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ABSTRACT 
 

Rotordynamic Coefficients for a Load-Between-Pad, Flexible-Pivot Tilting Pad 

Bearing at High Loads.  (August 2006) 

John Eric Hensley, B.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Dara W. Childs 

 

The dynamic and static performance of a flexure-pivot tilting pad bearing is presented at 

a load between pad configuration for various load and speed combinations.  A similar 

work performed on the same bearing at lower loads ranging from 0-1 MPa (0-150 psi) by 

Al-Ghasem was tested, whereas the current work investigates effects in the load range 

between 1-2.2 MPa (150-320 psi).  The bearing design parameters include:  4 pads with 

pad arc angle 72º and 50% pivot offset, pad axial length 0.0762 m (3 in), pad radial 

clearance 0.254 mm (0.010 in), bearing radial clearance 190.5 µm (0.0075 in), preload 

0.25, and shaft nominal diameter of 0.11684 m (4.600 in).  An important distinction 

between the two sets of tests is the difference in experimental bearing radial clearance, 

which for this case measured 208 µm (0.00082 in), and for Al-Ghasem’s was 165.1 µm 

(0.0065 in).  The rotordynamic coefficients are determined experimentally using a test rig 

equipped with motion and load sensors.  The rig is modeled using Newton’s laws, which 

is converted from the time to frequency domain using Fourier Transform to give complex 

dynamic stiffnesses.  From the resulting complex dynamic stiffnesses the associated real 

and imaginary components are plotted as a function of excitation frequency and curve 

fitted via linear regression to give the rotordynamic coefficients. The primary objectives 

were to determine whether the real component of the complex dynamic stiffnesses could 

be better modeled with or without the mass coefficient and to contrast the rotordynamic 

coefficients with an analytical model.  Only in the load range of 1 to 2.2 MPa were the 

unloaded direct mass coefficients near or at 0, which would allow for a [K][C] model to 

be used.  The remaining real components are better represented with the mass term.  The 

analytical model generally overpredicted the stiffness, damping and mass coefficients, 

especially for the direct components; the trends were generally consistent.   
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NOMENCLATURE 
 
A Cross sectional area of flexure pivot [µm2] 

ax, ay Measured stator acceleration in the x and y directions [m/s2] 

Ax, Ay  Fourier transformation of ax and ay 

cij Dimensionless damping coefficient = Cij (Cp ω/W) 

Cb  Radial bearing clearance [m] 

Cp  Radial pad clearance [m] 

CP  Oil specific heat [J/(kg.Ko)] 

Cc  Corrected damping [kN.s/m] 

Cij  Damping coefficient [kN.s/m] 

D  Inside bearing diameter [m] 

Dx, Dy  Fourier transformation of ∆x and ∆y 

E  Modulus of elasticity [MPa] 

exDE, exNDE Bearing displacement in the x direction at the DE and NDE sides [m] 

eyDE, eyNDE Bearing displacement in the y direction at the DE and NDE sides [m] 

ex, ey  Average bearing displacement in the x and y directions [m] 

fbx, fby  Bearing reaction force in the x and y directions [N] 

fx, fy  Measured excitation force in the x and y directions [N] 

Fx, Fy  Fourier transformation of fx and fy,  

Hij  Average dynamic stiffness vector of the 10 tests [MN/m] 

i, j   Subscripts  representing x and y  

j  1−  

k1  Radial stiffness [MN/m] 

k1C  Radial stiffness from damping relation [MN/m] 

k1K  Radial stiffness from stiffness relation [MN/m] 

Kc  Corrected stiffness [MN/m] 

kij  Dimensionless stiffness coefficient = Kij (Cp/W) 

Kij  Stiffness coefficient [MN/m] 

L  Length of flexure pivot [µm] 
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∆L  Change in pad thickness [µm] 

Lo  Original pad thickness [µm] 

mij  Dimensionless added mass coefficient = Mij (Cp ω2/W) 

Mij  Added mass coefficient [kg] 

Ms  Stator mass [kg] 

n  Dynamic stiffness vector length 

N  Rotor speed [Hz] 

p  Bearing unit loading = W/(LD) [kPa] 

P  Power loss [W] 

Pin  Inlet Pressure [Pa] 

Q&   Oil volumetric flowrate [m3/s] 

Rb  Bearing radius [m] 

Rp  Pad radius [m] 

Rs  Shaft radius [m] 

S  Sommerfeld number = µ N L D (D/2Cp)2/W 

∆T  Temperature difference [°C] 

To Average oil outlet temperature [Ko] 

Tin Oil inlet temperature [Ko] 

Taverage Average oil inlet and outlet temperature [Ko] 

Uij Uncertainty in dynamic stiffness (Hij) [MN/m] 

W Applied static load in the positive y-direction [N] 

∆x, ∆y Measured relative displacement between the rotor and the bearing in the x 

and y directions, respectively [m] 

x, y Displacement direction 
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Greek symbols 

α  Coefficient of thermal expansion [µm/(m-°C)] 

ρ  Oil density [kg/m3] 

µ  Oil viscosity [Pa.s] 

ε  Eccentricity ratio = (ex
2 + ey

2)0.5/Cp 

φ   Attitude angle = tan-1(ey/ex) 180/π [degree] 

ω  Rotor speed [rpm] 

Ω  Excitation frequency [Hz] 

ωs  Onset speed of instability [rpm] 

 

 

Abbreviations  

DE Drive end 

EXP Experiment 

Im( ) Imaginary part ( ) 

LBP Load between pads 

LOP Load on pad 

NDE Non-drive end 

NS Bulk-Flow Navier Stokes 

Re( ) Real part ( ) 

rpm Revolution per minute 

RY Reynolds Equation 

TH Theory (bulk-flow unless mentioned otherwise) 

TPJB Tilting-pad journal bearing 

WFR Whirl frequency ratio 
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INTRODUCTION 

 

The analysis of Tilting Pad (TP) journal bearings has become an issue of importance as 

the push to run centrifugal operating machines at higher speeds has increased.  The 

threshold of instability is increased with the use of tilting pad bearings over fixed 

geometry bearings, due to the reduction or often the elimination of cross coupling.  When 

the rotor moves both along and orthogonal to the direction of loading, cross coupling is 

said to occur [1], which is unique to rotating equipment.  The cross coupling is 

“generated by the fluid rotation in the annulus between the rotating shaft and the 

housing” [2].  The TP bearing has become the standard for “rotordynamically sensitive 

and critical rotating equipment” [2], despite the added complexity and expense.  A 

conventional 4 pad TP bearing is depicted below in Figure 1. 

 

 
Figure 1: Tilting Pad Bearing [3] 

 
The pivot of TP bearings may vary; Figure 1 is an illustration of a rocker pivot.  Unlike 

many TP bearings, the flexure pivot (FP) bearings shown in Figure 2 have an inherent 

stiffness at the support web.  The stiffness value of a rocker pivot for instance is 

negligible or near zero.  The support web thickness of a FP bearing is designed to both 

support the load of the rotor and also promote stability for operation.  If the stiffness of 

the support is such that no flexure occurs as an effect of the rotor’s movement, then the 

bearing’s stability is drastically reduced [4].  1 

                                                 
This thesis follows the style and format of the ASME Journal of Tribology.  
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A benefit of the flexure pivot design to other  tilting pad designs is the absence of pivot 

wear and pad pivot contact stresses.  The support web absorbs stresses that are well 

below its fatigue limit ensuring “long service life” [5].  Another benefit of the FP bearing 

over the TP bearing is the removal of tolerance stack up in the design, as the bearing is 

machined in one piece.  Since the tolerance stack up is removed, this also lends the 

bearings’ use to smaller turbomachines where tolerances are of particular concern.  The 

machining process used to manufacture such a bearing for low volume situations is 

electrical discharge machining.  For high volume needs, the bearing is manufactured via 

casting, extrusion or forging.  Figure 2 illustrates a five pad flexure pivot pad bearing. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Flexure Pivot Pad Bearing [5] 

 

To reasonably calculate the critical speed and unbalance response, the effect of bearing 

flexibility and damping must be determined [6].  The first method for calculating the 

stiffness and damping coefficients of a TP bearing was performed by Lund, which is 

known as the pad assembly method. This analysis was later suggested to be insufficient 

as it did not take into account the effects of the unloaded pads, which is especially 

important at higher Sommerfeld numbers [7].  Another revision introduced into the 
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method by the same author [7] was the use of finite elements instead of finite-differences 

to compute the hydrodynamic pressure field.  A further change was implemented where 

the real parts of the eigenvalues were retained in the reduction of the coefficients[8].  The 

inclusion of the real part of the system eigenvalues accounts for the growing or decaying 

vibration amplitude.  This analysis reduced the number of necessary stiffness and 

damping coefficients from 2*(5*NPAD+4) to an equivalent eight.  Having only eight 

coefficients enables the designer to better characterize a rotor-bearing system’s stability 

in conjunction with optimization schemes previously developed.  The greater number of 

coefficients for a tilting pad bearing are introduced as a result of the various pad degrees 

of freedom at each pad, as opposed to the simplicity of the fixed geometry bearing.   

Figure 3 depicts a hydrodynamic rotor bearing combination with eight linearized 

dynamic coefficients and Eq. (1) below gives the stiffness and damping matrix model 

without mass. 
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Figure 3:  Linearized Dynamic Coefficients [1] 

 
A later reduction was presented by Chen for the general method of calculating bearing 

dynamic coefficients for flexible-pad journal bearings [9].  In the computation of the 

coefficients the flexibility of the support web and mass/inertia effects are included.  The 

numerical results of the computation were confirmed to be in good alignment with 

experimental results. 
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To determine the dynamic coefficients, integration of the fluid film hydrodynamic 

pressure profile is necessary, which is accomplished by solving the Reynolds equation.  

The Reynolds equation is a simplification of the Bulk-Flow Governing equation, where 

temporal and advective acceleration terms are neglected in the momentum transport 

equations.  Computer codes used to calculate dynamic coefficients generally rely on the 

Reynolds equation, thus neglecting fluid inertia effects.  A work accomplished by 

Reinhardt and Lund [9] argues that neglecting inertial forces is theoretically justified for 

small values of the Reynolds number.  For journal bearings, turbulence is experienced at 

a Reynolds number between 1,000 and 1,500, but the inertial forces may become 

noticeable in the intermediate range above 100.  Their work showed that mass terms 

could be significant for small, compact rotors. 

 

Experimental results provided by Rodriguez and Childs [10] showed that the bearing 

dynamic stiffness is strongly dependent upon the excitation frequency.  This influence 

modeled with the linearized coefficients previously mentioned with the addition of an 

added-mass matrix model.  They showed that the bearing dynamic characteristics can be 

properly modeled with frequency-independent stiffness, damping, and added-mass 

matrices.  They also stated that the added-mass coefficient matrix accounts for the 

combined effects of, “the dynamics introduced by the pads’ degrees of freedom” and “the 

effects of the inertial forces generated by the lubricant film.”  The matrix model with 

mass is provided below in Eq. (2). 
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A similar work provided by Al-Ghasem and Childs [11] was performed on the same FP 

tilting pad bearing, yet the bearing configuration was altered from load-on-pad to load-

between-pad.  The same methodology was used where the direct added mass terms were 

found to be around 32 kilograms experimentally; similar mass magnitudes were found in 

Rodriguez’s results.  The experimental data given by [10] and [11] was also compared to 
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predictions resulting from the Reynolds equation, as well as the Bulk-Flow Governing 

equation.  The bulk-flow model proved to match the data more accurately, which is stated 

to be due to the fluid inertial forces.  Both models however give good results out to 

precession frequencies equal to the running speed. 

 

Much analysis has been performed on the tilting pad bearing, and results for the flexible 

pivot pad bearing have become more common since its patent in 1991.  DeChoudhury 

[12] tested both a flexible and tilt pad bearing for the purpose of comparison, where 

power losses were shown to be less for the flexible pivot pad.  Zeidan and Paquette [13] 

provide a thorough analysis of both flexible and tilting pad bearings.  Nicholas [4] 

explains the positives and negatives of both the tilting pad and flex pad bearings.  

Experimental work is also done by changing the support web thickness to view its effect 

on the coefficients and logarithmic decrement.  San Andres [14] tested flexure-pad hybrid 

bearings, and the results showed that stability characteristics were then improved with the 

use of this bearing over the fixed geometry configuration.  San Andres also stated that the 

load requirements of present and future cryogenic pumps are met by the newer 

technology bearing.   

  

The primary research goal is to experimentally measure the stiffness and damping 

coefficients of a flexure pivot bearing, and to determine their relation to the excitation 

frequency.  Limited work has been done to study the effect of the excitation frequency 

upon the coefficients.  Parsell’s work [15] in 1983 predicted that the frequency of the 

excitation force is an important factor in determining the dynamic bearing characteristics.  

Tests are regularly performed at synchronous vibrations, because the principal source of 

excitation in actual rotating machines is the synchronous vibration caused by unbalance 

of the shaft according to Ha and Yang [16].  Ha and Yang however, performed a test 

explicitly to study the effects of the excitation frequency at nonsynchronous frequencies 

and discovered slight changes in the damping and stiffness values.  The tests were 

performed at shaft speeds ranging from 1,200 to 3,600 rpm (20 to 60 Hz), and excitation 

frequencies ranging from 25 to 50 Hz, which are small compared to the works of 

Rodriguez and Al-Ghasem.  The shaft speed and excitation frequency ranges for testing 



 

 

6

should be tested at higher speeds due to the high-speed application of tilting pad bearings.  

Al-Ghasem performed tests in ranges of 20 to 290 Hz and 4,000 to 12,000 rpm, while 

Rodriguez provided results for ranges of 20 to 320 Hz and 6,000 to 16,000 rpm. This test 

provides similar results for the higher frequency and shaft speed ranges, ranging between 

20 and 220 Hz and 6,000 to 13,000 rpm respectively.   

 

Another unique alteration to previous work is the reintroduction of the added-mass 

coefficients to model the dynamic results.  This approach was carried out in the separate 

tests of Al-Ghasem and Rodriguez, where its initial investigation is credited to Reinhardt 

and Lund [9].  Barret et al., [8] advocates the use of the frequency dependent [K]-[C] 

model for tilting pad bearings; the [K]-[C] model has been more commonly used in the 

past.  The accuracy of the frequency-independent [M]-[K]-[C] model will also be tested 

for the same bearing used in Al-Ghasem’s and Rodriguez’s tests yet at higher loads. 
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DESCRIPTION OF THE TEST RIG 
 

Overview 

A depiction of the test rig that was used for this work is provided in Figure 4.  The test rig 

was originally designed by Kaul [17] for oil seals, yet has been modified to test bearings.  

 

 

Figure 4: Test Section of Test Rig [1] 

 

 
The steel base which is welded together by mild steel plates supports the main test 

section and air turbine.  The rotor is then supported by two pedestals spaced 

approximately 381 mm (15 inches) apart, where it sits on two corresponding pedestal 

housed ball bearings.  The stator in this test rig is what moves during experiments, while 

the rotor is stationary.  An oil mist system is used to supply lubricant to the ball bearings 

during operation.  The air turbine is then coupled to the rotor by a hi-speed flexible 

coupling, which can provide 65 kw (90 hp) to power the rotor to its maximum speed of 

17,000 rpm.  The rotor diameter is measured at 0.1168 m (4.599 in).     
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Instrumentation 

The bearing stator houses the bearing and most of the measurement equipment used for 

testing.  Some of these include the non-contacting eddy current proximity probes, which 

measure the relative position of the stator to the rotor in two directions at two planes.  

The planes are located orthogonal to the length of the rotor at the drive end and non-drive 

end.  Four proximity probes are present; each pair of probes is placed at the drive end and 

non-drive end. This allows for control of pitch and yaw, which is maintained with six 

pitch stabilizers used to align the stator along the rotor.  The absolute acceleration is 

measured with piezoelectric accelerometers, which are also located in the stator along the 

x and y axes of Figure 5.  A static load can be applied up to 22 kN (5,000 lbf) with a 

pneumatic piston and cable/pulley assembly.  The load is measured by a load cell 

attached to the cable.  Figure 5 shows the static loader assembly as viewed from the non-

drive end of the test rig set up.   

 

 
Figure 5:  Static Loader Configuration (NDE View) [1] 

 

Shaft speed is measured with a tachometer at the non-drive end of the shaft, and 

inlet/outlet pressure and temperature probes are attached to the stator.  Thermocouples 
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measure the temperature in the oil inlet chamber and the downstream end caps.  Oil 

pressure at the inlet and outlet locations are measured with pressure transducers.  

 

Figure 6 shows the circumferential locations for the thermocouples as viewed from the 

drive end of the tester for the pad temperatures.  When loaded, the rotor moves in the 

loading direction indicated relative to the stator.   These thermocouples are situated on 

the bearing at the drive end of the tester whereas an additional 5 thermocouples were 

placed adjacent to pad 4 on the non-drive end.  

 

 

Figure 6: Flex-Pad Thermocouple Placement (DE View) 

 

Shaker-Stinger Configuration 

Static loads can also be applied with the shakers but they are strictly used for dynamic 

loading.  The x-direction shaker can supply a maximum load of 4.45 kN (1,000 lb) in 

tension and compression; while the y-direction shaker pulls up to 4.45 kN (1,000 lb) in 
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tension, and 11.1 kN (2,500 lb) in compression.  The x and y shakers can both provide 

excitation frequencies up to 1,000 Hz.  Loads are measured with load cells, which are 

placed between the shaker heads and the stingers.  Figure 7 below illustrates the shaker-

stinger configuration as viewed from the non-drive end side. 

 

 

 

Figure 7:  Shaker-Stinger Configuration (NDE View) [18] 
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Bearing Geometry 

The design parameters of the bearing and the lubricant are provided below in Table 1.  

 

Table 1: Flexure-Pivot Bearing Design Parameters and Lubricant Description 

Number of pads 4 

Configuration LBP 

Pad arc angle 72o 

Pivot offset 50% 

Rotor diameter 116.8095 ± 0.0051 mm (4.5988 ± 0.0002 in) 

Pad axial length 76.2 ± 0.0254 mm (3 ± 0.001 in) 

Radial pad clearance(Cp) 0.254 ± 0.0127 mm (0.010 ± 0.0005 in) 

Radial bearing clearance(Cb) 0.1905 ± 0.0127 mm (0.0075 ± 0.0005 in) 

Preload 0.25 

Pad rotational stiffness 1694.8 N.m/rad (15000 lb.in/rad) 

Pad polar inertia 7.448x10-5 kg.m2(6.59x10-4 lbm.s2.in) 

Pad mass 1.226 kg (2.70 lbm) 

Web thickness 2.1251 mm (0.0837 in) 

Web height 7.4379  mm (0.2928 in) 

Lubricant type ISO VG32 

 

Figure 8 is a drawing of the stator assembly including the bearing stator, two end caps, 

and FP tilt pad bearing. 
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Figure 8:  Bearing-Stator Assembly [3] 

  
 



 

 

13

THEORETICAL BACKGROUND 
 

Parameter Identification 

Childs and Hale [18] explain how the rotordynamic coefficients are determined from the 

measurements obtained.  The coordinate system used for the experimental parameter 

identification is pictured in Figure 9.   

 

Figure 9: Test Coordinate System (NDE View) 

 
The stator mass Ms equations of motion may be written as: 
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where ss yx &&&& , are the  measured components of the stator’s acceleration, yx ff ,  are the 

measured input excitation forces, and bybx ff ,  are the bearing reaction force components.  

The following relationship is the linearized force-displacement model for bearings where 

the rotordynamic coefficients include stiffness Kij, damping Cij, and added-mass Mij.  

yx ∆∆ ,  define the relative motion between the rotor and the stator. 
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Substituting Eq. (3) into Eq. (4), the following equation is developed: 
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)(),( tytx ∆∆  on the right hand side of Eq. (5) are measured functions of time;  hence, the 

left-hand vector is a known quantity.  The Fourier Transform ℑ  is used to determine the 

rotordynamic coefficients in the frequency domain as: 
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The relationship between the dynamic bearing stiffness Hij and coefficients of Eq. (5) are: 
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2 jHij                                                                             (7) 

 
The subscripts i and j alternately represent x and y, Ω is the excitation frequency and 

j 1−= .  The four unknowns of interest are yyyxxyxx HHHH ,,, , which are solved using 

the two equations provided in equation set (6) by testing in both the x and y directions.  

Shaking the stator alternately in the orthogonal directions about the steady state rotor 

position, yields four equations to solve the parameters of interest provided in Eq. (8):  
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Curve Fitting 

Once the complex-dynamic stiffness matrix (H) is determined, the rotordynamic 

coefficients can be calculated.  The rotordynamic coefficients take the form of Eq. (7), 

where they are calculated through the use of a straight line regression [1].  To determine 

the stiffness (Kij) and mass (Mij) coefficients a linear regression is taken of the real 

component of the dynamic stiffness (Hij).  To turn the quadratic equation into a linear 

one, Ω2 is treated as the domain character while the dynamic stiffness is set as the range.  

Similarly, the damping (Cij) coefficients are calculated by applying the linear regression 

with the imaginary component of the dynamic stiffness plotted against Ω.  The following 

equations describe the linear regression used to estimate the rotordynamic coefficients 

[19]. 
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xy 10ˆ ββ +=    (linear regression line)                                                                              (9) 
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N represents the data pairs (xi,yi) used for the regression, while x̂ , and ŷ are the means of 

x and y respectively.  The uncertainty calculations are determined using: 
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theoretical and experimental data to determine the rotordynamic coefficients using the 

standard confidence level of 95%.   
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EXPERIMENTAL PROCEDURE 

 

Test Conditions 

To gather the data of interest, tests are performed at different static load and rotational 

speed combinations.  Successful static and dynamic data were captured at unit loads 

between 0.7 MPa (100 psi) and 2.2 MPa (320 psi), and rotational speeds ranging from 

6,000 to 13,000 rpm.  The marks provided in Table 2 indicate the successful 

combinations tested.  The higher loads for the speeds of 6,000 and 8,000 rpm were not 

conducted due to concerns that the rotor would contact the stator. 

 

Table 2: Rotor Speed and Applied Load Combinations 

Nominal Bearing Unit Load [kPa / psi] Speed 
[rpm] 690 / 100 1034 / 150 1379 / 200 1655 / 240 1931 / 280 2206 / 320 
6000 X   X X     
8000   X X X X   
10000     X X X X 
12000 X   X X X X 
13000      X X X 
 
To gather the dynamic data, the shakers are alternately excited at the specified conditions.  

Using a pseudo-random excitation with a waveform calculated for the bearing.  The 

measurement and data acquisition devices record the data.  The data are then compiled in 

Microsoft Excel where the previously explained equation sets are used to calculate both 

the complex dynamic stiffness and rotordynamic coefficients.  Note that at each test 

combination, 10 tests are performed and then averaged, which serves to define the 

amount of variability in the resulting dynamic stiffnesses.  

Baseline 

Before pumping any oil into the test rig assembly a shake test is performed to determine 

the measured influences affecting the rig under dry conditions. The measured influences 

include items such as the pitch stabilizers, and hose connections, which supply small 

forces to the test rig assembly.  This test is known as the “dry shake”, where the 
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rotational speed is zero and no oil is supplied to the bearing.  Determining the baseline 

dynamic stiffnesses is important because the coefficients of the particular bearing are of 

interest not the mentioned factors that supply the small forces.  To calculate the 

rotordynamic coefficients, the baseline dynamic coefficients are subtracted from the 

average dynamic stiffnesses.  From the resulting dynamic stiffness values the coefficients 

may then be determined using the procedure previously discussed.  

 

The imaginary and real components of the baseline dynamic stiffness are pictured in 

Figures 10 through 12.  Figure 10 pictures the real part of the direct baseline dynamic 

stiffness, while the real part of the cross coupled baseline dynamic stiffnesses are present 

in Figure 11.  Figure 12 illustrates the trends of the imaginary components of the baseline 

dynamic stiffnesses, both direct and cross-coupled. The primary source of external 

stiffness is attributed to the pitch stabilizers, which was previously recorded as 2.6 MN/m 

in the x and y directions [1], [3].  The resulting baseline direct stiffness for the real direct 

terms becomes 2.96 MN/m and 2.65 MN/m for the x and y directions respectively in the 0 

to 220 Hz range.   
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Figure 10: Baseline Real Direct Dynamic Stiffnesses 
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Figure 11: Baseline Real Cross-Coupled Dynamic Stiffnesses 
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Figure 12: Baseline Imaginary Dynamic Stiffnesses 
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DYNAMIC RESULTS 

Dynamic Stiffness 

A sample of the determination for the bearing rotordynamic coefficients is provided in 

this section for a test condition at 12,000 rpm and a static unit load of 1.7 MPa (240 psi).  

To accomplish this, the least-squares linear regression is used in conjunction with the 

dynamic stiffness data.  Associated with the dynamic stiffness data at each frequency in 

Figure 13 are uncertainty bars, which portray the degree of repeatability for the ten 

consecutive tests performed.  

 

Figure 13 pictures the real part of the direct dynamic stiffness Re(Hxx) and Re(Hyy), 

which are fitted by a line of the form ii bxay += , where 2Ω=ix . Evaluating Eqs. (10) 

and (12) for iijij xMK −=)Re( ijH , where 2Ω=ix  and )Re( ijH=iy the resultant is  

Mxx=-1.34 ± 5.44 kg, and similarly Myy=25.25 ± 5.34 kg.  Mxx for this case and others 

close to zero with comparable uncertainties were concluded to be equal to 0.  Equations 

(11) and (13) similarly result in Kxx=147.22 ± 4.85 MN/m and Kyy=191.17 ± 4.76 MN/m.  

Note that the quality of the curve fit is described by the uncertainties of the rotordynamic 

coefficients. 

 

In Figure 13, Re(Hyy) is shown to decrease with increasing frequency, while Re(Hxx) 

remains nearly constant.  These trends are present for all conditions tested excluding the 

12,000 rpm and 0.7 MPa (100 psi) case.  Since both functions can be fitted as 
2)Re( Ω−= ijij MKijH , the stiffness coefficients ijK  are frequency independent.  If 

Re(Hxx) were modeled simply with xxK , then it could be argued that frequency 

dependence is present in the load range from 1 to 2.2 MPa for this term.   



 

 

20

 

130

140

150

160

170

180

190

200

20 60 100 140 180 220
Frequency [Hz]

D
ire

ct
 R

ea
l [

M
N

/m
]

Hxx

Hyy

Hxx - Curve Fit
Hyy - Curve Fit

 

Figure 13: Real Direct Dynamic Stiffnesses at 12,000 rpm and 1.7 MPa 

 

Frequency independence is shown to be present at a test condition of 12,000 rpm and 0.7 

MPa (100 psi) for both directions in Figure 14, where the trends are more similar to the 

findings of Al-Ghasem.  The resulting Kxx and Kyy at this condition were 58.8 and 66.5 

MN/m for the current work, and 93.25 and 109 MN/m for Al-Ghasem’s respectively.  In 

Al-Ghasem’s thesis the bearing is stated to have been crushed as the experimental 

measurements of the radial bearing clearance were 330.2 µm (13 mils) in one direction 

and 431.8 µm (17 mils) in its orthogonal.  Note that the bearing had been removed from 

its casing for another test between the period of use by Al-Ghasem and the present one. 

In the current investigation the measured diametral bearing clearance was measured to be 

416 µm (16.4 mils) for both directions, which is an increase of 110 % over the nominal 

diametral bearing clearance of 381 µm (15 mils) from Table 1, and the average value of 

both directions provided in Al-Ghasem’s test.  The reduced stiffnesses in this test is 

expected to be due to the larger bearing clearance  In Figure 14 direct real plots are 

pictured below for both the present investigation and that conducted previously by Al-

Ghasem.   
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Figure 14: Real Direct Dynamic Stiffnesses at 12,000 rpm and 0.7 MPa for Tests Performed by 

Hensley (Left) and Al-Ghasem (Right) 

 

Figure 15 presents the real part of the cross-coupled dynamic stiffnesses.  These results 

are similar to those presented in the past.  Slight increases in the real cross coupled 

impedances as the excitation frequency is increased are common.  The magnitude tends 

to increase with increasing load, which was also observed by Al-Ghasem.  Using similar 

procedures to calculate the direct coefficients the cross-coupled stiffness and added-mass 

coefficients yield:  

 

Kxy= -33.76 ± 2.13 MN/m  Mxy= -22.22 ± 2.43 kg  

Kyx= 0.31 ± 9.23 MN/m Myx= - 14.98 ± 10.37 kg 
(14) 

 

Scatter is present for the Re(Hyx) term as it is plotted against excitation frequency in 

Figure 15 with a Ryx
2 value of 0.3485.  The poor curve fit was observed for conditions at 

1.4 to 2.2 MPa, 12,000 rpm and 1.7 to 2.2 MPa, 13,000 rpm, which resulted in 

unacceptable coefficients. 
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Figure 15: Real Cross-Coupled Dynamic Stiffnesses at 12,000 rpm and 1.7 MPa 

 

Figure 16 presents the imaginary part of the direct and the cross-coupled dynamic 

stiffnesses. Note that the direct component magnitudes exceed those of the cross coupled 

ones by a significant amount.  The cross coupled imaginary coefficients differ from one 

another for this case as the Hxy term increases with excitation frequency and the Hyx term 

decreases.  Viewing Figure 16, scatter is evident for the Hyx term, which gives a Ryx
2 

value of 0.3758.  Where the curve fit of the cross coupled imaginary components 

(Im(Hxy) and Im(Hyx)) gave a coefficient of determination less than 0.5 the related 

rotordynamic coefficient was not considered acceptable.  It may also be viewed in Figure 

16 that the Hxy impedance does not intersect at a y-intercept of 0.  In some cases the curve 

fit was acceptable, yet where the impedance did not approach the 0 value for the intercept 

the fit was not accepted.  The resulting curve fit of Im(Hxy) was considered to be 

acceptable for the 6,000 and 8,000 rpm excluding the 1.4 MPa load for both speeds.  

Cases including 0.7 and 1.7 MPa at 6,000 rpm; 1 and 1.4 MPa at 8,000 rpm; and 1.9 and 

2.2 MPa at 13,000 rpm were considered to be acceptable curve fits of Im(Hyx). 
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Figure 16: Imaginary Dynamic Stiffnesses at 12,000 rpm and 1.7 MPa 

 

The damping coefficients (Cxx, Cyy, Cxy, Cyx) are identified from the slope of the 

imaginary part of the dynamic stiffnesses, where the intercept terms forced to go through 

zero in all cases. Eqs. (10) and (12) are evaluated for iix Ω=  and )Im( ixxi Hy =  for 

ijCΩ=)Im( ijH  resulting in:  

Cxx= 65.93±6.56 Cxy= 8.85 ± 2.06 

Cyx= -12.87 ±8.39   Cyy=132.06 ± 13.67 
(kN-s/m) (15) 

 

XLTRC 2-XLTFPBrg  

For the analytical computation of the rotordynamic coefficients a code produced by San 

Andres [20] titled XLTRC2-XLTFPBrg was used.  The program allows for the 

computation of both static and dynamic parameters using the Bulk-Flow Governing 

equation, which includes mass conservation, axial and circumferential momentum, and 

energy equations.  The Reynolds equation is used to predict the pressure field at the fluid 

film region, and the resulting dynamic coefficients.  The largest Reynolds number for 

each test condition is provided below in Table 3 with the greatest value at 173 for a 

rotational speed of 13,000 rpm.  These results confirm that the fluid acts in a laminar 

manner as the provided values are below the critical Reynolds number of 2,000 [21] for 

all test combinations. 
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Table 3: Greatest Reynolds Number per Rotational Speed 

Rotor Speed (rpm) 6,000 8,000 10,000 12,000 13,000

Reynold’s number ( µωρ /bp RC ) 61.9 90.0 123.4 157.7 173.3

 

The program allows for computation of the rotordynamic coefficients with the Reynolds 

equation (no fluid inertia) and the Bulk-Flow Governing equation (with fluid inertia).  In 

Figure 17 the experimental data for the 12,000 rpm and 1.9 MPa case is compared to both 

analytical models for the dynamic real coefficients.  The differences between the results 

of the analytical models are generally minute.  Since the analytical tool often overpredicts 

the experimental results the bulk flow relationship was selected where overprediction is 

less severe.  The cross coupled real components are routinely under predicted by the 

analytical models.  Despite the fact that the bearing operates in a laminar manner the bulk 

flow relationship was used rather than the Reynolds equation.  This was chosen as the 

bulk flow model better approximates the experimental data both in this thesis work and 

that accomplished by Al-Ghasem. 
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Figure 17: Direct Real and Cross-Coupled Real Dynamic Stiffnesses at 12,000 rpm and 1.9 MPa 

 

The input data required for running the code include the bearing and shaft geometries, as 

well as the pad inertia and stiffness.  Also necessary was the supply pressure and 

temperature, which was then used to calculate the properties of the ISO 32 lubricant used.  
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The inlet pressure and temperature values measured during testing were used as inputs 

for the code.  Initial guesses for the algorithm were also required as well as the type of 

loading configuration being used (LBP or LOP).  The load applied to the bearing is 

altered per tested condition, and the excitation frequency range is defined as an input for 

the code.   

 

Different types of analyses were made available through the program, which included the 

selection of different thermal options, as well as the presence of fluid inertia.  Among the 

thermal options, only two could be considered which were titled (1) Adiabatic Solid 

Surfaces, and (2) Isothermal Journal and Bearing.  The first option assumes no heat 

transfer through the shaft and bearing, while the second treats the oil temperature as 

being equal to the supply temperature throughout the flow path.  For the present work the 

adiabatic option was used because it agreed better with the measurement, which differs 

from Al-Ghasem’s work where the constant temperature alternative was selected. 

 

In the following section, which details the resulting dynamic coefficients, the theoretical 

points are computed at the nominal radial bearing clearance of 190.5 µm (7.5 mils).  

These were calculated at the associated experimental loads, supply pressures, and supply 

temperatures as listed in Table 4. 

 

Table 4:  Experimental Load, Supply Temperature, and Supply Pressure Used for High Load 
Analytical Prediction 
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The effect of the bearing clearance for the range of interest on the analytical loaded direct 

dynamic stiffness (Kyy) is small as can be observed in Figure 18.  The smallest value 

observed by Al-Ghasem amounts to 165.1 µm (6.5 mils), the nominal value is 190.5 µm 

(7.5 mils), and the measured clearance for the current investigation was 208 µm (8.2 

mils).  Convergence in the XLTRC program did not occur for the measured bearing 

clearance of 208 µm (8.2 mils) for higher loads.  Therefore for consistency the nominal 

value was used in the program to determine all of the resulting rotordynamic coefficients.  
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Figure 18:  Kyy as a Function of Load with Varying Bearing Clearances at 12,000 rpm 

 

Another concern related to the change in clearance was considered as a result of 

temperature difference at the loaded pad.  The supply temperature and average of the pad 

temperatures from the highest load and speed condition of 2.2 MPa and 13,000 rpm were 

taken to define the temperature difference.  The average pad temperature was taken to 

represent that at the rotor side of the pad, where the adjacent side was considered to be at 

the supply temperature.  This gave a temperature difference of 30 ºC, and a resulting pad 

thickness change of 7.62 µm (0.3 mils).  This thickness change is small and therefore 

considered not to be a major factor in altering the bearing clearance during operation.  

Eq. 16 was used to determine this value with the thermal expansion coefficient of steel, 

and an original pad thickness of 19.05 mm (0.75 inches). 

 

0L L Tα∆ = ∆                          (16) 
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Al-Ghasem’s analytical results are included in addition to those of the present 

investigation.  Al-Ghasem’s analytical values were computed with a radial bearing 

clearance of 165.1 µm (6.5 mils), where the supply temperature entered into the program 

was the leading edge temperature of the loaded pad.  The thermocouple location of this 

temperature was present at the 5% mark of pad 4 as described for the present case 

pictured in Figure 6.  The present investigation uses the actual supply temperatures to 

analytically compute the rotordynamic coefficients rather than the 5% location 

temperatures of the pad. 

 

Rotordynamic Coefficients 

The frequency independent rotordynamic coefficients are plotted against rotational speed 

and unit bearing load.  The coefficients are provided as a function of rotational speed or 

unit bearing load for the matching speed or load.  Rotational speeds pictured include 

6,000, 8000, 10000, 12000, and 13000 rpm, while the bearing unit loads are 0.7, 1, 1.4, 

1.7, 1.9, and 2.2 MPa.  Uncertainty bars are included in each of the following plots, they 

are only noticeable or significant for the mass coefficient plots. 

 

As the rotor interacts with the bearing the pivot of each pad not only rocks, but also reacts 

radially.  Since the analytical code does not account for this effect, the resulting analytical 

direct loaded damping (Cyy) and stiffness coefficients (Kyy) were placed in series with the 

radial stiffness to determine whether this would explain the discrepancy between the 

measured and analytical results.  In Figure 19, k1 represents the radial stiffness, while c 

and k represent the analytical direct damping (Cyy) and stiffness coefficients (Kyy) 

respectively.   
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Figure 19:  Radial Stiffness in Series with the Direct Loaded Spring and Damper [22] 

 

Once the radial stiffness is set in series with the analytical values, the corrected terms 

may be determined with equation set 17 [22].  Using the stiffness correction relationship 

of equation set 17, the corrected stiffness is set equal to the experimental results and the 

necessary radial stiffness is calculated (k1K).  The necessary radial stiffness for bringing 

the analytical and experimental results into alignment based off of the stiffness correction 

relation ranges from 502 to 901 MN/m as listed in Table 5.  When the damping 

correction relationship in equation set 17 was used to determine the radial stiffness, 

values between 2440 to 2831 MN/m were produced (k1C).  These radial stiffness values 

differ significantly from the stiffness estimated from the AE/L (Eq. 17) result, which 

gives a value of 6,314.6 MN/m.  The cross sectional area for the steel flexure pivot is 

136.5 µm2 (211.5 mil2), with a length of 4.47 mm (176 mils).   The corrected damping 

shown in Table 5 was calculated using the radial stiffness from the stiffness correction 

relationship. It may be observed from Table 5 that the corrected damping is on average 

62% of the experimental damping terms.   This shows that when the stiffness is corrected 

the damping is over corrected.  Also since the radial stiffness estimates do not agree this 

model is therefore considered to be insufficient to account for the differences between the 

measured and analytical results.  
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Table 5:  Radial Stiffness Investigation Results  

 
 
 
 

Direct and cross-coupled stiffness coefficients are plotted against load in Figures 20 and 

21 for each rotational speed tested.  The analytical direct coefficients (Kxx and Kyy) 

overpredict the experimental ones, yet the trends are consistent with one another.  

Another notable distinction is that the experimental results show orthotropy between the 

loaded (Kyy) and unloaded (Kxx) direct coefficients, whereas this is not present with the 

analytically produced coefficients.  The loaded and unloaded direct coefficients show the 

same value for each of the conditions listed.  The cross coupled coefficients (Kxy and Kyx) 

give values to 30 MN/m for the analytical cases and decrease steadily with increasing 

speed to around -40 MN/m.  Kyx tends to be greater than Kxy for both the analytical and 

experimental conditions.  As load is increased the cross coupled analytical coefficients 

slightly increase, while a slight decrease occurs for the experimental coefficients.  These 

results are consistent with the findings of Al-Ghasem [3]. 
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(e) 

Figure 20: Direct Stiffness Coefficients in [MN/m] vs. Bearing Unit Load [kPa] for Rotor Speeds: (a) 
6,000 rpm, (b) 8,000 rpm, (c) 10,000 rpm, (d) 12, 000 rpm, (e) 13,000 rpm 
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(c)      (d) 

 
 
 
 
 
 
 
 
 
 
 

 
(e) 

Figure 21: Cross-Coupled Stiffness Coefficients in [MN/m] vs. Bearing Unit Load [kPa] for Rotor 
Speeds: (a) 6,000 rpm, (b) 8,000 rpm, (c) 10,000 rpm, (d) 12, 000 rpm, (e) 13,000 rpm 
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Direct and cross-coupled damping coefficients are plotted against bearing unit loads in 

Figures 22 and 23 respectively for the different rotational speeds tested. The direct loaded 

damping coefficient Cyy is shown to increase for each speed, where the unloaded direct 

term remains nearly constant over the tested load range.  The magnitude of the loaded 

term is greater than that of the unloaded for the experimental results, whereas no 

orthotropy is shown for the analytical results.  The direct coefficients (Cxx and Cyy) and 

cross-coupled coefficients (Cxy and Cyx) are overpredicted by the analytical tool.  As the 

unit load is increased the experimental cross-coupled coefficients drop below zero, while 

the analytical results remain nearly constant between 10 and 25 kN.s/m for each speed.   
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(c) (d) 

Figure 22: Direct Damping Coefficients in [kN.s/m] vs. Bearing Unit Load [kPa] for Rotor Speeds: 

(a) 6,000 rpm, (b) 8,000 rpm, (c) 10,000 rpm, (d) 12,000 rpm, (e) 13,000 rpm 

 



 

 

33

13000 RPM

0

50

100

150

200

0 500 1000 1500 2000
Bearing Unit Loading [kPa]

D
am

pi
ng

 [k
N

.s
/m

]

 
(e) 

Figure 22: Continued 
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(b) 

Figure 23: Cross-Coupled Damping Coefficients in [kN.s/m] vs. Bearing Unit Load [kPa] for Rotor 

Speeds: (a) 6,000 rpm, (b) 8,000 rpm 
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Direct and cross-coupled mass coefficients are plotted against bearing unit loads in 

Figures 24 and 25 respectively for the different rotational speeds tested.  The direct 

loaded mass coefficients (Mxx and Myy) are shown to increase with increasing unit load 

both experimentally and analytically.  The direct analytical results however overpredict 

the experimental ones, and increasingly so as unit load is increased.  The unloaded mass 

coefficient (Mxx) remains near zero for the experimental results, and decreases beneath it 

as load is increased.  This is dissimilar to the analytical result, which shows equivalence 

with the loaded coefficient (Myy).  The cross coupled experimental coefficients (Mxy and 

Myx) decrease with increasing load below zero, while the Mxy value exceeds Myx more 

noticeably at the higher loads. The analytical values remain nearly constant around 5 kg 

over the range tested. 
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Figure 24: Direct Mass Coefficients [kg] vs. Bearing Unit Loads [kPa] for Different Rotor Speeds: (a) 

6,000 rpm, (b) 8,000 rpm, (c) 10,000 rpm, (d) 12,000 rpm, (e) 13,000 rpm 
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Figure 24: Continued 
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Figure 25: Cross-Coupled Mass Coefficients [kg] vs. Bearing Unit Loads [kPa] for Different Bearing 

Unit Loads: (a) 6,000 rpm, (b) 8,000 rpm, (c) 10,000 rpm, (d) 12,000 rpm, (e) 13,000 rpm 
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Figure 25: Continued 

 

Stiffness, damping and mass coefficients are plotted against load at a rotational speed of 

8,000 rpm in Figure 26, which includes the experimental results of both the present 

investigation and that performed by Al-Ghasem.  The orthotropy observed at higher loads 

experimentally for each of the coefficients by Al-Ghasem between the direct coefficients 

continues on into the present study experimentally.  The cross coupling values for the 

stiffness continue negatively with increasing load from Al-Ghasem’s into the current one 

where Kyx is greater than Kxy.  The cross coupled coefficients remain near zero which is 

expected for a flexure pivot pad bearing.  The cross coupling effects for the damping and 

mass are similar to that of the stiffness.  One notable event is that the unloaded direct 

mass coefficient (Mxx), and the unloaded damping coefficient (Cxx) do not follow the 

trends of the analytical result unlike the remaining coefficients. Mxx continues negatively 

with with increasing load, and Cxx evens out nearly constant with load. 
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Figure 26:  Comparison Including Experimental Results from Al-Ghasem (AD.) and Hensley (EXP.) 
of the (a) Stiffness, (b) Damping, and (c) Mass Coefficients at 8,000 RPM 
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Whirl Frequency Ratio 

The whirl-frequency ratio is defined as the ratio between the rotor whirl frequency, and 

the onset speed of instability.  Lund [6] provides a formula based on the rotordynamic 

coefficients to determine the whirl frequency for a rigid shaft supported by two identical 

plain journal bearings.  Eq. 18 is used to provide the whirl-frequency ratio ignoring the 

fluid inertia and not taking into account the mass coefficients. 
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is the dimensionless damping. The fluid inertia effects on the WFR are 

accounted for by San Andres [23]. These formulas account for the fluid inertia below, 

and are brought together in Eq. 19 for a result.  This relationship was used to produce 

Figure 27 below. 
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The WFR for plain journal bearings is generally 0.5, but the tested combinations below 

for the flexure pivot pad bearing give lower values. As load is increased from 0 to 1.7 
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MPa (240 psi) the WFR decreases from around 0.2 to 0.  Load conditions from 0 to 1 

MPa were calculated using the rotordynamic coefficients available in Al-Ghasem’s thesis 

work [18].  As rotational speed increases the WFR tends increase slightly for the speed 

range between 6 and 12 krpm. All experimental tests conducted at and above 1.7 MPa 

(240 psi) gave WFR values of 0, suggesting an infinite onset speed of instability for 

operation at these conditions.   
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Figure 27: Whirl Frequency Ratio vs. Rotor Speed [rpm] for Different Bearing Unit Loads: (a) 0 

MPa, (b)  0.5 MPa, (c) 1 MPa, (d) 1.7 MPa 
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STATIC RESULTS 

 

Static Performance 

Static (or steady-state) performance data presented in this section includes local stiffness, 

bearing load capacity (load/projection area), pad metal temperatures and estimated power 

losses [24]. The flow rate was maintained within a range of 8.92*10-4 to 9.14*10-4 m3/s 

(14.14, 14.49 gpm), while the inlet temperate was kept within 40.96 to 46.67 °C (105.73 

to 116 °F).  This range contains the resulting values for all conditions of loading and 

rotational speed.     

 

During a typical test, the shaft is brought up to the listed test conditions of rotational 

speed, oil inlet temperature, and oil flow rate. Alignment is gauged using the 

measurements of the proximity probes, and the pitch stabilizers are adjusted to account 

for this.  After reaching the steady state condition and applying the required static load, 

the oil inlet and outlet temperatures, pad temperatures, static load and bearing oil flow 

rate data are taken several times and then averaged.  

 

Figure 28 pictures the local and dynamic stiffnesses for the loads tested at 12,000 rpm for 

both Al-Ghasem and Hensley.  The local stiffness is the slope of the curve where load is 

plotted against the displacement in the y-direction.  The dynamic stiffnesses provided in 

the comparison are selected at the 20 [Hz] excitation frequency, which represents the 0-

intercept for this case.  The comparison provided shows good agreement for the test 

performed by Al-Ghasem previously and for the current investigation suggesting a 

reliable test for both cases.  Also included in the figure is the inverse of the direct loaded 

flexibility coefficient, which is represented as Adjusted Kyy.  To get to the flexibility 

coefficient the inverse of the stiffness matrix is performed, giving the direct loaded 

flexibility coefficient as 
)( xyyxyyxx

xx

KKKK
K
−

.  The inverse of this term is equal to the 

slope of the load as a function of displacement in the y-direction, which represents the 
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local stiffness.  Since the cross coupling (Kxy, Kyx) is small for this test, the difference 

between the dynamic stiffness (Kxy) and the inverse of the loaded flexibility coefficient is 

also small.   
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Figure 28:  Local and Dynamic Stiffnesses at 12,000 rpm 

 
Figure 29 shows the bearing centerline loci as a function of the static load 12,000 rpm. 

Here the measured coordinates (ex, ey) are divided by the radial pad clearance, which is 

254 µm (10 mils).  As the load is applied the eccentricity in the y-direction grows while 

decreasing in the x-direction.  The growing eccentricity in the y-direction is due to the 

load applied with the static loader, and that in the x-direction is due to the cross-coupling 

effect.  The load range plotted from Al-Ghasem’s data is 0 to 1 MPa, while the data of 

Hensley’s runs from 0.7 to 2.3 MPa for this speed. 
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Figure 29: Static Centerline Locus of Al-Ghasem, Hensley and Theoretical Eccentricities at 12,000 

RPM 

 

The position of the bearing may be described with the eccentricity ratio ε and the attitude 

angle φ, as defined in the equation set 20 below:  
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Figures 30, 31, and 32 show the eccentricity ratio, attitude angle, and the estimated power 

loss as a function of the bearing load, respectively.  The eccentricity ratio shows a nearly 

linear increase with increasing load.  As higher loads are reached the eccentricity begins 

to level out, this may be due to the stiffening of the fluid film between the rotor and pad.  
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The theoretical, and experimental results of the eccentricity ratio for the present 

investigation are included with Al-Ghasem’s experimental values in Figure 30.  The 

continuation of the trend from Al-Ghasem into the present case is good. 

 

 

Figure 30: Eccentricity Ratio vs. Bearing Unit Load 
 

In Figure 31 the attitude angle is plotted as a function of load.  As load is increased 

the attitude angle continues to decrease more gradually.  This trend is consistent with 

and expected based on Al-Ghasem’s work at lower loads. 
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Figure 31: Attitude Angle vs. Bearing Unit Load 
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The estimated power loss remains nearly constant for each operating speed over the 

tested bearing unit load range as pictured in Figure 32.  Greater magnitudes of power loss 

are experienced at the higher operating speeds.  The power loss was calculated based on 

the change in bulk temperature of the lubricant, given in Eq. 21. 
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Figure 32: Estimated Power Loss vs. Bearing Unit Load 
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Pad Temperatures  

 

Figure 33 shows the circumferential locations for the thermocouples as viewed from the 

drive end of the tester.  When loaded the rotor moves in the loading direction indicated 

relative to the stator.   These thermocouples are situated on the bearing at the drive end of 

the tester whereas an additional 5 thermocouples were placed adjacent to pad 4 on the 

non-drive end.  

 

 

Figure 33:  Thermocouple Locations (DE View) 

 

Figure 34 provides an example temperature profile plot at a load of 19.6 kN and a bearing 

unit load of 2.2 MPa for different rotor speeds at different angles around the 

circumference of the bearing as listed.  The remaining loads tested at 6.1, 12.3, 14.7, and 

17.2 kN are also pictured in Figure 35, and show similar trends as that of the highest load 

yet at different magnitudes.  Each of these loads corresponds to the bearing unit loads of 
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0.7, 1.4, 1.7, and 1.9 MPa respectively.  As expected the trailing edge temperature located 

at 75% on pad 4 has the highest temperature.  The temperature is also observed to 

increase with rotor speed, and unit load.   
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Figure 34: Pad Temperatures vs. Location at a Unit Load of 19.6 kN 
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Figure 35: Pad Temperatures vs. Location at Varying Loads 
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Figures 36 and 37 respectively show the loaded and unloaded pad temperatures as a 

function of the load at a rotational speed of 13,000 rpm.  Each set of pad temperatures is 

shown to increase with load.  For both loaded pads the highest temperature is located at 

the 75% location.  This tends to be common as the fresh oil that enters between the pads 

tends to cool the edges of the pads that it enters, thus the extremes of the pad are cooler.  

The increase in temperature as a function of unit loading remains true for every rotational 

speed tested, yet the unloaded pads decreased at lower speeds, such as 6,000.  For the 

most part, the unloaded pad temperatures remain constant as a function of loading where 

the variation remains within approximately 5 °C. 
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Figure 36: Loaded Pad Temperatures as a Function of Load at 13,000 rpm 
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Figure 37: Unloaded Pad Temperatures as a Function of Load at 13,000 rpm 

 

 

The 75% temperatures for pad 4 at both the drive end and non drive end locations are 

plotted against load for rotational speeds of 10,000, 12,000, and 13,000 rpm in Figure 38.  

These temperatures increase in a quadratic fashion, where the drive end temperatures 

exceed those at the non drive end. 
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Figure 38: 75% Temperature [ºF] vs. Load [psi] at Pad 4, DE and NDE 
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CONCLUSIONS  

 
The experimental results presented were delivered to confirm the validity of the 

analytical model and to answer the question:  Are the rotordynamic coefficients of a FPB 

frequency dependent or not? [3].  If the mass coefficients are included, all results for this 

thesis and Al-Ghasem’s at lower loads may be said to be frequency independent.  In the 

unit load range of 1 to 2.2 MPa, however, the resulting mass coefficients were generally 

negative and close to zero.  Only in this range for the tests conducted could it be argued 

that stiffness coefficients are frequency independent without the inclusion of the mass 

coefficients.   

 

The Bulk-Flow Governing equation was used as the analytical comparison for the 

experimental results rather than the Reynolds equation due to slightly better agreement.  

The stiffness, damping, and mass coefficients are commonly overpredicted by the model 

especially for the direct components of the impedance.  The cross-coupled terms tend to 

be slightly overpredicted.  The experimental results show orthotropy for both direct and 

cross-coupled terms; the model does not.  This was especially significant for the direct 

components.  The growing overprediction of the direct coefficients and absence of 

orthotropy in the analytical model were observed with increasing load for Al-Ghasem’s 

experimental results and carry over into the present investigation.  The overprediction 

might be to be due to the absence of the vertical flexure pivot stiffness in the analytical 

code. 

  

Where experimental tests were performed at loads tested by Al-Ghasem the direct 

stiffness, damping, and mass coefficients were lower in magnitude.  This is attributed to 

the increased radial bearing clearance associated with the present investigation over that 

of Al-Ghasem’s.  The following points are consistent with results produced by Al-

Ghasem at lower loads, therefore supporting the reasonableness of the tested results:  

• An infinite onset speed of instability is suggested by the resulting whirl-frequency 

ratios of 0 for the load range between 1.7 MPa (240 psi) and 2.2 MPa (320 psi).   

• The local and dynamic stiffnesses are comparable. 
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• The attitude angle is less than 10 degrees for the applied static load range between 

5 and 20 kN where it levels out around 1 degree at the higher values. 

• Larger power losses are observed at higher rotational speeds.  For the conditions 

tested, the effect of the load is dependent on the speed, but is nearly constant for 

each case with a variation under 6 kW. 

• The 75% thermocouple location on pad 4 experienced the highest temperatures 

and increased with increasing load and rotational speed.  The measured 

temperatures experienced at this location were greater at the DE than the NDE 

with an approximate 10 degree difference. 
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APPENDIX 
 

Table 6: Static Performance and Measurement Data 
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Table 7:  Pad Temperatures 

  
 

Table 8:  Thermocouple Numbers and Locations per Pad 
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Table 9:  Experimental Stiffness Coefficients, Related Uncertainties, and the Real Coefficients of 
Determination 

 
 
 
 

Table 10:  Experimental Damping Coefficients, Related Uncertainties, and the Imaginary 
Coefficients of Determination 
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Table 11:  Experimental Mass Coefficients and Related Uncertainties 
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Table 12:  Theoretical Stiffness, Damping and Mass Coefficients for Rotational Speeds 6 and 8 krpm 

 
 
Table 13:  Theoretical Stiffness, Damping and Mass Coefficients for Rotational Speeds 10, 12 and 13 

krpm 
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Table 14:  Experimental Added-Mass Coefficients and Uncertainties with Theoretical Added-Mass 
Coefficients 

 

 
Table 15:  Experimental Dynamic Stiffness at 6,000 rpm  and 0.7 MPa 
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Table 16:  Experimental Dynamic Stiffnesses at 6,000 rpm and 1.4 MPa 

 
 
 
 

Table 17: Experimental Dynamic Stiffnesses at 6,000 rpm and 1.7 MPa 

 
 

Table 18:  Experimental Dynamic Stiffnesses at 8,000 rpm and 1 MPa 
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Table 19:  Experimental Dynamic Stiffnesses at 8,000 rpm and 1.4 MPa 

 
 

Table 20:  Experimental Dynamic Stiffnesses at 8,000 rpm and 1.7 MPa 

 
 

Table 21: Experimental Dynamic Stiffnesses at 8,000 rpm and 1.9 MPa 
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Table 22: Experimental Dynamic Stiffnesses at 10,000 rpm and 1.4 MPa 

 
 

Table 23:  Experimental Dynamic Stiffnesses at 10,000 rpm and 1.7 MPa 

 
 

Table 24:  Experimental Dynamic Stiffnesses at 10,000 rpm and 1.9 MPa 
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Table 25:  Experimental Dynamic Stiffnesses at 10,000 rpm and 2.2 MPa 

 
 

Table 26:  Experimental Dynamic Stiffnesses at 12,000 rpm and 0.7 MPa 

 
  

 

Table 27:  Experimental Dynamic Stiffnesses at 12,000 rpm and 1.4 MPa 

 
 
 



66 
 

 

Table 28:  Experimental Dynamic Stiffnesses at 12,000 rpm and 1.7 MPa 

 
 

 

Table 29:  Experimental Dynamic Stiffnesses at 12,000 rpm and 1.9 MPa 

 
 

Table 30:  Experimental Dynamic Stiffnesses at 12,000 rpm and 2.2 MPa 
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Table 31:  Experimental Dynamic Stiffnesses at 13,000 rpm and 1.7 MPa 

 
 

Table 32:  Experimental Dynamic Stiffnesses at 13,000 rpm and 1.9 MPa 

 
 

 

Table 33:  Experimental Dynamic Stiffnesses at 13,000 rpm and 2.2 MPa 
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