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ABSTRACT

Order Acceptance and Scheduling at a Make-to-Order System Using Revenue

Management. (August 2006)

Anshu Jalora, B.Tech., Indian Institute of Technology, New Delhi, India;

M.E., Texas A&M University

Chair of Advisory Committee: Brett A. Peters

Make-to-order (MTO) systems have been traditionally popular in manufacturing

industries that either seek to provide greater variety to their customers or make

products that are unique to their customers. More recently, with shrinking product

life cycles, there is an increasing interest in operating as MTO systems. With the

tremendous success of revenue management techniques in the service industries over

the last three decades, there is a growing interest in applying these techniques in

MTO manufacturing industries.

In the present work, we consider three problems that apply revenue management

(RM) to on-date delivery MTO systems. In the first problem, we assume that all

orders completed in advance of their due-dates are stored at third party warehouses

and apply RM in computing efficient order acceptance and scheduling policies. We

develop an optimal solution scheme, and based on the insights gained on the structural

properties of the optimal solution, we develop a stochastic approximation scheme for

finding efficient solutions. Through computational studies on simulated problems, we

illustrate the potential of RM in improving net profits over popular practices.

In our second problem, we extend the RM model to consider presence of a certain

amount of first party warehousing capacity for storing the orders completed in advance

of their due-dates. We study the conditions under which it is desirable to consider the

holding cost aspects in the RM model. In our third problem, we develop a scheme
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for determining an efficient capacity of the first party warehouse that is used for

storing the orders completed in advance of their due-dates at an on-date delivery

MTO system. This scheme captures the completed orders storage demand resulting

from a RM based order acceptance and scheduling policy. We illustrate that when

booking horizon is large, considerable amount of savings in the holding costs can be

made with an efficiently sized first party warehouse.



v

To my Dad



vi

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Dr. Brett A. Peters, for his

guidance throughout the development of this dissertation and for employing me as

a research assistant during my Ph.D. studies at Texas A&M University. I am also

grateful to Dr. Guy L. Curry, Dr. Halit Uster, and Dr. Jennifer L. Welch for providing

their valuable knowledge and for serving as members of my advisory committee. I

wish to extend my gratitude to Dr. Ioana Popescu, Dr. Lewis Ntaimo and Dr. Eylem

Tekin for their interest in and suggestions for my research.

I owe many thanks to my friends. Without their support, I could not have done

what I was able to do. Last but not least, I am grateful to my mother, Shashi Jalora,

wife, Vijeta, son, Vansh, and sister, Priyanka for all the sacrifices they made. Without

their love and enormous support, this dissertation would not be possible.



vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. Overview of Revenue Management . . . . . . . . . . . . . . 3

B. Comparison of Airline and Manufacturing RM Models . . . 5

C. Scope of the Dissertation . . . . . . . . . . . . . . . . . . . 6

1. Study the Potential of RM at an On-Date Delivery

MTO System . . . . . . . . . . . . . . . . . . . . . . . 6

2. Evaluate First Party and Third Party Warehousing

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. Efficient First Party Warehouse Capacity Planning . . 8

D. Organization of the Dissertation . . . . . . . . . . . . . . . 8

II LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . 10

III THIRD PARTY WAREHOUSING OPTION . . . . . . . . . . . 15

A. Problem Description . . . . . . . . . . . . . . . . . . . . . 15

B. Research Motivation . . . . . . . . . . . . . . . . . . . . . 19

C. Mathematical Formulation . . . . . . . . . . . . . . . . . . 20

1. Notation . . . . . . . . . . . . . . . . . . . . . . . . . 21

2. Optimal Acceptance Policy . . . . . . . . . . . . . . . 22

3. Optimal Scheduling Policy . . . . . . . . . . . . . . . 24

4. Expected Profit Function . . . . . . . . . . . . . . . . 24

5. FCES and FCLS Policies . . . . . . . . . . . . . . . . 25

D. Solution Approaches . . . . . . . . . . . . . . . . . . . . . 27

1. Complexity of Order Acceptance and Scheduling Problem 28

2. Heuristic Scheme based on Value Iteration (HSVI) . . 29

3. Heuristic Scheme based on Stochastic Approxima-

tion (HSSA) . . . . . . . . . . . . . . . . . . . . . . . 30

E. Computational Results . . . . . . . . . . . . . . . . . . . . 41

1. Significance of Efficient Scheduling Policies . . . . . . 41

2. Significance of Efficient Order Acceptance Policies . . 43

3. Performance of HSVI Approach . . . . . . . . . . . . . 45

4. Performance of HSSA Approach . . . . . . . . . . . . 51

5. Effects of Loading Factor on the Efficiency of RM Model 54



viii

CHAPTER Page

6. Effects of Overlooking Holding Costs in the RM Model 55

F. Summary and Conclusions . . . . . . . . . . . . . . . . . . 57

IV FIRST PARTY WAREHOUSING OPTION . . . . . . . . . . . 58

A. Problem Description . . . . . . . . . . . . . . . . . . . . . 58

B. Mathematical Formulation . . . . . . . . . . . . . . . . . . 60

1. Optimal Order Acceptance Policy . . . . . . . . . . . 60

2. Optimal Order Scheduling Policy . . . . . . . . . . . . 61

3. Expected Profit Function . . . . . . . . . . . . . . . . 62

4. FCES and FCLS Policies . . . . . . . . . . . . . . . . 63

C. Solution Approaches . . . . . . . . . . . . . . . . . . . . . 64

1. Heuristic Scheme based on Stochastic Approximation-

II (HSSA-II) . . . . . . . . . . . . . . . . . . . . . . . 64

D. Computational Results . . . . . . . . . . . . . . . . . . . . 66

1. Significance of the Holding Cost Model in the Over-

all RM Model . . . . . . . . . . . . . . . . . . . . . . 66

2. Performance of HSSA-II Approach . . . . . . . . . . . 68

E. Summary and Conclusions . . . . . . . . . . . . . . . . . . 68

V FIRST PARTY WAREHOUSE CAPACITY PLANNING . . . . 72

A. Problem Description . . . . . . . . . . . . . . . . . . . . . 72

B. Mathematical Formulation . . . . . . . . . . . . . . . . . . 73

1. Design Model . . . . . . . . . . . . . . . . . . . . . . . 73

2. Properties of the First Party Warehouse Design Problem 75

C. Solution Approaches . . . . . . . . . . . . . . . . . . . . . 77

1. Heuristic Scheme based on Stochastic Approximation-

III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

D. Computational Results . . . . . . . . . . . . . . . . . . . . 79

1. Impact of Efficient First Party Warehouse Capac-

ity Planning on the RM model . . . . . . . . . . . . . 79

2. Performance of HSSA-III Approach . . . . . . . . . . 80

E. Summary and Conclusions . . . . . . . . . . . . . . . . . . 80

VI CONTRIBUTIONS AND CONCLUSIONS . . . . . . . . . . . . 82

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



ix

LIST OF TABLES

TABLE Page

I Classification of RM Models . . . . . . . . . . . . . . . . . . . . . . . 11

II Efficient Order Acceptance . . . . . . . . . . . . . . . . . . . . . . . 45

III Test Problems Set I . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

IV Test Problems Set II . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

V Performance of HSVI Approach - Test Problem Set I . . . . . . . . . 48

VI Performance of HSVI Approach - Test Problem Set II . . . . . . . . . 49

VII Performance of HSSA Approach - Test Problem Set I . . . . . . . . . 50

VIII Performance of HSSA Approach - Test Problem Set II . . . . . . . . 51

IX Performance of HSSA Approach . . . . . . . . . . . . . . . . . . . . . 53

X Performance of HSSA Approach - Large Problems . . . . . . . . . . . 53

XI Effects of Loading Factor on the Efficiency of RM Model . . . . . . . 54

XII Effects of Overlooking Holding Costs in the RM Model . . . . . . . . 56

XIII Effects of Overlooking Storage Aspects in RM Model . . . . . . . . . 67

XIV Test Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

XV Computational Performance HSSA-II . . . . . . . . . . . . . . . . . . 70

XVI Warehouse Design Results . . . . . . . . . . . . . . . . . . . . . . . . 80

XVII Computational Performance HSSA-III . . . . . . . . . . . . . . . . . 81



x

LIST OF FIGURES

FIGURE Page

1 Order Acceptance and Scheduling . . . . . . . . . . . . . . . . . . . . 16

2 Efficient Scheduling Policies - First Set . . . . . . . . . . . . . . . . . 42

3 Efficient Scheduling Policies - Second Set . . . . . . . . . . . . . . . . 43

4 Efficient Scheduling Policies - Third Set . . . . . . . . . . . . . . . . 44



1

CHAPTER I

INTRODUCTION

Make-to-order (MTO) and on-date deliveries are two features that are increasingly

gaining popularity in manufacturing industry. After the tremendous success with

revenue management (RM) over the last three decades in various segments of the

service industry such as airlines, hotels, car-rentals, media, etc., there is a huge inter-

est in understanding and applying RM in the manufacturing industry. Kroll [1] cites

several examples of manufacturing organizations that are making efforts in this direc-

tion. Recently, General Motors has expressed interest in utilizing RM in their pricing

policies [2]. In this dissertation, we develop a RM framework for designing efficient

order acceptance and scheduling policies for an on-date delivery MTO system.

Traditionally, there have been two main reasons for the popularity of MTO man-

ufacturing. The first is that in many industry segments (for example, print and

electronic media) the products offered by the firms are unique to each customer [3].

The other reason is that inspired by the success of companies such as Dell Computer

Corporation using an on-demand manufacturing model [4], many firms seek to offer

greater product variety at a low cost by eliminating finished goods inventories and

operating in an MTO fashion [5, 6, 7].

Recently, various factors have contributed to increases in the popularity of MTO

practices. Many segments in the manufacturing industry are experiencing shrink-

ing product life cycles (for example, semi-conductor manufacturing) and increasing

demand for customized products (for example, personal computers, garments, auto-

mobiles). As a result, there is a growing interest in exploring an MTO or a hybrid of

The journal model is IEEE Transactions on Automatic Control.
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an MTO and make-to-stock (MTS) practices to gain operational efficiencies [8, 9, 10].

By following an MTO approach, organizations benefit by eliminating finished

goods inventory carrying and obsolescence costs [11]. However, this benefit comes

at the cost of increased response time in meeting customer demand and/or cost of

keeping higher manufacturing capacities to accommodate variations in customer de-

mand [12]. When it is not economical to keep spare manufacturing capacities and

there is little flexibility in terms of due-dates, it becomes very critical for the MTO

manufacturer to selectively accept and schedule customer orders, so that neither the

manufacturing capacity gets wasted because too few jobs have been accepted nor

high profit earning jobs are turned down because low profit earning jobs have been

previously accepted.

On-date deliveries of raw material from suppliers allow customers to reduce their

raw material inventories, as a result minimizing the raw material inventory holding

costs for customers. Therefore, an increasing number of customers are demanding

on-date deliveries from their suppliers [13]. However, it should be noted that on-

date deliveries do not totally eliminate the holding costs, but transfer the holding

costs from the customers to the suppliers. This is because, under an on-date delivery

system, suppliers bear the holding costs incurred for the orders that are completed

in advance of their due-dates. Therefore, it becomes very important for the suppliers

to consider the holding costs aspect while accepting and scheduling customer orders.

To develop efficient order acceptance and scheduling policies, RM techniques can

be employed. In the following section, we present a brief overview of RM. RM has been

extensively studied in the context of the airline industry [14]. Section B presents a

comparison between airline and MTO manufacturing RM models, and highlights that

solutions developed for airline RM cannot be directly applied to MTO manufacturing

RM problem. This motivates us to explore efficient solutions to a version of the
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MTO manufacturing RM model. Section C outlines the scope of this dissertation,

while Section D describes the organization of the remainder of the dissertation.

A. Overview of Revenue Management

Revenue management (RM) is an area of operations research that is concerned with

demand management by finding at what price, how much of a limited resource should

be made available to the customers [14]. Cross [15] describes revenue management

as ‘The art and science of predicting real-time customer demand at the micromarket

level and optimizing the price and availability of products.’

RM is also called by the following names - yield management, pricing and revenue

management, pricing and revenue optimization, revenue process optimization, demand

management, and demand-chain management [14].

Efficient demand management can have significant impact on the total revenue

generated out of utilizing a limited amount of resource. This is illustrated by an

example reported in Cross [15], where the author cites that selling just one seat per

flight at full price rather than at a discount rate could add over $50 million to the

annual revenues of Delta Airlines.

After the deregulation of the airlines industry in the 1970s, the established car-

riers were faced with the difficult situation of competing with the newer low-priced

carriers. It was during this time that airlines adopted revenue management to stay

competitive [15]. This led to interest in the study, research, and application of revenue

management. One of the first RM models was developed by Littlewood [16]. It was

for a basic case with only two fare classes and was based on the concept of expected

marginal seat revenue. Since then, a number of researchers have considered differ-

ent extensions of the basic case and solution approaches. A detailed review of the
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developments in the area of revenue management is beyond the focus of the present

work, and we refer the reader to Talluri and van Ryzin [14] for a recent and extensive

review.

After its popularity in the airline industry, RM is now applied in various other

industries [14, 17]. RM applications can be classified into traditional and nontra-

ditional categories [17]. Traditional applications are similar to the airline model at

a mathematical level. Examples of traditional applications would include hotel and

car rental industries. The nontraditional applications use models that are sufficiently

different from the airline model and warrant separate categorizations [17]. Examples

of nontraditional applications would include retail, media and broadcasting, casino,

theaters and sporting events, manufacturing, cruise ships and ferry lines, passenger

railways, electricity generation and transmission, air cargo, freight, etc. Talluri and

van Ryzin [14] describe revenue management in various nontraditional applications.

RM is a micro-management practice and ignores the long term effects on customer

relations. Therefore, before it is applied to any situation, its long term benefits should

be analyzed. The following list gives insight into the various conditions that are

conducive to RM.

• Customer segmentation: Based on factors like time of purchase, quantity of

purchase, etc., different customers may value the same resource differently. RM

can exploit the variations in willingness to pay by segmenting customers based

on criteria that are closely related to their willingness to pay and controlling

the amount of resource made available to each segment [14, 15].

• Demand variability and uncertainty : Demand-management becomes more diffi-

cult when there is uncertainty in future demand. In such cases, the potential to

make bad decisions rises, and it becomes important to use sophisticated tools
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to evaluate the resulting complex tradeoffs [14].

• Resource inflexibility : When capacity is fixed over the short term and is per-

ishable if left unused after a certain period of time, and if the marginal cost of

consuming the capacity is low, then it is very important to utilize the available

capacity efficiently such that neither the available capacity is left unused nor a

high price customer is turned away due to the allocation of capacity to a low

price customer [1, 15].

B. Comparison of Airline and Manufacturing RM Models

Although RM has been extensively studied and researched in the context of airline seat

inventory control, the airline RM models cannot be directly applied in manufacturing

capacity control, due to the difference between the two RM models, as highlighted

below.

• In the case of manufacturing, the time horizon considered by the RM model

determines the underlying resource capacity, and is equal to the useful machine

hours available for production, while the airline seat capacity (for a specific

flight) remains fixed irrespective of the time horizon considered by the RM

model.

• Manufacturing capacity is available over a time continuum in comparison to the

airline seat capacity which is available at a specific point in time, (i.e., flight

departure). Therefore, manufacturing capacity control has to simultaneously

plan the capacity utilization, while the airline capacity is fully utilized at the

end of the time-horizon involved, which is linked with the flight departure.

• In the case of the manufacturing industry, there is flexibility in scheduling cus-
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tomer orders, as long as it allows meeting their due-dates. While in the case of

the airlines industry, there is limited flexibility in substituting a seat reserved

in a flight with another seat in some other flight. Such substitutions are done

to meet overbookings, but incur significant penalty costs. The order scheduling

aspects in manufacturing capacity control presents new challenges in RM.

C. Scope of the Dissertation

The scope of this dissertation can be summarized as follows:

1. Study the Potential of RM at an On-Date Delivery MTO System

We study the potential of RM for an on-date delivery MTO system under the following

contexts:

• Significance of efficient order acceptance policies. We isolate the two problems

of efficient order acceptance and efficient order scheduling and study the signif-

icance of each of these problems individually. To study and gain insights into

the extent of the impact of efficient order acceptance policies, we consider single

period systems in which the scheduling element is not present as all the order

classes are due at the end of the current period. An efficient order acceptance

policy will protect manufacturing capacities for future high profit earning or-

ders, while ensuring that manufacturing capacity is not getting wasted because

too few orders have been accepted. We show that substantial improvements

can be made in net profits with efficient order acceptance policies.

• Significance of efficient scheduling policies. Duenyas [18] has shown that when

all incoming orders are accepted as long as there is sufficient manufacturing

capacity available to process them, then under pre-emptive scheduling in the
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absence of holding costs, earliest due-date scheduling maximizes the total prof-

its. However, in the presence of holding costs or non-pre-emptive scheduling,

this result does not hold. To study and gain insights into the extent of the sig-

nificance of efficient scheduling policies, we consider multi-period systems with

identical profit earnings and processing requirements for all order classes. In

such systems, any efficient order acceptance policy will not prioritize any order

class over another, since all order classes earn the same profits and consume the

same amount of manufacturing capacity. However, an efficient order scheduling

policy will schedule orders in less busy periods, while saving the manufactur-

ing capacities in busier periods for future orders. We identify situations under

which efficient order scheduling policies have significant impact on net profits.

• Effects of loading factor on the efficiency of RM model. It has been shown for

service industry that RM models are most effective when demand is higher than

the available capacity. For the manufacturing industry, we study the potential

of RM at different levels of capacity overloading.

• Extent of the effects of overlooking the holding costs aspects while accepting and

scheduling customer orders. Consideration of the holding costs aspects while

accepting and scheduling customer orders for an on-date delivery MTO system,

makes the RM model very complicated. Therefore, it is tempting to overlook

the holding costs aspects in the RM model. We gain insights into the extent of

impact on total profits earned if holding costs aspects are overlooked in a RM

model.
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2. Evaluate First Party and Third Party Warehousing Systems

For storing the orders completed in advance of their due-dates, the manufacturer can

either setup his own warehouse (called first party warehousing) or use the option of

third party warehousing. First party warehousing involves a high amount of initial

investment comprising costs related to building, equipment, utilities, personnel, etc.,

whereas third party warehousing costs will be directly linked with the amount of

storage space utilized or the number of items stored. For both of these warehousing

options, we develop RM models for accepting and scheduling customer orders, and

gain insights into the structural properties of these models and the potential of these

models in improving net profits.

3. Efficient First Party Warehouse Capacity Planning

First party warehouses involve a large initial setup cost part of which is independent

of the warehouse capacity, for example cost of information technology systems for

warehouse management, and part of which is directly dependent on the size of the

warehouse, for example, cost of land and storage infrastructure. Therefore, it is

very important to efficiently plan the first party warehouse capacity, such that the

warehouse is used at high utilization, while still minimizing capacity shortages.

We develop a first party warehouse capacity design model that determines the

capacity, which along with an RM model for accepting and scheduling customer

orders, maximizes expected net profits for on-date delivery MTO systems.

D. Organization of the Dissertation

The dissertation is organized as follows. Chapter II provides a review of the order

acceptance and scheduling literature for MTO systems. Chapter III presents an RM



9

model for accepting and scheduling customer orders for an on-date delivery MTO

system, under the assumption that all orders completed in advance of their due-

dates are stored in third party warehouses. Chapter IV presents a similar RM model,

but under the assumption that there is a certain amount of first party warehousing

capacity is available for storing customer orders completed in advance of their due-

dates. While Chapter V extends this RM model and develops a scheme for finding

efficient first party warehousing capacities. The contributions of the dissertation are

summarized in Chapter VI.
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CHAPTER II

LITERATURE REVIEW

Miller [19] and Lippman and Ross [20] are examples of some of the earliest models for

selective order acceptance policies that can be applied in MTO systems [21]. These

models assume that the order service times are exponentially distributed and there are

no due-date restrictions or lateness penalties in serving the orders. Miller [19] studies

the order acceptance problem as an admission control problem to a queue. Lippman

and Ross [20] extend Miller’s model by allowing service times that are dependent

on the customer classes and a general arrival process. One of the key insights from

these models is that in an MTO system with exponentially distributed processing

times, a cµ policy gives optimal results. Consider a single machine system with

exponentially distributed service time. Jobs (i ∈ I, where I is the set of jobs) arrive

randomly and their mean service time (1/µi) and revenues (ci, earned when the jobs

are completed before their due-date) are known in advance. A cµ policy states that if

he job with largest value of ciµi, amongst all available jobs, is chosen for scheduling,

it maximizes the total expected returns (for details, see [22, 23]). Other significant

early contributions to the field of selective order acceptance polices are the works

of Stidham [24], Matsui [25], and Matsui [26]. They consider systems with Poisson

arrival process and exponentially distributed service time and analyze the properties

of the optimal order acceptance policies and derive structural results.

The next phase of research on order acceptance policies addresses strict due-

date restrictions with all orders. Some examples from this phase of research are the

works of Wester et al. [27], Tenkate [28], and Nandi and Rogers [29]. They develop

policies that accept a new order if a feasible production schedule without tardiness

is possible for all previously accepted orders and the new order. A shortcoming with



11

these acceptance policies is that no consideration is given to the future order arrivals.

Guerrero and Kern [30] claim that significant revenue gains might be possible if future

order arrivals are considered in making order acceptance decisions.

Over the last decade, several RM models have been reported in literature that

account for possible future orders in making order acceptance and scheduling decisions

in MTO systems. Table I classifies these models based on several criteria relevant to

MTO manufacturing systems.

Table I. Classification of RM Models

Criteria Classification Examples

Scope

Pure MTO System [3], [31], [32], [33], [34]

[21], [35], [36], [37], [38],
Hybrid (MTO+MTS) System

[39], [40], [41], [42], [43]

Time Horizon

Single Period [36], [44], [45]

Multi Period [34], [46]

Infinite Horizon [3], [19], [33], [42]

Order Service Times
Deterministic [3], [33], [44], [45]

Stochastic [20], [22], [24], [42], [47]

Order Arrival Process
Homogenous [3], [33], [36], [42]

Non-Homogenous [34], [46], [48]

Delivery Process
On-Date [34]

Due-Date [3], [36], [42]

Scheduling Rule
Static, Non-preemptive [33], [34]

Dynamic, preemptive [3], [42], [49]

Below we provide details on the various RM models reported in literature for
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accepting and scheduling customer orders at pure MTO systems with deterministic

order service times.

Lewis and Slotnick [46] consider the long term effects of the order selection poli-

cies on future orders from each customer and develop a dynamic programming model

for selecting the optimal set of orders in each period. One of the key assumptions with

their model is the availability of complete information on the future orders from each

customer, which is an over simplification of the dynamic arrival process for customer

orders. Balakrishnan et al. [50, 51] and Sridharan and Balakrishnan [52] propose a ca-

pacity rationing model for practicing RM at an MTO facility. Their model is extended

by Barut and Sridharan [44, 45] into a dynamic capacity apportionment procedure

(DCAP) for determining short term nested protection levels when an MTO system

experiences bursts of demand in excess of capacity. However, both the capacity ra-

tioning approach as well as the DCAP neglect the dynamic nature of the order arrival

process and prescribe a static acceptance policy irrespective of demand realization.

Our RM models overcome this shortcoming and prescribe dynamic acceptance and

scheduling policies that evolve with demand realization.

Celik and Maglaras [49] develop a diffusion model for quoting due-dates on cus-

tomer orders, with the objective of maximizing the total net revenues after accounting

for the order expediting costs. They assume, however, that order scheduling is pre-

emptive and can be resumed any number of times without any losses. This is an over

simplification and may not represent actual practice, since usually there are fixed

setup costs in resuming preempted orders. Another model that considers preemptive

scheduling of customer orders is the model by Gallien et al. [3]. In their model,

the authors assume a homogenous arrival process for customer orders, which fails to

capture the seasonal variations in the demand. They show that in their RM model,

an earliest due-date (EDD) scheduling of customer orders maximizes the total rev-
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enues generated at the MTO system. They develop two policies, the fluid policy and

the look-ahead policy, for accepting customer orders at MTO systems. The compu-

tational performance of their look-ahead policy is questionable since it considers a

number of future order arrival scenarios and solves an NP-hard problem for each of

them in arriving at the order accept/reject decision. A shortcoming with their fluid

policy is that it considers the arrival process at an aggregate level and permits accep-

tance of fractional solutions, which results in overestimation of the expected revenue

function. In comparison, our model neither allows preemptive scheduling of customer

orders, nor permits acceptance of fractional orders.

Kniker and Burman [33] develop a Markov Decision Process for accepting cus-

tomer orders at an MTO system, and Defregger and Kuhn [31] outline a heuristic

for this approach. They assume that the orders are scheduled according to the first-

come-first-served policy, and thus their model is not able to exploit the manufacturing

capacity by efficient order scheduling. Our model overcomes this shortcoming by con-

sidering a joint order acceptance and scheduling policy.

Perry [34] describes an application of RM for accepting orders in an MTO system

manufacturing semi-conductor products. He models the multi-period problem as a

stochastic knapsack problem. However, he assumes that all the orders are scheduled

in the period in which they are due. Therefore, his model is able to satisfy on-date

deliveries of customer orders, but it is not able to fully exploit the manufacturing

capacity by efficient order scheduling. In addition, he assumes that for all the orders

received in a period, the accept/reject decisions are made at the end of the period,

which is an over simplification and does not necessarily represent actual practices.

Our model overcomes these shortcomings by considering a dynamic order acceptance

and scheduling policy.

With recent advances in ‘lean thinking’ practices, many organizations (cus-



14

tomers) are interested in receiving their orders in an on-date delivery fashion. Most of

the RM models have not looked at this feature of the MTO system and the challenges

offered by it in simultaneously considering both the manufacturing capacities and the

holding costs in deciding the order acceptance and scheduling policies.

In this research, we apply RM for accepting and scheduling customer orders at

an MTO system that makes on-date deliveries of customer orders and follows non-

preemptive scheduling rule.
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CHAPTER III

THIRD PARTY WAREHOUSING OPTION

A. Problem Description

Order acceptance and scheduling policies play a very important role in MTO systems.

These policies have a direct impact on not only the delivery performance [27, 53, 54,

55] but also the profits generated [3, 31, 32, 33] by the MTO system.

In the current chapter, we focus on the revenue aspects of the order acceptance

and scheduling policies, and develop and analyze an RM model for MTO systems

that make on-date deliveries of their customer orders. This RM model segments

the possible future order arrivals into classes {i ∈ I} that are based on the due-

dates (represented by di), processing time requirements (represented by Qi) and profit

margins (represented by ri, reflecting the revenue earnings by processing the order

minus all except holding costs). Consider a case where an MTO system is offering

1 product (processing requirement Q units of processing time) at 3 different profit

margins (r1, r2, r3) over the next 2 due-dates (d1, d2). The set of order classes in this

case is {(d1, r1, Q), (d1, r2, Q), (d1, r3, Q), (d2, r1, Q), (d2, r2, Q), (d2, r3, Q)}. Using

the forecast information for the arrival distributions of the order classes (whose mean

is represented by λic, where i ∈ I is the product class and c is the arrival period), the

RM model prescribes efficient order acceptance and scheduling policies that are used

to decide if a new order arriving at time τ and belonging to a certain order class i

should be accepted or not, and if accepted, in which period it should be scheduled.

To get a clear idea of the problem, consider Figure 1. It is shown that an order

belonging to order class i (that is, earns profits ri, requires Qi amount of processing

time, and due at the end of period di) arrives in period 2. At the time of its arrival, we
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1 2 3 N

(di, ri, Qi)

k
di

Fig. 1. Order Acceptance and Scheduling

are interested in deciding if this order should be accepted, which can be done only if

there is sufficient manufacturing capacity in any period between periods 2 (the period

of order arrival) and di (the due-date period). If we decide to accept this order, the

next decision is in which of the periods between period 2 and di should this order be

scheduled for manufacturing.

If an order is scheduled in any period prior to its due-date, it is stored in a

third party warehousing facility and incurs holding costs. Thus, this RM model has

to simultaneously consider manufacturing capacity utilization and holding cost in

determining efficient order acceptance and scheduling policies. For a new order arrival,

using the information about the arrival distributions over the remaining time in the

planning horizon for different order classes, the RM model computes the opportunity

cost of committing manufacturing capacity (in time units) to it. A comparison of this

opportunity cost with the profits earned by this new order guides the RM model in

deciding if this new order should be accepted, which is done when profits earned by

the new order are higher than the opportunity cost, or if it should be rejected, which

is done when the profits earned by the new order are less than the opportunity cost.

The key assumptions made in our RM model are as follows:

ASSUMPTION 1 Single Machine Model. An MTO manufacturing system can in-

volve a number of machines. However, there is usually a machine, called as the
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bottleneck machine, that determines the capacity of the manufacturing facility [56].

Therefore, we model the MTO manufacturing facility as a single machine, which may

be the bottleneck in a larger system [3, 33, 36, 42, 43, 44, 45, 47].

ASSUMPTION 2 Finite Horizon Problem. Researchers in the past have devel-

oped both finite horizon models [34, 36, 44, 45, 46, 50, 51] and infinite horizon models

[3, 31, 33, 42] for applying RM in accepting customer orders. RM is effective when

demand is higher than the available capacity [15]. Manufacturing industries typically

face non-homogenous and seasonal demand. Kurawarwala and Matsuo [57] cite end

of quarter and Christmas season effects on demand. Kevin Rollins, CEO of Dell Com-

puter Corporation, highlights end of quarter volume ramp up as one of the challenges

faced by Dell [4]. Therefore, given the seasonality patterns in the demand faced at

many manufacturing industries, the present work considers a finite horizon model

to effectively utilize RM during the peak demand periods. The planning horizon is

divided into periods of equal length with homogenous demand within each period.

ASSUMPTION 3 Fixed Manufacturing Capacity. In various manufacturing in-

dustries, adding manufacturing capacity is a complicated process, involving changes

in the building infrastructure and utility supplies (for example, compressed air and

electricity). Procurement and receipt of machines is also a lengthy process involving

negotiations and budgeting. Therefore, it is assumed that the manufacturing capacity

is fixed over the planning horizon.

ASSUMPTION 4 Identical Storage. It is assumed that all storage units are iden-

tical and each order is assigned a unique storage unit, which could be a group of

stacking rows in a stack storage system or a group of cells in a rack storage system.
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ASSUMPTION 5 Independence. It is assumed that the order arrival processes

between different classes are independent of each other [3] and are not affected by the

acceptance and scheduling policy followed by the manufacturer [14].

ASSUMPTION 6 Demand Forecast. It is assumed that a probabilistic demand

forecast is available with the manufacturer. With the use of electronic media for

storing sales information, it is easier for manufacturers to maintain systems that

facilitate demand forecasts [1]. In addition, we assume that the order arrival process

for different classes is Poisson [3, 31, 33, 36, 42, 43].

ASSUMPTION 7 Deterministic Processing Times. It is assumed that the process-

ing times for orders is deterministic but differs by product classes [3, 31, 33, 34, 36, 43,

44, 45, 50, 51]. A few researchers have considered exponentially distributed processing

times [42, 47], however with automation and advances in manufacturing technologies,

the manufacturing processes have become more reliable and often offer nearly fixed

processing times [58]. It is further assumed that all supplies will be coordinated to

meet the processing requirements of different orders without causing any delays or

time losses.

ASSUMPTION 8 Non-Preemptive Scheduling. It is assumed that the scheduling

of orders is non-preemptive. For every new item/order, manufacturing processes

typically require a certain amount of setup time/cost. Therefore, it is desirable to

complete processing on the current job before starting a new one. This may lead

to profit losses since it might be possible to make extra profits by scheduling a new

high profit earning order and postponing the order currently in processing to a future

period. It is further assumed that order processing does not span periods, which

is reasonable as long as the length of each period is significantly larger than the
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processing time requirements of orders. However, this has the disadvantage of letting

small amounts of processing capacities remain unutilized.

B. Research Motivation

The key research motivation behind this problem can be summarized as follows:

• Stochastic system. The order acceptance and scheduling decisions are being

made under incomplete information on future arrivals. This is because, due to

the stochastic arrival process of different order classes, a number of scenarios

of future order arrivals are possible. In addition, the set of possible scenarios

for future arrivals grows exponentially with the length of the planning horizon.

As a result, it is difficult to determine optimal order acceptance and scheduling

decisions.

• Simultaneous consideration of manufacturing capacity utilization and holding

cost in an RM model is challenging. Under an on-date delivery system, optimal

order scheduling is a complicated problem, since the manufacturer has to not

only consider the manufacturing capacity utilization, but also the resulting hold-

ing costs for storing the orders until their due-dates. Duenyas [18] and Gallien

et al. [3] have shown that an earliest due-date scheduling scheme maximizes the

manufacturing capacity utilization, while a latest due-date scheduling scheme

minimizes holding cost when the manufacturer is responsible for the holding

costs incurred for the orders completed in advance of their due-dates. As a

result, simultaneous consideration of manufacturing capacity utilization, and

holding costs makes optimal order scheduling a challenging problem.

• Optimal order acceptance and scheduling problem is mathematically difficult. As
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shown later in this chapter in Theorem 1, the order acceptance and scheduling

problem is NP-hard.

C. Mathematical Formulation

Analogous to the optimal policies for Single-Resource Dynamic Capacity Control iden-

tified in Talluri and Van Ryzin [14] (pg. 59), the optimal order acceptance and

scheduling policies for a single machine on-date delivery MTO system can be stated

as Remarks 1 and 2 below.

REMARK 1 Optimal Order Acceptance Policy. Accept an order if the expected

opportunity cost of scheduling it in any period between its arrival and its due-date

is less than its profit earnings. Opportunity cost is defined as the difference between

the expected profits with the uncommitted manufacturing capacity when the order

is accepted and scheduled and when it is not.

REMARK 2 Optimal Order Scheduling Policy. Schedule an order in the period

that has the least opportunity cost for processing the order.

Discrete time formulations based on stochastic dynamic programming (SDP)

approach are common in RM literature [14]. The way this approach is executed is as

follows. Under the assumptions of a Poisson arrival process, the time horizon under

study is divided into small time slots, such that the probability of arrival of more

than one order in each time slot is very small. SDPs are then constructed over the

discrete space of the time slots, with the objective of computing the expected returns

from the available manufacturing capacity. In the sense of RM, when a decision needs

to be made on accepting or rejecting an order, the difference between the expected

returns from the available manufacturing capacities when an order is rejected and is
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accepted is compared with the profits earned by processing the order at hand. If the

comparison is in favor of the order, the order is accepted, otherwise it is rejected.

Following this general approach, we develop SDP formulation for our problem, as

described below. The notation followed in this formulation is presented in the next

subsection.

1. Notation

The following notation is used throughout the formulation:

Sets

I Set of order classes.

D Set of due-dates; D = {1, ..., N}.

Indices

τ Index for time slots over the planning horizon.

i Index for order class; i ∈ I.

c Index for the time periods; c ∈ {1, ..., N}.

Parameters

ti Period in which class i order arrives.

di Period in which class i order is due.

Qi Processing time of class i order, expressed in time slots;

Qi ≥ 1.

ri Profits earned by processing an order belonging to class i.

N Total number of time periods in the planning horizon.

λic Arrival rate of order class i in period c, expressed in units

per period.
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k Total time per period, expressed in number of time slots;

k ≫
∑

i∈I λic,∀c.

h Third party holding cost per order per time period.

Pic Probability of an arrival of a class i order in period c;

Pic = λic

k
< 1.

Cw Cost per unit of first party warehousing capacity.

State Variables

Ŝ Vector of available manufacturing capacity (expressed in

number of time slots) in different periods.

S(c) The cth element of vector Ŝ; Ŝ = {S(1), S(2), ..., S(N)}.

Ŝ \ c Vector Ŝ, excluding the cth element; Ŝ = {S(c)} ∪ Ŝ \ c.

Ŵ Vector of committed storage volume in different periods

at an order arrival.

W (c) The cth element of vector Ŵ .

Ŵ \ c Vector Ŵ , excluding the cth element.

Decision Variables

Xic 1 if an order of class i is scheduled in period c,

0 otherwise.

W First party warehousing capacity; W ∈ Z+.

2. Optimal Acceptance Policy

Let an order from class i arrive in time slot τ , when the vector of available capacities

is Ŝ. This order should be accepted if condition (3.1) is satisfied. V (τ, Ŝ) in (3.1)

is the expected profit function, and is computed by solving the stochastic dynamic

program (3.7) described later in the section.
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min
Xic

s.t.(3.2)−(3.5)

[V (τ + 1, Ŝ ′) − V (τ + 1,
∑

c

Xic({S(c) − Qi} ∪ Ŝ ′ \ c))+

hi

∑

c

Xic(di − c)] ≤ ri (3.1)

where,

S ′(c) =






S(c) c 6= ⌈τ/k⌉

min(S(c), k − (τ mod k) − 1) otherwise
(3.2)

di∑

c=⌈τ/k⌉

Xic ≤ 1 (3.3)

S(c) − XicQi ≥ 0,∀c ∈ {⌈τ/k⌉, ..., di} (3.4)

Xic ∈ {0, 1},∀c ∈ {⌈τ/k⌉, ..., di} (3.5)

The first term of the expression on the left hand side of (3.1) is the expected

profits if the order at hand is not accepted, while the second term is the expected

profits from the remaining manufacturing capacity after accepting and scheduling

the order in period c. The third term is the holding cost incurred for storing the

order from period c until di. Therefore, the expression on the left hand side of (3.1)

is the smallest of the opportunity costs of scheduling the order at hand in different

periods between the period of the order arrival and due-date. Ŝ ′ in (3.1) is the vector

of available manufacturing capacity in different periods if the order at hand is not

accepted and is computed by expression (3.2). Constraint (3.3) and (3.4) ensure that

the order is accepted only when there is sufficient manufacturing capacity available

in one of the periods between the period of order arrival and due-date.
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3. Optimal Scheduling Policy

The optimal scheduling policy, represented by Remark 2 can be mathematically ex-

pressed by (3.6), where c∗ is the best period to schedule an order from class i arriving

in time slot τ when Ŝ is the vector of available manufacturing capacity in different

periods.

c∗ = arg min[(V (τ + 1, Ŝ ′) − V (τ + 1, {S(c) − Qi} ∪ Ŝ ′ \ c) + hi(di − c)

: c ∈ {⌈τ/k⌉, ..., di}; (3.2); S(c) − Qi ≥ 0] (3.6)

(3.6) determines the period with the least opportunity cost for scheduling the

order. Opportunity costs for scheduling the order in a feasible period c is computed

by evaluating the difference in the expected profits between rejecting the order and

accepting and scheduling the order in period c. The expected profits are computed

by SDP (3.7).

4. Expected Profit Function

The expected profit function V (τ, Ŝ) represents the net expected profit that can be

generated by the available manufacturing capacity, represented by the vector Ŝ, with

the orders arriving during and after time slot τ . An SDP for computing V (τ, Ŝ) is

expressed by (3.7) with boundary condition (3.8). Feasibility of the order acceptance

and scheduling policy for an order that arrives in time slot τ is ensured by (3.9) -

(3.13). Constraints (3.9) and (3.13) restrict the scheduling of the order from class i

to at most one of the periods between the period of its arrival ⌈τ/k⌉ and due-date di.

Constraints (3.10), (3.11), and (3.12) ensure that sufficient manufacturing capacity is

available in the period in which the order is scheduled. Constraints (3.11) and (3.12)



25

account for the consumption and/or loss of manufacturing capacity with accepting

and rejecting orders. Constraint (3.12) accounts for loss in manufacturing capacity

in the period of order arrival if sufficient workload is not available. The boundary

condition used is (3.8), where N × k represents the last time slot in the time horizon

under study. Any manufacturing capacity available after completion of the last time

slot in the planning horizon is lost, and so it does not generate any revenues.

V (τ, Ŝ) =
∑

i∈I:di≥⌈τ/k⌉

(Pi⌈τ/k⌉ max
Xic

s.t.(3.9)−(3.13)

[

di∑

c=⌈τ/k⌉

Xic(ri−hi(di−c))+V (τ+1, Ŝ ′)]) (3.7)

with boundary condition (3.8),

V ((N × k) + 1, Ŝ) = 0, ∀Ŝ (3.8)

where,
di∑

c=⌈τ/k⌉

Xic ≤ 1 (3.9)

S ′(c) ≥ 0,∀c ∈ {⌈τ/k⌉, ..., di} (3.10)

S ′(c) = S(c) − XicQi,∀c ∈ {⌈τ/k⌉ + 1, ..., di} (3.11)

S ′(⌈τ/k⌉) = min(S(⌈τ/k⌉) − Xi⌈τ/k⌉Qi, k − (τ mod k) − 1) (3.12)

Xic ∈ {0, 1},∀c ∈ {⌈τ/k⌉, ..., di} (3.13)

5. FCES and FCLS Policies

To evaluate the performance of our RM model, we consider two simple policies, first

come earliest served (FCES) and first come latest served (FCLS). Under an FCES

policy, all incoming orders are accepted if there is sufficient manufacturing capacity

available, at the time of order arrival in any of the periods between order arrival and
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its due-date, that can process this order. An accepted order is scheduled in the earliest

possible period with sufficient capacity to process the order. FCLS policy follows the

same order acceptance rule as FCES policy, but schedules an accepted order in the

latest possible period with sufficient capacity to process the order. These policies are

not only simple to implement but also have their own strengths which make them

attractive and gives us a reference against which we can compare the profits earned by

adopting the optimal order acceptance and scheduling policies determined by our RM

model. FCES policy ensures that as long as there is any pending order in the system,

the manufacturing capacity will not be wasted idling, while FCLS policy ensures that

orders are processed as close to their due-date as possible, thereby minimizing the

holding costs incurred in storing the orders completed in advance of their due-dates.

The expected value function under FCES scheme can be expressed by SDP (3.14),

where c is chosen as in (3.15). (3.15) determines the earliest possible period with

sufficient manufacturing capacity available to process an order from class i. Feasibility

of scheduling an order from class i arriving in time slot τ when the vector of available

manufacturing capacities is Ŝ in period c is ensured by (3.16) - (3.19). (3.16) and

(3.17) ensure that there is sufficient manufacturing capacity available in period c to

process an order from class i. (3.17) accounts for loss in manufacturing capacity in

the period of order arrival if sufficient workload is not available. (3.18) states that the

available manufacturing capacities in all periods besides the period of order arrival

and the period in which the order is scheduled remain unchanged at the values prior

to the order arrival. The expression 1y is used as an indicator function and takes

value 1 if condition y is true, and 0 otherwise.

V (τ, Ŝ) =
∑

i∈I:di≥⌈τ/k⌉

Pi⌈τ/k⌉(1⌈τ/k⌉≤c≤di
(ri − hi(di − c)) + V (τ + 1, Ŝ ′′)) (3.14)
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with boundary condition (3.8), where

c = min{s : S(s) ≥ Qi; ⌈τ/k⌉ ≤ s ≤ di; (3.16) − (3.19)} (3.15)

S ′′(c) ≥ 0,∀c ∈ {⌈τ/k⌉, ..., di} (3.16)

S ′′(c) = Ŝ(c) − Qi, if c 6= ⌈ τ/k ⌉ (3.17)

S ′′(⌈τ/k⌉) = min(S(⌈τ/k⌉) − 1c=⌈τ/k⌉Qi, k − (τ mod k) − 1) (3.18)

S ′′(l) = S(l),∀l 6= c, l 6= ⌈τ/k⌉ (3.19)

Similarly, the expected value function under FCLS scheme can also be expressed

by SDP (3.14), where c is chosen as in (3.20). (3.20) determines the latest possible

period with sufficient capacity to process an order from class i.

c = max{s : Ŝ(s) ≥ Qi; ⌈τ/k⌉ ≤ s ≤ di; (3.16) − (3.19)} (3.20)

D. Solution Approaches

In the next subsection, we show that order acceptance and scheduling problem is an

NP-hard problem. Therefore, it is unlikely to be possible to solve large size problems

to optimality. Thus, we develop two approaches as outlined later in this section. The

first approach is based on solving the SDP (3.7) by value iteration scheme. This

scheme can be used to generate near optimal solutions. However, the state space in

our SDP (3.7) has size O(NkN+1), which is very large even for small size problems.

Thus, our value iteration scheme is computationally intensive. Therefore, we develop

a second solution approach, which is based on insights gained from the properties of

the optimal policies. This approach employs a stochastic approximation techniques

for finding efficient solutions to the order acceptance and scheduling problem.
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1. Complexity of Order Acceptance and Scheduling Problem

As shown in Theorem 1, the optimal order acceptance and scheduling problem is

NP-hard.

THEOREM 1 The optimal order acceptance and scheduling problem for a single

machine MTO system is NP-hard.

Proof: Consider a deterministic system such that at the time of an order arrival

all future order arrivals are known and are indexed by j. For each future order j,

let aj, dj, Qj, rj represent the arrival time, the period in which the order is due,

the processing time requirements of the order, and the profits earned by processing

the order, respectively. In addition, ignore the holding costs incurred for storing any

orders that are processed in advance of their due-dates and assume that orders can

be processed in pre-emptive scheduling without incurring any penalties.

The optimal order acceptance problem in this deterministic system can be math-

ematically expressed as:

max
∑

j

rjxj (3.21)

s.t.

∑

l∈{i:ai≥aj ,
Pi≤g}

Qlxl ≤


min(S(⌈

aj

k
⌉), k − (aj mod k)) +

g∑

e=⌈
aj

k
⌉+1

S(e)


 ,∀j, g (3.22)

xj ∈ {0, 1},∀j (3.23)

where e, g are indices for due-dates and xj is the decision variable that takes value 1

if the order j is accepted and 0 otherwise. This is a multiple 0-1 knapsack problem,

which is NP-hard [59].
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In the problem of order acceptance and scheduling, we do not know the future ar-

rivals in advance, and in addition to acceptance/rejection decisions, we make optimal

scheduling decisions in the presence of holding costs. These features make the optimal

order acceptance and scheduling problem more difficult than the NP-hard optimal or-

der acceptance problem for the deterministic system described above. Therefore, the

optimal order acceptance and scheduling problem is NP-hard. �

2. Heuristic Scheme based on Value Iteration (HSVI)

Value iteration is a popular scheme used for solving SDPs [60, 61, 62]. If this scheme

is executed for a sufficiently long time, then it converges to optimal solutions, while

if it is terminated when the improvements in the objective function are less than a

certain fraction (ǫ) it gives near optimal solutions, also called as ǫ-optimal solutions

[60]. We use value iteration to solve the SDP expression (3.7). At each iteration,

using (3.25) as the boundary condition, the value function at different states (τ, Ŝ) is

updated as follows,

V n+1(τ, Ŝ) =
∑

i∈I:di≥⌈τ/k⌉

(Pi⌈τ/k⌉ max
Xic

s.t.(3.9)−(3.13)

[

di∑

c=⌈τ/k⌉

Xic(ri − h(di − c)) + V n(τ + 1, Ŝ ′)])

(3.24)

V n((N × k) + 1, Ŝ) = 0, ∀n, Ŝ (3.25)

In this solution approach, the number of states in the SDP (3.7) is O(NkN+1),

which grows exponentially with the number of periods in the planning horizon. Con-

sider a 3 period problem with number of time slots in each period equal to 250. The

number of possible states in the SDP (3.7) is O(1.17 × 1010), which shows that it is

difficult to apply value iteration scheme to even small size problems. To condense the
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number of states in SDP (3.7), we compute the greatest common factor b of the pro-

cessing requirements of all order classes, and scale down the processing requirements

of all jobs and available manufacturing capacity vector by factor b and change (3.18)

in SDP (3.7) to (3.26).

S ′(⌈τ/k⌉) = min(S(⌈τ/k⌉) − Xi⌈τ/k⌉Qi, ⌊
k − (τ mod k) − 1

b
⌋) (3.26)

These changes reduce the number of states in SDP (3.7) to O(N kN+1

bN ). Therefore,

in our earlier example where we considered N = 3 and k = 250, if b = 25 then the

number of states in SDP (3.7) reduces to O(7.5×105), which is much easier to manage

than the original number of states. Therefore, while applying HSVI approach, we

condense the state space as described above.

3. Heuristic Scheme based on Stochastic Approximation (HSSA)

To gain insights into the structural properties of the optimal order acceptance policies,

consider a one period problem. In a one period problem, all the orders received are

due at the end of the period. If accepted, the orders are scheduled in the period in

which they arrive, therefore the scheduling element is not present in this problem.

Consider that an order from class i arrives in time slot τ when the amount of

manufacturing capacity available (MCA) is S. Then based on Remark 1, this order

should be accepted if and only if condition (3.27) holds.

ri ≥ V (τ + 1, S) − V (τ + 1, S − Qi) (3.27)

If the function V (τ, S) is concave in S, then according to Theorem 2, the optimal

acceptance policy can be expressed in terms of threshold values of MCA for each order

class i at all times τ , such that if the MCA at an order arrival is higher than the
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threshold value, then the order is accepted, otherwise the order is rejected.

THEOREM 2 For an order from class i that arrives at time τ , if the function

V (τ, S) is concave in S, then there exists a threshold value of MCA, S∗
iτ , such that it

is optimal to accept the order if the MCA at order arrival is higher than the threshold

value, and to reject it otherwise.

Proof: Case 1: (3.27) is satisfied for some values of S. Let (3.27) be satisfied at

equality at S∗
iτ . Due to concavity of V (τ, S) in S, for all values of S less than S∗

iτ

(3.27) is not satisfied. Similarly, for all values of S greater than S∗
iτ (3.27) is satisfied.

Therefore, S∗
iτ is the threshold value.

Case 2: (3.27) is never satisfied for any value of S. This is the case when it is

never optimal to accept a job from class i that arrives at time τ for any amount of

MCA. The threshold value in this case is S∗
iτ = ∞. �

In Theorem 3 we show that V (τ, S) is non-concave in S. Unfortunately, when

this happens, we may not be able to express the optimal order acceptance policy in

terms of threshold values, as illustrated by Example 1.

Example 1 Let V (1, 10) = $99,V (1, 20) = $150,V (1, 30) = $275. Let an order that

requires 10 units of processing capacity, earns $100 in profits and due at the end of

current period arrive in time slot τ = 0. Based on condition (3.27), this order can be

accepted when MCA is 10 or 20 units. However, we cannot express the optimal order

acceptance policy in terms of threshold values of MCA as expressed in Theorem 2,

since condition (3.27) is violated when MCA is 30 units.

THEOREM 3 The function V (τ, S) is non-concave in S.

Proof: Let’s assume that V (τ, S) is concave in S, where S is the manufacturing

capacity available at time slot τ . Consider a single period, single product class with
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the following parameters:

k = 100 minute

τ = 0

Q1 = 24 minute

r1 = 10

λ1 = 10 per period

At S1 = 0, V (τ, S1) = 0, and at S2 = 24, V (τ, S2) = (1 − e−0.1×76) × 10 = 9.995.

However, at S = 0.5S1 + 0.5S2 = 12, V (τ, S) = 0 < (0.5V (τ, S1) + 0.5V (τ, S2)),

which is a violation of our earlier assumption on concavity of V (τ, S) in S. Therefore,

V (τ, S) is a non-concave function of S. �

Since V (τ, S) is non-concave in S, an order acceptance policy expressed in terms

of threshold values of MCA may be sub-optimal. For a one period problem, the

acceptance rule based on threshold values can be expressed as the following policy,

called as threshold policy. Accept an order from class i arriving in time slot τ if and

only if the amount of MCA at the order arrival is higher than the threshold value

corresponding to class i and time slot τ . Threshold policy controls the acceptance

of orders at different level of MCA. Therefore, if an order class earns less profit in

comparison to other order classes, its threshold value should be kept high to ensure

that such orders are accepted only when there is ample amount of MCA, while for high

profit earning order classes, the threshold values should be kept low to ensure that

such orders are always accepted, as long as there is manufacturing capacity available

to process them. Under certain conditions, as shown in Theorems 4 and 5, V (τ, S)

is concave, in which case the threshold policy is optimal. We present a scheme for

computing efficient threshold values later in this section.

THEOREM 4 In a single period problem, if fractional orders can be accepted, then
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V (τ, S) is concave in S.

Proof: Let’s assume that even if fractional orders can be accepted, V (τ, S) is a

non-concave function of S. This implies that there exists a set of τ, S, ∆S, such that:

V (τ, S + ∆S) − V (τ, S) > V (τ, S) − V (τ, S − ∆S) (3.28)

where, ∆S > 0, S − ∆S ≥ 0, and S + ∆S ≤ k.

Consider the smallest S for which (3.28) holds and the following order acceptance

policy: Accept an order and compute the state transitions based on the optimal ac-

ceptance and scheduling decisions determined by solving the SDPs (3.1) and (3.6) as

if the amount of manufacturing capacity available at time τ is S + ∆S. However,

amongst the orders that are determined as acceptable, do not accept the fraction

of orders that are in part responsible for the reduction in the amount of available

manufacturing capacity from S to S − ∆S. But instead, use this piece of available

manufacturing capacity for processing the fraction of orders that were originally re-

sponsible for the reduction in the available manufacturing capacity from S+∆S to S.

Let g(S, ∆S) be the amount of profits lost in not accepting the fraction of orders that

are in part responsible for the reduction in the amount of available manufacturing

capacity from S to S − ∆S. Due to optimality of the value function,

V (τ, S) ≥ V (τ, S − ∆S) + g(S, ∆S)

or,

V (τ, S) − V (τ, S − ∆S) ≥ g(S, ∆S) (3.29)

Therefore, by adopting the order acceptance policy described above, it is possible

to generate an expected profits equal to V (τ, S+∆S)−(g(S, ∆S)), which from (3.29)

has a lower bound of V (τ, S +∆S)− (V (τ, S)−V (τ, S−∆S)). From (3.28), we know
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that this quantity is higher than V (τ, S). But this is a violation, since V (τ, S) is the

maximum expected profits that can be earned when the amount of manufacturing

capacity available at time τ is S. This shows that our earlier assumption on the

non-concavity of V (τ, S) in S when fractional orders can be accepted is incorrect. �

THEOREM 5 In a single period problem, if for all order class, the arrival rates are

very high and processing time requirements are very small then V (τ, S) is concave in

S.

Proof: Let’s assume that for the given system, V (τ, S) is a non-concave function

of S. This implies that there exists a set of τ, S, ∆S, such that:

V (τ, S + ∆S) − V (τ, S) > V (τ, S) − V (τ, S − ∆S) (3.30)

where, ∆S > 0, S − ∆S ≥ 0, and S + ∆S ≤ k.

Consider the smallest S for which (3.30) holds and the following order acceptance

policy: Accept an order and compute the state transitions based on the optimal

acceptance and scheduling decisions determined by solving the SDPs (3.1) and (3.6)

as if the amount of manufacturing capacity available at time τ is S + ∆S. However,

amongst the orders that are determined as acceptable, do not accept the orders that

are responsible for the reduction in the amount of available manufacturing capacity

from S to S − ∆S. But instead, use this piece of available processing capacity for

processing the fraction of orders that were originally responsible for the reduction in

the available manufacturing capacity from S +∆S to S. Since the arrival rates for all

order classes are very high, there will be a large number of complete orders that are

responsible for reduction in the available manufacturing capacity from S to S −∆S.

However, there will be at most two orders that are in fraction responsible for reduction

in the available manufacturing capacity from S to S − ∆S. Therefore, the effects of
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these two orders can be overlooked with minimal effects on the expected profits. Let

g(S, ∆S) be the amount of profits lost in not accepting the fraction of orders that

are in part responsible for the reduction in the amount of available manufacturing

capacity from S to S − ∆S. Due to optimality of the value function,

V (τ, S) ≥ V (τ, S − ∆S) + g(S, ∆S)

or,

V (τ, S) − V (τ, S − ∆S) ≥ g(S, ∆S) (3.31)

Therefore, by adopting the order acceptance policy described above, it is possible

to generate an expected profit equal to V (τ, S + ∆S) − g(S, ∆S), which from (3.31)

has a lower bound of V (τ, S +∆S)− (V (τ, S)−V (τ, S−∆S)). From (3.30), we know

that this quantity is higher than V (τ, S). But this is a violation, since V (τ, S) is the

maximum expected profits that can be earned when the amount of manufacturing

capacity available at time τ is S. This shows that our earlier assumption on the

non-concavity of V (τ, S) in S when fractional orders can be accepted is incorrect. �

Based on Theorem 2 and 5 it can be seen that in a one period problem if the

orders consume a very small amount of processing capacity and their arrival rates

are very high then there exists an optimal threshold policy for accepting customer

orders. Theorem 6 shows that if fractional orders can be accepted then there exists

an optimal threshold policy for accepting customer orders.

THEOREM 6 In a one period problem, if fractional orders can be accepted, then

there exists an optimal threshold policy.

Proof: Let an order from class i arrive during time slot τ . A threshold policy that

accepts this order completely if the amount of capacity available at the time of arrival
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is greater that S∗
iτ is optimal, where S∗

iτ is the solution of the following expression.

dV (τ, S − Qi)

dS
=

ri

Qi

Since V (τ, S) is a concave function of S, dV (τ,S−Qi)
dS

< ri

Qi
for all S > S∗

iτ . Hence,

it would always be optimal to accept an order from class i completely if the amount

of manufacturing capacity available at the time of order arrival τ is greater than the

corresponding threshold value S∗
iτ .

Similarly, a threshold policy that accepts a fraction αiτ of an order from class i

that arrives during time slot τ if the amount of manufacturing capacity available at

the time of order arrival is equal to S∗∗
iταiτ

is optimal, where S∗∗
iταiτ

is the solution to

the following expression:

dV (τ, S − αiτQi)

dS
=

ri

Qi

Let a fraction equal to β of the order be accepted. If β < αiτ then from the

manufacturing capacity S = S∗∗
iταiτ

that was available to us during time slot τ , we can

generate expected profit equal to

βri + V (τ + 1, S − βQi)

= βri + V (τ + 1, S − βQi) − αri − V (τ + 1, S − αiτQi) + αiτri+

V (τ + 1, S − αiτQi)

= αiτri + V (τ + 1, S − αiτQi) − ri(αiτ − β) + V (τ, S − βQi) − V (τ, S − αiτQi)

= αiτri + V (τ + 1, S − αiτQi) − ri(αiτ − β) + r
′

(αiτ − β)

(where, r
′

is the average slope of the expected profit function between S −αiτQi

and S − βQi; r
′

< ri due to concavity of V (τ, S) in S)

< αiτri + V (τ + 1, S − αiτQi)
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If β > αiτ , then from the manufacturing capacity S that was available to us

during time slot τ , we can generate an expected profit equal to

βri + V (τ + 1, S − βQi)

= βri + V (τ + 1, S − βQi) − αiτri − V (τ + 1, S − αiτQi) + αiτri+

V (τ + 1, S − αiτQi)

= αiτri + V (τ + 1, S − αiτQi) − ri(αiτ − β) + V (τ, S − βQi) − V (τ, S − αiτQi)

= αiτri + V (τ + 1, S − αiτQi) + ri(β − αiτ ) − r
′

(β − αiτ )

(where, r
′

is the average slope of the expected profit function between S −αiτQi

and S − βQi; r
′

> ri due to concavity of V (τ, S) in S)

< αiτri + V (τ + 1, S − αiτQi)

Since if a fraction β 6= αiτ is accepted the expected profit is reduced, therefore if

an order from class i arrives in time slot τ when the available manufacturing capacity

is S∗∗
iτα, then it is optimal to accept an αiτ fraction of this order. �

As shown in Theorems 2, 5, and 6, under certain special cases, threshold policies

give optimal order acceptance solution. Thus, we are motivated to extend the idea

of threshold policies to general cases. In general cases, threshold policies will give

sub-optimal results. But, as shown later, the ease with which threshold policies can

be computed for large size problems and their solution quality makes them attractive

in application.

In a general setting of multi-period problems and when only complete orders

can be accepted, the threshold policy for accepting and scheduling customer orders

when only third party warehousing option is available for storing orders completed in

advance of their due-dates is as follows: Accept an order if the amount of MCA at the

time of order arrival in any of the periods between the order arrival and due-date is

higher than a pre-determined threshold value corresponding to the order class, time

of arrival and period under consideration; otherwise, reject the order. If the order is
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accepted, schedule the order in the period that has the largest excess of MCA over

the threshold value.

To find efficient threshold values, a gradient search scheme based on stochastic

approximation [63] is followed. In each iteration of this scheme, we generate one

scenario of future order arrivals and compute approximate gradients using finite dif-

ference approximation [64, 65, 66] and move in the direction of steepest descent in

small steps [63]. The iterations are continued until the improvement in the objective

function value between successive iterations is less than a certain fraction, or certain

number of iteration is completed. Algorithm 1 describes each step of the stochastic

approximation scheme for computing efficient threshold values for solving the RM

problem in this chapter. Since this procedure is based on stochastic approximation

approach, we refer to it as the heuristic scheme based on stochastic approximation

(HSSA). The notation used in Algorithm 1 is as follows.

i Index for order class; i ∈ I.

m Iteration counter.

p Index for the period in which orders can be scheduled;

p ∈ {1, ..., N}.

τ Index for time slots over the planning horizon.

∆ Difference interval in gradient approximation; ∆ > 0.

η Step size in the stochastic approximation iteration.

mmax Maximum number of iterations.

ωm Future order arrivals scenario used in the mth iteration.

F (ωm, Ẑm) Expected profits generated by using threshold policy Ẑ in

iteration m.
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∇m
itp Approximate gradient w.r.t. the threshold value for order class i,

arriving at time τ for scheduling in period p, based on the

scenario for future order arrivals used in the mth iteration.

Ẑ Vector of threshold values.

Z(i, τ, p) Threshold value for an order of class i, that arrives at time τ ,

for scheduling in period p.

Ẑ \ (i, τ, p) Vector of threshold values, excluding the threshold value

corresponding to order class i, arriving at time τ for scheduling

in period p; Ẑ = {Z(i, τ, p)} ∪ Ẑ \ (i, τ, p).

Ẑm Vector of mth iteration of threshold values.

ALGORITHM 1 Step by step procedure in HSSA is as follows

1. Initialize the threshold policy. Set m = 0.

2. Simulate (m + 1)st scenario of future order arrivals.

3. Using the most recent threshold policy, approximate the steepest descent gradient

by evaluating expression (3.32), which represents the finite difference approach

for computing approximate gradients ([64, 65]).

∇m+1
iτp =

F (ωm+1, {Zm(i, τ, p) + ∆} ∪ Ẑm \ (i, τ, p))−

F (ωm+1, {Zm(i, t, p)} ∪ Ẑm \ (i, t, p))

∆
,∀i, τ, p (3.32)

4. Update the threshold values as shown in (3.33).

Zm+1(i, τ, p) = Zm(i, τ, p) + ∇m+1
iτp η,∀i, τ, p (3.33)

5. If m = mmax stop. Else goto Step 2.



40

At Step 4 a constant step size η is used. Another step size rule that can be used for

choosing step sizes is {
∑

ηk −→ 0;
∑

η2
k < ∞} [64]. The latter step size rule ensures

asymptotic convergence, but the rate of convergence could be very slow [67, 68].

For constant step size rule, which we have used in our stochastic approximation

heuristic, weak convergence results have been shown by Benaim and Hirsch [69] and

Yin and Yin [70]. Pflug [67] and Gaivoronski [68] have highlighted that with proper

selection of constant but small step sizes, the decision variables come close to the best

solution at a fast rate but may ossicilate in close vicinity, in which case a secondary

stopping criteria should be applied. The secondary stopping criteria we have built

in our heuristic is to truncate the iterations after a certain limit. We found that

after a certain number of iterations, on the order of 100-500 iterations, the changes

in the threshold values between successive iterations were very small, which resulted

in differences of less than 0.1% between the expected values computed at successive

iterations. Therefore, truncating the iterations after a certain limit had a minimal

effect on the threshold policy computed, while reducing the computational times.

There are three major benefits with solving the RM problem by using a threshold

policy approach. First is that the threshold policy can be applied to general arrival

process problems, thus relaxing the Poisson arrival assumption inherent in the SDP

formulation. The second benefit is that the threshold policies can be computed in

polynomial time (O(N3k2|I|mmax), where N is the number of periods, k is the length

of each period (in time slots), and I is the set of order classes.), which makes this

approach suitable for industry size problems. The computational time can be further

improved by consolidating the threshold values over the time index. The third benefit

with this approach is that since the threshold values are computed for all time slots

in the planning horizon, they can be stored and used as static values for as long as

the problem parameters do not change. In this way, the threshold values need to be
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computed only once.

E. Computational Results

There are two objectives of the computational experiments. The first objective is to

study the potential of the RM model developed in this chapter in improving profits

over simple FCES and FCLS policies at an on-date delivery MTO system. The second

objective is to study the computational performance of the solution approaches pre-

sented in this chapter and evaluate the suitability of these approaches for solving large

size problems. In all computational studies presented in this section, manufacturing

capacity units refer to time units available for processing in the MTO system. The

computing environment used is Pentium 4, 2.2 GHz, 512 MB RAM Optiplex-GX240

system.

1. Significance of Efficient Scheduling Policies

To study the significance of efficient scheduling policies independent of the efficient

order acceptance policies, we consider three sets of test cases, such that for each test

case in these sets, all the order classes earn the same amount of profit and require the

same amount of manufacturing capacity for processing. Thus, all order classes are

equally attractive for acceptance. However, efficient scheduling plays an important

role by prioritizing scheduling of orders in less busy periods and saving manufacturing

capacity in busier periods so that more orders can be processed.

The first set of test cases considers three period problems, where each period

has 150 units of manufacturing capacity available, with 3 order classes, one for each

due-date, each requiring 25 units of processing capacity. The second set of test cases

considers four period problems, where each period has 100 units of manufacturing
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capacity available, with 4 order classes each requiring 25 units of processing capacity.

The third set of test cases considers five period problems, where each period has 75

units of manufacturing capacity available, with 5 order classes each requiring 25 units

of processing capacity.
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Fig. 2. Efficient Scheduling Policies - First Set

Figures 2, 3 and 4 show plots of expected profits, expressed in number of orders

processed, generated by adopting the optimal order acceptance and scheduling policies

determined by the HSVI approach and FCES and FCLS policies at different levels

of loading factors, which refers to the ratio of total expected demand for processing

divided by the available processing capacity. From these results, it can be observed

that when the loading factor is between 0.8 and 1.6, efficient scheduling policies itself

contribute to about 3.5% to 12% gain in expected profits over simple FCES and FCLS
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Fig. 3. Efficient Scheduling Policies - Second Set

policies. However, scheduling policies are not very effective when either the loading

factor is very low or very high. When the loading factor is very low, there is an

excess of manufacturing capacity in comparison to the demand, and therefore, any

scheduling policy can be adopted without leading to shortage of processing capacity

for any order request. When loading factor is very high, there is an excess of demand,

and so manufacturing capacity is seldom wasted by idling, regardless of the scheduling

policy.

2. Significance of Efficient Order Acceptance Policies

To study the significance of efficient order acceptance policies independent of the

scheduling policies, we consider single period test problems with 500 units of man-
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Fig. 4. Efficient Scheduling Policies - Third Set

ufacturing capacity available at various levels of loading factors. In a single period

problem all orders are scheduled in the current period, therefore scheduling policies

become irrelevant and the profit gains reflected by the RM model can be attributed

to efficient order acceptance policies. Table II shows the results for the test problems

considered, and illustrates the gains in profits with the order acceptance policies de-

termined by the HSVI approach over FCES policy. In a single period problem, FCES

policy is identical to FCLS policy. Therefore we compare results only with FCES

policy.

It is intuitive to expect that when loading factor is small, almost all orders

will be accepted, and hence the significance of efficient order acceptance policies will

be minimal. Also, at high loading factor, it makes tremendous economic sense to
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selectively accept orders and protect manufacturing capacities for future higher profit

earning orders. The results in Table II are in agreement with our intuition and show

that, at low loading factor, the results with HSVI are comparable to FCES, while the

gap between the HSVI and FCES results grows large as the loading factor increases.

Table II. Efficient Order Acceptance

Loading Expected Profits Diff. Comp. Time
|I|

Factor HSVI FCES (%) HSVI (sec)

4 0.6 1184 1183 0.1 12.6

4 0.9 1571 1555 1.0 13.6

5 1.1 1722 1678 2.6 15.3

5 1.2 1795 1727 4.0 15.5

5 1.4 1936 1804 7.3 13.9

10 1.5 1961 1814 8.1 23.7

10 1.9 2118 1853 14.3 24.0

3. Performance of HSVI Approach

We next study the joint impact of efficient order acceptance and scheduling policies

computed by the HSVI approach on the net profits (revenue earnings of accepted

orders minus holding costs incurred to satisfy on-date deliveries). To accomplish this,

we consider two sets of test problems consisting of 2 and 3 period problems as shown

in Tables III and IV, respectively.

In Table III(IV), the second column shows the number of order classes considered

in the test problems, third column shows the distribution of the mean arrival rates

of the order classes, and the next 2(3) columns show the amounts of manufacturing



46

Table III. Test Problems Set I

Test Case Avg Arr Rate

Number
|I|

Dist. (Num per pd)
S(1) S(2)

1 12 UNIF(1.5, 3.5) 250 250

2 12 UNIF(1.5, 3.5) 225 250

3 12 UNIF(2, 4) 250 250

4 12 UNIF(2, 4) 225 250

5 12 UNIF(1.75, 3.75) 250 250

6 12 UNIF(1.75, 3.75) 225 250

7 30 UNIF(0.5, 2) 250 250

8 30 UNIF(0.5, 2) 225 250

9 30 UNIF(0.75, 2.25) 250 250

10 30 UNIF(0.75, 2.25) 225 250

11 30 UNIF(0.75, 2.25) 200 250

12 30 UNIF(1, 2.5) 250 250

13 30 UNIF(1, 2.5) 225 250

14 30 UNIF(1, 2.5) 200 250

15 30 UNIF(1, 2.5) 175 250

16 30 UNIF(1, 2.5) 250 225

17 30 UNIF(1, 2.5) 250 200

18 30 UNIF(1, 2.5) 250 175
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Table IV. Test Problems Set II

Test Case Avg Arr Rate

Number
|I|

Dist. (Num per pd)
S(1) S(2) S(3)

19 24 UNIF(1, 3) 250 250 250

20 24 UNIF(1, 3) 225 250 250

21 24 UNIF(1.25, 3.5) 250 250 250

22 24 UNIF(1.25, 3.5) 225 250 250

23 24 UNIF(1.25, 3.5) 200 250 250

24 24 UNIF(1.25, 3.5) 175 250 250

25 30 UNIF(1, 2.25) 250 250 250

26 30 UNIF(1, 2.25) 225 250 250

27 30 UNIF(1, 2.25) 200 250 250

28 30 UNIF(1, 2.25) 175 250 250

29 30 UNIF(1.25, 2.5) 250 250 250

30 30 UNIF(1.25, 2.5) 225 250 250

capacity available in different periods. We compare the results for expected profits

obtained with the HSVI approach with the results obtained with FCES and FCLS

polices in Tables V and VI. It can be observed that the efficient order acceptance and

scheduling policies computed by the HSVI approach can improve the net expected

profits, in comparison to the net profits earned by following FCES and FCLS policies,

by 22% - 34%. Typically, manufacturing systems operate at low profit margins.

Therefore, an increase in the net profits on the magnitude demonstrated above shows

that efficient order acceptance and scheduling policies might make a significant impact

on the net profits earned at on-date delivery MTO systems.
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Table V. Performance of HSVI Approach - Test Problem Set I

Test Case Expected Profits HSVI vs. (%) Comp. Time

Number HSVI FCES FCLS FCES FCLS HSVI (sec)

1 2261 1743 1754 22.9 22.4 77

2 2255 1736 1751 23.0 22.4 77

3 2388 1728 1767 27.6 26.0 73

4 2381 1719 1763 27.8 26.0 74

5 2328 1735 1762 25.5 24.3 75

6 2322 1727 1758 25.6 24.3 75

7 2390 1837 1867 23.1 21.9 146

8 2383 1827 1863 23.3 21.8 145

9 2477 1820 1871 26.5 24.5 137

10 2467 1808 1865 26.7 24.4 138

11 2374 1714 1785 27.8 24.8 134

12 2540 1810 1872 28.7 26.3 129

13 2529 1796 1865 29.0 26.3 129

14 2428 1702 1779 29.9 26.7 126

15 2315 1607 1680 30.6 27.4 122

16 2422 1718 1777 29.1 26.6 125

17 2302 1627 1680 29.3 27.0 102

18 2180 1536 1583 29.5 27.4 89
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Table VI. Performance of HSVI Approach - Test Problem Set II

Test Case Expected Profits HSVI vs. (%) Comp. Time

Number HSVI FCES FCLS FCES FCLS HSVI (sec)

19 3954 2901 2980 26.6 24.6 2008

20 3946 2890 2978 26.8 24.5 2008

21 4095 2876 3020 29.8 26.3 1893

22 4084 2862 3017 29.9 26.1 1897

23 3987 2762 2956 30.7 25.9 1856

24 3874 2659 2864 31.4 26.1 1784

25 3920 2685 2792 31.5 28.8 2631

26 3912 2674 2790 31.6 28.7 2621

27 3825 2583 2745 32.5 28.2 2566

28 3722 2488 2670 33.2 28.3 2472

29 4026 2662 2811 33.9 30.2 2506

30 4016 2650 2809 34.0 30.1 2504

The number of states in SDP (3.7) is O(NkN+1), which grows exponentially

with the number of periods (N) in the problem. This poses a limitation on the

applicability of the HSVI approach for large size problems, which might typically

consider 5 to 10 periods in the planning horizon. It can be observed from the results

in Tables V and VI that the computational time grows very fast between 2 period and

3 period problems, and even for small problems consisting of 3 periods and 30 order

classes, it takes roughly 2500 seconds for computing efficient policies. Therefore, this

approach cannot be adopted for large size problems, which motivates exploring less

computationally intensive heuristic schemes.
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Table VII. Performance of HSSA Approach - Test Problem Set I

Test Case Exp. Profits HSSA vs. (%) Avg. Comp. Tm (sec)

Number HSSA HSVI FCES FCLS HSVI HSSA

1 2008 -11.2 16.6 15.0 77 2

2 1969 -12.7 15.2 13.2 77 2

3 2143 -10.3 23.6 21.0 73 2

4 2125 -10.7 23.7 20.5 74 2

5 2084 -10.5 20.3 18.1 75 3

6 2065 -11.0 20.3 17.5 75 3

7 2139 -10.5 15.8 13.5 146 9

8 2118 -11.1 15.8 13.0 145 10

9 2229 -10.0 21.7 18.7 137 10

10 2236 -9.4 23.6 19.8 138 10

11 2103 -11.4 22.6 17.8 134 10

12 2325 -8.5 28.2 24.0 129 10

13 2283 -9.7 27.6 22.6 129 10

14 2162 -11.0 27.2 21.5 126 11

15 2045 -11.7 27.5 21.8 122 11

16 2072 -14.4 20.3 16.5 125 10

17 1962 -14.8 20.2 16.7 102 11

18 1844 -15.4 19.7 16.5 89 10
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Table VIII. Performance of HSSA Approach - Test Problem Set II

Test Case Exp. Profits HSSA vs. (%) Avg. Comp. Tm (sec)

Number HSSA HSVI FCES FCLS HSVI HSSA

19 3345 -15.4 16.6 11.8 2008 10

20 3331 -15.6 16.9 11.5 2008 9

21 3501 -14.5 21.0 15.2 1893 10

22 3491 -14.5 21.7 15.1 1897 10

23 3360 -15.7 21.4 13.1 1856 10

24 3216 -17.0 20.5 11.9 1784 10

25 3237 -17.4 20.4 15.4 2631 18

26 3232 -17.4 21.2 15.5 2621 18

27 3086 -19.3 19.8 12.1 2566 18

28 2968 -20.2 19.4 10.9 2472 18

29 3237 -19.6 20.4 15.4 2506 18

30 3232 -19.5 21.2 15.5 2504 18

4. Performance of HSSA Approach

Tables VII and VIII compare the quality of results obtained with HSSA versus HSVI,

FCES and FCLS using the test problems in Tables III and IV. It can be observed

that the order acceptance and scheduling policies determined by the HSSA approach

perform significantly better than FCES and FCLS policies, with about 13% - 28%

higher expected profits. A comparison with the results obtained with HSVI approach

reveals that HSVI approach generates about 8% - 20% higher profits than HSSA

approach.

Since HSVI approach computes ǫ-optimal solutions to SDPs [62], the expected
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profits with HSVI approach represent upper bounds on the expected profits. The

comparison between the results obtained with HSVI and HSSA approaches indicate

that HSSA approach is able to capture about 50%-75% of the maximum possible

gains in expected profits over FCES and FCLS policies. A comparison between HSVI

and HSSA approaches based on computational times, shown in Table IX, reveals that

HSSA approach takes significantly less time in determining efficient order acceptance

and scheduling policies. Table X shows that HSSA approach is able to solve large

size problems consisting of 5 to 10 periods, 30 to 75 order classes in manageable

amounts of time. Column 3 in Table X refers to the mean arrival rate distribution

for order classes. This is because, HSSA approach has a polynomial time worst case

computational complexity of O(N3k2|I|m), where N is the number of periods, k is

the length of each period (in time slots), I is the set of order classes, and m is the

number of scenarios considered in the HSSA approach.

Another advantage with HSSA approach is that it needs to be applied only once

during the planning horizon or until there are changes in the problem parameters or

forecasts. The threshold policy results computed by HSSA approach can be stored

and accessed without the necessity of re-computations.

The HSSA approach is attractive for industry applications, since it is able to

capture a large portion of the maximum possible gains in profits over the FCES and

FCLS polices, has a polynomial time worst case computational complexity leading to

reasonable computational times for large size problems, and can be used as a static

policy that needs to be computed only once during the planning horizon or until the

problem parameters change.
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Table IX. Performance of HSSA Approach

Number of Avg. Comp. Time (sec)
N |I|

Sample Problems HSVI HSSA

2 12 21 67.4 2.4

2 30 21 123.7 9.9

3 24 30 1757.1 9.6

3 36 30 2311.2 17.8

Table X. Performance of HSSA Approach - Large Problems

Arr. Rt. Dist. Expected Profits Comp. Time
N |I|

(Num per pd) HSSA FCES FCLS HSSA (sec)

5 30 UNIF(1.5, 3.5) 4276 3326 3663 25

5 45 UNIF(1.5, 2.5) 3684 2956 3250 48

5 75 UNIF(1, 2) 3945 3052 3367 119

8 36 UNIF(1.5, 3.) 8163 5772 7583 68

8 72 UNIF(1, 2) 8158 5920 7634 206

10 55 UNIF(1.5, 3.) 10374 6966 9646 193
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5. Effects of Loading Factor on the Efficiency of RM Model

To gain insights into the impact of loading factor on the efficiency of RM model for

accepting and scheduling orders at an on-date delivery MTO system, we consider

three sets of problems (2 period, 12 order classes; 2 period, 24 order classes, 3 period,

24 order classes) at different levels of loading factors, as shown in Table XI.

Table XI reveals that with increase in loading factor, the efficiency of RM model

for accepting and scheduling orders improves, as shown by the increase in the expected

profits generated by adopting HSVI approach versus expected profits generated by

FCES or FCLS schemes. This is intuitive, since an increase in demand makes it more

attractive to adopt efficient schemes for accepting and scheduling orders, so that

both the manufacturing capacity is not wasted in idling and also sufficient amount of

manufacturing capacity is protected for future high profit earning orders.

Table XI. Effects of Loading Factor on the Efficiency of RM Model

Loading Problem Set 1 Problem Set 2 Problem Set 3

HSVI vs. HSVI vs. HSVI vs.
Factor

FCES (%) FCLS(%) FCES (%) FCLS(%) FCES (%) FCLS(%)

0.6 3.4 1.7 3.4 1.6 6.7 4.0

0.8 3.7 4.3 3.6 4.3 8.0 9.2

1.0 4.1 7.2 3.9 7.1 10.0 14.6

1.2 5.1 9.9 4.7 9.5 14.1 20.0

1.4 7.2 12.6 6.5 11.9 20.0 25.2

1.6 10.6 15.4 9.5 14.3 26.3 29.3

1.8 14.8 18.4 13.4 17.0 31.8 32.1

2.0 19.5 21.6 17.7 19.8 36.3 34.0
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Table XI also shows that when loading factors are close to 1.0, FCES policy

performs better than FCLS policy. This is because when FCLS policy is used, the

current periods’ processing capacity can be used for a future due-date order only

when the manufacturing capacity available in all periods following the current period

upto the due-date is used up. Therefore, when the loading factor is close to 1.0, the

chances are high that in the current period we might be idling our manufacturing

capacity, although there might be pending orders scheduled in some future periods.

FCES ensures that as long as there is a pending order, the manufacturing capacity

available is not wasted in idling.

6. Effects of Overlooking Holding Costs in the RM Model

Consideration of the holding costs aspects while accepting and scheduling customer

orders at an on-date delivery MTO systems makes the RM model very complicated.

Therefore, it is tempting to overlook the holding cost aspects in the RM model. To

gain insights into the extent of the effect of overlooking holding costs in the RM

model, we consider test problems comprising of 5 periods, 250 units of available

manufacturing capacity, processing requirements of order classes ranging between 25

and 50 units, and number of job types, arrival rate distribution for order classes, and

holding costs as shown in Table XII.

The fourth column in Table XII shows the expected profit when holding costs

are considered in making the acceptance and scheduling decision, the fifth and sixth

columns show the expected revenues with FCES and FCLS policies, the seventh

column shows the expected profit when holding costs are ignored in making the

acceptance and scheduling decision, while the eighth column compare the expected

profits when holding costs are considered in making the acceptance and scheduling

decision and when they are not. It is intuitive to expect the net profits to be higher
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Table XII. Effects of Overlooking Holding Costs in the RM Model

Arr Rate Dist. hi/ri Expected Profit HSSA vs.
|I|

(Num per Pd) (%) HSSA FCES FCLS HSSA* HSSA* (%)

15 UNIF(2, 4) 1 4677.5 4202.4 4573.7 4664.3 0.28

15 UNIF(2, 4) 2 4626.4 4158.9 4572.6 4611.8 0.32

15 UNIF(2, 4) 3 4606.5 4115.5 4571.5 4589.3 0.37

15 UNIF(2, 4) 6 4552.8 3985.0 4568.2 4521.9 0.68

15 UNIF(2, 4) 8 4511.9 3898.0 4566.0 4477.0 0.78

15 UNIF(2, 4) 9 4491.7 3854.5 4564.9 4454.5 0.84

15 UNIF(2, 4) 10 4484.4 3811.0 4563.7 4432.0 1.18

30 UNIF(1, 3) 1 3958.7 3523.8 3664.1 3951.7 0.18

30 UNIF(1, 3) 3 3914.0 3455.1 3654.6 3905.1 0.23

30 UNIF(1, 3) 6 3860.4 3352.1 3640.4 3835.3 0.66

30 UNIF(1, 3) 9 3811.6 3249.0 3626.3 3765.4 1.23

30 UNIF(1, 3) 10 3805.1 3214.7 3621.5 3742.1 1.68

HSSA: Considering holding costs in the RM model.

HSSA*: Overlooking holding costs in the RM model.



57

when holding costs are considered in making the acceptance and scheduling decisions.

The results in Table XII gives insights into the extent of the impact of ignoring

the holding costs while making the acceptance and scheduling decisions. It can be

observed that even when holding costs are very small, ignoring the holding costs

in RM model leads to a loss in profits on the order of 0.2%, and considering that

manufacturers typically operate at tight profit margins, this small gap of 0.2% could

translate into large amounts of money. When holding costs are high, the loss in profits

is on the order of 1%-2%, which might represent significant amount of money.

F. Summary and Conclusions

In this chapter, we develop an RM model for accepting and scheduling customer

orders at an on-date delivery MTO system. We study and gain insights into the

significance of efficient acceptance and scheduling policies and incorprating holding

cost aspects into the RM model. We demonstrate that the RM model has potential

for significantly improving the expected profits at MTO systems. We develop an

efficient heuristic scheme for solving large size problems in manageable amount of

time.
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CHAPTER IV

FIRST PARTY WAREHOUSING OPTION

A. Problem Description

In Chapter III, we study the potential of an RM model in improving net profits at an

on-date delivery MTO system. We illustrate that order acceptance and scheduling

decisions can significantly impact the profit earnings, and the holding cost aspects

must not be overlooked to realize maximum potential of RM.

The objective of the problem considered in this chapter is similar to Chapter

III, which is to develop an RM model for efficient order acceptance and scheduling

at an on-date delivery MTO system. In Chapter III, we consider the case where any

order completed in advance of its due-date is stored at a third party warehouse until

its due-date. In this chapter, we assume that there is a certain amount of first party

warehousing capacity available with the manufacturer, which gets priority for storage

requirements of completed orders. Storage requirements in excess of the first party

warehouse capacity are met through third party warehousing.

The motivation for employing first party warehousing facility for storing com-

pleted orders is that typically such facilities will be located on the same premises as

the manufacturing facility. Therefore, if orders are stored in a first party warehouse,

there will be less material handling and transportation activities in comparison to

storing at third party warehouses. In addition, if the variability in storage require-

ments between different periods is low, and the first party warehouse is consistently

used at high utilization levels, it can be argued that under such cases first party ware-

housing is less expensive than third party warehousing. There are other benefits with

first party warehousing, such as it makes it easy to ensure that proper care is taken
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in handling and storing all items, which is necessary to minimize any damages.

Our RM model segments the possible future order arrivals into classes {i ∈ I}

based on their due-dates (represented by di), processing time requirements (repre-

sented by Qi) and profit margins (represented by ri). Using the information on the

forecast for arrival distributions (whose mean is represented by λic, where i ∈ I is the

product class and c is the arrival period) for order classes, the RM model prescribes

efficient order acceptance and scheduling policies that are used to decide if a new

order arriving at time τ and belonging to a certain order class i should be accepted

or not, and if accepted, in which period it should be scheduled.

The key assumptions in the RM model developed in this chapter include As-

sumptions 1 - 8 described in Section A of Chapter III and Assumption 9 outlined

below.

ASSUMPTION 9 Third party warehousing availability. We assume that there is

sufficient amount of third party warehousing capacity accessible to the MTO manu-

facturer such that there is never a shortage of storage space. We also assume that

the third party warehousing costs are fixed for all orders and identical for all periods.

Analogous to Chapter III, the optimal order acceptance and scheduling policies

can be stated as follows.

REMARK 3 Optimal Order Acceptance Policy. Accept an order if the expected

opportunity cost of scheduling it in any period between its arrival and its due-date is

less than its profit earnings.

REMARK 4 Optimal Order Scheduling Policy. Schedule an order in the period

that has the least opportunity cost for processing the order.
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B. Mathematical Formulation

We follow the notation described in Section C of Chapter III throughout this chapter.

Under the assumption of a Poisson arrival process, the time horizon under study is

divided into small time slots, such that the probability of arrival of more than one

order in each time slot is very small. SDPs are then constructed over the discrete

space of the time slots, with the objective of computing the expected returns from

the available manufacturing capacity. In the sense of RM, when a decision needs

to be made on accepting or rejecting an order, the difference between the expected

returns from the available manufacturing capacities when an order is rejected and is

accepted is compared with the profits earned by processing the order at hand. If the

comparison is in favor of the order, the order is accepted, otherwise it is rejected.

Following this general approach, we develop SDP formulations for our problems, as

described below.

1. Optimal Order Acceptance Policy

An order from order class i arriving in time slot τ when the vector of available

manufacturing capacities in different periods is Ŝ and the vector of committed storage

volumes in different periods is Ŵ should be accepted if it satisfies expression (4.1). In

(4.1), V (τ, Ŝ, Ŵ ) is the expected profit function and can be computed by SDP (4.5).

(4.1) compares the minimum of the opportunity cost for committing manufacturing

capacity in different periods with the profits earned by processing the order and is a

mathematical representation of the optimal acceptance policy stated in Remark 3.
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min
Xic

s.t.(3.2)−(3.5),(4.2)

[V (τ + 1, Ŝ ′, Ŵ ) − V (τ + 1,
∑

c

Xic({S(c) − Qi} ∪ Ŝ ′ \ c), Ŵ ′)

+hi(di − c)
∑

c=⌈τ/k⌉

Xic(1 −

di∏

l=c

(1 − 1W (l)+1>W ))] ≤ ri (4.1)

where,

W ′(l) =






W (l) +
∑l

c=⌈τ/k⌉ Xic

∏di

l=c(1 − 1W (l)+1>W ) if l < di

W (l) o.w.
(4.2)

In (4.1), the first term is the expected profit when the order at hand is not

accepted, the second term is the expected profit when the order at hand is accepted,

while the third term is the warehousing cost incurred for storing the order in a third

party warehouse if sufficient storage capacity is not available in any of the periods

between the processing c and due-date di. (4.2) refers to the change in the committed

storage volume in different periods.

2. Optimal Order Scheduling Policy

An order from order class i arriving in time slot τ when the vector of available

manufacturing capacities in different periods is Ŝ and the vector of committed storage

volumes in different periods is Ŵ should be in period c∗ determined by (4.3). (4.3)

is the mathematical representation of Remark 4.

c∗ = arg min[V (τ, Ŝ ′, Ŵ ) − V (τ + 1, {S(c) − Qi} ∪ Ŝ ′ \ c, Ŵ ′) + hi(di − c)(1−

di∏

l=c

(1 − 1W (l)+1>W )) : c ∈ {⌈τ/k⌉, ..., di}; (3.2); (4.4); S(c) − Qi ≥ 0] (4.3)
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where,

W ′(l) =






W (l) +
∏di

l=c(1 − 1W (l)+1>W ) if c ≤ l < di

W (l) o.w.
(4.4)

In (4.3), V (τ, Ŝ, Ŵ ) is the expected profit function and can be computed by

solving SDP (4.5). (4.3) determines the least opportunity cost period for scheduling

the order. (4.4) refers to the change in the committed storage volume in different

periods.

3. Expected Profit Function

The expected profit function V (τ, Ŝ, Ŵ ) represents the net expected profit that can be

generated by the available manufacturing capacity represented by the vector Ŝ, with

the orders arriving during and after time slot τ . An SDP for computing V (τ, Ŝ, Ŵ )

is expressed by (4.5) with boundary condition (4.6).

V (τ, Ŝ, Ŵ ) =
∑

i∈I:di≥⌈τ/k⌉

Pi⌈τ/k⌉( max
Xic

s.t.(3.9)−(3.13),(4.7)

[

di∑

c=⌈τ/k⌉

Xicri−

hi(di − c)

di∑

c=⌈τ/k⌉

Xic(1 −

di−1∏

l=c

(1 − 1W (l)+1>W )) + V (τ + 1, Ŝ ′, Ŵ ′)]) (4.5)

V (N × k + 1, Ŝ, Ŵ ) = 0, ∀Ŝ, Ŵ (4.6)

where,

W ′(l) = W (l) +
∑

c

Xic1c≤l1di>l

di∏

l′=c

(1 − 1W (l′)+1>W ),∀l (4.7)

Feasibility of the successive order acceptance decisions in (4.5) is ensured by

constraints (3.9)-(3.13) and(4.7). Constraint (4.7) accounts for the storage volume
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committed in different periods by accepting and scheduling manufacturing orders.

4. FCES and FCLS Policies

To evaluate the performance of our RM model, we consider two policies, first come

earliest served (FCES) and first come latest served (FCLS). Under an FCES policy,

all incoming orders are accepted if there is sufficient manufacturing capacity available,

at the time of order arrival in any of the periods between order arrival and its due-

date, that can process this order. An accepted order is scheduled in the earliest

possible period with sufficient capacity to process the order. FCLS policy follows the

same order acceptance rule as FCES, but schedules an accepted order in the latest

possible period with sufficient capacity to process the order. Section C.5 in Chapter

III describes the strengths and weaknesses of these policies.

Expected value function with the FCES scheduling is represented by the SDP

expression (4.8) with c chosen as in (4.9). (4.9) determines the earliest period with

sufficient available manufacturing capacity to process an order from class i.

V (τ, Ŝ, Ŵ ) =
∑

i∈I:di≥⌈τ/k⌉

Pi⌈τ/k⌉(ri1⌈τ/k⌉≤c≤di
− [hi(di − c)(1−

di−1∏

l=c

(1 − 1W (l)+1>W ))] + V (τ + 1, Ŝ ′, Ŵ ′)) (4.8)

c = min{s : S(s) > Qi; ⌈τ/k⌉ ≤ s ≤ di; (3.16) − (3.19); (4.10)} (4.9)

W ′(l) = W (l) + 1c≤l1di>l

di∏

l=c

(1 − 1W (l)+1>W ),∀l (4.10)

Similarly, for the FCLS scheduling policy, the expected value function in this
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case can also be expressed by the SDP expression (4.8) with c chosen as in (4.11).

(4.11) determines the latest period with sufficient available manufacturing capacity

to process an order from class i.

c = max{s : S(s) > Qi; ⌈τ/k⌉ ≤ s ≤ di; (3.16) − (3.19); (4.10)} (4.11)

C. Solution Approaches

The SDP (4.5) is intractable even for problems of small size. To get an idea of the

size of state space for a small problem, consider Example 2.

Example 2 Let the number of periods in the planning horizon be 3 with 5 units

of first party warehousing capacity and length of each period equal to 250 units.

Discretize the time horizon into time slots of width equal to 1 time unit. Since the

number of feasible states in the SDP (4.5) is O(NkN+1WN) the number of states in

this problem is O(1.46 × 1012). If we can scale down the available manufacturing

capacity and the processing requirements of all order classes by a factor of 10 (as

described in Section D.2 of Chapter III), the number of states in our SDP (4.5) is

O(9.4 × 107), which is still difficult to handle. �

Since the number of states in the SDP (4.5) is very high, none of the methods

currently available in the literature [71] can be used to solve this SDP efficiently.

Therefore, we explore heuristic approaches for finding efficient order acceptance and

scheduling policies.

1. Heuristic Scheme based on Stochastic Approximation-II (HSSA-II)

In Chapter III, we motivate use of a threshold policy for finding efficient order accep-

tance and scheduling policies. It was demonstrated that efficiently designed threshold
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policies give high quality results while it takes a manageable amount of time for com-

puting such policies for large size problems. Therefore, we adopt threshold policy

approach for making efficient order acceptance and scheduling decisions in the RM

model presented in this chapter.

The threshold policy for accepting and scheduling customer orders when a certain

amount of first party warehousing capacity is available is as follows: Accept an order if

the amount of MCA at the time of order arrival in any of the periods between the order

arrival and due-date is higher than a pre-determined threshold value corresponding to

the order class, time of arrival, and period under consideration; otherwise, reject the

order. If the order is accepted, schedule the order in the period that has the largest

excess of MCA over the threshold value.

Similar to Chapter III, we adopt a stochastic approximation scheme for comput-

ing efficient threshold policy. Below, we describe Algorithm 2 for computing efficient

threshold values for solving the RM problem in this chapter. The notation described

in Section D of Chapter III is used in this formulation and the rest of the chapter.

Since this procedure is based on stochastic approximation approach, we refer to it as

heuristic scheme based on stochastic approximation (HSSA-II).

ALGORITHM 2 Step by step procedure in HSSA-II is as follows:

1. Initialize the threshold policy. Set m = 0.

2. Simulate (m + 1)st scenario of future order arrivals.

3. Using the most recent threshold policy, approximate the steepest descent gradi-

ent by evaluating the expression (4.12), which represents the finite difference

approach for computing approximate gradients [64, 65].
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∇m+1
iτp =

F (ωm+1, {Zm(i, τ, p) + ∆} ∪ Ẑm \ (i, τ, p))−

F (ωm+1, {Zm(i, τ, p)} ∪ Ẑm \ (i, τ, p))

∆
,∀i, τ, p (4.12)

4. Update the threshold policy as shown in (4.13).

Zm+1(i, τ, p) = Zm(i, τ, p) + ∇m+1
iτp η,∀i, τ, p (4.13)

5. If m = mmax stop. Else goto Step 2.

For the reasons described in the previous chapter, we use a constant step size in

each iteration of HSSA-II. The computational performance of HSSA-II is discussed

in the following section.

D. Computational Results

In the previous chapter, we carry out computational experiments to demonstrate the

significance of efficient order acceptance and scheduling policies. We expect the per-

formance of the RM model presented in this chapter to be similar to the RM model

presented in the previous chapter, since the only difference between the two models

is in the holding cost model. Therefore, in this section we focus the computational

experiments on gaining insights into the importance of considering the warehousing

aspects in the RM model when a certain amount of first party warehousing capacity

is available for storing completed orders, and on studying the computational perfor-

mance of the HSSA-II approach.

1. Significance of the Holding Cost Model in the Overall RM Model

In the problem presented in this chapter, third party warehousing costs are incurred

only when the first party warehousing capacity is used up. Therefore, to extract
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maximum benefit out of the RM model, the warehousing aspects should be considered

along with the manufacturing capacity utilization.

Table XIII. Effects of Overlooking Storage Aspects in RM Model

HSSA-II vs.
N |I| WQ = w

“

k
mini Qi

”

HSSA-II* (%)

5 15 0.3 0.52

5 30 0.3 0.95

5 15 0.6 0.28

5 30 0.6 0.50

5 15 0.9 0.04

5 30 0.9 0.06

HSSA-II: Considering the warehousing aspects in the RM model.

HSSA-II*: Overlooking the warehousing aspects in the RM model.

To gain insights into the significance of considering the warehousing aspects in

the RM model, we consider two sets of 8 test cases each and three different levels

of availability of first party warehousing capacity. We compare results between cases

when warehousing aspects are considered and when they are ignored in the RM model

for making the acceptance and scheduling decisions. Table XIII summarizes our

results. Column 3 shows the different levels of warehousing quotient(WQ) considered.

Warehousing quotient is the ratio of the available first party warehousing capacity and

the maximum number of orders that can be processed in a period. In Column 4, we

show the average difference (computed over 8 test cases each) in profit (expressed in

percentage) resulting from neglecting the holding cost model. It can be observed that

at low levels of WQ, there is a little impact of neglecting the warehousing aspects
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on the expected profits, while the impact further diminishes as the WQ increases.

HSSA-II* corresponds to the case when the holding costs are ignored, while HSSA-II

corresponds to the case when they are not. From these results, we gain the insights

that if the WQ is high, the RM model can ignore the warehousing aspects with

minimal effects on the expected profits.

2. Performance of HSSA-II Approach

We study the performance of HSSA-II approach from two perspectives. The first is the

improvements in the expected profits with the threshold policy computed by HSSA-

II approach over FCES and FCLS policies. The other is the computational time for

solving the problems. In this regard, we consider the test problems shown in Table

XIV, which includes problems of 2 to 10 periods and 12 to 180 order classes. Column

5 in Table XIV shows the distribution for the mean of arrival rates of order classes.

Table XV shows the results. From the results it can be observed that significant

improvements, up to 38%, can be made in the total profits over FCES and FCLS

policies by HSSA-II approach. It can be further observed that even for large problems,

consisting of 8 - 10 periods with 250 - 500 manufacturing capacity units (time slots),

the computational time is manageable. This shows the suitability of HSSA-II for

industry applications.

E. Summary and Conclusions

In this chapter, we develop an RM model for accepting and scheduling customer

orders at an on-date delivery MTO system, while assuming that a certain amount of

first party warehousing capacity is available for storing orders completed in advance

of their due-dates and storage requirements in excess of the first party warehousing
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Table XIV. Test Problem Set

Problem Mean Arr. Rate

Set Num.
N k |I|

Dist. (Num per pd.)

1 2 250 12 UNIF(1.5, 3.5)

2 2 250 12 UNIF(2, 4)

3 2 250 12 UNIF(1.75, 3.75)

4 2 250 30 UNIF(0.5, 2)

5 2 250 30 UNIF(0.75, 2.25)

6 2 250 30 UNIF(1, 2.5)

7 3 250 24 UNIF(1, 3)

8 3 250 24 UNIF(0.75, 2.75)

9 3 250 24 UNIF(1.25, 3.5)

10 3 250 36 UNIF(0.5, 2.25)

11 3 250 36 UNIF(1, 2.25)

12 3 250 36 UNIF(1.25, 2.5)

13 5 500 30 UNIF(1, 3)

14 5 500 45 UNIF(1, 2)

15 5 500 75 UNIF(0.5, 1.5)

16 8 500 72 UNIF(1, 3)

17 8 500 108 UNIF(1, 2)

18 8 500 180 UNIF(0.5, 1.5)

19 10 250 55 UNIF(1, 3)
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Table XV. Computational Performance HSSA-II

Problem Expected Profits HSSA-II vs. (%) Comp

Set Num. HSSA-II FCES FCLS FCES FCLS Time (sec)

1 2002 1751 1749 14.4 14.5 2.3

2 2164 1763 1774 22.7 22.0 2.4

3 2094 1760 1767 18.9 18.5 2.3

4 2122 1880 1887 12.8 12.4 9.8

5 2258 1864 1881 21.2 20.1 10.2

6 2344 1847 1879 26.9 24.8 10.7

7 3417 2989 3005 14.3 13.7 10

8 3233 2928 2954 10.4 9.5 9.4

9 3587 3015 3055 19.0 17.4 10.7

10 3139 2815 2832 11.5 10.8 18

11 3276 2806 2820 16.7 16.1 18.9

12 3492 2786 2829 25.3 23.4 19.7

13 6208 5065 5718 22.6 8.6 66.6

14 5899 4899 5481 20.4 7.6 132

15 6303 5230 5841 20.5 7.9 329.8

16 14366 11030 13933 30.2 3.1 745.7

17 14041 10780 13691 30.2 2.6 1495.8

18 13223 10398 12456 27.2 6.2 4225.9

19 10205 7381 9309 38.3 9.6 190.3
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capacity is met through third party warehousing. We study and gain insights into

the effects of neglecting the warehousing and holding cost aspects on the efficiency of

this RM model. We find that at high warehousing quotient, the effect of ignoring the

warehousing related costs is minimal. We illustrate that this RM model has potential

for significantly improving the profits over FCES and FCLS policies at MTO systems.

We develop an efficient heuristic scheme that solves large size problems in manageable

amounts of time.
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CHAPTER V

FIRST PARTY WAREHOUSE CAPACITY PLANNING

A. Problem Description

In this chapter, we address the problem of determining an efficient capacity or size

of a first party warehousing facility, which will be used for storing completed orders

until their due-dates at an MTO system. Our objective is to maximize the net profit

at the MTO system, which consists of profits earned by processing customer orders

minus the warehousing costs. Warehousing costs include first party warehouse setup

and operating costs and third party warehousing costs incurred to meet the storage

requirements in excess of the first party warehouse storage capacity.

Since warehouses are typically designed to have a long service life, we model the

warehouse design problem as an infinite horizon problem. For ease of modeling, we

apportion all warehousing related costs, including costs that depend on the storage

capacity (for example, cost of storage infrastructure) and costs that do not depend

on the storage capacity (for example, costs associated with warehouse support IT

infrastructure), into an approximate storage cost per unit storage per period (CW ).

To determine the storage volume requirements, we consider the storage volume re-

quirement resulting from an RM based order acceptance and scheduling policy. This

will allow us to design a warehousing capacity that can reap maximum benefits from

an RM model for accepting and scheduling customer orders at an on-date delivery

MTO system, leading to maximization of net profit earnings.

The key assumptions in our warehouse capacity design model developed in this

chapter include Assumptions 1 and 3-8 described in Section A of Chapter III, in

addition to Assumptions 10 and 11 described below.
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ASSUMPTION 10 Once determined, the first party warehousing capacity will re-

main fixed during the planning horizon. Setting up a first party warehouse requires

a large investment and takes a long lead time, typically on the order of months [72].

Therefore, it is not feasible to change the warehousing capacity to meet the period-

to-period fluctuations in storage capacity requirements.

ASSUMPTION 11 Homogenous arrival process in all the periods during the plan-

ning horizon [3, 33]. For ease of modeling, we assume that the order arrival process

is identical in different periods. The order classes in this case are classified according

to number of periods after which the order is due, processing requirements, and profit

earnings.

B. Mathematical Formulation

1. Design Model

For the mathematical formulation, we use the notation described in Section C of

Chapter III. We define booking horizon as the number of periods in future for which

the orders are being accepted in the current period. As we are considering an infinite

horizon design model, the concept of booking horizon provides us with a rolling

horizon for accepting future orders. Moreover, due to Assumption 11, all booking

horizons are statistically equivalent. To develop a mathematical model of the problem,

we divide a period into small time slots indexed by τ , such that the probability of

arrival of more than one order in a time slot is very small and can be neglected. The

first party warehouse design problem can now be represented by (5.1), in which g(W )

is the optimum average profit earned per time slot at a given level W of first party

warehousing capacity and CW is the long run apportioned cost of a unit of storage

per time slot.
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max
W

g(W ) − CW W (5.1)

g(W ) can be computed by solving the average reward stochastic dynamic pro-

gram (5.2) - (5.3). In (5.2) and (5.3), H(τ, Ŝ, Ŵ ) refers to the state value function.

H(τ, Ŝ, Ŵ ) assigns a value to a state to reflect its relative value in comparison to

other states. The average profit per time slot is computed by accounting for the

expected change in the state values plus the expected profit realized in the state

transition. Due to a rolling booking horizon, when a period ends and the next one

starts, a new period is introduced for which orders can be accepted. This new period

corresponds to the last period in the booking horizon. (5.3) accounts for the changes

in the state vectors Ŝ and Ŵ resulting from end of one period and start of another,

as indicated in (5.4) and (5.5). (5.4) and (5.5) move the state values in vectors Ŝ and

Ŵ forward by one period, while resetting the state values corresponding to the new

period. (5.4) sets the amount of manufacturing capacity available in the new period

at k, indicating that no orders have been scheduled in this period, while (5.5) sets the

committed storage volume in the new period at 0, indicating that the entire first party

warehousing capacity is available for storage. Note that V (τ, Ŝ, Ŵ ) is the expected

value function and computes the optimal expected profit realized by processing future

orders with the available manufacturing capacity. For an infinite horizon problem,

the expected value function will always return value equal to infinity. The values of

g(W ) and H(τ, Ŝ, Ŵ ) can be determined by solving (5.2) - (5.3) using value iteration

or policy iteration schemes [61].
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If τ < k,

g(W ) + H(τ, Ŝ, Ŵ ) =
∑

i∈I:di≥⌈τ/k⌉

Pi⌈τ/k⌉( max
Xic

s.t.(3.9)−(3.13),(4.7)

[

di∑

c=⌈τ/k⌉

Xicri−

hi

di∑

c=⌈τ/k⌉

Xic(1 −

di−1∏

l=c

(1 − 1W (l)+1>W )) + H(τ + 1, Ŝ ′, Ŵ ′)]),∀Ŝ, Ŵ (5.2)

If τ = k,

g(W ) + H(τ, Ŝ, Ŵ ) =
∑

i∈I:di≥⌈τ/k⌉

Pi⌈τ/k⌉( max
Xic

s.t.(3.9)−(3.13),(4.7)

[

di∑

c=⌈τ/k⌉

Xicri−

hi

di∑

c=⌈τ/k⌉

Xic(1 −

di−1∏

l=c

(1 − 1W (l)+1>W )) + H(((τ + 1) mod k), Ŝ ′′, Ŵ ′′)]),∀Ŝ, Ŵ (5.3)

where Ŝ ′′ and Ŵ ′′ are defined by (5.4) and (5.5), respectively.

S ′′(c) =






S ′(c + 1) ∀c ∈ {1, ..., N − 1}

k c = N.
(5.4)

W ′′(c) =






W ′(c + 1) ∀c ∈ {1, ..., N − 1}

0 c = N.
(5.5)

2. Properties of the First Party Warehouse Design Problem

To establish the properties of the first party warehouse design objective function (5.1),

we will need Theorem 7 and Corollary 1.

THEOREM 7 g(W ) has decreasing marginal gains in W .

Proof: Assume that g(W ) does not have decreasing marginal gains in W . This

implies that there exists some W = w, such that expression (5.6) holds.

g(w + 1) − g(w) > g(w) − g(w − 1) (5.6)
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After re-arrangement of the terms in (5.6), we get expression (5.7).

g(w) < g(w + 1) − (g(w) − g(w − 1)) (5.7)

Now consider an order acceptance and scheduling policy that makes the accep-

tance and scheduling decisions by treating W = w+1 in (5.2) and (5.3), but with the

difference that instead of storing the order that raises its number of items stored from

w− 1 to w (that is, consumes the wth unit of warehousing capacity) in the first party

warehouse, stores it at the third party warehouse while in the state transitions shows

a unit of first party storage capacity consumed. In this manner, only a maximum of

w orders will be stored in the first party warehouse in any given period, which ensures

that the first party capacity is not violated. The average expected profit per time

slot generated by this policy, g′(w) can now be expressed by (5.8).

g′(w) = g(w + 1) − (g(w) − g(w − 1)) (5.8)

If we compare expressions (5.7) and (5.8), it indicates that g′(w) > g(w), which

is a contradiction since g(w) is the optimum average reward per time slot, thus our

earlier assumption was incorrect. Therefore, g(w) has decreasing marginal gains in

w. �

COROLLARY 1 The expression g(W ) − CW W has decreasing marginal gains in

W .

Proof: Consider any W = w. Then,

g(w + 1) − CW (w + 1) − (g(w) − CW w)

= g(w + 1) − g(w) − CW w

< g(w) − g(w − 1) − CW w + CW (w − 1)

(from Theorem 7)
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= g(w) − CW w − (g(w − 1) − CW (w−1)) �

THEOREM 8 The smallest W that satisfies expression (5.9) is optimal.

(g(W + 1) − CW (W + 1)) − (g(W ) − CW W ) ≤ 0 (5.9)

Proof: Let W = w be the smallest quantity that satisfies expression (5.9). Consider

any w′ > w. Corollary 1 shows that (g(W ) − CW W ) has decreasing marginal gains

in W . Therefore, by recursive induction, we get expression (5.10).

(g(w′) − CW w′) − (g(w) − CW w) ≤ 0 (5.10)

This shows that none of the w′s greater than w are better.

Now consider any w′ < w. Since w is the smallest warehousing capacity at which

expression (5.9) holds, therefore we can write expression (5.11).

(g(w) − CW w) − (g(w + 1) − CW (w + 1)) > 0 (5.11)

Therefore for any w′ < w , due to induction expression (5.12) holds.

(g(w) − CW w) − (g(w′) − CW w′) > 0 (5.12)

This shows that none of the w′s smaller than w are better. �

C. Solution Approaches

According to Theorem 8, it is possible to carry out a linear search to find the optimal

warehouse capacity. Such search would require computation of g(W ) at different

values of W . Since g(W ) does not have a closed form, in order to compute the exact

values of g(W ), we need to solve SDP (5.2)-(5.3). As the state space in (5.2) - (5.3)
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becomes unmanageable even for small size problems, we explore a heuristic scheme

for estimating the values of g(W ). This heuristic scheme is based on estimating the

net expected profit per period by developing an efficient threshold policy for accepting

and scheduling customer orders. Since this heuristic scheme computes the threshold

policy by using stochastic approximation scheme, we refer to it as HSSA-III. The

following subsection describes HSSA-III.

1. Heuristic Scheme based on Stochastic Approximation-III

In HSSA-III, we use the notation described in Section D.3 in Chapter III.

ALGORITHM 3 HSSA-III proceeds as follows.

1. Compute an upper bound on the first party warehousing capacity as k
mini Qi

B,

where B is the length (in number of periods) of the booking horizon.

2. Do a Fibonacci search for the optimum warehousing capacity level between 0 and

the upper bound computed in the previous step. In each iteration of the search,

evaluate a warehouse capacity, as follows.

(a) Initialize the threshold policy. Set m = 0.

(b) Simulate (m+1)st scenario of future order arrivals in l successive periods.

(c) Using the most recent threshold policy, approximate the steepest descent

gradient by evaluating the expression (5.13), which represents the finite

difference approach for computing approximate gradients [65].

∇m+1
i⌈ τ

k
⌉p =

F (ωm+1, {Zm(i, ⌈ τ
k
⌉, p) + ∆} ∪ Ẑm \ (i, ⌈ τ

k
⌉, p))−

F (ωm+1, {Zm(i, ⌈ τ
k
⌉, p)} ∪ Ẑm \ (i, ⌈ τ

k
⌉, p))

∆
,∀i, τ, p

(5.13)
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(d) Update the threshold policy as shown in (5.14).

Zm+1(i, ⌈
τ

k
⌉, p) = Zm(i, ⌈

τ

k
⌉, p) + ∇m+1

i⌈ τ
k
⌉pη,∀i, τ, p (5.14)

(e) If m = mmax goto Step (f). Else goto Step (b).

(f) Approximate:

g(W ) ≈
F (ωm+1, Ẑmmax , p)

kl
(5.15)

D. Computational Results

The objective of the computational experiments in this section is to study the impact

of first party warehousing capacity on the efficiency of the RM model. In addition,

this section studies the computational performance of HSSA-III.

1. Impact of Efficient First Party Warehouse Capacity Planning on the RM model

In Table XVI we compare the performance of the RM models used for accepting and

scheduling customer orders between first party warehousing at efficient capacity levels

determined by HSSA-III and third party warehousing for storing orders completed

in advance of their due-dates. When the booking horizon is small (2 periods), the

difference in net profits between the two RM models is small, with a maximum dif-

ference of 1%. However, for longer booking horizons (5 periods), the difference in the

net profits is larger (between 7.5% and 8.6%).

Based on these results, we gain the insight that if booking horizon is large, then

an efficiently sized first party warehousing option can have a considerable impact on

the net profits in comparison to third party warehousing option.
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Table XVI. Warehouse Design Results

Booking Avg Arr. Rate Expected Profits Difference

Horizon
|I|

Dist. (Num per pd) TPW* EFPW** (%)

2 4 UNIF(3,9) 74849 75124 0.4

2 8 UNIF(1.5,4.5) 63821 64066 0.4

2 12 UNIF(1,3) 59120 59736 1.0

2 16 UNIF(1,3) 65994 66588 0.9

3 6 UNIF(2,6) 82956 85964 3.6

3 12 UNIF(1,3) 78886 81710 3.6

3 18 UNIF(0.67,2) 68113 70936 4.1

3 24 UNIF(0.5,1.5) 58146 60692 4.4

5 10 UNIF(0,5) 78485 85226 8.6

5 10 UNIF(1,4) 73230 78751 7.5

*TPW: Third Party Warehousing

**EFPW: Efficient First Party Warehousing

2. Performance of HSSA-III Approach

The computational performance of HSSA-III is presented in Table XVII. It can be

observed that even for long (in terms of number of periods) booking horizon problems

and large set of order classes, the HSSA-III approach is able to compute solutions in

manageable amounts of time.

E. Summary and Conclusions

In this chapter we develop a new approach for designing first party warehousing facil-

ities at MTO systems. The purpose of this warehouse is to store the completed orders
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Table XVII. Computational Performance HSSA-III

Booking Arr. Rate Dist. Comp.

Horizon
|I|

(Num per pd)
W*

Time (sec)

2 4 UNIF(3,9) 9 118

2 8 UNIF(1.5,4.5) 12 259

2 12 UNIF(1,3) 11 384

2 16 UNIF(1,3) 11 657

3 6 UNIF(2,6) 29 298

3 12 UNIF(1,3) 19 703

3 18 UNIF(0.67,2) 20 1462

3 24 UNIF(0.5,1.5) 14 1348

5 10 UNIF(0,5) 42 1580

5 10 UNIF(1,4) 50 1445

until their due-dates. The objective of the design problem is to achieve maximum ben-

efits with the RM model used for accepting and scheduling customer orders. Because

of the selective order acceptance and scheduling policies, it is necessary to capture

the resulting effect on the warehousing demand in the design problem. We model

the problem as an infinite horizon problem with homogenous demand and develop

an average reward SDP representation of the problem. We identify the structural

properties of the problem and use the insights gained to develop an efficient heuristic

for solving large size problems.



82

CHAPTER VI

CONTRIBUTIONS AND CONCLUSIONS

Manufacturing organizations have exploited technology and automation, quality im-

provement, customer relations and operational efficiencies in their attempts to in-

crease their bottom lines. Although there can still be potential areas for improvement

with these approaches, many of the gains have already been achieved, and organi-

zations are looking for new ways to improve profitability. One area that presents

tremendous opportunities to the manufacturing sector and presents many unexplored

areas is the application of RM in operational and tactical level planning in manufac-

turing and supply chain systems. RM has had a tremendous impact in the service

industry, and there is an increasing interest in studying and understanding new areas

of RM application.

This dissertation demonstrates the significance of applying RM based techniques

for accepting and scheduling customer orders in improving net profits at on-date

delivery MTO manufacturing systems over popular practices. This could have big

implications for the MTO industry, since this industry is facing an increasing global

competition, which is leading to shrinking profit margins.

In this dissertation, we develop RM models for determining efficient order accep-

tance and scheduling policies. The key insights gained from our RM models can be

summarized as follows:

• There is a potential for large improvements in net profits with applying RM

on-date delivery MTO systems.

• Both efficient order acceptance and efficient order scheduling are crucial com-

ponents in these RM models.
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• The efficiency of these RM models improves with loading factor.

• When first party warehousing capabilities are not present, but third party ware-

housing costs are low, then the warehousing aspects can be ignored in RM model

with little effect on profits.

• When first party warehousing capabilities are present, warehousing aspects can

be ignored in RM model with little effect on profits.

• In addition to the operational benefits of employing first party warehouses for

storing completed orders, a properly sized first party warehouse can give consid-

erably superior economic performance in comparison to employing third party

warehousing.

This dissertation opens an important new research area in applying RM in ac-

cepting and scheduling customer orders at on-date delivery MTO systems. While it

provides useful results and insights, it also provides a foundation for further study

and highlights several avenues for future research, as shown below:

• Alternative solution approaches: Solution approaches based on stochastic pro-

gramming and DP approximations can be explored for alternative solution ap-

proaches for order acceptance and scheduling at on-date delivery MTO systems.

• Multiple machines models : When an MTO manufacturer offers a wide range

of processing capabilities, the orders received can have significantly different

processing requirements. Therefore, instead of a unique bottleneck machine,

there could be a floating bottleneck, depending upon the jobs accepted and the

scheduling policy employed. Since different jobs could have different processing

sequences, even the stand along job-scheduling problem is challenging and NP-
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hard. Therefore, a rigorous treatment will be required to develop a RM based

approach for selective order acceptance and scheduling.

• MTO-RM with multiple facilities : The current model can be extended to con-

sider a network of facilities, such that any one of the facilities can be used

to satisfy the customer orders. A RM based approach can be developed that

not only considers the manufacturing capacity and holding costs but also the

transportation costs in order acceptance and scheduling.

• Due-date and price setting : The order acceptance problem presented in the

current research can be extended to a due-date setting or a pricing problem,

where at the time of accepting the order the MTO manufacturer determines

and negotiates efficient due-dates and prices for different customer orders.

• Overbooking system: Analogous to airline industry, there is a significant poten-

tial with an overbooking system, that accepts high revenue earning orders even

when sufficient production capacity is unavailable. Such a system would either

re-arrange the production schedule or reject a previously accepted low revenue

earning order with a penalty cost in favor of the new high revenue earning order.
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