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ABSTRACT 

A Monte Carlo Investigation of Robustness to Nonnormal Incomplete Data of 

Multilevel Modeling. (August 2005) 

Duan Zhang, B.S., University of International Business and Economics, China ; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Victor L. Willson 

Due to its increasing popularity, hierarchical linear modeling (HLM) has been 

used along with structural equation modeling (SEM) to analyze data with nested 

structure. In spite of the extensive research on commonly encountered problems such as 

violation of normality and missing data treatment within the framework of SEM, these 

areas have been much less explored in HLM. The present study compared HLM and 

multilevel SEM through a Monte Carlo study from the perspectives of the influence of 

nonnormality and performance of multiple imputation based on the expectation-

maximization (EM) algorithm under various combinations of sample sizes at two levels. 

The statistical power, parameter estimates, standard errors, and estimation bias for the 

main effects and cross-level interaction in a two-level model were compared across the 

four design factors: analysis method, normality condition, missing data proportion, and 

sample size. HLM and multilevel SEM appeared to have similar power detecting the 

main effect, while HLM had better power for the cross- level interaction. Neither seemed 

to be sensitive to violation of the normality assumption. A higher proportion of missing 

data resulted in larger standard errors and estimation bias. Sample sizes at both the 
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individual and cluster levels played a role in the statistical power for parameter 

estimates. The two-way interactions for the four factors were generally nonzero. Overall, 

both HLM and multilevel SEM were quite robust to violation of normality. SEM appears 

more useful in more complex path models while HLM is superior in detecting main 

effects. Multiple imputation based on the EM algorithm performed well in producing 

stable parameter estimates for up to 30% missing data. Sample size design should take 

into account the level at which the research is most focused. 
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CHAPTER I 

INTRODUCTION 

In many areas of behavioral sciences the research involves hierarchical data. In 

education researchers may examine how teacher practice influences students’ peer 

relationships within classrooms. In sociology people are nested within family household, 

then within communities. Their attitudes toward online shopping might be affected by 

the community they live in. Psychologists, on the other hand, would be more often 

interested in studying how persons’ psychological functioning or behaviors change over 

time. When subjects are measured repeatedly, the observations are nested within 

subjects, and the growth trajectories may interact with subjects’ characteristics such as 

ethnicity or socioeconomic status.  

All the data in the above examples have more than one unit of analysis since 

variables measured from all the levels should be taken into account. They share one 

common trait: depending on the clustering structure, the observations collected within 

the same cluster tend to aggregate together more than those from different ones. Such 

data violate one of the three primary assumptions for Ordinary Least Squares Estimation 

(OLS): observation independence (the other two are normality and homogeneity of 

variance). Thus, it is not appropriate to handle these data with statistical procedures  
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within an OLS framework such as multiple regression. Julian (2001) found that when the 

intra-class correlation exceeded a minimal level, ignoring such hierarchical structures 

and treating the data as single- level will result in biased fit indices and estimation 

problems in parameters and their standard errors. Multilevel analysis techniques using 

hierarchical linear modeling (HLM) and structural equation modeling (SEM) 

(Raudenbush & Bryk, 2002; Hox, 2002) have been developed to address these 

challenges by taking the hierarchical structure into account in estimation  to yield 

parameter estimates with appropriate standard errors.  

HLM has been widely applied in educational and behavioral sciences as the 

currently-preferred method for multilevel data. This has been based on assumptions of 

improved estimation of standard errors of individual effects and appropriate partitioning 

of variance-covariance components under a random sampling model. This technique is 

capable of fitting random effect models, contextual effect models and cross- level 

interaction models (Hox & Kreft, 1994). Being in the general framework of multivariate 

statistics, HLM maintains the traditional assumptions of linear model analysis for 

linearity and normality, but allows violation those of homoscedasticity and more 

importantly, observation independence (Raudenbush & Bryk, 2002).  

 Being a general and powerful multivariate framework, structural equation 

modeling (SEM) embraces most traditional procedures such as path analysis, factor 

analysis, discriminant analysis, and canonical correlation models (Hox, 2002). It allows 

researchers to test the plausibility of their theoretical models and to define and adjust 

these models for subsequent investigation. In addition, many articles have demonstrated 
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that SEM can also be used to deal with multilevel data (Goldstein & McDonald, 1988, 

Muthén, 1989; Muthén & Satorra, 1989; Longford & Muthén, 1992). Current SEM 

software such as LISREL (Jöreskog & Sörbom, 1996), EQS (Bentler, 1995), and AMOS 

(Arbucle, 1999), M-Plus (Muthén & Muthén, 1998-2004) can be adapted to implement 

multilevel SEM.  

Bollen (1989) and Hox (2002) have pointed out that HLM can be theoretically 

specified as a special case of the more general structural equation model in that it is 

linear model whose covariance structure can be written in finite form. That being said, 

however, in practice many HLM designs have very complex representations in SEM 

form. Hox (2002) noted that for certain designs, such as latent growth curve analysis 

assuming large N, both approaches produce identical results. Despite the extensive 

previous research multilevel analysis, there has been very limited research comparing 

HLM and multilevel SEM in terms of their ability of handling multilevel data. 

Since multivariate normality is a standard assumption for multivariate analysis, it 

also holds for HLM and SEM. Researchers should test their data to see if they meet the 

assumption prior to data analysis. However, real world research data can never be 

expected to meet all the statistical assumptions, especially normality. Ignoring 

nonnormality and treating the data as normally distributed will often result in inaccurate 

parameter estimates and misleading data interpretation. Thus, it is important to examine 

the robustness of HLM and SEM results treating nonnormal data under different sample 

size conditions. 
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In addition to nonnormality, missing data is another commonly encountered 

problem in data analysis, especially with large sample sizes where the possibility of non-

response and/or subject attrition gets higher. Rubin (1976) developed a typology for 

missing data, which classified three distinct types of missing data: the data of one 

variable is considered to be missing at random (MAR) if the missingness of this variable 

only depends on the observed data of other variables in the dataset but not on the values 

of the variable itself. On the other hand, missing not at random is defined so that the 

missingness depends on not only on the observed data, but more importantly, on the 

missing data as well. A special case of MAR is missing completely at random (MCAR) 

which requires that the missingness is independent of the observed or missing data in the 

dataset. Traditional solutions such as mean substitution and listwise deletion have been 

found to be highly flawed and inefficient, as they reduce the data variability and alter the 

original covariance structure to a great extent. Little and Rubin (1987) showed that 

theoretically speaking, only data missing at random (MAR) including missing 

completely at random (MCAR) could be mathematically estimated, which is not always 

the case for real world data.  

Currently, the preferred approach in missing data area is imputation using the 

expectation-maximization (EM) algorithm (Little & Rubin, 1990; Rubin, 1991; Schafer, 

1997) within the ML framework. This method estimates a plausible value for each of the 

missing cells to mimic the original data covariance matrix as closely as possible. 

However, the underlying assumption of multivariate normality may limit its applicability 

(Graham, Hofer, & McKinnon, 1996). Gold, Bentler, & Kim (2003) demonstrated that a 
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modified pairwise deletion method (asymptotically distribution-free available-case 

method) performs as well as the EM algorithm for estimating standard errors with large 

sample size, and yielded mixed results with respect to parameter estimates. 

Sample size is a crucial factor in multilevel analysis due to statistical power. 

Because variances at all the levels in the data will be analyzed simultaneously, the 

multilevel analysis generally requires larger sample sizes at higher level than other 

multivariate procedures. A rule of thumb suggested in the literature (eg, Hox, 2002; 

Roberts, 2003) is at least 100 at the second or cluster level while the size at the first level 

is less important and may be small. Sample size investigation under SEM (eg., Arminger 

& Rothe, 1993; Fan & Wang, 1998; Finch, West, & MacKinnon, 1997) yields similar 

results in that under nonnormal conditions larger second level sample sizes will produce 

more accurate parameter estimates than small samples.  

Significance of the Study 

As discussed previously, multilevel analysis using HLM has drawn increasing 

attention in educational and behavioral sciences. In spite of its prominence, unlike SEM, 

there has not been much research addressing the robustness of this modeling method to 

data violating statistical assumptions such as nonnormal and incomplete data under 

different sample sizes. Furthermore, few of these SEM studies have been done in a 

multilevel framework. As researchers are finding more and more areas common to both 

HLM and multilevel SEM, it will be informative for guidelines to be provided for 

empirical researchers in their explorations with respect to how their models may perform 

with real world data, as what has been done in general SEM. 
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The author has investigated the influence of sample sizes at different levels and 

the correlation between the first level beta weights of the main effect and the group 

means on the statistical power of three models dealing with multilevel data: HLM, 

deviation SEM, and a hybrid approach of HLM and SEM with a simple two-level model 

(Willson & Zhang, 2003; Zhang & Willson, 2004). The results showed that HLM has 

poor power with small sample sizes compared to the other two approaches, but the 

power of all three models increased with higher correlations between the first level beta 

weights of the main effect and the group means. This difference vanished with group 

size larger than 35. The performances of the deviation SEM and the hybrid approach of 

HLM and SEM were very similar to each other. The current proposed study will extend 

the above studies, investigating the difference between these two multilevel modeling 

methods from the perspectives of nonnormality and incomplete data.  

Purpose and Research Questions  

 The purpose of the study is to compare HLM and multilevel SEM in terms of 

their statistical power and accuracy of parameter estimates with nonnormal incomplete 

data under various sample sizes. Due to the number of factors examined, balanced 

sample size will be maintained. The specific research questions to be addressed in this 

study include:  

1. How do HLM and multilevel SEM differ in terms of statistical power under 

nonnormal data with or without MAR missing data? 

2. Do the parameter estimates differ by the design factors (analysis methods, 

nonnormality conditions, sample sizes, and proportions of missing data)?  
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3. Are the parameter estimates biased from the two methods under nonnormal MAR 

incomplete data treated by the EM algorithm multiple imputation with respect to 

the population parameters? Which method generates more estimate bias? 

4. Does the percentage of incomplete data affect the functioning of the two methods 

under the EM algorithm treatment for missing data? 

5. Given nonnormal incomplete data, which method is more robust under small 

sample sizes? 

6. With the two-level model, which level’s sample size has a more important role in 

ensuring adequate statistical power and accurate parameter estimates?  

Limitations of the Study 

 Given the research design, the current study has several limitations. As will be 

discussed in detail in Chapter Three, the present study investigated only limited 

combinations of nonnormal and missing data percentage conditions, which might not 

represent the most frequently encountered situations in practice. Only a low to moderate 

intraclass correlation level (.15 to .30) was studied, which left opportunities for future 

research data with different nesting effect. In addition, the four sample size designs 

examined are all balanced and fairly large, thus adequate for multilevel analysis. This 

produces results not very applicable to small sample cases. However, it should be noted 

that small sample sizes may be problematic due to statistical power concerns. 

Nonnormality with missing data will only make that situation much worse, which is why 

such cases were omitted in the current study. Finally, the two-level model used in the 

Monte Carlo study is quite simple, whereas multilevel SEM could be used for much 
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more complex models. So the results should be taken cautiously when looking at more 

complex SEM models. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

 This literature review provides information about studies related to multilevel 

modeling of nonnormal incomplete data. For that purpose, this chapter is divided into 

four distinct sections: a brief and general introduction of multilevel modeling using 

hierarchical linear modeling (HLM) and structural equation modeling (SEM); a review 

of methodological and empirical research studies investigating violation of univariate or 

multivariate normality; a brief history of missing data treatment and review of recent 

methodological research in the field; and a comprehensive review of research studies 

dealing with nonnormal and/or missing data in a multilevel context. All four sections are 

intended to give the readers an overview of the research problem and lead them through 

the findings of previous literature that significantly influenced the hypotheses of the 

current study. 

Multilevel Modeling Using HLM and SEM 

 Multilevel data, also called hierarchical data, refers to data that inherently contain 

some hierarchical or nesting structure. Such data are prevalent in education and/or social 

science research where they are usually collected from more than one level of research 

unit, such as students clustered within classrooms or schools. As a result, there are 

several units of analysis in such data, and units at all the levels must be taken into 

account in data analysis. Traditional statistical procedures typically disaggregate higher-

level variables to individual level and treat them as the individual variables, or vice versa 
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(aggregating lower level variables to higher level). By doing this some important 

information is omitted from data analysis, such as conditional independence of response 

or within-cluster information. Goldstein (1995) pointed out that applying conventional 

regression models to multilevel data will results in potentially biased estimates, smaller 

standard errors, and inflated Type I error rates. Julian (2001) also found that ignoring the 

nesting relationship between the units of analysis at different levels and treating them as 

independently observed will lead to violations of statistical assumptions such as 

homoscadaticity in some designs and may potentially produce significantly biased 

parameter estimates.  

 The unique challenges presented by multilevel data include but are not limited to: 

within-cluster dependencies, homogeneity and with-cluster covariation, and sources of 

variation within and across clusters predicted from sampling theory. Certain statistical 

techniques have been developed to address these challenges, among which HLM and 

SEM are the most widely accepted and applied methods for multilevel data. They can be 

employed to answer similar research questions while each of them has individual areas 

of specialization that the other does not address adequately. 

 Hierarchical linear models (HLM), also known as random coefficient models, 

have been discussed for more than three decades in social sciences. HLM has been 

developed almost simultaneously under different names in different fields: it was called 

“multilevel linear models” (eg, Goldstein, 1987; Mason et al., 1983) in sociology; 

“mixed effects or random effects model” (eg, Laird & Ware, 1982) in biometrics; 

“random coefficient regression models” (eg, Rosenberg, 1973) in econometrics; and 
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“covariance components models” (eg, Dempster, Rubin, & Tsutakawa, 1981) in 

statistics. The title “hierarchical linear models” was created firstly by Lindley and Smith 

(1972) to encompass all of the above. Its development encountered serious difficulty due 

to the limitation of computational capacity. The breakthrough appeared when the EM 

algorithm using maximum likelihood estimation was developed by Dempster, Laird, and 

Rubin (1977), which provided a “conceptual feasible and broadly applicable approach to 

covariance component estimation” (Raudenbush & Bryk, 2002). HLM applications 

began in the early 80s but have really flourished during the past ten or fifteen years. 

 Hierarchical linear models can be applied to a wide variety of settings involving 

hierarchical structure. These settings include but are not limited to contextually nested 

data, temporally or longitudinally nested data (repeated measures or latent growth curve), 

cross-sectional data and even cross-classified hierarchical data. HLM has apparent 

advantages over previously developed statistical procedures for multilevel structure. 

Estimation of variance is greatly improved within individual units by including estimates 

from other units or levels. One of HLM’s most important features is its capacity to study 

cross- level effects, which usually focus on the contextual effect of a higher- level 

variable on lower level effects. It is particularly attractive because in social science 

research the primary effect of interest is not always statistically significant even though 

it may interact with certain contextual characteristics (in longitudinal data the subjects’ 

personal characteristics). Researchers are sometimes more interested in the interaction 

effect when they intend to develop treatment differentially effective for specific groups. 

In addition, HLM can partition variance at different levels, thus giving appropriate 
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parameter estimates and standard errors with separate within-subject and between-

subject covariance matrices. 

 Structural equation modeling (SEM) being in the general framework of 

multivariate statistics is another powerful and comprehensive modeling technique that 

encompasses many traditional statistical procedures from simple regression and path 

analysis to complex discriminant analysis and canonical correlation function (Bollen, 

1989). SEM is primarily aimed at studying the relationships among sets of variables, 

which can be either observed or unobserved (latent). It is used as a confirmatory more 

than exploratory modeling method, and thus allows researchers to test their hypothesized 

models and modify them subsequently according to their theory and sample-based 

evidence. 

 A typical structural equation model containing both observed and latent variables 

can be separated into a measurement model and a structural model so that measurement 

errors are easily incorporated into data analyses. The model specification is fairly 

flexible in that the researcher is entitled to decide which paths to fix or free as well as 

specific variance values. SEM also provides information about the degree to which the 

hypothesized model fits the observed data by comparing the hypothesized and observed 

variance-covariance matrices. As a confirmatory technique, SEM requires a substantive 

theory underlying the hypothesized model and a representative sample for data analysis. 

When the model fit is not satisfactory, theoretical justifications are needed to revise the 

model in addition to the mere statistical modification indices (Mueller, 1997).  
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During the past ten years, application of SEM has undergone an expansion in 

almost every area of social and behavioral research due to the rapid improvement in 

major SEM software such as LISREL (Jöreskog & Sörbom, 1996), EQS (Bentler, 1995), 

and AMOS (Arbucle, 1999), M-Plus (Muthén & Muthén, 1998-2004).  

In addition to the general simple or complex path analysis, SEM can be used to 

model longitudinal and hierarchical data. Specifically, latent growth modeling, a 

generalized model to investigate change and development (Meredith & Tisak, 1990), 

targets longitudinal or time change data. For hierarchical data, on the other hand, SEM 

differentiates between the within-subject matrices. SEM fits a separate within and 

between-subject models to jointly estimate the parameters (Muthén & Satorra, 1989). 

According to Bollen (1989) and Hox (2002), HLM and SEM have a close connection in 

a sense that HLM can be theoretically specified as a special case of the more general 

structural equation model as a linear model whose covariance structure can be written in 

finite form. Despite the massive amount of research that has been conducted on each of 

them, there is a need in the literature to compare HLM and SEM in terms of their 

capacities to address the same research questions concerning multilevel data. 

Sample size has always been an issue in experiment design and data analysis due 

to its influence on statistical power. This is particularly an issue in multilevel analysis 

using HLM or SEM because of the computational complexity involved in these analyses, 

greater than for ordinary multivariate statistical procedures. Large sample size is an 

appealing feature of a study in that analyses typically have greater power to detect most 

effects, and the results are more readily generalized to a population. Some researchers 
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investigating the influence of nonnormality also have found that in SEM large sample 

size tends to offset some bias in parameter estimates and standard errors.   

Previous literature has suggested some rules of thumb for conducting multilevel 

analysis (e.g., Hox, 2002; Roberts, 2003) to require at least 100 groups in the sample, 

while the group size was less important. However, in the simulation studies (Willson & 

Zhang, 2003; Zhang & Willson, 2004) the author has conducted, the first level sample 

size did matter. In a two-level cross- interaction model, it was found that the power did 

not increase further when the group size exceeded 35, when the number of groups was 

fixed at 120. Further research is needed to understand these inconsistent results. 

Violation of Normality Assumption in Data Analysis 

 Normality is a common assumption for data analysis with continuous variables. 

The data are expected to follow a normal distribution so that certain procedures applied 

to them result in mathematically tractable parameter estimates and statistical indices. 

Normal theory maximum likelihood (ML) and Generalized Least Squares (GLS) are two 

estimation methods that are most widely used in HLM and SEM. The assumption of 

multivariate normality must be met for these techniques to yield interpretable 

computational results. However, real world data are almost never expected to meet all 

statistical assumptions, especially normality. As a somewhat common practice, 

approaches like HLM and SEM have been applied to nonnormal data (Bentler, 1994; 

Bentler & Dudgeon, 1996; Micceri, 1989, Brown, 1990). 

Normality can be assessed in both univariate and multivariate frameworks. 

Univariate normality is explicitly defined or measured by the skewness and kurtosis of a 
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variable’s distribution. Compared with this definition, multivariate normality is more 

difficult to assess. Nevertheless, in multivariate statistics like SEM, the multivariate 

normality assumption will not hold if any of the analysis variables violates univariate 

normality (Bollen, 1989).  

In terms of univariate normality, in a strict sense, a variable is considered to be 

normally distributed if both the skewness and kurtosis of its distribution are zero. In 

practice, the influence of nonnormality on results depends on the degree of 

nonnormality. There has not been any consensus about the specific range of these two 

normality indices to be regarded as nonnormal but ignorable in data analysis. Muthén 

and Kaplan (1985) argued that any nonnormal conditions with the absolute values of 

skewness and kurtosis less than 1 would not cause significant distortion in computational 

results. Some Monte Carlo studies (e.g., Hu, Bentler, & Kano, 1992) studied simulated 

extremely nonnormal data with kurtosis as high as 20 even such situations are not likely 

to be common in actual data. Certain transformations can reduce the degree of skewness 

and kurtosis, although skewness is easier to correct than kurtosis. There has been 

agreement that data with both nonzero skewness and kurtosis tend to produce more bias 

in results than those having only one violation (Chou, Bentler, & Satorra, 1991; Muthén 

& Kaplan, 1985). 

Since SEM and HLM are commonly applied to nonnormal data, extensive efforts 

in research have been devoted to evaluate estimation bias in parameters and standard 

errors and to develop estimation procedures and test statistics robust to nonnormality. 

Some studies (e.g., Muthén, 1989; Gold, Bentler, & Kim, 2003; Curran, West, & Finch 
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1996) examined the influence of nonnormality on parameter estimates, standard errors 

and fit indices in the framework of SEM using Monte Carlo method, while including a 

few empirical studies. No such work has been done in HLM as the author can find. 

The general approach in SEM simulation was to design data matrices in which 

the variables exhibited various degrees of skewness and/or kurtosis. This design 

represents real world situations where not all the variables of interest have identical 

distributions. Other methods simulating nonnormal data include initiating data 

generation with chi-square and exponential distributions (Arminger & Rothe, 1993), and 

specifying multivariate skewness and kurtosis (Muthén & Kaplan, 1985, Finch, 1993). 

The above studies consistently found that nonnormality had more influence on standard 

errors than on parameter estimates when ML estimation was used, especially for large 

sample size. Moderate nonnormality (the absolute values of skewness and/or kurtosis 

between 1.0 and 2.3) did not bias the standard errors of ML and Generalized Least 

Squares (GLS) parameter estimates (Fan & Wang, 1998).  

Using real nonnormal data and varying sample sizes to fit a SEM model with 

both manifest and latent variables, Wang, Fan, and Willson (1996) also found that ML 

and GLS generated consistent and almost identical estimators, and standard errors 

tended to be underestimated, but the problem was not serious in large samples. They 

suggested that the chi-square test statistics were acceptable given nonnormal data but 

appropriate sample sizes. Other fit indices other than chi-square tests have not been 

studies adequately for nonnormal data. So Bentler and Bonnett (1980) and Bollen (1989) 

suggested than chi-square test statistics should always be reported no matter which other 
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fit indices were selected to use in the studies, even though they did not intend to focus on 

chi-square statistics as the primary or sole criterion for model fit.  

Methodological Research on Missing Data Treatment 

 Missing data has become an important issue in empirical studies. Lack of 

responses occurs due to many and various causes, especially in projects with large 

sample sizes and in longitudinal research studies where the probability of subject 

attrition increases. Missing data is a nuisance for data analysis because it may bias 

parameter estimates and standard errors and inflate Type I and II error rates thus reduce 

statistical power of the analyses (Brockmeier, Kromrey, & Hogarty, 2003). Concern over 

possible distorted results of data analysis with missing data has led to extensive research. 

 The traditional approaches to handle missing data included listwise deletion, 

pairwise deletion, and mean substitution, widely employed by empirical researchers 

(Tanguma, 2000). Listwise deletion, being the most commonly used method and default 

in popular software packages such as SPSS and SAS, deals with missing data in an 

intuitive way by dropping all cases with missing values. It reduces data variability and 

statistical power by excluding cases. Pairwise deletion, on the other hand, uses more 

information than listwise deletion by including cases that provide complete data for 

certain analyses. Concern for statistical power is slightly alleviated, but results are not 

comparable across different analyses based on different samples. Also, it can result in 

non-positive definite covariance matrices and resultant convergence of estimation under 

OLS. Mean substitution was regarded as conservative but neat solution for missing data. 
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Its major problem lies in reduction in data variability and biased results because of 

unreliable inference on missing values (Kromrey & Hines, 1994). 

Historically, the framework of missing data inference was developed by Rubin 

(1976) and is still in use by researchers today. A missing data mechanism terminology is 

known widely but poorly understood. According to Rubin (1976), missing data can be 

classified into three distinct categories: the values of one variable are considered to be 

missing at random (MAR) if its own values do not contribute to the phenomenon of 

missingness. Otherwise, the situation is missing not at random (MNAR). Under MAR, 

causes of missingness for certain variable involve values of other variables within the 

dataset whether or not they are complete or include missingness. One special case of 

MAR is missing completely at random (MCAR) in which the missingness distribution in 

the sample is fundamentally random as it does not relate to any variable in the dataset.  

Currently the preferred method of missing data treatment is multiple imputation 

(MI) using the expectation-maximization (EM) algorithm (Little & Rubin, 1990; Rubin, 

1991; Schafer, 1997) within the maximum likelihood (ML) framework. The EM 

algorithm was invented by Dempster, Laird, & Rubin (1977) and it allowed the 

computation of ML estimates for missing cells. The basic idea of multiple imputation 

developed by Rubin (1987) was to treat missing data as random variables and replaced 

the missing cells with more than one simulated value. The goal was to create simulated 

values for the missing cells so that the complete data would replicate the original 

variance-covariance matrix.  
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MI is superior to mean imputation or regression imputation by retaining the 

advantage of conditional distribution but improving estimation by taking into account 

the missingness uncertainty. Complete datasets generated by MI are analyzed with 

familiar complete-data methods and software. By producing one set of plausible 

complete data versions and analyzing them consistently, the MI procedure obtains 

parameter estimates and standard errors from the combined datasets, which reflected 

“missing data uncertainty as well as finite sample variation” (Schafer & Graham, 2002). 

Given the computational complexity, MI can easily be conducted in freeware programs 

like NORM (Schafer, 1999) or well developed commercial software like SAS PROC MI 

and PROC MIANALYZE (SAS Institute, 2002). 

 Even though MI with EM algorithm has proven to be effective and efficient in 

dealing with missing data (e.g., Bunting, Adamson, & Mulhall, 2002), it requires the 

assumptions of multivariate normality and MAR to be met, which hinder its further 

application. However, these two assumptions are seldom tested. This holds for normality 

because it is usually overlooked as in data analyses while results can be quite robust. In 

terms of MAR, very few procedures were proposed to test it (e.g., Cohen & Cohen, 1983; 

Tabachinick & Fidell, 1996). In empirical studies, it was rarely tested like normality. 

Applied researchers are pressed to have some guidance for nonrandomly missing data. 

Research on Incomplete Data under Special Distributions  

 Being such a commonly encountered nuisance in behavioral science research, 

missing data has been extensively explored in regard to its distortion of data analysis 

results and optimal treatment under different situations. There has been some general 
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agreement on missing data treatment. Deletion methods including both listwise and 

pairwise tend to perform well when estimating regression weights with large sample size 

and low percentage of missing data (Kim & Curry, 1977; Roth & Switzer, 1995), while 

imputation procedures (both simple and multiple) will produce better parameter 

estimates with comparably smaller sample size and higher percentages of missing data 

(Basilevsky et al., 1985; Raymond & Roberts, 1987; Roth & Switzer, 1995). 

Due to its prevalence, missing data may occur under some special conditions 

such as nonnormality or hierarchical data that further complicate data analysis and may 

invalidate the general rules for missing data procedures. Even though much less research 

has been conducted on these conditions, a few studies (reviewed by Gold & Bentler, 

2000) explored treatments of nonnormal incomplete data, and one study (Gibson & 

Olejnik, 2003) examined the influence of missing data in a hierarchical data context. 

Both produced insightful results and provided some guidance for applied researchers.  

Graham et al (1996) studied the variances and covariances of simulated 

univariately incomplete nonnormal data in a SEM model comparing expectation-

maximization (EM) and available-case listwise deletion methods. The skewness of their 

data ranged from -.84 to 3.16 and kurtosis from -.04 to 11.97. EM appeared to be 

superior to available-case listwise deletion method for estimating root mean square 

residuals and the average standard errors. Nonnormlity was proved to result in 

overestimation of the covariance matrix and reduce estimation efficiency compared with 

the results of normal data. Gold and Bentler (2000) extended the above study by 

comparing four different missing data treatments including structured-model EM and 



 

 

21 

 
saturated-model EM with nonnormal MCAR data in a large SEM model (a four-factor 

ten-variable path model). EM methods performed better than the other two regardless of 

the percentage of missing data. Both MAR and MCAR data were simulated in Enders 

(2001) and estimated by ML and traditional approaches like listwise, pairwise deletion, 

and mean substitution. Under MCAR, very little bias was found in all methods except 

for mean substitution. ML showed improved efficiency with higher proportions of 

missing data. It also produced the least parameter bias under MAR condition. Different 

missing data methods exhibited little effect on standard errors thus resulting in fairly 

reliable confidence interval under all procedures. 

As HLM has become more popular and accessible to applied researchers in 

various fields, the topic of missing data with hierarchical data structure has not been 

extensively explored as much. The only recent study found here was conducted by 

Gibson and Olejnik (2003). This simulation study compared five missing data 

techniques in the context of missing data at the second level of a two-level hierarchical 

linear model. The factors being examined were number of level-2 variables, level-2 

sample size, level-1 intercept-slope correlation, and percentage of missing data. Listwise 

deletion and EM generated satisfactory random effect estimates with level-2 sample size 

at 30, which was their smaller sample condition with a missing data proportion as high 

as 40%. 

Based on the above literature review, it appeared that violation of normality and 

missing data treatment have been topics extensively investigated in single-level data 

analysis, especially in SEM. The sample size issue, due to its importance in determining 
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the power of multilevel analysis, also attracted considerable amount of attention in the 

research community, mainly at the sample size of first level. However, there has not 

been any study, as to the author’s awareness, that comprehensively studied the overall 

effects of the three factors, violation of normality, missing data treatment, and sample 

size design, in the context of HLM. The current study hopes to provide some guidelines 

for empirical researchers on these aspects. Additionally, since HLM and SEM can be 

employed to address similar research questions, a study comparing them would be 

informative to future researchers who will need to decide which one to follow. This is 

another practical goal of the present investigation. 
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CHAPTER III 

METHODOLOGY 

The current research was a Monte Carlo study designed to simulate the data for 

multilevel analyses in the presence of missing data treated by multiple imputation using 

expectation-maximization-based (EM) maximum likelihood (ML) estimates. A simple 

two-level model with cross- level interaction was simulated and analyzed by HLM and 

multilevel SEM. The design of the data matrix was intended to mirror a real world 

project in which students were nested in classrooms. Special issues were explored, such 

as (1) parameter estimate robustness to nonnormal data; (2) their robustness to 

incomplete data treated by EM algorithm; (3) their sensitivity to sample sizes at different 

levels for statistical power and (4) possible interaction effect among three factors of 

nonnormality, missing data, and sample size on the performance of HLM and multilevel 

SEM. The purpose was to provide some guidelines for empirical researchers doing 

hypothesis testing with data in similar conditions. 

Data Generation 

Design of the Simulated Model 

A data matrix containing three variables x1 - x3 was generated using SAS IML 

(SAS Institute, Inc. 2002). For easy interpretation, all three variables had a mean of 0 

and standard deviation of 1. The parameters for the correlation coefficients among all 

three were set to be equal at .3. This value was chosen to represent a moderate effect size 

that might be reasonably detected in behavioral science research. Since nonnormality 
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situations were investigated in the current study that may cause the sample correlations 

to deviate from the parameter value, an independent analysis of the three-variable raw 

data matrix generation was conducted. This separate simulation indicated that the 

correlation parameter value of .3 was achieved for all levels of data nonnormality, with a 

deviation always less than 8% for sample size of 100, 000. The generated complete raw 

data matrix was then sorted by the value of x2.  

The two-level clustered data structure was constructed from the sorted data 

matrix. One individual predictor x1 and one cluster- level predictor, which was the 

“classroom” mean of x2, namely x2bar, together with the cross- level interaction between 

them x1*x2bar were utilized to predict the individual level outcome x3. After being 

sorted by x2 the scores were divided into classrooms for a given classroom size. The 

classroom means of x2 were then produced from the individual vluess of x2 in the 

classrooms to serve as the classroom level or level-2 predictor.  

Since the dataset was sorted by x2 previously and then divided into classrooms, 

the classroom means of x2 were automatically sorted as well by classroom id. The goal 

was to create a given degree of cross- level interaction. Even though the data were sorted 

by x2, the individual distributions of x1 and x3 within different classrooms still 

overlapped since their correlations with x2 were only about .3. 

Design of the Monte Carlo Study 

The Monte Carlo study involved three independent factors that combined to 

produce 3 x 4 x 2 = 24 cells in a balanced design based on the three data features and 

hierarchical model structure. The independent factors were 
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1. Nonnormality cond itions.  

Data normality conditions were systematically explored for the first level 

independent variable pooled across all the observations and clusters. Three 

configurations were specified: normality, moderate nonnormality and severe 

nonnormality. These configurations were achieved by different combinations of 

skewness and kurtosis following the Fleishman’s power transformation method (Fan, X., 

Felsovalyi, A., Sivo, S. A., & Keenan, S., 2003). The criteria discussed for skewness and 

kurtosis were based on absolute values. Only positive values were simulated in data 

generation since it is the magnitude that makes a difference, not the direction, although it 

is realized that the correlation between variables of opposite skewness values would 

deviate much more from the parameter correlation value. Normality conditions required 

both skewness and kurtosis equal to 0. The functioning of HLM and multilevel SEM 

with the normal data served as the benchmark model with respect to their performance 

under the other two nonnormal conditions. Moderate nonnormality was defined for 

skewness of .5 and kurtosis of 1.0. For skewness of 1.0 and the kurtosis of 3.75, the data 

were defined to be severely nonnormal.  

2. Percentage of incomplete data.  

The incomplete data conditions were generated under the missing at random 

(MAR) assumption (Little & Rubin, 1989). Data were then imputed using the EM 

algorithm (Schaffer, 1997). Two levels of percentage of incomplete data were specified 

as suggested by Gold, Bentler, and Kim (2003): .15, and .30. The author considered 

these two levels to be typical for the low and moderate levels of incomplete data. They 
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suggested that multilevel technique would be inappropriate if the percentage of 

incompleteness exceeded .40 in the first level variable. It should be noted that both 

levels of missingess were created based on the same original complete data matrix to 

avoid potential influence of random variation. 

3. Sample size.  

Two patterns of sample sizes were investigated in this study: one fixed the cluster 

size and varied the number of clusters while the other fixed the number of clusters and 

varied the cluster size. The reason was to evaluate which level sample size was more 

crucial in determining the models’ statistical power. Hox (2002) and Roberts (2003) 

suggested the second- level sample size, which is the number of clusters, was more 

important than the clusters’ sizes. In previous simulations by the author (Zhang & 

Willson, 2004), with an adequate number of clusters, the cluster size can also make a 

difference and the larger first level size did not always improve power. Cluster size of 30 

to 35 was found to be adequate to produce stable variance-covariance matrices within 

clusters. The current study was expected to add to the literature by clarifying the 

influences of sample sizes at different levels on statistical power. Under each pattern, 

two situations were examined respectively, which resulted in four sample size 

conditions: 50 clusters with 10 and 50 observations in each cluster and 30 observations 

in each cluster with 10 and 50 clusters, resulting in 500, 2,500, 300, and 1,500 data 

points. Given these sample conditions, the intraclass correlations (ICC) for the 

dependent variable x3 among different sample sizes were randomly varied from .15 to .3 

with generally higher ICC in sample sizes with more second- level units.  
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In summary, the three factors created 12 (3 x 4) original complete data matrices 

and another 24 (3 x 4 x 2) with incomplete data. The MAR data condition was 

manipulated with PROC SURVEYSELECT. After the complete data were generated, 

two independent procedures of PROC SURVEY were conducted to select a sample from 

the complete dataset in which x1 and x2 were individually set to be missing with certain 

criteria. MAR missingness was produced by deleting x1 and x3 for all the cases above 

the 25th percentile of x2 with the probability of 8% and 15% to yield an expected 15% 

and 30% percent of missing data. PROC SURVEYSELECT randomly selected certain 

data points and deleted without replacement from the complete data with the probability 

of 8% for x1 and x3 separately thus yielding approximately 15% missingness and 

similarly probability of 15% to yield 30% missingness. This missing data sample was 

then merged back into the original complete dataset to create the MAR condition.  

Data Analysis 

One hundred replications were conducted for each data matrix, with a total of 36 

cases in simulation. After the data with missing points were generated, they were first 

analyzed by PROC MI with the EM algorithm, which produced five imputed datasets. 

These datasets were then analyzed by HLM in PROC MIXED (Singer, 1998) and 

multilevel SEM in PROC CALIS. There were three regression coefficients (x1, x2bar, 

and x1*x2bar) estimated in the HLM while the classroom mean estimate (x2bar) was 

omitted in the multilevel SEM due to the within-classroom standardization procedure in 

the first step. For easy comparison and interpretation, only the main and cross- level 

interaction effects were considered. Since both the missingness proportions were 
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generated based on the same complete data and all data were then analyzed in the same 

way, all the data generation and analyses were accomplished with only 12 (three 

nonnormality conditions by four sample size designs) sets of syntaxes. The syntax is 

found in Appendix 1 for moderately nonnormal condition with a sample size of 10 

clusters with 30 subjects within each cluster. 

The model representation of HLM is specified as the following:  

x3ij = ß0j +ß1j * x1_cij + eij 

ß 0j = ?00 + ?01 * x2barj + u0j 

ß 1j = ?10 + ?11 * X2barj + u1j 

For multilevel SEM, both the dependent and indepent variables (x1 and x3) were 

standardized within each classroom to get their standard scores. Then the following 

model was specified: 

zx3ij = ?1*zx1ij + eij 

?1 = a1 + ?1*x2barj + ?1j 

The means and standard deviations for all the regression coefficients estimates 

and their standard errors from all five imputed datasets in each modeling method were 

saved. The complete data samples were also analyzed with the same method to serve as 

the known parameter values for bias evaluation. Three outcomes are examined: 

parameter estimates including standard errors, parameter estimation bias including 

standard error bias, and empirical statistical power. Analysis of variance was employed 

to evaluate the effects of design factors (nonnormality condition, analysis method, 

missingness, and sample size) on the parameter estimates and related bias.  
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Research Question #1 addresses the issue of statistical power difference between 

HLM and multilevel SEM under nonnormal data with or without missing. If missing 

data were present, they would be treated by multiple imputation procedure with the EM 

algorithm. This question was answered by computing and comparing the power from the 

two methods across various designs. The t-statistics, standard errors, and probabilities 

associated with t-statistics resulted for all the regression coefficients from analysis of the 

complete and imputed data were output to a data file.  Counts of significance for p=. 05 

were created and compared. 

Research Question #2 addresses the issue of potential differences in parameter 

estimates by the design factors (analysis methods, nonnormality conditions, sample 

sizes, and proportions of missing data). For complete data analysis of variance was run 

to examine the main effect of the three design factors except for the proportions of 

misisngness. Furthermore, analysis of variance with repeated measures was conducted 

for the imputed data on the all four factors with missing data proportion being the 

within-subject factor with three levels (0, 15% and 30%) and the other three being the 

between-subject factors. The effect of proportions of missing data (Research Question 

#4) was also investigated through this procedure. 

Research Question #3 addresses the issue of estimation bias resulted from 

running the EM algorithm multiple imputation on the incomplete data. The values from 

analyzing the complete data were taken as the population parameters. Following Gold, 

Bentler, and Kim (2003), the bias of parameter estimates was evaluated by the root mean 

square of the difference (RMSD) between the mean parameter estimate from imputed 
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datasets and the corresponding known parameter value divided by the absolute value of 

the known parameter. The estimates from analysis of the complete data were the known 

parameter values. This bias index was computed for both the regression coefficients and 

standard error estimates and averaged across 100 iterations. Smaller bias implied a more 

robust modeling method. The same approach was also applied to the standard errors of 

parameter estimates. The biases were compared across the three design factors in 

ANOVA. Post-hoc comparisons were conducted to determine which design 

combinations produced less bias. 

Conclusions were based on the results of the above three research questions 

about potentially different functioning of the two methods under varying nonnormality. 

The goal was to find a method that works well under severely nonnormal data. The 

performance of the analysis methods was evaluated by comparing statistical power and 

estimation bias under missingness with multiple imputation. The answers to Research 

Question #5 and #6 were based on similar inferences. 

Summary of General Procedures for Data Analysis 

 In sum, for designing situations involving varying normality degrees, percentages 

of missingness, and sample sizes, the following steps were taken: 

1. Complete data were analyzed by HLM and multilevel SEM with the 

regression coefficients and standard errors output to a data file. 

2. Systematic missing data were generated from the complete data to 

meet MAR assumption with different percentages of missingness. 
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3. The data with missingness were analyzed by multiple imputation 

through the EM algorithm in PROC MI resulting five imputed datasets. 

4. The imputed data were analyzed by HLM and multilevel SEM with the 

regression coefficients and standard errors output to a data file. The 

means across the five imputed datasets were taken as the estimates for 

the imputed data. 

5. Empirical statistical power was computed for all the regression 

coefficients and compared. 

6. Bias was evaluated by RMSD for parameters and standard errors. 

7. A number of separate sets of ANOVA were conducted to examine the 

differences for parameter estimates, standard error estimates, and their 

estimation bias. 
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CHAPTER IV 

RESULTS 

 The present study was intended to compare HLM and multilevel SEM under 

nonnormal data with or without missing data under multiple imputation across different 

sample sizes. Two types of analysis of variance (ANOVA) used to evaluate the results of 

simulated data: simple factorial ANOVA was employed for results of complete data 

while ANOVA with repeated measures was used for missing data. To simplify 

presentation and interpretation of the results among the four design factors (three for 

complete data evaluation), only their main effects and two-way interactions were 

reported even though the full factorial model was studied. These effects were believed to 

be most relevant to the purpose of the current study. Due to the model difference 

between HLM and SEM in multilevel analyses, in the simulated two-level model only 

the main and interaction effects were discussed, as the unit mean effect was not present 

in the multilevel SEM model. 

Empirical Statistical Power of HLM and Multilevel SEM  

The empirical power for the main and interaction was computed by counting the 

number of significant findings during the 100 iterations. The empirical statistical power 

for both the methods in various designs is presented in Table 1.  
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Table 1 

Empirical Statistical Power for the Simulated Two-level Model 

  Complete Data Imputed Data with 15% missing Imputed Data with 30% missing 

 HLM SEM HLM SEM HLM SEM 

Normal 
Mai

n 
Interactio

n 
Mai

n 
Interactio

n 
Mai

n 
Interactio

n 
Mai

n 
Interactio

n 
Mai

n 
Interactio

n 
Mai

n 
Interactio

n 

N=300 (30 x 10) 0.84 0.07 0.85 0.06 0.80 0.03 0.80 0.01 0.85 0.00 0.85 0.01 

N=500 (10 x 50) 0.58 0.03 0.53 0.06 0.67 0.01 0.65 0.02 0.77 0.01 0.73 0.00 

N=1500 (30 x 50) 1.00 0.05 1.00 0.02 1.00 0.05 1.00 0.00 1.00 0.04 1.00 0.01 

N=2500 (50 x 50) 1.00 0.06 1.00 0.06 1.00 0.06 1.00 0.09 1.00 0.06 1.00 0.04 

Moderately nonnormal                         

N=300 (30 x 10) 1.00 0.06 1.00 0.00 1.00 0.02 1.00 0.00 1.00 1.00 1.00 0.00 

N=500 (10 x 50) 0.60 0.07 0.58 0.04 0.61 0.05 0.60 0.03 0.68 0.03 0.64 0.00 

N=1500 (30 x 50) 0.68 0.06 0.69 0.07 0.65 0.05 0.62 0.06 0.67 0.04 0.66 0.03 

N=2500 (50 x 50) 1.00 0.21 1.00 0.02 1.00 0.20 1.00 0.04 1.00 0.19 1.00 0.04 

Severely nonnormal                         

N=300 (30 x 10) 0.90 0.12 0.90 0.00 0.80 0.03 0.81 0.02 0.90 0.00 0.91 0.00 

N=500 (10 x 50) 1.00 0.16 1.00 0.02 1.00 0.09 1.00 0.03 1.00 0.05 1.00 0.00 

N=1500 (30 x 50) 0.83 0.11 0.84 0.09 0.82 0.10 0.81 0.05 0.80 0.05 0.79 0.02 

N=2500 (50 x 50) 1.00 0.39 1.00 0.03 1.00 0.37 1.00 0.04 1.00 0.36 1.00 0.04 
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Power for Complete Data 

For complete data, HLM exhibited the same statistical power as multilevel SEM 

for the main effect across different sample sizes and across nonnormality conditions. The 

normal and moderately nonnormal data for sample size of 500 (50 units with 10 subjects 

per unit) yielded much lower power (about .60) for the main effect than the other three 

sample designs (above .80). This difference diminished under severely nonnormal data. 

In terms of the cross-level interaction, the power of HLM and multilevel SEM under 

normal and moderately nonnormal data were quite similar. The only exception was the 

moderately nonnormal data with the largest sample (N = 2,500 at 50 units with 50 

subjects per unit) where HLM worked better (about .20) than SEM with the same sample 

size (.02) and better than both methods for the other three samples (below .10). The 

power was even higher (about .40) under severely nonnormal data, for which HLM 

consistently performed better than multilevel SEM. The latter basically had no power to 

detect the interaction effect. Among the four sample sizes, the largest (N= 2500) 

produced greater power than the other three whose power was similar to each other. This 

is particularly distinc t on the interaction effect under nonnormal data. 

Power for Imputed Data 

The power based on imputed data was quite comparable to that for complete data 

in terms of both the main and cross- level interaction for both HLM and multilevel SEM. 

Similar to the power for complete data, imputed data condition resulted in excellent 

power to detect the main effect (above .80) but very poor power for the cross- level 

interaction effect (below .10). However, for normal data at the sample size of 500, the 
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imputed data matrices produced higher power (about 20%) for the main effect than the 

original complete data despite of the proportion of missing data. Furthermore, under 

severely nonnormality the imputed data with 15% missingness at sample size of 300 

yielded lower power (20%) than either the complete or incomplete data with 30% 

missingness. The power of the latter two data matrices was similar on both the main and 

interaction effects. 

 A full factorial model of analysis of variance with repeated measure for 

imputation was conducted to investigate the effects of four design factors on the 

statistical power of the main effect and interaction. The ANOVA tables are reported in 

Table 2 and 3. For the main effect of x1, among the within-subject effects the main 

effect of missing percentage and its two-way interaction with sample size and three-way 

interaction with sample size by normality condition were statistically significant beyond 

the .001 level. As for the between-subject effects, only the normality condition and 

sample size together with their interaction were significant (p < .001). The plots of 

estimated marginal means indicated that the sample size of 500 (50 clusters with 10 

subjects per cluster) exhibited lower power than the other three sample sizes. Under 

severely nonnormal data the power of the main effect was abnormally high regardless of 

the missingness proportions. When testing for power for the cross- level interaction 

effect, all the effects in the model were significant (p < .001) except for the three-way 

interaction among missingness proportion, normality condition and analysis method. 
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Table 2     

Analysis of Variance for Statistical Power of Main Effect 

Source df F partial ?2 p 

 Between subjects   

Normality (N) 2 268.604*** 0.184 <.001 

Sample (S) 3 900.238*** 0.532 <.001 

Analysis (A) 1 0.012 0 0.914 

N x S 6 266.148*** 0.402 <.001 

N x A 2 0.04 0 0.961 

S x A 3 0.008 0 0.999 

N x S x A 6 0.032 0 1 

between-subject error 2376 (.101)   

  Within subjects   

Missingness (M) 2 12.224*** 0.005 <.001 

M x N 4 2.122 0.002 0.075 

M x S 6 6.803*** 0.009 <.001 

M x A 2 0.019 0 0.981 

M x N x S 12 3.754*** 0.009 <.001 

M x N x A 4 0.196 0 0.94 

M x S x A 6 0.258 0 0.956 

M x N x S x A 12 0.074 0 1 

M within-group error 4752 (.005)   
Note. The outcome has a grand mean of .856 and standard deviation of .324.  

Values enclosed in parentheses represent mean square errors. 

*p < .05. **p < .01. ***p < .001. 
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Table 3     

Analysis of Variance for Statistical Power of Interaction Effect 

Source df F partial ?2 p 

 Between subjects   

Normality (N) 2 3.901* 0.003 0.02 

Sample (S) 3 8.259*** 0.01 <.001 

Analysis (A) 1 15.038*** 0.006 <.001 

N x S 6 14.218*** 0.035 <.001 

N x A 2 16.254*** 0.013 <.001 

S x A 3 7.959*** 0.01 <.001 

N x S x A 6 10.291*** 0.025 <.001 

between-subject error 2376 (.182)   

  Within subjects     

Missingness (M) 2 312.61*** 0.116 <.001 

M x N 4 17.764*** 0.015 <.001 

M x S 6 215.098*** 0.214 <.001 

M x A 2 36.07*** 0.015 <.001 

M x N x S 12 6.562*** 0.016 <.001 

M x N x A 4 0.73 0.001 0.571 

M x S x A 6 15.845*** 0.02 <.001 

M x N x S x A 12 3.052*** 0.008 <.001 

M within-group error 4752 (.02)     
Note. The outcome has a grand mean of .505 and standard deviation 

of .292. Values enclosed in parentheses represent mean square errors. 

*p < .05. **p < .01. ***p < .001. 
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Parameter Estimates Differences 

 Two sets of analysis of variance were conducted with the parameter estimates 

and standard errors as the dependent variables. One was for the complete data and the 

other for the imputed data on the four design factors with the missingness proportion 

being the repeated measured within-subject factor (three for complete data with 

proportions of missingness absent). 

ANOVA on Complete Data 

 With two analysis methods, three normality conditions, and four sample sizes, a 

three-factor 2 x 3 x 4 balanced ANOVA was used to examine the effects of these design 

factors on the parameter estimates and standard errors. All the main and two-way 

interaction effects appeared to be highly significant (p < .001). To follow up these 

results, the LSD means post-hoc comparison procedure was applied to the standard error 

estimates with regard to the main effect of individual factors. The standard errors 

differed by normality conditions, but the patterns were mixed for the main or cross- level 

interaction effects. This was not the case for sample size. Unlike the normality condition, 

larger samples produced smaller standard errors very consistently for both the effects. As 

for the analysis method, HLM had larger standard errors for the main effect and smaller 

estimates for the interaction effect than multilevel SEM. 

ANOVA with Repeated Measures on Imputed Data 

 With the four design factors including the proportion of missingness, a balanced 

ANOVA with repeated measures on imputed data was explored for the parameter 

estimates and standard errors. The ANOVA tables of these analyses are reported in 
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Table 4 to Table 7. All the four design factors had significant effects for the regression 

coefficient of main effect of x1 in the simulated two-level model with the analysis 

method being the least differentiating factor (p < .05 while for the other three p < .001). 

All the interactions were significant at or beyond the .001 level except for two, which 

were the sample by method one and the one among normality, proportion of 

missingness, and sample size. For the cross- level interaction between x1*x2bar, all the 

effects were significant beyond .001 except for the main effect of normality condition (F 

= .452, p = .637) and the three-way interaction of normality condition by proportion of 

missingness by analysis method (F = 2.236, p = .069).  

 In terms of the standard error of the main effect of x1, all the effects were 

highly significant except for the two-way interaction between missingness proportion 

and normality condition (F = .377, p = .755). As for the standard error of the cross-level 

interaction, all the effects were highly significant (p < .001) except for the two-way 

interaction between analysis method by proportion of missingness (F = .893, p = .374). 

The post-hoc multiple comparison of standard error estimates yielded mixed results for 

normality conditions, but the standard errors were always smaller in larger samples for 

both effects. As in the complete data case, HLM produced larger standard errors on the 

main effect and smaller ones for the interaction effect than multilevel SEM. The higher 

proportion of missing data (30%) was found to create larger standard errors than the 

lower proportion (15%). 
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Table 4 

Analysis of Variance for Main Effect 

Source df F partial ?2 p 

 Between subjects   

Normality (N) 2 78.594*** 0.062 <.001 

Sample (S) 3 755.086*** 0.488 <.001 

Analysis (A) 1 4.158* 0.002 0.042 

N x S 6 716.782*** 0.644 <.001 

N x A 2 8.288*** 0.007 <.001 

S x A 3 1.103 0.001 0.347 

N x S x A 6 2.522* 0.006 0.02 

between-subject error 2376 (0.043)   

  Within subjects     

Missingness (M) 2 144..46*** 0.057 <.001 

M x N 4 14.829*** 0.012 <.001 

M x S 6 90.064*** 0.102 <.001 

M x A 2 11.635*** 0.005 <.001 

M x N x S 12 5.943*** 0.015 <.001 

M x N x A 4 0.822 0.001 0.511 

M x S x A 6 10.682*** 0.013 <.001 

M x N x S x A 12 3.048*** 0.008 <.001 

M within-group error 4752 (0.001)     
Note. The outcome has a grand mean of .262 and standard deviation 

of .237. Values enclosed in parentheses represent mean square errors. 

*p < .05. **p < .01. ***p < .001. 

 

 
 
 
 
     



 

 

41 
 

 
Table 5 

Analysis of Variance for Cross- level Interaction Effect 

Source df F partial ?2 p 

 Between subjects   

Normality (N) 2 0.452 0 0.637 

Sample (S) 3 7.738*** 0.01 <.001 

Analysis (A) 1 22.429*** 0.009 <.001 

N x S 6 7.745*** 0.019 <.001 

N x A 2 10.762*** 0.009 <.001 

S x A 3 18.756*** 0.023 <.001 

N x S x A 6 4.493*** 0.011 <.001 

between-subject error 2376 (.002)   

  Within subjects     

Missingness (M) 2 327.784*** 0.121 <.001 

M x N 4 19.861*** 0.016 <.001 

M x S 6 253.664*** 0.243 <.001 

M x A 2 43.576*** 0.018 <.001 

M x N x S 12 8.031*** 0.02 <.001 

M x N x A 4 2.236 0.002 0.069 

M x S x A 6 25.284*** 0.031 <.001 

M x N x S x A 12 4.173*** 0.01 <.001 

M within-group error 4752 (< .001)     
Note. The outcome has a grand mean of .001 and standard deviation 

of .034. Values enclosed in parentheses represent mean square errors. 

*p < .05. **p < .01. ***p < .001. 
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Table 6 

Analysis of Variance for Standard Error of Main Effect 

Source df F partial ?2 p 

 Between subjects   

Normality (N) 2 86.2*** 0.068 <.001 

Sample (S) 3 8246.136*** 0.912 <.001 

Analysis (A) 1 130.641*** 0.052 <.001 

N x S 6 343.324*** 0.464 <.001 

N x A 2 53.561*** 0.043 <.001 

S x A 3 34.924*** 0.042 <.001 

N x S x A 6 76.544* 0.162 0.02 

between-subject error 2376 (<.001)   

  Within subjects     

Missingness (M) 2 151.046*** 0.06 <.001 

M x N 4 0.377 0 0.755 

M x S 6 63.23*** 0.074 <.001 

M x A 2 67.63*** 0.028 <.001 

M x N x S 12 3.7*** 0.009 <.001 

M x N x A 4 7.874*** 0.007 <.001 

M x S x A 6 26.238*** 0.032 <.001 

M x N x S x A 12 4.998*** 0.012 <.001 

M within-group error 4752 (<.001)     
Note. The outcome has a grand mean of .035 and standard deviation 

of .015. Values enclosed in parentheses represent mean square errors. 

*p < .05. **p < .01. ***p < .001. 
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Table 7 

Analysis of Variance for Standard Error of Cross- level Interaction Effect 

Source df F partial ?2 p 

 Between subjects   

Normality (N) 2 77.231*** 0.061 <.001 

Sample (S) 3 9527.481*** 0.923 <.001 

Analysis (A) 1 391.486*** 0.141 <.001 

N x S 6 166.391*** 0.296 <.001 

N x A 2 12.66*** 0.011 <.001 

S x A 3 30.328*** 0.037 <.001 

N x S x A 6 14.621*** 0.036 <.001 

between-subject error 2376 (< .001)   

  Within subjects     

Missingness (M) 2 106*** 0.043 <.001 

M x N 4 52.089*** 0.042 <.001 

M x S 6 43.075*** 0.052 <.001 

M x A 2 0.893 0 0.374 

M x N x S 12 75.13*** 0.159 <.001 

M x N x A 4 43.438*** 0.035 <.001 

M x S x A 6 14.691*** 0.018 <.001 

M x N x S x A 12 48.065*** 0.108 <.001 

M within-group error 4752 (< .001)     
Note. The outcome has a grand mean of .033 and standard deviation 

of .014. Values enclosed in parentheses represent mean square errors. 

*p < .05. **p < .01. ***p < .001. 
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Estimation Bias Due to Multiple Imputation 

 The bias of parameter estimates was evaluated with the RMSD measure 

developed by Gold, Bentler, and Kim (2003) as introduced in Chapter Three. This index 

was computed for both the regression coefficients and standard error estimates across 

100 iterations. Smaller bias implied a more robust modeling method. The means and 

standard deviations of these RMSD for the main effect, cross- level interaction effect, 

standard errors of main effect, and standard errors of interaction effect were individually 

reported in Table 8 to Table 11. Four full factorial ANOVA models with repeated 

measures were conducted to investigate the effects of four factors on RMSD of the two 

parameter estimates and their standard errors. The two RMSD indices from imputation 

of data with 15% and 30% missingness were the dependent variables. The ANOVA 

tables for these analyses are presented in Table 12 to Table 15. 

RMSD of Parameter Estimates 

 With respect to the bias in main effect of x1, among the four design factors the 

only factor that did not exhibit a significant difference was the analysis method. The 

proportion of missing data and sample size were highly significant (p < .001) while the 

normality condition was significant beyond the .01 level. As for the bias in cross- level 

interaction, the strongest effects still appeared for sample size and missingness 

proportion (p < .001 for both) while the analysis method and normality condition did not 

achieve any statistically significant differences. All the interactions among missingness 

proportion, ana lysis method, and sample size were significant at or beyond .01 level. 
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Table 8 

Means and Standard Deviations of RMSD in Parameter Estimates: Main Effect  

Missingness HLM   SEM 

Proportion 0.150  0.300  0.150  0.300 
  M SD   M SD   M SD   M SD 

Normal            

N=300 (30 x 10) 0.524 0.332  0.592 0.443  0.539 0.458  0.627 0.546 
N=500 (10 x 50) 0.761 1.000  0.977 1.458  0.702 0.620  0.895 0.818 
N=1500 (30 x 50) 0.147 0.073  0.194 0.096  0.150 0.068  0.190 0.090 
N=2500 (50 x 50) 0.099 0.049  0.118 0.056  0.102 0.046  0.116 0.053 

Moderately nonnormal                       
N=300 (30 x 10) 0.243 0.125  0.325 0.140  0.230 0.120  0.319 0.141 
N=500 (10 x 50) 1.182 4.969  0.994 1.402  0.720 0.948  0.935 0.975 
N=1500 (30 x 50) 0.473 0.765  0.551 0.720  0.405 0.388  0.517 0.654 
N=2500 (50 x 50) 0.118 0.053   0.136 0.055   0.119 0.049   0.134 0.054 

Severely nonnormal            

N=300 (30 x 10) 0.466 0.263  0.556 0.322  0.494 0.391  0.743 2.019 
N=500 (10 x 50) 0.231 0.109  0.287 0.133  0.218 0.104  0.284 0.145 
N=1500 (30 x 50) 0.336 0.223  0.418 0.266  0.359 0.281  0.450 0.329 
N=2500 (50 x 50) 0.140 0.060   0.174 0.074   0.141 0.057   0.164 0.073 
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Table 9 

Means and Standard Deviations of RMSD in Parameter Estimates: Cross- level Interaction Effect  

Missingness HLM   SEM 

Proportion 0.150  0.300  0.150  0.300 
  M SD   M SD   M SD   M SD 

Normal            

N=300 (30 x 10) 1.150 0.874  1.211 0.784  1.190 1.053  1.658 1.353 
N=500 (10 x 50) 1.043 1.106  1.131 1.023  1.000 0.880  1.085 0.968 
N=1500 (30 x 50) 0.782 0.861  0.979 1.148  0.682 0.482  0.767 0.858 
N=2500 (50 x 50) 0.620 0.515  0.689 0.541  0.603 0.421  0.678 0.466 

Moderately nonnormal                       
N=300 (30 x 10) 1.238 1.702  1.195 0.965  1.341 1.379  1.969 2.376 
N=500 (10 x 50) 1.295 2.932  1.473 3.991  0.858 0.659  1.068 0.814 
N=1500 (30 x 50) 0.956 1.585  1.129 1.995  0.822 0.863  1.002 1.197 
N=2500 (50 x 50) 0.835 2.208   0.976 2.313   0.633 0.656   0.898 1.767 

Severely nonnormal            

N=300 (30 x 10) 1.010 0.813  1.254 0.684  1.530 3.812  2.285 5.724 
N=500 (10 x 50) 0.870 0.572  1.155 0.856  1.016 1.219  1.164 0.869 
N=1500 (30 x 50) 0.912 1.176  1.190 2.787  0.777 0.817  0.839 0.581 
N=2500 (50 x 50) 0.489 0.430   0.585 0.485   0.666 0.523   0.879 0.810 
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Table 10 

Means and Standard Deviations of RMSD in Standard Error Estimates: Main Effect  

Missingness HLM   SEM 

Proportion 0.150  0.300  0.150  0.300 
  M SD   M SD   M SD   M SD 

Normal            

N=300 (30 x 10) 0.184 0.082  0.311 0.124  0.118 0.057  0.181 0.070 
N=500 (10 x 50) 0.120 0.061  0.206 0.087  0.058 0.032  0.073 0.040 
N=1500 (30 x 50) 0.079 0.032  0.093 0.037  0.050 0.023  0.061 0.026 
N=2500 (50 x 50) 0.063 0.024  0.072 0.029  0.044 0.017  0.050 0.022 

Moderately nonnormal                       
N=300 (30 x 10) 0.195 0.085  0.299 0.126  0.163 0.063  0.246 0.093 
N=500 (10 x 50) 0.150 0.063  0.202 0.084  0.056 0.031  0.071 0.042 
N=1500 (30 x 50) 0.080 0.034  0.098 0.046  0.028 0.016  0.032 0.017 
N=2500 (50 x 50) 0.064 0.032   0.074 0.032   0.040 0.016   0.045 0.019 

Severely nonnormal            

N=300 (30 x 10) 0.237 0.093  0.349 0.131  0.113 0.056  0.166 0.083 
N=500 (10 x 50) 0.156 0.072  0.270 0.092  0.112 0.057  0.151 0.070 
N=1500 (30 x 50) 0.106 0.040  0.114 0.049  0.031 0.016  0.037 0.018 
N=2500 (50 x 50) 0.074 0.030   0.088 0.034   0.036 0.015   0.043 0.019 
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Table 11 

Means and Standard Deviations of RMSD in Standard Error Estimates: Cross- level Interaction Effect  

Missingness HLM   SEM 

Proportion 0.150  0.300  0.150  0.300 
  M SD   M SD   M SD   M SD 

Normal            

N=300 (30 x 10) 0.200 0.080  0.303 0.131  0.119 0.057  0.171 0.089 
N=500 (10 x 50) 0.140 0.064  0.208 0.090  0.056 0.033  0.072 0.043 
N=1500 (30 x 50) 0.081 0.035  0.099 0.042  0.050 0.023  0.061 0.026 
N=2500 (50 x 50) 0.070 0.034  0.085 0.040  0.044 0.017  0.050 0.022 

Moderately nonnormal                       
N=300 (30 x 10) 0.204 0.091  0.361 0.111  0.165 0.064  0.271 0.111 
N=500 (10 x 50) 0.188 0.078  0.236 0.096  0.056 0.031  0.073 0.042 
N=1500 (30 x 50) 0.081 0.047  0.109 0.054  0.028 0.016  0.032 0.017 
N=2500 (50 x 50) 0.082 0.036   0.091 0.044   0.040 0.016   0.045 0.019 

Severely nonnormal            

N=300 (30 x 10) 0.148 0.119  0.430 0.219  0.113 0.056  0.175 0.092 
N=500 (10 x 50) 0.223 0.113  0.282 0.117  0.115 0.057  0.150 0.070 
N=1500 (30 x 50) 0.117 0.046  0.139 0.065  0.032 0.016  0.040 0.017 
N=2500 (50 x 50) 0.105 0.049   0.118 0.058   0.036 0.015   0.043 0.019 
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Table 12 

Analysis of Variance for RMSD of Main Effect 

Source df F partial ?2 p 

 Between subjects   

Normality (N) 2 5.033** 0.004 0.007 

Sample (S) 3 52.397*** 0.063 <.001 

Analysis (A) 1 0.407 0 0.524 

N x S 6 19.912*** 0.048 <.001 

N x A 2 1.045 0.001 0.352 

S x A 3 1.068 0.001 0.361 

N x S x A 6 0.274 0.001 0.949 

between-subject error 2376 (1.208)   

  Within subjects     

Missingness (M) 1 14.544*** 0.006 <.001 

M x N 2 0.327 0 0.721 

M x S 3 0.998 0.001 0.393 

M x A 1 1.6 0.001 0.206 

M x N x S 6 0.851 0.002 0.531 

M x N x A 2 0.707 0.001 0.493 

M x S x A 3 0.603 0.001 0.613 

M x N x S x A 6 0.908 0.002 0.488 

M within-group error 2376 (.463)     
Note. The outcome has a grand mean of .408 and standard deviation 

of .951. Values enclosed in parentheses represent mean square errors. 

*p < .05. **p < .01. ***p < .001. 
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Table 13 

Analysis of Variance for RMSD of Cross- level Interaction Effect 

Source df F partial ?2 p 

 Between subjects   

Normality (N) 2 1.797 0.002 0.166 

Sample (S) 3 21.35*** 0.026 <.001 

Analysis (A) 1 0.629 0 0.428 

N x S 6 0.34 0.001 0.916 

N x A 2 1.592 0.001 0.204 

S x A 3 5.358** 0.007 0.001 

N x S x A 6 0.644 0.002 0.695 

between-subject error 2376 (5.11)   

  Within subjects     

Missingness (M) 1 99.067*** 0.04 <.001 

M x N 2 2.854 0.002 0.058 

M x S 3 5.64** 0.007 0.001 

M x A 1 7.983** 0.003 0.005 

M x N x S 6 0.747 0.002 0.612 

M x N x A 2 1.231 0.001 0.292 

M x S x A 3 11.929*** 0.015 <.001 

M x N x S x A 6 0.286 0.001 0.944 

M within-group error 2376 (.513)     
Note. The outcome has a grand mean of 1.033 and standard deviation 

of .1.704. Values enclosed in parentheses represent mean square errors. 

*p < .05. **p < .01. ***p < .001. 
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Table 14 

Analysis of Variance for RMSD of Standard Error of Main Effect 

Source df F partial ?2 p 

 Between subjects   

Normality (N) 2 46.517 0.038 <.001 

Sample (S) 3 1683.439 0.68 <.001 

Analysis (A) 1 1578.277 0.399 <.001 

N x S 6 30.139 0.071 <.001 

N x A 2 26.622 0.022 <.001 

S x A 3 90.504 0.103 <.001 

N x S x A 6 26.801 0.063 <.001 

between-subject error 2376 (.004)   

  Within subjects     

Missingness (M) 1 584.641 0.197 <.001 

M x N 2 1.754 0.001 0.173 

M x S 3 134.417 0.145 <.001 

M x A 1 80.829 0.033 <.001 

M x N x S 6 4.51 0.011 <.001 

M x N x A 2 2.468 0.002 0.085 

M x S x A 3 18.175 0.022 <.001 

M x N x S x A 6 1.627 0.004 0.136 

M within-group error 2376 (.003)     
Note. The outcome has a grand mean of .119 and standard deviation 

of .100. Values enclosed in parentheses represent mean square errors. 

*p < .05. **p < .01. ***p < .001. 
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Table 15 

Analysis of Variance for RMSD of Standard Error of Cross- level Interaction Effect 

Source df F partial ?2 p 

 Between subjects   

Normality (N) 2 92.833 0.072 <.001 

Sample (S) 3 1343.915 0.629 <.001 

Analysis (A) 1 1861.518 0.439 <.001 

N x S 6 29.188 0.069 <.001 

N x A 2 51.657 0.042 <.001 

S x A 3 89.23 0.101 <.001 

N x S x A 6 21.442 0.051 <.001 

between-subject error 2376 (.005)   

  Within subjects     

Missingness (M) 1 472.472 0.166 <.001 

M x N 2 3.652 0.003 0.026 

M x S 3 132.085 0.143 <.001 

M x A 1 65.871 0.027 <.001 

M x N x S 6 4.972 0.012 <.001 

M x N x A 2 1.126 0.001 0.325 

M x S x A 3 14.072 0.017 <.001 

M x N x S x A 6 2.913 0.007 <.001 

M within-group error 2376 (.005)     
Note. The outcome has a grand mean of .130 and standard deviation of .116. 

Values enclosed in parentheses represent mean square errors. 

*p < .05. **p < .01. ***p < .001. 
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 As before the LSD post-hoc multiple comparisons were employed to follow up 

these significant findings. The largest amount of bias on the main effect of x1 was 

produced by moderately nonnormal data and severely nonnormal data for the cross- level 

interaction even though these differences were not statistically significant. In the case of 

sample size, N = 500 condition (50 units with 10 subjects per unit) yielded greatest bias 

for the main effect of x1 while for the cross-level interaction it occurred with the 

smallest sample (N = 300 at 10 units with 30 subjects per unit). A higher proportion of 

missing data (30%) consistently generated larger bias in terms of the two parameter 

estimates even though these differences were not statistically significant. 

RMSD of Standard Error Estimates 

 All the four factors had highly significant effects (p < .001) for the bias of both 

standard error estimates. Their effects, discovered by the post-hoc multiple comparisons, 

were very consistent across various designs. Severely nonnormal data produced the most 

bias among the three normality conditions. It was greater than that from moderately 

nonnormal data, which was in turn associated with more bias than normal data. It also 

held for sample size that the larger the sample, the smaller the estimation bias. HLM 

tended to generate more bias than multilevel SEM in all designs. Higher proportion of 

missing data had the same effect in incurring larger bias. All the above differences were 

statistically significant with the p values less than .001. 
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Modeling Performance under Different Sample Sizes 

Robustness under Small Samples 

 Research Question #5 addressed the robustness of HLM and multilevel SEM 

under small samples, which are a problem commonly encountered in application of 

multilevel analysis in behavioral science. This issue can be evaluated from three 

perspectives: empirical statistical power, efficiency of parameter estimates, which was 

studied through the mean empirical standard errors of parameter estimates, and bias in 

parameter estimates and standard errors. 

 In term of empirical statistical power, if the normal data were taken as the 

baseline level, both of the nonnormality conditions overestimated the power for the main 

effect of x1. Additionally, the power of HLM and multilevel SEM were very similar for 

the main effect. The power did not vary by sample size. The only exception was the 

largest sample (N = 2,500 with 50 subjects within each of 50 units) under nonnormal 

data, in which HLM exhibited higher power for the cross- level interaction than 

multilevel SEM.  

Similar to statistical power, not much of an effect was found for sample size with 

respect to efficiency of parameter estimates or estimation bias. The mean empirical 

standard errors in SEM were smaller for the main effect but larger for the cross- level 

interaction compared with HLM. Thus HLM was more efficient in estimating the cross-

level effect while SEM would be better for the main effect. But this pattern held across 

all sample sizes. The estimation bias effects were similar. 
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The Effects of Sample Sizes at Different Levels 

 To investigate the effects of sample sizes at different levels for HLM and 

multilevel SEM, four sample sizes were simulated: two with a fixed number of subjects 

per unit and varying number of units (30 subjects per unit with 10 or 50 units) while the 

other two were simulated with a fixed number of units and varying number of subjects 

per unit (50 units with 10 or 50 subjects per unit). For empirical statistical power, 

generally it was found that the larger the sample the higher the power. Nevertheless, 

with comparatively small samples (N = 300 or 500 compared to 1,500 and 2,500) both 

HLM and multilevel SEM exhibited higher power with more subjects within each unit 

than more units with fewer subjects under all three normality conditions, even though 

the differences became less distinct in severely nonnormal data. As for the estimation 

bias (RMSD), the sample size of 300 produced less bias in the main effect of x1 than 

that of 500, but the larger number of units was helpful in ensuring less bias in the cross-

level interaction effect.  

The purpose of this research question was to find out if the sample size at one 

level has to be compromised, which level would lead to less loss of power. That is why 

the larger samples were not discussed here. Given their sizes (N = 1,500 and 2,500), 

which meant at least fairly adequate sample size was obtained for one level, their overall 

performances would be quite satisfactory if there was an effect to be detected. 



 

 

56 
 
 

 
CHAPTER V 

DISCUSSION AND CONCLUSIONS 

 The purpose of this study was to compare the performance of HLM and 

multilevel SEM in a two-level hierarchical model under nonnormal data with or without 

missing data under various sample sizes. Missing data were estimated by the EM 

algorithm multiple imputation and then analyzed in the same way as complete data sets. 

Based on the literature review, in which it was found that not much work has been done 

within the framework of multilevel data, it was my hope that this simulation study would 

provide some preliminary guidelines for empirical researchers using multilevel analyses.  

This chapter summarizes the findings of the study with regard to the research 

questions asked in the Chapter I. Relevant implications and conclusions were drawn 

based on these finding in terms of their potential influence on research practice. 

Limitations are discussed. Finally this chapter presents some recommendations for future 

research related to the purpose of the study. The discussion was organized around the 

original research questions. 

Research Question #1 

 HLM and multilevel SEM are two closely related statistical modeling techniques 

with explicitly different applications. HLM was found to have same level of empirical 

statistical power as multilevel SEM under both normality and nonnormality conditions 

studied here. For normal data and large samples higher power was consistently found 

with both methods. This difference became smaller under moderately nonnormal data 
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and almost disappeared with severely nonnormal data. Since both HLM and SEM 

require normality to be met prior to data analysis, one possible explanation was that the 

statistical power in nonnormal conditions was inflated. This could due to the 

underestimated standard errors, which were distorted under nonnormal conditons.  

A separate null case of severely nonnormal data with 2500 cases was explored in 

which the intra-class correlation was close to zero. The empirical type I error rate for the 

cross- level interaction was found to be around .10 instead of the nominal level of .05, 

which could be the cause of the inflated statistical power under severely nonnormal data, 

especially with large sample sizes. So results from multilevel analyses should be taken 

with great caution if the data are found to violate the normality condition.  

When the number of units was fixed (at 50 in this study), power for the 

moderately nonnormal data was very similar to that for normal data. However, the power 

changes for the sample sizes with fixed number of subjects per unit were somewhat 

mixed. The small sample of 300 with 10 units and 30 subjects per unit showed a power   

increase (+15%) from normality to moderately nonnormal data conditions, while the 

sample with 50 units and 30 subjects per unit lost power under nonnormality and to a 

greater degree (-30%). This indicates that with moderately nonnormal data retaining  

more second- level units will help more than recruiting more subjects within-unit so to 

keep power at the same level.  

The power for severely nonnormal data was not much affected by sample size, 

probably because the large deviation from normality caused serious problems with  

standard error estimates, so that the sample size is not a crucial issue compared to the 
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severe nonnormality condition. The power for the cross-level interaction under severely 

nonnormal data was inflated overall. This might be due to application of the multiple 

imputation procedure to data with a serious violation of the multivariate normality 

assumption. By assuming the original data to be normal, the imputed data may have 

been greatly distorted from its original covariance matrix form. 

Research Question #2 

Analysis of variance with repeated measures for parameter estimates and 

standard errors as dependent variables indicated that both differed by all the design main 

effects of normality condition, sample size, analysis method, and proportion of 

missingness and by all their two-way interactions. This suggested that HLM and 

multilevel SEM, in spite of similar statistical power, can not be used interchangeably. 

The differences may also interact with sample size to influence parameter estimates. No 

consistent pattern was found for the normality conditions, which could explain the stable 

parameters that were produced based on multilevel analysis of nonnormal data in 

research practice.  

Empirical researchers should pay attention to the fact that for these ANOVA 

analyses the “statistical differences” should be differentiated from the “actual 

differences”. Even though most effects were statis tically significant beyond .001 level, 

the significance might be only due to the huge sample size used in the analysis, while the 

actual differences among the least square means of the estimates were barely noticeable. 

This also applies to all the other ANOVA analysis results.  
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Neither of the analysis methods seemed to be particularly sensitive to 

nonnormality. Compared to multilevel SEM, larger standard error estimates were found 

for HLM on the main effect and smaller estimates for the cross- level interaction. Thus 

HLM appears to be more effective in detecting the cross- level interaction effects while 

multilevel SEM would be more useful exploring the main effects in complex path 

models. The EM algorithm imputation appeared to work very well with MAR missing 

data with multilevel structure because the results from the imputed data were close to 

those from complete data. 

Research Question #3 

As mentioned above, the performance of the EM algorithm for multiple 

imputation appeared to be satisfactory with MAR data in multilevel analyses in terms of 

empirical statistical power and parameter estimates comparing them for complete and 

imputed data. More systematic investigation on this issue using RMSD (Gold, Bentler, 

and Kim, 2003) revealed that all three design factors produced some differences except 

for the analysis method. This is helpful because the degree of estimation bias resulting 

from data imputation did not differ by the multilevel analysis technique. HLM and 

multilevel SEM were not differentially sensitive to nonnormality with respect to 

estimation bias compared with the factors of sample sizes and proportions of missing 

data. 

The sample size of 500 yielded the largest bias for the main effect of x1. One 

explanation may be that in order to get an accurate main effect estimate the unit size, 

which is the number of subjects per unit or cluster, cannot be too small. Otherwise, the 
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within-unit covariance matrices at the first level are not stable and thus unable to 

generate proper estimates for the first level main effect. On the other hand, the data 

condition with 300 cases produced the greatest bias for the cross-level interaction. 

Similarly, this could be due to lack of second- level variance given the small number of 

units available in the data. These findings indicate the differentiating effects of sample 

sizes at different levels. 

Research Question #4 

Both the percentages of missing data examined in the present study are quite 

common in real world data. The level of 15% represents a somewhat low to moderate 

degree of data missingness, while 30% may be considered moderate in traditional GLM 

data analysis, but is regarded as high level in multilevel analyses. As expected it was 

consistently found that a higher proportion of missing data tended to produce larger 

standard errors and also cause more bias in parameter estimates and standard errors, 

which corresponds to findings by Gold, Bentler, and Kim (2003) and Gibson and Olejnik 

(2003).  

Compared with results from complete data analysis, the EM algorithm multiple 

imputation worked well with multilevel data. Future researchers should feel confident 

applying this procedure with a missing data level of no more than 30%. However, since 

the proportion of missing data at 30% produced significantly larger standard errors and 

siginficantly greater estimation bias, multiple imputation should be applied cautiously to 

multilevel data with more than 30% missing data. 
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Research Question #5 

Not much difference was found between HLM and multilevel SEM in terms of 

their statistical power under different sample sizes. Thus, neither achieved better power 

under small sample sizes than the other. Since power may be inflated under nonnormal 

data regardless of the degree of nonnormality, the significant findings found for severely 

nonnormal data with small samples should be interpreted with great caution. This was 

particularly true for the cross- level interaction effect. 

 On the other hand, analysis with large samples worked very well in both HLM 

and multilevel SEM, especially for interaction effects, under which HLM performed 

even better than SEM. This pattern was consistent for all the distribution conditions. 

Thus, even with severely nonnormal data, HLM may be effectively utilized to detect 

cross- level effects, although at the same time the estimates for main effects may not be 

very reliable. Similar situations were discovered in terms of parameter estimation 

efficiency and estimation bias. Based on these findings the conclusion here is that 

neither HLM nor multilevel SEM is robust to small sample sizes, which suggests that 

multilevel analyses are inappropriate for small sample data.  

Research Question #6 

Among the four sample designs the two comparatively small samples clearly 

showed the differentiating effect of sample size at different levels. The sample size of 

300 was more useful to detect the main effect of x1. Possibly, this was because this 

sample provided more information with each unit, and thus made the first- level 

covariance matrices more stable and the first level distribution more variable. In 
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considering cross-level interaction, however, it is more beneficial to include more units 

at second level than increasing the number of cases at the unit level. One explanation is 

that adequate variability of second level means was a necessary prerequisite for the 

cross- level interaction to be identified in spite of the number of subjects within each unit. 

This implies that it is a good idea to identify one’s research focus based on a careful 

literature review because this may help to determine the sampling plan before data 

collection to include an appropriately large number of units or perhaps more cases per 

unit, depending on the need to detect a cross- level interaction or not. These findings 

were applicable to both HLM and multilevel SEM. On the other hand, large sample size, 

no matter at which level always appears to be valuable. One advantage is to offset the 

negative influence of nonnormal data, especially uner severely nonnormal condition. 

Conclusions  

Violations of normality and missing data treatment have been issues broadly 

explored in single-level data analysis. The present study studied these topics from the 

perspective of a multilevel data structure and with HLM and SEM analysis methods. The 

EM algorithm for multiple imputation was found to be effective dealing with MAR 

missing data with nesting structure. A higher proportion of missingness tended to 

generate imputed data more deviant from the original complete data and thus generate 

larger standard errors and greater estimation bias. The nonnormality conditions, severe 

or not, did not really affect imputation performance even though multivariate normality 

is assumed for the procedure. However, under severely nonnormal data condition the 

imputed data matrix tended to be more normal than its original form. This is probably 
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due to the multivariate normality assumption in multiple imputation which distorts the 

original data to their more normal form thus exhibited abnormally high power for the 

main effect.  

HLM and SEM had similar power to detect the main effect of first level predictor 

and cross- level interaction effect across various sample sizes, and higher power was 

found with larger samples. However, data with small sample size may not be appropriate 

for multilevel analyses since there was lack of sufficient information at either level for 

stable estimation. Under severely nonnormal data HLM had better power for the 

interaction effects than SEM, but neither method was very sensitive to violations of 

normality in terms of parameter estimates and standard errors.  

Depending on the research focus, adding more units will be useful in detecting 

cross- level interactions while larger numbers per unit can ensure sufficient information 

to estimate the first level predictor main effect. However, when the sample size at either 

level exceeds a certain number (in the current study 30 for the unit size and 50 for the 

number of units) both HLM and multilevel SEM appear to have sufficient information 

and statistical power to detect appropriate effects presented in the sample data. 

Recommendations  

Since HLM has been the preferred method for multilevel analysis, this study was 

intended to provide some preliminary guidelines for future research to consider SEM 

when HLM cannot be employed, particularly for complicated path models that focus on 

the main effect.  
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Neither HLM nor multilevel SEM appeared to be particularly sensitive to 

nonnormality condition no matter moderately or severely nonnormal. This does not 

imply that the normality assumption is not important in multilevel analysis. Instead, it 

just suggested that nonnormality may not greatly alter the results. But when the results 

are quite deviant from what is expected, especially with small to moderate sample size, it 

would be helpful to examine whether the normality assumption is violated in the data. 

The hypothesis that sample sizes at both levels influence the statistical power 

was supported in that the power for main effect was higher with bigger cluster size while 

for the cross- level interaction it was more efficient to have more clusters sampled. For 

either cases it was true that the more the better. The marginal increase of power stops 

when the sample size at the each level reaches certain number. In the two-level model of 

the current study it appeared that 30 was a number adequate for the first- level cluster 

size and 50 for the number of second- level clusters. It should be noted that due to the 

limited combinations of sample sizes explored in this study, these two levels did not 

serve as the criterion or cutoff points for sample size investigation. The actual effect size 

also has some role in determining the necessary sample size. 

The EM algorithm for multiple imputation can be employed confidently for 

multilevel data with MAR missingness. Parameter estimates from imputed data proved 

to be quite stable despite a high proportion of missing data; since higher proportions 

tended to generate larger standard errors, the significance tests should be considered with 

caution in such cases. Analysis of complete data should always be attempted given 
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adequate sample size. When missing data are encountered, researchers should be careful 

in interpreting imputed data results with a proportion of missingness higher than 30%. 

Limitations  

Due to practical constraints, the present study only investigated multilevel data 

with low to moderate intraclass correlation, which made the inference for cross- level 

interaction fairly difficult, because the effect was rarely detected. Future research should 

replicate these findings under multilevel data having stronger nesting effects. It would 

also be meaningful to further increase the proportion of missingness to levels that have 

been proven to be easily accommodated by imputation in single-level data analysis. As 

the present study only studied four sample size designs, more combination of sample 

sizes might be explored to confirm the usual power graph for multilevel research design 

from popular power estimation software. This would provide practical guidance for 

empirical researchers with a need to design the sampling procedure in hierarchical 

structure.  
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APPENDIX 

SAS SYNTAX FOR MODERATELY NONNORMAL DATA  

WITH 10 CLUSTERS AND 30 SUBJECTS PER CLUSTER 

proc datasets kill; 
options nosource nonotes; 
data a (type=corr); _type_= 'corr'; 
 input xc1-xc3; 
 cards; 
 1.00   .    . 
  .30  1.00  . 
  .30   .30  1.00 
; 
 
%macro simu(r); 
 %do k=1 %to &r; 
proc factor n=3 data=a outstat=facout noprint; 
run; 
data pattern; set facout; 
 if _type_='PATTERN'; 
 drop _type_ _name_; 
RUN; 
 
PROC IML; 
use  pattern; 
read all var _num_ into F; 
F=F`; 
RUN; 
 
DATA=RANNOR(J(300,3,0)); 
DATA=DATA`; 
Z = F*DATA; 
Z = Z`; 
 
XC1=Z[,1]; 
XC2=Z[,2]; 
XC3=Z[,3]; 
 
Z=XC1||XC2||XC3; 
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CREATE A FROM Z [COLNAME={XC1 XC2 XC3}]; 
APPEND FROM Z; 
 
data b; set a;  
XC1= -0.07311802793159 + 0.92409763318404*XC1 + 0.07311802793159*XC1**2 + 
0.02298245181387*XC1**3; 
XC2= -0.07311802793159 + 0.92409763318404*XC2 + 0.07311802793159*XC2**2 + 
0.02298245181387*XC2**3; 
XC3= -0.07311802793159 + 0.92409763318404*XC3 + 0.07311802793159*XC3**2 + 
0.02298245181387*XC3**3; 
 
proc sort data=b; by xc2; 
 
 
DATA D1; SET B; id=_n_; 
 
if _n_ < 31 then cls=1;if _n_ > 30 and _n_ < 61 then cls=2; 
 if _n_ > 60 and _n_ < 91 then cls=3;if _n_ > 90 and _n_< 121 then cls=4; 
 if _n_ > 120 and _n_ < 151 then cls=5;if _n_ > 150 and _n_ < 181 then cls=6; 
 if _n_ > 180 and _n_ < 211 then cls=7;if _n_ > 210 and _n_ < 241 then cls=8; 
 if _n_ > 240 and _n_ < 271 then cls=9;if _n_ > 270 and _n_ < 301 then cls=10; 
 
proc sort;by cls; 
proc means noprint ;by cls;var xc2 xc3; output out =d2a mean=xc2bar xc3bar; 
data d2;merge d1 d2a;by cls; t=1;  
data corr.mdxc1030; set d2; keep id cls xc3 xc3bar; 
 
**HLM**; 
proc mixed data=d2 ic noclprint noitprint noinfo; class cls; 
model xc3=xc1 xc2bar xc1*xc2bar/solution ddfm=bw; 
random intercept /sub=cls type=un; 
ods output solutionf=out_hlm0 ; 
data hlmout0; set out_hlm0;keep effect estimate stderr; proc sort; by effect; 
 
**Multilevel SEM**; 
data d3; set d2; proc sort; by cls; 
proc means noprint; by cls; var xc1 xc3; output out=d3a mean=xc1bar xc3bar std=xc1sd 
xc3sd; 
data d4; merge d3 d3a; by cls; if cls ne .; 
zxc1=(xc1-xc1bar)/xc1sd; zxc3=(xc3-xc3bar)/xc3sd; crossint=zxc1*xc2bar; 
 
proc calis corr cov outest=out_sem0 noprint; 
lineqs zxc3=b4 zxc1 + b6 crossint + e1; 
std e1= the1; cov zxc1 crossint = 0; var zxc1 crossint zxc3; 
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data sema0; set out_sem0;  if _TYPE_='PARMS';  
data semb0; set out_sem0;  if _TYPE_='STDERR';stb4=b4; stb6=b6; 
 drop b4 b6; 
data semc0; set sema0; b4_orig=b4; b6_orig = b6; keep b4_orig b6_orig; 
data semd0; set semb0; stb4_orig=stb4; stb6_orig=stb6; keep stb4_orig stb6_orig;  
data semout0;merge semc0 semd0;  
 
**missing data imputation at missingness of 15***; 
proc means data=d2 noprint; var xc2; output out = d2b p25 = p25_xc2; 
data d5; set d2b; t=1; 
data d6; merge d2 d5; by t;drop _type_ _freq_; 
 
data d7; set d6; if xc2>p25_xc2 then z=1; else z=0;drop t ; 
 
data d8; set d7;  
 
proc surveyselect data=d8 sampsize=113 method=pps out=sm1; size z; 
data d9; set sm1;t1=1; proc sort; by id;  
 
data d10; set d8; proc sort; by xc1; 
proc surveyselect data=d10 sampsize=113 method=pps out=sm2; size z; 
data d11; set sm2; t2=1;proc sort; by id;  
 
data d12; merge d9 d11 d8; by id; x3=xc3; x1=xc1; 
data d13; set d12; 
if t1=1 then x1='.';  if t2=1 then x3='.'; 
 
data d14; set d13; if x3 = '.' then r_x3=0; else r_x3=1; 
if x1='.' then r_x1=0; else r_x1=1; drop t1 t2 samplingweight selectionprob; 
 
data d15; set d14; keep id cls x1 xc2 xc2bar x3; 
 
proc mi data=d15 seed=32173 out=out_imp  simple nimpu=5 ; 
var x1 xc2bar x3; 
 
data dimp; set out_imp; XC1=x1;XC3=x3; 
 
**analyses of imputed datasets**; 
**HLM**; 
proc mixed data=dimp noclprint noitprint noinfo; class cls; 
model xc3=xc1 xc2bar xc1*xc2bar/solution ddfm=bw ;by _imputation_; 
random intercept /sub=cls type=un; 
ods output solutionf=out_hlm1; 
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proc sort data=out_hlm1; by effect; 
proc means noprint; by effect; var estimate StdErr; output out=est_hlm1 mean=estimate 
stderr; 
 
data hlmout1; set est_hlm1; estim_imp=estimate; stderr_imp=stderr; 
keep effect estim_imp stderr_imp; 
proc sort; by effect; 
 
data d16; merge hlmout0 hlmout1; by effect; 
 
data hlma1; set d16;if effect = 'XC1';  
b1_orig=Estimate; b1_imp=estim_imp;stb1_orig=StdErr;  stb1_imp=stderr_imp;  
t1_orig=Estimate/StdErr; t1_imp=estim_imp/stderr_imp; 
pt1_orig= probt(t1_orig, 288); pt1_imp= probt(t1_imp, 288); 
data hlmb1; set d16;if effect = 'xc2bar'; 
b2_orig=Estimate; b2_imp=estim_imp;stb2_orig=StdErr; stb2_imp=stderr_imp; 
t2_orig=Estimate/StdErr; t2_imp=estim_imp/stderr_imp; 
pt2_orig= probt(t2_orig, 8);pt2_imp= probt(t2_imp, 8); 
data hlmc1; set d16;if effect = 'XC1*xc2bar'; 
b3_orig=Estimate; b3_imp=estim_imp; stb3_orig=StdErr; stb3_imp=stderr_imp; 
t3_orig=Estimate/StdErr; t3_imp=estim_imp/stderr_imp; 
pt3_orig= probt(t3_orig, 288);pt3_imp= probt(t3_imp, 288); 
 
data hlm1; merge hlma1 hlmb1 hlmc1;  
keep b1_orig b2_orig b3_orig stb1_orig stb2_orig stb3_orig t1_orig t2_orig t3_orig 
pt1_orig pt2_orig pt3_orig 
b1_imp b2_imp b3_imp stb1_imp stb2_imp stb3_imp t1_imp t2_imp t3_imp pt1_imp 
pt2_imp pt3_imp; 
 
data d17; set hlm1; 
rmsd_b1= sqrt(abs(b1_orig-b1_imp)/abs(b1_orig));rmsd_b2= sqrt(abs(b2_orig-
b2_imp)/abs(b2_orig)); 
rmsd_b3= sqrt(abs(b3_orig-b3_imp)/abs(b3_orig)); 
rmsd_stb1= sqrt(abs(stb1_orig-stb1_imp)/abs(stb1_orig)); 
rmsd_stb2= sqrt(abs(stb2_orig-stb2_imp)/abs(stb2_orig)); 
rmsd_stb3= sqrt(abs(stb3_orig-stb3_imp)/abs(stb3_orig));  
 
proc append base=corr.mtmp1030_hlm15 data=d17; 
 
**SEM**; 
data dimp2; set dimp; proc sort; by cls; 
proc means noprint; by cls; var xc1 xc3; output out=dimp2a mean=xc1bar xc3bar 
std=xc1sd xc3sd; 
data dimp3; merge dimp2 dimp2a; by cls;  
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zxc1=(xc1-xc1bar)/xc1sd; zxc3=(xc3-xc3bar)/xc3sd; crossint=zxc1*xc2bar; 
 
data dimp4; set dimp3; proc sort; by _imputation_; 
 
proc calis corr cov outest=out_sem1 noprint; by _imputation_; 
lineqs zxc3=b4 zxc1 + b6 crossint + e1; 
std e1= the1; cov zxc1 crossint = 0; var zxc1 crossint zxc3; 
 
data sema1; set out_sem1;  if _TYPE_='PARMS';  
data semb1; set out_sem1;  if _TYPE_='STDERR';stb4=b4; stb6=b6; 
 drop b4 b6; 
data semc1; set sema1; b4_imp=b4; b6_imp= b6; keep b4_imp  b6_imp; 
data semd1; set semb1; stb4_imp=stb4; stb6_imp=stb6; keep stb4_imp stb6_imp; 
data semout1;merge semc1 semd1;  
proc means noprint data=semout1; output out=est_sem1 mean=b4_imp b6_imp 
stb4_imp stb6_imp; 
 
data sem1; merge semout0 est_sem1; 
t4_orig=b4_orig/stb4_orig;t6_orig=b6_orig/stb6_orig;  
pt4_orig=probt(t4_orig,288);  pt6_orig=probt(t6_orig,288); 
t4_imp=b4_imp/stb4_imp; t6_imp=b6_imp/stb6_imp;  
pt4_imp=probt(t4_imp,288);  pt6_imp=probt(t6_imp,288); 
 
data d18;set sem1; 
rmsd_b4= sqrt(abs(b4_orig-b4_imp)/abs(b4_orig)); 
rmsd_b6= sqrt(abs(b6_orig-b6_imp)/abs(b6_orig)); 
rmsd_stb4= sqrt(abs(stb4_orig-stb4_imp)/abs(stb4_orig)); 
rmsd_stb6= sqrt(abs(stb6_orig-stb6_imp)/abs(stb6_orig));  
 
proc append base=corr.mtmp1030_sem15 data=d18; 
 
**missing data imputation at missingness of 30***; 
proc surveyselect data=d8 sampsize=225 method=pps out=sm3; size z; 
data d90; set sm3;t1=1; proc sort; by id;  
 
proc surveyselect data=d10 sampsize=225 method=pps out=sm4; size z; 
data d110; set sm4; t2=1;proc sort; by id;  
 
data d120; merge d90 d110 d8; by id; x3=xc3; x1=xc1; 
data d130; set d120; 
if t1=1 then x1='.';  if t2=1 then x3='.'; 
 
data d140; set d130; if x3 = '.' then r_x3=0; else r_x3=1; 
if x1='.' then r_x1=0; else r_x1=1; drop t1 t2 samplingweight selectionprob; 
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data d150; set d140; keep id cls x1 xc2 xc2bar x3; 
 
proc mi data=d150 seed=32173 out=out_imp0  simple nimpu=5 ; 
var x1 xc2bar x3; 
 
data dimp0; set out_imp0; XC1=x1;XC3=x3; 
 
 
**analyses of imputed datasets**; 
**HLM**; 
proc mixed data=dimp0 noclprint noitprint noinfo; class cls; 
model xc3=xc1 xc2bar xc1*xc2bar/solution ddfm=bw ;by _imputation_; 
random intercept /sub=cls type=un; 
ods output solutionf=out_hlm10; 
proc sort data=out_hlm10; by effect; 
proc means noprint; by effect; var estimate StdErr; output out=est_hlm10 mean=estimate 
stderr; 
 
data hlmout10; set est_hlm10; estim_imp=estimate; stderr_imp=stderr; 
keep effect estim_imp stderr_imp; 
proc sort; by effect; 
 
data d160; merge hlmout0 hlmout10; by effect; 
 
data hlma10; set d160;if effect = 'XC1';  
b1_orig=Estimate; b1_imp=estim_imp;stb1_orig=StdErr;  stb1_imp=stderr_imp;  
t1_orig=Estimate/StdErr; t1_imp=estim_imp/stderr_imp; 
pt1_orig= probt(t1_orig, 288); pt1_imp= probt(t1_imp, 288); 
 
data hlmb10; set d160;if effect = 'xc2bar'; 
b2_orig=Estimate; b2_imp=estim_imp;stb2_orig=StdErr; stb2_imp=stderr_imp; 
t2_orig=Estimate/StdErr; t2_imp=estim_imp/stderr_imp; 
pt2_orig= probt(t2_orig, 8);pt2_imp= probt(t2_imp, 8); 
 
data hlmc10; set d160;if effect = 'XC1*xc2bar'; 
b3_orig=Estimate; b3_imp=estim_imp; stb3_orig=StdErr; stb3_imp=stderr_imp; 
t3_orig=Estimate/StdErr; t3_imp=estim_imp/stderr_imp; 
pt3_orig= probt(t3_orig, 288);pt3_imp= probt(t3_imp, 288); 
 
data hlm10; merge hlma10 hlmb10 hlmc10;  
keep b1_orig b2_orig b3_orig stb1_orig stb2_orig stb3_orig t1_orig t2_orig t3_orig 
pt1_orig pt2_orig pt3_orig 
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b1_imp b2_imp b3_imp stb1_imp stb2_imp stb3_imp t1_imp t2_imp t3_imp pt1_imp 
pt2_imp pt3_imp; 
 
data d170; set hlm10; 
rmsd_b1= sqrt(abs(b1_orig-b1_imp)/abs(b1_orig));rmsd_b2= sqrt(abs(b2_orig-
b2_imp)/abs(b2_orig)); 
rmsd_b3= sqrt(abs(b3_orig-b3_imp)/abs(b3_orig)); 
rmsd_stb1= sqrt(abs(stb1_orig-stb1_imp)/abs(stb1_orig)); 
rmsd_stb2= sqrt(abs(stb2_orig-stb2_imp)/abs(stb2_orig)); 
rmsd_stb3= sqrt(abs(stb3_orig-stb3_imp)/abs(stb3_orig));  
 
proc append base=corr.mtmp1030_hlm30 data=d170; 
 
**SEM**; 
data dimp20; set dimp0; proc sort; by cls; 
proc means noprint; by cls; var xc1 xc3; output out=dimp2a0 mean=xc1bar xc3bar 
std=xc1sd xc3sd; 
data dimp30; merge dimp20 dimp2a0; by cls;  
zxc1=(xc1-xc1bar)/xc1sd; zxc3=(xc3-xc3bar)/xc3sd; crossint=zxc1*xc2bar; 
 
data dimp40; set dimp30; proc sort; by _imputation_; 
 
proc calis corr cov outest=out_sem10 noprint; by _imputation_; 
lineqs zxc3=b4 zxc1 + b6 crossint + e1; 
std e1= the1; cov zxc1 crossint = 0; var zxc1 crossint zxc3; 
 
data sema10; set out_sem10;  if _TYPE_='PARMS';  
data semb10; set out_sem10;  if _TYPE_='STDERR';stb4=b4; stb6=b6; 
 drop b4 b6; 
data semc10; set sema10; b4_imp=b4; b6_imp= b6; keep b4_imp  b6_imp; 
data semd10; set semb10; stb4_imp=stb4; stb6_imp=stb6; keep stb4_imp stb6_imp; 
data semout10;merge semc10 semd10;  
proc means noprint data=semout10; output out=est_sem10 mean=b4_imp b6_imp 
stb4_imp stb6_imp; 
 
data sem10; merge semout0 est_sem10; 
t4_orig=b4_orig/stb4_orig;t6_orig=b6_orig/stb6_orig;  
pt4_orig=probt(t4_orig,288);  pt6_orig=probt(t6_orig,288); 
t4_imp=b4_imp/stb4_imp; t6_imp=b6_imp/stb6_imp;  
pt4_imp=probt(t4_imp,288);  pt6_imp=probt(t6_imp,288); 
 
data d180;set sem10; 
rmsd_b4= sqrt(abs(b4_orig-b4_imp)/abs(b4_orig)); 
rmsd_b6= sqrt(abs(b6_orig-b6_imp)/abs(b6_orig)); 
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rmsd_stb4= sqrt(abs(stb4_orig-stb4_imp)/abs(stb4_orig)); 
rmsd_stb6= sqrt(abs(stb6_orig-stb6_imp)/abs(stb6_orig) );  
 
proc append base=corr.mtmp1030_sem30 data=d180; 
 
run; 
%end; 
%mend simu; 
%simu(100); 
run; 
 
data hlm15; set corr.mtmp1030_hlm15; m=15; 
data sem15; set corr.mtmp1030_sem15; m=15; 
data hlm30; set corr.mtmp1030_hlm30; m=30; 
data sem30; set corr.mtmp1030_sem30; m=30; 
 
data corr.mdfinal1030; merge hlm15 sem15 hlm30 sem30; by m; drop _type_ 
_freq_;run; 
proc means data=corr.mdfinal1030;by m;run; 
data final; set corr.mdfinal1030; 
if pt1_orig >.975 or pt1_orig< .025 then cnt105a=1;else cnt105a=0; 
if pt3_orig >.975 or pt3_orig< .025 then cnt305a=1;else cnt305a=0; 
if pt4_orig >.975 or pt4_orig< .025 then cnt405b=1;else cnt405b=0; 
if pt6_orig >.975 or pt6_orig< .025 then cnt605b=1;else cnt605b=0; 
proc freq; tables cnt105a*cnt405b  cnt305a*cnt605b ; 
proc means data=b n mean std skewness kurtosis; var xc1 xc2 xc3; 
proc corr data=b nosimple; var xc1 xc2 xc3; 
run; 
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