. Of the remaining test cases, tightening data 

was considered for all tightening data as discussed above. Both the minimum levels of 

preload as well as the average preload generated for each test case were compared for 

1/24 turn-of-the-nut. This comparison can be seen in Figure 3.7. 

Data is mixed in the determination of the critical test case, but the 2 inch, 8UN 

specimen was taken as the most critical. Its average preload was the lowest of any 

considered specimen. While the 1-3/4 inch 8UN and 2 inch UNC cases did show at least 

one case of lower preload generated each, the maximum difference in preload was only 1 

ksi. Further, the general trends in the generation of preload must also be taken into 

account: greater plate thickness that correlates with increasing diameter generates less 

preload than the thinner base-plates at smaller diameters, and the 8UN thread pitch 

generates less preload than UNC at equivalent turn-of-the-nut. When looking at all 

available information, the selection of the 2 inch, 8UN specimen is justified as the worst-

case for the generation of preload. 
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Figure 3.7 – Preload comparison for critical specimen selection 

 

3.4.2 Fatigue verification 

Figure 3.8 shows the stress range plot for the critical bolt specimen. The same 

bolt specimen was used in the verification fatigue test as was used in the progressive 

tightening test, with the same loads, although no strain readings were taken. A turn-of-

the-nut of 1/24 was predicted, according to laboratory data, to migrate the failure 

location to the outside of the connection. A condition for satisfactory performance was 

set at 2 million cycles without failure at the specified 14 ksi stress range. This condition 

was specified in previous research sponsored by TxDOT, reported in Keating et al. 

(2004). 

 



57 
 

The first fatigue test that was run on the 2 inch 8UN bolt failed after 1,523,950 

cycles at an applied stress range of approximately 14 ksi. Failure occurred at the first 

fully engaged thread of the top nut, not outside the connection as predicted. 
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Figure 3.8 – Critical bolt stress range plot 

 

The same specimen was used again with the double-nut fixture moved down the 

bolt to adjust for the broken length, at the same loads and the same degree of tightness, 

to attempt to duplicate results. After 6,902,870 additional cycles, no failure occurred. It 

is difficult to interpret this broad range of results for such limited testing, but it at the 
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very least demonstrates the uncertainty in dealing with fatigue of anchor bolts. Results 

are illustrated in Figure 3.9, along with the categories of AASHTO fatigue classification. 
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Figure 3.9 – Fatigue test results 

 

The inconsistency between the two verification tests leads to further questions, 

but at least one conclusion. Even at 1/24 of a turn-of-the-nut, adequate performance can 

be achieved, as is shown by its tested life of nearly seven million cycles in the second 

fatigue test.  
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3.4.3 Verification by finite element analysis 

Following the mixed data collected in the verification fatigue test, a detailed 

finite element analysis was carried out for the critical bolt specimen. This analysis can be 

found in Section 4. 
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4 FINITE ELEMENT ANALYSIS RESULTS 

 

4.1 Model development 

 

4.1.1 Model construction 

A finite element model was developed to evaluate the theoretical behavior of a 2 

inch 8UN anchor bolt for the purpose of verification of the laboratory results. As 

mentioned above, the 2 inch bolt diameter bolt with eight threads per inch was 

determined to be the critical bolt and was therefore chosen as the representative model to 

be analyzed using the finite element method. The model specifically evaluated the 10 

inch section of bolt influenced by the double-nut connection described in Section 1. Bolt 

dimensions are given in Figure 4.1. Symmetry about the y-axis was used to simplify the 

model.  

Areas were constructed to allow for easy collection of data at key locations 

within the model associated with locations of strain gages on the laboratory setup as 

shown in Figure 4.2. Results gathered from model were taken along the cross-section 

defined by the vertical line at the depth of the gages in the laboratory tests, as seen in the 

figure. The model had 4720 nodes and 1307 elements. All solid bodies were meshed 

with quadratic eight-noded PLANE82 elements with a preferred side dimension of 0.125 

inches. This value was verified by a convergence test as discussed below. Meshing was 

carried out by ANSYS via the Free Mesh command. Preload was developed using two-

noded PRETS179 elements on the bolt centered between the nuts. Contact was modeled 
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using the ANSYS Contact Wizard and the pairing of contact and target elements, 

CONTA172 and TARGE169. The fully meshed model can be seen in Figure 4.3. 

 

 

Figure 4.1 – Modeled bolt dimensions 
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Figure 4.2 – FEM areas 
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Figure 4.3 – FEM mesh 

 

4.1.2 Boundary conditions 

To simulate laboratory conditions and to allow for the y-axis symmetry to be 

utilized, the following boundary conditions were imposed. The base of the bolt was fully 

fixed against displacement in the x- and y-directions. The y-axis of the bolt about which 

symmetry was taken was fixed against displacement in the x-direction. The nuts, 

washers, and base-plate were also restrained from displacement in the x-direction. The 
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end result was a model that neglected effects of bending and allowed only axial loading 

to play a significant role in the analysis. 

 

4.1.3 Model convergence 

A convergence study was performed to verify the validity of values generated by 

the model. Three different preferred mesh sizes were specified and ANSYS was allowed 

to plot the element mesh within those constraints. The mesh size of the modeled base-

plate was not varied due to the need for a constant geometry for the application of the 

load. The finest mesh was used for all iterations of the convergence study. 

Preferred mesh sizes supplied to ANSYS for consideration in its free meshing of 

the areas were 3/8 inch, 1/4 inch, and 1/8 inch. Under identical loading equal to the 

generation of 1 ksi of stress in the length of the bolt, the stress readings seen in Figure 

4.4 were taken and compared. Differences between the readings were plotted in Figure 

4.5. 

Results from the convergence study show that data taken with the preferred 

element width of 1/8 inch generates reliable readings of stress in the bolt model. Even 

the improvement in the model from 3/8 inch to 1/4 inch preferred element width 

generated negligible changes in stress readings, with a maximum change of 

approximately 0.045 ksi. The final change of less than 0.030 ksi is more than adequate 

for the model. 
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Figure 4.4 – FEM convergence study results 
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Figure 4.5 – Convergence study changes in stress between cases 
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4.1.4 Model loading 

The two loading parameters of the model were preload and applied tensile load. 

Preload was generated using the aforementioned PRETS179 elements by applying an 

internal displacement between rows of elements at a location in the bolt corresponding to 

the middle gage location. This location is noted with an asterisk in Figure 4.3 and the 

element separation can be seen in Figure 4.6. This displacement was varied to generate 

different levels of preload in the bolt. Analysis of the bolt at these loads with no 

externally applied forces allows for the use of preload as the variable in plotting stress 

range. A contour plot of the maximum preload distribution, a nominal 56 ksi, is found in 

Figure 4.6. Stresses plotted below and throughout the analysis are those calculated at the 

nodes with averaging across the elements. 

The second aspect of model loading was the application of degrees of tensile 

stress to obtain a stress range. Load was applied to the bolt in a manner similar to lab 

conditions, with a load distributed across the nodes of approximately 1/2 inch of the 

model measured from the outer diameter of the base-plate. The loading location can be 

seen in Figure 4.7. 
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Figure 4.6 – Preload distribution 
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Figure 4.7 – FEM load location 

 

This applied point loading was scaled to give the same stresses in the model as 

were witnessed in the laboratory tests for the single nut case. Adjustments were made by 

inspection of the graph shown in Figure 4.8. As discussed in Section 2, two gages took 

readings at each gage location. A sampling of the results collected at each gage was used 

to determine the appropriate levels of stress in the model. Loads were altered until the 

behavior of the model was fundamentally the same as that in the laboratory test. It was 

determined that 0.12 kips applied at each of the loaded nodes generated the appropriate 

lower load and 1.6 kips generated the appropriate upper load. 
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Figure 4.8 – FEM load calibration 

 

4.2 Analysis 

Once loads were determined, an analytical set of tests was carried out in the same 

manner as the laboratory testing. The bolt model, with zero preload representing the 

single nut test condition, was subjected to the lower and upper limit loads determined in 

the test calibration. The difference in response between a 1 ksi and 15 ksi load is the 

stress range. Results were collected for each case, and the stress range plotted versus 

preload in the same manner as shown in Section 3 dealing with laboratory testing. 
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Preload was then applied to the section of the bolt between the nuts to simulate 

the tightening of the bolt and a reading of preload taken. Applied preload levels can be 

seen in Figure 4.9. The response of the bolt at maximum preload is given below in 

Figure 4.10 as a sample of collected data. The low and high loads were then applied and 

the stress range recorded. This was done for a number of preload values to a point 

beyond that observed in the lab. Through this collection of data, Figure 4.11 was 

constructed. This can be directly compared with results plotted for the 2 inch, 8UN bolt 

results from lab testing, shown in Figure 4.12 plotted with respect to bolt preload. 
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Figure 4.9 – FEM preload 
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Figure 4.10 – FEM axial stress response to applied loads and maximum preload 
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Figure 4.11 – FEM stress range vs. preload 
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Figure 4.12 – Laboratory stress range vs. preload 
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4.3 Laboratory and FEM results comparison 

It is shown by comparison that the separation of the stress ranges is present even 

in the idealized control of the finite element model. Examining plots of experienced 

stress levels in the finite element model can show the reason for the variance in data. 

Figure 4.13 shows a comparison of the single nut, zero preload condition with the 

maximum preload condition examined in the finite element analysis. 
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Figure 4.13 – Stress comparison 
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4.3.1 Outside stress range drop-off 

The outside gages are at a location where one would expect to see the same stress 

levels as the exterior gage since at the end of the bottom nut the bolt should be free of 

preload and subject to the same stresses as the bolt shank. However, in both the FEM 

and laboratory data a distinct drop-off can be seen with increasing preload. As shown in 

Figure 4.14, the introduction of preload into the bolt sees an influence beyond the end of 

the bottom nut. This influence increases with the magnitude of the preload. The stress 

range fall-off is actually seen from both the 1 ksi stress side and the 15 ksi stress side as 

stress at the outside location stress increases and decreases, respectively. This causes a 

significant decrease in stress range immediately outside the bottom nut with increasing 

preload. 

This behavior may help to explain why failure outside the connection does not 

always occur at the bottom nut interface, but often in the first several threads below the 

bottom nut as observed in Frank (1980) and Van Dien et al. (1996). It seems that the 

largest stress range may actually occur at a length within an inch of the end of the 

bottom nut, the exact location dependant on the amount of preload present and the 

degree of applied stress range. 

The falloff seen in the finite element model is substantially less than in the 

laboratory tests. It can be assumed that the idealization of the bolt behavior for the finite 

element model is responsible for the more ordered results. The model does not capture 

many of the nuances of the connection including residual stresses from friction and 
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tightening, and the tolerance between nut and bolt threads. The finite element model 

assumes perfect fit between nut and bolt. 
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Figure 4.14 – Outside and exterior gage examination 

 

4.3.2 Top and bottom stress range separation from middle 

In both the laboratory and finite element tests, the stress range at the top gage 

location is always lower than at the middle location for all levels of preload. Similarly, 

stress range at the bottom location is higher than that at the middle. These variances 

were identified in Section 3 for the laboratory data. Figure 4.15 shows the response of 

the bolt to applied loads for both a preloaded and non-preloaded case.  
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Figure 4.15 – Top and bottom gage examination 

 
 

For the case of zero preload, a ramp-up of load can be seen at the location of the 

top gages at the depth that the gages were placed. This seems unusual, as the threads at 

that same location are seeing the highest tensile stresses in the entire bolt, even in a 

preloaded connection as can be seen in Figure 4.10 above. To evaluate the validity of all 

stress range values, further finite element analysis was carried out to inspect the possible 

connection of gage depth with measured stress range. 

 

4.3.3 Effects of gage depth 

Recalling the methods discussed in Section 2, gage depths were selected based 

on those used in previous testing and allowance for wiring required for the strain gages. 

 



77 

When finite element analysis was carried out to evaluate stresses closer to the surface of 

the bolt, much different stress ranges were found. Where at the gage depth the stress 

range at the top location was always significantly lower than at the middle location, 

when looking only 1/8 inch closer to the surface the opposite was true. Likewise, at a 

location 1/8 inch closer to the surface, the stress range at the bottom location went from 

being greater than at the middle location to being less. These dramatic changes raise a 

serious question: are predictions of the migration of failure location given by the lab data 

valid? 

To answer this question, further results were collected from the model. Readings 

were taken at three depths: 0.44 inches (gage depth), 0.32 inches, and 0.20 inches below 

the outer diameter of the bolt. These values correspond to nodes and elements 

convenient to analyze on the model. At the minimum level of preload tested, roughly 3.5 

ksi, analysis at shallower depths indicated that a migration in failure location was not 

likely to occur. Laboratory data suggested that such a shift would occur at that low a 

preload value. Stress in the top location was still much greater than in the outside 

location. This can be seen in Figure 4.16.  
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Figure 4.16 – Stress range for 3.5 ksi preload 

 

At the next level of preload, roughly 7 ksi, the top location stress range dropped 

considerably below the level seen at the outside for all depths, a change which suggests 

the likely migration of failure location to outside the double-nut connection. A preload 

of 50 percent of the experienced stress range has previously been established as a 

benchmark for enhanced fatigue performance by Abraham (1997). Seven ksi is 50 

percent of the experienced stress range in the testing for this particular specimen. 

A turn-of-the-nut of 1/24 gave preload values between 4.6 and 7.6 ksi as shown 

in Figure 3.4. This shows, when combined with the conclusions drawn above, that 1/24 

turn-of-the-nut is not a consistently valid standard for enhancement of fatigue 
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performance. This is in line with the limited fatigue verification of the 1/24 condition 

seen in the lab. A turn-of-the-nut of 1/12 generated between 9.7 and 17.3 ksi preload, 

suggesting that it would make a more reliable standard. 
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Figure 4.17 – Stress range for 7 ksi preload 

 

Figure 4.16 and Figure 4.17 also illustrate a number of other important facts. 

Preload measured in the lab by the middle gage is constant, despite the gage depth issue 

that affects the top and bottom locations. The same is true for the outside and exterior 

locations. So, while readings at the top and bottom gage locations may vary with the 

 



80 

gage depth, the preload reading at the middle location is valid for all measured values, as 

are the values of stress collected at the outside and exterior gages. 
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5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In both the laboratory testing and finite element evaluation of double-nut anchor 

bolt assemblies, significant data was gathered over the course of the study. A number of 

conclusions were drawn regarding the turn-of-the-nut generation of preload, the 

accuracy of laboratory and finite element testing, and the generation of a tightening 

standard for all bolt tested bolt diameters. 

 

5.1.1 Regarding the turn-of-the-nut generation of preload 

• 

• 

• 

• 

Impact tightening of double-nut connections using a sledgehammer and slug 

wrench is capable of generating significant preload in anchor bolts, to the 

point of achieving adequate fatigue performance of the assembly.  

Specified tightness of 1/6 turn-of-the-nut is a reasonable standard through the 

hammer tightening method for all diameter-thread pitch combinations. The 2 

inch UNC test case reaches its feasible limit slightly beyond 1/8 turn-of-the-

nut. 

UNC thread pitches generate more preload for a given turn-of-the-nut than an 

8UN bolt of the same diameter. 

Less preload is generally generated with increasing base-plate thickness (as 

specified for increasing diameter) within a thread pitch category (UNC or 
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8UN) for a given turn-of-the-nut. This is especially true of bolts with the 

constant thread pitch of 8UN. 

• 

• 

• 

• 

• 

Preload induced by turn-of-the-nut tightening reduces the stress range 

experienced by the portion of the bolt between the nuts during fatigue. 

Stress range reduction approaches a minimum level between 2.5 and 5.5 ksi 

with increasing tightness at a maximum of 1/6 turn-of-the-nut. This minimum 

does not appear to be a function of diameter, but holds for all tested 

specimens and thread pitches. 

 

5.1.2 Regarding the accuracy of laboratory and finite element testing 

Finite element modeling can be used to capture important behaviors in bolt 

fatigue with relative accuracy, allowing for the design of laboratory tests to 

confirm results. 

When strain gaging threaded specimens, the surface provided for gage 

attachment should be as close to the outer diameter as possible, as the depth 

in the bolt from which readings are taken significantly impacts results. 

 

5.1.3 Regarding the proposed uniform tightening standard 

Preloading a double-nut anchor bolt 1/12 turn-of-the-nut will improve the 

performance of the anchor bolt by the reduction of stress ranges between the 

nuts. This conclusion holds for the diameters specified in Section 5. 

 



83 

• Tightening to 1/6 turn-of-the-nut will not cause yielding across bolt cross-

sections for any tested bolt greater than one inch in diameter. Stresses 

experienced in the initial threads involved in the bolt-to-nut connection are 

likely to exceed yield stress. 

 

5.2 Standard recommendation 

The data collected for the current study suggests a minimum tightening standard 

of 1/12 turn-of-the-nut to achieve sufficient fatigue performance. This value is supported 

by both laboratory and finite element results. An increase in minimum degree of 

tightness to 1/6 turn-of-the-nut past a snug tight condition, or refusal of the connection to 

further tightening is recommended. This increase provides for an easier reference point 

on the nut as well as a factor of safety. Refusal should only be accepted as a limit if the 

degree of tightness is at least 1/12 turn-of-the-nut. This standard is recommended for 

UNC bolts from 1 to 2-1/4 inches, and 8UN bolts from 1 to 2 inches. 

 

5.3 Recommendations for continued research 

The research conducted for the current study raises a number of additional 

questions. Further testing should be carried out for both verification and continuation of 

this research. 
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5.3.1 Standard verification 

First and foremost, it is recommended that lab verification of fatigue 

performance at 1/12 turn-of-the-nut be conducted. Fatigue testing of a number of 

specimens of critical diameter-thread pitch combination (2 inch 8UN) that results in 

failure outside the double-nut connection would reinforce results found in the current 

study. 

For best verification, tests should be carried out on bolts without grooves or other 

machining for the affixing of strain gages. This most closely simulates field conditions 

and mirrors the data gathered from finite element modeling, which did not include 

grooving. As in the progressive tightening tests, fatigue loads should be applied so to 

generate a minimum of 1 ksi stress in the bolt and a maximum of 15 ksi. Failure of the 

bolt below the bottom nut at such loading would indicate improved fatigue performance. 

Standards for acceptable fatigue performance and details on fatigue analysis of this and 

other diameters of anchor bolt may be found in Keating et al. (2004).  

 

5.3.2 Standard refinement 

If it is desirable to the Texas Department of Transportation to lower the turn-of-

the-nut standard of tightening for some or all bolt diameters, or if the standard is to be 

applied to bolts beyond the specified diameters, finite element analysis and verification 

fatigue tests should be carried out. Finite element analysis should be performed for any 

diameter for which the standard is to be altered or extended. A model such as the one 

discussed in Section 4 has been shown to be an accurate predictor of stress range 

 



85 

response to preload. For the calibration of such models, stress data from the current 

study may be used in the manner shown in Figure 4.6. From that point stress ranges may 

be evaluated as in Section 4, and a new standard developed. 

Any altered or extended standard should also include a fatigue verification as 

described above. This practical laboratory exercise is vital for the establishment of 

confidence in recommendations. 

This same procedure and test plan may be used to examine the effects of 

improper tightening of bolts. Cases where insufficient preload is developed can be 

studied through finite element analysis with practical confirmation tests performed in the 

laboratory. 

 

5.3.3 2 inch UNC turn-of-the-nut feasibility study 

Given the behavior of the 2 inch UNC test case in regards to the feasible limit of 

turn-of-the-nut tightening, further investigation of that diameter may be warranted. 

Further tightening tests may be carried out as described in Section 2 to evaluate the 

levels of preload found in the bolt for various degrees of turn-of-the-nut. Further tests 

should verify or refute the observed difficulty in generating 1/6 turn-of-the-nut preload 

for 2 inch UNC bolts. If the problem is consistent, the standard for this test case may 

need revision to be practically implemented in the field. As a part of any 2 inch UNC 

tightening verification, further tests should also be carried out on the 1-3/4 inch and 2-

1/4 inch bolts to bound the data and further examine the feasibility of attaining the given 

standard with those bolts as well. 
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APPENDIX A  

PROGRESSIVE TIGHTENING DATA 
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Figure A.1 – 1 inch, 8UN progressive tightening plot 

 
 
 

Table A.1 – 1 inch, 8UN progressive tightening table 

 Preload (ksi) per turn-of-the-nut 
 Zero 1 Snug 1 Zero 2 Snug 2 1/24 1/12 1/8 1/6 Zero 3 

Recorded 0.3 23.2 1.6 24.3 24.8 63.9 Lost Gage 
Adjusted  --- --- --- --- 20.2 61.5 Lost Gage 

          
Stress range (ksi) per turn-of-the-nut Gage 

Location Single 
Nut Snug 1 Zero 2 Snug 

Tight 1/24 1/12 1/8 1/6 Zero 3 

Top 10.0 --- --- 4.7 3.5 3.2 3.2 3.2 --- 
Middle 14.3 --- --- 5.3 3.9 4.0 3.9 Lost Gage 
Bottom 14.2 --- --- 6.9 5.4 4.6 4.6 4.7 --- 
Outside 14.1 --- --- 13.5 12.9 13.2 12.5 13.3 --- 
Exterior 12.8 --- --- 13.3 13.1 13.8 13.2 13.8 --- 
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Figure A.2 – 1-1/4 inch, UNC progressive tightening plot 

 
 
 

Table A.2 – 1-1/4 inch, UNC progressive tightening table 

 Preload (ksi) per turn-of-the-nut 
 Zero 1 Snug 1 Zero 2 Snug 2 1/24 1/12 1/8 1/6 Zero 3 

Recorded -1.4 13.9 -2.1 11.1 27.3 50.6 73.2 82.2 22.8 
Adjusted  --- --- --- --- 24.7 44.3 63.4 70.6 --- 

          
Stress range (ksi) per turn-of-the-nut Gage 

Location Single 
Nut Snug 1 Zero 2 Snug 

Tight 1/24 1/12 1/8 1/6 Zero 3 

Top 10.8 --- --- 5.2 3.3 3.0 2.7 2.6 --- 
Middle 14.4 --- --- 7.4 4.5 3.7 3.3 3.3 --- 
Bottom 14.4 --- --- 8.9 6.0 5.0 4.2 4.1 --- 
Outside 14.5 --- --- 14.2 13.5 12.4 11.0 10.8 --- 
Exterior 14.4 --- --- 14.5 14.6 14.6 14.5 14.6 --- 
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Figure A.3 – 1-1/4 inch, 8UN progressive tightening plot 

 
 
 

Table A.3 – 1-1/4 inch, 8UN progressive tightening table 

 Preload (ksi) per turn-of-the-nut 
 Zero 1 Snug 1 Zero 2 Snug 2 1/24 1/12 1/8 1/6 Zero 3 

Recorded -0.2 12.0 -1.0 12.0 25.4 44.9 71.6 92.4 6.1 
Adjusted  --- --- --- --- 23.3 39.9 62.8 80.6 --- 

          
Stress range (ksi) per turn-of-the-nut Gage 

Location Single 
Nut Snug 1 Zero 2 Snug 

Tight 1/24 1/12 1/8 1/6 Zero 3 

Top 10.6 --- --- 5.3 4.1 3.4 2.9 2.7 --- 
Middle 14.2 --- --- 7.1 5.3 4.2 3.6 3.3 --- 
Bottom 14.3 --- --- 9.5 7.8 6.0 4.9 4.4 --- 
Outside 14.4 --- --- 14.8 14.6 14 12.5 11.7 --- 
Exterior 14.2 --- --- 14.6 14.6 14.7 14.7 14.7 --- 
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Figure A.4 – 1-1/2 inch, UNC progressive tightening plot 

 
 
 

Table A.4 – 1-1/2 inch, UNC progressive tightening table 

 Preload (ksi) per turn-of-the-nut 
 Zero 1 Snug 1 Zero 2 Snug 2 1/24 1/12 1/8 1/6 Zero 3 

Recorded -1.3 4.9 -1.4 5.4 11.4 14.1 17.7 19.0 2.1 
Adjusted  --- --- --- --- 10.6 12.9 15.9 17.1 --- 

          
Stress range (ksi) per turn-of-the-nut Gage 

Location Single 
Nut Snug 1 Zero 2 Snug 

Tight 1/24 1/12 1/8 1/6 Zero 3 

Top 12.3 --- --- 9.8 7.9 6.4 4.9 --- 
Middle 14.3 --- --- 11.8 9.4 7.6 6 --- 
Bottom 14.4 --- --- 12.1 10.4 8.8 7.4 --- 
Outside 14.4 --- --- 15.4 15.3 15.2 15.2 --- 
Exterior 14.2 --- --- 15.7 15.6 15.5 15.6 

File 
Corrupt 

 
No 

Data 
--- 
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Figure A.5 – 1-1/2 inch, 8UN progressive tightening plot 

 
 
 

Table A.5 – 1-1/2 inch, 8UN progressive tightening table 

 Preload (ksi) per turn-of-the-nut 
 Zero 1 Snug 1 Zero 2 Snug 2 1/24 1/12 1/8 1/6 Zero 3 

Recorded 0.1 6.4 0.1 6.3 17.8 37.3 46.6 47.1 1.7 
Adjusted  --- --- --- --- 16.7 34.3 42.6 42.9 --- 

          
Stress range (ksi) per turn-of-the-nut Gage 

Location Single 
Nut Snug 1 Zero 2 Snug 

Tight 1/24 1/12 1/8 1/6 Zero 3 

Top 10.8 --- --- 8.1 4.7 3.4 3.3 3.3 --- 
Middle 14.4 --- --- 10.5 6 4.3 4 4 --- 
Bottom 14.4 --- --- 11.2 7 5.2 4.8 4.8 --- 
Outside 14.3 --- --- 13.9 13.7 12.1 11.8 11.9 --- 
Exterior 13.8 --- --- 13.8 13.9 13.8 13.8 13.9 --- 
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Figure A.6 – 1-3/4 inch, UNC progressive tightening plot 

 
 
 

Table A.6 – 1-3/4 inch, UNC progressive tightening table 

 Preload (ksi) per turn-of-the-nut 
 Zero 1 Snug 1 Zero 2 Snug 2 1/24 1/12 1/8 1/6 Zero 3 

Recorded 0.3 7.5 4.0 9.4 10.1 26.2 45.5 56.2 2.7 
Adjusted  --- --- --- --- 9.2 24.1 41.9 51.7 --- 

          
Stress range (ksi) per turn-of-the-nut Gage 

Location Single 
Nut Snug 1 Zero 2 Snug 

Tight 1/24 1/12 1/8 1/6 Zero 3 

Top 10.6 --- --- 8.6 6.0 3.3 2.8 2.6 --- 
Middle 13.4 --- --- 11.2 7.5 4.0 3.4 3.2 --- 
Bottom 13.3 --- --- 11.5 8.7 5.5 4.7 4.5 --- 
Outside 13.2 --- --- 12.6 12.0 11.4 10.7 10.6 --- 
Exterior 12.8 --- --- 13.0 12.7 12.8 12.9 12.9 --- 
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Figure A.7 – 1-3/4 inch, 8UN progressive tightening plot 

 

Table A.7 – 1-3/4 inch, 8UN progressive tightening data 

 Preload (ksi) per turn-of-the-nut 
 Zero 1 Snug 1 Zero 2 Snug 2 1/24 1/12 1/8 1/6 Zero 3 

Recorded -0.4 4.1 -0.3 3.4 10.4 19.7 31.2 43.5 -1.5 
Adjusted  --- --- --- --- 9.6 17.9 28.2 39.2 --- 

          
Stress range (ksi) per turn-of-the-nut Gage 

Location Single 
Nut Snug 1 Zero 2 Snug 

Tight 1/24 1/12 1/8 1/6 Zero 3 

Top 10.5 --- --- 10.5 6.4 4.1 3.4 3.1 --- 
Middle 13.4 --- --- 11.9 7.2 4.6 3.8 3.4 --- 
Bottom 13.5 --- --- 12.4 9.5 7.0 5.8 5.1 --- 
Outside 13.3 --- --- 13.5 13.3 12.9 12.2 11.6 --- 
Exterior 13.4 --- --- 13.5 13.5 13.5 13.5 13.5 --- 
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Figure A.8 – 2 inch, UNC progressive tightening plot 

 
 
 

Table A.8 – 2 inch, UNC progressive tightening data 

 Preload (ksi) per turn-of-the-nut 
 Zero 1 Snug 1 Zero 2 Snug 2 1/24 1/12 1/8 Limit* Zero 3 

Recorded 0.9 4.3 1.0 4.6 12.8 27.5 49.7 46.4 -9.5 
Adjusted  --- --- --- --- 12.0 25.2 45.2 42.2 --- 

          
Stress range (ksi) per turn-of-the-nut Gage 

Location Single 
Nut Snug 1 Zero 2 Snug 

Tight 1/24 1/12 1/8 Limit* Zero 3 

Top 12.8 --- --- 12.3 5.3 3.7 2.8 2.8 --- 
Middle 15.1 --- --- 14.6 6.3 4.2 3.3 3.3 --- 
Bottom 14.9 --- --- 14.6 8.4 6.4 4.8 4.7 --- 
Outside 15.0 --- --- 15.1 15.1 15.1 13.3 13.4 --- 
Exterior 14.9 --- --- 15.2 15 15.1 15 15.2 --- 

 
*The feasible limit to tighten the given specimen was just slightly greater than 1/8 turn-
of-the-nut 
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Figure A.9 – 2 inch, 8UN progressive tightening plot 

 
 
 

Table A.9 – 2 inch, 8UN progressive tightening data 

 Preload (ksi) per turn-of-the-nut 
 Zero 1 Snug 1 Zero 2 Snug 2 1/24 1/12 1/8 1/6 Zero 3 

Recorded 0.0 4.2 2.1 6.0 7.8 18.7 26.9 36.2 4.6 
Adjusted  --- --- --- --- 7.6 17.3 24.6 32.8 --- 

          
Stress range (ksi) per turn-of-the-nut Gage 

Location Single 
Nut Snug 1 Zero 2 Snug 

Tight 1/24 1/12 1/8 1/6 Zero 3 

Top 10.4 --- --- 9.4 6.6 2.9 2.3 2.2 --- 
Middle 13.8 --- --- 13 9.2 3.8 2.9 2.7 --- 
Bottom 14 --- --- 13.2 10.2 5.4 4.5 4.1 --- 
Outside 14.1 --- --- 13.7 13 10.8 10.1 9.6 --- 
Exterior 14.3 --- --- 13.8 14 14.1 14.2 14.1 --- 
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Figure A.10 – 2-1/4 inch, UNC progressive tightening plot 

 
 
 

Table A.10 – 2-1/4 inch, UNC progressive tightening data 

 Preload (ksi) per turn-of-the-nut 
 Zero 1 Snug 1 Zero 2 Snug 2 1/24 1/12 1/8 1/6 Zero 3 

Recorded 0.9 4.2 -0.6 2.2 7.1 12.4 24.3 35.0 -1.1 
Adjusted  --- --- --- --- 6.7 11.5 21.9 31.5 --- 

          
Stress range (ksi) per turn-of-the-nut Gage 

Location Single 
Nut Snug 1 Zero 2 Snug 

Tight 1/24 1/12 1/8 1/6 Zero 3 

Top 10.4 --- --- 9.2 6.6 4.7 3.2 2.6 --- 
Middle 14.7 --- --- 13.7 10.1 7.1 4.3 3.4 --- 
Bottom 14.7 --- --- 14 11 8.4 5.6 4.6 --- 
Outside 14.6 --- --- 14.8 15 14.6 14.2 13.8 --- 
Exterior 14.5 --- --- 14.8 15 14.7 15.2 15.1 --- 
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Figure A.11 – 2-1/4 inch, 8UN progressive tightening plot 

 
 
 

Table A.11 – 2-1/4 inch, 8UN progressive tightening data 

 Preload (ksi) per turn-of-the-nut 
 Zero 1 Snug 1 Zero 2 Snug 2 1/24 1/12 1/8 1/6 Zero 3 

Recorded -0.7 0.6 -0.8 0.8 1.5 5.2 8.5 15.3 -1.4 
Adjusted  --- --- --- --- 1.5 5.0 8.1 14.5 --- 

          
Stress range (ksi) per turn-of-the-nut Gage 

Location Single 
Nut Snug 1 Zero 2 Snug 

Tight 1/24 1/12 1/8 1/6 Zero 3 

Top 11.1 --- --- 9.9 9.3 7.2 5.2 3.6 --- 
Middle 13.7 --- --- 12.1 11.6 8.8 6.5 4.7 --- 
Bottom 13.7 --- --- 12.5 12.1 9.4 6.9 5.3 --- 
Outside 13.5 --- --- 13.7 13.4 13.4 13 12.7 --- 
Exterior 13.5 --- --- 13.7 13.5 13.7 13.7 13.4 --- 
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APPENDIX B  

TIGHTENING DATA 

 

B.1 UNC tightening data summaries 
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Figure B.1 – UNC snug tight preload 
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Figure B.2 – UNC 1/24 turn-of-the-nut preload 
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Figure B.3 – UNC 1/12 turn-of-the-nut preload 
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UNC 1/8 Turn-of-the-Nut Preload
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Figure B.4 – UNC 1/8 turn-of-the-nut preload 
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Figure B.5 – UNC 1/6 turn-of-the-nut preload 
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B.2 8UN tightening data summaries 
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Figure B.6 – 8UN snug tight preload 
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Figure B.7 – 8UN 1/24 turn-of-the-nut preload 
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Figure B.8 – 8UN 1/12 turn-of-the-nut preload 
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8UN 1/8 Turn-of-the-Nut Preload
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Figure B.9 – 8UN 1/8 turn-of-the-nut preload 

 

8UN 1/6 Turn-of-the-Nut Preload

0
10
20
30
40
50
60
70
80
90

100
110

1 1 1/4 1 1/2 1 3/4 2 2 1/4

Bolt Diameter (in.)

St
re

ss
 (k

si)

 

Figure B.10 – 8UN 1/6 turn-of-the-nut preload 
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