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ABSTRACT 
 
 

Simultaneous Calibration of a Microscopic Traffic Simulation Model and OD Matrix. 

(August 2006) 

Seung-Jun Kim, B.S., Seoul National University; 

M.S., Seoul National University 

Co-Chairs of Advisory Committee: Dr. Laurence R. Rilett  
 Dr. Mark Burris 

 

With the recent widespread deployment of intelligent transportation systems 

(ITS) in North America there is an abundance of data on traffic systems and thus an 

opportunity to use these data in the calibration of microscopic traffic simulation models. 

Even though ITS data have been utilized to some extent in the calibration of microscopic 

traffic simulation models, efforts have focused on improving the quality of the 

calibration based on aggregate form of ITS data rather than disaggregate data.   

In addition, researchers have focused on identifying the parameters associated 

with car-following and lane-changing behavior models and their impacts on overall 

calibration performance. Therefore, the estimation of the Origin-Destination (OD) 

matrix has been considered as a preliminary step rather than as a stage that can be 

included in the calibration process. 

This research develops a methodology to calibrate the OD matrix jointly with 

model behavior parameters using a bi-level calibration framework. The upper level seeks 

to identify the best model parameters using a genetic algorithm (GA). In this level, a 

statistically based calibration objective function is introduced to account for disaggregate 

form of ITS data in the calibration of microscopic traffic simulation models and, thus, 

accurately replicate dynamics of observed traffic conditions. Specifically, the 

Kolmogorov-Smirnov test is used to measure the “consistency” between the observed 

and simulated travel time distributions. The calibration of the OD matrix is performed in 

the lower level, where observed and simulated travel times are incorporated into the OD 

estimator for the calibration of the OD matrix. The interdependent relationship between 
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travel time information and the OD matrix is formulated using a Extended Kalman filter 

(EKF) algorithm, which is selected to quantify the nonlinear dependence of the 

simulation results (travel time) on the OD matrix.  

The two test sites are from an  urban arterial and a freeway in Houston, Texas.  

The VISSIM model was used to evaluate the proposed methodologies. It was found that 

that the accuracy of the calibration can be improved by using disaggregated data and by 

considering both driver behavior parameters and demand.   
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CHAPTER I 

 
INTRODUCTION 

 

1.1 BACKGROUND 

Transportation engineers and researchers have come to rely on microscopic traffic 

simulation models in the evaluation of both traffic operations and transportation 

planning strategies. This is because identifying the best strategy using field tests is 

difficult. An appealing feature of microscopic traffic simulation models is that they can 

provide a visual representation of complex traffic conditions and capture the behavior 

and interactions of vehicles under a wide variety of scenarios. In order for microscopic 

traffic simulation models to represent reality, the ability to accurately and efficiently 

model traffic flow characteristics, driver behaviors, and traffic control operations is 

critical. This implies, in turn, that the model parameters are accurately calibrated to local 

conditions. 

On account of the lack of readily available automatic calibration procedures, 

microscopic traffic simulation models are often used with default parameter values. If 

parameters are to be adjusted, these adjustments are typically based on educated guesses 

or a manual trial and error calibration approach. If the microscopic traffic simulation 

model has inaccurate or inappropriate parameters then there is a greater probability that 

incorrect results could be obtained and, ultimately, this could lead to faulty decisions. 

         1 The need for fine-tuning microscopic traffic simulation models has been 

addressed to replicate the network being modeled. Research efforts to date have mainly 

focused on minimizing the difference between observed and simulated traffic conditions 

based on the aggregate data, rather than disaggregate data. One of main reasons is 

related to the lack of available data for use in calibration purpose. However, with the 
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recent nationwide deployment of intelligent transportation system (ITS) there is an 

abundance of data on traffic systems and thus an opportunity to use these data in the 

calibration process. In addition, the recent growth in computational resources now makes 

it possible to develop an automatic calibration process based on standard optimization 

theory that takes advantage of this ITS data. The improvement in ITS technology and 

computational resources makes the refined calibration process more attainable.  

The calibration is generally defined as the process of adjusting the value of the 

parameters related to driver behavior in microscopic traffic simulation models such that 

the observed data is “consistent” with the simulated data. The objective of this research 

is to develop a methodology in which ITS data is incorporated into the calibration 

process to better represent reality. In addition, the research will develop a methodology 

to calibrate the OD matrix by quantifying its impacts on the simulated travel time results. 

Considering the fact that the estimation of an OD matrix has a profound effect on the 

quality of simulation results, a reliable OD estimator should exist that adequately 

represents true travel patterns for a successful simulation modeling. Most of the current 

calibration research seeks to identify driver behavior parameters separately without 

consideration of the traffic demand. This may pose a significant challenge in making 

simulation results useful because it implies perfect OD estimation that reflects true travel 

patterns.  

 

1.2 PROBLEM STATEMENT 

1.2.1 Need to Incorporate Disaggregate ITS Data into the Calibration of 

Microscopic Traffic Simulation Models  

Microscopic traffic simulation models have become increasingly important in 

transportation operations and planning. In addition to greater computer performance, the 

abundance of ITS data opens further possibilities for achieving higher credibility or 

reliability of simulation results. There are many types of ITS data acquisition 

technologies and ITS data may be archived in different manners. For example, travel 

time of individual vehicle, the distribution of travel times, or the measure of central 
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tendency (i.e. mean), and dispersion (variance), all may be archived. These data can be 

used not only as inputs to microscopic traffic simulation models but also as calibration 

datasets. Therefore, there is a need to develop a methodology that can use disaggregated 

ITS data, rather than simply aggregated data, in the calibration of microscopic traffic 

simulation models.  

 

1.2.2 Need to Adopt a Statistically Based Calibration Objective Function   

If done properly, archived ITS data can provide access to disaggregate traffic flow 

characteristic details. All parts of these disaggregate data have specific qualities which 

could potentially prove useful if captured. However, to date, no approach that uses 

disaggregate data in the calibration process has been proposed. Also, there is no 

established guideline on checking as to the quality of the simulation results. The most 

critical and common limitation in existing calibration processes is that there is no clear 

guideline on the extent to which simulation models should replicate reality. 

The objective function based on an aggregate form of the observed data has been 

adopted over the years because of its simplicity and limitation in the availability of data. 

Without considering other stochastic attributes of the observed data, the parameter set 

with the lowest average difference between the observed and simulated data is selected 

as the “best”. In practice, traffic conditions have large variability so that aggregated 

performance measures, such as average travel time, may not be the most appropriate 

measure of effectiveness. For example, travel times are likely to deviate from their 

means in significant ways, especially during peak periods.  

The use of the aggregated performance measure in the calibration of simulation 

models may cause a danger that inappropriate parameter sets may be selected. It is 

hypothesized that a statistically based approach, which is grounded on a more 

disaggregate form of the observed data, would avoid this situation. Specifically there is a 

need 1) to use the “closeness” of the observed travel time distribution to that of the 

simulated travel time distribution as the basis of the objective function; and 2) to 

measure this “closeness” using statistical techniques.  
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1.2.3 Need to Identify the “Best” Parameters among Competing Parameters  

Because the calibration process is statistically based, there may be numerous parameter 

sets (or none) with which the observed traffic conditions are replicated in the 

microscopic traffic simulation model. When this occurs, an alternative selection 

technique may be required for identifying the best among competing parameter sets. The 

need for an alternative selection technique may be higher in networks that have greater 

congestion and more complex traffic situations. The application of a statistically based 

objective function does not exclude an automatic identification of the best parameter sets 

but rather leaves the final decision to the traffic engineer. 

A single metric based on aggregate data could identify numerous different 

parameter set, denoted by singleN , which have “low” values of the mean absolute error 

ratio (MAER) or the root mean square error (RMSE). There are also a large number of 

statistically valid parameter sets, denoted by statN  based on disaggregate data. 

Intuitively, the number of parameter sets statN  from a statistically based objective 

function is less than that of parameter sets singleN  from a single metric. This is because a 

statistically based objective function compares the distributions itself rather than central 

tendency only.  

Note that there are numerous ways that one parameter set can be identified as the 

“best” from a set of potential solutions. Most commonly, the parameter set with the 

lowest MAER or RMSE could be selected as “best”. By the same token, the parameter 

set with the highest p-value from the statistical test could be selected as the one that most 

closely represents the observed distribution. The statistical test could be one that tests for 

differences in the mean value of a specific variable or one that tests for differences in the 

distribution of the variable. Another selection criterion would be to select the parameter 

set that is the “least” different from default values. Engineering judgment could also be 

used. For example, the parameter set that best represents the saturation flow rate 

(arterial) or capacity (freeway) given by the Highway Capacity Manual (HCM) might be 

an appropriate.  
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1.2.4 Need to Perform Simultaneous Calibration of Driver Behavior Parameters 

and the OD Matrix 

The interdependent relationship of travel demands and driver behavior parameters has 

not been taken into account in the calibration of simulation models. Traditionally, OD 

demands are assumed to be constant during the calibration process and research efforts 

have focused on the calibration of driver behavior parameters. However, the individual 

impact of these on simulation results cannot be considered separately.  

In this research, it is hypothesized that the quality of the calibration results can be 

improved by incorporating the simulated travel times into the calibration of the OD 

matrix. The fact that travel time is a function of OD demands and vice versa provides a 

basis for the simultaneous calibration approach. Another consideration is that most OD 

estimators rely on the a priori OD matrix, sampled OD pattern, or traffic counts, which 

are not error-free measurements. Hence, it is plausible that the OD matrix can be 

calibrated to match the empirical observations. Intuitively, for a network where OD 

estimates may not be reliable, this approach would be particularly important.  

 

1.3 RESEARCH OBJECTIVES 

The widespread deployment of ITS technology provides a potential to archive OD 

patterns, travel times, and other information for use in the calibration of microscopic 

traffic simulation models. The objective of this research would be to develop a 

methodology for calibrating microscopic traffic simulation models using ITS data. The 

focus is placed upon the following: 1) incorporate ITS data to obtain superior calibration 

results; 2) apply a statistically based objective function on both a signalized arterial and 

an urban freeway network; 3) investigate alternative selection techniques in identifying 

the “best” parameter set among competing parameter sets; and 4) calibrate driver 

behavior parameters and the OD matrix jointly using a bi-level calibration framework, 
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1.4 RESEARCH FRAMEWORK 

1.4.1 Perform Literature Review 

Previous research pertaining to the calibration process of microscopic traffic simulation 

models will be comprehensively reviewed. Literature specific to the selected 

microscopic traffic simulation model, GA optimization theory, overall calibration 

process, and OD estimation techniques with emphasis on Kalman filtering will be 

analyzed.  

 

1.4.2 Identify Test Networks and Collect Data  

The proposed methodology will be evaluated on a signalized arterial and an urban 

freeway in Houston, Texas. The selected arterial is Bellaire Boulevard located in the 

southwest of Houston. It is a 1 km long arterial with 4 intersections. A video tape 

recording system will be used to obtain travel time data, and the signal timing plan is 

available from Houston TransStar. The freeway corridor is comprised of a 15.4 km 

section of eastbound Interstate 10 (I-10) leading to downtown Houston. This corridor is 

equipped with an AVI system from which the sampled OD pattern and other information 

will be derived.  

 

1.4.3 Estimate Initial OD Matrix 

After data collection, extensive data reduction is required to estimate the initial OD 

matrix from AVI data. This task includes obtaining the vehicle tag number, AVI station 

number, and passage time and date. From the ordered data, the sampled OD pattern, path 

information, and historical information such as the variance-covariance matrix will be 

derived. A Kalman filtering approach will be used to estimate the initial OD matrix. The 

framework for incorporating AVI data into OD estimation is based on the findings of 

Dixon (1).  
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1.4.4 Identify Travel Time Distribution  

The distributions of the travel times on both test networks will be identified. If the 

distribution cannot be identified, non-parametric techniques will be used to compare the 

observed and simulated distributions.  

 

1.4.5 Develop Automated Calibration Program 

The goal of this task is to develop an automated calibration process using the Genetic 

Algorithm (GA). This automated process will be coded using the PERL programming 

language in a way that the modular structure enables flexible modifications whenever 

additions or changes need to be made in the program.  

 

1.4.6 Apply a Statistically Based Objective Function  

While the issue of travel time variability is clearly important from the perspective of 

calibration, to date there has been no methodology for addressing this issue in the 

literature. In general, the more popular methods focus on testing the equality of either 

the means or the variance of the distribution of a particular variable – in this case travel  

travel time. However, these tests do not examine the distribution of the travel times, 

which may be rather restrictive for many transportation applications. In this research, the 

hypothesis that the observed and simulated travel time data have the same distribution 

will be tested.  

 

1.4.7 Perform Simultaneous Calibration of Driver Behavior Parameters and OD 

Matrix  

It is hypothesized that simultaneous calibration of driver behavior parameters and the 

OD matrix would have a positive impact on the accuracy of simulation results. Because 

traffic conditions are not stable during the peak hour, the inclusion of travel times into 

the calibration of OD matrix and behavior parameters (if available) may increase the 

quality of overall calibration process. To calibrate the OD matrix based on the simulated 
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travel times, the relationship between OD matrix and travel times should be well 

established. Intuitively, this relationship cannot be expressed in analytical or 

deterministic state-space modeling form. This is because the relationship is highly non-

linear and varies both spatially and temporally. In fact, while there are some simplified 

standard congestion functions, such as BPR or volume-density function (2, 3), there are 

no universally accepted formulae.  

 The calibration of OD matrix will be performed using the extended Kalman filter 

(EKF) that is designed to approximate the solution by linearization of nonlinear 

relationships (4, 5, 6). The EKF formulation is different from the standard KF used for 

estimating initial OD matrix in that the travel time data is augmented into its 

measurement equation.  

 

1.5 CONTRIBUTION OF THE RESEARCH 

This research provides a methodology for combining the calibration of driver behavior 

parameters and the OD matrix using ITS data to find-tune the microscopic traffic 

simulation model. To achieve this, a statistically based calibration objective function is 

introduced, and the observed and simulated travel time information are utilized for the 

calibration of the OD matrix. Some of the main contributions are: 1) use of disaggregate 

ITS data in the form of distribution as a target performance measure; 2) utilization of a 

statistically based objective function which defines a measure of effectiveness in terms 

of closeness of the empirical observation to the simulated results; 3) application of 

alternative selection techniques for identifying the “best” parameter set among the 

competing parameter sets; 4) development of the bi-level calibration framework where 

simultaneous calibration of OD matrix and driver behavior parameters are performed; 

and 5) the enhancement of the calibration accuracy as a result of the simultaneous 

calibration of the OD matrix and driver behavior parameters. 
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1.6 ORGANIZATION OF THE DISSERTATION 

This dissertation is organized into eight chapters and three appendices. Chapter I 

summarizes the problems addressed by this study and establishes the objectives and 

scope of this dissertation. Chapter II provides a literature review of the main topic of this 

research. It outlines an introduction to the selected microscopic traffic simulation model, 

GA optimization theory, overall calibration process, and OD estimation techniques. 

Chapter III provides a framework of this study. It contains a description of the test 

networks, collection of simulation input data, and discussion on the bi-level calibration 

framework. Chapter IV illustrates how AVI data can be filtered in the existing AVI data 

filtering methods. It also proposes a method to better tracing of increasing and 

decreasing trends in the AVI travel time observations. Chapter V describes a 

methodology in which a statistically based calibration objective function is applied to 

incorporate disaggregate ITS data into the calibration of the microscopic traffic 

simulation model. In addition, Chapter V examines alternatives for selecting the best 

parameter set among competing parameter sets. Chapter VI presents a methodology for 

the simultaneous calibration of driver behavior parameters and the OD matrix using the 

bi-level calibration process. This section includes the mathematic formulation of the 

Extended Kalman filtering approach employed to relate the OD matrix and the travel 

time data. The calibration results of the proposed bi-level methodologies are presented 

and analyzed in Chapter VII. Finally, the findings and future research are provided in 

Chapter VIII. 
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CHAPTER II 

 
LITERATURE REVIEW 

 

The purpose of this chapter is to provide a comprehensive review of the literature 

necessary to achieve the statement of work addressed in Chapter I. Subsection 3.1 

provides the underlying traffic flow theories of VISSIM and CORSIM microscopic 

traffic simulation models. Subsection 3.2 reviews the calibration procedure and 

optimization algorithms that have been employed in an automated calibration process. 

Subsection 3.3 provides a review of estimating the origin destination (OD) matrix with 

emphasis on the Kalman filter algorithm. The concluding remarks are presented in 

subsection 3.4. 

 

2.1 MICROSCOPIC TRAFFIC SIMULATION MODELS 

Traffic simulation software has been widely used to analyze transportation networks 

where analytical approaches are not feasible due to time and budget constraints or do not 

provide satisfactory results. These software can be primarily categorized into three types 

according to the level of details at which the fundamental traffic variables are modeled 

(7, 8). Macroscopic traffic simulation models describe the traffic stream in terms of an 

aggregate flow using continuum equations. Mesoscopic traffic simulation models 

describe traffic entities at a high level of detail but some component of the modeling is 

described at a lower level of detail. For example, vehicles may be modeled as 

individuals at intersections using discrete queuing theory but their travel time down links 

may be modeled using macroscopic speed density relationships.. Both macroscopic and 

mesoscopic models requires less data input and computing power and therefore they are 

suitable for modeling large networks.  

On the other hand, microscopic traffic simulation models consider the detailed 

movement of individual vehicles. They use various models and algorithms to capture the 



 

 

11

stochastic nature of individual vehicles. Even though there is slight difference between 

the models, the following discussion is equally relevant to all microscopic traffic 

simulation models. Microscopic traffic simulation models generally adopt a specific car-

following and lane-changing models as well as different vehicle performance 

characteristics to model individual vehicle behavior. Each vehicle that enters the 

network is assigned different operational characteristics to allow for more realistic 

representation of reality. They include vehicle types and corresponding vehicle 

performances and driver characteristics. These characteristics are uniquely assigned to 

each vehicle and are maintained while it travels though the network. The interactions 

among system entities (vehicle to vehicle, vehicle to roadway, and vehicle to control 

device) are modeled based on car-following and lane-changing models. According to 

these interactions, the movement of an individual vehicle is updated for each scanning 

interval and its associated information such as position and speed are also updated.  

Successful application of the microscopic traffic simulation model requires a 

reasonable understanding of underlying traffic flow theories as well as modeling 

assumptions (9). The lack of understanding makes it difficult to adequately utilize the 

model in its intended manner. Therefore, reviewing the theories behind the model may 

improve trust in the “black box” technology and, in turn, may be more likely to make 

best use of the microscopic traffic simulation in the following ways (9, 10): 1) 

identifying capabilities and limitations in terms of coding, visualization, and types of 

transportation networks; 2) choosing the right simulation model suitable for a certain 

transportation network evaluation or planning analysis being considered; 3) giving 

guidance on the strength and weakness regarding the development and application of the 

selected simulation model; and 4) selecting appropriate model parameters that can be 

used for calibrating the transportation network being modeled.  

Of those which are currently available for modeling transportation networks, 

VISSIM and CORSIM are the microscopic traffic simulation models that are most 

frequently used in the North America for research and commercial purposes. The next 
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three subsections present more detailed review and comparison of VISSIM and 

CORSIM models.  

 

2.1.1 VISSIM 

VISSIM is a microscopic, time step, and behavior-based model that was developed by 

Planung Transport Verkehr (PTV) in Germany (11). VISSIM can model various 

components of the transportation network, including multiple modes of transportation, 

various types of signal operations, and different traffic composition (11, 12).  As a useful 

tool for evaluating transportation alternatives, VISSIM provides significant flexibility in 

modeling transportation networks such as developing transit signal priority (TSP), 

allowing user to define signal control logics through the external signal generator (VAP), 

interfacing other signal packages for optimizing coordinated or actuated signal timing 

parameters, and comparing design alternatives (signalized or sign controlled intersection 

or roundabout).  

To model traffic streams, VISSIM adopts the psycho-physical car-following 

model developed by Wiedemann (13, 14). This is a discrete, stochastic, and microscopic 

model, where a driver-vehicle-unit is defined as a single entity. A psycho-physical car-

following model introduces the concept of “state” of a vehicle. The state of a vehicle is 

determined by the difference in distance and speed in comparison to the leading vehicle. 

If changes in distance and speed occur, the driver reacts and a new value for acceleration 

or deceleration is calculated.  

This model is based on the assumption that a driver can be in one of four driving 

states. Table 2.1 describes how acceleration or deceleration is calculated for four 

different driving states. Figure 2.1 shows an observation-decision diagram of four 

driving states, where the x-axis represents the difference in speed with the left part 

indicating that the following vehicle is faster than the leading vehicle and the y-axis 

represents the difference in distance (headway).  
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• Free driving state: In this state, the influence of the leading vehicle is negligible. 

The driver tries to reach and maintain his/her desired speed but the speed in 

reality tends to oscillate around the desired speed.  

• Approaching (approximating) state: The driver tends to adjust his/her speed to 

the lower speed of the leading vehicle. In this state, the driver decelerates until 

the difference in speed between the leading and following vehicles is zero at the 

moment when the desired safety distance is reached. 

• Following state: The driver follows the leading vehicle without any conscious 

acceleration or deceleration, thus keeping the distance very nearly constant. 

Imperfect perception in the speed difference makes the distance between the 

leading and following vehicle oscillate around the desired safety distance.  

• Braking state: The driver applies medium to high deceleration if the distance is 

smaller than the desired safety distance. This state happens due to lane-changer 

from adjacent lane or sudden braking of the leading vehicle.  

 

TABLE 2.1 Driving States of Wiedemann Psycho-Physical Model (15)  

State Kind of drive Acceleration 

Free Driving I Not 
influenced 

depending on the current speed and the 
desired speed 

Free Driving II Direct 
influenced 

positive acceleration until the desired distance 
is reached and the difference in speed is zero 

Approximating I Direct 
influenced 

negative acceleration until the desired distance 
is reached and the difference in speed is zero 

Approximating II Direct 
influenced 

negative acceleration until the risk distance is 
reached and the difference in speed is zero 

Following  Indirect 
influenced 

keeping acceleration until the desired distance 
is reached and the difference in speed is zero 

Braking Direct 
influenced 

negative acceleration when the distance is 
smaller than the desired safety distance 

 



 

 

14

 Figure 2.1 Driving State Diagram of Wiedemann Psycho-Physical Model 

 

Each mode can be expressed as a combination of the difference in speed and 

distance. However, each driver’s abilities to perceive or estimate the difference in speed 

and distance are different. Therefore, each driver has different threshold values where 

the driver switches from one state to another. Because the model takes into account the 

physical aspects (equation of vehicle motion) and physiological restrictions of individual 

driver’s ability, it is called a psycho-physical car-following model (15).  

The detailed logics of a psycho-physical car-following model are well 

documented in a more recent paper (16). To divide the driving state into the named area, 

two speed-related thresholds and four distance-related thresholds are introduced. The 

threshold for positive and negative speed difference is computed according to Equation 

2.1.  
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negativeorpositivv∆  = 2
2

01 )( kAxk +−∆                                                     (2.1)
                                                       

negativeorpositivv∆  = threshold for positive or negative speed difference (m); 

x∆  = distance between the leading and following vehicles (m); 

0A  = standstill distance (m); and 

21, kk  = constants. 

 

Besides the thresholds for speed difference, the desired distance (AD), risky 

distance (AR), safety distance (AS), and braking distance (AB) are introduced to 

describe driving behaviors with regard to the distance between the leading and following 

vehicles.  

 

AD  = fd vTA ⋅+0                                                     (2.2)

AR  = lr vTA ⋅+0                                                    (2.3)

AS  = fs vTA ⋅+0                                                     (2.4)

AB  = 
mb
vAR

2∆
+                                                     

(2.5)

 

lf vv ,  = speeds of the following and leading vehicles (m/s); 

v∆  = speed difference between the following and leading vehicles (m/s);

srd TTT ,,  = time headways for desired, risky, and safety distance, respectively 
(sec); and 

mb  = deceleration rate (m/sec2). 

 

Based on the thresholds computed by Equation 2.1 through Equation 2.5, the 

driving behavior is divided into the driving states, as shown in Figure 2.1. For example, 



 

 

16

the danger state can be defined as the case ( ARx ≤∆ ) where the distance to the leading 

vehicle is smaller than the risky distance (AR). Thus, it is necessary to decelerate to 

avoid risky situation. After identifying its present state, each driver updates his/her next 

position by choosing a new acceleration or deceleration. A new value for the 

acceleration or deceleration is computed by Equation 2.6 (15).  

 

fa  = 
ld

lfd

vTAx
vavTAx

−−∆

∆−−−∆

0

2
0 5.0)(

                                                (2.6)

   

lf aa ,  = acceleration of the following and leading vehicles (m/sec2). 

 

VISSIM adopts a rules-based algorithm to model lateral movements in multi-lane 

roadways as well as a psycho-physical car-following model for longitudinal movement. 

A driver is motivated to change his or her lane if the leading vehicle predictably hinders 

his/her movement or there is a necessity to stay within a predefined route such as an 

upcoming exit with a deceleration lane. A driver checks whether the present situation 

can be improved by the intended lane change. The following vehicle in the neighboring 

lane and the leading vehicles in the neighboring and direct lanes are considered in the 

decision structure. The conditions (position and speed) of these three vehicles decides 

whether a benefit arise without generating a dangerous situation.  

In the VISSIM model the user can control a number of parameters associated 

with the car-following models to accurately mimic dynamics of traffic. They include 

number of observed preceding vehicles, looking ahead distance, standstill distance, and 

desired safety distance parameters, car-following oscillation parameter, and so on. In 

contrast, VISSIM provides only a few parameters that influence directly the lane-

changing behavior such as lane-changing distance and maximum acceptable 

deceleration. 
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2.1.2 CORSIM 

CORidor SIMuation (CORSIM), an integration of the NETSIM and FRESIM models, is 

a microscopic traffic simulation model designed for simulating traffic flow on integrated 

networks consisting of freeways and surface streets. CORSIM is a micro simulation 

component of the TRAF family of models developed by the Federal Highway 

Administration (FHWA). It combines NETSIM and FRESIM simulation models into an 

integrated package providing comprehensive simulation capabilities in the areas of 

traffic operational analysis, geometric design evaluations, congestion assessment and 

mitigation strategies, and assessment of transportation systems management (TMS) 

strategies.  

CORSIM simulates the traffic behavior at a microscopic level and with detailed 

representation of individual vehicles and their interaction with their physical 

environment and other vehicles. Both NETSIM and FRESIM components of the 

CORSIM model have been widely used and their main simulation capabilities have been 

extensively discussed in a number of publications and reports (17, 19, 21, 22). It can be 

classified as high fidelity because it attempts to represent the spatial interaction of 

drivers on a continuous basis and because it attempts to model the car-following logic of 

drivers in detail, where the vehicle acceleration for each scanning interval is determined 

through difference in speed between the leading and following vehicles. Because the 

model is designed to mimic the dynamics of traffic the modeler has control over a large 

number of parameters including car following sensitivity factor, percentage of distinct 

vehicle types, aggressiveness of the drivers, and acceleration or deceleration capabilities.  

FRESIM uses the Pitts car-following model to determine the acceleration of the 

following vehicle. The basic proposition is that vehicles attempt to maintain constant 

space headway between the leading and following vehicles, according to Equation 2.7 

(17). The first two terms in the equation represent the length of the leading vehicle and 

the minimum vehicle separation, respectively. The third term accounts for the variability 

in driver space headway depending on the speed of the following vehicle and driver 

sensitivity factors. The final term was introduced to allow for larger space headway. A 
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calibration constant b was assigned to a value of 0.1 based on empirical studies when the 

speed difference between the following and leading vehicles is relatively small 

( 10≤− fl VV ).  

 

H  = 2)( flf VVkbkVsL −+++  (2.7) 
    

H  = space headway (ft); 

L  = length of the leader (ft); 

k  = driver sensitivity factor (sec); 

s  = minimum vehicle separation (ft); 

lV  = speed of the leader (ft/sec); 

fV  = speed of the follower (ft/sec); and 

b  = calibration constant. 

 

In order to maintain the desired space headway, the following vehicle needs to 

react to the location and speed difference between the following and leading vehicles. 

The acceleration or deceleration rate of the following vehicle can be derived from 

Equation 2.7. The resulting acceleration or deceleration rate is shown in Equation 2.8, 

while its derivation can be found in the literature (18, 19). 

 

fa  = 
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−−+−−−− ++

 (2.8) 

    

fa  = acceleration rate of the follower at time t to t+T (ft/sec2); 

Tt
lx +  = position of the leader at time t+T (ft);  

t
fx  = position of the follower at time t (ft); and 

T = time scanning interval (sec). 
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In this equation, the driver sensitivity factors are used to determine a desired car-

following distance. A higher value of the sensitivity factor results in larger space 

headway and subsequently lower capacity. However, a reaction of individual driver 

varies from driver to driver. Therefore, CORSIM allows for the distribution of 

sensitivity factors to determine the various desired car-following distance for each 

individual driver (17, 18).  

The CORSIM model adopts a lane-changing algorithm that makes drivers 

improve their position through gap evaluation and gap acceptance of the lane-changing 

decision. The leading and trailing gaps that are computed from the locations of the lane-

changer and the putative leader and follower in the neighboring and direct lanes are 

primary factors for the lane-changing decision. The gap evaluation is made based on the 

deceleration rate during the lane-changing maneuver required to maintain safe positions 

for the lane-changer and the putative leader. The required deceleration rate should be 

smaller than the maximum acceptable deceleration rate and the advantage of obtaining 

more favorable position should be gained by the lane-changer (20).  

With the premise of the basic lane-changing process, CORSIM categorizes lane-

change maneuvers into three different models (20). The first is the mandatory lane-

change where the driver allows higher risk to perform the lane-change for the situations 

such as merging from the on-ramp, exiting the network, and vacating from the dropped 

lane. The second is the discretionary lane-change where the driver overtakes slow 

moving vehicles. Discretionary lane-change is modeled based on behavioral factors 

associated with the lane-change. They include the intolerable speed to motivate the lane-

change, the advantage or disadvantage of remaining in the current lane or moving to the 

neighboring lane, and the urgency for lane-changing maneuver. The last is the 

anticipatory lane-change that is related to lane-change maneuver upstream of on-ramps. 

Based on the volume and speed in the vicinity of on-ramps, the CORSIM model 

determines whether or not the driver performs the lane-change to avoid the downstream 

congestion. 
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CORSIM allows the user to control the parameters associated with the CORSIM 

lane change maneuver. They include the time delay to accelerate or decelerate, driver’s 

aggressiveness in lane-changing process, duration of time to complete the lane-changing 

maneuver, and level of cooperation of the putative follower (17)  

 

2.1.3 Comparison of VISSIM and CORSIM  

The ability of the microscopic traffic simulation software is a major concern for traffic 

engineers who need to make decision on which software to use for the analysis. This 

section provides a brief comparison of the two major models, VISSIM and CORSIM 

based on the research conducted by the Institute for Transport Studies at the University 

of Leeds (23). 

 

• Car-following and lane changing models: Driver behavior models employed in 

CORSIM and VISSIM have been assumed to have an implied validity in a wide 

range of application. Some researchers proved the validity of these models by 

comparing a simulated driving process with measurement data such as a probe 

vehicle or GPS data (24, 25). In addition, both models are well-documented, 

helping users clearly understand and make best use of them, while other models 

are often more of a black box and detailed algorithms are not shared.   

• Network coding: VISSIM is more flexible since it is based on a link-connector 

structure while CORSIM has a link-node structure. However, the time required 

for coding transportation networks into CORSIM is shorter. VISSIM requires 

greater efforts and times for coding networks, but when exporting function is 

used in conjunction with other transportation software (EMME2, TransCad, GIS 

packages, Synchro, and SimTraffic), networks can be built relatively quickly. 

• Multi-modal analysis: VISSIM can model public transits in detail and HOVs. In 

addition, a wide variety of transit priority rules as well as railroad preemption 

strategies can be modeled and analyzed. On the other hand, CORSIM does not 

have transit and railroad preemption modeling capabilities. 
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• Graphical representation: The CORSIM animation program (TRAFVU) provides 

a two-dimensional representation where cars, trucks, and buses are expressed as 

rectangular shapes with limited colors. On the other hand, VISSIM can record 

movie clips, with the ability to change views and perspectives. In addition, other 

visual elements (trees, buildings, traffic signs) can be inserted into the three-

dimensional animation. 

• Signal control logic: Besides the internal fixed time signal control, VISSIM 

provides the optional external signal generator (VAP), where users define or 

create their own signal control logic in a text file using a simple programming 

language. This function makes it easy to model actuated signal control logic as 

well as other signal strategies. CORSIM provides both fixed time and actuated 

signal control logic, but it is difficult for users to define any types of special 

feature including transit priority, ramp metering, and railroad preemption. 

• Dynamic Traffic Assignment (DTA): VISSIM adopts the DTA approach 

developed by Massachusetts Institute of Technology (MIT) where a driver 

updates information on the traffic stream and then is reassigned accordingly as 

they move through entire network. COSRIM traffic assignment is limited to a 

single network type, meaning serious limitation if both arterial and freeway 

corridors are modeled at the same time. Furthermore, it uses a static trip 

distribution function, thus keeping the optimal path constant throughout a 

successive simulation run regardless of network traffic conditions. 

 

There are several expected advantages when VISSIM is selected to model the 

transportation networks in this dissertation: 1) because both actuated signal control and 

transit priority are under operation on Bellaire arterial in Houston, one of the selected 

test beds in this dissertation, VISSIM is more suitable for modeling this section. As 

stated earlier, even though CORSIM and VISSIM have ability to model various types of 

transportation networks, VISSIM is more likely to be applied for modeling more 

complex urban network; 2) to mimic traffic dynamics a simulation time should be 



 

 

22

incremented by a small discrete time step. VISSIM allows users to select a time step 

between 0.1 and 1.0 second, leading to a higher level of detail of driver behavior by 

smoothing the movement of simulation units while CORSIM uses a fixed time step of 1 

second; and 3) both models generate a wide range of outputs that indicate network 

performance or traffic conditions. While CORSIM provides simulation outputs in the 

pre-determined output file format, VISSIM offers users additional simulation outputs by 

setting up an output file format. This function is very useful to obtain simulation output 

suitable for calibrating the simulation model in this dissertation because the model 

calibration requires simulation outputs for each individual driver, e.g. fully 

disaggregated network performance data.  

 

2.2 CALIBRATION OF MICROSCOPIC TRAFFIC SIMULATION MODELS 

Many microscopic traffic simulation models are now supporting a detailed analysis and 

evaluation of both traffic operations and transportation planning strategies. To recreate 

realistic driving behavior and, thus, increase the credibility of simulation outputs, 

complex traffic flow theories including car-following and lane changing models have 

been used. However, the application of microscopic traffic simulation models could be 

counter-productive if not implemented appropriately, implying a necessity of the 

calibration of transportation networks being modeled. In this subsection are presented 

the conventional and bi-level calibration procedures as well as the optimization theories 

employed in an automated calibration methodology. 

 

2.2.1 Overview of the Calibration Procedure  

Microscopic traffic simulation modeling consists of model development, verification, 

calibration, and validation. Model development involves collecting supply and demand 

data and coding these data into the selected simulation model. The supply data are 

measurable physical and control elements of the transportation network, while the 

demand data are the desires to transport people and freight in the form of OD matrix or 
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traffic count. Model verification is the process of checking that the model performs 

logically. This process is mainly to debug any coding errors so that the model performs 

in an intended manner. Model validation is the process of determining whether all 

elements of network being modeled are accurately represented. In this step, network 

performance data from the calibrated model are compared with another set of data that 

are not used in the model calibration using statistical tests or visualization checking (26).  

Model calibration is the process of adjusting model parameters that are locally 

site-specific. Traditionally, this process has been concerned with identifying the “best” 

driver behavior parameters from a wide range of parameters related to car-following and 

lane-changing models. For the model calibration, the specific form of data is prepared 

such as a traffic count at a specific location, travel time for a small network segment, and 

delay at an intersection approach. These observed field data are compared with the 

simulation output to adjust model parameters using intrinsic guesses or automated 

calibration methodology. 

The model calibration is very crucial in the successful application of the 

simulation model. This is apparent, especially, when transportation networks are 

geometrically complex or are congested. For example, when networks operate close to 

maximum capacity, slight changes in calibration parameters can have a significant effect 

on simulation outputs. By modifying model parameters, it is possible to obtain quite 

different simulation outputs. Nevertheless, due to lack of data available for the model 

calibration and limited applications of automated calibration methodology, the model 

calibration has been performed; 1) for only a few of the many model parameters; 2) for 

only small networks; 3) using intrinsic guesses or based on approaches that are heuristic 

in nature; and 4) based on aggregated field data rather than disaggregate data (27). 

Park et al. summarized general requirements and a set of guidelines of the model 

calibration suggested by other researchers and proposed a systematic calibration 

procedure of microscopic traffic simulation models (28). Figure 2.2 depicts the main 

steps in his proposed calibration procedure. The first step comprises determination of 

MOEs and field data collection for the model calibration.  
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Figure 2.2 Calibration Procedure in Simulation Modeling (28) 
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Once the simulation model is correctly developed, the second step is to evaluate 

the simulation output with default parameters in comparison with the observed field 

data. If a close match is not found, the next calibration steps are to be performed. The 

third step consists of identifying influential parameters among all model parameters, 

constructing feasible parameter combination, and setting up the number of simulation 

run to reduce stochastic variability. The purpose of the fourth step is to check whether 

the current parameter ranges are sufficient to generate the field condition. If the field 

data is not covered by the simulation results, the current parameter ranges are to be 

adjusted. After deciding appropriate parameters and their acceptable search ranges, the 

fifth step is to apply optimization algorithms to find optimal parameters. In this step, 

optimization algorithms generate another set of new scenarios. The last step is to run 

multiple simulations and to evaluate the simulation results in comparison with the field 

data. If the evaluation is satisfactory, the model can be regarded correctly calibrated. 

Otherwise, the calibration procedure is repeated. 

A number of research efforts in the calibration of microscopic traffic simulation 

models can be found in the literature. Cheu et al. calibrated INTRAS with 30 second 

loop detector data (29). In their study each parameter was separately calibrated while 

other parameters remained constant. Cheu et al. also calibrated FRESIM parameters 

using a genetic algorithm (30). This study was undertaken using 30 second speed and 

volume data over 5.6 kilometer segment of Singapore expressway. Free flow speed and 

FRESIM behavior parameters were calibrated by comparing FRESIM output with 30 

second field data. Ma and Abdulahi calibrated the microscopic traffic simulator named 

GENOSIM using a genetic algorithm (31). Given initial parameters and OD flows, the 

calibration was carried out to obtain route-choice and lane-changing parameters. They 

tested GA based calibration approach in a network in Toronto, Canada and found their 

approach is promising for identifying better simulation parameters. Lee et al conducted a 

calibration study for searching best PARAMICS parameters (32). The mean headway 

and reaction time were calibrated for the I-5 freeway segment in California using a 

genetic algorithm. Average relative errors of flow and occupancy in 30 second intervals 
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were used as the calibration objective function to compare the simulated and observed 

data. Park et al. proposed a calibration procedure and demonstrated the proposed 

procedure in an urban arterial network in Fairfax, Virginia using VISSIM (33). They 

used an experimental design (Latin Hypercube Design) to reduce the number of 

combinations among numerous feasible model parameters. Rakha et al. modeled Salt 

Lake City area using INTEGRATION to demonstrate feasibility of modeling a large 

scale network (34). They described constructing and calibrating a large scale network 

microscopically. Kim et al. calibrated the I-10 freeway corridor in Houston using ITS 

data (35). To match the simulated and observed traffic count from CORSIM and 

TRANSIM under two different demand matrices, the genetic and fixed and flexible 

simplex algorithms were used. Gomes et al. modeled the I-210 in Pasadena, California, 

into VISSIM to design and implement improved on-ramp control systems (36). They 

assumed that driver behaviors are correlated with the position in the network. Thus, they 

defined different link types and VISSIM parameters were calibrated for each link type.  

In the context of OD estimation, a bi-level approach has been proposed, where 

the OD matrix and travel-cost coefficients are calibrated at the same process (37, 38). 

Under a bi-level structure, the OD matrix is estimated with the travel cost coefficient 

constant in the first level, while the travel cost coefficient is calibrated in the second 

level using the calibrated OD matrix. However, even though there has been some 

research published in the literature pertaining to the calibration of microscopic traffic 

simulation models, there has been comparatively little related to the simultaneous 

calibration of both the OD matrix and the driver behavior parameter set.  .  

 Kim asserted that the OD matrix has a profound impact on simulation results 

and, further, considered the OD matrix can be calibrated (27). In his study, the 

calibration of CORSIM OD matrix, which was based on a gravity model, was performed 

iteratively using a bi-level approach. A generalized cost function (impedance function) 

of a gravity model obtained using the simulated travel time was used to update CORSIM 

OD matrix. However, Kim’s study has limited its application only to the CORSIM 
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model based on a simple gravity model. Consequently, the methodology used in Kim’s 

study can not be applied to other simulation models. 

Ben-Akiva et al. and Darda proposed a bi-level approach, where driver behavior 

and route choice parameters are calibrated jointly (39, 40). The estimation of the OD 

matrix requires the assignment matrix for mapping OD flows to traffic counts measured 

at sensors. It was addressed that the assignment matrix is a function of the route choice 

and path travel times, which in turn depend on the estimated OD matrix. However, these 

data are often unavailable in reality. Therefore, they obtained path travel times and 

driver behavior parameters from simulation results with a given OD matrix and 

subsequently updated the OD matrix iteratively using the calibrated parameters and 

assignment matrix.  

Chu et al. conducted a calibration study in the city of Irvine, California, using 

PARAMICS (41). Multiple steps of calibration efforts were made including calibration 

of driver behavior and route choice parameters, OD estimation, and model fine-tuning. 

Their study mainly focused on proposing a systematic, multi-stages calibration 

procedure so that details of how the calibration was carried out were not clearly 

described. For example, they addressed the importance of calibrating route choice 

parameters as part of the calibration procedure but they assumed these values because of 

lack of available data.  

 

2.2.2 Existing Calibration Objective Function  

The calibration objective function based on an aggregate form of the observed data has 

been adopted over the years because of its simplicity and limitation on the availability of 

data. The aggregated measures such as average travel time or total traffic volume are 

compared to find the best parameter set that minimizes some objective functions. These 

functions come in many forms but the most prevalent ones are the root mean square 

error (RMSE), the mean absolute error ratio (MAER), and the mean absolute percentage 

error (MAPE). These functions are defined in Equations 2.9 through 2.11, providing 

information on the magnitude of errors relative to the average measurement directly.  
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iS  = simulated measurement ; 

iO  = observed measurement ; and 

n  = number of measurement locations.  

 

Even though various forms of calibration objective functions have been adopted 

under the common goal of error minimization, they differ in some important aspects. 

The selection among them depends on the purpose of analysis and the availability of 

data. The RMSE gives the same dimensions as the observations themselves and it is 

sensitive to outliers in observations so that a large error has greater impact on the value 

of RMSE. The MAPE is the average of all the percentage errors for given observations, 

taken without regard to sign. The MAER is unit free and is defined as the average ratio 

of absolute errors to their observation (42, 43). 

When an aggregated performance measure such as the MAER is used, it is 

automatically assumed that the parameter set which produces the minimum MAER value 

is the best descriptor for real traffic conditions. However, this assumption is valid only 

when the distributions for the simulated and observed data are identical. That is, the only 

difference between the results from different parameter sets is the measure of central 

tendency (i.e. mean or median). 
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2.2.3 Optimization Algorithms  

Historically, the calibration of microscopic traffic simulation models was considered as a 

simple procedure based on manual search techniques. With greater availability of ITS 

data and higher speed computers, the application of optimization algorithms to the 

automated calibration of simulation models is now possible.  

In a manual search, the selected parameters that need to be calibrated are 

explicitly changed based on previous knowledge and experience with microscopic traffic 

simulation models. It is a commonly used, less complicated and intuitive approach. The 

transportation engineer decides the criteria under which the search is stopped (44, 45). 

This search may find a set of parameters that produce better results as compared to 

default parameters. However, it is far more inefficient and expensive than automated 

optimization techniques. The main disadvantage is that there is no fixed rule for the 

choice of a reasonable starting and an adequate stopping point, which leads either to a 

premature end to the calibration procedure or the end of the search for a better solution.  

Simplex algorithm (SA) is a pattern search technique, which assumes that a 

successful move is worth being repeated. It requires only the evaluation, not derivative 

of the objective function. A simplex is n-dimensional figure consisting of 1+n  vertices, 

where each vertex corresponds to a parameter set. This approach takes a series of steps, 

reflecting, contracting, and expanding, to identify the parameter set with better function 

evaluation. The resulting simplex either grows or shrinks. The worst vertex is discarded 

and replaced with a new one. The process repeats itself until no further improvement can 

be made. The application of simplex algorithm can be found in the following literature 

(35, 46).  

Genetic algorithm (GA) is a robust optimizer developed in the 1970’s for 

intractable problems. The GA differs in many aspects from other optimization 

techniques, especially in that it does not require sophisticated knowledge of the objective 

function that is to be optimized. This feature enables the GA employed in a wide range 

of transportation applications, including timing traffic signals and calibrating simulation 

models. The application of GA for timing traffic signal logic focuses on finding optimal 
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signal control variables (i.e., cycle length, green split, offset, and phase sequence) under 

various traffic conditions and traffic signal strategies (47, 48, 49, 50, 51). A GA is ideal 

for the calibration of microscopic traffic simulation models because it is sometimes 

impossible to write out the calibration objective function mathematically while it is easy 

to obtain values of the function. In the calibration of simulation models, a GA has been 

employed to develop an automated calibration methodology, where a GA is used as an 

optimization tool to manipulate the model parameters that minimize the discrepancy 

between simulation results and real field data (27, 30, 31, 49, 52). The application of GA 

in other transportation field such as transit routing, ramp metering, and OD estimation 

can be found in the literatures (53, 54, 55, 56, 57).  

In the procedure of GA application, the first step is to determine calibration 

parameters, function forms to calculate the fitness value, and GA control variables such 

as probabilities of crossover and mutation operational rules and stopping criteria. The 

GA is then started by generating a number of calibration parameters forming initial trial 

population. These parameters are encoded as binary strings called chromosomes. The 

second step is to decode the binary strings to real parameter values and insert these 

values into the simulation input file. A simulation run is then performed for each set of 

binary strings and simulation outputs are channeled into the analysis phase of the GA 

algorithm. The third step is to calculate the fitness value by evaluating the performance 

of each chromosome in comparison with the field data. The fitness value can be 

considered as a competition index within the trial population. The chromosome with 

higher fitness values is more likely to be selected and cloned for subsequent generation. 

If the comparison result does not meet the stopping criteria, a new population of 

candidate solutions is generated based on probabilistic rules, which are known as 

reproduction, crossover, and mutation. In the crossover operation, two parent 

chromosomes are selected based on the probabilities computed from the fitness values. 

The selected chromosomes exchange generic materials or genes to produce offspring 

chromosomes. Following the crossover, the mutation operation is performed to ensure 

that fresh solutions are generated. The value of the binary cell at a randomly selected 



 

 

31

location is changed. This entire process takes place for successive generation until the 

stopping criteria is met (58, 59).   
 

2.3 ESTIMATION OF AN ORIGIN-DESTINATION MATRIX 

The origin-destination (OD) matrix is a fundamental input to microscopic traffic 

simulation models. This section reviews various approaches for estimating the origin-

destination (OD) matrix with emphasis on the Kalman filter algorithm.  

 

2.3.1 Overview of OD Estimation Techniques  

There has been a considerable amount of research conducted on estimating the OD 

matrix on freeway and urban networks. Traditionally, the OD matrix was obtained from 

direct measurements, roadside interviews, or license plate surveys (60). However, these 

approaches are not feasible in most cases because they are often costly and time 

consuming. In addition, these survey based methods are inappropriate to reflect rapid 

changes in OD patterns, leading to the outdated OD matrix. Therefore, in recent years, 

most research have tried to estimate the OD matrix in an indirect way, mainly using 

traffic counts and sampled OD data.  

 The OD estimation is to find the most “likely” OD matrix that can reproduce the 

observed traffic count at any space-time point. Equation 2.12 describes the basic 

relationship between the estimated OD matrix and observed traffic counts. For a given 

link a, the sum of all OD pairs passing this link is the observed traffic count on link a.  

 

av  
= ij

ij

a
ij ttp∑
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av  = traffic counts on link a; 

a
ijp  = proportion of OD flows between OD pair i and j that use link a;  

ijtt  = OD flows between OD pair i and j. 
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However, this formulation based on the observed traffic counts leads to an 

underdetermined OD structure (61, 62, 63). That is to say, there could be a greater 

number of feasible OD matrices that reproduce the observed traffic counts. This occurs 

because the number of OD pairs to be estimated is larger than the number of links where 

traffic counts are measured. Therefore, additional information is required to determine a 

unique solution. In general, this information is in the form of a priori OD information 

obtained by a sample OD survey or from an outdated OD matrix.  

With this additional information, the problem of estimating the OD matrix can be 

formulated in the following general form, where the a priori OD matrix is used as a 

target OD matrix. As shown in Equation 2.13, a unique OD matrix given the target OD 

matrix is obtained by minimizing the deviation between the estimated and target OD 

matrices and deviation between the estimated and observed link traffic counts. The 

values of the weights are determined based on the reliability or accuracy of the target 

OD matrix and the observed link traffic counts. For example, if traffic counts are 

observed accurately, then a lager value is assigned to 2α . In turn, this leads to the 

estimated OD matrix that reproduces link volumes close to the observed traffic counts 

while allowing a larger deviation between the estimated and target OD matrices. 

 

),(min vTF  = )ˆ,()ˆ,( 2211 vvFTTF αα +  (2.13) 
    

TT ˆ,  = estimated and target OD matrix, respectively ;  

vv ˆ,  = estimated and observed traffic counts, respectively ;  

21 , FF  = distance measures for OD matrix and traffic counts, 
respectively ; and  

21 ,αα  = weights for OD matrix and traffic counts, respectively.  

 

 Research on the OD estimation can be divided using several categories (64, 65). 

They includes: 1) time horizon; 2) treatment of congestion; 3) mathematical formulation; 
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and 4) network configuration. Table 2.2 summarizes important properties that 

distinguish various approaches. The first category is based on the time horizon. In the 

steady state OD estimation approach, a dynamic nature of OD patterns is overlooked and 

the average OD matrix for a relatively long time interval is estimated. In the dynamic 

model, time dependant traffic counts are taken into account to identify the time varying 

OD patterns. It is assumed that the travel time for a specific OD pair can span a number 

of different time intervals by considering various travel times consumed by individual 

vehicles. Therefore, it allows fractions of OD flows for the current time interval to arrive 

at their destinations for some future time intervals.  

 

Table 2.2 Classification of OD Estimation Approaches  

Category Sub Division 

Time Horizon • Steady state 
• Time dependant  

Treatment of 
Congestion 

• Proportional assignment 
• Equilibrium assignment 

Mathematical 
Formulation 

• Traffic modeling approach 
• Statistical inference approach 

Network 
Configuration 

• Isolated intersection or freeway 
• Urban Network or combined network 

 

 The second category is the treatment of congestion. The proportional assignment 

assumes that link costs (or link travel times) are independent of link volumes. Therefore, 

this approach can be applied to networks with a low level of congestion. The assignment 

matrix is determined and given exogenously before the estimation of the OD matrix. In 

the presence of congestion, the equilibrium assignment model can be more 

representative of a reality. It assumes that link costs depend on link flows. Therefore, the 

assignment matrix is a function of link volumes, resulting in nonlinear relationship of 

v in Equation 2.12. The equilibrium assignment model generally has a bi-level structure, 
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where the estimation of the OD matrix is conducted on the upper level whereas a user-

equilibrium problem is solved at the lower level.  

 The third category is based on the mathematical formulation, which is further 

subdivided into two categories: traffic modeling approach and statistical inference 

approach. The traffic modeling approach is the minimum information (or entropy 

maximization) model. It is assumed in this approach that the target OD matrix is 

typically an old OD matrix and is adjusted to meet the traffic counts. The statistical 

inference approach includes the maximum likelihood (ML), generalized least squares 

(GLS), Bayesian approach, and Kalman filtering approach. The statistical approach 

generally assumes that the target OD matrix is obtained from a sample survey and is 

considered as an observation of the true OD matrix. In turn, the true OD matrix is 

assumed to follow a certain probability distribution, thus the estimation of the OD matrix 

is obtained by estimating the parameters of the statistical distributions (65). 

 The last category is based on the network configuration. The estimation of the 

OD matrix at an isolated intersection or a freeway network is a special case. In recent 

years the research emphasis shifted to the development of the OD matrix estimation 

approach that is suitable for congested urban networks. 

 

2.3.2 Kalman Filter Based OD Estimation  

The Kalman filtering (KF) algorithms are known as a “prediction-correction” technique, 

which is based on the criterion of least square unbiased estimation of the state and 

measurement vectors (4). A common form of the KF algorithm is modeled as the 

random process, as shown in Equations 2.14 through 2.16.  

 

)1( +tx  = ))(,0(~)()()()( tQtttxtA εε+  (2.14) 

)(ty  = ))(,0(~)()()()( tRtttxtB ηη+  (2.13) 

)1( +tx  = [ ])()()()()( txtBtytKtx −+  (2.16) 
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)(),( tytx  = state and measurement matrices, respectively;  

)(),( tBtA  = linear matrices ;  

)(),( tt ηε  = state and measurement noises, respectively ;  

)(),( tQtR  = variance-covariance matrices for state and measurement noises, 
respectively; and  

)(tK   Kalman gain matrix. 

 

)(tε and )(tη are, respectively, unknown state and measurement noises. It is 

often assumed that they follow zero-mean Gaussian white noise process and are 

independent of each other. The state equation estimates the state of a discrete-time 

random process, where the linear matrix A(t) relates the state for time interval t-1 to the 

state for time interval t. The matrix B(t) relates the state to the measurement y(t). The 

difference [ ])()()( txtBty −  in Equation 2.14 is called the residual. This reflects the 

discrepancy between the actual measurement and the estimated measurement and 

determines the magnitude of the update after the measurement for time interval t is 

obtained. In the KF algorithm the determination of the Kalman gain matrix is a crucial 

point. This matrix is chosen such that the posterior error covariance of x(t) is minimized. 

For example, the Kalman gain matrix weights the residual heavily if measurement 

variance covariance matrix R(t) approaches zero. In other words, as R(t) approaches 

zero, larger confidence can be placed on the actual measurement. Further details 

regarding the KF derivation and other issues can be found in the literature (4, 5, 6). 

With a few substitutions, the Kalman filter algorithm can be used as the recursive 

OD estimation technique, where information for the previous time intervals are used to 

update OD estimates for the current time interval (1). The state matrix x(t) in Equation 

2.14 would be changed to the OD split proportion matrix b(t). In addition, link traffic 

count matrix v(t) is substituted for the measurement matrix y(t) and the assignment 

matrix P(t) is substituted for the linear matrix B(t).  
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In the pioneering study by Cremer and Keller, they applied the idea of dynamic 

OD estimation, where time dependant traffic counts were used in a recursive Kalman 

filter based OD estimator (60). In addition, different algorithms including an ordinary 

least square estimator and a constrained optimization were proposed and applied to a 

large intersection for comparing the accuracy of the proposed algorithms. Okutani 

applied the Kalman filter based OD estimator on general networks (66). This approach 

can be considered as the first network-oriented study. Ashok et al. suggested the 

improved Kalman filter based OD estimator. In their study, the concept of deviation of 

OD flows from target OD flows was presented instead of OD flows themselves (67). It 

was assumed that deviations generally have a symmetric distribution while OD flows are 

skewed. This approach also attempted to remove the loss of structural OD information 

associated with the use of autoregressive formulation in transition equation. Van der 

Zijpp et al. applied the Kalman filter based approach for modeling OD estimates defined 

in terms of a split probability instead of a fixed split proportion (68). They addressed that 

the assumption of a split probability can be better justifiable because OD flows are 

slowly moving process with a random walk rather than a fixed process and some 

properties related to the Kalman filter approach such as variance covariance matrix can 

be derived. Debashish et al. incorporated Advanced Traveler Information System (ATIS) 

data into an OD estimator on a freeway network (69). The Kalman filter based approach 

was used to update the OD matrix and associated variance covariance matrix where a 

route diversion behavior under ATIS system was taken into account. 

 

2.3.3 Incorporating Travel Time Data into OD Estimator  

Little research has been carried out for estimating both travel times (OD travel times or 

link travel times) and OD flows in one process or for estimating OD flows using travel 

time information as additional measurements. It is difficult to identify the relationship 

between these variables even though they are strongly inter-correlated. However, if this 

relationship is properly captured, OD estimates that reflect dynamics of traffic can be 

obtained with a significant improvement of estimation precision.  
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Chang et al. considered dynamic OD travel times for obtaining the estimates of 

OD flow on a freeway corridor (70). They addressed the concern that the OD estimation 

model, where the travel time is assumed to be either negligible or constant, can not be 

applicable for a long freeway segment but only for a small network or intersection. To 

estimate dynamic travel times, a simple method based on macroscopic traffic 

characteristics, that is to say the speed-density-volume relationship, were used. The 

extended Kalman filter based OD estimator was proposed to solve a nonlinear dynamic 

system. Another application of the Kalman filter based approach can be found in the 

study by Shou-Ren et al. (71). The simulation based model, called the adaptive Kalman 

filter, was developed to capture a temporal dispersion in travel times, which were in turn 

used to generate time-varying assignment matrices. 

Hironori et al. also addressed that existing Kalman filter approaches are not 

applicable to a long freeway corridor and large estimation error may occur because 

dynamic traffic conditions are not immediately reflected in the observed traffic counts 

(72). They proposed a new algorithm for simultaneously estimating OD travel times as 

well as OD flows on a long freeway corridor, where artificial neural network (ANN) was 

integrated to treat nonlinear formulations of state and measurement equations of the 

Kalman filter model. Specifically, ANN model were used to relate the current OD flows 

x(t) to x(t-1) in Equation 2.14 and to relate the current measurement y(t) to x(t) in 

Equation 2.15. It was possible to obtain A(t) and B(t) matrices by taking partial 

derivatives of state and measurement equations, which were identified from ANN 

learning process, with respect to x(t). In addition, a macroscopic traffic flow model was 

used to reduce estimation errors in OD travel times by predicting traffic conditions in 

advance. The proposed model was called the neural Kalman filter.  

 

2.4 CONCLUDING REMARKS 

This section provided the background literature required to simultaneously calibrate 

driver behavior parameters and the OD matrix. Various topics covered in this section 

include: 1) traffic flow theories behind VISSIM and CORSIM microscopic traffic 
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simulation models; 2) calibration procedure and optimization techniques; and 3) 

estimation of the OD matrix.  

The literature review began by reviewing the underlying car following and lane 

changing models of VISSIM and CORSIM microscopic traffic simulation models. A 

reasonable understanding of these models allows for making best use of the microscopic 

traffic simulation models in an intended manner. This section also provided a strength 

and weakness regarding the application of two models through a brief comparison.  

The second subsection described the procedure employed to calibrate the 

microscopic traffic simulation model. To reproduce realistic driver behaviors and to 

obtain reliable simulation outputs it is necessary to calibrate the transportation network 

being modeled. This can be accomplished by identifying the “best” driver behavior 

parameters related to car-following and lane-changing models. This subsection also 

discussed on the optimization techniques that have been used in an automated calibration 

process. They include: 1) manual search; 2) simplex algorithm; and 3) genetic algorithm. 

The application of optimization algorithms becomes attainable with greater availability 

of ITS data and higher speed computers.  

The last topic in the literature review was the approach for estimating the OD 

matrix. The accurate OD estimates are fundamental inputs to microscopic traffic 

simulation models for the successful simulation modeling and further analysis. The 

problem of estimating the OD matrix using traffic counts was defined and associated 

issues were discussed. This subsection focused on reviewing the Kalman filter based OD 

estimation approach. The review on the application of the Kalman filter based approach 

will provide aid in incorporating travel time information into the OD estimation and thus 

developing a methodology to simultaneously calibrate driver behavior parameters and 

the OD matrix.  
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CHAPTER III 

 
RESEARCH FRAMEWORK AND SIMULATION MODELING 

 
The proposed calibration framework and the basic components pertaining to the 

microscopic traffic simulation modeling are discussed in this section. Subsection 3.1 

introduces the bi-level calibration framework employed to achieve the research 

purposes. Subsection 3.2 describes the two specific test networks in Houston, Texas, 

whereas Subsection 3.3 presents the network supply and demand data required to model 

the test networks using the VISSIM microscopic traffic simulation. Subsection 3.4 

describes some issues regarding coding the test networks. In subsection 3.4, the 

description of VISSIM driver behavior parameters selected for analysis is presented. 

Subsection 3.6 presents an application of the Genetic Algorithm, where evaluation 

criteria, fitness function, and stopping criteria are discussed. Finally, the concluding 

remarks are presented in subsection 3.7 

 

3.1 BI-LEVEL CALIBRATION APPROACH 

Conventional approaches for the calibration of the microscopic traffic simulation model 

assume that the OD matrix remains unchanged during the calibration procedure. 

However, in traffic modeling the OD matrix is usually estimated based on traffic counts. 

Because the calibration procedure is also based, in whole or input, on traffic counts this 

can be problematic. For example, an “incorrect” OD estimate might mean the potential 

traffic network cannot be calibrated (73). Consequently, a bi-level calibration approach 

is adapted where the OD matrix and the microscopic traffic simulation parameter set are 

calibrated in an iterative manner. A schematic of this approach is shown in Figure 3.1.  
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FIGURE 3.1 Concept of Bi-Level Calibration Approach 

 

The upper level seeks to minimize the difference between observed and 

simulated traffic conditions by adjusting the values of the model parameters. To achieve 

this, a genetic algorithm is selected because of its robustness in searching the best 

parameters based on the statistically based objective function. The statistically based 

objective function is used to evaluate the selected performance measure. In this 

dissertation this will be the travel time in a distribution format derived from AVI data.  

The lower level involves several steps for calibrating the OD matrix. The 

simulated travel time with the calibrated parameters are incorporated into the OD 

estimator by recognizing the dependence of travel time on the OD travel demand. The 

simulated travel time is obtained from the simulation run with the current best behavior 

parameters identified in the upper level. This travel time information would be 

incorporated into the OD estimator based on the Kalman filtering formulations. After the 

new OD matrix is estimated, the upper level is rerun and the iterative process continues.  
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FIGURE 3.2 Flow Chart of Bi-Level Calibration Approach 
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Figure 3.2 illustrates the overall bi-level framework in detail. The first step is to 

identify a set of parameters that need to be calibrated and to translate the selected 

parameters into binary values. The second step involves running the VISSIM simulation 

with the identified parameters to generate the simulation results. These results are 

compared against observed data using a statistically based objective function. Based on 

the objective function value, fitness value, and the relative fitness, the identified 

parameters are optimized through the GA operation such as crossover and mutation. This 

procedure is continued iteratively until the predetermined stopping criteria are met.  

It is ideal to identify in the upper level the behavior parameters with which the 

simulation results fall within acceptable range. Otherwise, the calibration of OD matrix 

is performed in the lower level. Given a priori knowledge on the effect of OD matrix on 

the simulated travel time, a new OD matrix is identified. This OD matrix is passed on to 

the upper level where the behavior parameters are calibrated.  

 

3.2 TEST NETWORKS  

One arterial and one freeway test network were selected in this dissertation to evaluate 

the proposed methodology. Both networks are located to the west of downtown Houston, 

Texas, as shown in Figure 3.3. The first test bed is the Bellaire arterial test network and 

the second is the I-10 freeway corridor test network.  

 

3.2.1 Bellaire Arterial Test Network  

Bellaire Boulevard, which is located in southwest Houston, Texas, is a major east-west 

arterial with a wide landscaped median. It is heavily traveled and serves relatively high-

density residential areas. A 1.1 km section of this arterial was selected for analysis. It is 

comprised of 3 signalized intersections and one two-way stop controlled intersection 

with north-south cross streets. A traffic-actuated signal controller unit controls 3 

intersections. The posted speed limit is 56 km/h (35mph) and the speed limit in the cross 
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streets varies between 48 km/h (30mph) and 56 km/h (35mph). Figure 3.4 shows the 

general layout of Bellaire Boulevard. The aerial photo map is provided in Appendix B. 

 

 

FIGURE 3.3 Test Networks Location 

 

 

 

FIGURE 3.4 Layout of the Bellaire Arterial Test Network 
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3.2.2 I-10 Freeway Test Network 

The I-10 freeway corridor functions as an “activity spine” and provides access to the 

central business district in Houston for east-west commuters. The I-10 freeway corridor 

is a full grade-separated freeway with a high occupancy vehicle (HOV) lane in the 

median, and AVI stations on the main freeway lanes. A 15.4 kilometer section of the 

corridor was selected for analysis. This selected section stretches from Baker Cypress in 

the west to Blalock in the east. The test network includes 10 on-ramps and 9 off-ramps, 

with 4 AVI stations. Figure 3.5 shows a diagrammatic layout of this test corridor. The 

figure also shows the distances between 4 AVI stations. Note that the network has an 

HOV lane although this will not be analyzed in this dissertation. The detailed link and 

node diagram and aerial photo map are provided in Appendix B. 

 
 

 
 
FIGURE 3.5 Layout of the I-10 Freeway Test Network 

 

3.3 DATA COLLECTION 

The data required to accurately run a microscopic traffic simulation model are quite 

extensive. For each test network, the following data were collected. 

• Traffic volumes on all lanes;  

• Turning movement at each intersection (Bellaire Blvd); 
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• OD matrix (I-10 Freeway); 

• Lane geometry; 

• Speed limit; 

• Traffic signal control variable; 

 

3.3.1 Bellaire Arterial Test Network  

Traffic volume data were collected using video cameras installed at the corner of each 

intersection from 7:30 AM ~ 10:00 AM on October 16, 2003. The recorded video was 

manually retrieved and then traffic volumes were aggregated into 15 minute volumes. 

The traffic demand was defined in VISSIM as turning percentages at each intersection 

based on the observed traffic volumes. Data during the AM peak period (7:30 AM ~ 

8:30 AM) was chosen in this dissertation for evaluating the proposed calibration 

methodology using a microscopic traffic simulation model.  

 The lane geometry was collected from aerial photos and direct field observation. 

The signal control variables were obtained from the Houston TranStar inventory. Table 

3.1 summarizes the lane geometry and types of signal control on the eastbound approach 

at Bellaire Blvd. 

  

TABLE 3.1 Lane Geometry and Traffic Control at Bellaire Arterial Test Network 

Cross Street Geometric Traffic Control 

Bintiff 

Rookin 

Hilcroft 

• one exclusive left-turn 

• two through lanes 

• one through/right-turn shared lane  

• Actuated coordinated 

with 120 second cycle 

• Protected or permissive 

left-turn phase 

Tarnef • one left/ through/right shared lane • Stop Control 
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3.3.2 I-10 Freeway Test Network  

AVI data have been collected to provide travel time information for drivers, as part of 

the Houston TranStar Advanced Traveler Information System (ATIS). AVI data 

collected in 1996 were used to derive the travel time distribution for each AVI link 

during the AM peak period (7:00 AM to 8:00 AM). Data for five weekdays were used to 

derive the travel demand in 30 minute intervals. The travel demand is the OD matrix, 

where split proportions of vehicles going from every origin to every destination is 

defined instead of OD flows. Four days were selected for constructing the historical 

information necessary to formulate the OD estimator based on a Kalman filter approach 

(1, 4, 5, 6). A remaining day was selected as the target calibration day.  

Traffic volume data were collected using inductive loop detector and pneumatic 

tubes in 1996. The hourly traffic volumes were adjusted to estimate 15 minutes volumes 

based on the sampling rate at each AVI station. There was no single day in which traffic 

volume data on main lane and on and off ramps were collected simultaneously. As a 

consequence, it is assumed in this dissertation that a composite data set constructed from 

multiple days can be considered as typical.  

 

3.4 NETWORK CODING 

Next, the supply and demand data of the test networks were coded into the microscopic 

traffic simulation model. The supply data includes the link attributes (length, width, 

number of lanes, grade) and traffic control (type of signal control). The demand data 

includes the traffic volume at each entry as well as the trip movement information such 

as a turning percentage or an OD matrix.  

 

3.4.1 Bellaire Arterial Test Network Coding 

The successful modeling of an arterial section in the microscopic traffic simulation 

model hinges on how the traffic signal logic operating in the field is best emulated. The 

inability of existing simulation models such as CORSIM to emulate complex traffic 
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signal logic has limited their application in recent years. The VISSIM microscopic traffic 

simulation model has considerably greater flexibility in modeling actuated traffic signal 

control. It provides an application programming interface (API) or vehicle actuated 

programming (VAP) as an optional add-on module. This is a module for the simulation 

of programmable, phase-based, traffic-actuated signal control. VAP allows the users to 

program complex control strategies such as actuated signal, coordination, preemption 

and priority. In this dissertation, the VISSIM input file was adapted from the research 

performed by Kim where the signal control logic in the test network was coded in 

VISSIM including minimum green times, force-off, gap-out and phase sequences (74). 

 

3.4.2 I-10 Freeway Test Network Coding 

Coding a freeway network is often considered much simpler than coding an arterial 

network because both the supply and demand information requirements are less. 

However, it should be noted that more attention should be paid in coding freeway 

networks, particularly where there is a possibility of “incorrect” vehicular movements 

because of special features of the test network. Such potential coding problems are found 

and fixed through the preliminary simulation runs. For the I-10 freeway test network, it 

was found that there is a severe blockage that forms long queues in the right-most lane. 

This is mainly caused by a relatively short distance between on and off ramps, which 

makes merging or diverging vehicles unable to complete necessary lane changes. These 

queues were not observed in the field. Several adjustments were made to address this 

problem.  
 

• In the VISSIM model, when vehicles fail to complete the necessary lane changes 

at off-ramps, they stop in an emergency stop position and block all of exiting 

vehicle in the right-most lane for a set period of time.  The “waiting time before 

diffusion” parameter, which governs the amount of time a vehicle is stopped 

while waiting to make a required move, was decreased from the default 60 

seconds to 3 seconds. Once this time is up, the vehicles are removed from the 
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simulation. It is hypothesized that this lower setting minimizes obstruction to the 

main-lane stream while having little impact on the total number of trip (36). 

• Some on and off ramps have very short auxiliary lanes (acceleration or 

deceleration lane). The length of auxiliary lanes were increased in order to 

include the taper distance to the point where vehicles use it as a real lane rather 

than where it is striped. 

• A speed change has to be defined on the location where vehicles are supposed to 

change their desired speed. Typical application in modeling is based on the fact 

that exiting vehicles tend to reduce their speed before they reach curves or bends 

at off-ramps. However, in reality, most of exiting vehicles maintain desired speed 

in the main-lane and only start to reduce their speed on deceleration lane. It is 

often the case where a speed of exiting vehicle is higher than a speed at an off 

ramp. Placing the “reduced speed decision” right after exiting vehicles leave the 

main lane causes the right lane to have a higher average speed. This, in turn, 

reduces the potential for bottlenecks. 

• Drivers do not need to watch for ramp signs, especially during AM peak period, 

because commuters in large city are familiar with corridor geometry. It seems 

reasonable to increase the “lane change distance for connectors” at merges and 

diverges. However, increasing this value too much makes exiting vehicles 

change to the right-most lane, far upstream of their destination off ramp. 

Therefore, this value was included into the set of parameters being calibrated. 

Any unfamiliar drivers are accounted by widening the range of desired speed to 

include some small percentage of slower drivers. 

• The desired speed is assumed to be higher than posted speed limit. In large city, 

drivers often attempt to go beyond a posted speed limit. Therefore, the low 

desired speed was assumed to be near the speed limit (8 km/h or 5 mph below) 

and the high desired speed was set to 30 km/h (18 mph) over the speed limit. 

Note that most drivers will be modeled at limits to travel in between 8 km/h to 16 
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km/h. Given the congested conditions in the network, this will only affect drivers 

on the outer edges of the networks. 

• The VISSIM driver behavior model should keep most of the vehicles out of the 

right lane if the lane change distances for connectors are long enough. However, 

there are a few situations where additional modifications were required, 

particularly where diverge and merge sections occur sequentially within a short 

distance. For example, there are 7 on and off ramps in a 3.4 kilometer section of 

the I-10 freeway test network (Sam Houston Tollway and Blalock Road). In this 

case, a very short dummy connector (less than length of one car) is placed across 

all but the right-most lane to route some of the through vehicles over this 

connector. This is accomplished using a partial routing decision in VISSIM 

which defines a section where vehicles are re-distributed according to the routes 

and user-defined percentage (11). The important piece of information is that the 

dummy connector is placed after the critical merge and diverge sections and its 

lane change distance is long enough to keep vehicles out of the right-most lane 

before vehicles cross the connector.   
 

In Chapter VI, the OD matrix between AVI stations will be estimated using the 

sampled AVI data. This matrix represents the split proportion between AVI stations. 

However, VISSIM requires an OD matrix with each on and off ramp as origin and 

destination, respectively. In the AVI system, each AVI station is associated with sets of 

upstream on-ramps and downstream off-ramps, as denoted by iu  and jd . In this 

dissertation, the observed ramp volumes are used to generate the ramp to ramp OD 

matrix from the AVI OD matrix. The ratio of the ramp volume to total volume is used to 

approximate the probability that on-ramp a is an origin of the flow beginning at AVI 

station i or the probability that off-ramp b is a destination of flow ending a station j. The 

ramp to ramp OD matrix is computed according to Equation 3.1 and 3.2.  
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)(txa  = 
probability that on-ramp a is an origin of the flow beginning at 

AVI station i ; 

)(tyb  = 
probability that on-ramp b is an destination of the flow ending at 

AVI station j ; 

kV  = traffic volume on ramp k (vehicles) ; and  

ji du ,  = 
set of upstream on-ramps and downstream off-ramps associated 

with AVI stations i and j, respectively (vehicles). 

 

3.5 VISSIM CALIBRATION PARAMETERS  

There are a variety of calibration parameters in VISSIM model that can be controlled by 

the users to ensure the simulated results “match” the observed data. These parameters 

include driver behavior and vehicle performance parameters. The former are parameters 

related to driver characteristics inherent in car-following and lane-changing behavior 

models while the latter are related to factors such as speed, acceleration, and deceleration 

rate associated with the simulated vehicles. The base calibration parameters selected in 

this dissertation are limited to driver behavior parameters. This approach was adopted 

because the calibration of vehicle performance parameters requires extensive 

performance data for the operating vehicles and consequently it is often performed by 

model developers rather than by model users. 

 To effectively calibrate a given network, it is essential to select appropriate 

calibration parameters. In turn, it requires knowledge regarding the internal behavioral 

logic of the microscopic traffic simulation. In VISSIM, two types of Wiedemann car-

following models are used to deal with the stochastic nature of traffic movements. The 
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Wiedemann 74 model, which has relatively simple logic and has been validated with 

empirical data, is used for urban traffic. The more complex Wiedemann 99 model is 

used to model for freeway traffic and has a larger number of open parameters (11). For 

lane change behavior, there are also two types of lane change models (necessary and free 

lane changes). The free lane changing logic determines the amount of passing. The logic 

searches for passing opportunity in adjacent lanes. Note that in VISSIM users can not 

select the driver’s “aggressiveness” with respect to passing. However, the 

“aggressiveness” of a driver is based on the desired safety distance which is a result of a 

combination of several relevant model parameters which can be adjusted by the modeler. 

In the case of necessary lane changes that drivers are required to make in order to stay on 

their route, the aggressiveness can be defined by specifying maximum acceptable 

deceleration values for the leading and following vehicles. More details on the selected 

calibration parameters are discussed in the following subsections. 

 

3.5.1  Calibration Parameters for the Bellaire Arterial Test Network 

The base VISSIM calibration parameters selected for the Bellaire arterial test network 

are provided in Table 3.2. The definitions of the parameters are also provided in the 

table. The table contains the parameter number, the description of the calibration 

parameters based on the VISSIM manual, the default values, and minimum and 

maximum allowable values. At this point, it is important to note that the minimum and 

maximum allowable values are based on engineering judgment. The calibration 

procedure can be considered as an optimization problem that involves the selection of 

the best parameter set. Such an optimization problem poses a great challenge if the 

parametric space to be searched is large. In addition, the allowable parameter ranges are 

very wide according to the VISSIM manual (typically they range from zero to infinity). 

Therefore, it is essential to select appropriate allowable ranges for the selected 

parameters to increase the optimization performance. 
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TABLE 3.2 VISSIM Calibration Parameters for the Bellaire Arterial Test Network 

Allowable Range Parameter 
(Pi ) 

Description Default 
Min Max 

P1 
Number of observed preceding 
vehicles 2 0 4 

P2 Look ahead distance 250 0 400 

P3 Average standstill distance 2 1 4 

P4 
Additive part of desired safety 
distance 2 1 10 

P5 
Multiplicative part of desired safety 
distance 3 1 10 

P6 Lane change distance 200 50 300 
 

• Number of observed preceding vehicles (P1): This parameter determines how 

many vehicles are considered when a driver reacts to other vehicles movements. 

• Look ahead distance (P2): This parameter defines the distance that a driver can 

see in order to react to other vehicles.  

• Average standstill distance (P3): This parameter defines the average desired 

distance between stopped cars. 

• Desired safety distance (P4, P5): These parameters, additive and multiplicative 

parameters, mainly influence the desired safety distance, which is used for the 

car-following behavior. 

• Lane change distance (P6): This parameter defines the distance at which a driver 

begins to change lane.  

 

3.5.2  Calibration Parameters for the I-10 Freeway Test Network 

The base VISSIM calibration parameters selected for the I-10 freeway test network are 

provided in Table 3.3. The tables contain the parameter number, the description of 

calibration parameters based on the VISSIM manual, the default values, and minimum 

and maximum allowable values.  
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TABLE 3.3 VISSIM Calibration Parameters for the I-10 Freeway Test Network 

Allowable Range Parameter 
(Pi ) 

Description Default 
Min Max 

P1 
Maximum deceleration for the leading 
vehicle -4.0 -6.5 -3.0 

P2 Reduction rate of deceleration 200 100 300 

P3 
Maximum deceleration for the trailing 
vehicle -3.0 -5.0 -2.0 

P4 Lane Change Distance 200 200 400 

P5 CC0, standstill distance 1.5 1.0 1.7 

P6 CC1, headway time 0.90 0.30 1.20 

P7 CC2, following variation 4.0 2.0 6.0 

P8 CC3, threshold for entering following -8 -12 -4 

P9 CC4, following thresholds -0.35 -0.5 -0.2 

P10 CC5, following thresholds 0.35 0.2 0.5 

P11 CC6, speed dependency of oscillation 11.44 7 15 
 

• Maximum deceleration for the leading and trailing vehicles (P1, P3): These 

parameters are associated with the aggressiveness of lane change by defining the 

maximum deceleration for the leading and trailing vehicles.  

• Reduction rate of deceleration (P2): This parameters is associated with the 

aggressiveness of lane change by defining a reduction rate with increasing 

distance to the emergency stop position.  

• Lane Change Distance (P4): This parameter defines the distance at which a driver 

begins to attempt to change lanes before reaching the next connector of route. 

• CC0 (standstill distance, P5): This parameter defines the average desired distance 

between stopped cars.  

• CC1 (headway time, P6): This parameter defines time headway that a driver want 

to keep at a certain speed.  
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• CC2 (following variation, P7): This parameter defines longitudinal oscillation 

while a driver follows another vehicle. The distance between the leading and 

trailing vehicles ranges from the desired safety distance to the sum of the desired 

safety distance and following variation. 

• CC3 (threshold for entering following, P8): This parameter defines when a driver 

starts to decelerate before reaching the safety distance.  

• CC4 and CC5 (following thresholds, P9, P10): These parameters define the speed 

difference of the leading and trailing vehicles. The smaller the values, the 

vehicles are tightly coupled.  

• CC6 (speed dependency of oscillation, P11): This parameter defines the distance 

on speed oscillation. A larger value results in a greater speed oscillation. 

 

3.6 GENETIC ALGORITHM APPLICATION 

The calibration of the microscopic traffic simulation model can be considered as an 

optimization problem that is performed such that the simulation output “matches” the 

observed values. In this dissertation the Genetic Algorithm (GA) is selected as an 

optimization tool because it is very effective when the objective function is not explicitly 

known or is not expressed in a mathematical form. In addition, it searches over multiple 

locations and consequently has less chance of identifying a local minimum. This is 

important for microscopic traffic simulation modeling as the objective function is highly 

non-linear (75). 

 

3.6.1 Genetic Algorithm Code 

The genetic algorithm is written in the Perl language and a copy of the code is provided 

in Appendix A. The GA code consists of several modules, such as binary representation 

of the selected parameters identified in Section 3.5.  

Figure 3.6 provides the sub-modules employed in the GA application. The 

optimization process is basically iterative in that candidate chromosomes (parameter set) 
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are identified, simulation results are evaluated, and then new chromosomes generated. A 

description of each sub-module is provided in the following sections.  

 

 

FIGURE 3.6 Overview of GA Application  

 

• There were a total of six parameters for the Bellaire arterial test network and 

eleven for the I-10 freeway test network. These parameters were subsequently 

translated into binary values. To calculate the binary string lengths, the maximum 

and minimum values as well as the precision value of each parameter are taken 

into account. 

• The candidate chromosomes are then translated into appropriate VISSIM input 

file format and the VISSIM simulation run is performed.  

• An objective function is used to evaluate simulation results. In this dissertation a 

statistically based objective function is used. Once the chromosome is found 

statistically valid, it is not deleted but stored in the pool, opposed to the 

conventional GA application where only elite chromosomes are kept. Using the 

chromosome stored in the pool rather than the elite chromosome into generating 
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offspring chromosomes may encourage the GA to effectively search the 

parametric space and result in a reduction in computation time.  

• If the stopping rules established a priori are met, the process ends. If not, the 

algorithm proceeds and new offspring chromosomes are generated. 

• New offspring chromosomes are created based on the predetermined GA 

operational parameters including the population size ( P ), the mutation 

probability ( mP ), and crossover probability ( cP ). The total number of new 

offspring is the sum of the GA operation results from crossover ( 1O ) and 

mutation ( 2O ). In this dissertation, the following values are used. ( P =30, 

mP =0.3, and cP =0.5) 

 

3.6.2 Calibration Objective Function 

The implementation of ITS technology in North America has increased the availability 

of disaggregate traffic data. The majority of current calibration techniques seek to 

minimize an objective function that is based on a single aggregated metric (i.e. mean 

travel time).This approach has been adopted because of lack of disaggregated data (i.e. 

the distribution of observed travel times). It is hypothesized that this approach only takes 

into account a small portion of traffic behavior  (e.g. average travel time) and it would be 

better to use more detailed information if possible. This fact points out a need to develop 

a calibration objective function which uses  disaggregate traffic data and to subsequently 

test this approach to determine if it improves the calibration accuracy and precision. 

 In this dissertation, a statistically based objective function is introduced as an 

evaluation criterion where the statistical test is used to define “consistency” between the 

observed and simulated traffic conditions. The selected statistically based objective 

function is the Kolmogorov-Smirnov (KS), which compares the equality of observed and 

simulated travel time distributions. This approach will be explained more detail in 

Chapter V.  
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3.6.3 Fitness Function 

The evaluation result for each trial chromosome is channeled into the fitness function, 

which returns the probability to be selected for next reproduction. Various functions 

have been used in GA including exponential function, power functions, and linear 

function. In this dissertation, the p-value from the KS test is used to calculate the fitness 

values.  

Three points need to be addressed in the selection of the fitness function. The 

first point is that, in this dissertation, the calibration objective function is defined as a 

maximization problem against the p-value, implying that the chromosome with higher p-

value is stronger in a competition, while a metric that minimizes the difference between 

the simulated and observed data has been used in the conventional approach. Therefore, 

an appropriate function form needs to be selected to translate the evaluation result 

obtained from the maximization objective function into a measure of fitness. The second 

point is that the p-value can range from zero to one. The selected fitness function places 

higher weight on the chromosome with higher p-value, thus increasing the probability 

that this chromosome is chosen for the reproduction step of the GA. The third point is 

that the KS test is evaluated at the )1(100 α−  percent confidence level. The selected 

fitness function can place higher weight to the chromosome that is statistically valid 

(chromosome with p-value greater than 0.05). In this dissertation α is originally set to 

0.5.   

The fitness value corresponding to each chromosome and the total fitness are 

calculated according to Equation 3.3 and 3.4, respectively. Subsequently, the fitness 

relative to the total fitness is assigned to each chromosome for use in the crossover and 

mutation steps of the GA.  

 

 

 

 



 

 

58

)( ixF  = 
⎪⎩

⎪
⎨
⎧

++

≤+
=

otherwiseCxgCe
xgifxgCe

xgf
i

xg
ii

xg

i i

i

21
)(

1
)(

)(
05.0)()(

))((  (3.3)

)(PTF  = ∑
=

P

i
ixF

1

)(  (3.4)

)( iR xF  = 
)(
)(

PTF
xF i  (3.5) 

    

)( ixF  = fitness function value of ith chromosome ( ix ) ; 

)( ixg  = objective function value of ith chromosome (p-value) ; 

21,CC  = constants ( )5,3 21 == CC  ; 

)(PTF  = total fitness of P chromosome ; and  

)( iR xF  = relative fitness that is used as probability in crossover and 
mutation GA operation. 

 

3.6.4 Stopping Criteria 

The stopping criterion that is commonly used in the GA is the maximum number of 

iterations, which is, by definition, established a priori. However, for the modified 

approach developed in this dissertation, two different stopping criteria are identified 

because the proposed calibration procedure has different features over the conventional 

approach. One is the statistically based objective function (KS test) and the other is the 

bi-level calibration structure.  

In the case of a statistically based objective function, the maximum number of 

accepted chromosomes ( tN ) is used as a stopping criterion. The typical GA, known as 

the elite selection method, maintains the best P chromosomes and passes them to next 

generation, where P is the population size. In contrast, in the proposed calibration 

procedure, the chromosome is stored in the pool of accepted chromosomes once it passes 

the KS test. As a result, the number of accepted chromosomes may keep increasing as 

the generation increases. Therefore, the maximum number of accepted chromosomes 
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( tN ) is also defined as another stopping criterion to terminate the calibration procedure 

when a sufficient number of “acceptable” chromosomes are obtained. Note that the 

conventional GA based approach commonly uses the maximum number of iterations as 

its stopping criterion.  

In the case of the bi-level calibration structure, the convergence of the selected 

performance measure is used as a stopping criterion. The convergence is based on the 

maximum difference between the observed and traffic conditions, as shown in Equation 

3.6. The algorithm stops when the percentage difference between the simulated and 

observed travel times is less than the pre-defined minimum ε . In this dissertation ε  is 

originally set to five percent of the observed travel time. If either the maximum number 

of accepted chromosomes or the convergence of selected performance measure is met, 

the GA based calibration procedure ends.  

 

ε≤
−

obs
ij

sim
ij

obs
ij

TT
TTTT

max  (3.6)

    

obsTT  = observed travel time between AVI station i and j  (sec);  

simTT  = simulated travel time between AVI station i and j (sec); and 

ε  = tolerance (5% of observed travel time) 

 

3.7 CONCLUDING REMARKS 

This section outlined the bi-level calibration framework adopted in this dissertation. As 

addressed in Section 2.2.1, researchers that address the joint calibration of OD matrix 

and driver behavior parameters are quite rare. The limited research that exists has 

focused on the use of the microscopic traffic simulation model to generate the simulation 

data required to calibrate route choice parameters or the assignment matrix because path 

travel times are not usually available in reality. In addition, the applicability of these 
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approaches is limited in a freeway network where the route choice possibility is absent. 

In the bi-level approach proposed in this dissertation, it is hypothesized that there is 

circular inter-dependence between the OD flows and driver behavior parameters. For 

example, if the OD flows are changed and then associated traffic conditions are changed, 

driver behavior parameters also need to be calibrated to capture different driver behavior 

trait. The upper level seeks to identify driver behavior parameters by comparing the 

simulated and observed traffic conditions while the OD matrix is set. In the lower level 

the OD matrix is calibrated by incorporating the simulated travel time into the Kalman 

filter OD estimator while the calibrated driver behavior parameters are fixed. 

This section also outlined some issues with coding the network supply and 

demand data into the VISSIM microscopic traffic simulation model. For the I-10 

freeway test network, a severe blockage was found due to a relatively short distance 

between merge and diverge sections. This problem was fixed by adjusting the waiting 

time before diffusion parameter, desired speed distribution, lane change distance for 

connectors, and dummy connector and partial route decision.  

In this dissertation, the Genetic algorithm (GA) was selected as an optimization 

technique to find the “best” driver behavior parameters. The settings of the GA 

application were presented. Especially the statistically based objective function (KS test) 

and the corresponding fitness function were defined.  
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CHAPTER IV 

 
AUTOMATIC VEHICLE IDENTIFICATION DATA 

 

Automatic Vehicle Identification (AVI) data has been used to provide travel time 

information to drivers as a part of Houston Advanced Traveler Information Systems 

(ATIS). As a main source of travel time data AVI systems have attracted increasing 

attention because of their effectiveness and convenience (1, 76). 

 There is, however, a chance that the AVI data is contaminated. For example, AVI 

readings could be lost because of contamination errors. Consequently, the data needs to 

be screened to ensure that a suspect observation is left or removed for further analysis.  

In subsection 4.1, the description of the Houston Automatic Vehicle 

Identification system is presented. In subsection 4.2, AVI data processing method is 

discussed and provided. In subsection 4.3, the existing AVI data filtering algorithms are 

described while subsection 4.4 provides the description of proposed model and its 

application results. Finally, the concluding remarks for Chapter IV are presented in 

subsection 4.5. 

 

4.1 AUTOMATIC VEHICLE IDENTIFICATION SYSTEM  

Automatic Vehicle Identification (AVI) technology identifies the passage of a particular 

vehicle at a particular point. In most applications in North America the technology is 

based on radio frequency identification (RFID). AVI systems have mainly been used for 

automatic toll collection applications. It also has been used to provide real time travel 

time information to motorists because it enables to collect travel information in a 

continuous and inexpensive way. The AVI systems, that are currently operated to collect 

real time travel information, include the TranStar system in Houston, the TransGuide 

system in San Antonio, and the Transmit system in the New York/New Jersey 

metropolitan area (76). 
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The AVI system is comprised of AVI-equipped vehicles, AVI stations, and a 

central computer. Vehicles are equipped with AVI tags because 1) they have been 

outfitted for use on the local toll roads or 2) the owner has installed the devices 

voluntarily. The tags have electronically encoded with a unique identification number. 

This information is transmitted to AVI readers as the vehicles traverse the network. The 

AVI readers are located on overhead structure and monitor the passage of vehicles 

equipped with tags. Each time an AVI-equipped vehicle enters the antenna capture 

range, its tag ID number, station number, and corresponding time and data are collected 

by the readers, and transmitted to a central computer. In Houston the AVI stations are 

placed in intervals from 2 to 8 kilometers along the freeway and are stationed over each 

lane. When a vehicle passes through successive AVI stations the central computer 

computes the average travel time and speed between them.  

Houston is one of the first cities where AVI technology has been applied on non-

toll roads. TranStar, the local traffic management center (TMC), have installed and 

operated an AVI monitoring system along 360 kilometers (227 miles) of interstate 

highway. It focuses for detecting traffic congestion and collecting real time travel 

information on the system. Average travel time and speed are archived as historical 

information and provided to public through the TranStar website and variable message 

sign. TranStar also provides historical speed report and chart for yearly and daily 

comparison as well as current traffic speed map along main freeways.  

 

4.2 DEVELOPING THE AVI DATASET 

AVI data can be used for many traffic applications. The spatial and temporal distribution 

of travel time between specific sections can be obtained from AVI data. In addition, 

paths, AVI volume, and AVI OD proportions can be indirectly sampled through 

appropriate AVI data processing.  

 The AVI data processing starts with sorting the unique vehicle identification 

numbers. Note that these numbers have been randomized to protect the privacy of the 

commuters. These data are then sorted based on the AVI station number and the time it 
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is read. To compute travel times, the times a vehicle with the same identification number 

passes consecutive AVI stations are grouped together. The link travel time is calculated 

by matching the times recorded by the AVI readers at the start and the end of the defined 

AVI links.  

 Through this process, the raw AVI data are turned into the dataset that are 

ordered by the AVI station number and the time a vehicle enters the network. These 

datasets would be used to extract the OD information that is necessary for estimating the 

OD matrix in Chapter VI. They include the individual trip OD, total AVI OD volume, 

and path information.  

 

4.3 EXISTING AVI FILTERING ALGORITHMS 

Although valuable information about travel times can be obtained from AVI data, the 

data quality should be checked prior to their use. The quality of data is mainly controlled 

by removing outliers. The primary source of these outliers is motorists that leave the 

freeway, stop for some time, and then re-enter the system. This “detour” provides large 

outlier readings of travel time. However, outliers may occur because of drivers traveling 

considerably faster (or slower) than the average. Therefore, a method for separating 

these two types of phenomenal needs to be identified. Ideally all “detours” would be 

removed while keeping all valid observations.  

In this dissertation, the AVI travel times would be used to evaluate the network 

performance in comparison with the VISSIM simulated results. Even though the 

VISSIM adopts stochastic submodules that allow for different behavioral reactions of 

drivers subject to the same traffic conditions, the variation are limited within a certain 

range. Therefore, any observations that seem not to be emulated within the VISSIM 

should be removed.  
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4.3.1 Description of Existing Algorithms 

Various methods have evolved to screen traffic data and increase their accuracy. In the 

case of loop detector, which has been a main source of collecting traffic data in North 

America, common approach is to remove “unreasonable” speed, volume, and occupancy 

data by observation against a threshold value (77, 78). If the observed data falls outside 

the threshold, it is not included into a valid dataset. The algorithms for AVI data control 

are basically similar to the approach adopted for loop detectors, except that travel time is 

the variable that is checked. The algorithms applied for AVI data control will be 

described in the following subsections. 

Dixon used a rolling mean and standard deviation as a primary threshold and a 

median as a secondary threshold (1). It was assumed that the travel times follow a 

normal distribution. The travel time beyond a “reasonable” percentile was considered as 

invalid. A secondary threshold based on the median was used to detect the sudden onset 

of congestion during peak hours. When such a sudden change in traffic conditions 

occurs, the actual link travel time may possibly jump above the primary threshold value. 

To avoid successive observations being rejected, this secondary threshold was applied 

when 10 travel times were rejected sequentially. In his research, this secondary threshold 

value was computed as the product of the median and a factor equal to 1.2.  

Another approach is used for estimating link travel time by the TranStar, 

TransGuide, and Transmit TMCs. Even though the details of these three systems are 

different, the basic concepts are similar. The algorithms are explained using the TranStar 

logic. The TranStar TMC algorithm is defined by Equation 4.1 and 4.2. Equation 4.1 

defines the valid set of the observed travel times between two AVI stations i and j. The 

average link travel time is updated by taking average for the valid travel time 

observations, as shown in Equation 4.2 (76). 
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ijVS  = valid set of the observed travel times between AVI station i and j ; 

t  = time at which travel time filtering process takes place (seconds) ; 

tw  = rolling time window (seconds) ; 

l  = link travel time threshold value ; 

ijtAtt  = average link travel time between AVI stations i and j at time t 
(seconds) ; 

ijtt  = observed travel time between AVI stations i and j (seconds) ; 

jt  = time at which vehicle pass AVI station j (seconds) ; and 

VSn  = number of valid observations. 

 

The size of a rolling time window and the value of a link travel time threshold 

play important roles in determining the validity of travel time observations. The rolling 

time window relates to the time step that should be taken into account when the 

homogeneous set of travel time observations is decided. Therefore, a small rolling time 

window is more likely to define the homogeneous observations better while it reduces 

the number of observations that are assumed to be representative of existing traffic 

conditions. However, this setting makes the algorithm more sensitive to changes in 

traffic conditions. Another key factor for deciding the rolling time window is the AVI 

tag penetration rate. Higher penetration rate allows to sample more travel time 

observations for the same period and to trace changes in traffic conditions with increased 

confidence. In Houston, 150,000 tags are distributed to regular commuters for automatic 

toll collection (1). These cover about 9% of total vehicles operating in Houston. It results 
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in approximately 7 travel time observations per minute during peak hour and 5 travel 

time observations during off peak hour at each AVI station.  

The link travel time threshold is used to determine the boundary above or below 

which the observed travel times are considered invalid or an outlier. If the observed 

travel time differs from average link travel time by a pre-specified threshold, this 

observation is rejected and considered invalid. There is no established guideline about 

the value of the link travel time threshold but the link travel time threshold of 0.2 seems 

to be used as a common practice by both the TranStar and the TransGuide traffic 

management systems. 

In the TranStar system, the algorithm uses the rolling time window of 30 seconds 

and a link travel time threshold of 0.2. Whenever a new observation is collected, the 

validity of this observation is decided by comparing the upper and lower boundaries, as 

computed in Equation 4.1. For instance, if new observation falls outside the boundary, 

this data is considered invalid and removed from the valid travel time data set. In turn, 

the average link travel time remains unchanged. Otherwise the average link travel time is 

updated by taking the average of new observation and valid observations obtained in the 

previous 30 seconds time period.  

The TransGuide TMC system is similar to the TranStar TMC. The only 

difference is that average link travel time is updated at a fixed time interval of 2 minutes 

instead of being updated whenever new observation is obtained. In Transmit TMC 

system, a large fixed time interval of 15 minutes is used to obtain current travel time 

estimates. After estimation of the current travel time, this estimate is smoothed against a 

historical database. This smoothing process ensures that incident data are not included in 

computing current average travel time. Also this smoothing against historical data results 

in slow response to changes which is designed to produce reliable long term average 

travel time (76).  
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4.3.2 Evaluation of Existing Algorithms 

To evaluate the performance of the existing algorithms, each algorithm was applied to 

datasets from the Houston AVI system. The Transmit algorithm was excluded in the 

analysis because it requires historical travel time information. AVI data were collected 

along the I-10 freeway test network for five weekdays in 1996. The morning peak period 

(7:00AM~8:00AM.), which is identified as being congestion-recurring interval, is 

selected as the analysis period. For the I-10 freeway test network, approximately 3 

observations per minute were made during the morning peak hour. 

For the method used by Dixon, the evaluations of primary threshold and the 

combination of the primary and secondary thresholds were performed separately to 

quantify how the secondary threshold enhances the performance of the filtering 

algorithms. The existing filtering methods are summarized in Table 4.1, where column 

three describes the parameters used in each filtering method.  

 

TABLE 4.1  Existing AVI Filtering Algorithms and Operating Parameters 

Case Description Operating Parameters 

1 Rolling Mean 
• Rolling mean of 10 previous observations 

• Use of 95% z-score under Normal assumption 

2 Rolling Mean + Median • Use of median as secondary threshold when 10 
observations are rejected sequentially 

3 TranStar 
• Use of 30 seconds rolling time window 

• Use of 0.2 link travel time threshold 

4 TransGuide 
• Use of 2 minutes rolling time window 

• Use of 0.2 link travel time threshold 

 

In the first case, only the rolling mean was used. The upper and lower limits for 

the current observation were built based on the 95 percent significance level of the 

average travel time of the last 10 valid observations. The improvements of the filtering 

algorithm were tested in the second case where the median was used as the secondary 
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threshold when 10 observations were rejected sequentially. The third and forth cases 

were tested based on the same parameter settings as the TranStar and TransGuide TMC 

system are using. As stated earlier, a 30 seconds and a 2 minutes time window were 

used, respectively.  

To evaluate each case from the beginning (7:00AM) of the analysis period, the 

first observation collected after 6:55AM was used as the starting point. During this 5 

minutes initializing period, the first 10 observations were assumed to be valid. The 

observations for the first 30 seconds and 2 minutes periods were also considered valid 

and used to compute the average link travel time for the case 3 and 4, respectively.  

Figure 4.1 illustrates how the case 1 filtered the AVI data. It should be noted that 

similar results were obtained for most of AVI travel times considered in the analysis. 

Figure 4.1 shows the average link travel time, the valid and invalid observations, and the 

upper (lower) limit of the validity window. The travel times continuously increase from 

210 seconds at 7:10AM to 330 seconds at 7:27AM. The use of primary threshold was 

not able to trace the changes in travel time, and thus failed to produce a valid travel time 

dataset. The exclusion of the travel times after 7:16AM resulted in subsequent 

observations being rejected and the average link travel time being estimated as constant. 

The last valid observation was made when travel time fell inside the validity window 

around 7:20AM. As can be seen in Figure 4.1, the simple moving average led to 

extremely insensitive filtering algorithm. This was in spite of the fact that the observed 

travel times do not appear to be changing rapidly. Another issue is related to the size of 

validity window which defines the threshold boundary. The standard deviations 

fluctuated around 15 seconds between 7:10AM and 7:15AM and were approximately 8 

seconds after 7:15AM. For instance, if a new observation is made after 7:15 AM whose 

travel time is deviated from the moving average travel time by more than 16 seconds 

(the product of 8 seconds standard deviation and 95% z-score of 1.96), this observation 

is considered invalid. The validity window that is constructed based on the used criteria 

was too small to capture the subsequent increase in travel time because of congestion.  
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The procedure was redone using the 99 percent significance level. The downside 

to this is that the probability of a “detour” outlier being accepted increases. This attempt 

resulted in larger validity windows. Despite the use of a larger validity window, it was 

found that the filtering algorithm was unable to trace the change in travel times due to 

congestion.  
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FIGURE 4.1  Application of Primary Threshold (Rolling Mean) to Houston AVI 

Dataset 1 

 

The use of the rolling horizon and median values was then tried and the results 

are shown in Figure 4.2. The first half of Figure 4.2 was identical to that of Figure 4.1. 

The main difference between Figures 4.1 and 4.2 was that the observations between 

7:26AM and 7:27AM were considered valid. The secondary threshold was not used, 

unless 10 consecutive travel time observations were found invalid. This threshold value 

is calculated by multiplying the median of the last ten rejected observations by a factor 

of 1.2. Hence, the secondary threshold was not applied for observations between 
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7:16AM and 7:20AM, indicating that these observations were removed from valid 

dataset. After the last valid observation at 7:21AM, exactly 10 observations between 

7:21AM and 7:25AM were declared invalid. At 7:26AM the algorithm restarted the 

inclusion of observations into valid dataset. 

Regarding the parameters used in case 2, the magnitude of multiplier and the 

number of consecutive invalid observations may have significant influences over the 

performance of the algorithm. Therefore, in the analysis, it is needed to carefully select 

these parameters in order to be associated with specific local traffic conditions. For 

example, a value of 1.8 was used as a multiplier in other research (79).  
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FIGURE 4.2  Application of Primary and Secondary Threshold to Houston AVI 

Dataset 1 

 

The mere fact that the travel time observations are sequentially rejected raises the 

question as to whether they are outliers. In reality, there is a small likelihood that all of 

10 rejected observations are outliers. Therefore, it is plausible that the travel time 

observations possibly jump due to due to sudden changes in traffic conditions.  
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To illustrate the overall performance of the TranStar algorithm when moderate 

changes in traffic conditions were observed, the TranStar algorithm was applied to 

different AVI datasets. Note that Figure 4.4 was generated using the same dataset used 

for Figures 4.1 and 4.2, but with different x and y-axes range to better visualize the 

overall performance during the full peak. The TranStar algorithm showed the ability to 

correctly trace changes in travel times and to effectively identify outliers. Any individual 

travel time observation between AVI stations, that differed less than 20% from the 

previously estimated average link travel time, was considered valid and used for 

updating the average link travel time. The impact of 0.2 link travel time threshold was 

apparent in Figure 4.3. It produced wider validity boundaries, which were 60 seconds at 

7:10AM and 83 second at 7:28AM, respectively. In addition, Figure 4.3 illustrates how 

close the average link travel times followed individual travel time observation. 

Considering that there are approximately 3 AVI travel time observations per minutes in 

the I-10 freeway test network, only one or two previous observations were placed within 

a small rolling time window of 30 seconds. Therefore, the average link travel time 

computed by Equation 4.2 was very close to the new observation.   
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FIGURE 4.3  Application of TranStar Algorithm to Houston AVI Dataset 2 
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Despite wider boundaries and quick response to moderate changes in traffic 

conditions, the TranStar algorithm was unable to trace sudden changes, as shown in 

Figure 4.4. The observations before 7:28AM were filtered appropriately by the TranStar 

algorithm while the rolling mean and rolling mean plus median algorithms (cases 1 and 

2) wrongly removed the observations after 7:15AM. However, the TranStar algorithm 

failed to trace the jump in the travel time from 354 seconds to 427 seconds at 7:28AM. 

The corresponding time interval between the two observations was 1 minute 15 seconds. 

This failure would be explained by the fact that travel time could be changed by more 

than 20% over 1 minute time interval if roadway conditions change dramatically. 

Figure 4.5 was generated by applying the TransGuide algorithm to the same 

dataset used in Figure 4.4. The main difference between the algorithms was linked to the 

fact that the average link travel time was updated every 2 minutes, contrary to the 

TranStar algorithm that updates the average link travel time whenever a new observation 

is made. Therefore, the upper (lower) limits of the validity window appeared to be 

stepwise. The overall results of the TransGuide algorithm were very similar to those of 

the TranStar algorithm, especially in terms of the time when the algorithm failed and the 

updated average link travel time.  
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FIGURE 4.4  Application of TranStar Algorithm to Houston AVI Dataset 1 
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FIGURE 4.5 Application of TranGuide Algorithm to Houston AVI Dataset 1 
 

4.4 PROPOSED AVI FILTERING ALGORITHM 

Even though several problems were found in the application of the existing algorithms to 

the dataset from the Houston AVI system, further analysis is required determine whether 

the finding can be generalized to the different time and location. In particular, the impact 

of the algorithm parameters such as the number of sequentially rejected observations, the 

size of rolling time window, and the value of a link travel time threshold should 

examined.  

In this section, based on the previous findings a better method will be proposed for 

better tracing of increasing and decreasing trends in the AVI travel time observations. 

The proposed algorithm should meet the following conditions. 

 
• As was found in the applications of the moving average and median values, the 

average link travel time should not lag behind the true link travel time. The 
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average link travel time needs to be updated so that it “represents” underlying 

trends of each travel time observations.  

• A link travel time threshold of 0.2 is seemed appropriate to capture moderate 

changes in traffic conditions, as shown in the operational performances of the 

TranStar and TransGuide algorithms. However, the link travel time threshold 

should be selected to be wide enough to allow the algorithm to respond better 

when sudden changes occur.  

• It is desirable to reduce the number of parameters which need to be calibrated by 

users to be associated with specific traffic conditions, such as the number of 

sequentially rejected observations and the significance level for computing 

validity boundaries in the rolling horizon algorithm, the size of rolling time 

window, and the value of a link travel time threshold. 

• As shown in the case 2, 10 valid observations were excluded from the set of 

valid observations. The modified algorithm needs to minimize this unnecessary 

loss of valid observations. 

 

The proposed AVI filtering algorithm is shown in Equations 4.3 through 4.9. 

Equation 4.3 defines the set of valid observations. Unlike Equation 4.1, the concept of 

the rolling time window is not used because the previous time step to be taken into 

account is implicitly incorporated into Equations 4.6 and 4.9. The upper and lower limits 

of the validity window are computed using Equations 4.4 and 4.5. The validity window 

is the range encompassing the link travel time threshold from the average link travel 

time.  

In the proposed algorithm the average link travel time is updated whenever a new 

travel time observation is collected. Contrary to the TranStar and TransGuide algorithms 

which take an average of all valid observations within the fixed rolling time window, the 

average link travel time is computed by weighting the new valid travel time (vehicle k) 

with the average link travel time (vehicle k-1) that had been previously updated.  
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ijkVS  = valid set of the travel times between AVI stations i and j when the 
observation of vehicle k is made ;  

minijktt  = minimum valid travel time for vehicle k between AVI stations i and j ;  

maxijktt  = maximum valid travel time for vehicle k between AVI staions i and j ; 

ijkAtt  = average link travel time between AVI station i and j when the 
observation of vehicle k is made ; 

ijktt  = travel time observation of vehicle k between AVI station i and j ;  

kl  = link travel time threshold value for vehicle k ; 

kα  = weight for updating the average link travel time ; 

β  = sensitivity parameter ; 

1, −∆ kkDT  = difference in detection times between vehicle k and k-1 ; 

ijkDT  = detection time of vehicle k between AVI stations i and j ; and 

kR  = ratio of travel time changes for vehicle k-1,…,k-10. 
 



 

 

76

As indicated in Equation 4.7, the value assigned to the weight is mainly affected 

by the elapsed time between two consecutive observations with the given sensitivity 

parameter. For instance, a larger interval increases the possibility of significant changes 

in traffic conditions. In turn, a larger weight is assigned to the current observation. In 

other words, the algorithm places higher confidence on the current observation. A wide 

range of parameters were investigated for various values of the elapsed times between 

vehicles k and k-1. From this analysis, a value of 0.002 was selected as the sensitivity 

parameter for β . With this parameter setting, weights of 0.33, 0.67, and 0.85 would be 

assigned to a new observation (vehicle k) with respect to the elapsed time of 20, 60, and 

100 seconds, respectively.  

In the proposed algorithm, two types of link travel time thresholds are used. The 

fixed link travel time threshold of 0.2 is used as the primary constraint to evaluate the 

validity of a new observation. If a new observation is found invalid, the link travel time 

threshold is substituted by the value computed using Equation 4.9. The secondary link 

travel time threshold is designed to capture changes in traffic conditions without loss of 

valid observations. It is based on the concept that the extent to which previous travel 

time observations fluctuate provides useful information to recognize underlying trends 

of increasing or decreasing travel times. In Equation 4.9, rates of changes in the last 2 

pairs travel time observations is divided by rates of changes in the 10 pairs of previously 

observed travel times. If no significant variations occur, a value of about 0.2 is assigned 

to the secondary link travel time threshold, which is identical to the primary threshold. 

On the other hand, if more fluctuations are made for the most recently travel time 

observations, a larger value is given to the secondary link travel time threshold, and thus 

the validity window is expanded. It should be noted again that the secondary threshold is 

used only when the application of primary threshold is rejected.    

To be consistently compared with the results of the existing filtering algorithms, 

the same dataset was used to generate Figures 4.6 and 4.7. As shown in Figure 4.6, the 

observations after 7:28AM (labeled as 2 and 3) were considered valid even though the 

travel times were changed from 354 seconds (labeled as 1) to 427 seconds (labeled as 2). 
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The proposed algorithm reevaluates the validity of the observation based on the validity 

window computed using Equation 4.9.  This is because the application of 0.2 link travel 

time threshold is rejected. At this point, the value of link travel time threshold was 

increased from 0.2 to 0.24, resulting in the larger upper and lower validity window. The 

inclusion of data point at 7:28AM into the set of valid travel time observations led to the 

update of the average link travel time and the subsequent observations were not 

incorrectly removed. While the existing algorithms accepted new valid observations only 

after the travel times were reduced to the validity window at the end of peak hour, the 

proposed algorithm was able to identify the underlying trends in traffic conditions 

without a break.  

 

 

 

FIGURE 4.6  Application of the Proposed Algorithm to Houston AVI Dataset 1 
 

Figure 4.7 shows the operational performance of the proposed algorithm over the 

entire morning peak (7:00AM~8:00AM). While incorrect inclusion or exclusion 

appeared to be made for a few observations which were closely located to the upper and 

lower boundaries, the proposed algorithm overcame the shortcomings of the existing 

algorithms. The algorithm adjusted the size of the validity window to be more sensitive 

100

200

300

400

500

07:10 07:15 07:20 07:25 07:30

Time (hh:mm)

Tr
av

el
 T

im
e 

(s
ec

)

Valid TT Average TT Upper Limit

Lower Limit Invalid TT

1

2

3



 

 

78

to sudden fluctuations in the travel time observation. The validity windows for the 

datapoints after 7:30AM were increased when large variations in travel times started. On 

the other hand, narrower upper and lower boundaries can be found for the most of data 

points before 7:30AM  

The proposed algorithm was able to track moderate and significant travel time 

changes without resort to check how many consecutive data points fell outside the 

validity window. No data points were thus unnecessarily excluded from the set of valid 

observations. The impact of introducing the weighted combination of a new observation 

(vehicle k) and the average link travel time that had been previously estimated (vehicle 

k-1) was apparently visible.  
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FIGURE 4.7  Application of the Proposed Algorithm to Houston AVI Dataset 1 for 

the Full Peak Hour 

 

The algorithm could also control the amount of the average link travel time 

update in such a way that it was less sensitive to short term fluctuation but more 

responsive to long term changes by simply determining the sensitivity parameter, β . In 

addition, in the proposed algorithm, the sensitivity parameter was the only factor which 
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users had to calibrate to meet the local specific traffic conditions before the 

implementation, while the existing algorithms have various factors that affect the 

performance of the algorithms such as the number of sequentially rejected observations, 

the number of sequentially rejected observation, the size of rolling time window, and the 

value of a link travel time threshold. 

 

4.5 CONCLUDING REMARKS 

It was found that the existing filtering algorithms for AVI data quality control did not 

account for sudden variations in traffic conditions and result in the subsequent 

observation being declared as outliers. These were demonstrated by applying the 

existing filtering algorithms to AVI datasets from the TranStar TMC in the Houston, 

Texas.  

The proposed filtering algorithm overcame these deficits in that: 1) it 

successfully traces the true average link travel time over the existing filtering algorithms. 

Contrary to a simple moving average technique, the algorithm takes into account the 

elapsed time between two successive observations when updating the average link travel 

time. A larger weight is assigned to the current observation if the elapsed time increases; 

and 2) it provides wider validity boundaries not to falsely exclude valid observations 

when AVI travel time data exhibits sudden changes in travel conditions. It was 

hypothesized that the variations of the previous travel time observations can be used as 

indicators that capture underlying trends of increasing or decreasing travel times. 

Therefore, the algorithm dynamically increases the upper and lower limits of the validity 

according to travel time variations.  

Even though the proposed filtering algorithm was successfully applied to AVI 

dataset from the TranStar TMC, further research is required for the proposed filtering 

algorithms not to be restricted to specific time and location. In addition, the sensitivity 

parameter used for updating the average link travel time needs to be calibrated because it 

is a function of traffic volumes and AVI tag penetration rate (e.g. the number of 

observations per time period).  
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CHAPTER V 

  
CALIBRATION OBJECTIVE FUNCTION BASED ON  

NON-PARAMETRIC STATISTICAL TEST 

 

There has been an increasing interest in the use of microscopic traffic simulation models 

for transportation analysis. In order for these simulation models to represent reality, they 

must be calibrated to local conditions. This is particularly true when local driver 

behavior and/or vehicle characteristics are markedly different from the default values. 

 In the context of calibration, the indicators that measure “consistency” between 

observed and simulated traffic conditions are very important. These indicators are 

obtained by translating the simulation output into simple metrics on how well a given 

parameter set has performed. The traffic output typically includes an average of travel 

time or volume counts on a specific link. However, these types of indicators cannot 

address sufficiently certain aspects of observed field conditions. Therefore, they cannot 

provide sufficient evidence for deciding how well the simulation model is performing in 

replicating observed field conditions. To date there is no clear guideline on what 

“consistency” means and how “consistency” is quantified.  

 This chapter consists of 5 subsections. Subsection 5.1 describes the observed 

distributions of travel times for the test beds. Subsection 5.2 presents the statistically 

based calibration objective function while the results of the application are provided in 

subsection 5.3. Subsection 5.4 describes alternative selection technique for identifying 

the “best” parameter set among numerous statistically valid parameter sets. Finally, 

subsection 5.5 provides concluding remarks and findings. 
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5.1  DISAGGREGATE TRAVEL TIME DATA 

5.1.1  Performance Measures at Disaggregate Level 

The widespread deployment of Intelligent Transportation Systems (ITS) has allowed for 

the collection of traffic data in an efficient and inexpensive way. Examples of ITS 

include Automatic Vehicle Identification (AVI), Automatic Vehicle Location (AVL), 

and Global Positioning Systems (GPS). Archived ITS datasets provide an access to 

traffic flow characteristic details at a disaggregate level. However, they are usually 

aggregated or grouped in order to produce composite measures.  

 Kim (27) calibrated the freeway corridor using empirical ITS data. In his study, 

travel time data was extracted from an AVI system and the average of this data was 

compared to the simulated travel time. Rakha (34) observed variations in the field data 

due to the stochastic nature of traffic and emphasized a statistical approach that would 

quantify variability in the simulated data relative to the field data. However, the focus of 

this approach was on the variation emerging from daily flow changes and of simulation 

random seeds rather than use of a disaggregate data for calibrating the simulation model. 

Bloomberg (80) used the average speed of vehicles obtained from main lane for 

calibrating a parameter set that was indicative of the real system. While aggregated 

measures have been previously used in the calibration of microscopic traffic simulation, 

Brockfeld et al. used more disaggregate data that was obtained from individual probe 

vehicles equipped with GPS. This study focused on validating the car-following logic on 

which the microscopic traffic simulation model is based rather than calibrating a fully 

operational simulation model (81). Disaggregate data was often used only by the model 

developers to calibrate the individual modules implemented within traffic simulators.  

The disaggregate data may have specific qualities which could prove useful if 

captured. It is more accurate in representing observed traffic conditions and has the 

added benefit of avoiding aggregation bias (82, 83). In addition, it makes it possible to 

determine statistical distribution of a variable. Therefore, it is hypothesized in this 

dissertation that the use of disaggregate data for the calibration of simulation models 

increases the credibility in simulation results, where disaggregate data is used as a basic 
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unit in deciding the quality of simulation results. A statistically based calibration 

objective function which can account for disaggregate data will be proposed in Section 

5.2. A conceptualization of disaggregated performance measure in the calibration 

process is shown in Figure 5.1. 

 

 

 FIGURE 5.1 Disaggregate Performance Measure in Calibration Process 

 

There are a number of traffic performance measures that may be used for 

quantifying the quality of the calibration. In this dissertation, the travel time is selected 

as a performance measure. It is not only one of the key features associated with traffic 

conditions but also is of critical interest for most drivers. In addition, the selection of 

travel time can be further justified by the fact that the calibration of simulation models 

against traffic counts may leads to an overestimation of the realism of the model. This 

occurs because the OD matrix, an important input in microscopic traffic simulation 

models, is often estimated based on the observed link volumes. Therefore, to obtain a 

higher degree of detail and accuracy in the calibration of simulation model, the 

calibration based on travel time is desirable (27, 84). 
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More importantly in this dissertation, travel time in the form of a distribution is 

the key decision criteria in contrast to many statistics which rely on a measure of central 

tendency such as the mean. This is important because travel time and its variability are 

important components of traffic conditions. For example, when the traffic conditions 

have large variability and a highly non-normal distribution, travel time may lead to poor 

calibration results only considering averages. Travel times are likely to deviate from 

their average in significant ways, especially during peak periods. Therefore, the 

distribution of travel time has the potential of considerably improving the accuracy of 

calibration results.  

 

5.1.2  Travel Time Distribution for the Bellaire Arterial Test Network 

The travel time statistics, including the average time, the standard deviation, maximum, 

and minimum, are summarized in Table 5.1. The average travel time was 164 seconds 

and the standard deviation was 54 seconds. A large variability in travel time was 

observed because the test bed was a signalized arterial where a coordinated signal 

control system was operated. Therefore, the estimate of the mean travel time was 

considerably different from what was actually experienced by a large portion of drivers.  

 

TABLE 5.1 Summary Statistics of Travel Times for the Bellaire Arterial Test 

Network 

  1st Peak 2nd Peak Total 

Mean (seconds) 125.5 214.9 164.0 

Standard Deviation (seconds) 18.9 41.9 54.1 

Minimum (seconds) 81 166 81 

AVI  
Travel Time 

Maximum (seconds) 162 350 350 

Travel Speed Average (km/h) 31.7 18.5 24.2 
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This concept is illustrated in Figure 5.2, which shows a histogram of individual 

travel times for the arterial as a whole. Superimposed on this diagram is the normal 

distribution for the two regimes. It may be seen in Figure 5.2 that the observed travel 

times tend to exhibit a bimodal distribution. The first peak presumably results from the 

coordinated signal control system that is designed to favor directional flow during peak 

hour. On the other hand, the second peak may represent drivers who are interrupted by a 

red signal because they may enter the arterial from the cross street or require more than 

one signal cycle to pass through intersection. 

It should be noted that the standard deviation in the first peak (i.e. travel time less 

than 165 seconds) is smaller than that in the second peak. The standard deviations of the 

first and second peaks are 19 seconds and 42 seconds, respectively. It is hypothesized 

that this occurs because the vehicles in the first peak tend to travel at a similar speed in 

order to stay in the progression band.  

 

 
FIGURE 5.2 Histogram of Observed Travel Times for the Bellaire Arterial Test 

Network 
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The shape of histogram clearly indicates that the travel times are not normally 

distributed. This is confirmed with the results of the Kolmogrov-Smirinov normality test, 

which is provided in Table 5.2. It should be noted that that although the travel times as a 

whole are not normally distributed, the travel time in the first peak follows the normal 

distribution supported at a 95 percent confidence level.  

 

TABLE 5.2 Normality Test of Travel Times for the Bellaire Arterial Test Network 

Kolmogorov-Smirnov Test 
 

Statistics Significance 

1st Peak 0.069 0.082* 

2nd Peak 0.183 0.000 

Total 0.112 0.000 
   * The normality test is significant at the 95 percent (0.05) level 

 

5.1.3  AVI Travel Time Distribution for the I-10 Freeway Test Network 

In this section, the characteristics of travel time information that were filtered out using 

the methodology proposed in Chapter V are provided. The distributions of travel times 

will be used in further analysis for the calibration of the microscopic traffic simulation 

model.  

The average travel time between AVI stations is obtained by taking the average 

of all valid observations for a given period of time. The statistics, including the average 

travel time, the standard deviation, maximum, and minimum, are summarized in Table 

5.3. As would be expected, the closer a given link is to downtown Houston the lower is 

its average speed. The average speed for AVI 01 is approximately equal to the posted 

speed limit of 104 km/h (65mph) whereas drivers on AVI 23 have an average link speed 

of 62 km/h (40 mph). In addition, as the average speed decreases the standard deviation 

increases. It is hypothesized that this occurs because high level of congestion 

accompanies increasing interaction between moving vehicles.  
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TABLE 5.3 Summary Statistics of Travel Times for the I-10 Freeway Test Network 

 AVI 01 AVI 12 AVI 23 

Mean (seconds) 242.4 261.9 201.1 

Standard Deviation (seconds) 14.4 34.4 35.6 

Minimum (seconds) 210 190 151 

AVI 
 

Travel Time 

Maximum (seconds) 273 347 282 

Travel Speed Average (km/h) 97.8 74.2 61.9 
 

Histograms of the AVI travel times on each of the AVI links are provided in 

Figures 5.3 through 5.5. Note that using the approximate means and standard deviations, 

normal curves have been superimposed over these histograms. The null hypothesis, that 

there is no difference between the given travel time distribution and a normal 

distribution, is evaluated using the KS test. The results of normality test are presented in 

Table 5.4. The results show that the distributions of the travel times on the AVI link 12 

follow a normal distribution while the distribution on AVI link 23 does not. The 

distribution on AVI link 01 tends to be normally distributed although it is not supported 

at a 95 percent confidence level. The violation of normality could be a problem for 

running parametric tests when comparing the given distribution with the simulated 

distribution. For this reason, a non-parametric statistical test will be introduced in 

Section 5.2, because it does not require assumptions about the underlying distribution.  

 
TABLE 5.4 Normality Test of Travel Times for the I-10 Freeway Test Network 

 Kolmogorov-Smirnov Test 

 Statistics Significance 

AVI 01 0.091 0.031 

AVI 12 0.069 0.200* 

AVI 23 0.200 0.000 
   * The normality test is significant at the 95 percent (0.05) level 
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FIGURE 5.3 Histogram of Travel Time for AVI Section 01 
 

 

 

 
FIGURE 5.4 Histogram of Travel Time for AVI Section 12 
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FIGURE 5.5 Histogram of Travel Time for AVI Section 23 
 

5.2  STATISTICALLY BASED CALIBRATION OBJECTIVE FUNCTION 

In the preceding section, the distributions of travel times on the Bellaire arterial and I-10 

freeway test networks were prepared as target measures in the calibration process. 

Therefore, the way to best utilize disaggregate data in the calibration of the microscopic 

traffic simulation model still needs to be determined.  

As discussed earlier the use of the aggregated performance measure for the 

calibration of simulation models may result in an inappropriate parameter set being 

selected as the “best”. To avoid this situation a statistically based approach, which is 

based on disaggregate form of travel time data, is proposed in this section. Specifically, 

the “closeness” of the observed travel time distribution to that of the simulated travel 

time distribution is chosen as the objective function in the calibration process.  

 

5.2.1  Non-Parametric Statistical Test 

There are numerous statistical methods for testing whether two samples are drawn from 

the same population (85). The most popular methods are the student t-test for testing 

means and the F-test for testing variances. However, its application is questionable for 
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the calibration of traffic simulation models because its underlying assumptions, such as 

equal variance and normal distribution, are often violated. This was demonstrated in the 

figures showing the distributions of observed travel times on the test networks that the 

data collected in transportation system is likely to violate these assumptions to some 

degree.  

In these situations, non-parametric or distribution-free techniques can be used 

because they do not require a priori assumptions about the distribution of the underlying 

population. These techniques compute the statistics of the empirical distribution based 

on the difference in rank or scale and then identify whether the two distributions are 

identical or not. In this dissertation, the Kolmogorov-Smirnov (KS) test is used to 

compare the distributions of the observed and simulated travel time distributions.   

The Kolmogorov-Smirnov tests can be used to test the null hypothesis that two 

populations have the same distribution. Let mxx ...,,1 be the field observations and 

nyy ...,,1  be the observations from the microscopic traffic simulation model. The 

observed empirical distribution function )(xS  is computed using Equation 5.1, which 

represent the fractions of mxx ...,,1  that are equal to or less than x . In the same manner, 

the simulated empirical distribution function )(yS  is also computed.  

 

)(xS  = { }∑
=

<
m

i
i xxI

m 1

1  (5.1)

           

Where, { }xxI i <  returns 1 if xxi < , otherwise it returns 0.  

The resulting empirical distribution function )(xS  ranks the variable ix  from 1 

to m and has the cumulative percentage of the variable such that the cumulative 

percentage of mth is 100 percent. To see if there is good agreement between )(xS  and 

)(yS , the following hypotheses are tested.   
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xallforySxSH )()(:0 =  (5.2)

xofvalueoneleastatforySxSH )()(:1 ≠  (5.3)

 

For each rank, the cumulative percentage in )(xS is subtracted from the 

cumulative percentage in )(yS . The Kolmogorov-Smirnov test statistic (D) is the largest 

absolute difference in cumulative percentages for any given ordinal rank, as defined in 

Equation 5.4. The KS test is shown graphically in Figure 5.6. Both the simulated and 

empirical distributions are shown as well as the KS test statistic (D).   

 

maxD  = )()(max ySxS −  (5.4)

 

 

 
FIGURE 5.6 Kolmogorov-Smirnov Test  
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The computed value of Dmax is compared to a table of critical values 

corresponding to a predefined level of significance. The null hypothesis 0H is rejected if 

the test statistic Dmax exceeds the critical value obtained from a KS table which is found 

in most statistics text books (85, 86). Note that there are a limited number of entries in 

these tables with respect to level of significance and number of samples. Consequently, 

the approximate p-value is computed based on the functions shown in Equations 5.5 

through 5.7 rather than an interpolation of the KS table (87).  

 

P(D)  = ( )DNNQ eeKS ×++ )/11.012.0(  (5.5)

eN  = 
simobs

simobs

NN
NN
+

 (5.6)

)(Q xKS  = ∑
∞

=

−−−
1

21 22

)1(2
i

xii e  (5.7)

 
)(DP  = p-value of the KS statistic D ; 

eN  = effective number of data points ; 

simobs NN ,  = 
number of data points in the simulated and observed distributions, 

respectively ; and 

)(xQKS  = monotonic function for computing p-value. 

 

5.2.2  Benefits of a Statistically Based Calibration Objective Function 

The purpose of an error measure is to provide an informative and clear summary of the 

selected performance measures. Sometimes, existing error measures are regarded as 

insufficient although they are widely used. Furthermore, an error measure should be 

reliable and resistant to outliers.  

  Several benefits can be identified for the use of a statistically based objective 

function based on a disaggregate data for the calibration of the microscopic traffic 
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simulation model. Firstly, the most prominent of them is the ability to define and 

quantify “closeness” using a statistical technique. A statistical technique does not mask 

information by taking into account the observed data in the form of a distribution and 

offers the potential to improve the calibration results. Secondly, a statistically based 

objective function is easy to understand and simple to interpret, because it is based on 

one of the widely understood statistical techniques. In addition, while a statistically 

based objective function centers around the Kolmogorov-Smirnov test in this 

dissertation, different statistical techniques can be applicable as well. Finally, the 

robustness of a statistically based objective function increases if datasets in multiple 

time-space measurement points are available. While the existing objective functions are 

based on average of errors in the selected performance measure, a statistically based 

objective function attempts to ensure that the distributions are satisfied at every time-

space measurement points. The use of more disaggregated data, namely temporal, spatial, 

and combined spatial and temporal, helps capture the necessary complexity in the 

calibration of microscopic traffic simulation model. For example, it may be difficult for 

simulated errors to be distributed equally along the network. Therefore, the use of the 

travel time for each AVI link may increase the calibration accuracy instead of travel time 

for the full extent of the corridor.  

 

5.3  ANALYSIS OF CALIBRATION RESULTS 

5.3.1  Calibration Results for the Bellaire Arterial Test Network 

The proposed statistical approach and calibration technique was applied to the Bellaire 

arterial test network. A total of 128 statistically valid parameter sets were identified in 

the calibration process and a subset of them are provided in Table 5.5. The definitions of 

the VISSIM parameters are provided in Section 3.5.1. Also shown are p-values for the 

KS test as well as the travel time MAER. The examples are shown in descending order 

with respect to p-values for the KS test. The complete results may be found in Appendix 

C.  
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Most of the acceptable parameter sets have a relatively low travel time mean 

absolute error ratio (MAER), which ranges from 0.007 (0.7 percent) to 0.07 (7 percent). 

Only 11 of 128 acceptable parameter sets have travel time MAER above 0.07 (7 

percent).  

It is important to note that the default parameter set results in a travel time 

MAER of 0.215 (21.5 percent), indicating that the travel times obtained from an un-

calibrated model would have an approximately 21 percent error. More importantly, the 

travel time distribution obtained using the default parameter set fails to pass the KS 

distribution test, which illustrates the importance of calibrating the microscopic traffic 

simulation model prior to the model application. 

 
TABLE 5.5 Subset of Statistically Valid Parameter Sets for the Bellaire Arterial 

Test Network 

Calibrated Parameter* KS Test 
No 

P1 P2 P3 P4 P5 P6 p-value 
MAER**

1 3 140 1 5 5 80 0.854 0.023 

2 4 100 3 4 3 100 0.779 0.032 

3 3 210 3 5 1 130 0.779 0.057 

4 1 90 1 6 4 280 0.696 0.057 

5 4 130 1 5 5 80 0.312 0.007 

6 4 190 2 5 3 90 0.256 0.012 

7 3 350 3 5 2 140 0.208 0.013 

8 2 240 3 5 2 260 0.132 0.015 

9 3 80 2 5 4 270 0.132 0.045 

10 4 90 2 5 4 100 0.104 0.100 

Default 2 250 2 2 3 200 0.000 0.215 
 *   see Section 3.5.1 
 ** Mean absolute error ration (MAER), see Section 2.2.2 
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Figure 5.7 shows the cumulative distributions of the observed travel times and 

two simulated travel times obtained using the statistically “valid” and “invalid” 

parameter sets, respectively. Both the valid and invalid parameter sets have the same 

travel time MAER but different p-values. The cumulative distribution function (CDF) 

for the statistically valid parameter set closely follows the CDF of the observed travel 

times. Overall, the differences in between the CDF’s of the statistically valid parameter 

set and the observed data are negligible. In contrast, the CDF derived from the 

statistically invalid parameter set shows large deviations from the CDF of the observed 

data for a wide range of x values. The statistically based calibration objective function 

gave superior results to that of the non-statistically based approach in terms of matching 

the CDF of the observed data.  
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FIGURE 5.7 Cumulative Distribution of Simulated Travel Times for the Bellaire 

Arterial Test Network 
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The above result is more clearly supported in Figures 5.8 and 5.9 which show 

histograms of the two simulated travel times used for generating Figure 5.7. While both 

distributions have a travel time MAER of 0.01 (1 percent), it can be seen that the shapes 

of two distributions are considerably different.  
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FIGURE 5.8 Histogram of Simulated Travel Time for the Bellaire Arterial Test 

Network (1% MAER – Rejected)  
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FIGURE 5.9 Histogram of Simulated Travel Time for the Bellaire Arterial Test 

Network (1% MAER - Accepted) 
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The travel time for the statistically valid parameter set has a bimodal distribution 

similar to the observed travel time shown in Section 5.1.2. This result supports the 

hypothesis of this dissertation that simply using travel time MAER as the sole metric for 

identifying the best parameter set could lead to erroneous calibration results – it is much 

better to consider the distribution of travel times when calibrating the microscopic traffic 

simulation model. 

The travel time MAER is plotted in Figure 5.10 as a function of the 

corresponding p-value obtained from the KS test. The parameter sets that are circled 

(lower left corner) have relatively low MAER but fail to pass the KS test. The 

statistically based objective function proposed in this chapter performs in such a manner 

that all the parameter sets within the circle are never selected. 
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FIGURE 5.10 Relationship between MAER and p-value from KS Test on the 

Bellaire Arterial Test Network 
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5.3.2 Calibration Results for the I-10 Freeway Test Network 

The travel time MAER and p-value are tabulated in Table 5.6 Also provided are the 

averages of the MAER and p-value for all three AVI links. The results show that there is 

no case where the distribution of the simulated travel time passes the KS test. The p-

values for all three AVI links are, with the exception of a few cases, zero indicates that 

there is strong evidence against the null hypothesis.  

 The resulting travel time MAER varies for each AVI link. The minimum travel 

time MAER is 0.108 (10 percent) for AVI link 01, 0.031 (3 percent) for AVI link 12, 

and 0.307 (30 percent) for AVI link 23. It can be concluded that in terms of both travel 

time MAER and p-value, the calibration process does not provide comparable results. 

These results illustrate the necessity of calibrating other inputs to the microscopic traffic 

simulation as well as behavior parameters. The methodology for calibrating OD demand 

and behavior parameters will be discussed in detail in the next chapter.  

 

TABLE 5.6 Travel Time MAER and p-value for All Three AVI Sections  

MAER p-value* No 
 AVI 01 AVI 12 AVI 23 Ave. AVI 01 AVI 12 AVI 23 Ave. 

1 0.108 0.031 0.360 0.166 0.000 0.007 0.000 0.002

2 0.114 0.019 0.379 0.171 0.000 0.007 0.000 0.002

3 0.108 0.010 0.400 0.173 0.000 0.081 0.000 0.027

4 0.105 0.083 0.351 0.179 0.000 0.000 0.000 0.000

5 0.121 0.153 0.417 0.231 0.000 0.000 0.000 0.000

6 0.073 0.301 0.352 0.242 0.000 0.000 0.000 0.000

7 0.059 0.387 0.307 0.251 0.000 0.000 0.000 0.000

8 0.127 0.229 0.422 0.260 0.000 0.000 0.000 0.000

9 0.128 0.255 0.417 0.266 0.000 0.000 0.000 0.000

10 0.135 0.320 0.432 0.296 0.000 0.000 0.000 0.000
        * p_value from the Kolmogorov-Smirnov test  
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In contrast to the results on the Bellaire arterial test network, the results indicate 

that it is more difficult to identify the parameter set which produces satisfactory results 

at every measurement point. To further investigate the risk of identifying the “best” 

parameter set based on aggregated performance measures, it is assumed in this section 

that the observed travel time only for AVI link 01 is available. Therefore, the calibration 

process target is to replicate the observed traffic conditions only for AVI link 01. 

 A subset of parameter sets identified in the calibration process is found in Table 

5.7. Also shown is the p-value from the KS test as well as the travel time MAER. The 

calibration process successfully identifies a number of statistically “valid” parameter sets. 

Overall, most of the acceptable parameter sets have a very low travel time MAER, 

which is in the range from 0.000 (0.0 percent) to 0.011 (1 percent).  

 

TABLE 5.7 Subset of Statistically Valid Parameter Sets for AVI Section 01 

Calibrated Parameter* 
No 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

K-S 

p-value MAER

1 -4.5 100 -3.9 350 1.6 0.95 2 -7 -0.15 0.15 13 0.761 0.000 

2 -4.5 100 -3.5 350 1.6 0.95 2 -7 -0.15 0.15 13 0.656 0.000 

3 -5.5 280 -4.7 430 1.6 0.90 5 -7 -0.40 0.40 13 0.449 0.010 

4 -4.5 300 -3.5 410 1.3 0.90 3 -7 -0.35 0.35 14 0.144 0.005 

5 -6.5 220 -5.9 270 1.3 0.90 3 -5 -0.40 0.40 8 0.283 0.004 

6 -4.5 220 -3.5 370 1.6 0.95 3 -6 -0.15 0.15 13 0.249 0.004 

7 -4.5 300 -4.1 410 1.1 0.95 3 -9 -0.35 0.35 9 0.166 0.005 

8 -6.0 300 -5.4 270 1.3 0.95 4 -5 -0.20 0.20 11 0.106 0.009 

9 -4.5 300 -4.1 410 1.2 0.95 3 -9 -0.35 0.35 9 0.077 0.016 

10 -3.5 180 -3.3 270 1.6 0.85 2 -9 -0.25 0.30 10 0.055 0.011 

D** -4.0 200 -3.0 200 1.5 0.90 4 -8 -0.35 0.35 11 0.000 0.201 
*   see Section 3.5.2 
** D: VISSIM default parameter 

 



 

 

99

 

0.00

0.25

0.50

0.75

1.00

180 220 260 300

Travel Time (sec)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
Fu

nc
tio

n

Observed Travel Time Simulated-Accepted Travel Time

Simulated-Rejected Travel Time
 

 
FIGURE 5.11 Cumulative Distribution of Simulated Travel Times for the I-10 

Freeway Test Network 
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FIGURE 5.12 Relationship between MAER and p-value from KS Test for the I-10 

Freeway Test Network 
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The cumulative distributions of two different travel time sets are plotted in 

Figure 5.11. While both distributions have a travel time MAER of 0.01 (1 percent), the 

accepted distribution has a p-value of 0.249 and the rejected distribution has a p-value of 

0. It can be seen in Figure 5.11 that the accepted-simulated travel times slightly better 

trace the observed travel times in that there is a smaller maximum difference between 

the simulated and observed distributions. This is further supported in Figure 5.12 where 

the travel time MAER and corresponding p-value are plotted. 

 

5.4 PARAMETER SET SELECTION 

There may be numerous parameter sets, or none, that match the observed data because 

the calibration process is statistically based. When a fairly large number of acceptable or 

“statistically valid” parameter sets are identified, a selection technique for identifying the 

“best” parameter set among the valid solutions is required. In this section, alternative 

selection techniques are applied to “statistically valid” parameter sets on the Bellaire 

arterial test network.  

 

5.4.1 Highest p-value and Lowest MAER 

Intuitively, the parameter set with the lowest MAER might be selected because it would 

represent the parameter set that provides the closest measure of central tendency while 

still providing a statistically valid distribution. Alternatively, the parameter with the 

highest p-value could be selected as the one that most closely represents the observed 

distribution. Essentially, there is no statistical difference between parameter sets that 

pass the statistical test. However, descriptive expressions can be used to indicate the 

strength of the evidence. The parameters with different p-values can be interpreted using 

one of “no evidence”, “weak evidence”, or “strong evidence”. Therefore, it seems 

reasonable to select parameters with the highest p-value as the one with the highest 

probability that the null hypothesis is true. 
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 These selection techniques are applied to the same parameter sets as provided in 

Table 5.5. The shaded blocks denote the parameter sets with the highest p-value and 

lowest travel time MAER in Table 5.8.   

 

TABLE 5.8 Parameter Set with Highest p-value or Lowest MAER for the Bellaire 

Arterial Test Network 

Calibrated Parameter KS Test 
No 

P1 P2 P3 P4 P5 P6 p-value 
MAER 

1 3 140 1 5 5 80 0.854 0.023 

2 4 100 3 4 3 100 0.779 0.032 

3 3 210 3 5 1 130 0.779 0.057 

4 1 90 1 6 4 280 0.696 0.057 

5 4 130 1 5 5 80 0.312 0.007 

6 4 190 2 5 3 90 0.256 0.012 

7 3 350 3 5 2 140 0.208 0.013 

8 2 240 3 5 2 260 0.132 0.015 

9 3 80 2 5 4 270 0.132 0.045 

10 4 90 2 5 4 100 0.104 0.100 

Default 2 250 2 2 3 200 0.000 0.215 
 

5.4.2 Saturation Flow Rate 

The saturation flow rate is one of key components for computing performance measures 

(LOS) at a signalized intersection. The Highway Capacity Manual (HCM) provides the 

methodology to adjust the saturation flow rate for a wide range of operational 

configurations, including geometric and traffic conditions. The saturation flow rate for 

the Bellaire arterial test network was computed according to Equation 5.8 and was 

identified as 1606 pc/hr/ln (88).  
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s  = RpbLpbRTLUabbpgHVw ffffffffffNs0  (5.8)

    

s  = adjusted saturation flow rate (pc/hr/ln) ; 

0s  = base saturation flow rate (1900 pc/hr/ln) ;  

N  = number of lanes in lane group  ; and 

...f  = adjustment factor for lane width, heavy vehicle, grade, parking 
activity, bus stop, area type, left turn, right turn, and 
pedestrian, respectively. 

  

 In VISSIM, the saturation flow rate cannot be specified externally by the user. 

Therefore, the user is responsible for obtaining a reliable saturation flow rate by 

selecting parameter sets based on site-specific conditions. For comparison with the 

saturation flow rate from HCM, the saturation flow rates for the “statistically valid” 

parameter sets were estimated using the VISSIM output. Besides the identified 

parameters, there are many parameters that affect the saturation flow rate in VISSIM 

such as the number of lanes, traffic composition, etc. The following parameter settings 

were used to estimate the saturation flow rate from the VISSIM model (11):    

 
• Traffic volumes were set large enough to as many vehicles as possible discharge 

during green time. 

• Saturation flow rate was measured for through-traffic at the stop line on two 

lanes over 60 minutes. 

• Fixed time signal control was selected. Operating parameters associated with 

fixed time signal control was assumed (90 seconds cycle, 40 seconds green, 3 

seconds amber, 2 seconds all red). 

• Driver’s desired speed was assumed to be on the range from 57 km/h (35 mph) to 

68 km/h (42mph). 

• Traffic composition was assumed to consist of only passenger cars.  
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The saturation flow rates obtained from the VISSIM results are provided in Table 

5.9. The last column lists the saturation flow rates for the same parameter sets as 

provided in Table 5.5, where the shaded block denotes the parameter sets with the least 

difference from the saturation flow rate from HCM. If driver behavior parameters are 

appropriately calibrated, the estimated saturation flow rates for the statistically valid 

parameter sets may be close to that obtained from the HCM. As shown in Figure 5.13, 

the estimated saturation flow rates scatter around the line representing the base value of 

1606 pc/hr/ln from the HCM. 

 

TABLE 5.9 Saturation Flow Rate for Statistically Valid Parameter Sets for the 

Bellaire Arterial Test Network 

Calibrated Parameter KS Test Saturation 
No 

P1 P2 P3 P4 P5 P6 p-value 
MAER 

 Flow Rate 

1 3 140 1 5 5 80 0.854 0.023 1564 

2 4 100 3 4 3 100 0.779 0.032 1717 

3 3 210 3 5 1 130 0.779 0.057 1580 

4 1 90 1 6 4 280 0.696 0.057 1616 

5 4 130 1 5 5 80 0.312 0.007 1681 

6 4 190 2 5 3 90 0.256 0.012 1634 

7 3 350 3 5 2 140 0.208 0.013 1654 

8 2 240 3 5 2 260 0.132 0.015 1650 

9 3 80 2 5 4 270 0.132 0.045 1566 

10 4 90 2 5 4 100 0.104 0.100 1579 

D* 2 250 2 2 3 200 0.000 0.215 2180 
       * D: VISSIM default parameter 
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FIGURE 5.13 Saturation Flow Rate for Statistically Valid Parameter Sets for the 

Bellaire Arterial Test Network 

 

In addition to the identification of the parameter set with the least difference, the 

estimated saturation flow rates were used to further validate the one sample t-test was 

conducted. Basically this test checks whether the mean of the estimated saturation flow 

rates is statistically different from the base value of 1606 pc/hr/ln. The null hypothesis 

and the alternative hypothesis are shown in Equations 5.9 and 5.10, respectively. The 

test statistic utilized for this analysis is provided in Equation 5.11.  

 

1606:0 =µH  (5.9)

1606:1 ≠µH  (5.10)
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The results of this analysis are summarized in Table 5.10. The test results show 

that the mean difference is not significant, indicating that there is no evidence against the 

null hypothesis 0H . This is a further indication that the calibrated parameter sets were 

selected appropriately. It is also important to note that on the Bellaire arterial test 

network the default parameter set results in a saturation flow rate of 2180 pc/hr/ln which 

is approximately 36.2 percent higher than recommended by the HCM.  

 

TABLE 5.10 t-test Results of Equality of Saturation Flow Rates 

95 % Confidence Interval 
Average 

Standard 

Deviation 
Significance

Lower Upper 

Test 

Value 

(1606) 
1617 71 0.089 1604 1629 

 

5.4.3 Least Difference from Default Parameters 

According to PTV America, “continuous measurements of different traffic conditions on 

highways and urban streets are required to model the traffic in a realistic way, which is 

done at the University of Karlsruhe” (89). PTV America also indicates that they have 

collected the field data to calibrate/validate parameters in many VISSIM models. 

Therefore, if updated on the continuous basis, the default parameters can be considered 

as representative of the current acceptable driving behavior characteristics. Therefore, it 

is a reasonable selection criterion to select the parameter set, from the set of statistically 

valid parameters, which is “closest” to the default parameter set. This is because the 

calibration process potentially identifies the parameter set that are not within acceptable 

range because it solely aims to replicate the observed conditions. For example, one 

parameter set might model drivers as exceeding the speed limit. While it might give 

appropriate results if it is known drivers do not do this then another parameter set with 

similar statistics might be preferred. 
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The differences for each of the parameters are aggregated into a composite index. 

However, some errors may be in place because the scale and sign for the difference are 

different. To resolve this problem, the absolute value of the difference is first computed 

and then this value is normalized such that the normalized scale ranges from zero to one. 

Thereafter, the composite index is computed as the weighted sum of normalized absolute 

difference, as shown in Equation 5.12. The weights can be determined by the analyst 

through simple ranking approach or sensitivity analysis on effect of each parameter on 

the simulation results.  

 

cI  = ∑
=

−n

i i

iidefault
i Pd

PP
n 1 max,

,1 α  (5.12)

 
cI  = composite index ; 

n  = number of parameters ; 

iα  = weight of ith  parameter ; 

default,iP  = default value of ith  parameter ;  

iP  = calibrated value of ith  parameter ; and 

max,iPd  = maximum difference between ith calibrated and default 
parameters. 

 

The resulting composite indices are provided in Table 5.11, where the weights 

for each of the parameters are assumed to be equal. A smaller value of the composite 

index indicates the parameter set is closer to the default parameter set. Case eight is the 

best, followed by case six and then case nine. In general, higher composite indices are 

observed for the parameter set with larger difference in the parameters P2 (Look ahead 

distance) and P6 (Lane change distance).  
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TABLE 5.11 Statistically Valid Parameter Set with the Least Difference from 

Default Parameter Set for the Bellaire Arterial Test Network 

Calibrated Parameter 
No 

P1 P2 P3 P4 P5 P6 
Composite 

Index 

1 3 140 1 5 5 80 0.82 

2 4 100 3 4 3 100 0.70 

3 3 210 3 5 1 130 0.68 

4 1 90 1 6 4 280 0.77 

5 4 130 1 5 5 80 0.91 

6 4 190 2 5 3 90 0.50 

7 3 350 3 5 2 140 0.64 

8 2 240 3 5 2 260 0.47 

9 3 80 2 5 4 270 0.56 

10 4 90 2 5 4 100 0.67 

D* 2 250 2 2 3 200 0.00 
          D*: VISSIM default parameter 

 

5.5 CONCLUDING REMARKS 

There are numerous advantages of the proposed non-parametric calibration approach. 

First, it provides a statistically based approach that goes beyond simply identifying a 

parameter set that is closest to one simple metric. Simple metrics such as MAER are not 

robust enough to identify parameter sets that mimic the actual travel time distribution. 

Second, there is the capacity for additional analysis for the candidate parameter sets. 

Therefore, the analyst can bring their own knowledge to identifying the most appropriate 

of the candidate parameter sets. The highest p-value or lowest MAER, saturation flow 

rate, and least difference from default parameters can be used as a secondary objective. 

In addition, while not done in this dissertation it would be a relatively easy extension to 

incorporate the decision making into the automatic calibration procedure.  
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For the Bellaire arterial test network, the proposed calibration procedure was 

successful in exploring the travel time distributions that are a bimodal mixture of two 

distributions produced due to the effects of signal progression. The travel time MAER 

was improved for all the accepted parameter sets as compared to the default values. In 

contrast, the proposed calibration procedure did not provide a similar travel time 

distribution to the observed travel time distribution for the I-10 freeway test network. 

That is while aggregate values such as the MAER were acceptable, the distribution of 

travel times could not be replicated. It was hypothesized that this occurred because the 

estimated demand, as defined by the OD matrix, was not correct. A methodology for 

calibrating the microscopic traffic simulation model and estimating the OD matrix 

simultaneously will be examined in Chapter VI. 
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CHAPTER VI  

 
SIMULTANEOUS CALIBRATION OF A TRAFFIC SIMULATION 

MODEL AND OD MATRIX 

 

In Chapter V, a methodology that uses a statistically based objective function for 

calibrating the microscopic traffic simulation model was presented. However, the results 

from the application of this methodology in the I-10 freeway test network showed that 

under certain situations the approach can not identify an appropriate parameter set that 

can replicate the distribution of the observed travel time data. It was hypothesized that 

this occurred because the OD estimate was not valid. Therefore, in this chapter, the 

methodology is further refined to addresses this issue. 

The conventional research on the calibration of microscopic traffic simulation 

model has focused on the parameters associated with car-following and lane-changing 

behaviors and their impacts on overall calibration performance. Generally, this research 

has regarded the OD matrix as a fixed input which remains unchanged during the 

calibration process. Consequently, the OD estimation has been considered as a 

preliminary step rather than as a stage that can be included in the calibration process. 

Although there is an extensive body of literature on the calibration of 

microscopic traffic simulation models, there is little information in the literature on how 

the OD estimation can be included in the calibration process. Recent studies suggested 

that more precise calibration results can be achieved when the OD matrix is considered 

as a parameter being calibrated. For example, Kim (27) revealed that the OD matrix has 

a profound impact on the simulation results and, further, the OD matrix can be calibrated 

as part of the process. However, Kim’s study has limited its application only to the 

CORSIM model based on a simple gravity model. The study was designed to illustrate 

the problem rather than provide a viable solution. Consequently, the methodology used 

in Kim’s study is not readily transferable to other simulation models. Another example 

of the methodology that jointly calibrates a simulation model and the OD matrix can be 
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found in the study of Darda et al. (39, 40). In their work, the steady-state travel time 

obtained from the simulation model was used in order to generate the assignment matrix 

that is a crucial element in the OD estimation, especially on the network with multiple 

routes. Because a rich set of the observed travel time data was absent, Darda et al. used 

the stimulated travel time as the alternative. Therefore, their methodology mainly 

focused on building a time-dependent assignment matrix rather than enhancing the OD 

estimator in a direct way. Moreover, in order to simulate the travel time, Darda et al. 

used a seed OD matrix estimated at planning level and coarsely estimated parameters 

related to behavior and route choice, as the initial values. The use of initial values in 

their study may raise some concerns on whether the simulation model yields reasonable 

travel time estimates on the network with a high level of congestion since simulation 

outputs vary considerably with congestions. 

In this chapter, a methodology in which the OD matrix and driver behavior 

parameters are calibrated simultaneously is developed and presented using a bi-level 

approach. To formulate the relationship between travel time data and the OD matrix, the 

observed travel times are incorporated into a Kalman filter OD estimator. This 

methodology provides a mean to model interdependent relationships between driver 

behavior parameters, OD matrix, and simulation results (travel time). 

In subsection 6.1, the estimation of the initial OD matrix based on AVI data is 

described. In subsection 6.2, a description of the proposed methodology is provided. 

Also, the assumptions and issues related to the proposed methodology are discussed. 

Finally, the concluding remarks for Chapter VI are presented in subsection 6.3. 

 

6.1 ESTIMATING AN INITIAL OD MATRIX  

In this section, the methodology employed to estimate the initial OD matrix is presented. 

The main framework for the methodology is adapted from the research performed by 

Dixon (1). Based on various information extracted from AVI data, the OD estimator is 

formulated.  
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The use of AVI data helps to resolve the difficulties inherent to the OD 

estimators based on the observed link volumes. First, AVI data provides relatively 

accurate information on a trip progression. To obtain a reliable link choice proportion, 

the information on the trip progression on a link by link basis is very critical. In addition, 

it is more important on a long freeway corridor where the route travel time is relatively 

longer than the OD estimation time-increment. Therefore, by using AVI data, it is 

possible to estimate accurate link choice proportions based on direct observation without 

relying on any assumptions to approximate trip progression. Second, AVI data can be 

used as a good source of historical information. Consequently, the reliable inputs to the 

Kalman filter, such as historical OD matrix, initial OD variance covariance matrix, and 

measurement error variance covariance matrix, can be obtained because these kinds of 

inputs are based on the information sampled from AVI data.  

 

 

 

AVI Station  0 ~ 3  

Origin   O0  ~   O3 

Destination   D0  ~   D3 

Link   L0  ~   L6 
 

FIGURE 6.1 I-10 Freeway AVI System 
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The I-10 AVI system used to formulate OD estimator for the initial OD matrix is 

shown in Figure 6.1. The system is comprised of 4 AVI stations and 7 AVI links. Since 

AVI stations function as origins and destinations there are 10 AVI OD pairs in total. In 

this model, the last AVI link 6L  and OD pair from 3 to 3 are excluded from the analysis 

because all vehicles departing from origin 3 are, by definition, traveling to AVI station 3.  

 

6.1.1 Mathematical Model 

The constrained Kalman filter is adopted because 1) it has been widely used for OD 

estimation; 2) additional measurement data can also be integrated into the estimation 

framework through augmentation techniques; and 3) its discrete stochastic linear 

structure is suitable for estimating time-dependant OD patterns (90, 91). In this 

dissertation, the OD split proportions, instead of OD flows, are used because OD split 

proportions can be sampled directly from AVI data. The definitions of the variables used 

in formulating the Kalman filter OD estimator are shown as follows.  

 
)(tb  = column vector whose elements are )(tbij , OD split proportions entering 

the network from origin i to destination j during interval t ; 

)(tv  = column vector whose elements are )(tvl , number of link traffic 
volumes passing link l during time interval t ; 

)(tO  = diagonal matrix whose elements are )(toi , number of vehicles entering 
the network from origin i during interval t ; 

)(tLd  = link choice proportion matrix whose elements are )(tLld
ij , 

the fraction of vehicles that enter network during interval d from origin 
i to destination j and use link l during time interval t ; 

)(tHv

 
= linear link volume connection matrix which is the product of )()( tOtLt  

; 
)(tRv  = diagonal variance covariance matrix whose elements are measurement 

noise of link volume during time interval t ; 
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)(tQ  = diagonal variance covariance matrix whose elements are transition 
noise during time interval t ; 

)(tP  = error variance covariance matrix whose elements are ][ T
bijbijE εε  ; and 

)(tKv  = Kalman gain matrix for link volume measurements  for time interval t. 

 

By definition the observed link volumes contain information on the OD split 

proportions. Equation 6.1 shows that the observed link volumes )(tv  can be related to 

the OD split proportions )(tb  through a link choice proportion matrix )(tLd . In addition, 

the formulation assumes that the link volumes at time interval t are not a function of the 

OD split proportions at time interval t. The flows departing at time interval t-1, …, t-M  

may have an influence on the link volumes at time interval t.  

 

tv  = )()()()()( tkbkOtLtv v

t

Mtk

k ε+= ∑
−=

 (6.1)

 
M  = maximum number of time intervals required for vehicles to 

travel from origin i to link l ; and 

)(tvε  = error matrix of link volumes )(tv . 

 

The Kalman filter model used in Dixon’s study is shown in Equations 6.2 

through 6.6. This model can be used to estimate the initial OD split proportions based on 

the link volumes. Note that in this dissertation the link volumes used are the AVI link 

volumes. To model an autoregressive process which captures temporal dependency 

between the OD estimates, it is assumed that the OD split proportions )1( −tb  at time 

interval t-1 are the best estimates for the OD split proportions )(tb  at time interval t.  

Through analyzing the link choice proportion matrices )(tLd  for the I-10 freeway 

test network, it was found that the travel times for most vehicles did not exceed the OD 

estimation time-increment (thirty minutes). Therefore, as can be seen in Equations 6.1 
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and 6.5, the maximum number of time intervals M to be considered is set to 1. In other 

words, fractions of vehicles departing at time interval t-1 pass the link l at time interval t. 

It should be also noted that the observed OD split proportions )1( −tbobs is used in 

Equation 6.5. The substitution of the observed OD split proportions instead of the 

estimated OD split proportions increases the accuracy of OD estimation process. 

 

)(tb−  = )()1( ttb ε+−  (6.2)

)(tP−  = )()1( tQtP +−  (6.3)

)(tKv  = ( ) 1)()()()()()( −−− + tRtHtPtHtHtP vv
T

vv  (6.4)

)(tb  = ( ))1()1()()()()()( −−−−+ −− tbtHtbtHtvtKtb obs
vvv  (6.5)

)(tP  = ( ) )()()( tPtHtKI vv
−−  (6.6)

 

6.1.2 Treatment of Constraints 

In order to ensure that the OD estimates obtained from Equations 6.2 through 6.6 satisfy 

implicit transportation system operating conditions, two constraints (e.g. non-negativity 

and equality constraints) are used in the Kalman filter OD estimator. Several researchers 

have pointed out the need to enforce the non-negativity and equality constraints. Bell et 

al. enforced the non-negativity constraint using the Lagrange multiplier (92). Van der 

Zijpp also modeled the equality constraint as a perfect observation (93). These 

approaches require relatively complicated computations such as a matrix inversion or the 

identification of a convergent Lagrange multiplier. Alternatively, Nihan et al. proposed 

an alternative approach, the truncation and normalization process to enforce these 

constraints (94). This approach is selected in this dissertation because it is simple and 

easy to be written into the program designed to handle the Kalman filter algorithm.   

Non-negativity constraints ensure that the estimated OD split proportions are 

non-negative. In the Kalman filter formulation, the non-negativity constraint is achieved 
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by adding the correction matrix r(t) into the measurement equation, as shown in 

Equations 6.7 through 6.9. Note that “super minus” sign is used to denote the estimates 

for the OD split proportions at time interval t given knowledge of the process prior to 

time interval t. 

 

0)( ≥tbij   (6.7) 

)(tri  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−

< )(
)(min

0 tc
tb

i

ij

ci
 (6.8) 

)(tb  = ( ))1()()()()()()()( −−−+ −− tbtHtbtHtvtKtrtb obs
vv  (6.9) 

 

Given that the link volume measurements at time interval t have been obtained, 

the correction amount is determined as the product of the Kalman gain matrix and the 

difference between the observed and estimated link volumes. Therefore, if )(tb−  is equal 

to or greater than zero, adding the correction matrix could prevent the estimated OD split 

proportions )(tb  at time interval t from violating the non-negativity constraint. Let )(tC  

be the second right hand component of Equation 6.5 and )(tci  be the ith element of 

)(tC . If the correction matrix )(tr  is computed such that Equation 6.8 is satisfied, the 

estimated OD split proportions are guaranteed to meet the non-negativity constraint. As 

a result, the correction matrix is added in front of the Kalman gain matrix, as shown in 

Equation 6.9.  

Equality constraints ensure that the total number of vehicles entering the system 

is equal to the total number of exiting vehicles. The application of the equality constraint 

is simpler than that of the non-negativity. The enforcement of this constraint involves the 

step of normalizing the OD split proportions from origin i to all destinations, as shown in 

Equation 6.11. 
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1)( =∑
j

ij tb  (6.10)

∑
=

j
ij

ij
ij b

b
b  (6.11)

 

If the non-negativity constraint is not applied first, the OD split proportions with 

negative values may result which is problematic. Therefore, the non-negativity 

constraint is applied first and then the equality constraint is applied.  

 

6.1.3 Error Variance Covariance Matrix 

The Kalman filter OD estimator, as defined in this dissertation, requires prior knowledge 

of several inputs including the variance covariance matrix of the initial OD split 

proportions, the measurement error variance covariance matrix, and the transition error 

variance covariance matrix. However, these are theoretically unknown unless we have 

perfect information on the system being modeled. Therefore, these matrices were 

generated based on empirical observations.  

In this dissertation, reliable estimates could be derived from AVI data, while OD 

estimators based on only the observed link volumes often assume default matrix as a 

starting point. For example, if the first time interval is from 5:00 AM to 5:30 AM, the 

OD split proportions obtained from the AVI data between 4:30 AM and 5:00 AM can be 

used as the best estimates of the OD split proportions )0(b for the first time interval. In 

the same manner, the )0(P  is computed based on the historical data regarding the OD 

split proportions for time interval 4:30 AM~5:00 AM.  

As shown in Equations 6.12 through 6.15, the transition error variance 

covariance matrix )(tQ  and measurement error variance covariance matrix )(tRv  are 

also computed based on the historical variance covariance matrices. Note that it is 

assumed that the )(tQ  and )(tRv  possess diagonal elements only. This means that this 
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simplification allows the estimation of these matrices from the historical variance 

covariance matrices.  

 

)(tbε  = )()1( tbtb −+  (6.12)

)(tQ  = )( T
bbE εε  (6.13)

)(tvε  = ∑
−=

−
t

Mtk
v kbtHtv )()()(  (6.14)

)(tR  = )( T
vvE εε  (6.15)

 

)(),( tt vb εε  = state (OD) and measurement (link volume) noises, 
respectively ; and 

)(kb  = OD split proportions during interval k. 
 

6.2 INCORPORATING TRAVEL TIME INFORMATION INTO OD 

ESTIMATOR 

As was shown in Chapter V, the calibration of only the driver behavior parameters did 

not yield satisfactory results for the I-10 freeway test network. In this section, the initial 

OD matrix, which is assumed to be true in Phase 1, is considered as an additional 

parameter that can be calibrated.  

In order to calibrate the OD matrix, the observed travel time information is used 

as an additional measurement. Basically, the method explicitly considers how changes in 

the OD split proportions are reflected in the simulated travel times. It is hypothesized 

that the inclusion of travel time information into the OD estimator allows the simulation 

model to better replicate the observed conditions. This would be particularly true for 

highly dynamic networks where changes in traffic patterns would not be immediately 

identified using traffic detectors (72).  
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6.2.1  Mathematical Model 

To incorporate travel times information into the Kalman filter OD estimator the 

relationship between the OD split proportions and travel times needs to be identified 

first. However, this relationship is very complicated and it would be difficult to write a 

closed form solution. Therefore, in this dissertation, this relationship is captured from the 

simulation results and incorporated into the OD estimator using the Extended Kalman 

filter (EKF) approach. Basically the EKF is designed to approximate the true solution 

using a linearization approach (4, 5, 6). The definitions of the additional variables used 

in formulating the EKF are shown as follows. 

 

)(tTT  = column vector whose elements are, )(ttti , travel time obtained from 
AVI data during interval t ; 

)(tHTT  = travel time connection matrix ; and 

)(tKTT  = Kalman gain matrix for travel time measurements for time interval t. 

 

The mathematical model of the EKF is similar to that of the KF model. The 

difference between these two models is that the travel time information is incorporated 

into the measurement equation through an augmentation technique. The measurement 

equation of the EKF defines the relationships between OD split proportions and travel 

times as well as between OD split proportions and link volumes. Similar to the 

measurement equation of link volumes, the travel times at time interval t are assumed to 

be a function of the OD split proportions at time interval t and t-1. In other words, the 

travel times at current time interval are influenced by the vehicles departing at both 

previous and current time intervals. If a freeway is long or congested, this assumption 

becomes reasonable. Therefore, Equations 6.1 and 6.5 are rewritten as Equations 6.16 

and 6.17, respectively.  

 

 



 

 

119

  

⎥
⎦

⎤
⎢
⎣

⎡
)(

)(
tTT

tv
 = ⎥

⎦

⎤
⎢
⎣

⎡
+−⎥

⎦

⎤
⎢
⎣

⎡
−
−

+⎥
⎦

⎤
⎢
⎣

⎡
)(

)(
)1(

)1(
)1(

)(
)(

)(
t

t
tb

tH
tH

tb
tH

tH

TT

v

TT

v

TT

v

ε
ε

 (6.16)

)(tb  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎦

⎤
⎢
⎣

⎡
−
−

−⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
+ −− )1(

)1(
)1(

)(
)(

)(
)(

)(
)()( tb

tH
tH

tb
tH

tH
tTT

tv
tKtb obs

TT

v

TT

v  (6.17)

 

Unlike other detection techniques (e.g. inductive loop detector) that provide only 

estimates of link travel times, travel times for OD pairs as well as link travel times can 

be sampled from AVI data. In this dissertation, in order to evaluate the effects of 

including two different types of travel time information on the calibration precision, two 

OD estimators are proposed and these are shown in Figure 6.2. The first EKF, denoted 

as EKF_LTT, incorporates the travel times between AVI stations into the measurement 

equation. The second EKF, denoted as EKF_ODTT, uses the travel time between each 

OD pair. As shown in Figure 6-1, there are 4 AVI stations in the I-10 freeway test 

network. Therefore, there are three travel time measurements for the EKF_LTT and six 

travel time measurements for the EKF_ODTT.  

 

FIGURE 6.2 Observed Travel Time Matrices (EKF_LTT and EKF_ODTT) 
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6.2.2 Criteria for Evaluating Average Travel Time  

The Extended Kalman filter approach is, by definition, recursive in nature. As new 

measurements are obtained, the EKF “corrects” the estimates projected from the 

previous time interval. In this dissertation, the new measurements correspond to the 

average travel times between AVI stations and OD pairs. In other words, the 

disaggregate characteristics of travel times can not be taken into account in the Kalman 

filter OD estimator.  

The average travel time can be easily obtained from the VISSIM output file by 

simply defining the travel time sections corresponding to the AVI stations. In Phase 1, 

the disaggregate travel times are used to compare the observed and simulated 

distribution. If there is no parameter set that produces statistically valid simulation 

results, the calibration process continues in Phase 2, where the average travel times are 

incorporated into the Kalman filter measurement equation to calibrate the OD split 

proportions. It is important to note that the simulated average travel times vary 

significantly depending on the driver behavior parameters identified in Phase 1. 

Therefore, appropriate criteria for selecting driver behavior parameters in Phase 1 should 

be carefully decided. The selected driver behavior parameters are used as a base case in 

Phase 2 in order to obtain the simulated average travel times as well as their partial 

derivatives with respect to the OD split proportions as outlined in the next subsection.  

A list of the AVI sections and OD pairs is provided in Table 6.1 that influence 

the average travel times if their OD split proportions are changed. For example, all 

vehicles departing from AVI station 0 pass through AVI section 01 to reach their 

destinations. The only exception is the OD flow from AVI station 0 to AVI station 0. 

Therefore, the number of vehicles on AVI section 01 may not change noticeably even 

though the OD split proportions for those with AVI station 0 as their origin are changed. 

As a result, the average travel time for AVI sections 01 may not change appreciably 

even though the split proportions are changed.  
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TABLE 6.1 OD Pairs Excluded along Network by AVI Section 

AVI Station 
AVI Section 

From To 
OD Pairs 

AVI 01 0 1 ● AVI Station 0  0  

AVI 12 1 2 
● AVI Station 0  0,  AVI Station 0  1 

● AVI Station 1  Station 1 

AVI 23 2 3 

● AVI Station 0  0,  AVI Station 0  1,  
   AVI Station 0  2 

● AVI Station 1  1,  AVI Station 1  2 

● AVI Station 2  2 

 

Intuitively, for links which are located downstream of the first AVI station, the 

number of OD pairs that may influence the average link travel time increases. In the I-10 

freeway test network, the travel time for AVI section 01 is probably the least susceptible 

to change. Therefore, higher confidence should be placed on the observed travel time for 

AVI section 01. To model this concept a weight term iα  is introduced into the MAER 

formula, as shown in Equation 6.18.  
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N 11

11 αα  (6.18)

 

N = number of AVI sections ; 

O
iTT  = observed average travel time on AVI section i ; 

S
iTT  = simulated average travel time on AVI section i ; and  

iα  = weight given to AVI section i. 
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6.2.3 Travel Time Connection Matrix 

There are two “roles” of the travel time connection matrix in the Kalman filter. First, 

according to the Equation 6.17, it is used to estimate the average travel times for the AVI 

sections with the estimated OD split proportions. Second, it is also used to derive the 

partial derivative matrix that is used to compute the Kalman gain matrix )(tKTT .  

By definition, a partial derivative represents the slope in a particular direction. In 

the Kalman filter OD estimator, the partial derivative signifies the slope in the solution 

space of possible OD split proportions. However, because it is difficult to describe the 

travel time connection matrix in the form of analytical functions, a derivative matrix 

cannot be obtained by differentiating the travel time connection matrix. Therefore, in 

this dissertation, a derivative matrix is estimated from the simulation outputs. Because 

this information is not available directly from the VISSIM output, the following 

procedure is employed to estimate the derivative matrix. 

  

• Step 1: Select as a base case the simulation output that gives the smallest 

ATTMAER in Phase 1.  

• Step 2: Determine the change ∆  in OD split proportion. 

• Step 3: Increase OD split proportion by ∆  and run the VISSIM with the 

increased OD split proportion.  

• Step 4: Compute the differences in the average travel times between the base 

case and new simulation output. 

• Step 5: Compute the rate of change by dividing the differences by ∆ . 

• Step 6: Repeat Step 3 to Step 5 for each OD pair and time intervals to be 

considered. 

 

To obtain reliable results from the above procedure, the amount of change in the 

OD split proportion allowed during the iteration should be controlled. From a practical 

perspective, too small an amount may not yield reasonable partial derivatives of travel 
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times when applied to microscopic traffic simulation models. This occurs because travel 

times are stochastic in nature and their outputs depend on the random numbers assigned 

to behavior characteristics. For example, if it was decided that a link travel time was too 

low the natural solution would be to assign more traffic to that link. However, if only a 

few vehicles were added to this link, this might not yield the desired effect because of 

the stochastic nature of the microscopic traffic simulation model. This would be 

particularly true on networks with nearly free-flow traffic conditions because the link 

travel time is insensitive to the increase of volumes. Therefore, the estimate of the 

change in the OD split proportion should be small enough to give an accurate slope for 

given OD split proportions and large enough to control this stochasticity issue. In this 

dissertation, the sensitivity analysis was carried out using values of 0.02, 0.03, 0.05 and 

0.07 and a value of 0.05 was identified as the optimal amount.  

Figure 6.3 shows the structure of the derivative matrix for the EKF_LTT. This 

318×  dimensional matrix contains the partial derivative of the travel time with respect 

to the OD split proportions. In the case of the EKF_ODTT, the dimension is changed to 

618×  because there are six travel time measurements.  
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FIGURE 6.3 Derivative Matrix of Travel Time Connection Matrix 
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Because one simulation run constitutes one column vector, the number of the 

observed travel times in the measurement equation has no influence on the 

computational time. The number of simulation runs required increases with the number 

of OD pairs and the number of time intervals to be considered. Consequently, this 

approach can be a burden on the network with a large number of OD pairs and time 

intervals to be considered. In this case, however, it makes the proposed approach more 

feasible to simplify a network by grouping the set of origins and destinations to 

correspond to the AVI stations in the system. 

 

6.3 CONCLUDING REMARKS 

This section outlined methodologies for calibrating the OD matrix as well as estimating 

the initial OD matrix based on the information derived from AVI data. The estimation of 

the initial OD matrix was formulated using the constrained Kalman filter (KF) model 

based on AVI link volumes. The error variance covariance matrices are assumed to be 

known a priori in the Kalman filer model. However, these matrices are not readily 

available and then were estimated from the AVI historical dataset. 

In general, the relationship between the OD matrix and travel time data can not 

be written in a deterministic form because it may vary both spatially and temporally. 

Therefore, the Extended Kalman filter (EKF) model, which can handle nonlinear state 

dynamics and nonlinear measurement equations, was selected to relate the estimation of 

the OD matrix to travel time measurements. In the formulation, the travel time data were 

incorporated into the measurement equation using an augmentation technique. 

Therefore, these travel time data were used to calibrate the OD matrix with the AVI link 

volumes. It was hypothesized in this section that the inclusion of travel time data in the 

calibration of the OD matrix results in the improved calibration precision. In this section 

two OD estimators were proposed, one of which is based on the AVI link travel time and 

the other of which is based on the AVI OD travel time. The results of these models for 

the I-10 freeway test network will be presented in Chapter VII.  
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CHAPTER VII 

 
ANALYSIS OF BI-LEVEL CALIBRATION RESULTS 

 

In the preceding chapter, a new methodology for calibrating the OD matrix was 

proposed, which incorporated the travel time information and the AVI link volumes into 

the OD estimators. The objective of this chapter is to verify the performances of the bi-

level calibration process. In addition to the I-10 freeway test network, a case study 

network is examined in order to provide a comprehensive sensitivity analysis.  

Subsection 7.1 provides the results for the I-10 freeway test network. These 

results are analyzed to verify the performance and feasibility of the proposed approach. 

Subsection 7.2 presents the results for the case study network. The focus of analysis is 

placed in the comparison of the simulated and observed travel time distributions. Finally 

subsection 7.3 provides concluding remarks and findings. 

 

7.1 CALIBRATION RESULTS FOR THE I-10 FREEWAY TEST NETWORK 

To evaluate the effects of including two types of travel time information on the 

calibration precision, the proposed EKF_LTT (AVI link travel time model) and 

EKF_ODTT (AVI OD travel time model) algorithms are applied to the I-10 freeway test 

network.  

 

7.1.1 Average Travel Times for the AVI Sections 

The verification of the proposed model was accomplished by comparing the simulated 

output to the observed data. The primary metric was related to the average travel times 

between AVI stations. The travel time MAER and average travel times at each iteration 

for the EKF_LTT algorithm are provided in Table 7.1 and a graphical representation of 

the average travel times are provided in Figure 7.1.  
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The results show that the average travel time MAER for AVI section 01 fall 

within the range of 0.01 and 0.03 for all iterations of the bi-level process. This result 

would be expected because higher “confidence” is given to the observed travel time for 

AVI section 01 when identifying the best parameters in Phase 1, as explained in Section 

6.2.2.  

On the other hand, large differences occur in AVI section 12 and 23 at iteration 

0, where the average travel times differ by 20 percent and 27 percent for AVI section 12 

and 23, respectively. It is important to note here that the model does not provide similar 

results to observed conditions, thereby pointing out the necessity of calibrating the OD 

matrix as well as driver behavior parameters. It was hypothesized in Chapter VI that the 

addition of travel times into the OD estimator aids in providing comparable results to the 

observed travel times. The model finally provides the “best” results with respect to the 

observed travel times after 6 iterations. At this point the travel time MAER is 0.03 or 

less for all three AVI sections. 
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FIGURE 7.1 Average Travel Times from the EKF_LTT Algorithm for the I-10 

Freeway Test Network (7:00AM~8:00AM) 
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The calibration results for the EKF_ODTT algorithm are shown in Figure 7.2. 

The results indicate that the same trend holds true for the EKF_ODTT algorithm. The 

EKF_ODTT algorithm provides nearly identical average travel times for AVI section 01. 

The average travel times for AVI sections 12 and 23 are 7 seconds (3 percent) and 8 

seconds (4 percent) lower than those from the EKF_LTT algorithm, respectively. In 

order to match the observed travel times to within 5 percent for all three sections five 

iterations of the EKF_ODTT algorithm were required.   

It is important to note here that the results for only full peak hour (7:00AM ~ 

8:00AM) are presented in Figure 7.1 and 7.2 because of space limitation. The results for 

thirty minute intervals (6:30AM ~ 8:00AM) for each algorithm are provided in 

Appendix D. Similar trends for these intervals were identified.  
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FIGURE 7.2 Average Travel Times from the EKF_ODTT Algorithm for the I-10 

Freeway Test Network (7:00AM~8:00AM)
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TABLE 7.1 Average Travel Time at Each Iteration for the I-10 Freeway Test 

Network 

Iteration  
Model 

AVI 
Section 0 1 2 3 4 5 6 

 
OBS 

 
MAER

AVI 01 240 237 241 241 241 241 243 237 0.023 

AVI 12 208 211 217 205 230 213 268 262 0.023 
 

EKF_LTT 
 

AVI 23 148 129 145 167 205 191 200 202 0.014 

AVI 01 241 238 238 240 239 243 - 237 0.024 

AVI 12 230 211 225 273 249 260 - 262 0.006 
 

EKF_ODTT 
 

AVI 23 140 167 203 216 180 193 - 202 0.046 
 

There are three key findings associated with the above analyses. First, it was 

expected that the EKF_LTT algorithm would have closer results to the observed 

conditions than the EKF_ODTT algorithm. Because the former algorithm utilizes three 

travel time sets for AVI sections as additional measurements. In contrast the latter 

algorithm attempts to replicate the observed travel times for each AVI section using six 

OD travel time sets. However, both the EKF_LTT and EKF_ODTT algorithms provide 

close results in terms of average travel time MAER for each AVI sections. The second is 

that the inclusion of travel times improves the travel time MAER. The iterative process 

ensures that the proposed models keep on responding appropriately to the difference 

between the observed and simulated conditions until the pre-defined stopping criteria 

(five percent of the observed average travel time) is met. Finally, it can be seen that the 

two algorithms converge to the observed conditions in different ways. The EKF_LTT 

algorithm firstly provides a satisfactory result for AVI section 23 and sequentially 

identifies a comparable result for AVI section 12. In contrast, the EKF_ODTT algorithm 

closely resembles the observed average travel time for both AVI sections 12 and 23 at 

the same time and then makes minor adjustments to reduce the difference. This 
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difference may occur because driver behavior parameters identified in phase 1 are not 

identical due to the stochastic nature of Genetic Algorithm. 

 

TABLE 7.2 Driver Behavior Parameters Identified at Each Iteration for the I-10 

Freeway Test Network 

Calibrated Parameter 
Model ITR 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

0 -4.5 300 -4.1 410 1.3 1.00 3 -9 -0.30 0.30 15 

1 -4.5 220 -4.1 370 1.6 0.85 3 -6 -0.15 0.15 7 

2 -4.5 100 -3.9 370 1.6 0.95 2 -7 -0.15 0.15 9 

3 -4.5 200 -4.1 370 1.6 0.85 3 -6 -0.15 0.15 7 

4 -4.5 220 -4.1 370 1.6 0.85 3 -6 -0.15 0.15 7 

5 -3.5 180 -3.1 310 1.3 0.90 2 -10 -0.35 0.35 9 

EKF 
LTT 

6 -4.5 180 -4.1 430 1.5 0.95 2 -9 -0.25 0.25 7 

0 -5.0 140 -4.6 270 1.3 1.00 3 -7 -0.15 0.15 13 

1 -4.5 300 -4.1 410 1.3 1.00 3 -9 -0.30 0.30 11 

2 -4.5 300 -4.1 410 1.3 1.00 3 -9 -0.30 0.30 11 

3 -6.5 220 -6.5 270 1.3 1.00 4 -9 -0.20 0.20 15 

4 -5.0 140 -4.6 270 1.3 1.00 3 -7 -0.15 0.15 13 

EKF 
ODTT 

5 -6.5 260 -6.5 270 1.3 1.00 4 -9 -0.20 0.20 8 

Default -4.0 200 -3.0 200 1.5 0.9 4.0 -8 -0.35 0.35 11 
 

Table 7.2 lists the driver behavior parameters that are identified in Phase 1, 

where it can be seen that different parameters are identified for each model and iteration. 

The calibrated values of parameter 6 (P6) from both models, which is the key parameter 

that determines the desired safety distance in the car-following mode, are slightly larger 

than the default value. This implies that a larger space headway between vehicles is 

identified for the calibrated models. On the other hand, the calibrated values of the 
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maximum deceleration rates (P1 and P3) result in a more aggressive reaction of drivers 

in the case of necessary lane changes. However, the impact of one parameter on overall 

driver behavior can not be considered separately but interpreted in conjunction with 

other parameters.  

It is important to note at this point that the calibration of OD matrix is performed 

while the parameters identified in Phase 1 remain unchanged. At iteration 0, both models 

face the same traffic states for the given initial OD matrix. However, as the bi-level 

process continues, different parameters are likely to be identified based on the individual 

operational rules of the Genetic Algorithm. As a result, the simulated traffic conditions 

may change from one iteration to the next. Additionally, an estimate of the partial 

derivative matrix of the travel time connection matrix depends on simulated traffic 

conditions derived from Phase 1. Therefore, different amount of changes in the OD 

matrix is made. In turn, the EKF_LTT and EKF_ODTT algorithms face different 

intermediate traffic stages at each iteration. 

To better illustrate the overall results, the travel time MAER were plotted as a 

function of iteration number. It is important to note that two types of MAER are used in 

Figure 7.3. One is the MAER for all three AVI sections while the other is for only AVI 

sections 12 and 23. The latter one shows a better representation in reduction of MAER 

because travel time MAER for AVI section 01 ranges within 3 percent of the observed 

conditions across all iterations.  

In general, the travel time MAER decreases as the iteration number increases. 

However, the EKF_LTT algorithm a shows slight increase in MAER at iterations 1 and 

5, while the EKF_ODTT algorithm shows consistent decreases in MAER. Note that the 

bi-level approach does not guarantee lower MAER values at each iteration. The results 

also indicate that for the EKF_ODTT algorithm, the travel time MAER decreases at an 

increasing rate at the beginning of the iterations and is relatively flat after iteration 2. 

The decrease in travel time MAER may be attributed to the increase in trips passing 

through AVI sections 12 and 23, as a result of the calibrated OD matrix. This topic is 

discussed in more detail later in this chapter. 
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FIGURE 7.3 Average Travel Time MAER at Each Iteration for the I-10 Freeway 

Test Network 

 

7.1.2 Average Travel Times for OD Pairs 

The average travel times for all six OD pairs for the full peak hour (7:00AM ~ 8:00AM) 

for the last iteration are provided in Figure 7.4. It should be noted that similar results 

were obtained for the two thirty minute periods on either side of the peak hour. These 

results were not provided in this section but may be found in Appendix D. 

 The results indicate that both the EKF_LTT and EKF_ODTT algorithms provide 

nearly identical results to the observed conditions. That is, the use of either travel time 

set improved the results. It is found that the average OD travel time MAER decreases 

from 0.16 to 0.02 for the EKF_LTT algorithm and decreases from 0.14 to 0.01 for the 

EKF_ODTT algorithm. This is an interesting result because it raises the possibility that 

the EKF_LTT algorithm provides comparable results with great accuracy in terms of 

average OD travel times. This is important because the algorithm only utilizes travel 

times from the AVI sections.  
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FIGURE 7.4 Average Travel Times for OD Pairs for the I-10 Freeway Test 

Network  (7:00AM~8:00AM)  

 

7.1.3 Calibrated OD Matrix  

In order to gain some insights into the effect of the OD matrix on average travel times 

for the AVI sections an analysis of the calibrated OD estimates was conducted. It was 

found that at iteration 0, the simulated travel times for AVI sections 12 and 23 were 27 

and 20 percent lower than the observed travel times for the EKF_LTT algorithm, 

respectively, and 12 and 30 percent lower for the EKF_ODTT algorithm, respectively. A 

t-test was conducted on the means to check if the average travel times are significantly 

different. The test results show that the mean differences for AVI sections 12 and 23 are 

statistically significant at the 95% level of testing. In other words, for this network the 

calibration of the OD matrix is necessary to replicate observed conditions.  

The OD matrices for two intervals of thirty minutes (7:00AM ~ 7:30AM, 

7:30AM ~ 8:00AM) obtained at each iteration are tabulated in Tables 7.3 and 7.4. In 

addition the differences between the initial and the calibrated OD matrices are also 

found. Table 7.3 contains the results for the EKF_LTT algorithm, while Table 7.4 
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provides the results for the EKF_ODTT algorithm. The results for initialization time 

period (6:30AM~7:00AM) is provided in Appendix D. The initial and calibrated OD 

matrices for the final iteration are shown in Figures 7.5 and 7.6, respectively. These 

figures show how changes in OD matrix are reflected in the link volume on AVI sections 

12 and 23. For example, it can be seen that among the OD pairs that have origin 0, the 

split proportions for OD pairs 02 and 03 increase as the number of iteration increase. 

Therefore, there is a corresponding increase in trips passing through AVI sections 12 and 

23. This, in turn, leads to increases in travel times for the same sections. Note that it may 

not be appropriate to explain travel time increase simply based on increased trip numbers 

because of the complex relationship between the two parameters. However, it can be 

expected that the increases in volume of OD pairs 02 and 03 have a positive influence on 

the increase in travel time for these sections, taking into account that vehicles entering 

the network from origin 0 (main-lane) is much larger than ones from other entries (on-

ramps). As was shown in Chapter V it was impossible to calibrate travel times without 

adjusting the OD volumes. 

Some points need to be addressed regarding the results from the EKF_LTT and 

EKF_ODTT algorithms. First, the two models provide different calibrated OD matrices. 

It is well known that the OD estimator based on link volumes can be formulated as an 

underdetermined linear equation and its solution cannot be uniquely identified because 

there could be a number of combinations that meet link volume constraint. In the same 

manner, the calibrated OD matrix can be considered as one of many solutions that reflect 

travel times and link volumes equally well. Therefore, it is possible to obtain different 

OD matrices from the EKF_LTT and EKF_ODTT algorithms.  

Second, it is reasonable to take into account the number of vehicles departing 

from each origin when interpreting the calibrated OD matrix. Note that in this 

dissertation the OD matrix does not represent OD flows but OD split proportions. For 

example, even though the smallest difference between the initial and calibrated matrices 

occurs in OD pairs with origin 0, this change may primarily influence the network 
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performance because the number of vehicles entering the network is much larger than 

from other entries.  

The last point is about deviations of the calibrated OD matrix from the initial OD 

matrix. In this dissertation, the “closeness” is defined as a sum of the weighted absolute 

values of the differences between the each element of the initial and calibrated OD 

matrices relative to the total number of vehicles entering system. Equation 7.1 is used to 

quantify the “closeness” between the initial and calibrated OD matrices. It can be seen in 

Figure 7.5 that the EKF_ODTT algorithm tends to provide a calibrated OD matrix that is 

“closer” to the initial OD matrix, compared to the results from the EKF_LTT algorithm. 

The closeness measures of the EKF_LTT and EKF_ODTT algorithms for the first thirty 

minute period were 0.52 and 0.14, respectively. In other words, the EFK_ODTT 

algorithm provides the calibrated OD matrix that is more than three times closer to the 

initial OD matrix for the given time period. It can be concluded, therefore, that the 

EKF_ODTT performs better in that it includes travel time information as additional 

measurements while retaining the information related to the link volumes.   
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tCM  = closeness measure for time interval t ; 

n  = number of OD pairs ; 

ktv  = number of vehicles entering from AVI station k at time interval t (veh) ; 

tTv  = total number of vehicles entering system at time t (veh) ;  

ini
itod  

= initial OD split proportion of OD pair i at time interval t ; and   

cal
itod  

= calibrated OD split proportion of OD pair i at time interval t.   
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On the other hand, Figure 7.6 shows that differences between the initial and 

calibrated OD matrices are relatively closer for both algorithms. The closeness measures 

for the second time period were 0.10 and 0.11, respectively. 
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FIGURE 7.5 Calibrated OD Split Proportion from the EKF_LTT and EKF_ODTT 

Algorithm for the I-10 Freeway Test Network (7:00AM~7:30AM) 
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FIGURE 7.6 Calibrated OD Split Proportion from the EKF_LTT and EKF_ODTT 

Algorithm for the I-10 Freeway Test Network (7:30AM~8:00AM) 
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TABLE 7.3 Initial and Calibrated OD Split Proportions at Each Iteration from the 

EKF_LTT Algorithm for the I-10 Freeway Test Network 

Time 
Interval 

OD 
Pair 

0 
(Initial) 1 2 3 4 5 6 Diff* 

00 0.20 0.18 0.17 0.15 0.16 0.17 0.15 -0.05 

01 0.46 0.58 0.54 0.43 0.42 0.41 0.40 -0.06 

02 0.02 0.08 0.11 0.10 0.03 0.09 0.10 0.08 

03 0.32 0.16 0.18 0.32 0.39 0.34 0.35 0.03 

11 0.77 0.69 0.59 0.60 0.50 0.47 0.46 -0.31 

12 0.12 0.28 0.41 0.40 0.50 0.53 0.53 0.41 

13 0.12 0.03 0.00 0.00 0.00 0.00 0.02 -0.10 

22 0.67 0.57 0.42 0.40 0.40 0.36 0.28 -0.39 

7:00~7:30 

23 0.33 0.43 0.58 0.60 0.60 0.64 0.72 0.39 

00 0.21 0.25 0.28 0.28 0.24 0.19 0.24 0.03 

01 0.49 0.47 0.34 0.36 0.41 0.47 0.46 -0.03 

02 0.03 0.05 0.06 0.04 0.03 0.06 0.08 0.05 

03 0.26 0.23 0.32 0.32 0.31 0.28 0.23 -0.03 

11 0.89 0.79 0.86 0.83 0.81 0.83 0.82 -0.07 

12 0.11 0.21 0.14 0.16 0.18 0.11 0.08 -0.03 

13 0.01 0.00 0.00 0.01 0.01 0.06 0.10 0.09 

22 0.59 0.50 0.56 0.57 0.52 0.54 0.54 -0.05 

7:30~8:00 

23 0.41 0.50 0.44 0.43 0.48 0.46 0.46 0.05 
        * Difference between the initial and final OD split proportions 
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TABLE 7.4 Initial and Calibrated OD Split Proportions at Each Iteration from the 

EKF_ODTT Algorithm for the I-10 Freeway Test Network  

Time 
Interval 

OD 
Pair 

0 
(Initial) 1 2 3 4 5 Diff* 

00 0.20 0.20 0.24 0.24 0.21 0.20 0.00 

01 0.46 0.46 0.37 0.33 0.40 0.38 -0.08 

02 0.02 0.02 0.02 0.02 0.01 0.03 0.01 

03 0.32 0.32 0.37 0.41 0.38 0.39 0.07 

11 0.77 0.77 0.76 0.73 0.73 0.68 -0.09 

12 0.12 0.12 0.19 0.21 0.16 0.18 0.06 

13 0.12 0.12 0.04 0.06 0.11 0.15 0.03 

22 0.67 0.67 0.64 0.59 0.65 0.71 0.04 

7:00~7:30 

23 0.33 0.33 0.36 0.41 0.35 0.29 -0.04 

00 0.21 0.21 0.23 0.21 0.22 0.25 0.04 

01 0.49 0.49 0.47 0.48 0.47 0.45 -0.04 

02 0.03 0.03 0.03 0.02 0.01 0.00 -0.03 

03 0.26 0.26 0.27 0.29 0.30 0.30 0.04 

11 0.89 0.89 0.91 0.94 0.93 0.92 0.03 

12 0.11 0.11 0.05 0.05 0.05 0.05 -0.06 

13 0.00 0.00 0.04 0.01 0.02 0.03 0.03 

22 0.59 0.59 0.65 0.63 0.64 0.66 0.07 

7:30~8:00 

23 0.41 0.41 0.35 0.37 0.36 0.34 -0.07 
        * Difference between the initial and final OD split proportions 
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7.1.4 Travel Time Distribution  

In order to analyze the relationship between travel times and the calibrated OD matrix 

the travel time histograms from the EKF_LTT algorithm for AVI sections 01, 12, and 23 

were plotted in Figures 7.7, 7.8, and 7.9, respectively. The travel time histograms from 

the EKF_ODTT algorithm are provided in Figures 7.10 through 7.12. Also shown are p-

values for the Kolmogorov-Smirnov statistical test as well as the travel time MAER. 

Note that each of these figures is composed of two graphs a and b. Graph a shows the 

travel time distribution for iteration 0 (e.g. calibration without OD estimation) while 

graph b shows the travel time distribution for the final iteration.  

Even though the equalities of the observed and simulated travel time distributions 

for all three AVI sections are not supported at a 95 percent confidence level, the results 

clearly illustrate that both models provide closer results to the observed travel time 

distributions. For AVI section 01, no improvements are made. However, the travel time 

distributions for AVI sections 12 and 23, which are somewhat skewed to left at iteration 

0, shift to right and closely follow the observed distributions after the final iteration. The 

results also demonstrate that the EKF_ODTT algorithm shows slightly superior results to 

the EKF_LTT, particularly for AVI section 23. These results are more clearly 

demonstrated in the cumulative distribution functions of simulated travel times, as 

shown in Figures 7.13 through 7.15.  

From a graphical comparison, there seem no significant differences between the 

EKF_LTT and EKF_ODTT algorithms. To determine whether or not both algorithms 

produce the same travel time distributions, the Kolmogorov-Smirnov statistical test was 

conducted. The test statistics and significance level from the KS test are found in Table 

7.5. As indicated in Table 7.5, the travel time distribution for AVI section 12 is 

statistically identical while the equalities of the travel time distributions for AVI sections 

01 and 23 are not supported at a 95 percent confidence level.  
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TABLE 7.5 Equality Test of Travel Time Distributions from the EKF_LTT and 

EKF_ODTT Algorithms for the I-10 Freeway Test Network 

Kolmogorov-Smirnov Test 
 

Statistics Significance 

AVI section 01 0.144 0.031 

AVI section 12 0.131 0.361* 

AVI section 23 0.217 0.007 
     * We do not reject, at the 95 percent (0.05) level, the hypothesis that the distributions are identical. 

 

A subset of the results of the statistical test (KS test) for the travel time 

distributions obtained after the final iteration is provided in Table 7.6. Also are presented 

p-values and the travel time MAER in Table 7.6. Most of the travel time MAER values 

are within 6 percent or less of the observed travel times while p-values are close to zero. 

It can be also seen that there is no case where a statistically based objective functions for 

more than one AVI sections are satisfied, even though the average travel time MAER are 

significantly improved.  

It is hypothesized that results may be mainly due to the fact that the inputs to the 

VISSIM microscopic traffic simulation model were compiled based on the data collected 

for multiple days. From a practical point of view, it is rarely possible to collect a 

complete dataset, including traffic counts on the main lanes and ramps, over a large 

network without a significant amount of effort and cost 



 

 

140

TABLE 7.6 Subset of Travel Time MAER and p-value for the EKF_LTT 

Algorithm for the I-10 Freeway Test Network 

MAER p-value 
 Case 

AVI 01 AVI 12 AVI 23 AVI 01 AVI 12 AVI 23 

1 0.031 0.081 0.026 0.003 0.000 0.000 

2 0.016 0.064 0.071 0.006 0.000 0.000 

3 0.032 0.034 0.090 0.000 0.004 0.000 

4 0.059 0.042 0.016 0.000 0.016 0.000 

 
 

EKF_LTT 
 
 

5 0.023 0.023 0.014 0.000 0.090 0.000 

1 0.062 0.027 0.094 0.000 0.013 0.000 

2 0.015 0.053 0.033 0.000 0.003 0.002 

3 0.025 0.005 0.052 0.000 0.000 0.020 

4 0.027 0.113 0.009 0.000 0.000 0.342 

 
 

EKF_ODTT 
 
 

5 0.054 0.054 0.040 0.000 0.000 0.027 
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           (a) MAER: 0.012    p-value: 0.000           (b) MAER: 0.032    p-value: 0.000  

 

FIGURE 7.7 Histogram of Travel Time for AVI Section 01 of the I-10 Freeway Test 

Network (EKF_LTT Algorithm) 
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          (a) MAER: 0.204    p-value: 0.000           (b) MAER: 0.034    p-value: 0.004  

 

FIGURE 7.8 Histogram of Travel Time for AVI Section 12 of the I-10 Freeway Test 

Network (EKF_LTT Algorithm) 
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    (a) MAER: 0.271    p-value: 0.000           (b) MAER: 0.090    p-value: 0.000 

 

FIGURE 7.9 Histogram of Travel Time for AVI Section 23 of the I-10 Freeway Test 

Network (EKF_LTT Algorithm)  
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    (a) MAER: 0.016    p-value: 0.000           (b) MAER: 0.015    p-value: 0.000 

 

FIGURE 7.10 Histogram of Travel Time for AVI Section 01 of the I-10 Freeway 

Test Network (EKF_ODTT Algorithm)  
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           (a) MAER: 0.124    p-value: 0.000           (b) MAER: 0.053    p-value: 0.003  

 

FIGURE 7.11 Histogram of Travel Time for AVI Section 12 of the I-10 Freeway 

Test Network (EKF_ODTT Algorithm)  
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    (a) MAER: 0.307    p-value: 0.000           (b) MAER: 0.033    p-value: 0.002 

 

FIGURE 7.12 Histogram of Travel Time for AVI Section 23 of the I-10 Freeway 

Test Network (EKF_ODTT Algorithm)  
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 FIGURE 7.13 Travel Time Cumulative Distribution Function for AVI Section 01 

of the I-10 Freeway Test Network 
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  FIGURE 7.14 Travel Time Cumulative Distribution Function for AVI Section 12 

of the I-10 Freeway Test Network 
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  FIGURE 7.15 Travel Time Cumulative Distribution Function for AVI Section 23 

of the I-10 Freeway Test Network 
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7.2 CALIBRATION RESULTS FOR THE CASE STUDY NETWORK  

In Section 7.1, the calibration results for the I-10 freeway test network were presented. 

To verify the performances of the proposed models, these results were compared with 

the observed conditions. The analysis of results indicates that both models provide better 

results in terms of average travel times. However, while it was possible to replicate the 

travel time distribution on one AVI section, it was not possible to obtain the statistically 

valid calibration results for all three AVI sections. It was hypothesized that this occurred 

because travel demand data were compiled based on the data collected for multiple days. 

Therefore, in this section, a simulation case study was designed to verify the 

performance of the proposed models using disaggregated data. The focus is the 

distribution of individual travel time that is used as a performance measure in a 

statistically based objective function. In summary, the performance of the approach will 

be analyzed using perfect, albeit simulated, data. 

 

7.2.1 Preparing the Case Study Data 

Figure 7.16 depicts the research framework of the case study. The first step consists of 

preparation of the network supply and “true” traveler demand data. To reduce the effort 

on network coding and manipulation of the automated calibration program (Perl 

program), most of network data are obtained from the information regarding the I-10 

freeway test network. The case study network has the same geometries such as lane 

connectivity, number of lanes, length of network, and number of ramps, and sensor 

locations (AVI stations) as the I-10 freeway test network does. Therefore, the number of 

OD pairs and travel time data set are exactly same as that in the I-10 freeway test 

network. However, as stated in Chapter III, a severe blockage was found in the right-

most lane for the I-10 freeway test network when congestion occurs. To avoid this 

situation, the length of auxiliary lane is increased at the location where a vehicle can not 

often make a lane change necessary to stay on its route due to the extremely short length 

of the auxiliary lane.  
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  The “true” OD matrix is selected such that free-flow and congested states can be 

generated along the case study network. This OD matrix will be used as a “target” OD 

matrix in the comparison with the calibrated OD matrix. In addition, other information 

associated with the estimation of the OD matrix, such as the error variance covariance 

matrices, are defined a priori. In this step, the time-varying input volumes at all entries 

including main-lane and on-ramps are also defined. The volumes are chosen to be large 

enough to generate congested traffic conditions in conjunction with the selected OD 

matrix. 

The second step is to run the VISSIM simulation with the “true” OD matrix. This 

step is to check whether the VISSIM model performs in an intended manner. In 

particular, if the blockage in the right-most lane causes incorrect vehicular movements, 

the proportions of partial route decision, which is used to keep fractions of vehicles out 

of the right-most lane, were adjusted so as to eliminate such potential problem in the 

next simulation run.  

The third step consists of compiling average link travel times, travel time 

distributions, and the statistics of simulated traffic conditions from the VISSIM output 

files. These travel time data are used in further analysis as “target” measures being 

replicated through the bi-level calibration process.  

The purpose of the forth step is to generate the “starting” OD matrix by 

introducing bias in the “true” OD matrix. Given the biased OD matrix, the bi-level 

calibration process begins to calibrate driver behavior parameters in Phase 1. It should 

be noted that more attention should be paid in selecting the amount of bias to introduce. 

In other words, if the “starting” simulated traffic condition is similar to that with the 

“true” OD matrix, the “true” traffic condition can be replicated by calibrating only driver 

behavior parameters. Therefore, the selected bias should be large enough to necessitate 

the bi-level calibration process so that the performance of the proposed models can be 

evaluated.  
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The fifth step is to run the VISSIM simulation and to check whether the selected 

bias is sufficient. After deciding appropriate bias, the bi-level calibration process begins 

to calibrate the “starting” (biased) OD matrix and driver behavior parameters.  

 

 

 
 

  FIGURE 7.16 Research Framework of the Case Study  
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To introduce bias, the “true” OD matrix was changed for all three thirty minute 

time intervals including the initialization time period (6:30AM~7:30AM) and the peak 

hour (7:00AM~8:00AM). Note that fractions of vehicles departing at the initialization 

time period transverse along the case study network during the peak hour. As can be 

seen in Table 7.7, the “starting” OD matrix has higher OD split proportions for OD pairs 

that depart from origin 0 and 1 and head to destination 3. To reach their destination, the 

vehicles associated with the “starting” OD matrix have to pass though the entire case 

study network. Therefore, it is expected that the level of congestion on AVI sections 12 

and 23 will increase. However, as stated in Section 6.2.2, the number of vehicles on AVI 

section 01 may not change noticeably.  

The statistics, including the average travel time, the standard deviation, 

maximum, minimum, and link travel speed associated with the “true” and “starting” OD 

matrix are summarized in Table 7.8. Note that for the I-10 freeway test network the 

traffic conditions shift from non-congested at iteration 0 to congested conditions at the 

final iteration.  

  

TABLE 7.7 True and Starting OD Matrices for Case Study 

Time Interval OD Pair True Starting (Biased) 

00 0.1 0.1 

01 0.4 0.3 

02 0.2 0.15 

03 0.3 0.45 

11 0.4 0.3 

12 0.3 0.25 

13 0.3 0.45 

22 0.4 0.4 

6:30 AM ~ 7:00 AM 
 
 

7:00 AM ~7:30 AM 
 
 

7:30 AM ~8:00 AM 

23 0.6 0.6 
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In contrast, for the case study network, the shift from congested to non-congested 

traffic conditions is to be achieved under the bi-level calibration framework. As found in 

Table 7.8, the average travel times for AVI sections 12 and 23, given the “true” OD 

matrix, are 213 and 134 seconds, respectively, and these values are changed to 322 and 

272 seconds after the bias was introduced. The graphical representations of travel time 

distributions for all AVI sections for the “true” and “starting” OD matrix are presented 

in Figures 7.17 through 7.19, respectively. 

 
TABLE 7.8 Summary Statistics of True and Starting Traffic Conditions for the 

Case Study Network 

 AVI 01 AVI 12 AVI 23 

Average (sec) 264.3 213.4 134.0 

Standard Deviation (sec) 37.0 30.9 7.0 

Minimum (sec) 206 178 117 

Maximum (sec) 363 319 166 

True 
OD Matrix 

Link Speed (km/h) 88.6 92.6 93.1 

Average (sec) 264.2 322.7 272.2 

Standard Deviation (sec) 36.9 70.1 36.7 

Minimum (sec) 206 188 207 

Maximum (sec) 363 498 363 

Starting 
OD Matrix 

Link Speed (km/h) 88.6 61.6 45.7 
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FIGURE 7.17 Histogram of True and Starting Travel Time on AVI Section 01 for 

the Case Study Network 
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FIGURE 7.18 Histogram of True and Starting Travel Time on AVI Section 12 for 

the Case Study Network  
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FIGURE 7.19 Histogram of True and Starting Travel Time on AVI Section 23 for 

the Case Study Network  

 

7.2.2 Average Travel Times for the AVI Sections 

The travel time MAER and average travel times at each iteration for the EKF_LTT and 

EKF_ODTT algorithms are provided in Table 7.9. It may be seen that both models 

provide similar results to the target traffic conditions. The EKF_LTT algorithm provides 

the average travel time MAER results less than 0.01 (1 percent) for all 3 AVI sections, 

while the EKF_ODTT algorithm shows MAER less than 0.03 (3 percent). Large 

differences occur at iteration 0 for AVI sections 12 and 23, where the average travel 

times differ by 44 percent and 73 percent for the EKF_LTT algorithm, and by 65 percent 

and 7 percent for the EKF_ODTT algorithm, respectively. However, these differences 

largely disappear after 3 and 2 iterations for the EKF_LTT and EKF_ODTT algorithms, 

respectively. The calibration results for the full peak hour (7:00AM ~ 8:00AM) are 

shown in Figures 7.20 and 7.21 because of space limitation. The results for thirty minute 

disaggregate time intervals (6:30AM ~ 8:00AM) are provided in Appendix E. Similar 

trends for these intervals were identified.  
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TABLE 7.9 Average Travel Time at Each Iteration for the Case Study Network 

Iteration 
Model AVI 

Section 0 1 2 3 
True MAER 

AVI 01 261 261 260 263 264 0.003 

AVI 12 307 319 220 215 213 0.007 
 

EKF_LTT 
 

AVI 23 232 155 146 135 134 0.011 

AVI 01 261 261 261 - 264 0.010 

AVI 12 352 230 220 - 213 0.031 
 

EKF_ODTT 
 

AVI 23 143 137 135 - 134 0.010 
 

Because of the nature of this case study the “true” VISSIM parameter set is 

known a priori. Consequently the parameter set identified from the bi-level process can 

be compared directly to the “true” parameter set. Table 7.10 lists the driver behavior 

parameter set that are identified in phase 1 at each iteration as well as the “true” 

parameter set. It should be noted that the effect of each parameter on the VISSIM output 

can not be evaluated in isolation which make it difficult to interpret the calibrated 

parameter set. However, it may be seen that the calibrated parameters are not markedly 

different from the “true” parameters for either algorithm.  
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TABLE 7.10 Driver Behavior Parameters Identified at Each Iteration for the Case 

Study Network  

Parameter 
Model ITR 

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

0 -4.0 240 -3.0 370 1.2 0.75 6 -10 -0.15 0.15 13 

1 -4.5 140 -4.5 370 1.0 0.85 5 -7 -0.15 0.15 13 

2 -4.5 140 -4.5 330 1.0 0.85 5 -7 -0.15 0.15 13 
EKF_LTT 

3 -4.0 140 -3.0 310 1.5 0.70 5 -9 -0.15 0.15 16 

0 -5.0 240 -4.6 310 1.6 0.90 2 -10 -0.25 0.25 15 

1 -4.5 260 -5.0 310 1.5 0.85 4 -8 -0.30 0.30 9 EKF_ODTT 

2 -5.0 260 -5.0 290 1.5 0.90 2 -8 -0.25 0.25 10 

True Parameters -5.0 250 -4.5 350 1.5 0.85 4 -8 -0.35 0.35 11 
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FIGURE 7.20 Average Travel Times from the EKF_LTT Algorithm for the Case 

Study Network (7:00AM~8:00AM) 
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FIGURE 7.21 Average Travel Times from the EKF_ODTT Algorithm for the Case 

Study Network (7:00AM~8:00AM) 
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FIGURE 7.22 Average Travel Time MAER at Each Iteration for the Case Study 

Network 
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To better illustrate the overall results, the travel time MAER were plotted against 

iteration number for each of EKF_LTT and EKF_ODTT algorithms, as shown in Figure 

7.22. In general, the travel time MAER decreases as the number of iterations increase 

and this decease is at a decreasing rate. While slight increases in MAER were observed 

during iterations at the I-10 freeway test network, both models provide consistent 

decreases in MAER.  

 

7.2.3 Average Travel Times for OD Pairs 

The average OD travel times for the full peak hour (7:00AM ~ 8:00AM) for the last 

iteration are shown in Figure 7.23. Similar results are obtained for the thirty minutes on 

either side of the peak hour and are not shown in this section. However, they are 

provided in Appendix E. Similar to the results for the I-10 freeway test network, both 

models provide closer results to the target travel times. The average OD travel times for 

the EKF_LTT and EKF_ODTT algorithms are within 1 percent and 2 percent of the 

“true” travel times, respectively.  
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FIGURE 7.23 Average Travel Times for OD Pairs for the Case Study Network 

(7:00AM~8:00AM)  
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7.2.4 Calibrated OD Matrix  

The OD matrices for two time periods (7:00AM ~ 7:30AM and 7:30AM ~ 8:00AM) for 

each iteration are tabulated in Tables 7.11 and 7.12. The results for the initialization time 

period (6:30AM~7:00AM) is provided in Appendix E. It can be seen that there are small 

differences between the starting and calibrated OD matrices for the initialization time 

period. After the final iteration, the starting OD matrix is not markedly changed. This 

would be expected because the case study network is under free-flow traffic conditions 

for the given time period.  

The true, starting, and calibrated OD matrices after the final iteration are shown 

in Figures 7.24 and 7.25. In these figures, the first column bar indicates the “true” OD 

split proportions. The second indicates the “starting” OD split proportions. The third and 

forth indicate the calibrated OD split proportions for the EKF_LTT and EKF_ODTT 

algorithms, respectively.  

Three key findings may be specified from the results. First, it can be seen in 

Figures 7.24 and 7.25 that the EKF_LTT and EKF_ODTT algorithms provide different 

calibrated OD matrices. Similar to the reasons for the I-10 freeway test network, the 

differences between the two models is because they can identify just one of the many 

potential OD matrices that reflect travel times and link volumes equally well. Second, 

the “closeness” of the calibrated matrices to the “true” matrix was quantified using 

Equation 7.1. The closeness measures for the EKF_LTT and EKF_ODTT algorithms 

were 0.25 and 0.08 for the first thirty minute period, respectively and 0.23 and 0.11 for 

the second period, respectively. Unlike the results for the I-10 freeway test network, the 

EKF_ODTT performs better in that it provide a calibrated OD matrix that is “closer” to 

the true OD matrix for the both time periods.  

Finally, the results indicate that both models can adequately replicate the “true” 

traffic conditions even though the calibrated OD matrices are not identical to the “true” 

OD matrices, as shown in Figures 7.26 through 7.31 in the following section. It is 

hypothesized that this occurs because the bi-level process keep searching the best 

parameters as well as calibrating an OD matrix until the difference between true and 
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simulated travel times falls within an acceptable range. Therefore, on the case study 

network where the shift from congested to less congested traffic conditions needs to be 

made, more aggressive behavior parameters are likely to be identified in order to reduce 

a certain portion of this difference.  
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FIGURE 7.24 Calibrated OD Split Proportion for the Case Study Network 

(7:00AM~7:30AM) 
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FIGURE 7.25 Calibrated OD Split Proportion for the Case Study Network 

(7:30AM~8:00AM) 
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TABLE 7.11 True, Starting, and Calibrated OD Split Proportions at Each Iteration 

from the EKF_LTT Algorithm for the Case Study Network  

Time Interval OD Pair True Starting 1 2 3 Diff* 

00 0.10 0.10 0.11 0.13 0.14 0.04 

01 0.40 0.30 0.31 0.39 0.39 -0.01 

02 0.20 0.15 0.14 0.10 0.10 -0.10 

03 0.30 0.45 0.43 0.38 0.37 0.07 

11 0.40 0.30 0.30 0.21 0.22 -0.18 

12 0.30 0.25 0.21 0.23 0.22 -0.08 

13 0.30 0.45 0.49 0.56 0.56 0.26 

22 0.40 0.40 0.46 0.49 0.49 0.09 

7:00~7:30 

23 0.60 0.60 0.54 0.51 0.51 -0.09 

00 0.10 0.10 0.10 0.10 0.10 0.00 

01 0.40 0.30 0.30 0.28 0.28 -0.12 

02 0.20 0.15 0.15 0.16 0.16 -0.04 

03 0.30 0.45 0.45 0.46 0.46 0.16 

11 0.40 0.30 0.30 0.34 0.34 -0.06 

12 0.30 0.25 0.25 0.22 0.21 -0.09 

13 0.30 0.45 0.45 0.45 0.45 0.15 

22 0.40 0.40 0.40 0.42 0.43 0.03 

7:30~8:00 

23 0.60 0.60 0.60 0.58 0.57 -0.03 
      * Difference between the true and final OD split proportions 
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TABLE 7.12 True, Starting, and Calibrated OD Split Proportions at Each Iteration 

from the EKF_ODTT Algorithm for the Case Study Network 

Time Interval OD Pair True Starting 1 2 Diff* 

00 0.10 0.10 0.11 0.12 0.02 

01 0.40 0.30 0.44 0.43 0.03 

02 0.20 0.15 0.07 0.07 -0.13 

03 0.30 0.45 0.38 0.37 0.07 

11 0.40 0.30 0.15 0.15 -0.25 

12 0.30 0.25 0.35 0.34 0.04 

13 0.30 0.45 0.50 0.51 0.21 

22 0.40 0.40 0.41 0.44 0.04 

7:00~7:30 

23 0.60 0.60 0.59 0.56 -0.04 

00 0.10 0.10 0.10 0.10 0.00 

01 0.40 0.30 0.31 0.31 -0.09 

02 0.20 0.15 0.15 0.14 -0.06 

03 0.30 0.45 0.45 0.45 0.15 

11 0.40 0.30 0.30 0.30 -0.10 

12 0.30 0.25 0.23 0.22 -0.08 

13 0.30 0.45 0.47 0.48 0.18 

22 0.40 0.40 0.44 0.46 0.06 

7:30~8:00 

23 0.60 0.60 0.56 0.54 -0.06 
       * Difference between the true and final OD split proportions 

 

 



 

 

160

7.2.5 Travel Time Distribution  

The travel time histograms from the EKF_LTT algorithm for AVI sections 01, 12, and 

23 were plotted in Figures 7.26, 7.27, and 7.28, respectively. Also shown are p-values 

for the Kolmogorov-Smirnov statistical test as well as the travel time MAER. As before 

two graphs are shown in each figure. Graph a (left hand side) shows the true and 

simulated travel time distributions for the EKF_LTT algorithm while graph b shows the 

results for the EKF_ODTT algorithm after the final iteration. 

 The results clearly illustrate that both models provide nearly identical results to 

the true travel time distributions. For all three AVI sections, the p-values are 0.066, 

0.191, and 0.051 for the EKF_LTT algorithm, respectively and the p-values are 0.124, 

0.077, and 0.091 for the EKF_ODTT algorithm, respectively. Therefore, the equalities of 

the true and simulated travel time distributions for all three AVI sections are supported 

at a 95 percent confidence level.  

It may be seen that a marked improvements for AVI sections 12 and 23 are 

achieved as compared to the starting traffic conditions that were shown in Figures 7.17 

through 7.19. These results are further supported by the cumulative distribution 

functions for AVI sections 12 and 23 that are shown in Figures 7.30 and 7.31. The 

cumulative fractions of the “starting” traffic conditions, which are strictly less than those 

of the true at iteration 0, closely match the cumulative fractions of the true traffic 

conditions after the final iteration. From these figures, other information on the true and 

starting travel time can be derived. It can be seen from that the travel time data for the 

starting traffic conditions span much a wider and higher range of values at iteration 0. 

This implies that the simulated travel times have higher means and variance. However, 

after the final iteration, the cumulative fractions converge to those of the true travel 

times.  

 



 

 

161

EKF_LTT

0

40

80

120

210 250 290 330 370

Travel Time (sec)

Fr
eq

ue
nc

y

True Iteration3
 

EKF_ODTT

0

40

80

120

210 250 290 330 370

Travel Time (sec)

Fr
eq

ue
nc

y

True Interation 2
 

           (a) MAER: 0.003    p-value: 0.066         (b) MAER: 0.014    p-value: 0.124  

 

FIGURE 7.26 Histogram of Travel Time for AVI Section 01 of the Case Study 

Network 
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          (a) MAER: 0.007    p-value: 0.191           (b) MAER: 0.072    p-value: 0.077  

 

FIGURE 7.27 Histogram of Travel Time for AVI Section 12 of the Case Study 

Network 
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          (a) MAER: 0.011    p-value: 0.051           (b) MAER: 0.020    p-value: 0.091  

 
FIGURE 7.28 Histogram of Travel Time for AVI Section 23 of the Case Study 

Network 
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FIGURE 7.29 Travel Time Cumulative Distribution Function for AVI Section 01 of 

the Case Study Network 
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FIGURE 7.30 Travel Time Cumulative Distribution Function for AVI Section 12 of 

the Case Study Network 
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  FIGURE 7.31 Travel Time Cumulative Distribution Function for AVI Section 23 

of the Case Study Network 
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7.3 CONCLUDING REMARKS 

In this chapter, the two bi-level calibration algorithms (EKF_LTT and EKF_ODTT) 

proposed in Chapter VI were applied to the I-10 freeway test network in order to 

evaluate their abilities to replicate observed traffic conditions. The simulated outputs 

were compared to the observed data. They included: 1) average travel time for the AVI 

section; 2) average travel time for each OD pair; 3) initial and calibrated OD matrix; and 

4) individual travel time distribution.  

 The results clearly indicated that neither algorithm could replicate the observed 

conditions by only calibrating the driver behavior parameter set. By adopting the bi-level 

calibration process, both models provided nearly identical results after several iterations, 

in terms of average travel times for the AVI sections as well as for the OD pairs.  

 The analysis of the calibrated OD matrix provided some insights into the effects 

of changes in OD matrix on average travel times. The results showed that the OD matrix 

was adjusted such that travel times for AVI sections 12 and 23 were increased, where a 

shift from less congested to congested traffic conditions needed to be made.  

Although there were some improvements in individual travel time distributions 

as a result of calibrating the OD matrix using the bi-level approach, no case was found 

that provides statistically valid travel time distributions for all three AVI sections. It was 

hypothesized that this was because the simulation input data were compiled from the 

dataset collected for multiple days. Consequently, a simulation case study was conducted 

where all the underlying information was assumed to be known a priori. The bi-level 

approaches were run using synthetic “true” data, and a calibrated OD matrix and 

parameter set were obtained. These were then compared to the true values.  

The results of the case study demonstrated that both models provided nearly 

identical results to the “true” traffic conditions. More importantly it was found that the 

simulated travel time distributions were statistically equivalent to the “true” distributions 

for all three AVI sections.  
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CHAPTER VIII 

 
SUMMARY AND CONCLUSIONS 

 

8.1 SUMMARY 

The problem statement of this dissertation identified three main needs: 1) the need to 

incorporate disaggregate ITS data into the calibration of microscopic traffic simulation 

models; 2) the need to adopt a statistically based calibration objective function to 

account for disaggregate data; 3) the need to perform simultaneous calibration of driver 

behavior parameters and the OD matrix. A summary of how these needs is addressed in 

this dissertation and the conclusions are provided in the following subsections. 

 

8.1.1 Incorporating Disaggregate ITS Data into the Calibration of Microscopic 

Traffic Simulation Models 

With the recent widespread deployment of intelligent transportation system (ITS) there 

is an abundance of data on traffic systems. Even though ITS data have been utilized to 

some extent in the calibration of microscopic traffic simulation models, most effort has 

focused on improving the quality of the calibration based on aggregate form of ITS data 

rather than disaggregate data. It was hypothesized that the use of disaggregate data in the 

calibration improves the ability of the model to replicate reality because all parts of 

disaggregate data have specific qualities which represent stochastic attributes of 

observed traffic conditions. In this dissertation, travel times in the form of a distribution 

derived from Automatic Vehicle Identification (AVI) data were used as performance 

measures to be replicated, as opposed to simple measures of central tendency such as the 

mean. They are not only key features associated with existing traffic conditions but also 

are of critical interest of most drivers.  
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Even though AVI data has been increasingly used as a main source of travel time 

data, there is a chance that the AVI data contains errors. Consequently, the data needs to 

be filtered out to ensure that a suspected observation is removed for use in the calibration 

of microscopic traffic simulation models. The purpose of Chapter IV was to evaluate the 

existing AVI travel time filtering algorithms and to develop a filtering algorithm to 

account for the sudden onset of congestion during peak hours. The existing filtering 

algorithms included: 1) simple moving average; 2) simple moving average plus median; 

3) TranStar TMC algorithm; and 4) TransGuide TMC algorithm. To evaluate the 

existing filtering algorithms, travel time data were derived from the AVI dataset 

collected along the I-10 freeway corridor in Houston, Texas. To overcome the deficits 

found in the evaluation of the existing filtering algorithm, a better algorithm was 

proposed such that underlying increasing or decreasing trends in AVI travel time 

observations can be traced better.  

 

8.1.2 Adopting a Statistically Based Calibration Objective Function to Account 

for Disaggregate Data  

In the calibration of microscopic traffic simulation models, the indicators that measure 

how well the simulation model is performing have been computed based on an average 

of travel time or volume counts on a specific link. However, these types of indicators can 

not sufficiently address certain aspects of observed traffic conditions. Therefore, in order 

to accurately replicate the dynamics of observed traffic conditions, a methodology for 

incorporating disaggregate data in the calibration of microscopic traffic simulation 

models needs to be developed. In this dissertation, a statistically based approach, which 

is based on a more disaggregate form of the observed travel time, was proposed in 

Chapter V. This approach was used to identify the best model parameter set by 

comparing the observed travel time distribution with the simulated travel time 

distribution. Specifically, the “consistency” between the observed and simulated travel 

time distributions was chosen as the objective function in the calibration process.  
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A statistically based approach was applied to one arterial (Bellaire Boulevard) 

and one freeway (I-10 freeway) test networks located to west of downtown in Houston, 

Texas. When the traffic conditions have large variability and a highly non-normal 

distribution, the use of parametric statistical test is questionable because they are based 

on some assumptions such as normality. It was found that the distributions of observed 

travel times on the two test networks violated these assumptions to some extent. 

Therefore, a non-parametric or distribution-free statistical approach was used because it 

does not require a priori assumptions about the distribution of the underlying population. 

In this dissertation, the Kolmogorov-Smirnov (KS) test was selected to check whether 

the observed and simulated data have the same travel time distribution. Not only was the 

resulting p-value from the KS test used to identify best model parameter set, it was also 

used in an automated calibration methodology, where the Genetic Algorithm (GA) 

operates on the principle of natural selection and genetics. 

Several advantages were identified for the use of a statistically based calibration 

objective function as a performance indicator. They included: 1) it defines what the 

“consistency” means; 2) it provides insight of how the “consistency” is quantified; 3) it 

provides a performance indicator that is easy to understand and simple to interpret; and 

4) the robustness of a statistically based objective function increases if datasets in 

multiple time-space measurement points are available.  

 

8.1.3 Calibrating Driver Behavior Parameters and the OD Matrix Simultaneously  

The interdependent relationship between travel demands and driver behavior parameters 

has not been taken into account in the calibration of microscopic traffic simulation 

models. The estimation of the OD matrix has been considered as a preliminary step to 

obtain the fixed travel demands that are used as inputs to microscopic traffic simulation 

models, rather than as variables to be adjusted in the calibration process. However, under 

certain situations, it is not possible to identify an appropriate parameter set that can 

replicate reality by only calibrating driver behavior parameters.  
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A methodology in which the OD matrix and driver behavior parameters are 

calibrated simultaneously using a bi-level approach was presented in Chapter III. In a bi-

level approach, driver behavior parameters and the OD matrix are calibrated iteratively. 

The upper phase seeks to minimize the difference between observed and simulated 

traffic conditions by adjusting driver behavior parameters, while the OD matrix is 

calibrated in the lower phase. To accomplish this purpose, detailed mathematical models 

were established in Chapter VI.   

It was hypothesized that inclusion of travel time information into the calibration 

of the OD matrix makes the simulation model replicate the observed traffic conditions 

better. To accomplish this purpose, the complex relationship between travel time data 

and the OD matrix should be identified first. However, it is difficult to write a closed 

form solution. Therefore, in this dissertation the Extended Kalman Filter algorithm 

(EKF) that can handle nonlinear system based on a linear approximation was selected to 

formulate this relationship. In addition, the issues relating to the estimation of the OD 

matrix were discussed. They included: 1) the estimation of the initial OD matrix using 

the Kalman filter algorithm; 2) the enforcement of non-negativity and equality 

constraints; 3) the estimation of error variance covariance matrices using a historical 

AVI dataset; and 4) the estimation of the derivative matrix of travel time connection 

matrix in the EKF formulation.  

The proposed method was applied to the I-10 freeway test network, where to 

evaluate the effects of including two types of the travel time data (AVI link travel time 

and AVI OD travel time) on the calibration accuracy the results were analyzed with 

respect to four different categories; 1) the average AVI section travel time; 2) the 

average OD travel time; 3) the calibrated OD matrix; and 4) the travel time distribution.  
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8.2 CONCLUSIONS 

This dissertation resulted in a number of findings. The following are the more important 

conclusion and findings: 

 

• The existing AVI travel time filtering algorithms did not trace underlying trends 

of increasing and decreasing travel times and result in the subsequent observation 

removed from the valid travel time data set.  

• A better method was proposed such that 1) it can represent underlying trends of 

travel time observations; 2) it can respond better when sudden changes in traffic 

conditions; and 3) it can reduce the chance of excluding valid travel time 

observations falsely. 

• The non-parametric statistical calibration objective function successfully 

explored the observed travel time distribution on the Bellaire arterial test 

network. In addition to the reduction in travel time MAER (21 percent) compared 

to default values, the calibration results indicated that the statistically based 

approach gave much superior results to those of simple metrics. Simple metrics 

are not robust enough to identify parameters that replicate the actual travel time 

distribution.  

• The non-parametric statistical approach identified a large number of statistically 

valid parameter set. Therefore, the analyst can bring their own knowledge for 

additional analysis to identify the best parameter set among the candidate 

parameter sets.  

• The application results of the statistical approach on the I-10 freeway test 

network indicated that it is not possible to identify an appropriate parameter set 

that can mimic the travel time distributions for entire AVI links by only 

calibrating driver behavior parameters.  

• The bi-level calibration results demonstrated that the marked improvement can 

be achieved by calibrating the OD matrix and driver behavior parameters 

simultaneously. Specifically, both models (EKF_LTT and EKF_ODTT 
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algorithms) provided the average AVI section travel times and the average OD 

travel times nearly identical to the observed data after several iterations. Even 

though it was not possible to replicate statistically valid travel time distributions 

for entire AVI sections, there were also noticeable improvements in travel time 

distributions.  

• The results of the case study, where all information were assumed to be known, 

indicated that both models provides the travel time distribution that are 

statistically equivalent to the true distributions.  

 

8.3 FUTURE RESEARCH 

Even though this dissertation contributes to the literature on the calibration of 

microscopic traffic simulation models in several way, there are a number of topics for 

the future research: 

 

• Removing outliers from AVI data is an important task to obtain reliable AVI 

travel time data. A model that responds to sudden onset of congestion was 

proposed in order to filter out AVI data in the first step of the research. However, 

the model was applied to AVI data from five weekdays. Future studies should be 

performed to verify the performance of the model with a larger amount of AVI 

data and under various traffic conditions. In addition, further research on a robust 

indicator that accurately captures changes in traffic conditions is required.  

• In this dissertation, the Kolmogorov-Smirnov test was selected as a statistical test 

to check whether the simulated and observed travel time distributions are 

statistically identical or not. More research regarding the use of different 

statistical tests are necessary.  

• The bi-level calibration process was applied to the freeway network with four 

AVI stations. Future studies can check the performance of the bi-level calibration 

approach with longer freeway networks. In addition, it is recommended that the 

bi-level calibration be applied to an arterial network.  
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• In this dissertation the application of the bi-level calibration process was limited 

to the congested network. It is recommended that further research be performed 

at a variety of congestion levels.  

• The maximum and minimum allowable values of the selected driver behavior 

parameters were based on engineering judgment in this dissertation. These values 

determined the parameter space to be searched in the Genetic Algorithm. To 

reduce computational challenge, future studies concerning the selection of 

allowable ranges should be performed. 

 



 

 

172

REFERENCES 

 

1. Dixon, M. Incorporating of Advanced Vehicle Identification Data into the 

Synthetic OD Estimation Process. Ph.D. dissertation, Texas A&M University, 

College Station, 2000. 

2. Bureau of Public Roads. Traffic Assignment Manual. U.S. Department of 

Commerce, Urban Planning Division, Washington D.C., 1964. 

3. Spiess, H. Conical Volume Density Functions. Transportation Science, Vol. 

24, No. 2, 1990, pp. 153-158. 

4. Chui, C. K. Kalman Filtering: With Real-Time Applications. Springer, New 

York, 1999. 

5. Welch, G. and G. Bishop. An Introduction to the Kalman Filter. TR 95-041, 

2004. [http://www.cs.unc.edu/~welch]  

6. Welch, G. and G. Bishop. An Introduction to the Kalman Filter. ACM 

SIGGRAPH, 2001.  

7. Gartner, N. H., C. J. Messer, and A. K. Rathi. Traffic Flow Theory. Oak Ridge 

National Laboratory, Oak Ridge, TN, 1997. 

8. Diekmann, J. K. A Modeling for Evaluation Network Impacts of Operational-

Level Transportation Projects. M.S. thesis, Virginia Polytechnic Institute and 

State University, Blacksburg, VA, 2000. 

9. Druitt, S. An Introduction to Microsimulation. Traffic Engineering and 

Control, Vol. 39, No. 9, September 1998, pp. 480–483. 

10. Choa, F., and R. Milam. Recommended Guidelines for the Calibration and 

Validation of Traffic Simulation Models. Fehr and Peers Transportation 

Consultants. 

http://www.fehrandpeers.com/Papers/Guidlines_traff_simulation.pdf. Accessed 

January, 2006. 

11. VISSIM User Manual–version 4.00. PTV Planung Transport Verkehr AG, 

Karlsruhe, Germany, 2004.  



 

 

173

12. Bloomberg, L., and J. Dale. Comparison of VISSIM and CORSIM Traffic 

Simulation Models on a Congested Network. In Transportation Research 

Record 1727, Transportation Research Board, National Research Council, 

Washington, D.C., 2000, pp. 25-60. 

13. Wiedemann, R. Simulation des Verkehrsflusses. Schriftenreihe des Instituts für 

Verkehrswesen, Heft 8, Universität (TU), Karlsruhe, Germany, 1974.  

14. Wiedemann, R. Modeling of RTI-Elements on multi-lane roads. In Advanced 

Telematics in Road Transport (edited by the Commission of the European 

Community, DG XIII), Brussels, 1991.  

15. Schulze, T, and T. Fliess. Urban Traffic Simulation with Psycho-Physical 

Vehicle-Following Models. Proceedings of the 1997 Winter Simulation 

Conference, Atlanta, GA 1997, pp. 1222-1228. 

16.  Fritzsche, H. A model for traffic simulation. Traffic Engineering and Control, 

Vol.  35, No. 5, 1994. pp. 317-321.  

17. CORSIM User’s Guide. FHWA, U.S. Department of Transportation, 

Washington, D.C., 2001. 

18. Wicks, D. A., and E. B. Lieberman. Development and Testing of INTRAS, a 

Microscopic Freeway Simulation Model Vol. 1 Program Design, Parameter 

Calibration and Freeway Dynamics Component Development. Report 

FHWA/RD-80/106. FHWA, U.S. Department of Transportation, Washington, 

DC, 1980.  

19. Aycin, M. F., and R. F. Benekohal. Comparison of Car-Following Models for 

Simulation. In Transportation Research Record 1678, Transportation Research 

Board, National Research Council, Washington, D.C., 1999, pp. 116–127. 

20. Halati, A., H. Lieu, and S. Walker. CORSIM-Corridor Traffic Simulation 

Model. In Traffic Congestion and Traffic Safety in the 21st Century: 

Challenges, Innovations, and Opportunities, American Society of Civil 

Engineers (ASCE), Chicago, IL, 1997, pp. 570–576.  



 

 

174

21. Skabardonis, A. Simulation of Freeway Weaving Areas. In Transportation 

Research Record 1802, Transportation Research Board, National Research 

Council, Washington, D.C., 2002, pp. 115–124.  

22. Rakha, H., and B. Crowther. Comparison of Greenshields, Pipes, and Van 

Aerde Car-Following and Traffic Stream Models. In Transportation Research 

Record 1802, Transportation Research Board, National Research Council, 

Washington, D.C., 2002, pp. 248–262.  

23. Fox, K. A., and R. Liu. Simulation Modelling Applied Road Transport 

European Scheme Tests. Institute for Transporation Studies at University of 

Leeds. 1999. http://www.its.leeds.ac.uk/projects/smartest/finrep.PDF. Accessed 

December, 2005. 

24. Chundury S., and B. Wolshon. Evaluation of CORSIM Car-Following Model 

by Using Global Positioning System Field Data. In Transportation Research 

Record 1710, Transportation Research Board, National Research Council, 

Washington, D.C., 2000, pp. 114-121.  

25. Fellendorf, M., and P. Vortisch. Validataion of the Microscopic Traffic Flow 

Model VISSIM in Different Real-World Situations. In Transportation 

Research Board 80th  Annual Meeting Compendium of Papers (CD-ROM), 

Transportation Research Board, National Research Council, Washington, D.C., 

2001. 

26. Gartner, N. H., C. J. Messer, and A. K. Rathi. Traffic Flow Theory. Oak Ridge 

National Laboratory, Oak Ridge, TN, 1997.  

27. Kim, K. Optimization Methodology for the Calibration of Transportation 

Network Micro-Simulation Models. Ph.D. dissertation, Texas A&M University, 

College Station, 2002.  

28. Park, B. B., and H. Qi. Development and Evaluation of a Calibration and 

Validation Procedure for Microscopic Simulation Models. Report VTRC 05-

CR1, Virginia Transportation Research Council, Charlottesville, VA, 2004.  



 

 

175

29. Cheu, R. L., W. W. Recker, and S. G. Ritchie. Calibration of INTRAS for 

simulation of 30-sec loop detector output. In Transportation Research Record 

1457, Transportation Research Board, National Research Council, Washington, 

D.C., 1994, pp. 202-215.  

30. Cheu, R. L., X. Jin, K. C. Ng, Y. L. Ng, and D. Srinivasan. Calibration of 

FREESIM for Singapore Expressway Using Genetic Algorithm. Journal of 

Transportation Engineering, ASCE, December 1998, pp. 526-535. 

31. Ma, T. and B. Abdulhai. Genetic Algorithm-Based Optimization Approach and 

Generic Tool for Calibrating Traffic Microscopic Simulation Parameters. In 

Transportation Research Record 1800, Transportation Research Board, 

National Research Council, Washington, D.C., 2002, pp. 6–15. 

32. Lee, D., X. Yang, and P. Chandrasekar. Parameter Calibration for PARAMICS 

Using Genetic Algorithm. In Transportation Research Board 80th  Annual 

Meeting Compendium of Papers (CD-ROM), Transportation Research Board, 

National Research Council, Washington, D.C., 2001.  

33. Park, B., and J. D. Schneeberger. Microscopic Simulation Model Calibration 

and Validation: A Case Study of VISSIM for a Coordinated Actuated Signal 

System. In Transportation Research Board 81s  Annual Meeting Compendium 

of Papers (CD-ROM), Transportation Research Board, National Research 

Council, Washington, D.C., 2002.  

34. Rakha, H., M. Van Aerde, L. Bloomberg, and X. Huang. Construction and 

Calibration of a Large-Scale Microsimulation Model of the Salt Lake Area. In 

Transportation Research Record 1644, Transportation Research Board, 

National Research Council, Washington, D.C., 1998, pp. 93-102. 

35. Kim, K. and L. R. Rilett. Simplex Based Calibration of Traffic 

Microsimulation Models Using ITS Data. In Transportation Research Record 

1855, Transportation Research Board, National Research Council, Washington, 

D.C., 2003, pp. 80-89. 



 

 

176

36. Gomes, G., A. May, and R. Horowitz. A Microsimulation Model of a 

Congested Freeway Using VISSIM. In Transportation Research Record 1876, 

Transportation Research Board, National Research Council, Washington, D.C., 

2004, pp. 71-81. 

37. Liu, S. S., and J. D. Fricker. Estimation of a Trip Table and the Theta 

Parameter in a Stochastic Network. Transportation Research A, Vol. 30, No. 4, 

1996, pp. 287-305. 

38. Yang, H., G. Meng, and M. G. H. Bell. Simultaneous Estimation of the Origin-

Destination Matrices and Travel-Cost Coefficient for Congested Networks in a 

Stochastic User Equilibrium. Transportation Science, Vol. 35, No. 2, 2001, pp. 

107-123. 

39. Ben-Akiva, M. E., D. Darda, M. Jha, H. Koutsopoulos, and T. Toledo. 

Calibration of Microscopic Traffic Simulation Models with Aggregate Data. In 

Transportation Research Record 1876, Transportation Research Board, 

National Research Council, Washington, D.C., 2004, pp. 10-19. 

40. Darda, D. Joint Calibration of a Microscopic Traffic Simulator and Estimation 

of Origin-Destination Flows, M.S. thesis, Dept. of Civil and Environmental 

Engineering, Massachusetts Institute of Technology, 2002. 

41. Chu, L., H. X. Liu, J. Oh, and W. Recker. A Calibration Procedure for 

Microscopic Traffic Simulation. In Transportation Research Board 83rd  

Annual Meeting Compendium of Papers (CD-ROM), Transportation Research 

Board, National Research Council, Washington, D.C., 2004. 

42. Armstrong, J. S. and F. Collopy. Error Measures for Generalizing about 

Forecasting Methods: Empirical Comparisons. International Journal of 

Forecasting, Vol. 8, 1992, 69-80. 

43. Armstrong, J. S. Long-Range Forecasting: From Crystal Ball to Computer. 

John Wiley and Sons, New York, 1985. 



 

 

177

44. Daigle, G., M. Thomas, and M. Vasudevan. Field Applications of Corsim: I-40 

Freeway Design Evaluation, Oklahoma City, OK. In Proceedings from the 

1998 Winter Simulation Conference, Washington, D.C., 1998, pp. 1161-1168. 

45. Horst, R. and P. Pardalos. Handbook of Global Optimization. Kluwer 

Academic Publisher, Boston, 1995. 

46. Kurian, M. Calibration of a Microscopic Traffic Simulator. M.S. thesis, 

Massachusetts Institute of Technology, Department of Civil and Environmental 

Engineering, 2000. 

47. Foy, M. D., R. F. Benekohal, and D. E. Goldberg. Signal Timing 

Determination Using Genetic Algorithms. In Transportation Research Record 

1365, Transportation Research Board, National Research Council, Washington, 

D.C., 1992, pp. 108–115. 

48. Hadi, M. A., and C. E. Wallace. Hybrid Genetic Algorithm to Optimize Signal 

Phasing and Timing. In Transportation Research Record 1421, Transportation 

Research Board, National Research Council, Washington, D.C., 1993, pp. 104–

112. 

49. Abu-Lebdeh, G. and R. F. Benekohal. Development of Traffic Control and 

Queue Management Procedures for Oversaturated Arterials. In Transportation 

Research Record 1603, Transportation Research Board, National Research 

Council, Washington, D.C., 1997, pp. 119–127. 

50. Park, B., C. J. Messer, and T. Urbanik II. Traffic Signal Optimization Program 

for Oversaturated Conditions: Genetic Algorithm Approach. In Transportation 

Research Record 1683, Transportation Research Board, National Research 

Council, Washington, D.C., 1999, pp. 133–142. 

51. Park, B., C. J. Messer, and T. Urbanik II. Enhanced Genetic Algorithm for 

Signal- Timing Optimization of Oversaturated Intersections. In Transportation 

Research Record 1727, Transportation Research Board, National Research 

Council, Washington, D.C., 2000, pp. 32–41. 



 

 

178

52. Abdulhai, B., J. B. Sheu, and W. Recker. Simulation of ITS on the Irvine Fort 

Area Using Paramics 1.5 Scalable Microscopic Traffic Simulator: Phase 1: 

Model Calibration and Validation. Technical Report, UCB PATH Research 

Report, 1999. 

53. Tom, V. M. and S. Mohan. Transit Route Network Design Using Frequency 

Coded Genetic Algorithm. Journal of Transportation Engineering, Vol. 129, 

No. 2, 2003, pp. 186–195. 

54. Pattnaik, S. B., S. Mohan, and V. M. Tom. Urban Bus Transit Route Network 

Design Using Genetic Algorithm. Journal of Transportation Engineering, Vol. 

124, No. 4, 1998, pp. 368–375. 

55. Chu, L. and X. Yang. Optimization of the ALINEA Ramp-metering Control 

Using Genetic Algorithm with Micro-simulation. In Transportation Research 

Board 82nd Annual Meeting Compendium of Papers (CD-ROM), 

Transportation Research Board, National Research Council, Washington, D.C., 

2003.  

56. Yin, Y. Genetic-Algorithms-based Approach for Bilevel Programming Models. 

Journal of Transportation Engineering, ASCE, Vol. 126, No. 2, 2000, pp. 115-

120. 

57. Baek-S, Kim-H, and Lim-Y. Multiple-Vehicle Origin-Destination Matrix 

Estimation from Traffic Counts Using Genetic Algorithm. Journal of 

Transportation Engineering, Vol. 130, No. 3, 2004, pp. 339-347. 

58. Reeves C., and J. Rowe. Genetic Algorithms: Principles and Perspectives. 

Kluwer, Boston, 2002. 

59. Saviotti, P. Applied Evolutionary Economics: New Empirical Methods and 

Simulation Techniques. Edward Elgar Publishing, Northampton, MA, 2002. 

60. Cremer, M. and Keller, H.  A New Class of Dyanamic Methods for the 

Identification of Origin-Destination Flows.  Transportation Research B, Vol. 

21, No. 2, 1987, pp. 117-132.  



 

 

179

61. Van Zuylen, H. J. and L. G. Willumsen. The Most Likely Trip Matrix 

Estimated from Traffic Counts. Transportation Research B, Vol. 14, No. 4, 

1980, pp. 281-293. 

62. Bell, Michael G. H. Variance and Covariance for Origin-Destination Flows 

When Estimated by Log-Linear Models. Transportation Research B, Vol. 19, 

No. 6, 1985, pp. 497-507. 

63. Cascett, E. and S. Nguyen. A Unified Framework for Estimating or Updating 

Origin/Destination Matrices from Traffic Counts. Transportation Research B, 

Vol. 22, No. 6, 1988, pp. 437-455.  

64. Chen, A., P. Chootinan, W. Recker, and H. M. Zhang. Development of a Path 

Flow Estimator for Deriving Steady-State and Time-Dependent Origin-

Destination Trip Tables. Institute of Transportation Studies University of 

California, Irvine, 2004. 

65. Abrahamsson, T. Estimation of Origin-Destination Matrices Using Traffic 

Counts–A Literature Survey. International Institute for Applied Systems 

Analysis, Austria, 1998. 

66. Okutani, I. The Kalman Filtering Approaches in Some Transportation and 

Traffic Problems. Proceedings of the 10th International Symposium on 

Transportation and Traffic Flow, Elsevier Science, Cambridge, MA, 1987, pp. 

397-416. 

67. Ashok, K. and M. E. Ben-Akiva. Dynamic Origin-Destination Matrix 

Estimation and Prediction for Real-Time Traffic Management System.  

Proceedings of the 12nd International Symposium on Transportation and 

Traffic Flow, Elsevier Science, Berkeley, CA, 1993, pp. 465-484. 

68. Van der Zijpp, N. J. and R. Hamerslag. Improved Kalman Filtering Approach 

for Estimating Origin-Destination Matrices for Freeway Corridors. In 

Transportation Research Record 1443, TRB, National Research Council, 

Washington, D.C., 1994, pp. 54-63. 



 

 

180

69. Debashish B, K. C. Shina, and J. V. Krogmeier. Real-Time Freeway O-D 

Prediction Algorithm Under ATIS Environment. Proceedings of the 5th 

International Conference on Application of Advanced Technologies in 

Transportation, Newport Beach, CA, 1998, pp. 147-459. 

70. Chang, G. L. and J. Wu. Recursive Estimation of Time-Varying Origin-

Destination Flows from Traffic Counts in Freeway Corridors. Transportation 

Research B, Vol. 28, No. 2, 1994, pp. 141-160. 

71. Shou-Ren, H., S. M. Madant, J. V. Krogmeier, and S. Peeta. Estimation of 

Dynamic Assignment Matrices and OD Demands Using Adaptive Kalman 

Filtering. ITS Journal, Vol. 6, 2001, pp. 281-300. 

72. Hironori S., T. Nakatsuji, Y. Tanaboriboon, and K. Takahashi. Dynamic 

Estimation of Origin-Destination Travel Time and Flow on a Long Freeway 

Corridor. In Transportation Research Record 1739, TRB, National Research 

Council, Washington, DC, 2000, pp. 67-76. 

73. Kim, K. and L. R. Rilett. Calibration of Micro-Simulation Supply and Demand 

Parameters Using a Bi-level Algorithm. Proceedings of the 7th International 

Conference on Applications of Advanced Technology in Transportation 

Conference, Boston, MA, August 2002, pp 902-909. 

74. Kim, W. An Improved Bus Signal Priority System for Networks with Nearside 

Bus Stops. Ph.D. dissertation, Texas A&M University, College Station, 2004. 

75. Schultz, G. Developing a Methodology to Account for Commercial Motor 

Vehicles Using Microscopic Traffic Simulation Models. Ph.D. dissertation, 

Texas A&M University, College Station, 2003. 

76. Dion, F., and H. Rakha. Estimating Spatial Travel Times Using Automatic 

Vehicle Identification Data. In Transportation Research Board 82nd  Annual 

Meeting Compendium of Papers (CD-ROM), Transportation Research Board, 

National Research Council, Washington, D.C., 2003. 

77. Jacobson, L. N., N. L. Nihan, and J. D. Bender. Detecting Erroneous Loop 

Detector Data in a Freeway Traffic Management System. In Transportation 



 

 

181

Research Record 1287, Transportation Research Board, National Research 

Council, Washington, D.C., 1990, pp. 151-166. 

78. Park, E. S., S. Turner, and C. H. Spiegelman. (2003), Empirical Approaches to 

Outlier Detection in ITS Data.  In Transportation Research Board 82nd  Annual 

Meeting Compendium of Papers (CD-ROM), Transportation Research Board, 

National Research Council, Washington, D.C., 2003. 

79. Zietsman, J. Incorporating Sustainability Performance Measures into the 

Transportation Planning Process. Ph.D. dissertation, Texas A&M University, 

College Station, 2000. 

80. Bloomberg, L., and A. D. May. Simulation Modeling of the Santa Monica 

Freeway. California PATH Working Paper, UCB-ITS-PWP-94-14, 1994. 

81. Brockfeld, E., R. D. Kühne, and P. Wagner. Calibration and Validation of 

Microscopic Traffic Flow Models. In Transportation Research Board 83rd  

Annual Meeting Compendium of Papers (CD-ROM), Transportation Research 

Board, National Research Council, Washington, D.C.,  2004. 

82. Koplelman, F. S. Prediction with Disaggregate Models: The Aggregation Issue. 

In Transportation Research Record 527, Transportation Research Board, 

National Research Council, Washington, D.C., 1974, pp. 73-80. 

83. Benjamin, J. R., and C. A. Cornell. Probability, Statistics, and Decision for 

Civil Engineers. McGraw-Hill, New York, 1970.  

84. Shultz, G. Developing a Methodology to Account for Commercial Motor 

Vehicles Using Microscopic Traffic Simulation Models. Texas A&M 

University, College Station, TX, 2003.  

85. Devore, J. L. Probability and Statistics for Engineering and the Sciences, 4th 

Edition, Duxbury Press, Pacific Grove, CA, 1995.  

86. O'Connor, P. D. T. Practical Reliability Engineering, 4th Edition, John Wiley & 

Sons Inc., New York, 2002.  



 

 

182

87. Press, W. H., S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes 

in C: The Art of Scientific Computing. Cambridge University Press, New York, 

2002. 

88. Highway Capacity Manual (HCM). TRB, National Research Council, 

Washington, D.C., 2000. 

89. PTV America Inc., VISSIM FAQ, www.english.ptv.de/cgi-

bin/traffic/traf_faq.pl, Accessed November, 2005. 

90. Ashok, K. Estimation and Prediction of Time-Dependent Origin-Destination 

Flows. Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, 

MA, 1996. 

91. Brandriss, J. J. Estimation of Origin-Destination Flows for Dynamic Traffic 

Assignment. M.S, thesis, Massachusetts Institute of Technology, Cambridge, 

MA, 2001. 

92. Bell, M. G. H. The Estimation of Origin-Destination Matrices by Constrained 

Generalized Least Squares. Transportation Research B, Vol. 25, No. 1, 1991, 

pp. 13-22. 

93. Van der Zijpp, N. J. and R. Hamerslag. Improved Kalman Filtering Approach 

for Estimating Origin-Destination Matrices for Freeway Corridors. In 

Transportation Research Record 1443, TRB, National Research Council, 

Washington, D.C., 1994, pp. 54-63. 

94. Nihan, N. L. and G. A. Davis. Recursive Estimation of Origin-Destination 

Matrix from Input/Output Counts. Transportation Research B, Vol. 21, No. 2, 

1987, pp. 149-163. 

 



 

 

183

 

APPENDIX A 

 

PERL AUTOMATED CALIBRATION PROGRAM  

FOR THE BI-LEVEL APPROACH 
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The original source code consists of more than 2500 lines. Because of space limitations, 

the overall structures of Perl program for the bi-level calibration are presented. The 

focus is placed on describing the tasks that are performed in each sub functions.  

 

# Specify user controllable inputs  

 number of population ($population) 
number of generation ($generation)  
maximum number of bi-level iteration ($bi) 
probabilities of crossover and mutation($pro_cross, $pro_mutation) 
total number of bits in binary chromosome($bit) 
simulation time interval ($from_time, $to_time) 
number of off-ramp connector($off_ramp) 
number of OD pairs($OD pair) 

# Set file names  

 input file (*.inp) 
output file (accepted and rejected parameter, p_value and MAER, log file, ) 
other files required to run VISSIM (ex. *.ini, *.pua, *.vap)  
observed link travel time file  
observed OD travel time file 
VISSIM output file (*.rsr, *.rsz) 
 

# Open output files and write headings  

 print heading (parameters, generation, iteration , p_value, MAER, and etc) 

# Define path and directories information  

 VISSIM directory "c:/Program Files/PTV_Vision/ViSSIM400/Exe/" 
path “c:\\automated bi level calibration\\”  
 

# Define time varying variables  

 Kalman filter variables (observed and estimated split proportion matrix,  link 
choice proportion matrix, origin matrix, traffic count matrix, Kalman ganin 
matrix, and etc) 
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# MAIN 
{ 
 sub function: &Read ramp information file; 

sub function: &Read observed link travel time file; 
sub function: &Read observed OD travel time; 
sub function: &Read basic Kalman filter matrix; 
 
for ($i=$bi;…;…) 
{ 
      #### GA algorithm #### 
      sub function: &Initial; (#generate and test 1st trial candidate chromosomes) 
      do 
      { 
            sub function: &Crossover; 
            sub function: &Mutation; 
            sub function: &Conversion to real; 
            sub function: &VISSIM run; 
            sub function: &Statistical test; 
            sub function: &Selection;   
     } while($generation); 
 
      #### Kalman filter #### 
      for ($i=$population;… ;…)  
     { 
            sub function: &Kalman matrix;  
            sub function: &Derivative matrix;  
            sub function: &Travel time matrix;  
            sub function: &Extended Kalman filter;             
      } 
     sub function: &Write new OD matrix in VISSIM input file;  
} 

}  
 
 
# sub function &Initial  
{  
 for ($i=$population;… ;…) { generate binary chromosome; } 

sub function: &Conversion to real; 
sub function: &VISSIM run; 
sub function: &Statistical test; 
sub function: &Selection;   

}  
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# sub function & Conversion to real 
{ 
 for ($i=$population;…;…)  

{ 
      convert parameters represented in binary strings to real numbers; 
      repeat conversion for all selected parameters; 
      compute values of each parameter by taking into account its maximum,  
      minimum, and precision;   
} 

} 
 
 
# sub function & VISSIM run 
{ 
 for ($i=$population;…;…)  

{ 
      open VISSIM *.inp file; 
      make new directories for VISSIM run; 
      write trial VISSIM behavior parameters in *.inp file; 
      run "VISSIM ".$path.$new_dir."\\I10.inp\" -s1" ; 
} 

}  
 
 
# sub function & Statistical test 

{ 
 for ($i=$population;…;…)  

{ 
      read simulated travel time from *.rsz and *rsr files; 
      combine and sort observed and simulated travel times; 
      construct simulated CDF;  
      construct observed CDF;  
      compute Kolmogorov-Smirnov test statistics; 
      compute p_value; 
      compute MAER;   
} 

}  
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# sub function & Conversion to real 
{ 
 for ($i=$population;…;…)  

{ 
      convert parameters represented in binary strings to real numbers; 
      repeat conversion for all selected parameters; 
      compute values of each parameter by taking into account its maximum,  
      minimum, and precision;   
} 

} 
 
 
# sub function & VISSIM run 
{ 
 for ($i=$population;…;…)  

{ 
      open VISSIM *.inp file; 
      make new directories for VISSIM run; 
      write trial VISSIM behavior parameters in *.inp file; 
      run "VISSIM ".$path.$new_dir."\\I10.inp\" -s1" ; 
} 

}  
 
 
# sub function & Statistical test 

{ 
 for ($i=$population;…;…)  

{ 
      read simulated travel time from *.rsz and *rsr files; 
      combine and sort observed and simulated travel times; 
      construct simulated CDF;  
      construct observed CDF;  
      compute Kolmogorov-Smirnov test statistics; 
      compute p_value; 
      compute MAER;   
} 

}  
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# sub function & Selection 
{ 
 for ($i=$population;…;…)  

{ 
      save trial chromosome information if it pass KS test;  
      compute fitness value using p_value; 
} 
compute relative fitness for each accepted chromosomes;  
compute cumulative fitness for all accepted chromosomes; 

}  
 
 
# sub function & Crossover 
{ 
 for ($i=$population/2;…;…)  

{ 
      choose randomly bit location and bit length for crossover operation;  
      select two chromosomes using crossover probability; 
      perform crossover operation; 
} 

}  
 
 
 
# sub function & Mutation 
{ 
 for ($i=$population;…;…)  

{ 
      choose randomly bit location for mutation operation;  
      select one chromosome using mutation probability; 
      perform mutation operation; 
} 

} 
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# sub function & Kalman matrix 

{ 

 for ($i=$time_step;…;…)  
{ 
      create time varying Kalman matrices;   
} 
*observed and estimated split proportion matrix,  link choice proportion matrix, 
origin matrix, traffic count matrix, Kalman ganin matrix, and etc 

} 

 
 
# sub function & Derivative matrix 

{ 

 make new directories for VISSIM run;  
write best behavior parameters in *.inp;  
write OD estimates from previous time step in *.inp;  
run VISSIM; 
obtain simulated travel time(1) ; 
for ($i=$OD pair;…;…)  
{ 
      make new directories for VISSIM run;  
      increase OD matrix by ∆ for obtaining partial derivative; 
      write OD+ ∆ in *.inp; 
      run VISSIM; 
      obtain simulated travel time(2); 
} 

} 

 
 
# sub function & Travel time matrix 

{ 

 for ($i=$OD pair;…;…)  
{ 
       compute difference (derivative) between simulated travel times 1 and 2;        
}   
create travel time connection matrix using partial derivative; 
create travel time measurement matrix using observed and travel times 1  

} 
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# sub function & Extended Kalman filter 

{ 

 perform Kalman filter alogorithm based on matrices listed above sub functions; 

)(tb−  = )1( −tb  

)(tP −  = )1( −tP  

)(tK  = ( ) 1)()()()()()( −−− + tRtHtPtHtHtP T  

)(tb  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−+ −− )1()1()()(

)(
)(

)()( tbtHtbtH
ttt
tv

tKtb obs  

)(tP  = ( ) )()()( tPtHtKI −−  
  

check non-negativity and equality constraints; 
} 
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APPENDIX B 

 

NETWORK SUPPLY AND DEMAND DATA 
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FIGURE B.1 Detailed Layout of the I-10 Freeway Test Network in Houston 
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FIGURE B.2 Aerial Photo Map of the I-10 Freeway Test Network in Houston 
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TABLE B.1 Observed Volume Data for the I-10 Freeway Test Network in Houston 

Link Number Volume (veh/hr)

(Main or On-ramp) 6:30~7:00AM 7:00~7:30AM 7:30~8:00AM

Start AVI 0 10 4069 5296 4174

11 762 929 949

31 1066 1299 1329

51 777 975 895

71 797 1000 918

91 613 769 707

121 541 679 623

141 744 857 921

151 757 873 937

171 927 1069 1147

181 634 731 785

AVI 0 AVI 1

AVI 1 AVI 2

AVI 2 AVI 3

From To

 
 

TABLE B.2 Estimated AVI OD Split Proportion for the I-10 Freeway Test 

Network in Houston 

Time Interval

Origin Destination 6:30~7:00AM 7:00~7:30AM 7:30~8:00AM

0 0 0.19 0.20 0.21

0 1 0.43 0.46 0.49

0 2 0.04 0.02 0.03

0 3 0.34 0.32 0.26

1 1 0.58 0.77 0.89

1 2 0.09 0.12 0.11

1 3 0.34 0.11 0.00

2 2 0.59 0.67 0.59
2 3 0.41 0.33 0.41

AVI OD 
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FIGURE B.3 Aerial Photo Map of the Bellaire Arterial Test Network in Houston 
* Detailed layout of the Bellaire arterial test network is provided in Section 3.2.1. 

 

 

TABLE B.3 Observed Volume Data for the Bellaire Arterial Test Network in 

Houston 

Cross

Street 7:30~7:45AM 7:45~8:00AM 8:00~8:15AM 8:15~8:30AM

East 1752 1612 1468 1320

North 260 184 156 112

Sourth 160 84 84 72

North 52 40 44 28
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North 232 264 232 168

Sourth 184 228 276 224

North 1000 992 1126 1076

Sourth 648 640 612 552
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TABLE B.4 Observed Turning Percentage for Each Approach for the Bellaire 

Arterial Test Network in Houston 

Turning Percentage (%)

L** TH R L TH R L TH R L TH R

7:30~7:45AM 2 97 1 29 28 43 5 50 45 1 92 6

7:45~8:00AM 1 98 1 35 22 43 5 19 76 1 95 4

8:00~8:15AM 1 98 1 33 28 38 5 14 81 2 94 5

8:15~8:30AM 1 98 2 21 25 54 39 11 50 2 90 8

7:30~7:45AM 1 99 0 38 15 46 58 8 33 0 99 1

7:45~8:00AM 1 98 0 50 10 40 67 0 33 0 98 1

8:00~8:15AM 1 99 0 27 27 45 67 11 22 0 99 1

8:15~8:30AM 1 99 0 29 0 71 71 0 29 0 99 0

7:30~7:45AM 3 92 5 17 40 43 15 27 59 13 77 10

7:45~8:00AM 4 92 3 23 41 36 13 33 54 12 76 12

8:00~8:15AM 7 90 3 7 55 38 14 32 55 13 71 16

8:15~8:30AM 9 89 3 10 48 43 13 33 53 7 75 18

7:30~7:45AM 7 84 9 17 72 12 36 60 4 17 72 10

7:45~8:00AM 7 87 5 22 66 13 38 53 9 14 69 17

8:00~8:15AM 10 81 9 17 74 9 32 56 12 16 70 15

8:15~8:30AM 9 81 9 21 70 9 36 45 19 10 75 16

Cross Street Time Interavl EB* NB SB WB

Bintiff

Tarnef

Rookin

Hilcroft

 
      * EB denotes east bound approach. 

      ** L, TH, and R denote left turn, through, and right turn movements, respectively. 
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TABLE B.5 Observed Volume Data for the Case Study Test Network in Houston 

Link Number
(Main or On-ramp) 6:30~6:50AM 6:50~7:00AM 7:00~7:10AM 7:10~7:20AM

Start AVI 0 10 4500 6400 6100 5800
11 750 1200 1150 850
31 650 750 850 750
51 600 950 1050 900
71 600 900 1050 900
91 700 700 850 850

121 500 500 750 750
141 450 450 500 500
151 400 400 450 450
171 700 700 800 800
181 450 450 500 500

Link Number
(Main or On-ramp) 7:20~7:30AM 7:30~7:40AM 7:40~7:50AM 7:50~8:00AM

Start AVI 0 10 5500 5000 4500 4500
11 800 700 700 700
31 650 600 600 600
51 700 600 600 600
71 850 800 800 800
91 750 700 700 700

121 750 750 700 650
141 500 600 600 600
151 450 450 500 500
171 800 800 900 900
181 500 500 550 550

Volume (veh/hr)

Volume (veh/hr)

AVI 1 AVI 2

AVI 2 AVI 3

From To

AVI 0 AVI 1

AVI 1 AVI 2

AVI 2 AVI 3

From To

AVI 0 AVI 1

 
 * The “True” and “Starting” OD split proportions for the case study test network are provided in Chapter 

VII and Appendix E.  
 

 

 

 



 

 

198

 

APPENDIX C 

 

STATISTICALLY VALID PARAMETER SETS  

ON THE BELLAIRE ARTERIAL TEST NETWORK 
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The definitions of the selected VISSIM parameters are as follows: 

P1 Number of observed preceding vehicles 

P2 Look ahead distance 

P3 Average standstill distance 

P4 Additive part of desired safety distance 

P5 Multiplicative part of desired safety distance 

P6 Lane Change Distance 
 

 

TABLE C.1 Complete set of Statistically Valid Parameter Sets on the Bellaire 
Arterial Test Network 

 
No P1 P2 P3 P4 P5 P6 p_val MAER No P1 P2 P3 P4 P5 P6 p_val MAER

1 1 130 2 5 5 260 0.31 0.06 21 2 240 3 4 4 260 0.53 0.02
2 2 240 3 4 4 210 0.08 0.10 22 0 130 2 5 5 260 0.31 0.06
3 1 270 2 4 7 280 0.38 0.07 23 3 130 1 5 3 100 0.21 0.06
4 4 190 2 5 3 100 0.45 0.02 24 3 190 2 5 4 230 0.13 0.05
5 2 240 4 4 4 270 0.13 0.06 25 4 100 3 4 3 100 0.78 0.03
6 3 130 1 5 5 80 0.31 0.06 26 2 230 3 4 4 210 0.61 0.03
7 3 100 3 4 4 230 0.17 0.05 27 3 230 4 5 5 80 0.61 0.06
8 2 240 3 4 4 270 0.17 0.07 28 4 140 2 5 3 100 0.08 0.06
9 2 330 1 5 7 250 0.08 0.03 29 1 240 2 4 7 280 0.17 0.01
10 2 290 1 8 1 210 0.08 0.02 30 4 190 2 5 4 100 0.06 0.06
11 3 310 3 5 2 140 0.10 0.05 31 1 270 2 4 7 270 0.08 0.06
12 4 150 2 5 5 260 0.31 0.08 32 3 300 3 4 4 220 0.31 0.06
13 3 80 3 5 2 140 0.53 0.08 33 2 40 3 4 4 280 0.17 0.03
14 3 90 2 5 4 270 0.78 0.05 34 4 390 2 5 3 100 0.10 0.03
15 1 40 4 4 4 290 0.06 0.05 35 0 270 2 4 7 280 0.13 0.07
16 3 210 3 5 2 130 0.61 0.03 36 4 130 1 5 5 80 0.31 0.01
17 1 90 1 6 6 280 0.17 0.02 37 3 330 3 5 2 140 0.31 0.06
18 4 190 2 5 3 90 0.26 0.01 38 0 100 2 5 5 260 0.61 0.04
19 2 40 3 4 4 270 0.17 0.01 39 3 130 1 5 4 80 0.38 0.04
20 2 90 1 7 2 260 0.08 0.02 40 3 210 3 4 4 130 0.31 0.06  

* p_val : p_value from Kolmogorov-Smirnov Test 
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No P1 P2 P3 P4 P5 P6 p_val MAER No P1 P2 P3 P4 P5 P6 p_val MAER

41 2 240 3 5 2 260 0.13 0.02 86 3 80 3 5 2 270 0.45 0.06
42 1 40 2 5 3 100 0.17 0.06 87 2 140 2 5 3 100 0.53 0.06
43 4 180 2 5 3 90 0.31 0.04 88 4 150 2 5 5 250 0.78 0.06
44 1 40 4 4 4 230 0.38 0.06 89 4 190 2 5 3 110 0.92 0.04
45 3 130 1 5 5 160 0.31 0.06 90 3 310 3 5 4 140 0.61 0.06
46 2 240 3 4 4 190 0.26 0.01 91 3 190 2 6 6 230 0.70 0.06
47 3 100 3 4 4 100 0.26 0.03 92 3 80 3 5 3 160 0.31 0.06
48 1 140 1 5 5 80 0.45 0.03 93 2 290 3 4 4 210 0.61 0.06
49 4 190 1 8 1 90 0.53 0.06 94 2 290 1 8 1 230 0.17 0.06
50 2 290 2 5 3 210 0.31 0.03 95 4 100 3 4 3 90 0.45 0.01
51 3 210 3 5 2 140 0.26 0.06 96 2 290 1 8 4 210 0.21 0.06
52 2 330 1 5 7 280 0.06 0.08 97 3 80 2 5 4 270 0.13 0.05
53 3 80 1 5 7 130 0.26 0.06 98 3 150 2 5 5 260 0.85 0.06
54 3 100 3 4 4 200 0.53 0.03 99 1 90 1 6 4 280 0.70 0.06
55 3 310 3 4 4 270 0.45 0.06 100 1 290 1 6 6 280 0.08 0.02
56 2 240 3 5 2 140 0.13 0.00 101 1 40 2 4 7 280 0.08 0.10
57 2 240 3 4 4 130 0.61 0.06 102 0 130 2 5 5 250 0.31 0.06
58 3 310 3 5 2 280 0.21 0.06 103 3 90 2 5 4 280 0.53 0.04
59 2 240 3 4 4 280 0.53 0.06 104 3 190 2 5 4 290 0.13 0.04
60 2 330 1 5 7 240 0.26 0.02 105 2 240 3 4 2 290 0.45 0.06
61 4 110 2 5 5 260 0.26 0.06 106 4 340 2 5 3 100 0.38 0.03
62 3 350 3 5 2 140 0.21 0.01 107 2 130 2 8 1 210 0.53 0.06
63 2 240 4 5 2 140 0.26 0.06 108 2 140 3 4 4 280 0.38 0.03
64 2 380 1 5 7 250 0.38 0.04 109 2 190 2 5 7 250 0.61 0.06
65 3 130 2 5 5 80 0.53 0.06 110 2 120 3 4 4 260 0.31 0.05
66 4 150 1 5 5 260 0.10 0.07 111 3 80 1 7 2 230 0.10 0.02
67 2 210 3 4 4 260 0.08 0.06 112 3 90 2 5 4 300 0.70 0.06
68 3 140 1 5 5 80 0.85 0.02 113 1 120 1 5 5 210 0.17 0.06
69 3 100 1 4 4 230 0.13 0.06 114 3 310 3 5 2 130 0.26 0.02
70 1 270 2 4 4 280 0.70 0.06 115 4 310 3 5 2 140 0.45 0.06
71 3 190 2 5 4 280 0.78 0.06 116 3 190 4 4 4 230 0.26 0.06
72 1 90 1 6 6 230 0.96 0.03 117 2 40 1 5 2 270 0.31 0.06
73 1 270 2 4 7 150 0.31 0.00 118 4 190 2 4 3 90 0.26 0.06
74 2 90 1 7 2 270 0.53 0.06 119 2 90 2 5 4 210 0.21 0.06
75 3 210 3 10 2 130 0.78 0.06 120 4 230 3 4 4 90 0.61 0.06
76 3 140 2 5 3 100 0.38 0.06 121 2 40 2 5 4 270 0.26 0.06
77 0 130 2 5 5 140 0.13 0.06 122 4 390 3 4 3 100 0.26 0.09
78 4 140 2 5 3 160 0.45 0.04 123 2 240 4 4 4 290 0.10 0.06
79 1 130 2 5 4 100 0.31 0.06 124 3 190 2 5 4 210 0.31 0.09
80 3 80 3 5 4 140 0.26 0.06 125 4 90 2 5 4 100 0.10 0.10
81 3 210 3 5 4 170 0.26 0.06 126 3 210 3 5 4 100 0.38 0.06
82 4 130 2 5 5 260 0.06 0.06 127 1 240 4 4 4 290 0.17 0.08
83 4 140 2 5 2 130 0.13 0.06 128 3 210 3 5 1 130 0.78 0.06
84 2 240 3 5 4 270 0.85 0.03
85 2 250 3 4 4 270 0.06 0.08  
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APPENDIX D 

 

CALIBRATION RESULTS FROM THE BI-LEVEL APPROACH  

FOR THE I-10 FREEWAY TEST NETWORK
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FIGURE D.1 Average Travel Times from the EKF_LTT Algorithm for the I-10 

Test Network (7:00AM~7:30AM) 
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FIGURE D.2 Average Travel Times from the EKF_LTT Algorithm for the I-10 

Test Network (7:30AM~8:00AM) 
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FIGURE D.3 Average Travel Times from the EKF_ODTT Algorithm for the I-10 

Freeway Test Network (7:00AM~7:30AM) 
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FIGURE D.4 Average Travel Times from the EKF_ODTT Algorithm for the I-10 

Freeway Test Network (7:30AM~8:00AM)  



 

 

204

0

200

400

600

800

OD 01 OD 02 OD 03 OD 12 OD 13 OD 23
OD Pair

Tr
av

el
 T

im
e 

(s
ec

)

OBS EKF_LTT EKF_ODTT

 
FIGURE D.5 Average Travel Times for OD Pairs for the I-10 Freeway Test 

Network (7:00AM~7:30AM)  
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FIGURE D.6 Average Travel Times for OD Pairs for the I-10 Freeway Test 

Network (7:30AM~8:00AM)  
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FIGURE D.7 Calibrated OD Split Proportion from the EKF_LTT and EKF_ODTT 

Algorithm for the I-10 Freeway Test Network (6:30AM~7:00AM) 
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TABLE D.1 Initial and Calibrated OD Split Proportions at Each Iteration from the 

EKF_LTT Algorithm for the I-10 Freeway Test Network (6:30~7:00) 

Time 
Interval 

OD 
Pair 

0 
(Initial) 1 2 3 4 5 6 Diff* 

00 0.19 0.21 0.17 0.17 0.19 0.17 0.16 -0.03 

01 0.43 0.40 0.47 0.56 0.60 0.61 0.64 0.21 

02 0.04 0.00 0.06 0.05 0.07 0.06 0.08 0.04 

03 0.34 0.39 0.30 0.22 0.14 0.15 0.13 -0.21 

11 0.58 0.52 0.52 0.41 0.39 0.36 0.33 -0.25 

12 0.09 0.08 0.15 0.16 0.25 0.26 0.30 0.21 

13 0.34 0.40 0.34 0.43 0.37 0.37 0.37 0.03 

22 0.59 0.67 0.59 0.59 0.52 0.55 0.58 -0.01 

6:30~7:00  
  
  
  
  
  
  
  23 0.41 0.33 0.41 0.41 0.48 0.45 0.42 0.01 

 

TABLE D.2 Initial and Calibrated OD Split Proportions at Each Iteration from the 

EKF_ODTT Algorithm for the I-10 Freeway Test Network (6:30~7:00) 

Time 
Interval 

OD 
Pair 

0 
(Initial) 1 2 3 4 5 Diff* 

00 0.19 0.18 0.18 0.16 0.16 0.15 -0.04 

01 0.43 0.37 0.26 0.23 0.22 0.20 -0.23 

02 0.04 0.00 0.02 0.02 0.02 0.05 0.01 

03 0.34 0.45 0.53 0.60 0.60 0.59 0.25 

11 0.58 0.53 0.62 0.66 0.66 0.65 0.07 

12 0.09 0.00 0.00 0.00 0.03 0.00 -0.09 

13 0.34 0.47 0.38 0.34 0.31 0.35 0.01 

22 0.59 0.68 0.74 0.70 0.69 0.71 0.12 

6:30~7:00  
  
  
  
  
  
  
  23 0.41 0.32 0.26 0.30 0.31 0.29 -0.12 

        * Difference between the initial and final OD split proportions 
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APPENDIX E 

 

CALIBRATION RESULTS FROM THE BI-LEVEL APPROACH  

FOR THE CASE STUDY TEST NETWORK  
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FIGURE E.1 Average Travel Times from the EKF_LTT Algorithm for the Case 

Study Network (7:00AM~7:30AM) 
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FIGURE E.2 Average Travel Times from the EKF_LTT Algorithm for the Case 

Study Network (7:30AM~8:00AM) 
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FIGURE E.3 Average Travel Times from the EKF_ODTT Algorithm for the Case 

Study Network (7:00AM~7:30AM) 
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FIGURE E.4 Average Travel Times from the EKF_ODTT Algorithm for the Case 

Study Network (7:30AM~8:00AM)  
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FIGURE E.5 Average Travel Times for OD Pairs for the Case Study Network 

(7:00AM~7:30AM)  
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FIGURE E.6 Average Travel Times for OD Pairs for the Case Study Network 

(7:30AM~8:00AM)  
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FIGURE E.7 Calibrated OD Split Proportion for the Case Study Network 

(6:30AM~7:00AM) 
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TABLE E.1 True, Starting, and Calibrated OD Split Proportions at Each Iteration 

from the EKF_LTT Algorithm for the Case Study Network 

(6:30~7:00AM) 

Time Interval OD Pair True Starting 1 2 3 Diff* 

00 0.10 0.10 0.09 0.10 0.10 0.00 

01 0.40 0.30 0.33 0.33 0.32 -0.08 

02 0.20 0.15 0.16 0.16 0.16 -0.04 

03 0.30 0.45 0.41 0.41 0.42 0.12 

11 0.40 0.30 0.28 0.28 0.29 -0.11 

12 0.30 0.25 0.27 0.28 0.27 -0.03 

13 0.30 0.45 0.46 0.44 0.44 0.14 

22 0.40 0.40 0.37 0.35 0.37 -0.03 

6:30~7:00 

23 0.60 0.60 0.63 0.65 0.63 0.03 
 

TABLE E.2 True, Starting, and Calibrated OD Split Proportions at Each Iteration 

from the EKF_ODTT Algorithm for the Case Study Network  

Time Interval OD Pair True Starting 1 2 Diff* 

00 0.10 0.10 0.11 0.11 0.01 

01 0.40 0.30 0.32 0.32 -0.08 

02 0.20 0.15 0.14 0.13 -0.07 

03 0.30 0.45 0.44 0.44 0.14 

11 0.40 0.30 0.30 0.29 -0.11 

12 0.30 0.25 0.21 0.22 -0.08 

13 0.30 0.45 0.49 0.49 0.19 

22 0.40 0.40 0.41 0.42 0.02 

6:30~7:00 

23 0.60 0.60 0.59 0.58 -0.02 
        * Difference between the true and final OD split proportions 
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