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ABSTRACT

Operator Valued Hardy Spaces

and Related Subjects. (August 2006)

Tao Mei, B.S.; Ph.D., Wuhan University

Chair of Advisory Committee: Dr. Gilles Pisier

We give a systematic study of the Hardy spaces of functions with values in

the non-commutative Lp-spaces associated with a semifinite von Neumann algebra

M. This is motivated by matrix valued harmonic analysis (operator weighted norm

inequalities, operator Hilbert transform), as well as by the recent development of

non-commutative martingale inequalities. Our non-commutative Hardy spaces are

defined by non-commutative Lusin integral functions. It is proved in this dissertation

that they are equivalent to those defined by the non-commutative Littlewood-Paley

G-functions.

We also study the Lp boundedness of operator valued dyadic paraproducts and

prove that their Lq boundedness implies their Lp boundedness for all 1 < q < p <∞.
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CHAPTER I

INTRODUCTION

This dissertation gives a systematic study of matrix valued (and more generally, oper-

ator valued) Hardy spaces. Our motivations come from two closely related directions.

The first one is matrix valued harmonic analysis, which deals with extending results

from classical harmonic analysis to the operator valued setting. We should emphasize

that such extensions not only are interesting in themselves but also have applications

to other domains such as prediction theory and rational approximation. A central

subject in this direction is the study of “operator valued” Hankel operators (i.e. Han-

kel matrices with operator entries). As in the scalar case, this is intimately linked to

operator valued weighted norm inequalities, operator valued Carleson measures, op-

erator valued Hardy spaces.... Much research in this direction has been done, notably

by F. Nazarov, S. Treil and A. Volberg; see, for instance, the recent works [8], [28],

[31], [30], [34]).

The second direction which motivates this dissertation is non-commutative mar-

tingale theory. This theory was initiated already in the 70’s. For example, I. Cu-

culescu ([3]) proved a non-commutative analogue of the classical Doob weak type

(1,1) maximal inequality. This has immediate applications to the almost sure conver-

gence of non-commutative martingales (see also [11], [12]). The new input into the

theory is the recent development of non-commutative martingale inequalities. This

has been largely influenced and inspired by operator space theory. Many inequalities

in classical martingale theory have been transferred into the non-commutative set-

ting. These include the non-commutative Burkholder-Gundy inequalities, the non-

—————————–

This dissertation follows the style of C. R. Math. Acad. Sci. Paris.
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commutative Doob inequality, the non-commutative Burkholder-Rosenthal inequal-

ities and the boundedness of the non-commutative martingale transforms (see [33],

[14], [17], [18], [36]).

One common important object in the two directions above is the non-commutative

analogue of the classical BMO space. Because of the non-commutativity, there

are now two non-commutative BMO spaces, column BMO and row BMO. As ex-

pected, these non-commutative BMO spaces are proved to be the duals of some

non-commutative H1 spaces. To be more precise and to go into some details, we

introduce these spaces in the case of matrix valued functions. Let Md be the algebra

of d× d matrices with its usual trace tr. Then the column BMO space is defined by

BMOc(R,Md) =
{
ϕ : R → Md, ‖ϕ‖BMOc

<∞
}

where

‖ϕ‖BMOc
= sup

h

{
‖ϕ(·)h‖BMO(ld2) , h ∈ ld2, ‖h‖ld2

≤ 1
}
.

Similarly, the row BMO space is

BMOr(R,Md) =
{
ϕ : R → Md, ‖ϕ‖BMOr

= ‖ϕ∗‖BMOc
<∞

}
.

We will also need the intersection of these BMO spaces, which is

BMOcr(R,Md) = BMOc(R,Md) ∩ BMOr(R,Md)

equipped with the norm ‖ϕ‖BMOcr
= max{‖ϕ‖BMOc

, ‖ϕ‖BMOr
}. When d = 1, all these

BMO spaces coincide with the classical BMO space which is well known to be the

dual of the classical Hardy space H1. This result can be extended to the case of d <∞

very easily. Let

H1(R, S1
d) =

{
f : R → S1

d ;

∫
sup
y>0

‖f(x, y)‖S1
d
dx <∞

}
,
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where S1
d is the trace class over l2d, and f(x, y) denotes the Poisson integral of f

corresponding to the point x+ iy. Then

(H1(R,S1
d))∗ = BMOcr(R,Md)

and

c−1
d ‖ϕ‖BMOcr(R,Md) ≤ ‖ϕ‖(H1(R,S1

d
))∗ ≤ cd ‖ϕ‖BMOcr(R,Md) .

Here the constant cd → +∞ as d → +∞. Thus this duality between H1(R,S1
d) and

BMOcr(R,Md) fails for the infinite dimensional case. One of our goals is to find a

natural predual space of BMOcr with relevant constants independent of d.

In the case of non-commutative martingales, this natural dual of BMOcr was al-

ready introduced by Pisier and Xu in their work on the non-commutative Burkholder-

Gundy inequality. To define the right space H1, they considered a non-commutative

analogue of the classical square function for martingales. Motivated by their work,

we will introduce a new definition of H1 for matrix valued functions by considering a

non-commutative analogue of the classical Lusin integral (recall that, in the classical

case, a scalar valued function is in H1 if and only if its Lusin integral is in L1, see [5],

[37]). For a matrix valued function f, f ∈ L1((R, dt
1+t2

),Md), 1 ≤ p <∞, let

‖f‖p
Hp

c (R,Md)
= tr

∫ +∞

−∞

(

∫∫

Γ

|∇f(t+ x, y)|2dxdy) p

2dt,

where Γ = {(x, y) ∈ R : |x| < y, y > 0} and

|∇f |2 = (
∂f

∂x
)∗
∂f

∂x
+ (

∂f

∂y
)∗
∂f

∂y
.

Then we define

Hp
c(R,Md) =

{
f : R → Md; ‖f‖Hp

c(R,Md) <∞
}
.
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Similarly, set

Hp
r(R,Md) =

{
f : R → Md; ‖f‖Hp

r(R,Md) = ‖f ∗‖Hp
c(R,Md) <∞

}
.

Finally, if 1 ≤ p < 2, we define

Hp
cr(R,Md) = Hp

c(R,Md) + Hp
r(R,Md)

equipped with the norm

‖f‖Hp
cr(R,Md) = inf{‖g‖Hp

c
+ ‖h‖Hp

r
: f = g + h, g ∈ Hp

c(R,Md), h ∈ Hp
r(R,Md)}.

If p ≥ 2, let

Hp
cr(R,Md) = Hp

c(R,Md) ∩Hp
r(R,Md)

equipped with the norm

‖f‖Hp
cr(R,Md) = max{‖f‖Hp

c (R,Md) , ‖f‖Hp
r(R,Md)}.

One of our main results is the identification of BMOc(R,Md) as the dual of H1
c(R,Md) :

(H1
c(R,Md))

∗ = BMOc(R,Md) with equivalent norms, where the relevant equiva-

lence constants are universal. Similarly, BMOr(R,Md) (resp. BMOcr(R,Md)) is the

dual of H1
c(R,Md) (resp. H1

cr(R,Md)). Another result is the equality Hp
cr(R,Md)

= Lp(L∞(R) ⊗ Md) with equivalent norms for all 1 < p < ∞. This is the function

space analogue of the non-commutative Burkholder-Gundy inequality in [33]. It is

also closely related to the recent work ([16]) by Junge, Le Merdy and Xu on the

Littlewood-Paley theory for semigroups on non-commutative Lp-spaces.

We also prove the analogue of the classical Hardy-Littlewood maximal inequality.

Our approach to this inequality for functions consists in reducing it to the same

inequality for dyadic martingales. It is very simple and seems new even in the scalar
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case. The same idea allows us to write BMO as an intersection of two dyadic BMO.

This latter result plays an important role in this dissertation. It permits us to reduce

many problems involving BMO (or its variant BMOq, which is the dual of Hp for

1 ≤ p < 2, 1
p

+ 1
q

= 1) to dyadic BMO, that is, to BMO of dyadic non-commutative

martingales. For instance, we use this reduction for the interpolation problems on

our non-commutative Hardy spaces.

All the results mentioned above remain valid for a general semifinite von Neu-

mann algebra M in place of the matrix algebras.

We now explain the organization of this dissertation. Chapter II (the next

one) contains preliminaries, definitions and notations used throughout the disserta-

tion. There we define the two non-commutative square functions which are the non-

commutative analogues of the Lusin area integral and Littlewood-Paley g-function.

These square functions allow us to define the corresponding non-commutative Hardy

spaces Hp
c(R,M), where M is a semifinite von Neumann algebra. This chapter

also contains the definition of BMOc(R,M) and some elementary properties of these

spaces.

The main result of Chapter III is the analogue in our setting of the famous

Fefferman duality theorem between H1 and BMO. As in the classical case, this re-

sult implies an atomic decomposition for our Hardy spaces H1
c(R,M) (as well as

H1
r(R,M),H1

cr(R,M)). Another consequence is the characterization of functions in

BMOc(R,M) (as well as BMOr(R,M),BMOcr(R,M)) via operator valued Carleson

measures.

The objective of Chapter IV is the non-commutative Hardy-Littlewood maximal

inequality. As already mentioned above, our approach to this is to reduce this in-

equality to the corresponding maximal inequality for dyadic martingales. To this end,

we construct two “separate” increasing filtrations D ={Dn}n∈Z and D′={D′
n}n∈Z of
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dyadic σ-algebras. One of them is just the usual dyadic filtration on R, while the

other is a kind of translation of the first. The main point is that any interval of R

is contained in an atom of some Dn or D′
n with comparable size. This approach will

be repeatedly used in the subsequent chapters. We also prove the non-commutative

Poisson maximal inequality and the non-commutative Lebesgue differentiation theo-

rem.

In Chapter V, we define the Lp-space analogues of the BMO spaces introduced

in Chapter II, denoted by BMOq
c(R,M), BMOq

r(R,M), BMOq
cr(R,M). These spaces

are proved to be the duals of the respective Hardy spaces Hp
c(R,M), Hp

r(R,M),

Hp
cr(R,M) for 1 < p < 2 (q = p

p−1
). The proof of this duality is also valid for p = 1.

In that case, we recover the duality theorem in Chapter III. However, for 1 < p < 2,

we need, in addition, the non-commutative maximal inequality from Chapter IV. This

is one of the two reasons why we have decided to present these two duality theorems

separately. Another is that the reader may be more familiar with the duality between

H1 and BMO and those only interested in this duality can skip the case 1 < p < 2. It is

also proved in this chapter that BMOq
c(R,M) = Hq

c(R,M) with equivalent norms for

all 2 < q <∞. The third result of Chapter V is the following: Regarded as a subspace

of Lp(L∞(R)⊗M, L2
c(Γ̃)),Hp

c(R,M) is complemented in Lp(L∞(R)⊗M, L2
c(Γ̃)) for

all 1 < p < ∞. This result is the function space analogue of the non-commutative

Stein inequality in [33]. This chapter is largely inspired by the recent work of M.

Junge and Q. Xu, where the above results for non-commutative martingales were

obtained.

In Chapter VI, we further exploit the reduction idea introduced in Chapter IV,

in order to describe BMOq
c(R,M) as BMOq,D

c (R,M)∩ BMOq,D′

c (R,M). These two

latter BMO spaces are those of dyadic non-commutative martingales. Among the

consequences given in this chapter, we mention the equivalence of Lp(L∞(R) ⊗M)



7

and Hp
cr(R,M) for all 1 < p <∞.

Chapter VII deals with the interpolation for our Hardy spaces. As expected,

these spaces behave very well with respect to the complex and real interpolations.

This chapter also contains a result on Fourier multipliers.

In Chapter VIII, by using the interpolation results got in Chapter VII, we prove

the noncommutative analogue of the classical John-Nirenberg theorem in our setting.

In Chapter IX, we consider the dyadic paraproducts for matrix valued functions

and prove that their Lq boundedness implies their Lp boundedness for all 1 < q <

p <∞.

We close this introduction by mentioning that throughout the dissertation the

letter c will denote an absolute positive constant, which may vary from line to line,

and cp a positive constant depending only on p.
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CHAPTER II

PRELIMINARIES

2.1. The non-commutative spaces Lp(M, L2
c(Ω))

Let M be a von Neumann algebra equipped with a normal semifinite faithful trace

τ. Let S+
M be the set of all positive x in M such that τ(supp x) < ∞, where supp x

denotes the support of x, that is, the least projection e ∈ M such that ex = x (or

xe = x). Let SM be the linear span of S+
M. We define

‖x‖p = (τ |x|p) 1
p , ∀x ∈ SM

where |x| = (x∗x)
1
2 . One can check that ‖·‖p is well-defined and is a norm on SM if

1 ≤ p < ∞. The completion of (SM, ‖·‖p) is denoted by Lp(M) which is the usual

non-commutative Lp space associated with (M, τ). For convenience, we usually set

L∞(M) = M equipped with the operator norm ‖·‖M . The elements in Lp(M, τ)

can also be viewed as closed densely defined operators on H (H being the Hilbert

space on which M acts). We refer to [4] for more information on non-commutative

Lp spaces.

Let (Ω, µ) be a measurable space. We say h is a SM-valued simple function on

(Ω, µ) if it can be written as

h =
n∑

i=1

mi · χAi
(2.1)

where mi ∈ SM and Ai’s are measurable disjoint subsets of Ω with µ(Ai) < ∞. For

such a function h we define

‖h‖Lp(M,L2
c(Ω)) =

∥∥∥∥∥∥

(
n∑

i=1

m∗
imi · µ(Ai)

)1
2

∥∥∥∥∥∥
Lp(M)
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and

‖h‖Lp(M,L2
r(Ω)) =

∥∥∥∥∥∥

(
n∑

i=1

mim
∗
i · µ(Ai)

)1
2

∥∥∥∥∥∥
Lp(M)

This gives two norms on the family of all such h′s. To see that, denoting by B(L2(Ω))

the space of all bounded operators on L2(Ω) with its usual trace tr,we consider the

von Neumann algebra tensor product M⊗ B(L2(Ω)) with the product trace τ ⊗ tr.

Given a set A0 ⊂ Ω with µ(A0) = 1, any element of the family of h’s above can be

regarded as an element in Lp (M⊗B(L2(Ω))) via the following map:

h 7→ T (h) =

n∑

i=1

mi ⊗ (χAi
⊗ χA0) (2.2)

and

‖h‖Lp(M;L2
c(Ω)) = ‖T (h)‖Lp(M⊗B(L2(Ω)))

Therefore, ‖·‖Lp(M;L2
c(Ω)) defines a norm on the family of the h’s. The corresponding

completion (for 1 ≤ p < ∞) is a Banach space, denoted by Lp(M;L2
c(Ω)). Then

Lp(M;L2
c(Ω)) is isometric to the column subspace of Lp(M⊗B(L2(Ω))). For p = ∞

we let L∞(M;L2
c(Ω)) be the Banach space isometric by the above map T to the

column subspace of L∞(M⊗B(L2(Ω))).

Similarly to ‖·‖Lp(M;L2
c(Ω)), ‖·‖Lp(M;L2

r(Ω)) is also a norm on the family of SM-

valued simple functions and it defines the Banach space Lp(M;L2
r(Ω)) which is iso-

metric to the row subspace of Lp(M⊗ B(L2(Ω))).

Alternatively, we can fix an orthonormal basis of L2(Ω). Then any element of

Lp(M⊗ B(L2(Ω))) can be identified with an infinite matrix with entries in Lp(M).

Accordingly, Lp(M;L2
c(Ω)) (resp. Lp(M;L2

r(Ω))) can be identified with the subspace

of Lp(M⊗ B(L2(Ω))) consisting of matrices whose entries are all zero except those

in the first column (resp. row).
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Proposition 2.1 Let f ∈ Lp(M;L2
c(Ω)), g ∈ Lq(M;L2

c(Ω))(1 ≤ p, q ≤ ∞), 1
r

=

1
p

+ 1
q
. Then 〈g, f〉 exists as an element in Lr(M) and

‖〈g, f〉‖Lr(M) ≤ ‖g‖Lq(M;L2
c(Ω)) ‖f‖Lp(M;L2

c(Ω)) ,

where 〈 , 〉 denotes the scalar product in L2
c(Ω). A similar statement also holds for

row spaces.

Proof. This is clear from the discussion above via the matrix representation of

Lp(M;L2
c(Ω)) (in an orthonormal basis of L2(Ω)).

Remark. Note that if f and g are SM-valued simple functions, then

〈g, f〉 =

∫

Ω

g∗fdµ.

For general f and g as in Proposition 2.1, if one of p and q is finite, one can easily

prove that 〈g, f〉 is the limit in Lr(M) of a sequence (〈gn, fn〉)n with SM-valued simple

functions fn, gn. Consequently, we can define
∫
Ω
g∗fdµ as the limit of

∫
Ω
g∗nfndµ. If

both p and q are infinite, this limit procedure is still valid but only in the w*-sense.

Convention. Throughout this paper whenever we are in the situation of Proposi-

tion 2.1, we will write 〈g, f〉 as the integral
∫
Ω
g∗fdµ. Notationally, this is clearer.

Moreover, by the proceding remark this indeed makes sense in many cases.

Observe that the column and row subspaces of Lp(M⊗B(L2(Ω))) are 1-complemented

subspaces. Therefore, from the classical duality between Lp(M ⊗ B(L2(Ω))) and

Lq(M⊗ B(L2(Ω))) (1
p

+ 1
q

= 1, 1 ≤ p <∞) we deduce that

(
Lp(M;L2

c(Ω))
)∗

= Lq(M;L2
c(Ω))

and
(
Lp(M;L2

r(Ω))
)∗

= Lq(M;L2
r(Ω))
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isometrically via the antiduality

(f, g) 7→ τ(〈g, f〉) = τ

∫

Ω

g∗fdµ.

Moreover, it is well known that (by the same reason), for 0 < θ < 1 and 1 ≤

p0, p1, pθ ≤ ∞ with 1
pθ

= 1−θ
p0

+ θ
p1
, we have isometrically

(
Lp0(M;L2

c(Ω)), Lp1(M;L2
c(Ω))

)
θ

= Lpθ(M;L2
c(Ω)). (2.3)

In the following, we are mainly interested in the spaces Lp(M;L2
c(Ω)) (resp.

Lp(M;L2
r(Ω))) with (Ω, µ) = Γ̃ = (Γ, dxdy) × ({1, 2}, σ),where Γ = {(x, y) ∈

R2
+, |x| < y}, σ{1} = σ{2} = 1. (This cone Γ is a fundamental subject used in

the classical harmonic analysis, see [6], [5], [21], [37] or any book on Hardy spaces).

The presence of {1, 2} corresponds to our two variables x, y, see below. We then de-

note them by Lp(M, L2
c(Γ̃)) (resp. Lp(M, L2

r(Γ̃))). For simplicity, we will abbreviate

them as Lp(M, L2
c) (resp. Lp(M, L2

r)) if no confusion can arise.

2.2. Operator valued Hardy spaces

Let 1 ≤ p < ∞. For any SM-valued simple function f on R, we also use f to denote

its Poisson integral on the upper half plane R2
+ = {(x, y)|y > 0},

f(x, y) =

∫

R

Py(x− s)f(s)ds, (x, y) ∈ R
2
+ ,

where Py(x) is the Poisson kernel (i.e. Py(x) = 1
π

y
x2+y2 ). Note that f(x, y) is a

harmonic function still with values in SM, and so in M. Define theHp
c(R,M) norm

of f by

‖f‖Hp
c

= ‖∇f(x+ t, y)χΓ(x, y)‖Lp(L∞(R,dt)⊗M,L2
c(eΓ)) ,
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where ∇f is the gradient of the Poisson integral f(x, y) and Γ̃ is defined as in the

end of Section 2.1. In this dissertation, we will always regard ∇f(x+ t, y)χΓ(x, y) as

functions defined on R × Γ̃ with t ∈ R, (x, y) ∈ Γ and

∇f(x+ t, y)(1) =
∂f

∂x
(x+ t, y), ∇f(x+ t, y)(2) =

∂f

∂y
(x+ t, y).

And set

|∇f(x+ t, y)|2 = |∂f
∂x

(x+ t, y)|2 + |∂f
∂y

(x+ t, y)|2.

Define the Hp
r(R,M) norm of f by

‖f‖Hp
r

= ‖∇f(x+ t, y)χΓ‖Lp(L∞(R)⊗M,L2
r) .

Set Hp
c(R,M) (resp. Hp

r(R,M)) to be the completion of the space of all SM-valued

simple function f ’s with finite Hp
c(R,M)(resp. Hp

r(R,M)) norm. Equipped respec-

tively with the previous norms, Hp
c(R,M) and Hp

r(R,M) are Banach spaces. Define

the non-commutative analogues of the classical Lusin integral by

Sc(f)(t) = (

∫∫

Γ

|∇f(x+ t, y)|2dxdy) 1
2 (2.4)

Sr(f)(t) = (

∫∫

Γ

|∇f ∗(x+ t, y)|2dxdy) 1
2 . (2.5)

Note that

|∇f(x, y)|2 =

∫

{1,2}

|∇f(x, y)(i)|2dσ(i).

Then, for f ∈ Hp
c(R,M),

‖f‖Hp
c

= ‖Sc(f)‖Lp(L∞(R)⊗M)

and the similar equality holds for Hp
r(R,M). Sc(f) and Sr(f) are the non-commutative

analogues of the classical Lusin square function. We will need the non-commutative



13

analogues of the classical Littlewood-Paley g-function, which are defined by

Gc(f)(t) = (

∫

R+

|∇f(t, y)|2ydy) 1
2 (2.6)

Gr(f)(t) = (

∫

R+

|∇f ∗(t, y)|2ydy) 1
2 (2.7)

We will see, in Chapters III and V, that

‖Sc(f)‖Lp(L∞(R)⊗M) ⋍ ‖Gc(f)‖Lp(L∞(R)⊗M)

‖Sr(f)‖Lp(L∞(R)⊗M) ⋍ ‖Gr(f)‖Lp(L∞(R)⊗M)

for all 1 ≤ p <∞.

Define the Hardy spaces of non-commutative functions f as follows: if 1 ≤ p < 2,

Hp
cr(R,M) = Hp

c(R,M) + Hp
r(R,M) (2.8)

equipped with the norm

‖f‖Hp
cr

= inf{‖g‖Hp
c
+ ‖h‖Hp

r
: f = g + h, g ∈ Hp

c(R,M), h ∈ Hp
r(R,M)}

and if 2 ≤ p <∞,

Hp
cr(R,M) = Hp

c(R,M) ∩Hp
r(R,M) (2.9)

equipped with the norm

‖f‖Hp
cr

= max{‖f‖Hp
c
, ‖f‖Hp

r
}.

Remark. We have

H2
c(R,M) = H2

r(R,M) = H2
cr(R,M) = L2(L∞(R) ⊗M).

In fact, notice that △|f |2 = 2|∇f |2 and f(x, y)(|x| + y) → 0,∇f(x, y)(|x|+ y)2 → 0
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as |x| + y → 0, for SM-valued simple function f ’s. By Green’s theorem

||∇f(t+ x, y)χΓ||2L2(L∞(R)⊗M,L2
c)

= 2τ

∫∫

R2
+

|∇f |2ydxdy

= τ

∫∫

R2
+

△|f |2ydxdy

= τ

∫

R

|f |2ds = ‖f‖2
L2(L∞(R)⊗M). (2.10)

Similarly, ||f ||H2
r

= ‖f ∗‖L2(L∞(R)⊗M) = ‖f‖L2(L∞(R)⊗M).

Note we have also the following polarized version of (2.10),

2

∫∫

R2
+

∇f(x, y)∇g(x, y)ydxdy =

∫

R

f(s)g(s)ds (2.11)

for SM-valued simple function f, g’s.

We will repeatedly use the following consequence of the convexity of the op-

erator valued function: x 7→ |x|2 (This convexity follows from the convexity of

x 7→ 〈x∗xh, h〉 = ‖xh‖2 for any h). Letting f : (Ω, µ) → M be a weak-* integrable

function, we have

|
∫

A

f(t)dµ(t)|2 ≤ µ(A)

∫

A

|f(t)|2dµ(t), ∀A ⊂ Ω (2.12)

In particular, set dµ(t) = g2(t)dt,

|
∫

A

f(t)g(t)dt|2 ≤
∫

A

|f(t)|2dt
∫

A

g2(t)dt, ∀A ⊂ R (2.13)

for every measurable function g on R, and

|
∫

A

f(t)dt|2 ≤
∫

A

|f(t)|2g−1(t)dt

∫

A

g(t)dt, ∀A ⊂ R (2.14)
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for every positive measurable function g on R.

Let Hp(R) (1 ≤ p <∞) denote the classical Hardy space on R. It is well known

that

Hp(R) = {f ∈ Lp(R) : S(f) ∈ Lp(R)},

where S(f) is the classical Lusin integral function (S(f) is equal to Sc(f) above

by taking M = C). In the following, Hp(R) is always equipped with the norm

‖S(f)‖Lp(R) .

Proposition 2.2 Let 1 ≤ p <∞, f ∈ Hp
c(R,M) and m ∈ Lq(M) (with q the index

conjugate to p). Then τ(mf) ∈ Hp(R) and

‖τ(mf)‖Hp ≤ ‖m‖Lq(M) ‖f‖Hp
c
.

Proof. Note that

∇(τ(mf) ∗ P ) = τ(m(f ∗ ∇P )) = τ(m∇f),

here P is the Poisson kernel (i.e. Py(x) = 1
π

y
x2+y2 ). By (2.13), we have

‖τ(mf)‖p
Hp

=

∫

R

(

∫∫

Γ

|τ(m∇f(x+ t, y))|2dxdy) p

2dt

≤
∫

R

sup
‖g‖

L2(eΓ)
≤1

∣∣∣∣∣∣

∫∫

Γ

gτ(m∇f(x+ t, y))dxdy

∣∣∣∣∣∣

p

dt

=

∫

R

sup
‖g‖

L2(eΓ)
≤1

∣∣∣∣∣∣
τ


m

∫∫

Γ

g1
∂f

∂x
(x+ t, y) + g2

∂f

∂y
(x+ t, y)dxdy



∣∣∣∣∣∣

p

dt

≤
∫

R

sup
‖g‖

L2(eΓ)
≤1

‖m‖p
Lq(M)

∥∥∥∥∥∥

∫∫

Γ

g1
∂f

∂x
(x+ t, y) + g2

∂f

∂y
(x+ t, y)dxdy

∥∥∥∥∥∥

p

Lp(M)

dt
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≤ ‖m‖p
Lq(M)

∫

R

sup
‖g‖

L2(eΓ)
≤1

∥∥∥∥∥∥
(

∫∫

Γ

|g|2dxdy) 1
2 (

∫∫

Γ

|∇f(x+ t, y)|2dxdy) 1
2

∥∥∥∥∥∥

p

Lp(M)

dt

≤ ‖m‖p
Lq(M)τ

∫

R

(

∫∫

Γ

|∇f(x+ t, y)|2dxdy) p

2dt

= ‖m‖p
Lq(M) ‖f‖p

Hp
c
.

Remark. We should emphasize that for two functions g, f defined on Γ̃, we always

set

gf(z) = g(z)(1)f(z)(1) + g(z)(2)f(z)(2).

Then in the above formula |τ(m∇f(x+ t, y))|2 and gτ(m∇f(x+ t, y)) etc. are func-

tions defined on Γ. We will use very often such a product for (M-valued) functions

defined on Γ̃.

Remark. (i)
∫
fdt = 0, ∀f ∈ H1

c(R,M). In fact, if f ∈ H1
c(R,M), by Proposition 1.2

and the classical property of H1(see [37], p.128), we have τ(m
∫
fdt) = 0, ∀m ∈ M.

Thus
∫
fdt = 0.

(ii) The collection of all SM-valued simple functions f such that
∫
fdt = 0 is a

dense subset of Hp
c(R,M)(1 < p <∞). Note that

lim
N→∞

∥∥∥m
N
χ[−N,N ](t)

∥∥∥
Hp

c (R,M)
= 0, ∀m ∈ SM.

For a simple function f, let fN = f −
R

fdt

N
χ[−N,N ]. Then

∫
fN = 0 and fN → f in

Hp
c(R,M).

Remark. See [5] and [37] for discussions on the classical Lusin integral and the

Littlewood-Paley g-function and the fact that a scalar valued function is in H1 if

and only if its Lusin integral is in L1. We define the non-commutative Hardy spaces

Hp
cr(R,M) differently for the case 1 ≤ p < 2 and p ≥ 2 (respectively by (2.8) and

(2.9)) as Pisier and Xu did for non-commutative martingales in [18]. This is to get the
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expected equivalence between Hp
cr(R,M) and Lp(R,M) for 1 < p <∞ (see Chapter

VI). And Hp
c(R,M) or Hp

r(R,M) alone could be very far away from Lp(R,M) for

p 6= 2.

2.3. Operator valued BMO spaces

Now, we introduce the non-commutative analogue of BMO spaces. For any in-

terval I on R, we will denote its center by CI and its Lebesgue measure by |I|.

Let ϕ ∈ L∞(M, L2
c(R,

dt
1+t2

)). By Proposition 2.1 (and our convention), for every

g ∈ L2(R, dt
1+t2

),
∫

R
gϕ dt

1+t2
∈ M. Then the mean value of ϕ over I ϕI := 1

|I|

∫
I
ϕ(s)ds

exists as an element in M. And the Poisson integral of ϕ

ϕ(x, y) =

∫

R

Py(x− s)ϕ(s)ds

also exists as an element in M. Set

‖ϕ‖BMOc
= sup

I⊂R

{∥∥∥∥∥

(
1

|I|

∫

I

|ϕ− ϕI |2dµ
) 1

2

∥∥∥∥∥
M

}
(2.15)

where again |ϕ− ϕI |2 = (ϕ− ϕI)
∗(ϕ− ϕI) and the supremum runs over all intervals

I ⊂ R.(see Let H be the Hilbert space on which M acts. Obviously, we have

‖ϕ‖BMOc
= sup

e∈H,‖e‖=1

‖ϕe‖BMO2(R,H) (2.16)

where BMO2(R, H) is the usual H-valued BMO space on R. Thus ‖·‖BMOc
is a

norm modulo constant functions. Set BMOc(R,M) to be the space of all ϕ ∈

L∞(M, L2
c(R,

dt
1+t2

)) such that ‖ϕ‖BMOc
<∞. BMOr(R,M) is defined as the space of

all ϕ’s such that ϕ∗ ∈ BMOc(R,M) with the norm ‖ϕ‖BMOr
= ‖ϕ∗‖BMOc

. We define

BMOcr(R,M) as the intersection of these two spaces

BMOcr(R,M) = BMOc(R,M) ∩ BMOr(R,M)



18

with the norm

‖ϕ‖BMOcr
= max{‖ϕ‖BMOc

, ‖ϕ‖BMOr
}.

As usual, the constant functions are considered as zero in these BMO spaces, and

then these spaces are normed spaces (modulo constants).

Given an interval I, we denote by 2kI the interval {t : |t− CI | < 2k−1|I|}. The

technique used in the proof of the following Proposition is classical (see [37]).

Proposition 2.3 Let ϕ ∈ BMOc(R,M).Then

‖ϕ‖L∞(M,L2
c(R, dt

1+t2
)) ≤ c(‖ϕ‖BMOc +

∥∥ϕI1

∥∥
M

)

where I1 = (−1, 1]. Moreover, BMOc(R,M),BMOr(R,M),BMOcr(R,M) are Ba-

nach spaces.

Proof. Let ϕ ∈ BMOc(R,M) and I be an interval. Using (2.12), (2.14) we have

|ϕ2nI − ϕI |2 ≤ n
n−1∑

k=0

|ϕ2kI − ϕ2k+1I |2

= n
n−1∑

k=0

∣∣∣∣
1

|2kI|

∫

2kI

(ϕ(s) − ϕ
2k+1I

)ds

∣∣∣∣
2

≤ n
n−1∑

k=0

2

|2k+1I|

∫

2k+1I

|ϕ(s) − ϕ
2k+1I

|2ds

≤ 2n ‖ϕ‖2
BMOc

. (2.17)

By (2.14), (2.17),

∥∥∥∥
∫

R

|ϕ(t)|2
1 + t2

dt

∥∥∥∥
M

=

∥∥∥∥∥

∫

I1

|ϕ(t)|2
1 + t2

dt+

∞∑

k=0

∫

2k+1I1/2kI1

|ϕ(t)|2
1 + t2

dt

∥∥∥∥∥
M

≤ 2

∥∥∥∥
∫

I1

(|ϕ(t) − ϕ
I1
|2 + |ϕI1|2)dt

∥∥∥∥
M



19

+4

∥∥∥∥∥
∞∑

k=0

∫

2k+1I1/2kI1

|ϕ(t) − ϕ
2k+1I1

|2 + |ϕ2k+1I1 − ϕI1|2 + |ϕI1|2

22k
dt

∥∥∥∥∥
M

≤ c(
∥∥|ϕI1|2

∥∥
M

+ ‖ϕ‖2
BMOc

) (2.18)

Thus

‖ϕ‖
L∞(M,L2

c(R, dt

1+t2
))

=

∥∥∥∥(
∫

R

|ϕ(t)|2
1 + t2

dt)
1
2

∥∥∥∥
M

≤ c(
∥∥ϕI1

∥∥
M

+ ‖ϕ‖BMOc
)

And then BMOc(R,M) is complete. Consequently, BMOc(R,M), BMOr(R,M),

BMOcr(R,M) are Banach spaces.

It is classical that BMO functions are related with Carleson measures(See [6],

[21]). The same relation still holds in the present non-commutative setting. We say

that an M-valued measure dλ on R2
+ is a Carleson measure if

N(λ) = supI





1

|I|

∥∥∥∥∥∥∥

∫∫

T (I)

dλ

∥∥∥∥∥∥∥
M

: I ∈ R interval




<∞,

where, as usual, T (I) = I × (0, |I|].

Lemma 2.4 Let ϕ ∈ BMOc(R,M). Then dλϕ = |∇ϕ|2ydxdy is an M-valued Car-

leson measure on R2
+ and N(λϕ) ≤ c ‖ϕ‖2

BMOc
.

Proof. The proof is very similar to the scalar situation (see [37], p.160). For any

interval I on R, write ϕ = ϕ1+ ϕ2 +ϕ3, where ϕ1 = (ϕ−ϕ2I)χ2I , ϕ2 = (ϕ−ϕ2I)χ(2I)c

and ϕ3 = ϕ2I . Set

dλϕ1
= |∇ϕ1|2ydxdy, dλϕ

2
= |∇ϕ2|2ydxdy.

Thus

N(λϕ) ≤ 2(N(λϕ1
) +N(λϕ2

)).

We treat N(λϕ1
) first. Notice that △|ϕ1|2 = 2|∇ϕ1|2 and ϕ1(x, y)(|x| + y) →
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0,∇ϕ1(x, y)(|x| + y)2 → 0 as |x| + y → 0. By Green’s theorem

1

|I|

∥∥∥∥∥∥∥

∫∫

T (I)

|∇ϕ1|2ydxdy

∥∥∥∥∥∥∥
M

≤ 1

|I|

∥∥∥∥∥∥∥

∫∫

R
+
2

|∇ϕ1|2ydxdy

∥∥∥∥∥∥∥
M

(2.19)

=
1

2|I|

∥∥∥∥
∫

R

|ϕ1|2ds
∥∥∥∥
M

=
1

2|I|

∥∥∥∥
∫

2I

|ϕ− ϕ2I |2ds
∥∥∥∥
M

≤ ‖ϕ‖2
BMOc

To estimate N(λϕ1
), we note

|∇Py(x− s)|2 ≤ 1

4(x− s)4
≤ 1

4|I|424k
, ∀s ∈ 2k+1I/2kI, (x, y) ∈ T (I),

by (2.14) and (2.17)

1

|I|

∥∥∥∥∥∥∥

∫∫

T (I)

|∇ϕ2|2ydxdy

∥∥∥∥∥∥∥
M

=
1

|I|

∥∥∥∥∥∥∥

∫∫

T (I)

|∇
∫ +∞

−∞

Py(x− s)ϕ2(s)ds|2ydxdy

∥∥∥∥∥∥∥
M

≤ 1

|I|

∫∫

T (I)

∞∑

k=1

∫

2k+1I/2kI

|∇Py(x− s)|222kds

∞∑

k=1

1

22k

∥∥∥∥∥∥

∫

2k+1I

|ϕ2|2ds

∥∥∥∥∥∥
M

ydxdy

≤ c

|I|

∫∫

T (I)

1

|I|2 ‖ϕ‖
2
BMOc

ydxdy ≤ c ‖ϕ‖2
BMOc

Therefore N(λϕi
) ≤ c ‖ϕ‖2

BMOc
, i = 1, 2, and then N(λϕ) ≤ c ‖ϕ‖2

BMOc
.

Remark. We will see later (Corollary 3.6) that the converse to lemma 2.4 is also

true.

We will need the following elementary fact to make our later applications of

Green’s theorem rigorous in Chapters III and V.

Lemma 2.5 Suppose ϕ ∈ BMOc(R,M) and suppose I is an interval such that ϕI =
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0. Let 3I be the interval concentric with I having length 3|I|. Then there is ψ ∈

BMOc(R,M) such that ψ = ϕ on I, ψ = 0 on R\3I and

‖ψ‖BMOc
≤ c ‖ϕ‖BMOc

.

Proof. This is well known for the classical BMO and a proof is outlined in [6], p.

269. One can check that the method to construct ψ mentioned there works as well

for BMOc(R,M).

Remark. We have seen that the non-commutative BMOc(R,M) are well adapted

to many generalizations of classical results, such as Proposition 2.3 and Lemma 2.4,

2.5. We will also prove an analogue of the classical Fefferman duality between H1 and

BMO in the next chapter. However, unlike the classical case, we could not replace the

power 2 by p in the definition of the non-commutative BMO norm ((2.15)). In fact,

supI⊂R

∥∥∥∥
(

1
|I|

∫
I
|ϕ− ϕI |pdµ

) 1
p

∥∥∥∥
M

may not be a norm for p 6= 2 in the non-commutative

case (Note we do not have |x1 + x2| ≤ |x1| + |x2| in general for x1, x2 ∈ M). See the

remark at the end of Chapter VIII for more information.
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CHAPTER III

THE DUALITY BETWEEN H1 AND BMO

The main result (Theorem 3.4) of this chapter is the analogue in our setting of the

famous Fefferman duality theorem between H1 and BMO.

3.1. The bounded map from L∞(L∞(R) ⊗M, L2
c) to BMOc(R,M)

As in the classical case, we will embed H1
c(R,M) into a larger space L1(L∞(R) ⊗

M, L2
c), which requires the following maps Φ,Ψ.

Definition 3.1 We define a map Φ from Hp
c(R,M) (1 ≤ p < ∞) to Lp(L∞(R) ⊗

M, L2
c(Γ̃)) by

Φ(f)(x, y, t) = ∇f(x+ t, y)χΓ(x, y)

and a map Ψ for a sufficiently nice h ∈ Lp(L∞(R) ⊗M, L2
c(Γ̃)) (1 ≤ p ≤ ∞) by

Ψ(h)(s) =

∫

R

∫∫

Γ

h(x, y, t)Qy(x+ t− s)dydxdt; ∀s ∈ R (3.1)

where, Qy(x) is defined as a function on R×Γ̃ by

Qy(x)(1) =
∂Py(x)

∂x
, Qy(x)(2) =

∂Py(x)

∂y
; ∀(x, y) ∈ Γ. (3.2)

Note that Φ is simply the natural embedding of Hp
c(R,M) into Lp(L∞(R) ⊗

M, L2
c(Γ̃)). On the other hand, Ψ is well defined for sufficiently nice h, more precisely

“nice” will mean that h(x, y, t) =
∑n

i=1mifi(t)χAi
with mi ∈ SM, Ai ∈ Γ̃, |Ai| < ∞

and with scalar valued simple functions fi. In this case, it is easy to check that

Ψ(h) ∈ Lp(M, L2
c(R,

dt
1+t2

)).

We will prove that Ψ extends to a bounded map from L∞(L∞(R) ⊗M, L2
c(Γ̃))

to BMOc(R,M) (see Lemma 3.2) and also from Lp(L∞(R)⊗M, L2
c(Γ̃)) to Hp

c(R,M)
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for all 1 < p < ∞ (see Theorem 5.8). The following proposition, combined with

Theorem 5.8 in Chapter V, implies that Ψ is a projection of Lp(L∞(R) ⊗M, L2
c(Γ̃))

onto Hp
c(R,M) if we identify Hp

c(R,M) with a subspace of Lp(L∞(R) ⊗M, L2
c(Γ̃))

via Φ.

Proposition 3.1 For any f ∈ Hp
c(R,M) (1 ≤ p <∞),

ΨΦ(f) = f

Proof. We have

∫ +∞

−∞

∫∫

Γ

Φ(f)∇g(t+ x, y)dydxdt

=

∫ +∞

−∞

∫ +∞

−∞

∫∫

Γ

Φ(f)Qy(x+ t− s)dydxdtg(s)ds.

On the other hand, by (2.11) we have

∫ +∞

−∞

∫∫

Γ

Φ(f)∇g(t+ x, y)dydxdt =

∫ +∞

−∞

f(s)g(s)ds

for every g good enough. Therefore

∫ +∞

−∞

∫∫

Γ

Φ(f)Qy(x+ t− s)dydxdt = f(s)

almost everywhere. This is ΨΦ(f) = f.

We can also prove ΨΦ(ϕ) = ϕ by showing directly the Poisson integral of ΨΦ(ϕ)

coincides with that of ϕ, namely

∫

R

ΨΦ(ϕ)(w)Pv(u− w)dw =

∫

R

ϕ(w)Pv(u− w)dw, ∀(u, v) ∈ R
2
+. (3.3)

Indeed, using elementary properties of the Poisson kernel, we have

∫

R

ΨΦ(ϕ)(h)Pv(u− h)dh
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=

∫

R

∫

R

∫∫

Γ

∫

R

ϕ(s)∇Py(x+ t− s)ds∇Py(x+ t− h)dydxdtPv(u− h)dh

=

∫

R

ϕ(s)

∫∫

Γ

∫

R

∫

R

∂

∂y
Py(x+ t− s)

∂

∂y
Py(x+ t− h)Pv(u− h)dtdhdxdyds

+

∫

R

ϕ(s)

∫∫

Γ

∫

R

∫

R

∂

∂x
Py(x+ t− s)

∂

∂x
Py(x+ t− h)Pv(u− h)dtdhdxdyds

=

∫

R

ϕ(s)

∫

R

∫∫

R2
+

∂

∂y
Py(x− s)

∂

∂y
Py(x− h)2ydydxPv(u− h)dhds

+

∫

R

ϕ(s)

∫

R

∫

R

∂

∂s
Py(x− s)

∂

∂u
Py+v(x− u)2ydxdyds

=

∫

R

ϕ(s)

∫ ∞

0

2y
∂2

∂v2
Pv+2y(u− s)dyds−

∫

R

ϕ(s)

∫ ∞

0

2y
∂2

∂u2
Pv+2y(u− s)dyds

=

∫

R

ϕ(s)

∫ ∞

0

y
∂2

∂y2
Pv+2y(u− s)dyds

=

∫

R

ϕ(s)(0 −
∫ ∞

0

∂

∂y
Pv+2y(u− s)dy)ds

=

∫

R

ϕ(s)Pv(u− s)ds.

Lemma 3.2 Ψ extends to a bounded map from L∞(L∞(R)⊗M, L2
c(Γ̃)) to BMOc(R,M)

of norm controlled by a universal constant.

Proof. Let S be the family of all L∞(R) ⊗M-valued simple functions h which can

written as h(x, y, t) =
∑n

i=1mifi(t)χAi
(x, y) with mi ∈ SM, fi ∈ L∞(R) ∩ L1(R)

and compact Ai ⊂ Γ̃. (By compact Ai we mean that the two components of Ai are

compact subsets in Γ.) Note that S is w*-dense in L∞(L∞(R) ⊗M, L2
c(Γ̃)) (in fact,

the unit ball of S is w*-dense in the unit ball of L∞(L∞(R) ⊗M, L2
c(Γ̃))). We will

first show that

||Ψ(h)||BMOc
≤ c ‖h‖L∞(L∞(R)⊗M,L2

c) , ∀ h ∈ S. (3.4)
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Fix h ∈ S and let ϕ = Ψ(h). Then ϕ ∈ L∞(M, L2
c(R,

dt
1+t2

)) by Proposition 2.3. To

estimate the BMOc-norm of ϕ, we fix an interval I and set h = h1 + h2 with

h1(x, y, t) = h(x, y, t)χ
2I

(t)

h2(x, y, t) = h(x, y, t)χ
(2I)c

(t).

Let

BI =

∫ +∞

−∞

∫∫

Γ

QIh2dydxdt

with the notation QI(x, t) = 1
|I|

∫
I
Qy(x+ t− s)ds. Now

1

|I|

∫

I

|ϕ(s) −BI |2ds

≤ 2

|I|

∫

I

|
∫

(2I)c

∫∫

Γ

(Qy(x+ t− s) −QI)hdxdydt|2ds

+
2

|I|

∫

I

|
∫ +∞

−∞

∫∫

Γ

Qy(x+ t− s)h1dxdydt|2ds

= A +B

Notice that

∫∫

Γ

|Qy(x+ t− s) −QI |2dxdy ≤ c

∫∫

Γ

(
|I|

(|x+ t− s| + y)3
)2dxdy

≤ c|I|2(t− CI)
−4 (3.5)

for every t ∈ (2I)c and s ∈ I. By (2.14)

∣∣∣∣∣∣

∫∫

Γ

(Qy(x+ t− s) −QI)hdxdy

∣∣∣∣∣∣

2

≤ c|I|2(t− CI)
−4

∫∫

Γ

h∗hdxdy

and by (2.14) again,

‖A‖M
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≤ c||
∫

(2I)c

(t− CI)
−2dt

∫

(2I)c

(t− CI)
2

∫∫

Γ

h∗hdxdy|I|2(t− CI)
−4dt||M

≤ || c|I|

∫

(2I)c

|I|2(t− CI)
−2

∫∫

Γ

h∗hdxdydt||M

≤ c ‖h‖2
L∞(L∞(R)⊗M,L2

c)

For the second term B, we have

‖B‖M

≤ 2

|I| ||
∫

R

|
∫

R

∫∫

Γ

Qy(x+ t− s)h1dxdydt|2ds||M

=
2

|I| sup
τ |a|=1

τ(|a|
∫

R

|
∫

R

∫∫

Γ

Qy(x+ t− s)h1dxdydt|2ds)

=
2

|I| sup
τ |a|=1

τ

∫

R

|
∫

R

∫∫

Γ

Qy(x+ t− s)h1|a|
1
2dxdydt|2ds

=
2

|I| sup
τ |a|=1

sup
||f ||

L2(L∞(R)⊗M)
=1

(τ

∫

R

f(s)

∫

R

∫∫

Γ

Qy(x+ t− s)h1|a|
1
2dxdydtds)2

=
2

|I| sup
τ |a|=1

sup
||f ||

L2(L∞(R)⊗M)=1

(τ

∫

R

∫∫

Γ

∇f(t+ x, y)h1|a|
1
2dxdydt)2

Hence by Cauchy-Schwartz inequality and (2.10)

‖B‖M ≤ 2

|I| sup
τ |a|=1

τ

∫

R

∫∫

Γ

h∗1h1|a|dxdydt

≤ 2

|I| ||
∫

R

∫∫

Γ

h∗1h1dxdydt||M

=
2

|I| ||
∫

2I

∫∫

Γ

h∗hdxdydt||M

≤ 4 ‖h‖2
L∞(L∞(R)⊗M,L2

c)

Thus

||ϕ||BMOc
≤ c ‖h‖L∞(L∞(R)⊗M,L2

c) .
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In particular, by Proposition 2.3,

‖ϕ‖L∞(M,L2
c(R, dt

1+t2
)) ≤ c‖h‖L∞(L∞(R)⊗M,L2

c).

Thus we have proved the boundedness of Ψ from the w*-dense vector subspace

S of L∞(L∞(R) ⊗ M, L2
c(Γ̃)) to BMOc(R,M). Now we extend Ψ to the whole

L∞(L∞(R) ⊗ M, L2
c(Γ̃)). To this end we first extend Ψ to a bounded map from

L∞(L∞(R)⊗M, L2
c(Γ̃)) into L∞(M, L2

c(R,
dt

1+t2
)). By the discussion above, Ψ is also

bounded from S to L∞(M, L2
c(R,

dt
1+t2

)). Let H1
0 be the subspace of all f ∈ H1(R)

such that (1 + t2)f(t) ∈ L2(R). Let L1(M)⊗H1
0 denote the algebraic tensor product

of L1(M) and H1
0 . Note that

L1(M) ⊗H1
0 ⊂ H1

c(R, M), L1(M) ⊗H1
0 ⊂ L1(M, L2

c(R,
dt

1 + t2
))

and L1(M)⊗H1
0 is dense in both of the latter spaces. Moreover, it is easy to see that

for any h ∈ S and f ∈ L1(M) ⊗H1
0

τ

∫ +∞

−∞

∫∫

Γ

h∗(x, y, t)∇f(t+ x, y)dydxdt = τ

∫ +∞

−∞

Ψ(h)∗(s)f(s)ds.

Then it follows that Ψ is continuous from (S, σ(S, L1(L∞(R) ⊗ M, L2
c(Γ̃)))) to

(L∞(M, L2
c(R,

dt
1+t2

)), σ(L∞(M, L2
c(R,

dt
1+t2

)), L1(M) ⊗H1
0)).

Now given f ∈ L1(M) ⊗H1
0 we define Ψ∗(f) : S → C by

Ψ∗(f)(h) = τ

∫ +∞

−∞

Ψ(h)∗(s)f(s)ds.

Then Ψ∗(f) is an anti-linear functional on S continuous with respect to the w*-

topology; hence Ψ∗(f) extends to a w*-continuous anti-linear functional on L∞(L∞(R)⊗

M, L2
c(Γ̃))), i.e. an element in L1(L∞(R) ⊗M, L2

c(Γ̃))), still denoted by Ψ∗(f). By

the w*-density of S in L∞(L∞(R)⊗M, L2
c(Γ̃))), this extension is unique. Therefore,
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we have defined a map

Ψ∗ : L1(M) ⊗H1
0 → L1(L∞(R) ⊗M, L2

c(Γ̃)).

The above uniqueness of the extension Ψ∗(f) for any given f implies that Ψ∗ is linear.

On the other hand, by what we already proved in the previous part, we have

|Ψ∗(f)(h)| ≤ ‖f‖L1(M,L2
c(R, dt

1+t2
))‖Ψ(h)‖L∞(M,L2

c(R, dt

1+t2
))

≤ c ‖f‖L1(M,L2
c(R, dt

1+t2
))‖h‖L∞(L∞(R)⊗M,L2

c) .

Since the unit ball of S is w*-dense in the unit ball of L∞(L∞(R) ⊗ M, L2
c(Γ̃))), it

follows that

Ψ∗ : (L1(M) ⊗H1
0 , ‖·‖L1(M,L2

c(R, dt

1+t2
))) → L1(L∞(R) ⊗M, L2

c(Γ̃))

is bounded and its norm is majorized by c. This, together with the density of

L1(M) ⊗ H1
0 in L1(M, L2

c(R,
dt

1+t2
)) implies that Ψ∗ extends to a unique bounded

map from L1(M, L2
c(R,

dt
1+t2

)) into L1(L∞(R) ⊗ M, L2
c(Γ̃))), still denoted by Ψ∗.

Consequently, the adjoint (Ψ∗)
∗ of Ψ∗ is bounded from L∞(L∞(R) ⊗ M, L2

c(Γ̃)))

to L∞(M, L2
c(R,

dt
1+t2

)) (noting that this adjoint is taken with respect to the anti-

dualities). By the very definition of Ψ∗, we have

(Ψ∗)
∗|S = Ψ.

This shows that (Ψ∗)
∗ is an extension of Ψ from L∞(L∞(R)⊗M, L2

c(Γ̃)) to L∞(M, L2
c(R,

dt
1+t2

)),

which we denote by Ψ again. Being an adjoint, Ψ is w*-continuous.

It remains to show that the so extended map Ψ really takes values in BMOc(R,M).

Given a bounded interval I ⊂ R, the w*-topology of L∞(M, L2
c(R,

dt
1+t2

)) induces a

topology in L∞(M, L2
c(I)) equivalent to the w*-topology in L∞(M, L2

c(I)). Then by
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the w*-continuity of Ψ, we deduce that, for every ε > 0, I ⊂ R, f ∈ L1(M, L2
c(I)),

there exists a h ∈ S such that

τ

∫

I

f ∗(Ψ(g)(t) − Ψ(g)I)dt

≤ τ

∫

I

f ∗(Ψ(h)(t) − Ψ(h)I)dt+ ε

≤ ‖Ψ(h)(t) − Ψ(h)I‖L∞(M,L2
c(I)) ‖f‖L1(M,L2

c(I)) + ε (3.6)

and

‖h‖L∞(L∞(R)⊗M,L2
c(eΓ)) ≤ ‖g‖L∞(L∞(R)⊗M,L2

c(eΓ)) + ε (3.7)

Combining (3.6), (3.7) and (3.4) we get

∫

I

f ∗(Ψ(g)(t) − Ψ(g)I)dt

≤ c|I| ‖h‖L∞(L∞(R)⊗M,L2
c(eΓ)) ‖f‖L1(M,L2

c(I)) + ε

≤ c|I|(‖g‖L∞(L∞(R)⊗M,L2
c(eΓ)) + ε) ‖f‖L1(M,L2

c(I)) + ε

By letting ε → 0 and taking supremum over all ‖f‖L1(L∞(R)⊗M,L2
c(eΓ)) ≤ 1 and I ⊂ R,

we get Ψ(g) ∈ BMOc(R,M) and

||Ψ(g)||BMOc
≤ c ‖g‖L∞(L∞(R)⊗M,L2

c) .

Therefore, we have extended Ψ to a bounded map from L∞(L∞(R) ⊗M, L2
c(Γ̃)) to

BMOc(R,M), thus completing the proof of the lemma.

Remark. We sketch an alternate proof of the fact that ϕ = Ψ(h) is in BMOc(R,M)

for h ∈ S. Let H be the Hilbert space on which M acts. Recall that M∗ is a quotient

space of B(H)∗ by the preannihilator of M. Denote the quotient map by q. For every

a, b ∈ H, denote [a ⊗ b] = q(a ⊗ b). Note that τ(m∗[a ⊗ b]) = τ([m∗(a ⊗ b)]) =

〈m(b), a〉 , ∀m ∈ M. From (2.16) and the classical duality between BMO(R, H) and
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H1(R, H),

||ϕ||BMOc(R,M) = sup
e∈H,‖e‖H=1

||ϕe||BMO(R,H).

≤ c sup
e∈H,‖e‖H=1

sup
‖g‖

H1(R,H)=1

∣∣∣∣
∫ +∞

−∞

〈ϕ(e), g〉 dt
∣∣∣∣

= c sup
e∈H,‖e‖H=1

sup
‖g‖

H1(R,H)=1

∣∣∣∣τ
∫ +∞

−∞

ϕ∗[g ⊗ e]dt

∣∣∣∣ (3.8)

Let f = [g ⊗ e]. Noting that

|∇f |2 = 〈∇g,∇g〉 [e⊗ e] = |∇g|2[e⊗ e],

we get

τ (Sc(f)(t)) = (

∫∫

Γ

|∇g(t+ x, y)|2 dxdy) 1
2 . (3.9)

Thus ‖f‖H1
c(R,M) = 1 if ‖g‖H1(R,H) = 1 and ‖e‖H = 1. Therefore

||ϕ||BMOc(R,M) ≤ c sup
‖f‖

H1
c(R,M)

=1

∣∣∣∣τ
∫ +∞

−∞

ϕ∗fdt

∣∣∣∣

= c sup
‖f‖

H1
c(R,M)

=1

∣∣∣∣∣∣
τ

∫ +∞

−∞

∫∫

Γ

h∗(x, y, t)∇f(t+ x, y)dydxdt

∣∣∣∣∣∣
≤ c ‖h‖L∞(L∞(R)⊗M,L2

c) .

Corollary 3.3 Let f ∈ L1(M, L2
c(R, (1+s2)ds)) with

∫
fds = 0. Then f ∈ H1

c(R,M)

and

‖f‖H1
c
≤ c ‖f‖L1(M,L2

c(R,(1+s2)ds))

Proof. By Lemma 3.2, the assumption that
∫
fds = 0 and Proposition 2.3, we have

‖f‖H1
c

= ||∇f(t+ x, y)χΓ||L1(L∞(R)⊗M,L2
c)

= sup
‖h‖

L∞(L∞(R)⊗M,L2
c)
≤1

∣∣∣∣∣∣
τ

∫ ∫∫

Γ

h∗∇f(t+ x, y)dxdydt

∣∣∣∣∣∣
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= sup
‖h‖

L∞(L∞(R)⊗M,L2
c)
≤1

∣∣∣∣τ
∫

R

(Ψ(h))∗(s)f(s)ds

∣∣∣∣

≤ c sup
‖ϕ‖BMOc(R,M)≤1

∣∣∣∣τ
∫

R

ϕ∗(s)f(s)ds

∣∣∣∣

≤ c sup
‖ϕ‖

L∞(M,L2
c(R, ds

1+s2
))
≤1

∣∣∣∣τ
∫

R

ϕ∗(s)(1 + s2)f(s)
ds

1 + s2

∣∣∣∣

≤ c
∥∥(1 + s2)f(s)

∥∥
L1(M,L2

c(R, ds

1+s2
))

= c ‖f‖L1(M,L2
c(R,(1+s2)ds)) .

Remark. In particular, every SM-valued simple function f with
∫
fds = 0 is

in H1
c(R,M). Consequently, by the remark before Proposition 2.3, H1

c(R,M) ∩

Hp
c(R,M) is dense in Hp

c(R,M) (p > 1).

3.2. The duality theorem of operator valued H1 and BMO

Denote by H1
c0(R,M) (resp. H1

r0(R,M)) the family of functions f in H1
c(R,M)

(resp. H1
r(R,M),H1

cr(R,M)) such that f ∈ L1(M, L2
c(R, (1 + t2)dt)) (resp. L1(M,

L2
r(R, (1 + t2)dt)) . It is easy to see that H1

c0(R,M) (resp. H1
r0(R,M)) is a dense

subspace of H1
c(R,M) (resp. H1

r(R,M))). Let

H1
cr0(R,M) = H1

c0(R,M) + H1
r0(R, M).

Then H1
cr0(R,M) is a dense subspace of H1

cr(R,M). Recall that we have proved

in Chapter II that BMOc(R,M) ⊆ L∞(M, L2
c(R,

dt
1+t2

)). Thus by Proposition 1.1

〈ϕ, f〉 =
∫ +∞

−∞
ϕ∗fdt exists in L1(M) for all ϕ ∈ BMOc(R,M) and f ∈ H1

c0(R,M)

(see our convention after Proposition 2.1).

Theorem 3.4 (a) We have (H1
c(R,M))∗ = BMOc(R,M) with equivalent norms.
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More precisely, every ϕ ∈ BMOc(M) defines a continuous linear functional on H1
c(R,M) by

lϕ(f) = τ

∫ +∞

−∞

ϕ∗fdt; ∀f ∈ H1
c0(R,M). (3.10)

Conversely, every l ∈ (H1
c(R,M))∗ can be given as above by some ϕ ∈ BMOc(R,M).

Moreover, there exists a universal constant c > 0 such that

c−1 ‖ϕ‖BMOc
≤ ‖lϕ‖(H1

c)∗ ≤ c ‖ϕ‖BMOc
.

Thus (H1
c(R,M))∗ = BMOc(R,M) with equivalent norms.

(b) Similarly, (H1
r(R,M))∗ = BMOr(R,M) with equivalent norms.

(c) (H1
cr(R,M))∗ = BMOcr(R,M) with equivalent norms.

Our proof of Theorem 3.4 requires two technical variants of the square functions

Gc(f) and Sc(f). These are operator valued functions defined as follows:

Gc(f)(x, y) = (

∫ ∞

y

|∇f(x, s)|2sds) 1
2 , (3.11)

Sc(f)(x, y) = (

∫∫

Γ(0,y)

|∇f(t+ x, s)|2dtds) 1
2 (3.12)

where y ≥ 0,Γ(0, y) = {(t, s) : |t| < s−y, s ≥ y} and f is SM-valued simple function.

Note that Gc(f)(x, 0) and Sc(f)(x, 0) are just Gc(f) and Sc(f) defined in Chapter II.

Lemma 3.5

Gc(f)(x, y) ≤ 2
√

2Sc(f)(x,
y

2
) .

Proof. It suffices to prove this inequality for x = 0.Let us denote by Bs the ball

centered at (0, s) and tangent to the boundary of Γ(0, y
2
), ∀s > y. By the harmonicity

of ∇f, we get

∇f(0, s) =
2

π(s− y
2
)2

∫

Bs

∇f(x, u)dxdu
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By (2.12),

|∇f(0, s)|2 ≤ 8

πs2

∫

Bs

|∇f(x, u)|2dxdu

Integrating this inequality, we obtain

∫ ∞

y

s|∇f(0, s)|2ds ≤
∫ ∞

y

8

πs

∫

Bs

|∇f(x, u)|2dxduds (3.13)

However (x, u) ∈ Bs clearly implies that u
2
≤ s ≤ 4u. Thus, the right hand side of

(3.13) is majorized by

∫

Γ(0, y

2
)

|∇f(x, u)|2
∫ 4u

u
2

8

πs
dsdxdu ≤ 8S2

c (f)(0,
y

2
)

Therefore Gc(f)(0, y) ≤ 2
√

2Sc(f)(0, y
2
).

Proof of Theorem 3.4. (i) We will first prove

|lϕ(f)| ≤ c ‖ϕ‖BMOc
‖f‖H1

c
(3.14)

when both f and ϕ have compact support. Once this is done, by Lemma 2.5, we

can see (3.14) holds for any ϕ ∈ BMOc(R,M) and any compactly supported f ∈

H1
c0(R,M). Then recall that by Proposition 2.3

BMOc(R,M) ⊂ L∞(M, L2
c(R,

dt

1 + t2
))

and by Corollary 3.3

‖f‖H1
c
≤ c ‖f‖L1(M,L2

c(R,(1+t2)dt)) , ∀f ∈ H1
c0(R,M),

we deduce (3.14) for all ϕ ∈ BMOc(R,M), f ∈ H1
c0(R,M) by choosing compactly

supported fn ∈ H1
c0(R,M) → f in L1(M, L2

c(R, (1+ t2)dt)). Finally, from the density

of H1
c0(R,M) in H1

c(R,M), lϕ defined in (3.10) extends to a continuous functional

on H1
c(R,M).
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Let us now prove (3.14) for compactly supported f ∈ H1
c0(R,M) and compactly

supported ϕ ∈ BMOc(R,M). By approximation we may assume that τ is finite and

Gc(f)(x, y) is invertible in M for every (x, y) ∈ R2
+. Recall that △(ϕ∗f) = 2∇ϕ∗∇f.

By Green’s theorem and the Cauchy-Schwarz inequality

|lϕ(f)|

= 2|τ
∫∫

R2
+

∇ϕ∗∇fydydx|

≤ 2(τ

∫∫

R2
+

G
− 1

2
c (f)|∇f |2G− 1

2
c (f)ydydx)

1
2 (τ

∫∫

R2
+

G
1
2
c (f)|∇ϕ|2G

1
2
c (f)ydydx)

1
2

= 2(τ

∫∫

R2
+

G−1
c (f)|∇f |2ydydx) 1

2 (τ

∫∫

R2
+

Gc(f)|∇ϕ|2ydydx) 1
2

= 2I • II,

Note here Gc(f) is the function of two variables defined by (3.11), which is differen-

tiable in the weak-* sense. For I we have

I2 = τ

∫ +∞

−∞

∫ ∞

0

−G−1
c (f)

∂G2
c(f)

∂y
dydx

= τ

∫ +∞

−∞

∫ ∞

0

(−G−1
c (f)

∂Gc(f)

∂y
Gc(f) − ∂Gc(f)

∂y
)dydx

= 2τ

∫ +∞

−∞

∫ ∞

0

−∂Gc(f)

∂y
dydx

= 2τ

∫ +∞

−∞

Gc(f)(x, 0)dx

≤ 4
√

2τ

∫ +∞

−∞

Sc(f)(x, 0)dx

= 4
√

2 ‖f‖H1
c
.

To estimate II, we create a square net partition in R2
+ as follows:

σ(i, j) = {(x, y) : (i− 1)2j < x ≤ i2j, 2j ≤ y < 2j+1}, ∀i, j ∈ Z.
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Let Ci,j denote the center of σ(i, j). Define

S̃c(f)(x, y) = Sc(f)(Ci,j), ∀(x, y) ∈ σ(i, j),

dk(x) = S̃c(f)(x, 2k) − S̃c(f)(x, 2k+1), ∀x ∈ R.

It is easy to check that

Sc(f)(x, 2y) ≤ S̃c(f)(x, y) ≤ Sc(f)(x,
y

2
),

dk(x) ≥ 0, ∀x ∈ R,

S̃c(f)(x, y) =

∞∑

k=j

dk(x), ∀2j ≤ y < 2j+1,

Sc(f)(x, 0) =

∞∑

k=−∞

dk(x). (3.15)

Now by Lemma 3.5 and (3.15)

II2 = τ

∫ +∞

−∞

∫ ∞

0

Gc(f)(x, y)|∇ϕ|2ydydx

≤ 2
√

2τ

∫ +∞

−∞

∫ ∞

0

S̃c(f)(x,
y

4
)|∇ϕ|2ydydx

= 2
√

2τ

∫ +∞

−∞

∞∑

k=−∞

S̃c(f)(x, 2k)

∫ 2k+3

2k+2

|∇ϕ|2ydydx

= 2
√

2τ

∫ +∞

−∞

∞∑

k=−∞

(

∞∑

j=k

dj(x))

∫ 2k+3

2k+2

|∇ϕ|2ydydx

= 2
√

2τ

∫ +∞

−∞

∞∑

j=−∞

dj(x)

∫ 2j+3

0

|∇ϕ|2ydydx

= 2
√

2τ

∞∑

i=−∞

∞∑

j=−∞

dj(i2
j)

∫ i2j

(i−1)2j

∫ 2j+3

0

|∇ϕ|2ydydx

Hence by Lemma 2.4

II2 ≤ cτ
∞∑

i=−∞

∞∑

j=−∞

dj(i2
j)2j ‖ϕ‖2

BMOc
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= c ‖ϕ‖2
BMOc

τ
∞∑

j=−∞

∫ +∞

−∞

dj(x)dx

= c ‖ϕ‖2
BMOc

τ

∫ +∞

−∞

Sc(f)(x, 0)dx

= c ‖ϕ‖2
BMOc

‖f‖H1
c
.

Combining the preceding estimates on I and II, we get

|lϕ(f)| ≤ c ‖ϕ‖BMOc
‖f‖H1

c
.

Therefore, lϕ defines a continuous functional on H1
c of norm smaller than c ‖ϕ‖BMOc

.

(ii) Now suppose l ∈ (H1
c(R,M))∗. Then by the Hahn-Banach theorem l extends

to a continuous functional on L1(L∞(R) ⊗M, L2
c(Γ̃)) of the same norm. Thus by

(L1(L∞(R) ⊗M, L2
c(Γ̃)))∗ = L∞(L∞(R) ⊗M, L2

c(Γ̃))

there exists g ∈ L∞(L∞(R) ⊗M, L2
c(Γ̃)) such that

||g||2
L∞(L∞(R)⊗M,L2

c(eΓ))
= sup

t∈R

||
∫∫

Γ

g∗(x, y, t)g(x, y, t)dydx||L∞(R)⊗M = ||l||2

and

l(f) = τ

∫ +∞

−∞

∫∫

Γ

g∗(x, y, t)∇f(t+ x, y)dydxdt, ∀ f ∈ H1
c0(R,M).

Let ϕ = Ψ(g), where Ψ is the extension given by Lemma 2.2. By that lemma

ϕ ∈ BMOc(R,M) and

||ϕ||BMOc
≤ c||g||L∞(L∞(R)⊗M,L2

c(eΓ)) = c‖l‖.

Then we must show that

l(f) = τ

∫ +∞

−∞

ϕ∗(s)f(s)ds, ∀ f ∈ H1
c0(R,M).
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But this follows from the second part of the proof of Lemma 3.2 in virtue of the w*-

continuity of Ψ. Therefore, we have accomplished the proof of the theorem concerning

H1
c(R,M) and BMOc(R,M). Passing to adjoints yields the part on H1

r(R,M) and

BMOr.Finally, the duality between H1
cr(R,M) and BMOcr(R,M) is obtained by the

classical fact that the dual of a sum is the intersection of the duals.

Corollary 3.6 ϕ ∈ BMOc(R,M) if and only if dλϕ = |∇ϕ|2ydxdy is an M-valued

Carleson measure on R2
+, and c−1N(λϕ) ≤ ‖ϕ‖2

BMOc
≤ cN(λϕ).

Proof. From the first part of the proof of Theorem 3.4, if ϕ is such that dλϕ =

|∇ϕ|2ydxdy is an M-valued Carleson measure, then ϕ defines a continuous linear

functional lϕ = τ
∫ +∞

−∞
ϕ∗fdt on H1

c0(R,M) and

‖lϕ‖(H1
c)∗ ≤ cN

1
2 (λϕ)

Therefore by Theorem 3.4 again there exists a function ϕ′ ∈BMOc(R,M) with

‖ϕ′‖2
BMOc

≤ ‖lϕ‖2
(H1

c)∗ ≤ cN(λϕ) such that

τ

∫ +∞

−∞

ϕ∗fdt = τ

∫ +∞

−∞

ϕ′∗fdt.

Thus ϕ = ϕ′ and ϕ ∈BMOc(R,M) with ‖ϕ‖2
BMOc

≤ cN(λϕ). The converse had been

already proved in Lemma 2.4.

Corollary 3.7 For f ∈ H1
c(R,M), we have

c−1 ‖Gc(f)‖1 ≤ ‖Sc(f)‖1 ≤ c ‖Gc(f)‖1

Proof. By Theorem 3.4 and the first part of its proof, we have

‖Sc(f)‖1 = ‖f‖H1
c
≤ c sup

‖ϕ‖BMOc
=1

∣∣∣∣τ
∫
fϕ∗dt

∣∣∣∣ ≤ c ‖Gc(f)‖
1
2
1 ‖Sc(f)‖

1
2
1
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Therefore

‖Sc(f)‖1 ≤ c ‖Gc(f)‖1

The converse is an immediate consequence of Lemma 3.5.

Remark. The technique used in the proof of Lemma 3.5 is classical (see [38]). The

method to prove Theorem 3.4 is inspired by the analogous one for martingales (see

[7], [10], [33]).

3.3. The atomic decomposition of operator valued H1

As in the classical case, the duality between H1
c(R,M) and BMOc(R,M) implies an

atomic decomposition of H1
c(R,M). The rest of this chapter is devoted to this atomic

decomposition. We say that a function a ∈ L1(M, L2
c(R)) is an Mc-atom if

(i) a is supported in a bounded interval I;

(ii)
∫

I
adt = 0;

(iii) τ(
∫

I
|a|2dt) 1

2 ≤ |I|− 1
2 .

Let H1,at
c (R,M) be the space of all f which admit a representation of the form

f =
∑

i∈N

λiai,

where the ai’s are Mc-atoms and λi ∈ C are such that
∑

i∈N
|λi| < ∞. We equip

H1,at
c (R,M) with the following norm

‖f‖H1,at
c

= inf{
∑

i∈N

|λi|; f =
∑

i∈N

λiai; ai are Mc-atoms, λi ∈ C}

Similarly, we define H1,at
r (R,M). Then we set

H1,at
cr (R,M) = H1,at

c (R,M) + H1,at
r (R,M).

Theorem 3.8 H1,at
c (R,M) = H1

c(R,M) with equivalent norms.
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Proof. It is enough to prove (H1,at
c (R,M))∗ = BMOc(R,M). Now, for any ϕ ∈

BMOc(R,M) and f ∈ H1,at
c (R,M) with f =

∑
i∈N

λiai as above, by the Cauchy-

Schwartz inequality we have

|τ
∫
ϕ∗fdt| ≤

∑

i∈N

|λiτ

∫

Ii

(ϕ− ϕIi
)∗aidt|

≤
∑

i∈N

|λi|τ(
∫

Ii

|ai|2dt)
1
2

∥∥∥∥(
∫

Ii

|ϕ− ϕIi
|2dt) 1

2

∥∥∥∥
M

≤ ‖ϕ‖BMOc

∑

i∈N

|λi|.

Thus BMOc(R,M) ⊂ (H1,at
c (R,M))∗ (a contractive inclusion). To prove the converse

inclusion, we denote by L1
0(M, L2

c(I)) the space of functions f ∈ L1(M, L2
c(I)) with

∫
fdt = 0. Notice that L1

0(M, L2
c(I)) ∈ H1,at

c (R,M) for every bounded I. Thus,

every continuous functional l on H1,at
c (R,M) induces a continuous functional on

L1
0(M, L2

c(I)) with norm smaller than |I| 12 ‖l‖(H1,at
c )∗ . Consequently, we can choose a

sequence (ϕn)n≥1 satisfying the following conditions:

l(a) = τ
∫
ϕ∗

nadt, ∀Mc- atom a with supp a ⊂ (−n, n],

‖ϕn‖L
∞

(M,L2
c((−n,n])) ≤ c

√
n ‖l‖(H1,at

c )∗ ;

ϕn|(−m,m] = ϕm, ∀n > m.

Let ϕ(t) = ϕn(t), ∀t ∈ (−n,−n+1]∪(n−1, n], n > 0.We then have ϕ ∈ L∞(M, L2
c(R,

dt
1+t2

))

and

l(a) = τ

∫
ϕ∗adt, ∀Mc- atom a.

Considering [g ⊗ e] as defined in the remark after Lemma 2.2, by (3.8) and (3.9) we

have

‖ϕ‖BMOc
≤ c sup

e∈H,‖e‖H=1

sup
‖g‖

H1(R,H)=1

∣∣∣∣τ
∫ +∞

−∞

ϕ∗[g ⊗ e]dt

∣∣∣∣
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≤ sup
‖f‖

H
1,at
c

=1

∣∣∣∣τ
∫ +∞

−∞

ϕ∗fdt

∣∣∣∣

= ‖l‖(H1,at
c )∗ .

Corollary 3.9 H1,at
r (R,M) = H1

r(R,M) and H1,at
cr (R,M) = H1

cr(R,M) with equiv-

alent norms.

Remark. The M-atom considered in this section is a non-commutative analogue of

the classical 2-atom for H1 space. It seems difficult to consider the non-commutative

analogues of the classical p−atom for p 6= 2.

Remark. We only considered the functions defined on R in this chapter. However,

one can check that all the proofs work well for the functions defined on Rn. And the

analogous results can be proved similarly for the functions defined on Tn, where T is

the unit circle. Moreover, the relevant constants are independent of n.
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CHAPTER IV

THE MAXIMAL INEQUALITY

4.1. The non-commutative Hardy-Littlewood maximal inequality

We recall the definition of the noncommutative maximal norm introduced by Pisier

(see [32]) and Junge (see [14]). Let 0 < p ≤ ∞, and let (an)n∈Z be a sequence of

elements in Lp(M). Set

∥∥∥∥sup
n∈Z

|an|
∥∥∥∥

Lp(M)

= inf
an=aynb

‖a‖L2p(M) ‖b‖L2p(M) sup
n

‖yn‖M (4.1)

where the infimum is taken over all a, b ∈ L2p(M) and all bounded sequences (yn)n∈Z ∈

M such that an = aynb. By convention, if (an)n∈Z does not have such a representation

, we define ‖supn∈Z
|an|‖Lp(M) as +∞.

If p ≥ 1 and (an)n∈Z is a sequence of positive elements, it was proved by Junge

and Xu (see [14], Remark 3.7; [19], Proposition 2.1) that (with q the index conjugate

to p)

∥∥∥∥sup
n∈Z

|an|
∥∥∥∥

Lp(M)

= sup




∑

n∈Z

τ(anbn) : bn ∈ Lq(M), bn ≥ 0,

∥∥∥∥∥
∑

n∈Z

bn

∥∥∥∥∥
Lq(M)

≤ 1



 .

(4.2)

In this case, ‖supn∈Z |an|‖Lp(M) <∞ if and only if there exists a ∈ Lp(M), a > 0 and

a sequence of positive contractions yn such that an = a
1
2yna

1
2 , ∀n ∈ Z, and moreover,

∥∥∥∥sup
n

|an|
∥∥∥∥

Lp(M)

= inf{||a||Lp(M) : a > 0, an ≤ a, ∀n ∈ Z}.

We define similarly ‖supλ∈Λ |a(λ)|‖p if Λ is a countable set. If Λ is uncountable

we set ∥∥∥∥sup
λ∈Λ

|a(λ)|
∥∥∥∥

Lp(M)

= sup
(λn)n∈Z∈Λ

∥∥∥∥sup
n∈Z

|a(λn)|
∥∥∥∥

Lp(M)

. (4.3)
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Please note that supλ |a(λ)| does not make any sense in the noncommutative setting

and ‖supλ∈Λ |a(λ)|‖Lp(M) is just a notation. Also note that

∥∥∥∥sup
λ∈Λ

|a(λ)|
∥∥∥∥

L∞(M)

= sup
λ∈Λ

‖a(λ)‖L∞(M) . (4.4)

and for 1 ≤ p ≤ ∞,

∥∥∥∥sup
λ∈Λ

|a(λ)|
∥∥∥∥

Lp(M)

= sup
J⊂Λ finite

∥∥∥∥sup
n∈J

|a(λn)|
∥∥∥∥

Lp(M)

. (4.5)

The main result of this chapter is the non-commutative Hardy-Littlewood max-

imal inequality. We will reduce it to the non-commutative Doob maximal inequality

for martingales already established by M. Junge [9]. To this end, we need to intro-

duce two increasing filtration of dyadic σ−algebras on R. The key property of these

σ−algebras is that any interval of R is contained in an atom belonging to one of these

σ−algebras with a comparable size (see Proposition 3.1 below). This approach is very

simple. And we will need it later when prove BMOc(R,M) is the intersection of two

dyadic BMO spaces. That is one of the reasons that we do not follow the classical

ways to dominate Hardy-Littlewood maximal functions by the correspondent dyadic

ones.

The two increasing filtrations of dyadic σ−algebras D ={Dn}n∈Z,D′ = {D′
n}n∈Z

that we will need are defined as follows: The first one, D ={Dn}n∈Z, is simply the

usual dyadic filtration, that is, Dn is the σ−algebra generated by the atoms

Dk
n = (k2−n, (k + 1)2−n]; k ∈ Z.

The definition of D′ = {D′
n}n∈Z is a little more complicated. For an even integer n,

the atoms of D′
n are given by

D′k
n = ((k +

1

3
)2−n, (k +

4

3
)2−n], k ∈ Z;
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while for an odd integer n, D′
n is generated by the atoms

D′k
n = ((k +

2

3
)2−n, (k +

5

3
)2−n], k ∈ Z.

It is easy to see that D′ = {D′
n}n∈Z is indeed an increasing filtration.

The following simple observation is the key of our approach.

Proposition 4.1 For any interval I ⊂ R, there exist kI , N ∈ Z such that I ⊂ DkI

N

and |DkI

N | ≤ 6|I| or I ⊂ D
′kI

N and |D′kI

N | ≤ 6|I|, the constant N only depends on the

length of I.

Proof. To see this, choose N ∈ Z such that 2−N−1

3
≤ |I| < 2−N

3
. Denote

AN = {(k2−N); k ∈ Z}, A′
N = {((k +

1

3
)2−N , (k +

2

3
)2−N); k ∈ Z}.

Note that for any two points a, b ∈ AN ∪ A
′

N , we have |a − b| ≥ 1
3
2−N > |I|. Thus

there is no more than one element of AN ∪A′

N in I. Then I ∩AN = φ or I ∩A′

N = φ.

Therefore, I must be contained in some DkI

N or D
′ kI

N .

Remark. See [24] for a generalization of Proposition 4.1.

Remark. If an Mc-atom defined in Chapter III admits its supporting interval as

Dk
N (resp. D′

N
k) for some k,N ∈ Z, we call it Mc-D-atom (resp. Mc-D′-atom).

Proposition 4.1 implies that an Mc-atom is either an Mc-D-atom or an Mc–D′-

atom up to a fixed factor. Therefore the atomic Hardy space H1,at
c (R,M) defined in

Chapter III can be characterized only by Mc-D-atoms and Mc-D′-atoms. A similar

remark applies to the atomic row Hardy space H1,at
r (R,M). See Chapter VI for more

results of this type.

The proof of the following Proposition (as well as that of Theorem 3.3) illustrates
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well our approach to reduce problems on functions to those on martingales. Put

fh(t) =
1

h1 + h2

∫ t+h2

t−h1

f(x)dx, ∀h = (h1, h2) ∈ R
+×R

+.

Proposition 4.2 Let (an)n∈Z be a positive sequence in Lp(L∞(R) ⊗ M) and hn =

(hn,1, hn,2) ∈ R+×R
+, n ∈ Z.

(i) If 1 ≤ p <∞,

∥∥∥∥∥
∑

n∈Z

(an)hn

∥∥∥∥∥
Lp(L∞(R)⊗M)

≤ cp

∥∥∥∥∥
∑

n∈Z

an

∥∥∥∥∥
Lp(L∞(R)⊗M)

. (4.6)

(ii) If 1 < p ≤ ∞,

∥∥∥∥sup
n∈Z

|(an)hn
|
∥∥∥∥

Lp(L∞(R)⊗M)

≤ cp

∥∥∥∥sup
n∈Z

|an|
∥∥∥∥

Lp(L∞(R)⊗M)

. (4.7)

Proof. From Proposition 4.1, ∀n ∈ Z, for every t ∈ R, there exist some kt, Nn ∈ Z

such that (t− hn,1, t+ hn,2) is contained in Dkt

Nn
or D′kt

Nn
and

|Dkt

Nn
| = |D′ kt

Nn
| ≤ 6(hn,1 + hn,2).

Thus

(an)hn
≤ 6(E(an|DNn

) + E(an|D′
Nn

)), ∀n ∈ Z, (4.8)

where E(· |DNn
)(resp. E(· |D′

Nn
)) denotes the conditional expectation with respect

to DNn
(resp. D′

Nn
). Then (4.6) follows from Theorem 0.1 of [14]. By (4.2) and (4.6),

∥∥∥∥sup
n∈Z

|(an)hn
|
∥∥∥∥

Lp(L∞(R)⊗M)

= sup{
∑

n∈Z

τ

∫

R

1

hn,1 + hn,2

∫ t+hn,2

t−hn,1

an(x)dxbn(t)dt :

∥∥∥∥∥
∑

n∈Z

bn

∥∥∥∥∥
Lq(L∞(R)⊗M)

≤ 1}

= sup{
∑

n∈Z

τ

∫

R

1

hn,1 + hn,2

∫ x+hn,1

x−hn,2

bn(t)dtan(x)dx :

∥∥∥∥∥
∑

n∈Z

bn

∥∥∥∥∥
Lq(L∞(R)⊗M)

≤ 1}
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≤ sup{
∑

n∈Z

τ

∫

R

bn(x)an(x)dx :

∥∥∥∥∥
∑

n∈Z

bn

∥∥∥∥∥
Lq(L∞(R)⊗M)

≤ cp}

≤ cp

∥∥∥∥sup
n∈Z

|an|
∥∥∥∥

Lp(L∞(R)⊗M)

This is (4.7).

The following is our non-commutative Hardy-Littlewood maximal inequality. De-

note by P(M) the family of all projections of a von Neumann algebra M.

Theorem 4.3 (i) Let f ∈ L1(L∞(R) ⊗ M) and λ > 0. Then there exists eλ ∈

P(L∞(R) ⊗M) such that

sup
h∈R+×R

+

∥∥eλfhe
λ
∥∥

L∞(R)⊗M
≤ λ,

[
τ ⊗

∫ ]
(1 − eλ) <

c1 ‖f‖1

λ
. (4.9)

(ii) Let 1 < p ≤ ∞ and f ∈ Lp(L∞(R) ⊗M). Then

∥∥∥∥∥ sup
h∈R+×R

+

|fh|
∥∥∥∥∥

Lp(L∞ (R)⊗M)

≤ cp ‖f‖Lp(L∞(R)⊗M) . (4.10)

Moreover, for every positive f ∈ Lp(L∞(R) ⊗ M), there exists a positive F ∈

Lp(L∞(R) ⊗M) such that fh ≤ F for all h and

‖F‖Lp(L∞(R)⊗M) ≤ cp ‖f‖Lp(L∞ (R)⊗M) . (4.11)

Proof. By decomposing f = f1 − f2 + i(f3 − f4) with positive fk, we can assume

f positive. To prove (i), for given f, λ, (hn)n∈Z ∈ R
+×R

+, let DNn
,D′

Nn
be as in

the proof of Proposition 3.2. By the weak type (1,1) inequality of non-commutative

martingales in [3] we have ∀λ > 0, ∃eλ, e′λ ∈ P(L∞(R) ⊗M) such that

sup
n

∥∥eλE(f |DNn
)eλ
∥∥

L∞(R)⊗M
≤ λ

12
, τ ⊗

∫
(1 − eλ) <

c ‖f‖1

λ

and

sup
n

∥∥eλE(f |D′
Nn

)eλ
∥∥

L∞(R)⊗M
≤ λ

12
, τ ⊗

∫
(1 − e′λ) <

c ‖f‖1

λ
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for every f ∈ L1(L∞(R) ⊗M) and (hn)n∈Z ∈ R+×R
+. Let ẽλ = eλ ∧ e′λ, then

τ ⊗
∫

(1 − ẽλ) <
2c ‖f‖1

λ
.

By Proposition 4.1, we have

ẽλfhn
ẽλ ≤ 6(eλE(f |DNn

)eλ + e′λE(f |D′
Nhn

)e′λ).

Therefore,

sup
h∈R+×R

+

∥∥∥ẽλfhẽλ

∥∥∥
L∞(R)⊗M

= sup
(hn)n∈Z

sup
n

∥∥∥ẽλfhn
ẽλ

∥∥∥
L∞(R)⊗M

≤ 6 sup
n

∥∥∥e′λE(f |D′
Nn

)e′λ
∥∥∥

L∞(R)⊗M
+ 6 sup

n

∥∥eλE(f |DNn
)eλ
∥∥

L∞(R)⊗M

≤ λ.

This is (4.9). To prove (4.10), consider the two filtrations D,D′ introduced above.

By Theorem 0.2 of [14], there exist two positive F1, F2 ∈ Lp(L∞(R) ⊗M) such that

‖F1‖Lp , ‖F2‖Lp ≤ cp‖f‖Lp, and

E(f |Dn) ≤ F1, and E(f |D′
n) ≤ F2, ∀n ∈ Z. (4.12)

Thus, similar to (4.8), we have (by Proposition 4.1), for every h ∈ R+×R
+,

fh ≤ 6(F1 + F2) (4.13)

Let F = 6(F1 + F2), we proved (4.11). (4.10) follows immediately by decomposing

f = f1 − f2 + i(f3 − f4) with positive fk.

Using standard arguments and Theorem 3.3 we can easily obtain the non-commutative

analogue of the classical non-tangential maximal inequality. Recall, as in Chapter II,

we also use f to denote its Poisson integral on the upper half plane.
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Theorem 4.4 (i) Let f ∈ L1(L∞(R) ⊗M). Then ∀λ > 0, ∃ eλ ∈ P(L∞(R) ⊗M),

such that

sup
(t,y)∈Γ

∥∥eλf(x+ t, y)eλ
∥∥

L∞(R)⊗M
≤ λ, τ ⊗

∫
(1 − eλ) <

c1 ‖f‖1

λ
, ∀λ > 0 (4.14)

(ii) Let f ∈ Lp(L∞(R) ⊗M), 1 < p ≤ ∞. Then

∥∥∥∥∥ sup
(t,y)∈Γ

|f(x+ t, y)|
∥∥∥∥∥

p

≤ cp ‖f‖p . (4.15)

Moreover, for every positive f ∈ Lp(L∞(R) ⊗ M), there exists a positive F ∈

Lp(L∞(R) ⊗M) such that f(· + t, y) ≤ F for all (t, y) ∈ Γ and

‖F‖p ≤ cp ‖f‖p . (4.16)

Proof. Notice that

Py(x) =
1

π

y

x2 + y2
≤ 1

π

1

22(k−1)y + y
, ∀2k−1y ≤ |x|.

We have, for every positive f and any (t, y) ∈ Γ,

f(x+ t, y)

=

∫

R

f(s)Py(x+ t− s)ds

≤ 1

π

∫

|x+t−s|≤y

f(s)
1

y
ds+

1

π

∞∑

k=1

∫

2k−1y≤|x+t−s|≤2ky

f(s)
1

22(k−1)y + y
ds

≤ 1

π

∞∑

k=0

8

2k

1

2k+1y

∫

|x+t−s|≤2ky

f(s)ds. (4.17)

Considering hk,y = (2ky − t, 2ky + t) ∈ R+ × R+, we get (4.16) from (4.11). And by

(4.10),

∥∥∥∥∥ sup
(t,y)∈Γ

|f(x+ t, y)|
∥∥∥∥∥

p

≤ 1

π

∞∑

k=0

8

2k

∥∥∥∥∥sup
hk,y

|fhk,y
|
∥∥∥∥∥

p

≤ cp ‖f‖p .
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Decomposing f = f1 − f2 + i(f3 − f4) with positive fk, we get (4.15) for all f ∈

Lp(L∞(R) ⊗M). We can prove (4.14) similarly.

4.2. The non-commutative Lebesgue differentiation theorem and non-tangential limit

of Poisson integrals

We end this chapter with the non-commutative Lebesgue differentiation theorem and

non-tangential limit of Poisson integrals. These are consequences of Theorem 4.3 and

Theorem 4.4. To this end, we first need to recall the non-commutative version of the

almost everywhere convergence. Let (fλ)λ∈λ be a family of elements in Lp(M, τ).We

say (fλ)λ∈λ converges to f almost uniformly, abbreviated as fλ
a.u→ f, if for every ε > 0,

there exists eε ∈ P(M) such that τ(1 − eε) < ε and

lim
λ→λ0

‖eε(fλ − f)‖∞ = 0.

Moreover, we say (fλ)λ∈λ converges to f bilaterally almost uniformly, abbreviated as

fλ
b.a.u→ f, if for every ε > 0, there exists eε ∈ P(M) such that τ(1 − eε) < ε and

lim
λ→λ0

‖eε(fλ − f)eε‖∞ = 0.

Obviously, fλ
a.u→ f implies fλ

b.a.u→ f.

Recall that the map x 7→ xp (1 ≤ p ≤ 2) is convex on the positive cone M+ of

M (see [2]). Thus, for f ∈ Lp(L∞(R) ⊗M) (1 ≤ p ≤ 2), we get

∫

A

|f |dt ≤ (

∫

A

|f |pdt) 1
p , ∀A ⊆ R, |A| = 1. (4.18)

Note that for any x, y ∈ M+, x ≤ y implies xq ≤ yq, ∀0 < q ≤ 1. Using (4.18)

successively, we get the following Lemma.
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Lemma 4.5 For f ∈ Lp(L∞(R) ⊗M), 1 ≤ p <∞,

∫

A

|f |dt ≤ (

∫

A

|f |pdt) 1
p , ∀A ⊆ R, |A| = 1. (4.19)

Recall that for any bounded linear operators a, b on a Hilbert space H, a positive

and ‖b‖ ≤ 1, if T is an operator monotone function defined for positive operators (for

example, T (a) = a
1
p , p ≥ 1) then

b∗T (a)b ≤ T (b∗ab). (4.20)

This is the so-called Hansen’s inequality (see [9]). In particular, we have

b∗ab ≤ (b∗apb)
1
p . (4.21)

Theorem 4.6 (i) Let 1 ≤ p < 2. We have fh
b.a.u→ f as h → 0 for any f ∈

Lp(L∞(R) ⊗M).

(ii) Let 2 ≤ p <∞. We have fh
a.u→ f as h→ 0 for any f ∈ Lp(L∞(R) ⊗M).

Proof. (i) Without loss of generality, we can assume f selfadjoint. For any given

f ∈ Lp(L∞(R) ⊗M) and ε > 0, choose fn =
∑Nn

k=1 ϕkxk, where xk ∈ S+
M and where

ϕk : R → C are continuous functions with compact support, such that

‖|f − fn|p‖1 = ‖f − fn‖p
p < (

1

2n
)p ε

2n
. (4.22)

Choose eε
1,n ∈ P(L∞(R) ⊗M) such that

τ ⊗
∫

(1 − eε
1,n) <

ε

2n
and

∥∥eε
1,n|fn − f |peε

1,n

∥∥
L∞(R)⊗M

< (
1

2n
)p.

Set eε
1 = ∧ne

ε
1,n. We have τ ⊗

∫
(1 − eε

1) < ε and by (4.21),

‖eε
1(f

n − f)eε
1‖L∞(R)⊗M ≤ ‖eε

1|fn − f |eε
1‖L∞(R)⊗M

≤ ‖eε
1|fn − f |peε

1‖
1
p

L∞(R)⊗M
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<
1

2n
, ∀n ≥ 1. (4.23)

On the other hand, by (4.9) and (4.22) we can find a sequence (eε
2,n)n≥0 ⊂ P(L∞(R)⊗

M) such that

τ ⊗
∫

(1 − eε
2,n) <

ε

2n

∥∥eε
2,n(|fn − f |p)he

ε
2,n

∥∥
L∞(R)⊗M

< (
1

2n
)p, ∀h ∈ R

+×R
+. (4.24)

Set eε
2 = ∧ne

ε
2,n, we have τ ⊗

∫
(1 − eε

2) < ε. By (4.19), (4.21) and (4.24)

‖eε
2(f

n
h − fh)e

ε
2‖L∞(R)⊗M ≤

∥∥eε
2,n(|fn − f |)he

ε
2,n

∥∥
L∞(R)⊗M

≤
∥∥∥∥eε

2,n(|fn − f |p)
1
p

h e
ε
2,n

∥∥∥∥
L∞(R)⊗M

≤ (
∥∥eε

2,n(|fn − f |p)he
ε
2,n

∥∥
L∞(R)⊗M

)
1
p

<
1

2n
, ∀n ≥ 0, h ∈ R

+×R
+. (4.25)

Recall that by the classical Lebesgue differentiation theorem,

lim
h→0

‖ϕh − ϕ‖∞ = 0

if ϕ : R → C is continuous with compact support. Then by the choice of fn we deduce

that

lim
h→0

‖fn
h − fn‖L∞(R)⊗M = 0, ∀n ≥ 1.

Let eε = eε
1 ∧ eε

2, then τ ⊗
∫

(1 − eε) < 2ε. For any n > 0, choose Sn > 0 such

that ‖fn
h − fn‖∞ < 1

2n for any h ∈ R+×R
+ such that h1 + h2 < Sn. Then, for any

h ∈ R
+×R

+ such that h1 + h2 < Sn,

‖eε(fh − f)eε‖∞ ≤ ‖eε(fn − f)eε‖∞ + ‖fn
h − fn‖∞ + ‖eε(fn

h − fh)e
ε‖∞

≤ ‖eε
1(f

n − f)eε
1‖∞ + ‖fn

h − fn‖∞ + ‖eε
2(f

n
h − fh)e

ε
2‖∞
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≤ 3

2n
.

Thus limh→0 ‖eε(fh − f)eε‖∞ → 0.This completes the proof of (i).

(ii) The proof of (i) works well for the part (ii) of the theorem with some minor

changes. Let (fn)n∈N and eε
1, e

ε
2, e

ε be as above. Since p ≥ 2, instead of (4.23), (4.25),

by (4.19) and (4.21) we have

‖eε
1(f

n − f)‖∞ =
∥∥eε

1|fn − f |2eε
1

∥∥ 1
2

∞
≤ ‖eε

1|fn − f |peε
1‖

1
p
∞ <

1

2n
, ∀n ≥ 1; (4.26)

and also

‖eε
2(f

n
h − fh)‖∞ =

∥∥eε
2|fn

h − fh|2eε
2

∥∥ 1
2

∞

≤ (
∥∥eε

2(|fn − f |2)he
ε
2

∥∥
∞

)
1
2

≤ (‖eε
2(|fn − f |p)he

ε
2‖∞)

1
p <

1

2n
, ∀n ≥ 1. (4.27)

Then we can conclude as in the proof of (i).

Theorem 4.7 (i) Let 1 ≤ p < 2, f ∈ Lp(L∞(R) ⊗M). We have f(· + u, y)
b.a.u→ f

as Γ ∋ (u, y) → 0.

(ii) Let 2 ≤ p < ∞, f ∈ Lp(L∞(R) ⊗ M). We have f(· + u, y)
a.u→ f as Γ ∋

(u, y) → 0.

Proof. We can assume f ≥ 0 by decomposing f into four positive parts. Given

ε > 0, let fn, eε
i,n, e

ε
i (i = 1, 2) be as in the proof of Theorem 3.6. We use the same

notation fn for the Poisson integral of fn. It is easy to see that

lim
(u,y)→0.

‖fn(· + u, y)− fn‖∞ → 0, ∀n ≥ 0, (u, y) ∈ Γ

Let eε = eε
1 ∧ eε

2. For any n > 0, choose Yn > 0 such that

‖fn(· + u, y)− fn‖∞ <
1

2n
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for any (u, y) ∈ Γ, |u| + y ≤ Yn. To prove (i), from (4.23), (4.25) we have, for any

(u, y) ∈ Γ, |u| + y ≤ Yn,

‖eε(f(· + u, y)− f(·))eε‖∞

≤ ‖eε(fn − f)eε‖∞ + ‖fn(· + u, y) − fn‖∞

+

∥∥∥∥eε(

∫

R

(f − fn)(s)Py(x+ u− s)ds)eε

∥∥∥∥
∞

≤ 1

2n
+

1

2n
+

∞∑

k=0

∥∥∥∥eε(

∫

|x+u−s|≤2ky

|f − fn| 2

22(k−1)y + y
ds)eε

∥∥∥∥
∞

≤ 2

2n
+

∞∑

k=0

8

2k

∥∥∥∥eε
2(

1

2ky

∫

|x+u−s|≤2ky

|f − fn|ds)eε
2

∥∥∥∥
∞

≤ 2

2n
+

∞∑

k=0

8

2k

∥∥eε
2(|f − fn|)hk,y

eε
2

∥∥
∞

≤ 2

2n
+

8

2n
,

where hk,y = (2ky − t, 2ky + t) ∈ R+ × R+. Thus

lim
(u,y)→0

‖eε(f(· + ty, y)− f)eε‖∞ = 0, ∀ε > 0,

and then f(· + u, y)
b.a.u→ f when Γ ∋ (u, y) → 0. This is (i). Using (4.26) and (4.27)

instead of (4.23) and (4.25), we can prove (ii) similarly.

Remark. When p = ∞, the corresponding convergence problems discussed in this

section are still open.
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CHAPTER V

THE DUALITY BETWEEN HP AND BMOQ, 1 < P < 2

In this chapter, we describe the dual of Hp
c(R,M), which is BMOq

c(R,M) (q being

the conjugate index of p), the latter is the Lq-space analogue of BMO space already

considered in Chapters II and III. These BMOq
c(R,M) spaces not only are used to

describe the dual of Hp
c(R,M) but also play an important role for all results in

the sequel. In particular, we will use it to prove the map Ψ introduced in Chapter

IV extends to a bounded map from Lp(L∞(R) ⊗ M, L2
c(Γ̃)) to Hp

c(R,M) for all

1 < p <∞. Consequently, Hp
c(R,M) can be considered as a complemented subspace

of Lp(L∞(R)⊗M, L2
c(Γ̃)). For the most part, our results in this chapter are extension

to the function space setting of results proved for non-commutative martingales in

[18].

5.1. Operator valued BMOq (q > 2)

We will now introduce a useful operator inequality. Let H be a Hilbert space with

the inner product 〈·, ·〉, let a, b ∈ B(H), then

|a+ b|2 ≤ (1 + t)|a|2 + (1 +
1

t
)|b|2, ∀t > 0, t ∈ R. (5.1)

In fact, by the Cauchy-Schwarz inequality, we have, for every h ∈ H,

〈|a+ b|2h, h〉 = 〈(a+ b)h, (a + b)h〉

≤ 〈ah, ah〉 + 〈bh, bh〉 + 2〈ah, ah〉 1
2 〈bh, bh〉 1

2

≤ (1 + t)〈|a|2h, h〉 + (1 +
1

t
)〈|b|2h, h〉; ∀t > 0, t ∈ R.
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Let ϕ ∈ Lq(M, L2
c(R,

dt
1+t2

)). For h ∈ R+×R
+, denote Ih,t = (t− h1, t+ h2]. Let

ϕ#
h (t) =

1

h1 + h2

∫

Ih,t

|ϕ(x) − ϕIh,t
|2dx

Set, for 2 < q ≤ ∞,

‖ϕ‖BMOq
c

=

∥∥∥∥∥ sup
h∈R+×R

+

|ϕ#
h |
∥∥∥∥∥

1
2

L
q
2 (L∞(R)⊗M)

and

‖ϕ‖BMOq
r

= ‖ϕ∗‖BMOq
c
.

It is easy to check by (5.1) that ‖·‖BMOq
r

and ‖·‖BMOq
c

are norms. Let BMOq
c(R,M)

(resp. BMOq
r(R,M)) be the space of all ϕ ∈ Lq(M, L2

c(R,
dt

1+t2
)) (resp. Lq(M, L2

r(R,
dt

1+t2
)))

such that ‖ϕ‖BMOq
c
<∞(resp. ‖ϕ‖BMOq

r
<∞). BMOq

cr(R,M) is defined as the inter-

section of these two spaces

BMOq
cr(R,M) = BMOq

c(R,M) ∩ BMOq
r(R,M)

equipped with the norm

‖ϕ‖BMOq
cr

= max{‖ϕ‖BMOq
c
, ‖ϕ‖BMOq

r
}.

If q = ∞, all these spaces coincide with those introduced in Chapter III. And

if M = C, all these spaces coincide with the classical BMOq. As in the case

of BMO(R,M), we regard BMOq
c(R,M) (resp. BMOq

r(R,M), BMOq
r(R,M)) as

normed spaces modulo constants. The following is the analogue for BMOq
c(R,M) of

Proposition 2.3. Recall that In
t = (t− 2n−1, t+ 2n−1] for t ∈ R and n ∈ Z. Note that

we have trivially

∥∥∥∥∥
1

2k

∫

Ik
t

|ϕ(s) − ϕ
Ik
t

|2ds
∥∥∥∥∥

1
2

L
q
2 (L∞(R)⊗M)

≤ ‖ϕ‖BMOq
c

(5.2)
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Proposition 5.1 Let 2 < q ≤ ∞. Let ϕ ∈ BMOq
c(R,M).Then

‖ϕ‖Lq(M,L2
c(R, dt

1+t2
)) ≤ c

(
‖ϕ‖BMOq

c
+
∥∥∥ϕI1

0

∥∥∥
Lq(M)

)
.

Moreover, BMOq
c(R,M),BMOq

r(R,M),BMOq
cr(R,M) are Banach spaces.

Proof. The proof is similar to that of Proposition 2.3. By (2.12) we have

|ϕIn
t
− ϕI1

0
|2 ≤ n(

n∑

k=3

|ϕIk
t
− ϕIk−1

t
|2 + |ϕI2

t
− ϕI1

0
|2)

≤ n(
n∑

k=3

1

2k−1

∫

Ik−1
t

|ϕ(s) − ϕ
Ik
t

|2ds+
1

2

∫

I1
0

|ϕ(s) − ϕ
I2
t

|2ds)

≤ n(
n∑

k=3

2

2k

∫

Ik
t

|ϕ(s) − ϕ
Ik
t

|2ds+
2

4

∫

I2
t

|ϕ(s) − ϕ
I2
t

|2ds)

= 2n
n∑

k=2

1

2k

∫

Ik
t

|ϕ(s) − ϕ
Ik
t

|2ds, ∀n > 1, t ∈ [−1, 1]. (5.3)

Thus by (5.2)

∥∥∥|ϕIn
t
− ϕI1

0
|2
∥∥∥

L
q
2 (L∞(R)⊗M)

≤ 2n2 ‖ϕ‖2
BMOq

c
, ∀n > 1, t ∈ [−1, 1]. (5.4)

To control ϕ’s Lq(M, L2
c(R,

dt
1+t2

)) norm by its BMOq
c norm, we write

‖ϕ‖2
Lq(M,L2

c(R, dt

1+t2
))

=

∥∥∥∥
∫

R

|ϕ(s)|2
1 + s2

ds

∥∥∥∥
L

q
2 (M)

=

∥∥∥∥χ[− 1
2
, 1
2
](t)

∫

R

|ϕ(s)|2
1 + s2

ds

∥∥∥∥
L

q
2 (L∞(R)⊗M)

≤
∥∥∥∥∥χ[− 1

2
, 1
2
](t)(

∞∑

n=0

∫

In+1
t /In

t

|ϕ(s)|2
1 + s2

ds+

∫

I1
0

|ϕ(s)|2
1 + s2

ds)

∥∥∥∥∥
L

q
2 (L∞(R)⊗M)

≤ c(

∥∥∥∥∥χ[− 1
2
, 1
2
](t)(

∞∑

n=2

∫

In
t

|ϕ(s)|2
22n

ds+

∫

I1
0

|ϕ(s)|2ds)
∥∥∥∥∥

L
q

2 (L∞(R)⊗M)
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hence by (5.4)

‖ϕ‖2
Lq(M,L2

c(R, dt

1+t2
)) ≤ c(

∥∥∥∥∥
∞∑

n=2

χ[− 1
2
, 1
2
](t)

∫

In
t

|ϕ(s) − ϕ
In
t

|2

22n
ds

∥∥∥∥∥
L

q

2 (L∞(R)⊗M)

+

∥∥∥∥∥
∞∑

n=1

|ϕI1
0
|2

2n

∥∥∥∥∥
L

q
2 (M)

+

∞∑

n=1

n2 ‖ϕ‖2
BMOq

c

2n

≤ c

∞∑

n=1

(n2 + 1) ‖ϕ‖2
BMOq

c

2n
+ c
∥∥∥ϕI1

0

∥∥∥
2

Lq(M)

< ∞. (5.5)

Thus BMOq
c(R,M) is a Banach space. Passing to adjoints we get that BMOq

r(R,M)

is a Banach spaces and then so is BMOq
cr(R,M).

Put

λn,#
ϕ (t) =

1

2n

∫∫

T (In
t )

|∇ϕ|2ydxdy.

Lemma 5.2 Let ϕ ∈ BMOq
c(R,M) (2 < q <∞). Then ∃c > 0 such that

∥∥∥∥sup
n∈Z

|λϕn,#|
∥∥∥∥

L
q
2 (L∞(R)⊗M)

≤ c ‖ϕ‖2
BMOq

c
.

Proof. The proof is similar to that of Lemma 2.4 but more complicated. For any

n ∈ Z, t ∈ R, write ϕ = ϕn,t
1 + ϕn,t

2 + ϕn,t
3 , where ϕn,t

1 = (ϕ − ϕIn+1
t

)χIn+1
t

, ϕn,t
2 =

(ϕ− ϕIn+1
t

)χ
(In+1

t
)c
, and ϕn,t

3 = ϕIn+1
t

. Set

λn,#
i (t) =

1

2n

∫∫

T (In
t )

|∇ϕn,t
i |2ydxdy, i = 1, 2.

Thus

∥∥∥∥sup
n∈Z

|λϕn,#|
∥∥∥∥

L
q
2 (L∞(R)⊗M)

≤ 2

∥∥∥∥sup
n∈Z

|λn,#
1 |
∥∥∥∥

L
q
2 (L∞(R)⊗M)

+ 2

∥∥∥∥sup
n∈Z

|λn,#
2 |
∥∥∥∥

L
q
2 (L∞(R)⊗M)

.
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We treat λn,#
1 first. Arguing as earlier for (2.19), by Green’s theorem we have

1

2n

∫∫

T (In
t )

|∇ϕn,t
1 |2ydxdy ≤ 1

2n

∫ +∞

−∞

|ϕn,t
1 |2ds.

Therefore,

∥∥∥∥∥∥∥
sup
n∈Z

| 1

2n

∫∫

T (In
t )

|∇ϕn,t
1 |2ydxdy|

∥∥∥∥∥∥∥
L

q
2 (L∞(R)⊗M)

≤
∥∥∥∥sup

n∈Z

| 1

2n

∫ +∞

−∞

|ϕn,t
1 |2ds|

∥∥∥∥
L

q
2 (L∞(R)⊗M)

=

∥∥∥∥∥sup
n∈Z

| 1

2n

∫

In+1
t

|ϕ− ϕIn+1
t

|2ds|
∥∥∥∥∥

L
q
2 (L∞(R)⊗M)

≤ 2 ‖ϕ‖2
BMOq

c
(5.6)

To deal with λn,#
2 , we note that

|∇Py(x− s)|2 ≤ 1

4(x− s)4
≤ c

24(n+k)
, ∀s ∈ In+k+1

t /In+k
t , (x, y) ∈ T (In

t ).

Let Ak = In+k+1
t /In+k

t . Then by (2.14), (2.17) and (5.3)

1

2n

∫∫

T (In
t )

|∇ϕn,t
2 |2ydxdy

=
1

2n

∫∫

T (In
t )

|∇
∫ +∞

−∞

Py(x− s)ϕn,t
2 (s)ds|2ydxdy

≤ 1

2n

∫∫

T (In
t )




∞∑

k=1

∫

Ak

|∇Py(x− s)|222kds
∞∑

k=1

∫

Ak

1

22k
|ϕn,t

2 (s)|2dsy


dxdy

≤ c

2n

∫∫

T (In
t )

1

23n

∞∑

k=1

∫

Ak

1

22k
|ϕ− ϕIn+1

t
|2dsydxdy

≤ c

2n

∞∑

k=1

∫

Ak

2

22k
(|ϕ− ϕIn+k+1

t
|2 + |ϕIn+k+1

t
− ϕIn+1

t
|2)ds
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≤ c

∞∑

k=1

1

22k+n

∫

Ak

|ϕ− ϕIn+k+1
t

|2ds+

∞∑

k=1

c

2k

k∑

i=1

2k

2n+i

∫

In+i
t

|ϕ(u) − ϕIn+i
t

|2du

≤ cXn + cYn

where

Xn =
∞∑

k=1

1

22k+n

∫

Ak

|ϕ− ϕIn+k+1
t

|2ds,

Yn =

∞∑

k=1

k

2k

k∑

i=1

1

2n+i

∫

In+i
t

|ϕ(s) − ϕIn+i
t

|2ds.

Xn, Yn are estimated as follows. For Xn we have

∥∥∥∥sup
n∈Z

|Xn|
∥∥∥∥

L
q
2 (L∞(R)⊗M)

=

∥∥∥∥∥∥
sup
n∈Z

|
∞∑

k=1

1

2k

1

2n+k

∫

Ak

|ϕ− ϕIn+k+1
t

|2ds|

∥∥∥∥∥∥
L

q
2 (L∞(R)⊗M)

≤
∞∑

k=1

1

2k

∥∥∥∥∥∥∥
sup
n∈Z

| 1

2n+k

∫

In+k+1
t

|ϕ− ϕIn+k+1
t

|2ds|

∥∥∥∥∥∥∥
L

q
2 (L∞(R)⊗M)

≤ 2 ‖ϕ‖2
BMOq

c
.

On the other hand,

∥∥∥∥sup
n∈Z

|Yn|
∥∥∥∥

L
q
2 (L∞(R)⊗M)

≤
∞∑

k=1

k

2k

k∑

i=1

∥∥∥∥∥sup
n∈Z

| 1

2n+i

∫

In+i
t

|ϕ(s) − ϕIn+i
t

|2ds|
∥∥∥∥∥

L
q
2 (L∞(R)⊗M)

≤
∞∑

k=1

k2

2k
‖ϕ‖2

BMOq
c

= 6 ‖ϕ‖2
BMOq

c
.
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Combining the preceding inequalities we get

∥∥∥∥sup
n∈Z

|λn,#
ϕ2

|
∥∥∥∥

L
q
2 (L∞(R)⊗M)

≤ c ‖ϕ‖2
BMOq

c
,

which, together with (5.6), yields

∥∥∥∥sup
n∈Z

|λϕn,#|
∥∥∥∥

L
q
2 (L∞(R)⊗M)

≤ c ‖ϕ‖2
BMOq

c
.

Set

ϕ#
n (t) =

1

2n

∫

In
t

|ϕ(x) − ϕIn
t
|2dx

Notice that for every h ∈ R+ × R+ there exists n ∈ Z such that (t− h1, t+ h2) ∈ In
t

for every t ∈ R and 2n ≤ 4(h1 + h2), we have

1

4
‖ϕ‖BMOq

c
≤
∥∥∥∥sup

n
ϕ#

n

∥∥∥∥
1
2

L
q
2 (L∞(R)⊗M)

≤ ‖ϕ‖BMOq
c
. (5.7)

Lemma 5.3 The operator Ψ defined in Chapter III extends to a bounded map from

Lq(L∞(R) ⊗M, L2
c(Γ̃)) (2 < q <∞) into BMOq

c(R,M) and there exists cq > 0 such

that

‖Ψ(h)‖BMOq
c
≤ cq ‖h‖Lq(L∞(R)⊗M,L2

c) . (5.8)

Proof. The pattern of this proof is similar to that of Lemma 3.2. One new thing

we need is the non-commutative Hardy-Littlewood maximal inequality proved in the

previous chapter.

Let S be the family of functions introduced in the proof of Lemma 3.2. Since S

is dense in Lq(L∞(R) ⊗ M, L2
c(Γ̃)), we need only to prove (5.8) for all h ∈ S. Fix

h ∈ S and set ϕ = Ψ(h). Then ϕ ∈ Lq(M, L2
c(R,

ds
1+s2 )). Let u ∈ R and n ∈ Z. Set

hu
1(x, y, t) = h(x, y, t)χ

I
n+1
u

(t),

hu
2(x, y, t) = h(x, y, t)χ

(In+1
u )c

(t)
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and

BIn
u

=

∫ +∞

−∞

∫∫

Γ

QIn
u
hu

2dydxdt,

where

QIn
u
(x, y, t) =

1

2n

∫

In
u

Qy(x+ t− s)ds

(recall that Qy(x) is defined by (3.2) as the gradient of the Poisson kernel). Then

ϕ#
n (u) ≤ 4

2n

∫

In
u

|ϕ(s) − BIn
t
|2ds

≤ 8

2n

∫

In
u

|
∫

(In+1
u )c

∫∫

Γ

(Qy(x+ t− s) −QIn
u
)hdxdydt|2ds

+
8

2n

∫

In
u

|
∫ +∞

−∞

∫∫

Γ

Qy(x+ t− s)hu
1dxdydt|2ds

= 8An +
8

2n

∫

In
u

|
∫

In+1
u

∫∫

Γ

Qy(x+ t− s)hdxdydt|2ds

Recall that, as noted earlier in (3.5),

∫∫

Γ

|Qy(x+ t− s) −QIn
u
|2dxdy ≤ c22n(t− u)−4

for t ∈ (In+1
u )c and s ∈ In

u . By (2.14), we have

An =
1

2n

∫

In
u

|
∫

(In+1
u )c

∫∫

Γ

(Qy(x+ t− s) −QIn
u
)hdxdydt|2ds

≤
∫

(In+1
u )c

c22n(t− u)−2dt

∫

(In+1
u )c

(t− u)−2

∫∫

Γ

|h|2dxdydt

= c2n

∫

(In+1
u )c

(t− u)−2

∫∫

Γ

|h|2dxdydt

Then, for any positive (an)n∈Z such that
∥∥∑

k∈Z
an

∥∥
L(

q
2 )′ (L∞(R)⊗M)

≤ 1,

τ
∑

n∈Z

∫ +∞

−∞

ϕ#
n (u)an(u)du
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≤
∑

n∈Z

τ

∫ +∞

−∞

c2n

∫

(In+1
u )c

(t− u)−2

∫∫

Γ

|h|2dxdydtan(u)du

+
∑

n∈Z

τ

∫ +∞

−∞

8

2n

∫

In
u

|
∫

In+1
u

∫∫

Γ

Qy(x+ t− s)hdxdydt|2dsan(u)du

= A+B

By the non-commutative Hölder inequality,

A =
∑

n∈Z

τ

∫ +∞

−∞

c2n

∫

(In+1
t )c

(t− u)−2an(u)du

∫∫

Γ

|h|2dxdydt

≤

∥∥∥∥∥∥

∫∫

Γ

|h|2dxdy

∥∥∥∥∥∥
L

q
2 (L∞(R)⊗M)

∥∥∥∥∥
∑

n∈Z

c2n

∫

(In
t )c

(t− u)−2an(u)du

∥∥∥∥∥
L(

q
2 )′(L∞(R)⊗M)

≤ ‖h‖2
Lq(L∞(R)⊗M,L2

c(eΓ))

∥∥∥∥∥
∑

n∈Z

+∞∑

k=n

2n

∫

Ik+1
t

1

22k
an(u)du

∥∥∥∥∥
L(

q
2 )′ (L∞(R)⊗M)

.

Let us estimate the second factor in the last term. By (4.6),

∥∥∥∥∥
∑

n∈Z

+∞∑

k=n+1

2n

∫

Ik+1
t

1

22k
an(u)du

∥∥∥∥∥
L(

q
2 )′ (L∞(R)⊗M)

=

∥∥∥∥∥
∑

k∈Z

1

2k

∫

Ik+1
t

k−1∑

n=−∞

2n

2k
an(u)du

∥∥∥∥∥
L(

q
2 )′(L∞(R)⊗M)

≤ cq

∥∥∥∥∥
∑

k∈Z

k−1∑

n=−∞

2n

2k
an

∥∥∥∥∥
L(

q
2 )′(L∞(R)⊗M)

≤ cq

∥∥∥∥∥
∑

n∈Z

an

∥∥∥∥∥
L(

q
2 )′ (L∞(R)⊗M)

≤ cq.

Thus

A ≤ cq ‖h‖2
Lq(L∞(R)⊗M,L2

c) .

For the term B, by (4.6), (2.10) and the Cauchy-Schwarz inequality,

B ≤
∑

n∈Z

τ

∫

R

8

2n

∫

R

|
∫

In+1
u

∫∫

Γ

Qy(x+ t− s)hdxdydt|2dsan(u)du
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=
∑

n∈Z

∫

R

8

2n
sup

‖f‖
L2(L∞(R)⊗M)=1

(τ

∫

R

∫

In+1
u

∫∫

Γ

Qy(x+ t− s)ha
1
2
n (u)dxdydtf(s)ds)2du

=
∑

n∈Z

∫

R

8

2n
sup

||f ||
L2(L∞(R)⊗M)=1

(τ

∫

In+1
u

∫∫

Γ

ha
1
2
n (u)∇f(t+ x, y)dxdydt)2du

≤
∑

n∈Z

∫

R

8

2n
τ

∫

In+1
u

∫∫

Γ

|h|2an(u)dxdydtdu

=
∑

n∈Z

τ

∫

R

∫∫

Γ

|h|2dxdy 8

2n

∫

In+1
t

an(u)dudt

≤ ||
∫∫

Γ

|h|2dxdy||
L

q
2 (L∞(R)⊗M)

∥∥∥∥∥
∑

n∈Z

16

2n

∫

In
t

an(u)du

∥∥∥∥∥
L(

q
2 )′ (L∞(R)⊗M)

≤ cq ‖h‖2
Lq(L∞(R)⊗M,L2

c) .

Thus ∥∥∥∥sup
n

|ϕ#
n |
∥∥∥∥

L
q
2 (L∞(R)⊗M)

≤ cq ‖h‖2
Lq(L∞(R)⊗M,L2

c)

and then

||Ψ(h)||BMOq
c
≤ cq ‖h‖Lq(L∞(R)⊗M,L2

c) .

Remark. It seems difficult to define non-commutative BMOq for q < 2.

5.2. The duality theorem of Hp and BMOq(1 < p < 2)

Denote by Hp
c0(R,M) (resp. Hp

r0(R,M)) the functions f in Hp
c(R,M) (resp. Hp

r(R,M))

such that f ∈ Lp(M, L2
c(R, (1+t2)dt)) (resp. Lp(M, L2

r(R, (1+t2)dt)) and
∫
fdt = 0.

Set

Hp
cr0(R,M) = Hp

c0(R,M) + Hp
r0(R,M).

It is easy to see that Hp
c0(R,M) (resp. Hp

r0(R,M), Hp
cr0(R,M)) is a dense subspace

of Hp
c(R,M) (resp. Hp

r(R, Hp
cr0(R,M)). By Propositions 2.1 and 5.1,

∫ +∞

−∞
ϕ∗fdt
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exists as an element in L1(M) for any ϕ ∈ BMOq
c(R,M) and f ∈ Hp

c0(R,M) .

Theorem 5.4 Let 1 < p < 2, q = p
p−1

. Then

(a) (Hp
c(R,M))∗ = BMOq

c(R,M) with equivalent norms. More precisely, every

ϕ ∈ BMOq
c(M) defines a continuous linear functional on Hp

c(R,M) by

lϕ(f) = τ

∫ +∞

−∞

ϕ∗fdt; ∀f ∈ Hp
c0(R,M) (5.9)

Conversely every l ∈ (Hp
c(R,M))∗ can be given as above by some ϕ ∈ BMOq

c(R,M) and

there exist constants c, cq > 0 such that

cq ‖ϕ‖BMO
q
c
≤ ‖lϕ‖(Hp

c)∗ ≤ c ‖ϕ‖BMO
q
c

Thus (Hp
c(R,M))∗ = BMOq

c(R,M) with equivalent norms.

(b) Similarly, (Hp
r(R,M))∗ = BMOq

r(R,M) with equivalent norms.

(c) (Hp
cr(R,M))∗ = BMOq

cr(R,M) with equivalent norms.

Proof. (i) Let ϕ ∈ BMOq
c(R,M) and f ∈ Hp

c0(R,M). As in the proof of Theorem

3.4, we assume ϕ and f compactly supported. Let Gc(f) and S̃c(f) be as in the

proof of Theorem 3.4. Similar to what we have explained there, Gc(f)(x, y) can be

assumed to be invertible in M for every (x, y) ∈ R2
+. By Green’s theorem and the

Cauchy-Schwarz inequality (see the corresponding part of the proof of Theorem 3.4

to see why Green’s theorem works well),

|lϕ(f)| = 2|τ
∫ +∞

−∞

∫ ∞

0

∇ϕ∗∇fydydx|

≤ 2(τ

∫ +∞

−∞

∫ ∞

0

Gp−2
c (f)(x, y)|∇f |2(x, y)ydydx) 1

2

•(3τ
∫ +∞

−∞

∫ ∞

0

S̃2−p
c (f)(x,

y

4
)|∇ϕ|2ydydx) 1

2

= 2I • II



64

Noting that Gp−1
c (f)(x, y) ≤ Gp−1

c (f)(x, 0) , we have

I2 = τ

∫ +∞

−∞

∫ ∞

0

−Gp−2
c (f)(x, y)

∂G2
c(f)

∂y
(x, y)dydx

= τ

∫ +∞

−∞

∫ ∞

0

(−Gp−2
c (f)(x, y)

∂Gc(f)

∂y
Gc(f)(x, y)

−Gp−1
c (f)

∂Gc(f)

∂y
(x, y))dydx

= 2τ

∫ +∞

−∞

∫ ∞

0

−Gp−1
c (f)(x, y)

∂Gc(f)

∂y
dydx

≤ 2τ

∫ +∞

−∞

∫ ∞

0

−Gp−1
c (f)(x, 0)

∂Gc(f)

∂y
(x, y)dxdy

≤ 2τ

∫ +∞

−∞

Gp
c(f)(x, 0)dx

≤ 6τ

∫ +∞

−∞

Sp
c (f)(x)dx

= 6 ‖f‖p
Hp

c

Define

δk(x) = S̃2−p
c (f)(x, 2k) − S̃2−p

c (f)(x, 2k+1), ∀x ∈ R.

Then δk ∈ L
p

2−p (L
∞

(R) ⊗M) is positive. Note that ( q
2
)′ = p

p−2
. Moreover,

δk(x) = δk(x′), ∀(i− 1)2j < x, x′ ≤ i2j

∞∑

k=−∞

δk(x) = S̃2−p
c (f)(x, 0)

Arguing as earlier for Theorem 3.4, we have

II2 = 3τ

∫ +∞

−∞

∞∑

k=−∞

S̃2−p
c (f)(x, 2k)

∫ 2k+3

2k+2

|∇ϕ|2ydydx

= 3τ

∫ +∞

−∞

∞∑

k=−∞

(
∞∑

j=k

δj(x))

∫ 2k+3

2k+2

|∇ϕ|2ydydx

= 3τ

∫ +∞

−∞

∞∑

j=−∞

2jδj(x)
1

2j

∫ 2j+3

0

|∇ϕ|2ydydx
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≤ 3τ

∫ +∞

−∞

∞∑

j=−∞

∫ x+2j

x−2j

δj(t)dt
1

2j

∫ 2j+3

0

|∇ϕ|2ydydx

= 24τ
∞∑

j=−∞

∫ +∞

−∞

δj(t)
1

2j+3

∫ t+2j

t−2j

∫ 2j+3

0

|∇ϕ|2ydydxdt

hence by (4.2) and Lemma 5.2

II2 ≤ 24

∥∥∥∥∥
∞∑

j=−∞

δj(t)

∥∥∥∥∥
L(

q
2 )′

∥∥∥∥∥sup
j

| 1

2j+3

∫ t+2j

t−2j

∫ 2j+3

0

|∇ϕ|2ydydx|
∥∥∥∥∥

L
q
2

≤ c ‖f‖2−p
Hp

c
‖ϕ‖2

BMOq
c
.

Combining the preceding estimates on I and II, we get

|lϕ(f)| ≤ c ‖ϕ‖BMOq
c
‖f‖Hp

c
.

Therefore, lϕ defines a continuous functional on Hp
c of norm smaller than c ‖ϕ‖BMOq

c
.

(ii) Now suppose l ∈ (Hp
c)

∗. Then by the Hahn-Banach theorem l extends to a

continuous functional on Lp(L∞(R) ⊗M, L2
c(Γ̃)) of the same norm. Thus by

(Lp(L∞(R) ⊗M, L2
c(Γ̃)))∗ = Lq(L∞(R) ⊗M, L2

c(Γ̃))

there exists h ∈ Lq(L∞(R) ⊗M, L2
c(Γ̃)) such that

||h||2
Lq(L∞(R)⊗M,L2

c(eΓ))
= ||

∫∫

Γ

h∗(x, y, t)h(x, y, t)dydx||
L

q
2 (L∞(R)⊗M)

= ||l||2

and

l(f) = τ

∫ +∞

−∞

∫∫

Γ

h∗(x, y, t)∇f(t+ x, y)dydxdt

= τ

∫ +∞

−∞

Ψ∗(h)f(s)ds.

Let

ϕ = Ψ(h) (5.10)
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Then

l(f) = τ

∫ +∞

−∞

ϕ∗(s)f(s)ds

and by Lemma 5.3 ||ϕ||BMOq
c
≤ cq||l||.This finishes the proof of the theorem concerning

Hp
c and BMOq

c. Passing to adjoints yields the part on Hp
r and BMOq

r.Finally, the

duality between Hp
cr and BMOq

cr is obtained from the classical fact that the dual of a

sum is the intersection of the duals.

Corollary 5.5 ϕ ∈ BMOq
c(R,M) if and only if

∥∥∥∥sup
n∈Z

|λϕn,#|
∥∥∥∥

L
q
2 (L∞ (R)⊗M)

<∞

and there exist c, cq > 0 such that

cq ‖ϕ‖2
BMOq

c
≤
∥∥∥∥sup

n∈Z

|λϕn,#|
∥∥∥∥

L
q
2 (L∞(R)⊗M)

≤ c ‖ϕ‖2
BMOq

c
.

Proof. From the proof of Theorem 5.4, if ϕ is such that

∥∥∥∥sup
n

|λn,#
ϕ |
∥∥∥∥

L
q
2 (L∞(R)⊗M)

<∞,

then ϕ defines a continuous linear functional on Hp
c0 by lϕ = τ

∫ +∞

−∞
ϕ∗fdt and

‖lϕ‖(Hp
c )∗ ≤ c

∥∥∥∥sup
n

|λn,#
ϕ |
∥∥∥∥

1
2

L
q
2 (L∞(R)⊗M)

and then by Theorem 5.4 again, there exists a function ϕ′ ∈BMOq
c(R,M) with

‖ϕ′‖2
BMOq

c
≤ cq ‖lϕ‖2

(Hp
c )∗ ≤ cq

∥∥∥∥sup
n
λn,#

ϕ

∥∥∥∥
L

q
2 (L∞(R)⊗M)

such that

τ

∫ +∞

−∞

ϕ∗fdt = τ

∫ +∞

−∞

ϕ′∗fdt.

Thus ϕ ∈BMOq
c(R,M) and ‖ϕ‖2

BMOq
c
≤ cq

∥∥supn λ
n,#
ϕ

∥∥
L

q
2 (L∞ (R)⊗M)

. Combining this

with Lemma 5.2, we get the desired assertion.
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Now we are in a position to show that as in the classical case, the Lusin square

function and the Littlewood-Paley g-function have equivalent Lp-norm in the non-

commutative setting. The case p = 1 was already obtained in Chapter III.

Theorem 5.6 For f ∈ Hp
c(R,M)(resp. Hp

r(R,M)), 1 ≤ p <∞, we have

c−1
p ‖Gc(f)‖p ≤ ‖Sc(f)‖p ≤ cp ‖Gc(f)‖p ; (5.11)

c−1
p ‖Gr(f)‖p ≤ ‖Sr(f)‖p ≤ cp ‖Gr(f)‖p . (5.12)

Proof. We need only to prove the second inequality of (5.11). The case of p = 2

is obvious. The case of p = 1 is Corollary 3.7 and the part of 1 < p < 2 can be

proved similarly by using the following inequality already obtained during the proof

of Theorem 5.4

|τ
∫
ϕ∗fdt| ≤ c ‖ϕ‖BMOq

c
‖Gc(f)‖

p

2
p ‖Sc(f)‖1− p

2
p .

For p > 2, let g be a positive element in L(
p
2 )′ (L∞(R)⊗M) with ‖g‖(p

2
)′ ≤ 1. By (4.2)

and (4.10) we have

∣∣∣∣∣∣
τ

∫

R

∫∫

Γ

|∇f(x+ t, y)|2dxdyg(t)dt

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
τ

∫∫

R2
+

|∇f(x, y)|2y 1

y

∫ x+y

x−y

g(t)dtdxdy

∣∣∣∣∣∣∣

≤ 4

∣∣∣∣∣τ
∫

R

+∞∑

n=−∞

∫ 2n

2n−1

|∇f(x, y)|2ydy 1

2n+1

∫ x+2n

x−2n

g(t)dtdx

∣∣∣∣∣

≤ 4

∥∥∥∥
∫

R+

|∇f(x, y)|2ydy
∥∥∥∥

L
p
2 (L∞(R)⊗M)

∥∥∥∥sup
n

| 1

2n+1

∫ x+2n

x−2n

g(t)dt|
∥∥∥∥

L(
p
2 )′(L∞(R)⊗M)

≤ cp ‖Gc(f)‖2
p
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Therefore, taking the supremum over all g as above, we obtain

‖Sc(f)‖2
p ≤ cp ‖Gc(f)‖2

p .

5.3. The equivalence of Hq and BMOq(q > 2)

The following is the analogue for functions of a result for non-commutative martin-

gales proved in [18].

Theorem 5.7 Hp
c(R,M) = BMOp

c(R,M) with equivalent norms for 2 < p <∞.

Proof. Note that for every ϕ ∈ Hp
c(R,M) and every g ∈ Hp′

c (R,M) (p′ = p
p−1

)

|τ
∫ +∞

−∞

∫∫

Γ

∇g(x+ t, y)∇ϕ∗(x+ t, y)dxdydt|

≤ ‖∇g(x+ t, y)‖Lp′ (L∞(R)⊗M,L2
c(eΓ)) ‖∇ϕ(x+ t, y)‖Lp(L∞(R)⊗M,L2

c(eΓ))

≤ ‖g‖
Hp′

c
‖ϕ‖Hp

c
.

Then by Theorem 5.4

‖ϕ‖BMOp
c
≤ cp sup

‖g‖
H

p′
c

≤1

|τ
∫
gϕ∗dt| ≤ cp ‖ϕ‖Hp

c
. (5.13)

To prove the converse, we consider the following tent space T p
c .Denote R̃2

+ = (R2
+,

dxdy
y2 )×

({1, 2}, σ) with σ{1} = σ{2} = 1. For f ∈ Lp(M, L2
c(R̃

2
+)), set

Ac(f)(t) = (

∫∫

|x|<y

|f(x+ t, y)|2dxdy
y2

)
1
2 .

Define, for 1 < p <∞,

T p
c = {f ∈ Lp(M, L2

c(R̃
2
+)), ‖f‖T p

c
= ‖Ac(f)‖Lp(L∞(R)⊗M) <∞}. (5.14)
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We will prove that, for p > 2 and ϕ ∈ BMOp
c(R,M), ϕ induces a linear functional

on T p′

c defined by

lϕ(f) = τ

∫ ∫

R2
+

∇ϕ∗(x, y)yf(x, y)dxdy/y

and

‖ϕ‖Hp
c
≤ cp ‖lϕ‖ ≤ cp ‖ϕ‖BMOp

c
. (5.15)

We first prove the second inequality of (5.15). Set

Ac(f)(t, y) = (

∫∫

s>y,|x|<s−y

|f(x+ t, s)|2dxds
s2

)
1
2

Ac(f)(t, y) = (

∫∫

s>y,|x|< s
4

|f(x+ t, s)|2dxds
s2

)
1
2 .

It is easy to see that

A
2

c(f)(t, y) ≤ A
2

c(f)(t, 0) ≤ A2
c(f)(t), (5.16)

A
2

c(f)(t+ x, y) ≤ A2
c(f)(t,

y

2
), ∀|x| < y

4
, (t, y) ∈ R

2
+. (5.17)

For nice f and by approximation, we can assume Ac(f)(t, y) is invertible for all

(t, y) ∈ R2
+. Thus by the Cauchy-Schwarz inequality

lϕ(f) = τ

∫ ∫

R2
+

f(t, y)∇ϕ∗(t, y)ydt
dy

y

≤ (τ

∫∫

R2
+

Ap′−2
c (f)(t,

y

2
)|f |2ydtdy

y2
)

1
2 (τ

∫∫

R2
+

A2−p′

c (f)(t,
y

2
)|∇ϕ|2ydtdy) 1

2

= I · II

Similarly to the proof of Theorem 5.4, we have

II2 ≤ c ‖ϕ‖2
BMOp

c
‖f‖2−p′

T p′

c
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Concerning the factor I, by (5.17) we have (recall p′ − 2 < 0)

I2 ≤ τ

∫∫

R2
+

2

∫ t+ y
4

t− y

4

A
p′−2

c (f)(x, y)dx|f(t, y)|2dtdy
y2

≤ 2τ

∫∫

R2
+

A
p′−2

c (f)(x, y)

∫ x+ y
4

x− y

4

|f(t, y)|2dtdxdy
y2

≤ −2τ

∫∫

R2
+

A
p′−2

c (f)(x, y)
∂A

2

c(f)

∂y
(x, y)dydx

= −4τ

∫∫

R2
+

A
p′−1

c (f)(x, y)
∂Ac(f)

∂y
(x, y)dydx

≤ −4τ

∫

R

A
p′−1

c (f)(x, 0)

∫

R+

∂Ac(f)

∂y
(x, y)dydx

≤ 4 ‖f‖p′

T p′

c

Thus

‖lϕ‖ ≤ c ‖ϕ‖BMOp
c
. (5.18)

Next we prove that ‖ϕ‖Hp
c
≤ cp ‖lϕ‖ . Since we can regard T p′

c as a closed subspace

of Lp′(L∞(R) ⊗M, L2
c(R̃

2
+)) via the map f(x, y) → f(x, y)χ{|x−t|<y}. lϕ extends to a

linear functional on Lp′(L∞(R)⊗M, L2
c(R̃

2
+)) with the same norm. Then there exists

h ∈ Lp(L∞(R) ⊗M, L2
c(R̃

2
+)) such that ‖h‖

Lp(L∞(R)⊗M,L2
c( f

R2
+))

≤ ‖lϕ‖ and

lϕ(f) = τ

∫

R

∫∫

|x−t|<y

f(x, y)h∗(x, y, t)dx
dy

y2
dt

= τ

∫∫

R2
+

f(x, y)

∫ x+y

x−y

h∗(x, y, t)dtdx
dy

y2
.

for every f(x, y) ∈ T p′

c . Thus

∇ϕ(x, y)y =
1

y

∫ x+y

x−y

h(x, y, t)dt. (5.19)
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Then

‖ϕ‖2
Hp

c
= (τ

∫

R

(

∫∫

Γ

|1
y

∫ x+s+y

x+s−y

h(x+ s, y, t)dt|2dxdy
y2

)
p

2ds)
2
p

≤ (τ

∫

R

(

∫∫

R2
+

1

y

∫ s+2y

s−2y

|h(x, y, t)|2dtdxdy
y2

)
p

2ds)
2
p

=

∥∥∥∥∥∥∥∥

∫∫

R2
+

1

y

∫ s+2y

s−2y

|h(x, y, t)|2dtdxdy
y2

∥∥∥∥∥∥∥∥
L

p
2 (L∞(R)⊗M)

Notice that, for every positive a with ‖a‖
L

(
p
2 )′

(L∞(R)⊗M)
≤ 1, by (4.10) and (4.2) we

have

τ

∫

R

∫∫

R2
+

1

y

∫ s+2y

s−2y

|h(x, y, t)|2dtdxdy
y2
a(s)ds

= τ

∫

R

∫∫

R2
+

|h(x, y, t)|21

y

∫ t+2y

t−2y

a(s)dsdx
dy

y2
dt

≤ 8τ

∫

R

+∞∑

n=−∞

∫ 2n−1

2n−2

∫

R

|h(x, y, t)|2dxdy
y2

1

2n+1

∫ t+2n

t−2n

a(s)dsdt

≤ 8

∥∥∥∥∥∥∥

∫∫

R2
+

|h(x, y, t)|2dxdy
y2

∥∥∥∥∥∥∥
L

p
2 (L∞(R)⊗M)

∥∥∥∥sup
n

| 1

2n+1

∫ t+2n

t−2n

a(s)ds|
∥∥∥∥

L
(

p
2 )′

(L∞(R)⊗M)

≤ cp ‖h‖2

Lp(L∞(R)⊗M,L2
c( f

R2
+))

≤ cp ‖lϕ‖2

Therefore by taking the supremum over all a as above, we obtain

‖ϕ‖2
Hp

c
≤ cp ‖lϕ‖2

Combining this with (5.18) we get

‖ϕ‖Hp
c
≤ cp ‖ϕ‖BMO

p
c
.
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Then ‖ϕ‖Hp
c

⋍ ‖ϕ‖BMO
p
c

for every ϕ ∈ Hp
c(R,M).

To prove BMOp
c(R,M) and Hp

c(R,M) are the same space, it remains to show

that the family of SM-simple functions is dense in BMOp
c(R,M). From the proof

of Theorem 5.4 we can see that for every ϕ ∈ BMOp
c(R,M), there exists a h ∈

L
∞

(L
∞

(R)⊗M, L2
c) such that ϕ = Ψ(h) and ‖Ψ(h)‖BMOp

c
≤ c ‖h‖Lp(L∞(R)⊗M,L2

c) . Re-

call that the family of “nice” h’s (i.e. h(x, y, t) =
∑n

i=1mifi(t)χAi
with mi ∈ SM, Ai ∈

Γ̃, |Ai| <∞ and with scalar valued simple functions fi) is dense in Lp(L∞(R)⊗M, L2
c).

Choose “nice” hn → h in Lp(L
∞

(R) ⊗ M, L2
c). Let ϕn = Ψ(hn). Then ϕn → ϕ in

BMOp
c(R,M). Since the ϕn’s are continuous functions with compact support, we can

approximate them by simple functions in BMOp
c(R,M). This shows the density of

simple functions in BMOp
c(R,M) and thus completes the proof of the theorem.

Remark. By the same idea used in the proof above, we can get the analogue of the

classical duality result for the tent spaces: (T p
c )∗ = T q

c (1 < p < ∞) with equivalent

norms, where T p
c is defined as (5.14).

Theorem 5.8 (i) Ψ extends to a bounded map from L∞(L∞(R)⊗M, L2
c(Γ̃)) into

BMOc(R,M) and

‖Ψ(h)‖BMOc
≤ c ‖h‖L∞(L∞(R)⊗M,L2

c) (5.20)

(ii) Ψ extends to a bounded map from Lp(L∞(R) ⊗M, L2
c(Γ̃)) into Hp

c(R,M)

(1 < p <∞)and

‖Ψ(h)‖Hp
c
≤ cp ‖h‖Lp(L∞(R)⊗M,L2

c) . (5.21)

(iii) The statements (i) and (ii) also hold with column spaces replaced by row

spaces.

Proof. (5.20) is Lemma 3.2. The part of (5.21) concerning p > 2 follows from Lemma

5.3 and Theorem 5.7. For 1 < p < 2, by the duality between Hp
c and BMOq

c, and



73

Theorem 5.7, we have

‖Ψ(h)‖Hp
c

≤ c sup
‖f‖

BMO
q
c
≤1

∣∣∣∣τ
∫

R

Ψ(h)(s)f ∗(s)ds

∣∣∣∣

≤ sup
‖f‖

H
q
c
≤1

∣∣∣∣∣∣
τ

∫

R

∫

R

∫∫

Γ

h(x, y, t)∇Py(x+ t− s)dxdydtf ∗(s)ds

∣∣∣∣∣∣

= sup
‖f‖

H
q
c
≤c

∣∣∣∣∣∣
τ

∫

R

∫∫

Γ

h(x, y, t)∇f ∗(x+ t, y)dxdydt

∣∣∣∣∣∣
≤ c ‖h‖Lp(L∞(R)⊗M,L2

c) . (5.22)

When p = 2, similarly but taking supremum over ‖f‖H2
c
≤ 1 in the formula above,

we have‖Ψ(h)‖H2
c
≤ ‖h‖L2(L∞(R)⊗M,L2

c) .

Corollary 5.9 (Hp
c(R,M))∗ = Hq

c(R,M) with equivalent norms for all 1 < p <∞.
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CHAPTER VI

REDUCTION OF BMO TO DYADIC BMO

Our approach in Chapter IV towards the maximal inequality is to reduce it to the

corresponding maximal inequality for dyadic martingales. In this chapter, we pursue

this idea. We will see that BMO spaces can be characterized as intersections of

dyadic BMO. This result has many consequences. It will be used in the next chapter

for interpolation too.

6.1. BMO is the intersection of two dyadic BMO

Consider an increasing family of σ-algebras F ={Fn}n∈Z on R. Assume that each

Fn is generated by a sequence of atoms {F k
n}k∈Z. We are going to introduce the

BMOq spaces for martingales with respect to F ={Fn}n∈Z. Let 2 < q ≤ ∞ and

ϕ ∈ Lq(M, L2
c(R,

dt
1+t2

)). Define

ϕ#
Fn

(t) =
1

|F k
n |

∫

F k
n∋t

|ϕ(x) − ϕF k
n
|2dx

For ϕ ∈ Lq(M, L2
c(R,

dt
1+t2

))(resp. Lq(M, L2
r(R,

dt
1+t2

))), let

‖ϕ‖BMOq,F
c

=

∥∥∥∥sup
n

|ϕ#
Fn
|
∥∥∥∥

1
2

q

2

and ‖ϕ‖BMOq,F
r

= ‖ϕ∗‖BMOq,F
c
.

And set

BMOq,F
c (L∞(R) ⊗M) = {ϕ ∈ Lq(M,L2

c(R,
dt

1 + t2
)), ‖ϕ‖BMOq,F

c
<∞},

BMOq,F
r (L∞(R) ⊗M) = {ϕ ∈ Lq(M, L2

r(R,
dt

1 + t2
)), ‖ϕ‖BMOq,F

r
<∞}.

Define BMOq,F
cr to be the intersection of BMOq,F

c and BMOq,F
r with the intersection

norm max{‖ϕ‖BMOq,F
c
, ‖ϕ‖BMOq,F

r
}. These BMOq spaces were already studied in [18]
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for general non-commutative martingales.

In the following, we will consider the spaces BMOq,D
c (L∞(R)⊗M), BMOq,D′

c (L∞(R)⊗

M), BMOq,D
r (L∞(R) ⊗M), BMOq,D′

r (L∞(R) ⊗M) etc. with respect to the families

D,D′

of dyadic σ-algebras defined in Chapter IV.

Theorem 6.1 Let 2 < q ≤ ∞. With equivalent norms,

BMOq
c(R,M) = BMOq,D

c (L∞(R) ⊗M) ∩ BMOq,D′

c (L∞(R) ⊗M);

BMOq
r(R,M) = BMOq,D

r (L∞(R) ⊗M) ∩ BMOq,D′

r (L∞(R) ⊗M);

BMOq
cr(R,M) = BMOq,D

cr (L∞(R) ⊗M) ∩ BMOq,D′

cr (L∞(R) ⊗M).

Proof. From Proposition 4.1, ∀t ∈ R, h ∈ R+ × R+, there exist kt,h, Nh ∈ Z such

that Ih,t := (t− h1, t+ h2] is contained in D
kt,h

Nh
or D

′kt,h

Nh
and

|Dkt,h

Nh
| = |D′kt,h

Nh
| ≤ 6(h1 + h2).

If Ih,t ⊂ D
kt,h

Nh
, then

ϕ#
h (t) =

1

h1 + h2

∫ t+h2

t−h1

|ϕ(x) − ϕIh,t
|2dx

≤ 4

h1 + h2

∫ t+h2

t−h1

|ϕ(x) − ϕ
D

kt,h
Nh

|2dx

≤ 24

|Dkt,h

Nh
|

∫

D
kt,h
Nh

|ϕ(x) − ϕ
D

kt,h
Nh

|2dx

≤ 24ϕ#
DNh

(t).

Similarly, if Ih,t ⊂ D
′kt,h

Nh
, then

ϕ#
h (t) ≤ 24ϕ#

D
′

Nh

(t).
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Thus

‖ϕ‖BMOq
c

=

∥∥∥∥ sup
h∈R+×R+

|ϕ#
h |
∥∥∥∥

1
2

q

2

≤
√

24

∥∥∥∥sup
n

|(ϕ#
Dn

+ ϕ#

D′
n

)|
∥∥∥∥

1
2

q

2

≤ 4
√

3max(‖ϕ‖BMOq,D
c
, ‖ϕ‖

BMOq,D
′

c

).

It is trivial that max(‖ϕ‖BMOq,D
c
, ‖ϕ‖

BMOq,D
′

c

) ≤ ‖ϕ‖BMOq
c
. Therefore

BMOq
c(R,M) = BMOq,D

c (L∞(R) ⊗M) ∩ BMOq,D
′

c (L∞(R) ⊗M)

with equivalent norms. The two other equalities in the theorem are immediate con-

sequences of this.

6.2. The equivalence of Hp
cr(R,M) and Lp(L∞(R) ⊗M)(1<p<∞)

We denote the non-commutative martingale Hardy spaces defined in [33] and [18]

with respect to D and D′

by Hp,D
c (L∞(R)⊗M),Hp,D′

c (L∞(R)⊗M) etc.(1 ≤ p <∞).

Note that

H2
c(R,M) = H2,D

c (L∞(R) ⊗M) = H2,D′

c (L∞(R) ⊗M) = L2(L∞(R) ⊗M).

By Theorems 5.4, 6.1 and the duality equality (Hp,D
c (L∞(R)⊗M))∗ = BMOq,D

c (L∞(R)⊗

M) proved in [18], we get the following result.

Corollary 6.2 BMOq
cr(R,M) = Lq(L∞(R)⊗M) with equivalent norms for 2 < q <

∞.

Proof. From the inequalities (4.5) and (4.7) of [18] we have

BMOq,D
c (L∞(R) ⊗M) ∩ BMOq,D

r (L∞(R) ⊗M)
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= Lq(L∞(R) ⊗M)

= BMOq,D′

c (L∞(R) ⊗M) ∩ BMOq,D′

r (L∞(R) ⊗M)

with equivalent norms. Therefore, by Theorem 6.1

BMOq
cr(R,M)

= BMOq
c(R,M) ∩ BMOq

r(R,M)

= BMOq,D
c (L∞(R) ⊗M) ∩ BMOq,D

r (L∞(R) ⊗M)

∩BMOq,D′

c (L∞(R) ⊗M) ∩ BMOq,D′

r (L∞(R) ⊗M)

= Lq(L∞(R) ⊗M).

Corollary 6.3 If 1 ≤ p < 2, then

Hp
c(R,M) = Hp,D

c (L∞(R) ⊗M) + Hp,D′

c (L∞(R) ⊗M),

Hp
r(R,M) = Hp,D

r (L∞(R) ⊗M) + Hp,D′

r (L∞(R) ⊗M),

Hp
cr(R,M) = Hp,D

cr (L∞(R) ⊗M) + Hp,D′

cr (L∞(R) ⊗M).

If p ≥ 2, then

Hp
c(R,M) = Hp,D

c (L∞(R) ⊗M) ∩Hp,D′

c (L∞(R) ⊗M),

Hp
r(R,M) = Hp,D

r (L∞(R) ⊗M) ∩Hp,D′

r (L∞(R) ⊗M),

Hp
cr(R,M) = Hp,D

cr (L∞(R) ⊗M) ∩Hp,D′

cr (L∞(R) ⊗M).

Corollary 6.4 Hp
cr(R,M) = Lp(L∞(R)⊗M) with equivalent norms for all 1 < p <

∞.

Proof. Recall the result

Hp,D
cr (L∞(R) ⊗M) = Lp(R,M) = Hp,D′

cr (L∞(R) ⊗M)
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proved in [33] and [18]. By Corollary 6.3, for 1 < p < 2, we have

Hp
cr(R,M) = Hp

c(R,M) + Hp
r(R,M)

= Hp,D
c (L∞(R) ⊗M) + Hp,D′

c (L∞(R) ⊗M)

+Hp,D
r (L∞(R) ⊗M) + Hp,D′

r (L∞(R) ⊗M)

= Hp,D
cr (L∞(R) ⊗M) + Hp,D′

cr (L∞(R) ⊗M)

= Lp(L∞(R) ⊗M)

and, for 2 ≤ p <∞,

Hp
cr(R,M) = Hp

c(R,M) ∩Hp
c(R,M)

= Hp,D
c (L∞(R) ⊗M) ∩Hp,D′

c (L∞(R) ⊗M)

∩Hp,D
r (L∞(R) ⊗M) ∩Hp,D′

r (L∞(R) ⊗M)

= Hp,D
cr (L∞(R) ⊗M) ∩Hp,D′

cr (L∞(R) ⊗M)

= Lp(L∞(R) ⊗M).

Remark. In [15] and [16], M. Junge, C. Le Merdy and Q. Xu studied the Littlewood-

Paley theory for semigroups on non-commutative Lp-spaces. Among many results,

they proved, in particular, that for many nice semigroups, the corresponding non-

commutative Hardy spaces defined by the Littlewood-Paley g-function coincide with

the underlying non-commutative Lp-spaces (1 < p < ∞). In their viewpoint, the

semigroup in the context of our paper is the Poisson semigroup tensorized by the

identity of Lp(M). This semigroup satisfies all assumptions of [16]. Thus if we define

our Hardy spaces Hp
cr(R,M) by the g-function Gc(f) and Gr(f) (which is the same

as that defined by Sc(f) and Sr(f) in virtue of Theorem 5.6), then Corollary 6.4 is a

particular case of a general result from [16]. We should emphasize that the method
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in [16] is completely different from ours. It is based on the H∞ functional calculus. It

seems that the method in [16] does not permit to deal with the Lusin square functions

Sc(f) and Sr(f).
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CHAPTER VII

INTERPOLATION

In this chapter, we consider interpolation for non-commutative Hardy spaces and

BMO. The main results in this chapter are function space analogues of those in [27]

for non-commutative martingales. On the other hand, they are also the extensions

to the present non-commutative setting of the scalar results in [13]. Recall that

the non-commutative Lp spaces associated with a semifinite von Neumann algebra

form an interpolation scale with respect to both the complex and real interpolation

methods. And, as the column (resp. row) subspaces of Lp(M⊗B(L2(Ω))) , the spaces

Lp(L
∞

(R) ⊗M, L2
c(Γ̃)) form an interpolation scale also.

7.1. Complex interpolation

We first consider complex interpolation.

Let BMOD
c (L∞(R) ⊗ M) and Hp,D

c (L∞(R) ⊗ M) (resp. BMOD′

c (L∞(R) ⊗ M)

and Hp,D′

c (L∞(R) ⊗ M)) (1 ≤ p < ∞) be the non-commutative martingale BMO

spaces and Hardy spaces defined in [18] with respect to the usual dyadic filtration D

(resp. the dyadic filtration D′) described in Chapter IV.

Lemma 7.1 For 1 < p <∞, we have

(BMOD
c (L∞(R) ⊗M),H1,D

c (L∞(R) ⊗M)) 1
p

= Hp,D
c (L∞(R) ⊗M), (7.1)

(BMOD
r (L∞(R) ⊗M),H1,D

r (L∞(R) ⊗M)) 1
p

= Hp,D
r (L∞(R) ⊗M), (7.2)

(X, Y ) 1
p

= Lp(L∞(R) ⊗M). (7.3)

where X = BMOD
cr(L

∞(R) ⊗ M) or L∞(L∞(R) ⊗ M) and Y = H1,D
cr (L∞(R) ⊗

M) or L1(L∞(R) ⊗ M). Moreover, the same results hold for BMOD′

c (L∞(R) ⊗ M)
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and Hp,D′

c (L∞(R) ⊗M).

Proof. For each k ∈ N and each projection p of M with τ(p) < ∞, denote by

Hq,D
c (L∞(−2k, 2k)⊗ pMp) the subspace of Hq,D

c (L∞(R)⊗M) consisting of elements

supported on (−2k, 2k) and with values in pMp. By dualizing Theorem 3.1 of [27]

we get, for 1 < r ≤ q <∞,

(
H1,D

c (L∞(−2k, 2k) ⊗ pMp),H
r

r−1
,D

c (L∞(−2k, 2k) ⊗ pMp)
)

r
q

= H
q

q−1
,D

c (L∞(−2k, 2k) ⊗ pMp).

Note that the union of all these Hr,D
c (L∞(−2k, 2k)⊗ pMp) is dense in Hr,D

c (L∞(R)⊗

M). By approximation we get

(H1,D
c (L∞(R) ⊗M),H

r
r−1

,D
c (L∞(R) ⊗M)) r

q
= H

q

q−1
,D

c (L∞(R) ⊗M) (7.4)

Dualizing (7.4) we have

(BMOD
c (L∞(R) ⊗M),Hr,D

c (L∞(R) ⊗M)) r
q

= Hq,D
c (L∞(R) ⊗M). (7.5)

Combining (7.4) and (7.5) we get (7.1) by Wolff’s interpolation theorem (see [39]).

The equalities (7.2), (7.3) and the arguments for the dyadic filtration D′ can be proved

similarly.

Theorem 7.2 Let 1 < p <∞. Then with equivalent norms,

(BMOc(R,M),H1
c(R,M)) 1

p
= Hp

c(R,M), (7.6)

(BMOr(R,M),H1
r(R,M)) 1

p
= Hp

r(R,M), (7.7)

(X, Y ) 1
p

= Lp(L∞(R) ⊗M). (7.8)

where X = BMOcr(R,M) or L∞(L∞(R) ⊗M) and Y = H1
cr(R,M) or L1(L∞(R) ⊗

M).
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Proof. Note that

H2
c(R,M) = H2,D

c (R,M) = H2,D′

c (R,M).

Let 2 < q <∞. By Theorem 6.1 and Lemma 7.1 we have

(BMOc(R,M),H2
c(R,M)) 2

q

= (BMOD
c (L∞(R) ⊗M) ∩ BMOD′

c (L∞(R) ⊗M),H2
c(R,M)) 2

q

⊆ (BMOD
c (L∞(R) ⊗M),H2

c(R,M)) 2
q
∩ (BMOD′

c (L∞(R) ⊗M),H2
c(R,M)) 2

q

⊆ Hq,D
c (L∞(R) ⊗M) ∩Hq,D

′

c (L∞(R) ⊗M)

= Hq
c(R,M).

Then by duality

(H1
c(R,M),H2

c(R,M)) 2
q
⊇ Hq′

c (R,M). (7.9)

The converse of (7.9) can be easily proved since the map Φ defined by Φ(f) = ∇f(x+

t, y)χΓ(x, y) is isometric fromHq′

c (R,M) to Lq′(L∞(R) ⊗M, L2
c(Γ̃)) for q ≥ 1. Thus

we have

(H1
c(R,M),H2

c(R,M)) 2
q

= Hq′

c (R,M). (7.10)

Dualizing this equality once more, we get

(BMOc(R,M),H2
c(R,M)) 2

q
= Hq

c(R,M). (7.11)

Note that by Proposition 4.1 and Theorem 5.8, Hq
c is complemented in Lq(L

∞

(R) ⊗

M, L2
c(Γ̃))(1 < q < ∞) via the embedding Φ. Hence, from the interpolation result

(2.3) we have

(Hq
c(R,M),Hq′

c (R,M)) 1
2

= H2
c(R,M) (7.12)

Combining (7.10), (7.11) and (7.12) we get (7.6) by Wolff’s interpolation theorem
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(see [39]). (7.7) can be proved similarly. For (7.8), by Lemma 7.1 and Theorem 5.1,

(BMOcr(R,M), L1(L∞(R) ⊗M)) 1
p

= (BMOD
cr(L

∞(R) ⊗M) ∩ BMOD′

cr (L∞(R) ⊗M), L1(L∞(R) ⊗M)) 1
p

⊆ (BMOD
cr(L

∞(R) ⊗M), L1(L∞(R) ⊗M)) 1
p

∩(BMOD′

cr (L∞(R) ⊗M), L1(L∞(R) ⊗M)) 1
p

= Lp(L∞(R) ⊗M)

On the other hand, since BMOcr(R,M) ⊃ L∞(L∞(R) ⊗M),

(BMOcr(R,M), L1(L∞(R) ⊗M)) 1
p

⊇ (L∞(L∞(R) ⊗M), L1(L∞(R) ⊗M)) 1
p

= Lp(L∞(R) ⊗M).

Therefore,

(BMOcr(R,M), L1(L∞(R) ⊗M)) 1
p

= Lp(L∞(R) ⊗M).

By duality we have

(L∞(L∞(R) ⊗M),H1
cr(R,M)) 1

p
= Lp(L∞(R) ⊗M).

Finally,

(L∞(L∞(R) ⊗M),H1
cr(R,M)) 1

p
⊆ (BMOcr(R,M),H1

cr(R,M)) 1
p

⊆ (BMOcr(R,M), L1(L∞(R) ⊗M)) 1
p
.

Hence

(BMOcr(R,M),H1
cr(R,M)) 1

p
= Lp(L∞(R) ⊗M).
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Thus we have obtained all equalities in the theorem.

Remark. We know little about (BMOc(R,M), L1(L∞(R) ⊗M) 1
p

even for p = 2.

7.2. Real interpolation

The following theorem concerns real interpolation.

Theorem 7.3 Let 1 ≤ p <∞. Then with equivalent norms,

(X, Y ) 1
p
,p = Lp(L∞(R) ⊗M). (7.13)

where X = BMOcr(R,M) or L∞(L∞(R) ⊗M) and Y = H1
cr(R,M) or L1(L∞(R) ⊗

M).

Proof. By Theorem 4.3 of [27] and Theorem 6.1 we have (using the same argument

as above for the complex method)

(BMOcr(R,M), L1(L∞(R) ⊗M)) 1
p
,p ⊆ Lp(L∞(R) ⊗M).

On the other hand, for 1 < p <∞,

(BMOcr(R,M), L1(L∞(R) ⊗M)) 1
p
,p ⊇ (L∞(L∞(R) ⊗M), L1(L∞(R) ⊗M)) 1

p
,p

= Lp(L∞(R) ⊗M).

Therefore

(BMOcr(R,M), L1(L∞(R) ⊗M)) 1
p
,p = Lp(L∞(R) ⊗M), 1 < p <∞.

By duality we have

(L∞(L∞(R) ⊗M),H1
cr(R,M)) 1

p
,p = Lp(L∞(R) ⊗M), 1 < p <∞.
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Noting again that

(L∞(L∞(R) ⊗M),H1
cr(R,M)) 1

p
,p ⊆ (BMOcr(R,M),H1

cr(R,M)) 1
p
,p

⊆ (BMOcr(R,M), L1(L∞(R) ⊗M)) 1
p
,p,

we conclude

BMOcr(R,M),H1
cr(R,M)) 1

p
,p = Lp(L∞(R) ⊗M)), 1 < p <∞.

7.3. Fourier multipliers

We close this chapter with a result on Fourier multipliers. Recall that H1(R) denotes

the classical Hardy space on R. We will also need H1(R, H), the H1 on R with values

in a Hilbert space H. Recall that we say a bounded map M : H1(R)→H1(R) is a

Fourier multiplier if there exists a function m ∈ L∞(R) such that

M̂f = mf̂, ∀f ∈ H1(R)

where f̂ is the Fourier transform of f.

Theorem 7.4 Let M be a Fourier multiplier of the classical Hardy space H1(R).

Then M extends in a natural way to a bounded map on BMOc(R,M) and Hp
c(R,M)

for all 1 ≤ p <∞ and

‖M : BMOc(R,M) → BMOc(R,M)‖ ≤ c ‖M : H1(R) → H1(R)‖ , (7.14)

‖M : Hp
c(R,M) → Hp

c(R,M)‖ ≤ c ‖M : H1(R) → H1(R)‖ . (7.15)

Similar assertions also hold for BMOr(R,M),BMOcr(R,M),Hp
c(R,M) and Hp

cr(R,M).

Proof. Assume ‖M : H1(R) → H1(R)‖ = 1. Let H be the Hilbert space on which

M acts. We start by showing the (well known) fact that M is bounded on H1(R, H).
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Denote by R the Hilbert transform. Recall that ‖f‖H1(R,H) ⋍ ‖f‖L1(R,H)+‖Rf‖L1(R,H)

for every f ∈ H1(R, H). Denote by {eλ}λ∈Λ the orthogonal normalized basis of H.

Then f = (fλ)λ∈Λ with fλ = 〈eλ, f〉eλ. Note that if f ∈ H1(R, H) then at most

countably many fλ’s are non zero. Let ε = (εn)n∈N be a sequence of independent

random variables on some probability space (Ω, P ) such that P (εn = 1) = P (εn =

−1) = 1
2
, ∀n ∈ N.Notice that MR = RM. Let f ∈ H1(R, H). Let {λn : n ∈ N} be

an enumeration of the λ’s such that fλ 6 =0. Then by Khintchine’s inequality,

‖Mf‖H1(R,H) ⋍

∫

R

((
∑

n∈N

|Mfλn
|2) 1

2 + (
∑

n∈N

|RMfλn
|2) 1

2 )dt

⋍

∫

R

∫

Ω

|
∑

n∈N

εnMfλn
|dP (ε)dt+

∫

R

∫

Ω

|
∑

n∈N

εnMRfλn
|dP (ε)dt

⋍

∫

Ω

∥∥∥∥∥M(
∑

n∈N

εnfλn
)

∥∥∥∥∥
H1(R,H)

dP (ε)

≤ c

∫

Ω

∥∥∥∥∥
∑

n∈N

εnfλn

∥∥∥∥∥
H1(R,H)

dP (ε)

≤ c ‖f‖H1(R,H)

Therefore, as announced

∥∥M : H1(R, H) → H1(R, H)
∥∥ ≤ c1.

Then by transposition

‖M : BMO(R, H) → BMO(R, H)‖ ≤ c2;

whence, in virtue of (2.16),

‖M : BMOc(R,M) → BMOc(R,M)‖ ≤ c2.
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Thus by duality
∥∥M : H1

c(R,M) → H1
c(R,M)

∥∥ ≤ c3.

Then by Theorem 7.1 we have

‖M : Hp
c(R,M) → Hp

c(R,M)‖ ≤ c4.

Hence we have obtained the assertion concerning the column spaces. The other

assertions are immediate consequences of this one.

Very recently, Junge and Musat got a John-Nirenberg theorem for BMO spaces of

noncommutative martingales (see [17]). By using Proposition 4.1 and the dyadic trick

of this dissertation, they got a John-Nirenberg theorem for noncommutative BMO

spaces discussed here (which can also be proved as a consequence of the interpolation

results established in this chapter). Unlike the classical case, the value of

sup
I⊂R

∥∥∥∥∥

(
1

|I|

∫

I

|ϕ− ϕI |pdµ
) 1

p

∥∥∥∥∥
M

(7.16)

for different p, 0 < p <∞ are no longer equivalent to each other. In fact, if M = Mn

the algebra of n by n matrices, it can be proved that the best constant cn such that

sup
I⊂R

∥∥∥∥
1

|I|

∫

I

|ϕ− ϕI |2dµ
∥∥∥∥

1
2

Mn

≤ cn sup
I⊂R

∥∥∥∥
1

|I|

∫

I

|ϕ− ϕI |dµ
∥∥∥∥

Mn

, (7.17)

holds for all ϕ ∈ BMOc(R,Mn) will be at least c logn as n→ ∞. And the correspond-

ing constant for Mn valued martingales could be cn
1
2 if no additional assumption on

the related filtration. What remains true is the equivalence of

sup
I⊂R

sup
τ |a|p≤1

|I|− 1
p ‖(f − fI)aχI‖Lp(R,M) + sup

I⊂R

sup
τ |a|p≤1

|I|− 1
p ‖aχI(f − fI)‖Lp(R,M) (7.18)
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for different p, 2 ≤ p <∞ (see Theorem 1.2 of [17]) and the equivalence of

sup
cube I⊂R

sup
τ |a|p≤1,

{|I|− 1
p ‖(f − fI)aχI‖Hp

c(R,M)} (7.19)

for different p, 2 ≤ p <∞. See [17], [26] for more information on this.
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CHAPTER VIII

NONCOMMUTATIVE JOHN-NIRENBERG INEQUALITY

8.1. Introduction and preliminaries

The classical BMO spaces have been successfully extended to the non-commutative

setting in the last several years. A lot of work has been done on this subject (see

[33], [18], [23], [27], [28] ). We recall their definition in the tricial case. Let M be a

von Neuman algebra with a semifinite trace τ. Mn is an increasing filtration of von

Neumann subalgebras of M such that ∪n≥0Mn generates M (in the w∗− topology).

Denote by En the conditional expectation of M with respect to Mn. A sequence

x = (xk) ∈ Lp(M) is called a non-commutative martingale if xk ∈ Lp(Mk) and

Ekxm = xk, ∀k ≤ m. Denote dkx = xk − xk−1. The BMO spaces of non-commutative

martingales are defined for x = (xk) ∈ L1(M) as below:

BMOc(M) = {x : ||x||BMOc(M) = sup
n

∥∥∥∥∥En|
∞∑

k=n

dkx|2
∥∥∥∥∥

1
2

M

<∞};

BMOr(M) = {x : ||x||BMOr(M) = ||x∗||BMOc(M) <∞};

BMOcr(M) = {x : ||x||BMOcr(M) = max{||x||BMOc(M), ||x||BMOr(M)} <∞}.

We can also consider BMO spaces for operator valued functions that are defined

for f ∈ L∞(M, L2
c(R,

1
1+|t|2

dt)) as follows:

BMOc(R,M) = {f : ‖f‖BMOc
= sup

interval I⊂R

{
∥∥∥∥∥

(
1

|I|

∫

I

(f − fI)
∗(f − fI)dµ

)1
2

∥∥∥∥∥
M

<∞};

BMOr(R,M) = {f : ‖f‖BMOr = ‖f ∗‖BMOc
<∞};

BMOcr(R,M) = {f : ‖f‖BMOcr
= max{‖f‖BMOc

, ‖f‖BMOr} <∞}.

In [17], a non-commutative version of John-Nirenberg theorem was proved by consid-
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ering the norms

|| · ||BMOp
c (M) = sup

τ |a|p≤1,a∈Lp(Mn)

‖(x− xn−1)a‖Lp(M)

. For the convenience of the reader, we state it as follows:

Theorem 8.1 (Junge, Musat)For 2 ≤ p <∞,

c||x||BMOcr(M) ≤ max{||x||BMOp
c(M), ||x∗||BMOp

c(M)} ≤ cp||x||BMOcr(M).

This theorem does not hold if considering the column case or the row case sep-

arately, while we need to work on the column case and the row case separately very

often; for example the non-commutative H1− BMO duality theorem is proved for the

column case and the row case separately. In this chapter, we get a non-commutative

John-Nirenberg theorem in the column case and the row case separately. We in-

troduce a new series of BMO norms for the non-commutative martingales and non-

commutative functions as follows.

Definition 8.2 For martingale difference (dkx) ∈ L1(M), 2 ≤ p <∞, we define

||x||BMO
∞p
c (M) = sup

τ |a|p≤1,a∈Lp(Mn)

∥∥∥∥∥(
∞∑

k=n

dkx)a

∥∥∥∥∥
Hp

c (M)

;

||x||BMO
∞p
r (M) = sup

τ |a|p≤1,a∈Lp(Mn)

∥∥∥∥∥a(
∞∑

k=n

dkx)

∥∥∥∥∥
Hp

r(M)

;

||x||BMO
∞p
cr (M) = max{||x||BMO

∞p
c (M), ||x||BMO

∞p
r (M)}.

It is easy to verify that || · ||BMO
∞p
c (M) (|| · ||BMO

∞p
r (M), || · ||BMO

∞p
c (M)) are norms.

When p = 2 they coincide with the norms || · ||BMOc(M) (|| · ||BMOr(M), || · ||BMOcr(M))

defined in [33] and [18].

Definition 8.3 For operator valued functions f ∈ L∞(M, L2
c(R

n, 1
1+|t|2

dt)), 2 ≤ p <
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∞, we define

||f ||BMO
∞p
c (R,M) = sup

cube I⊂R

sup
τ |a|p≤1,

|I|− 1
p ‖(f − fI)aχI‖Hp

c(R,M) ;

||f ||BMO
∞p
c (R,M) = sup

cube I⊂R

sup
τ |a|p≤1,

|I|− 1
p ‖a(f − fI)χI‖Hp

c(R,M) ;

||f ||BMO
∞p
cr (R,M) = max{||f ||BMO

∞p
c (R,M), ||f ||BMO

∞p
r (R,M)}.

where fI = |I|−1
∫

I
fds.

It is easy to verify that || · ||BMO
∞p
c (R,M) (|| · ||BMO

∞p
r (R,M), || · ||BMO

∞p
c (R,M)) are

norms. When p = 2 they coincide with the norms || · ||BMOc(R,M) (|| · ||BMOr(R,M), || ·

||BMOcr(R,M)) defined in Chapter II. We will prove in the next section that is the case

for all 2 ≤ p <∞.

8.2. Main results

Lemma 8.1 For 2 ≤ p <∞, we have

cp−1||b||M ≤ sup
τ |a|p≤1

||ba||Hp
c(M) ≤ cp

1
2 ||b||M.

Proof. Note || · ||Hp
c(M) ≤ cp

1
2 || · ||Lp(M) (see [36], Remark 5.4 as a reference for

the constant we use here), we have

sup
τ |a|p≤1

||ba||Hp
c(M) ≤ cp

1
2 sup

τ |a|p≤1

||ba||Lp(M) = cp
1
2 ||b||M.

For the first inequality, without loss of generality assume ||b||M = 1. Note that for

self adjoint x ∈ M, ||x||Lp(M) ≤ cp||x||Hp
c(M) (see [36], Remark 5.4). Then

||b∗||M = sup
τ |f |2p≤1

||fb∗||L2p

= sup
τ |f |2p≤1

||b|f |2b∗||
1
2
Lp
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≤ cp
1
2 sup

τ |f |2p≤1

||b|f |2b∗||
1
2

Hp
c(M)

≤ cp
1
2 sup

τ |a|p≤1

||ba||
1
2

Hp
c(M)

.

And then cp−1||b||M ≤ supτ |a|p≤1 ||ba||Hp
c(M).

Theorem 8.2 For 2 ≤ p <∞,

cp−1||x||BMO
∞2
c (M) ≤ ||x||BMO

∞p
c (M) ≤ cp||x||BMO

∞2
c (M).

cp−1||x||BMO
∞2
r (M) ≤ ||x||BMO

∞p
r (M) ≤ cp||x||BMO

∞2
r (M).

Proof. We only prove the inequalities for the column case, the row case can be

proved similarly. By the previous lemma and Hölder’s inequality, we have

||En

∞∑

k=n

|dkx|2||2M

≤ sup
τb≤1,b≥0

τ

∞∑

k=n

|dkx|2b+ ||xn − xn−1 ||2M

= sup
τb≤1,b≥0

τ

∞∑

k=n

|(dkx)b
1
p |2b

p−2
p + cp2 sup

τ |a|p≤1

||(xn − xn−1)a||2Hp
c(M)

≤ sup
τb≤1,b≥0

∥∥∥∥∥
∞∑

k=n

|(dkx)b
1
p |2
∥∥∥∥∥

L
p
2

∥∥∥b
p−2

p

∥∥∥
L(

p
2 )′

+ cp2 sup
τ |a|p≤1

||(xn − xn−1)a||2Hp
c(M)

≤ sup
τb≤1,b≥0

∥∥∥(x− xn)b
1
p

∥∥∥
Hp

c(M)
+ cp2 sup

τ |a|p≤1

||(xn − xn−1)a||2Hp
c(M)

≤ cp2 sup
τ |a|p≤1,a∈Lp(Mn)

‖(x− xn−1)a‖2
Hp

c(M) = cp2||x||2
BMO

∞p
c (M)

.

By taking the suprem over n, we get the first inequality. Conversely, by the previous

lemma,

||x||BMO
∞p
c (M) ≤ sup

τ |a|p≤1,a∈Lp(Mn)

‖(x− xn)a‖Hp
c(M) + sup

τ |a|p≤1

||(xn − xn−1)a||Hp
c(M)

≤ sup
τ |a|p≤1,a∈Lp(Mn)

‖(x− xn)a‖Hp
c(M) + cp

1
2 ||xn − xn−1||M

≤ sup
τ |a|p≤1,a∈Lp(Mn)

∥∥(dkxa)
∞
k=n+1

∥∥
Lp(M,l2c)

+ cp
1
2 ||x||BMO

∞2
c (M). (8.1)
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Note, by the Hahn Banach theorem and the duality between H1
c(M) and BMO∞2

c (M)

(for the general case, see [18]), there exists a (bn)∞n=1 ∈ L∞(M, l2c) such that

‖(bn)∞n=1‖Lp(M,l2c) = ||x||BMO
∞2
c (M).

and

dkx = Ekbk −Ek−1bk.

Thus by Hölder’s inequality and the Stein inequality for non-commutative martin-

gales:

sup
τ |a|p≤1,a∈Lp(Mn)

∥∥(dkxa)
∞
k=n+1

∥∥
Lp(M,l2c)

≤ sup
τ |a|p≤1,a∈Lp(Mn)

∥∥(Ek(bka))
∞
k=n+1

∥∥
Lp(M,l2c)

+ sup
τ |a|p≤1,a∈Lp(Mn)

‖(Ekbka)
∞
k=n‖Lp(M,l2c)

≤ cp sup
τ |a|p≤1,a∈Lp(Mn)

∥∥(bka)∞k=n+1

∥∥
Lp(M,l2c)

= cp sup
τ |a|p≤1,a∈Lp(Mn)

∥∥∥∥∥|a|
1
2 (

∞∑

k=1

|bk|2)
1
2 |a| 12

∥∥∥∥∥
Lp(M)

≤ cp

∥∥∥∥∥
∞∑

k=1

|bk|2
∥∥∥∥∥

1
2

L∞(M)

= cp||x||BMO
∞2
c (M).

Combining this with (8.1) we finishes the proof.

Remark 8.1 From the proof of this theorem, when considering the regular case (i.e.

there exists a positive constant d such that Enx ≤ dEn−1x for all n ∈ N, x ∈ M+.)

we can have ||x||BMO
∞2
c (M) ≤ c||x||BMO

∞p
c (M) for an absolute constant c.

By the dyadic trick interpreted in Chapter IV and Chapter VI (Proposition 4.1,

Corollary 6.3), we could deduce similar results for the BMO spaces of operator valued

functions from the previous theorem. But the constants will not be good when we

consider functions defined on R for big n’s. In the following, we give a direct proof
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for the function case.

Theorem 8.3 For f ∈ L∞(M, L2
c(R,

dt
1+t2

),

c||f ||BMO
∞2
c (R,M) ≤ ||f ||BMO

∞p
c (R,M) ≤ cp||f ||BMO

∞2
c (R,M);

c||f ||BMO
∞2
r (R,M) ≤ ||x||BMO

∞p
r (R,M) ≤ cp||f ||BMO

∞2
r (R,M).

Proof. We only prove the column case.

To prove c||f ||BMO
∞2
c (R,M) ≤ ||f ||BMO

∞p
c (R,M), we have

||f ||BMO
∞2
c (R,M) = sup

I⊂R

|||I|−1

∫

I

|f − fI |2ds||
1
2
M

= sup
I⊂R

sup
τ |a|2≤1,a≥0

|I|− 1
2 ‖(f − fI)aχI‖L2(L∞(R)⊗M)

= sup
I⊂R

sup
τ |a|2≤1,a≥0

|I|− 1
2 ‖Sc ((f − fI)χIa)‖L2(L∞(R)⊗M) (8.2)

Note for function g, supp g = I with |I| = N <∞, we can choose a constant c0 > 0

such that

||Sc (g) ||2L2(L∞(R)⊗M) ≤ 2τ

∫

c0I

S2
c (g)dt. (8.3)

In fact (without loss of generality assume I = (0, N ]), for t 6= s ∈ R and some

constants c1, c2 > 0 we have

τ

∫∫

Γ

| ▽ g(x+ t, y)|2dxdy =

∫∫

Γ

τ |
∫ N

0

▽Py(x+ t− s)g(s)ds|2dxdy

≤ Nτ

∫∫

Γ

∫ N

0

| ▽ Py(x+ t− s)|2|g(s)|2dsdxdy

≤ Nτ

∫ N

0

∫∫

Γ

c1
(x+ t− s)4 + y4

dxdy|g(s)|2ds

≤ Nτ

∫ N

0

c2
(t− s)2

|g(s)|2ds.
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Then, for c0 > 2c2 + 2,

τ

∫

|t|>c0N

S2
c (g)(t)dt ≤ τ

∫

|t|>c0N

N

∫ N

0

c2
(t− s)2

|g(s)|2dsdt

≤ τN

∫ N

0

∫

|t|>c0N

c2
(t− s)2

dt|g(s)|2ds

≤ τN

∫ N

0

1

2N
|g(s)|2ds

=
1

2
||g||2L2(L∞(R)⊗M)

=
1

2
τ

∫

R

S2
c (g)(t)dt.

We then get (8.3). Combining it with (8.2), we have

||f ||BMO
∞2
c (R,M)

≤
√

2 sup
I⊂R

sup
τ |a|2≤1,a≥0

|I|− 1
2 ‖Sc ((f − fI)χIa)χc0I‖L2(L∞(R)⊗M) .

≤
√

2 sup
I⊂R

sup
τ |a|2≤1,a≥0

|I|− 1
2

∥∥∥Sc

(
(f − fI)χIa

2
p

)
a

p−2
p χc0I

∥∥∥
L2(L∞(R)⊗M)

≤
√

2 sup
I⊂R

sup
τ |a|2≤1,a≥0

|I|− 1
2

∥∥∥Sc

(
(f − fI)χIa

2
p

)∥∥∥
Lp(L∞(R)⊗M)

∥∥∥a
p−2

p χc0I

∥∥∥
p−2
2p

L
2p

p−2 (L∞(R)⊗M)

≤
√

2 sup
I⊂R

sup
τ |a|p≤1

|I|− 1
p ‖Sc ((f − fI)χIa)‖Lp(L∞(R)⊗M)

=
√

2||f ||BMO
∞p
c (R,M).

To prove the converse inequality, assume f ∈ BMO∞2
c (R,M) and by the Hahn Banach

theorem and the duality between H1
c(R,M) and BMO∞2

c (R,M) proved in Chapter

III, there exists a h ∈ L∞(L∞(R) ⊗M, L2
c(Γ̃)) such that

c−1 ‖h‖L∞(L∞(R)⊗M,L2
c(eΓ)) ||f ||BMO

∞2
c (R,M) ≤ c ‖h‖L∞(L∞(R)⊗M,L2

c(eΓ))

and

f = Ψ(h) =

∫

R

∫∫

Γ

h(x, y, t)Qy(x+ t− s)dydxdt (8.4)
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where Qy(x) = ∇Py(x). Fix an interval I, set

h1(x, y, t) = h(x, y, t)χ
2I

(t)

h2(x, y, t) = h(x, y, t)χ
(2I)c

(t).

Let

BI =

∫ +∞

−∞

∫∫

Γ

QIh2dydxdt

with the notation QI(x, t) = 1
|I|

∫
I
Qy(x+ t− s)ds. Now, for a ∈ Lp(M),

(f(s) −BI)

=

∫

(2I)c

∫∫

Γ

(Qy(x+ t− s) −QI)hdxdydt

+

∫ +∞

−∞

∫∫

Γ

Qy(x+ t− s)h1dxdydt

= A+B.

Notice that ∫∫

Γ

|Qy(x+ t− s) −QI |2dxdy ≤ c|I|2(t− CI)
−4

for every t ∈ (2I)c and s ∈ I. By the proof of Lemma 3.2,

‖A‖L∞(R)⊗M ≤ c||
∫

(2I)c

(t− CI)
−2dt

∫

(2I)c

(t− CI)
2

∫∫

Γ

h∗hdxdy|I|2(t− CI)
−4dt||M

≤ || c|I|

∫

(2I)c

|I|2(t− CI)
−2

∫∫

Γ

h∗hdxdydt||M

≤ c ‖h‖2
L∞(L∞(R)⊗M,L2

c(eΓ)) ≤ c ‖f‖BMO
∞2
c (R,M) .

And by duality between Hp
c(R,M) and Hp′

c (R,M) and Hölder’s inequality, for a ∈
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Lp(M), τ |a|p ≤ 1,

||Ba||Hp
c(R,M) ≤ cp sup

||f ||
H

p,
c (R,M)

=1

|τ
∫

R

∫

R

∫∫

Γ

h∗1aQy(x+ t− s)dxdydtf(s)ds|

= cp sup
||f ||

H
p,
c (R,M)

=1

|τ
∫

R

∫∫

Γ

h∗1a∇f(t+ x, y)dxdydt|

≤ cp(τ

∫

R

|(
∫∫

Γ

h∗1h1dxdy)
1
2a|pdt) 1

p

≤ cp||(
∫∫

Γ

h∗1h1dxdydt)
1
2 ||L∞(L∞(R)⊗M)||aχ2I ||Lp(L∞(R)⊗M)

≤ cp|I| 1
p ‖h‖L∞(L∞(R)⊗M,L2

c(eΓ)) ≤ cp|I| 1
p ‖f‖BMO

∞2
c (R,M)

Combining the estimation on A and B we have

||f ||BMO
∞p
c (R,M) ≤ |I|− 1

p sup
τ |a|p≤1

(||AaχI ||Hp
c(R,M) + ||Ba||Hp

c(R,M))

≤ cp
1
2 ||A||L∞(R)⊗M + cp ‖f‖BMO

∞2
c (R,M)

≤ cp ‖f‖BMO
∞2
c (R,M)

This completes the proof.
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CHAPTER IX

PARAPRODUCTS FOR MATRIX VALUED FUNCTIONS AND

NON-COMMUTATIVE MARTINGALES

9.1. Introduction

Denote by Mn the algebra of n× n matrices. Let (T,Fk, dt) be the unit circle with

Haar measure and the usual dyadic filtration. Let b be an Mn valued function on

T. The matrix valued dyadic paraproduct associated with b, denoted by πb, is the

operator defined as

πb(f) =
∑

k

(dkb)(Ek−1f), ∀f ∈ L2(ℓ2n). (9.1)

Here Ekf is the conditional expectation of f with respect to Fk, i.e. the unique

Fk-measurable function such that

∫

F

Ekfdt =

∫

F

fdt, ∀F ∈ Fk.

And dkb is defined to be Ekb− Ek−1b.

In the classical case (when b is a scalar valued function), paraproducts are usually

considered as dyadic singular integrals and play important roles in the proof of the

classical T(1) theorem. It is well known that

‖πb‖L2→L2 ⋍ ‖b‖BMOd
,

where BMOd denotes the dyadic BMO norm defined as

‖b‖BMOd
= sup

m
‖Em

∞∑

k=m

|dkb|2|‖
1
2
L∞.

And by the Calderón-Zygmund decomposition and the Marcinkiewicz interpolation
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theorem, we have ||πb||Lp→Lp ⋍ ||πb||Lp→Lp ⋍ ||b||BMOd
for all 1 < p <∞.

When b isMn valued, it was proved by Katz ([20]) and independently by Nazarov,

Treil and Volberg ([29], see [31] for another proof by Pisier) that

‖πb‖L2(ℓ2n)→L2(ℓ2n) ≤ c log(n+ 1) ‖b‖BMOc
. (9.2)

Here ‖ · ‖BMOc
is the column BMO norm defined by

‖b‖BMOc
= sup

m

∥∥∥∥∥Em

∞∑

k=m

(dkb)
∗(dkb)

∥∥∥∥∥

1
2

L∞(Mn)

,

where (dkb)
∗ is the adjoint of dkb. Nazarov, Pisier, Treil and Volberg ([28]) proved

later that the constant c log(n + 1) in (9.2) is optimal. Thus the BMOc norm does

not dominate ‖πb‖L2(ℓ2n)→L2(ℓ2n) uniformly over n.

Can we expect something weaker? In particular, does there exist a constant c

independent of n such that, for every n ∈ N,

‖πb‖L2(ℓ2n)→L2(ℓ2n) ≤ c ‖b‖L∞(Mn)? (9.3)

Some known facts made (9.3) look hopeful. For example, the Hankel operator as-

sociated with the Mn valued function b has norm equivalent to ||b||(H1(S1))∗ . Here

|| · ||(H1(S1))∗ denotes the dual norm on the trace class valued Hardy space H1(S1).

And S. Petermichl proved a close relation between πb and the Hankel operators asso-

ciated with b (see [30]).

In this paper, we prove the following theorem, which shows there does not exist

any constant c independent of n such that (9.3) holds.

Theorem 9.1 For every n ∈ N, there exists an Mn valued function b with ‖b‖L∞(Mn) ≤

1 but such that

‖πb‖L2(ℓ2n)→L2(ℓ2n) ≥ c log(n + 1),
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where c > 0 is independent of n.

This also gives a new proof that the constant c log(n + 1) in (9.2) is optimal.

Denote by Sp the Schatten p class on ℓ2. For f ∈ Lp(Sp), we define πb(f)

as in (9.1) also. As pointed out in [31], it is easy to check that ‖πb‖L2(S2)→L2(S2) =

‖πb‖L2(ℓ2)→L2(ℓ2). For scalar valued b, as we mentioned previously, we have ||πb||Lp→Lp ⋍

||πb||Lq→Lq . We wonder if this is still true for matrix valued b, i.e. if πb’s boundedness

on Lp(Sp) implies their boundedness on Lq(Sq) for all 1 < p, q <∞.

More generally, we can consider paraproducts associated with non-commutative

martingales. Let M be a finite von Neumann algebra with a normalized faithful trace

τ. For 1 ≤ p < ∞, we denote by Lp(M) the non-commutative Lp space associated

with (M, τ). Recall the norm in Lp(M) is defined as

‖f‖p = (τ |x|p) 1
p , ∀f ∈ Lp(M),

where |f | = (f ∗f)
1
2 . For convenience, we usually set L∞(M) = M equipped with the

operator norm ‖·‖M . Let Mk be an increasing filtration of von Neumann subalgebras

of M such that ∪k≥0Mk generates M in the w∗− topology. Denote by Ek the

conditional expectation of M with respect to Mk. Ek is a norm 1 projection of

Lp(M) onto Lp(Mk). For 1 ≤ p ≤ ∞, a sequence f = (fk)k≥0 with fk ∈ Lp(Mk)

is called a bounded non-commutative Lp-martingale, denoted by (fk)k≥0 ∈ Lp(M), if

Ekfm = fk, ∀k ≤ m and

||(fk)k≥0||Lp(M) = sup
k

||fk||Lp(M) <∞.

Because of the uniform convexity of the space Lp(M), for 1 < p <∞, we can and will

identify the space of all bounded Lp(M)-martingales with Lp(M) itself. In particular,

for any f ∈ Lp(M), set fk = Ekf , then f = (fk)k≥0 is a bounded Lp(M)-martingale
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and ||(fk)k≥0||Lp(M) = ||f ||Lp(M). Denote by dkf = Ekf − Ek−1f.

We say an increasing filtration Mk is “regular” if there exists a constant c > 0

such that, for any m, a ∈ Mm, a ≥ 0,

||a||∞ ≤ c||Em−1a||∞.

For M with a regular filtration Mk, b ∈ L2(M), we define paraproducts πb, π̃b as

operators for bounded Lp(M) (1 < p <∞)-martingales f = (fk)k≥0 as

πb(f) =
∑

k

dkbfk−1, π̃b(f) =
∑

k

fk−1dkb.

We prove the following result for πb and π̃b :

Theorem 9.2 Let 1 < p < q < ∞, if π̃b and πb are both bounded on Lp(M) then

they are both bounded on Lq(M).

We still do not know what happens when p > q.

9.2. Proof of Theorem 9.1 and application to “Sweep” functions.

Denote by tr the usual trace on Mn and Sp
n(1 ≤ p <∞) the Schatten p classes on ℓ2n.

Proof of Theorem 9.1. Let c(n) be the best constant such that

‖πb‖L2(ℓ2n)→L2(ℓ2n) ≤ c(n) ‖b‖L∞(Mn) , ∀b ∈ L∞(Mn).

Denoting by T the triangle projection on S1
n, we are going to show

‖T‖S1
n→S1

n
≤ c(n).

Once this is proved, we are done since ‖T‖S1
n→S1

n
∽ log(n + 1) (see [22]). Note that
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every A in the unit ball of S1
n can be written as

A =
∑

m

λ(m)α(m) ⊗ β(m)

with
∑

m λ
(m) ≤ 1, supm{||α(m)||ℓ2n, ||β(m)||ℓ2n} ≤ 1. Therefore, we only need to show

‖T (α⊗ β)‖S1
n
≤ c(n) ‖α‖ℓ2n

‖β‖ℓ2n
, ∀α = (αk)k, β = (βk)k ∈ ℓ2n. (9.4)

Let D be the diagonal Mn valued function defined as

D =

n∑

i=1

riei ⊗ ei

where ri is the i-th Rademacher function on T and (ei)
n
i=1 is the canonical basis of

ℓ2n. Given α = (αk)k, β = (βk)k ∈ ℓ2n, let

f = Dα, g = Dβ.

Then f, g ∈ L2(ℓ2n), and

‖f‖L2(ℓ2n) = ‖α‖ℓ2n
, ‖g‖L2(ℓ2n) = ‖β‖ℓ2n

. (9.5)

It is easy to verify

∑

k

Ek−1f ⊗ dkg = D(
∑

i<j≤n

αiβjei ⊗ ej)D.

and

∥∥∥∥∥
∑

k

Ek−1f ⊗ dkg

∥∥∥∥∥
L1(S1

n)

=

∥∥∥∥∥
∑

i<j≤n

αiβjei ⊗ ej

∥∥∥∥∥
S1

n

= ‖T (α⊗ β)‖S1
n
. (9.6)

On the other hand, by the duality between L1(S1
n) and L∞(Mn), we have,

∥∥∥∥∥
∑

k

Ek−1f ⊗ dkg

∥∥∥∥∥
L1(S1

n)

= sup{ tr
∫ ∑

k

dkb(Ek−1f ⊗ dkg), ‖b‖L∞(Mn) ≤ 1}
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≤ sup{ ‖πb(f)‖L2(ℓ2n)‖g‖L2(ℓ2n), ‖b‖L∞(Mn) ≤ 1}

≤ c(n) ‖f‖L2(ℓ2n) ‖g‖L2(ℓ2n) . (9.7)

Combining (9.7), (9.5) and (9.6) we get (9.4) and the proof is complete.

Recall that the square function of b is defined as

S(b) = (
∑

k

|dkb|2)
1
2 .

The so called “sweep” function is just the square of the square function, for this

reason we denote it by S2(b),

S2(b) =
∑

k

|dkb|2.

In the classical case, we know that

||S(b)||BMOd
≤ c||b||BMOd

(9.8)

||S2(b)||BMOd
≤ c||b||2BMOd

(9.9)

When considering square functions S(b) for Mn valued functions b, a similar result

remains true with an absolute constant.

Proposition 9.3 For any n ∈ N, and any Mn valued function b, we have

||S(b)||BMOc
≤

√
2||b||BMOc

Proof. Since we are in the dyadic case, we have

||S(b)||2BMOc
≤ 2 sup

m
||Em[(S(b) −EmS(b))∗(S(b) −EmS(b))]||L∞(Mn)

= 2 sup
m

||EmS
2(b) − (EmS(b))2||L∞(Mn)
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Note

EmS
2(b) −

m∑

k=1

|dkb|2 ≥ EmS
2(b) − (EmS(b))2 ≥ 0.

We get

||S(b)||2BMOc
≤ 2 sup

m
||EmS

2(b) −
m∑

k=1

|dkb|2||L∞(Mn)

= 2 sup
m

||Em

∑

k=m+1

|dkb|2||L∞(Mn)

≤ 2||b||2BMOc
.

Matrix valued sweep functions have been studied in [1], [8] etc. Unlike in the

case of square functions, it is proved in [1] that the best constant cn such that

||S2(b)||BMOc
≤ cn||b||2BMOc

(9.10)

is c log(n+1). The following result shows that the best constant cn is still c log(n+1)

even if we replace || · ||BMOc
by the bigger norm || · ||L∞(Mn) in the right side of (9.10).

Theorem 9.4 For every n ∈ N, there exists an Mn valued function b with ‖b‖L∞(Mn) ≤

1 but such that
∥∥S2(b)

∥∥
BMOc

≥ c log(n+ 1).

Proof. Consider a function b that works for the statement of Theorem 9.1. Then

‖b‖L∞(Mn) ≤ 1 and there exists a function f ∈ L2(S2
n), such that ‖f‖L2(S2

n) ≤ 1 and

∥∥∥∥∥
∑

k

dkbEk−1f

∥∥∥∥∥
L2(S2

n)

≥ c log(n+ 1). (9.11)

We compute the square of the left side of (9.11) and get

∥∥∥∥∥
∑

k

dkbEk−1f

∥∥∥∥∥

2

L2(S2
n)
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= tr

∫ ∑

k

|dkb|2Ek−1fEk−1f
∗

= tr

∫ ∑

k

|dkb|2(
∑

i<k

|dif
∗|2 +

∑

i<k

Ei−1fdif
∗ +

∑

i<k

difEi−1f
∗)

= tr

∫ ∑

i

(
∑

k>i

|dkb|2)|dif
∗|2 + tr

∫ ∑

i

(
∑

k>i

|dkb|2)(Ei−1fdif
∗ + difEi−1f

∗)

= I + II

For I, note |dif
∗|2 is Fi measurable, we have

I = tr

∫ ∑

i

Ei(
∑

k>i

|dkb|2)|dif
∗|2

≤ sup
i

||Ei(
∑

k>i

|dkb|2)||L∞(Mn)(tr

∫ ∑

i

|dif
∗|2)

≤ ||b||2BMOc
||f ||2L2(S2

n) ≤ 4

For II, note Ei−1fdif
∗ + difEi−1f

∗ is a martingale difference and
∑

k≤i |dk|2 is Fi−1

measurable since we are in the dyadic case, we get

II = tr

∫ ∑

i

S2(b)(Ei−1fdif
∗ + difEi−1f

∗)

= tr

∫ ∑

i

di(S
2(b))(Ei−1fdif

∗ + difEi−1f
∗)

≤ 2||
∑

i

di(S
2(b))Ei−1f ||L2(S2

n)||f ||L2(S2
n)

≤ 2||πS2(b)||L2(S2
n)→L2(S2

n)

≤ 2c log(n + 1)||S2(b)||BMOc
.

We used (9.2) in the last step. Combining this with (9.11), we get

c log(n+ 1) ≤
∥∥∥∥∥
∑

k

dkbEk−1f

∥∥∥∥∥

2

L2(S2
n)

≤ 4 + 2c log(n+ 1)||S2(b)||BMOc

Thus

||S2(b)||BMOc
≥ c log(n+ 1).
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This completes the proof.

9.3. Proof of Theorem 9.2.

We keep the notations introduced in the end of Section 9.1. Recall BMO spaces of

non-commutative martingales are defined for x = (xk) ∈ L2(M) as below (see [33],

[18]):

BMOc(M) = {x : ||x||BMOc(M) = sup
n

∥∥∥∥∥En|
∞∑

k=n

dkx|2
∥∥∥∥∥

1
2

M

<∞};

BMOr(M) = {x : ||x||BMOr(M) = ||x∗||BMOc(M) <∞};

BMOcr(M) = {x : ||x||BMOcr(M) = max{||x||BMOc(M), ||x||BMOr(M)} <∞}.

When M = L∞(Mn), BMOc(M) is just BMOc considered in Section 9.1 and

8.2. In this section, for a non-commutative martingale b, we consider πb and π̃b as

operators on bounded non-commutative Lp-martingale spaces introduced in Section

9.1. We will need the following interpolation result and the John-Nirenberg theorem

for non-commutative martingales proved by Junge and Musat recently (see [17], [27]).

Theorem 9.5 (Musat) For 1 ≤ p ≤ q <∞,

(BMOcr(M), Lp(M))θ = Lq(M), with θ =
p

q
.

Theorem 9.6 (Junge, Musat) For any 1 ≤ q <∞ and any g = (gk)k ∈ BMOcr(M),

there exist cq, c
′
q > 0 such that

c′q||g||BMOcr
≤ sup

m∈N

sup
a∈Mm,τ(|a|q)≤1

{||
∑

k≥m

dkga||Lq(M), ||
∑

k≥m

adkg||Lq(M)} ≤ cq||g||BMOcr
.

(9.12)

In fact, the formula above is proved for q ≥ 2 in [17]. It is not hard to show that it

is also true for 1 ≤ q < 2. In the following, we give a simpler proof of it in the tracial
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case.

Proof. Note for any g ∈ BMOcr(M),

||g||BMOcr(M) = sup
m∈N

sup
a∈Mm,τ(|a|2)≤1

{||
∑

k≥m

dkga||L2(M), ||
∑

k≥m

adkg||L2(M)}.

We get c2 = c′2 = 1. Note for p, r, s with 1/p = 1/r+1/s and a ∈ Lp(M), ||a||Lp(M) ≤

1, there exist b, c such that a = bc and ||b||Lr(M) ≤ 1, ||c||Ls(M) ≤ 1. By H
..
older’s

inequality we then get cq = 1 for 1 ≤ q < 2 and c′q = 1 for 2 < q < ∞. Thus for

2 < q <∞, we only need to prove the second inequality of (9.12). And, for 1 ≤ q < 2,

we only need to prove the first inequality of (9.12). Fix g ∈ BMOcr(M), m ∈ N,

consider the left multiplier Lm and the right multiplier Rm defined as

Lm(a) =
∑

k≥m

dkga and Rm(a) =
∑

k≥m

adkg, ∀a ∈ Mm.

It is easy to check that

sup
m

||Lm||L2(Mm)→L2(M) = ||g||BMOc
,

sup
m

||Lm||L∞(Mm)→BMOcr
≤ ||g||BMOcr

;

sup
m

||Rm||L2(Mm)→L2(M) = ||g||BMOr
,

sup
m

||Rm||L∞(Mm)→BMOcr
≤ ||g||BMOcr

.

Thus Lm, Rm extend to bounded operators from L2(Mm) to L2(M), as well as from

L∞(Mm) to BMOcr(M). By Musat’s interpolation result Theorem 9.5, we get Lm

and Rm are bounded from Lq(Mm) to Lq(M) and their operator norms are smaller

than cq||g||BMOcr
, for all 2 ≤ q < ∞. By taking the supremum over m, we prove the

second inequality of (9.12) for q ≥ 2.

For 1 ≤ q < 2, by interpolation again, for θ = q
2

and some c′′q > 0,

||Lm||L2(Mm)→L2(M) ≤ c′′q ||Lm||Lq(Mm)→Lq(M)θ||Lm||1−θ
L∞(Mm)→BMOcr
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≤ c′′q ||Lm||Lq(Mm)→Lq(M)θ||g||1−θ
BMOcr

,

||Rm||L2(Mm)→L2(M) ≤ c′′q ||Rm||Lq(Mm)→Lq(M)θ||Rm||1−θ
L∞(Mm)→BMOcr

≤ c′′q ||Rm||Lq(Mm)→Lq(M)θ||g||1−θ
BMOcr

.

Thus

||g||BMOcr
= max{sup

m
||Lm||L2(Mm)→L2(M), sup

m
||Rm||L2(Mm)→L2(M)}

≤ c′′q ||g||1−θ
BMOcr

sup
m

{||Lm||Lq(Mm)→Lq(M)θ, ||Rm||Lq(Mm)→Lq(M)θ}.

This gives the first inequality of (9.12) with c′q = (c′′q)
− 1

θ for 1 ≤ q < 2.

Recall that we say a filtration Mk is “regular” if, for some c > 0, ||a||∞ ≤

c||Em−a||∞, ∀m ∈ N, a ≥ 0, a ∈ Mm.

Lemma 9.7 For any regular filtration Mk, we have

||b||BMOcr(M) ≤ cp max{||πb||Lp(M)→Lp(M), ||π̃b||Lp(M)→Lp(M)}, ∀1 ≤ p <∞. (9.13)

Proof. Note, for any b ∈ BMOcr(M) with respect to the regular filtration Mk,

||b||BMOcr(M) ≤ c sup
m∈N

sup
τa2≤1,a∈Mm

{||
∑

k>m

dkba||L2(M), ||
∑

k>m

adkb||L2(M)}.

Similar to the proof of Theorem 9.6, we can get,

c′q||b||BMOcr
≤ sup

m∈N

sup
a∈Mm,τ |a|q≤1

{||
∑

k>m

dkba||Lq(M), ||
∑

k>m

adkb||Lq(M)} ≤ cq||b||BMOcr
.

(9.14)

On the other hand, by considering πb(a), π̃b(a) for a ∈ Mm, ||a||Lp(M) ≤ 1, we have

sup
a∈Mm,τ |a|q≤1

{||
∑

k>m

dkba||Lp(M), ||
∑

k>m

adkb||Lp(M)}

≤ 2 max{||πb||Lp(M)→Lp(M), ||π̃b||Lp(M)→Lp(M)}.

Taking supremum over m in the inequality above, we get (9.13) by (9.14) .
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Lemma 9.8 For 1 < p <∞, we have

‖πb‖L∞(M)→BMOcr(M) ≤ cp(‖πb‖Lp(M)→Lp(M) + ||b||BMOr(M)). (9.15)

‖π̃b‖L∞(M)→BMOcr(M) ≤ cp(‖π̃b‖Lp(M)→Lp(M) + ||b||BMOc(M)). (9.16)

Proof. We prove (9.15) only. Fix a f ∈ L∞(M) with ‖f‖L∞(M) ≤ 1. We have

∥∥∥∥∥Em

∑

k≥m

|dkbEk−1f |2
∥∥∥∥∥

L∞(M)

= sup{τEm

∑

k≥m

|dkbEk−1f |2a, a ∈ Mm, a ≥ 0, τa ≤ 1}

= sup{τ
∑

k≥m

(dkbEk−1fa
1
p )∗(dkbEk−1fa

1
q ), a ∈ Mm, a ≥ 0, τa ≤ 1}

≤ sup
a

∥∥∥∥∥dmbEm−1fa
1
p +

∑

k>m

dkbEk−1(fa
1
p )

∥∥∥∥∥
Lp(M)

∥∥∥∥∥
∑

k≥m

dkbEk−1fa
1
q

∥∥∥∥∥
Lq(M)

Note ||dmbEm−1fa
1
p ||Lp(M) ≤ ||dmb||M ≤ ||b||BMOr

. By (9.12) we get

∥∥∥∥∥Em

∑

k≥m

|dkbEk−1f |2
∥∥∥∥∥

L∞(M)

≤ cq(||b||BMOr
+ ‖πb‖Lp(M)→Lp(M)) ‖πb(f)‖BMOcr(M) .(9.17)

Taking the supremum over m in (9.17), we get

‖πb(f)‖2
BMOc(M) ≤ cq(||b||BMOr

+ ‖πb‖Lp(M)→Lp(M)) ‖πb(f)‖BMOcr(M) .

On the other hand, since (Em−1f)(Em−1f)∗ ≤ 1, we have

‖πb(f)‖BMOr(M) ≤ ‖b‖BMOr(M) .

Thus,

‖πb(f)‖2
BMOcr(M) ≤ (cq + 1)(‖πb‖Lp(M)→Lp(M) + ||b||BMOr(M)) ‖πb(f)‖BMOcr(M) ,
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Therefore

‖πb‖L∞(M)→BMOcr(M) ≤ (cq + 1)(‖πb‖Lp(M)→Lp(M) + ||b||BMOr(M)).

Proof of Theorem 9.2. By Lemma 8.7 and Lemma 8.8 we get immediately

that

max {‖πb‖L∞(M)→BMOcr
, ‖π̃b‖L∞(M)→BMOcr

}

≤ cp max {‖πb‖Lp(M)→Lp(M) , ‖π̃b‖Lp(M)→Lp(M)}

By the interpolation results on non-commutative martingales (Theorem 8.5), we get

max {‖πb‖Lq(M)→Lq(M) , ‖π̃b‖Lq(M)→Lq(M)}

≤ cp max {‖πb‖Lp(M)→Lp(M) , ‖π̃b‖Lp(M)→Lp(M)},

for all 1 < p < q <∞.

Question : Assume πb, π̃b are of type (p, p), are they of weak type (1, 1)? More

precisely, assume ||πb||Lp(M)→Lp(M) + ||π̃b||Lp(M)→Lp(M) < ∞, does there exist a con-

stant C > 0 such that, for any f ∈ L1(M), λ > 0, there is a projection e ∈ M such

that

τ(e⊥) ≤ C
||f ||L1(M)

λ
and ||eπb(f)e||L∞(M) + ||eπ̃b(f)e||L∞(M) ≤ λ?

We have the following corollary by applying results of this section to matrix

valued dyadic paraproducts discussed in Section 9.1 and Section 9.2. Note Mn valued

dyadic martingales on the unit circle are non-commutative martingales associated

with the von Neuman algebra M = L∞(T)⊗Mn and the filtration Mk = L∞(T,Fk)⊗

Mn.
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Corollary 9.9 Let 1 < p <∞, denote by cp(n) the best constant such that

‖πb‖Lp(Sp
n)→Lp(Sp

n) ≤ cp(n) ‖b‖L∞(Mn) , ∀b.

Then

cp(n) ∽ log(n + 1).

Proof. Note in the proof of Theorem 9.1, if we see f as a column matrix valued

function and g as a row matrix valued function, we will have

||f ||Lp(Sp
n) = ||α||ℓ2n, ||g||Lq(Sq

n) = ||β||ℓ2n.

By the same method, we can prove cp(n) ≥ c log(n + 1) for all 1 < p < ∞. For the

inverse relation, by (9.2) we have c2(n) ≤ c log(n+ 1). Then, by (9.15), we get

‖πb‖L∞(Mn)→BMOcr
≤ c2(c2(n) ‖b‖L∞(Mn) + ||b||BMOcr

)

≤ c log(n+ 1)||b||L∞(Mn), ∀b ∈ L∞(Mn) (9.18)

Denote by π∗
b the adjoint operator of the dyadic paraproduct πb, then

π∗
b (f) =

∑

k

(dkb)
∗Ek−1f.

Note we have the decomposition

π∗
b (f) = b∗f − πb∗(f) − (πf∗(b))∗.

By (9.18), we get

‖π∗
b‖L∞(Mn)→BMOcr

≤ ||b∗||L∞(Mn) + c log(n + 1)||b∗||L∞(Mn) + c log(n+ 1)||b||L∞(Mn)

≤ c log(n + 1) ‖b‖L∞(Mn) . (9.19)



112

By (9.18), (9.19) and the interpolation result Theorem 3.5, we get

‖πb‖Lp(Sp
n)→Lp(Sp

n) ≤ cp log(n + 1) ‖b‖L∞(Mn) , ∀1 < p <∞.

Therefore, we can conclude cp(n) ∽ log(n+ 1).
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CHAPTER X

SUMMARY

In this chapter, we give a summary of the results of this dissertation in the matrix

valued case.

Operator Valued Hardy Spaces

The Hardy spaces are very important objects in classical analysis. Among several

equivalent definitions, one is as follows:

Hp(R) = {f ∈ Lp(R), ‖f‖Hp = ||f ||Lp + ||Hf ||Lp <∞}, for 1 ≤ p <∞,

where H(f) is the Hilbert transform of f. Fruitful results on Hardy spaces (such as

interpolation results, equivalence between Hp and Lp for 1 < p < ∞) have been

developed during last century, that turned Hp theory into an important branch of

classical analysis. One of the most remarkable results of Hp theory is the Fefferman-

Stein duality theorem, which says in particular that the dual of H1(R) is another well

known space, the BMO space defined as follows

BMO(R) = {f ∈ L1
loc(R), ‖f‖BMO = sup

I⊂R

1

|I|

∫

I

|f(t) − fI |dt <∞},

where fI = 1
|I|

∫
I
f(t)dt.

We constructed Hp spaces for operator valued functions by considering the non-

commutative Littlewood-Paley G-functions. The non-commutativity is, of course, the

main difficulty of our study and the main difference between operator valued Hardy

spaces and the vector valued ones. One analogue of classical results we proved is that

our H1’s are preduals of the non-commutative BMO spaces defined in recent works on

matrix valued harmonic analysis and non-commutative martingale inequalities (see
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[20], [28], [29], [33]).

For convenience, we will conclude the results only in the matrix valued case.

Because of the non-commutativity, there are now two non-commutative BMO spaces,

the column BMO and row BMO. Let Mn be the algebra of n × n matrices with its

usual trace tr. For A ∈ Mn, denote by ||A||Mn
the operator norm of A on ℓ2n. Then

the column BMO space is defined by

BMOc(R,Mn) =
{
ϕ : R → Mn, ‖ϕ‖BMOc

<∞
}

where

‖ϕ‖BMOc
= sup

I⊂R

‖ 1

|I|

∫

I

(ϕ(t) − ϕI)
∗(ϕ(t) − ϕI)dt‖

1
2
Mn
,

and ϕI = 1
|I|

∫
I
ϕ(t)dt. Similarly, the row BMO space is

BMOr(R,Mn) =
{
‖ϕ‖BMOr

= ‖ ϕ∗‖BMOc
<∞

}
.

Note that these two norms are not equivalent uniformly over n. Denote by Sp
n (1 <

p < ∞) the Schatten p classes on ℓ2n. For f ∈ L1((R, dt
1+t2

),S1
n), let F denote its

Poisson integral. We define the non-commutative G-function as

Gf,c(x) = (

∫ ∞

0

|∇F (t, y)|2ydy) 1
2

where

|∇F (t, y)|2 = |∂F
∂t

|2 + |∂F
∂y

|2 and |∂F
∂t

|2 = (
∂F

∂t
)∗(
∂F

∂t
)

Define Hp
c [n] (resp. Hp

r [n]) (1 < p < ∞) to be the space of all f such that Gf,c(x) ∈

Lp(R, Sp
n) (resp. Gf,r(x) ∈ Lp(R, Sp

n)) and set

‖f‖Hp
c

= ‖Gf,c(x)‖Lp(R,Sp
n) (resp. ‖f‖Hp

r
= ‖f ∗‖Hp

c
).

When n = 1, all these spaces coincide with the classical Hardy spaces.
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Theorem (Non-commutative generalization of Fefferman’s duality theorem)

(a)(H1
c [n])∗ = BMOc(R,Mn) with equivalent norms independent of n.

(b) Similarly, (H1
r [n])∗ = BMOr(R,Mn) with equivalent norms independent of

n.

And as in the classical case, the duality between H1
c [n] and BMOc(R,Mn) implies

an atomic decomposition of H1
c [n].

Remark Note that the trace class valued Hardy space H1(S1) has a different dual

than the above.

Theorem (Equivalence between Hp and Lp)

Hp
c [n] + Hp

r [n] = Lp(R, Sp
n) with equivalent norms for all 1 < p ≤ 2

Hp
c [n] ∩ Hp

r [n] = Lp(R, Sp
n) with equivalent norms for all 2 < p < ∞. The equiv-

alence constants are independent of n.

Theorem (Interpolation) Let 1 < p <∞. Then with equivalent norms,

(X, Y ) 1
p

= Lp(R, Sp
n)

where X = BMOc(R,Mn) ∩ BMOr(R,Mn) or L∞(R,Mn), Y = H1
c [n] + H1

r [n] or

L1(R, S1
n) and the equivalence constants are independent of n.

Matrix valued dyadic paraproduct

Let (T,Fk) be the unit circle with the usual dyadic filtration. Let b be an Mn valued

function on T. The matrix valued dyadic paraproduct associated with b, denoted by

πb, is the operator on Lp(T, Sp
n) defined as

πb(f) =
∑

k

(dkb)(Ek−1f), ∀f ∈ Lp(T, Sp
n),
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where Ek is the conditional expectation with respect to Fk, and dkb = Ekb− Ek−1b.

In the classical case (when b is a scalar valued function), it is well known that

‖πb‖L2→L2 ⋍ ‖b‖BMOd
,

where BMOd denotes the usual dyadic BMO norm.

Note πb is usually considered as a dyadic singular integral and plays an important

role in the proof of the classical T(1) theorem. Also note its relation with the Hankel

operator with symbol b (see [30]), which has a norm equivalent to ||b||(H1(S1
n))∗ in the

matrix valued case. We may ask two natural questions as follows:

Q(1) Does there exist a constant c > 0 independent of n such that, for all

1 < p, q <∞,

‖πb‖Lq(T,Sq
n)→Lq(T,Sq

n) ≤ c‖πb‖Lp(T,Sp
n)→Lp(T,Sp

n)?

Q(2) Can we dominate ‖πb‖L2(T,S2
n)→L2(T,S2

n) uniformly over n by some reasonable

BMO norm? (Note we have various candidates for BMO norms in the matrix valued

case. Nazarov, Pisier, Treil, Volberg proved that this is not true if we consider BMOc

norm defined in Section 2.3.)

In this dissertation, we gave a partial positive answer to Q(1) and proved that

there exists a constant c > 0 independent of n such that, for all 1 < p < q <∞,

max{‖πb‖Lq(Sq
n)→Lq(Sq

n), ‖πb∗‖Lq(Sq
n)→Lq(Sq

n)} ≤ cmax{‖πb‖Lp(Sp
n)→Lp(Sp

n), ‖πb∗‖Lp(Sp
n)→Lp(Sp

n)},

where b∗ denotes the adjoint of b. We still do not know what happens when p > q. We

gave a negative answer to Q(2) and proved that even ||b||L∞(T,Mn) does not dominate

||πb||L2(T,S2
n)→L2(T,S2

n) uniformly over n (see Chapter IX).
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Difficulties and some useful techniques

Non-commutativity. We lose some nice classical properties in the operator valued

case because of the non-commutativity. For example, we will no longer have a “good”

John-Nirenberg theorem for operator valued BMO (see Chapter VIII and [17], [34]).

Absence of maximal element. A straightforward definition of the maximal func-

tion in the operator valued case is not possible. However, using Pisier’s non-commutative

vector valued spaces we may partially overcome this problem in many situations. In

fact, we proved a non-commutative Hardy-Littlewood maximal inequality for oper-

ator valued functions (see Chapter IV), which is based on Junge’s work on Doob’s

maximal inequality for non-commutative martingales(see [14]).

Non-commutative Martingale inequalities. As in the classical case, we could

borrow some ideas from the study of non-commutative martingales when studying op-

erator valued functions. In particular, Pisier and Xu’s work on the non-commutative

Burkholder-Gundy inequalities (see [33]) inspired us to consider the non-commutative

analogue of the classical Littlewood-Paley G function to define our operator valuedHp

spaces. Moreover, we used Junge’s work on Doob’s maximal inequality (see [14]) to

prove our non-commutative Hardy-Littlewood maximal inequality mentioned above.

However, it seems difficult to convert results from operator valued martingales to

operator valued functions by following the classical methods (Brownian martingales

or distribution functions). In Chapter VI, we gave a trick to treat some special situ-

ations. The following is an analogue of Theorem 6.1 of this dissertation.

Theorem ([24]) Let T be the unit circle. Denote by BMO(T) the scalar valued BMO

space and denote by BMOd(T) the scalar valued usual dyadic BMO space on T. We

have

‖ϕ‖BMO(T) ≤ 6(‖ϕ‖BMOd(T) +

∥∥∥∥ϕ(· − 2π

3
)

∥∥∥∥
BMOd(T)

).



118

REFERENCES

[1] J. S. Bendat, S. Sherman, Monotone and Convex Operator Functions. Trans.

Amer. Math. Soc. 79 (1955), 58–71.

[2] R. Bhatia, Matrix Analysis. Graduate Texts in Mathematics, Springer-Verlag,

New York, 1997.

[3] I. Cuculescu, Martingales on von Neumann Algebras. J. Multiv. Anal., 1 (1971),

17-27.

[4] T. Fack, H. Kosaki, Generalized s-Numbers of τ -Measurable Operators, Pacific.

J. Math.,123 (1986), 269-300.

[5] C. Fefferman, E.M. Stein, Hp Spaces of Several Variables, Acta Math., 129

(1972), 137-193.

[6] J. B. Garnett, Bounded Analytic Functions, Pure and Applied Mathematics,

Academic Press, Inc., New York-London, 1981.

[7] A. Garsia, Martingale Inequalities: Seminar notes on recent progress, Math-

ematics Lecture Notes Series, W. A. Benjamin, Inc., Reading, Mass.-London-

Amsterdam, 1973.

[8] T. A. Gillespie, S. Pott, S. Treil, A. Volberg, Logarithmic Growth for Martingale

Transform, Journal of London Mathematical Society(2), 64 (2001), no. 3, 624-

636.

[9] F. Hansen, An Operator Inequality, Math. Ann., 246 (1979/80), no. 3, 249–250.

[10] C. S. Herz, Hp−Spaces of Martingales, 1 < p ≤ 1, Zeit, Wahrscheinlichkeits

Theorie, 28(1974), 189-265.



119

[11] R. Jajte, Strong Limit Theorems in Non-commutative Probability, Lecture Notes

in Math., Springer-Verlag, Berlin, 1985.

[12] R. Jajte, Strong Limit Theorems in Non-commutative L2-Spaces, Lecture Notes

in Mathematics, Springer-Verlag, Berlin, 1991.

[13] S. Janson, P. W. Jones, Interpolation between Hp Spaces: The Complex Method,

Journal of Functional Analysis, 48 (1982), no. 1, 58-80.

[14] M. Junge, Doob’s Inequality for Non-commutative Martingales, J. Reine Angew.

Math. 549 (2002), 149-190.

[15] M. Junge, C. Le Merdy, Q. Xu, H∞ Functional Calculus and Square Functions

on Non-commutative Lp-spaces, C.R. Acad. Sci. Paris, 337 (2003), 93-98.

[16] M. Junge, C. Le Merdy, Q. Xu, H∞ Functional Calculus and Square Functions

on Non-commutative Lp-spaces, Astrisque, (2006), to appear.

[17] M. Junge, M. Musat, A Non-commutative Version of the John-Nirenberg Theo-

rem, Transactions of AMS, (2006), to appear.

[18] M. Junge, Q. Xu, Non-commutative Burkholder/Rosenthal Inequalities, Ann.

Prob. 31 (2003), no. 2, 948-995.

[19] M. Junge, Q. Xu, Noncommutative Maximal Ergodic Theorems, Journal of AMS,

(2006), to appear.

[20] Nets H. Katz, Matrix Valued Paraproducts, J. Fourier Anal. Appl. 300 (1997),

913–921.

[21] P. Koosis, Introduction to Hp Spaces, Cambridge Tracts in Mathematics, 115,

Cambridge University Press, Cambridge, 1998.



120
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