

TRANSPORTATION SYSTEMS MODELING

USING THE HIGH LEVEL ARCHITECTURE

A Dissertation

by

SHARIF MELOUK

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2003

Major Subject: Industrial Engineering

TRANSPORTATION SYSTEMS MODELING

USING THE HIGH LEVEL ARCHITECTURE

A Dissertation

by

SHARIF MELOUK

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

Robert E. Shannon
(Chair of Committee)

Cesar O. Malave
(Member)

 Don R. Smith
(Member)

Robert A. Davis
(Member)

 Brett A. Peters
(Head of Department)

August 2003

Major Subject: Industrial Engineering

 iii

ABSTRACT

Transportation Systems Modeling

Using the High Level Architecture. (August 2003)

Sharif Melouk, B.S., Oklahoma State University;

M.B.A., Oklahoma State University

Chair of Advisory Committee: Dr. Robert E. Shannon

This dissertation investigates the High Level Architecture (HLA) as a possible

distributed simulation framework for transportation systems. The HLA is an object-

oriented approach to distributed simulations developed by the Department of Defense

(DoD) to handle the issues of reuse and interoperability of simulations. The research

objectives are as follows: (1) determine the feasibility of making existing traffic

management simulation environments HLA compliant; (2) evaluate the usability of

existing HLA support software in the transportation arena; (3) determine the usability of

methods developed by the military to test for HLA compliance on traffic simulation

models; and (4) examine the possibility of using the HLA to create Internet-based virtual

environments for transportation research. These objectives were achieved in part via the

development of a distributed simulation environment using the HLA. Two independent

traffic simulation models (federates) comprised the environment (federation). A

CORSIM federate models a freeway feeder road with an on-ramp while an Arena

federate models a tollbooth exchange.

 iv

ACKNOWLEDGMENTS

I would like to express many thanks to my advisor, Dr. Robert E. Shannon, for his

support, guidance, and encouragement throughout the duration of this research effort. I

appreciate his efforts to make this manuscript more readable and his advice as I prepare

to begin my professional career. It is an honor to be the last doctoral student in Dr.

Shannon’s highly successful career.

I would like to extend my appreciation to Drs. Robert A. Davis, Cesar O. Malave, and

Don R. Smith for serving on my committee during this research. I appreciated their

input throughout the process especially while writing the dissertation. I am also thankful

to Mr. Mark Henry, Mr. Mark Hopcus, and Mr. Dennis Allen for making themselves

available to attend to any computer software and/or hardware issues during the testing

phase of this research.

A special thanks goes to Ashwin Kekre, Hardik Parekh, and Dilip Musani. They were

instrumental in the development of the simulation environment, especially with respect

to interface development. I greatly appreciate their efforts and ideas during this critical

portion of the research effort. Last, but not least, I would like to thank my family and all

my friends at Texas A&M University for their support.

 v

TABLE OF CONTENTS

Page

ABSTRACT ...iii

ACKNOWLEDGMENTS.. iv

TABLE OF CONTENTS ..v

LIST OF FIGURES...vii

LIST OF TABLES ...viii

CHAPTER

 I INTRODUCTION ..1

1.1 Background and Research Motivation ..1
1.2 Specifications of the Research ..7
 1.2.1 Purpose ...7
 1.2.2 Research Objectives ...8

 1.3 Method of Approach ...8
 1.4 Organization ..9

 II LITERATURE REVIEW ..10

2.1 Introduction ...10
2.2 Distributed Traffic Simulation ..10
2.3 Web-based Simulation ..11
2.4 High Level Architecture..12

 III THE HIGH LEVEL ARCHITECTURE ...16

3.1 Introduction ...16
3.2 Components of the HLA ...17
 3.2.1 Federation Rules...18
 3.2.2 HLA Interface Specification ..19

 vi

CHAPTER Page

 3.2.3 Object Model Template (OMT) ...22
3.3 Run-Time Infrastructure (RTI)..24
3.4 Federation Execution...24

 IV FEDERATION DEVELOPMENT AND EXECUTION26

4.1 Introduction ...26
4.2 CORSIM..27
 4.2.1 CORSIM Federate...29
 4.2.2 CORSIM Interface Environment ..31
 4.2.3 CORSIM Interface with the HLA ...32
4.3 Arena ...38
 4.3.1 Arena Federate ..39
 4.3.2 Arena Interface Environment ..40
 4.3.3 Arena Interface with the HLA...42
4.4 Results ...48
4.5 Conclusions ...49

 V HLA TOOLS AND PROCEDURES ..50

5.1 Introduction ...50
5.2 Object Model Development Tool..51
5.3 Federate Compliance Testing..54
5.4 Web-Based Simulation and the HLA..58
5.5 Conclusions ...59

 VI CONCLUSION AND FUTURE RESEARCH...62

REFERENCES..74

APPENDICES...76

VITA ...107

 vii

LIST OF FIGURES

FIGURE Page

 4.1 CORSIM Federate (Feeder Road with on-ramp) ..30

 4.2 Arena Federate (Tollbooth Exchange) ..40

 4.3 Arena Federate (Block Constructs) ...41

 4.4 Model Frame and Experiment Frame for the Arena Federate...........................41

 viii

LIST OF TABLES

TABLE Page

 3.1 HLA Components ...17

 3.2 Management Areas of the Interface Specification ..20

 4.1 Source and Header Files in the CORSIM Interface Environment32

 4.2 Source and Header Files in the Arena Interface Environment..........................42

 4.3 Vehicle Counts from the CORSIM and Arena Federates48

 5.1 Object Model Identification Table ..52

 5.2 Object Class Structure Table...52

 5.3 Attribute Table ..53

 5.4 Object Class Definitions (Class Lexicon) ...54

 5.5 Attribute Definitions (Attribute Lexicon) ...54

 5.6 CORSIM Federate Conformance Statement ...56

 5.7 Test Environment Information for CORSIM Federate57

 6.1 Simulation Package Evaluation...68

 1

CHAPTER I

INTRODUCTION

This dissertation investigates the High Level Architecture (HLA) as a possible

distributed simulation framework for transportation systems. Section 1.1 gives the

background and research motivation. Section 1.2 describes the research specifications in

terms of the purpose, objectives, and goal. Section 1.3 discusses the method of approach

for achieving each of the objectives. Section 1.4 presents the organization of the

dissertation.

1.1 Background and Research Motivation

In traffic engineering, the concept of traffic control is giving way to the broader

philosophy of Transportation Systems Management (TSM) whose purpose is to optimize

the utilization of transportation resources and improve the movement of people and

goods without impairing the community. The economic importance of traffic

management grows each day. Well designed and well managed highway systems reduce

the cost of transporting goods, cut energy consumption, and save countless hours of

driving time. The state-of-the-art in transportation engineering has advanced

dramatically over the past decade with the emergence and application of new, more

 flexible traffic control devices, software system

s, computer hardware, communications

 This dissertation follows the style and format of Transportation Science.

 2

and surveillance technologies, and analysis methods. However, only recently has the

state-of-the-art been able to tap the full potential of these advances to effectively address

and resolve transportation issues within existing transportation infrastructures.

One of the most important analytical tools of traffic engineering and transportation

systems management is computer simulation. When a traffic system is simulated, it is

possible to predict the effect of traffic control and traffic systems management strategies

on the system’s operational performance. Typical measures of effectiveness are average

vehicle speed, vehicles stops, delays, vehicle-hours of travel, fuel consumption, and

pollutant emissions.

TSM simulation models are designed to represent traffic in a particular physical

environment (streets and freeways) and at a specific level of simulation detail

(microscopic or macroscopic). Traffic can be viewed as a complex system, and

developing macro models is one of the primary approaches to modeling complex

systems. Macro models follow a top-down approach, focusing on the observable

behavior of a system in terms of aggregate, abstract parameters and their probability

distributions. In the case of traffic, macro models are usually derived from fluid

dynamics and involve aggregate parameters such as traffic volume and average speed on

arteries in a traffic network. Simulation-based macro models have the advantage that

run-time can be relatively short, as the computation is based on aggregate, abstract

parameters. Macroscopic models are helpful when a coarse prediction of conditions is

 3

sufficient. However, most aspects of complex systems are highly nonlinear. Such

systems are often extremely sensitive to initial conditions, and even very small

perturbations in initial conditions can have a very large impact on the global system

behavior. In the process of aggregating and abstracting information, macro models lose

their sensitivity and capture the behavior of traffic only under idealistic conditions.

An alternative approach that can potentially produce better results is micro modeling.

This is a bottom-up approach, where a complex system is viewed as a large set of small,

interacting components. The main focus is on identifying the components of the system,

discovering their local behaviors, and the interactions among them. The global system

behavior emerges from the local behaviors of the individual components and their

interactions. Developing microscopic simulation models represent movements of

individual vehicles including the influences of driver behavior.

Traditionally, traffic simulation models have been developed as monolithic, stand-alone

systems that are well suited for the purpose for which they were designed. Microscopic

traffic simulation models are typically characterized by a high degree of detail. These

monolithic models contain many static components of the infrastructure (e.g. streets,

intersections, traffic lights etc.), decision rules, and dynamic entities like vehicles,

pedestrians and bicycles. The number of components and the number of relations

between components lead to large-scale models. Often, microscopic traffic simulation

models become too large, unwieldy, and difficult to maintain and adapt. These

circumstances lead to:

 4

• Long run times (hours) for simulation runs
• Long times for developing and testing of such monolithic models
• Excessive human effort to maintain models and adapt models for other

purposes
• Low flexibility and reusability

One solution is the employment of more powerful hardware. Another is breaking up the

model into a distributed set of sub-models and using distributed computing. Different

approaches exist for how a monolithic simulation task can be divided into sub-models.

The two main approaches are:

(A) Every component describes a different functional subsystem. A traffic
simulation could consist of separate models for vehicle traffic, traffic light
control, and pedestrian traffic.

(B) Every component describes a complex independent model for a small
geographic region.

By far the most promising approach to distributed simulations is the High Level

Architecture (HLA) being developed by the Department of Defense under the Defense

Modeling and Simulation Office (DMSO). The High Level Architecture (HLA) is a

major ongoing effort of the Department of Defense (DOD) to define a standard

specification of a common technical architecture for use across all classes of DOD

simulations. Begun in 1995, the goal is reusability and interoperability. By this they

mean the ability to take stand alone, monolithic simulations developed for a particular

purpose and put them together in various combinations (federations) for the study of

new, more complex problems. Some of the DOD motivation was for large war games

and training simulations. Although developed for use in the military arena, the HLA

 5

appears to have great potential for use in civilian applications and, in particular, traffic

management problems.

The HLA does not prescribe a specific implementation, nor does it mandate use of any

particular hardware, software, or programming language. It is a form of distributed

computing where the different simulations, databases, and human decision makers (also

called viewers) can be on different machines and in different geographical locations.

The importance of distributed simulations has increased. Because of this, there have

been several efforts in the commercial sector to enable distributed computing. Two of

the most viable recent efforts are the Common Object Request Broker (CORBA) by the

Object Management Group, and Remote Method Invocation (RMI) from Sunsoft's Java

Development kit (Buss and Jackson, 1998). Each of these architectures for distributed

computing offers much to the problem of distributed simulation. However, the HLA

was chosen for the following reasons: (a) Both CORBA and the HLA are concerned

with legacy applications (federates), possibly in different languages, i.e. they are

language neutral while RMI federates must be written in JAVA. (b) CORBA and RMI

are oriented toward general applications whereas the HLA is specifically targeted at

distributed simulations. Thus, the HLA provides more powerful support for simulation

issues such as time management. (c) The HLA allows transfer of object ownership

between federates whereas CORBA and RMI do not. For situations involving legacy

simulation models written in different languages and running on different hardware, the

 6

HLA provides more than the other two, in large part due to its simulation related

services.

Although it is just now being explored, the HLA seems to be suited for civilian

applications. The coupling of geographically, organizationally or otherwise distributed

systems, simulations, viewers, information systems etc. is a feature especially interesting

for traffic management applications.

Much like any computer programmer, each simulation modeler has their own modeling

style, which leads to unique modeling approaches even when the same type of

environment, such as transportation, is being modeled. This is a significant problem

when it would be beneficial for two or more of these models to communicate. For

example, modelers can have different interpretations of object classes and their

corresponding attributes and interactions. One modeler may refer to all vehicles as

“cars” while another modeler may classify vehicles as “cars”, “trucks”, and “buses”.

These differences in naming convention can also exist with the attributes and

interactions. These elementary types of inconsistencies make it difficult to determine

whether certain simulations are viable candidates for the same distributed environment.

This problem would be eliminated if each simulation were HLA-compliant.

The HLA standard not only defines the types of services it provides and how it will

provide them, but it also calls for standardization in terms of documentation. This

 7

documentation completely defines each simulation (federate) in terms of its object

classes, attributes, interactions, parameters, etc. Everything is explicitly documented,

including naming convention, so that federation developers can determine if a particular

federate’s offerings are suited for their federation execution. Via this documentation,

federation developers are able to look at the basic structure of foreign federates, but they

are shielded from viewing potential proprietary information, such as the simulation

source code itself. The ease and secure nature in which federates can be reviewed leads

to increased collaboration among simulation creators, which may lead to distributed

transportation environments being developed that otherwise would not have. A set of

HLA-compliant simulations essentially creates a “plug and play” situation. Once viable

candidates for a distributed simulation execution are identified, the participating

federates are linked and begin to interact with little modification. This allows for

federates to be swapped with one another to create alternate federations and contributes

to the analysis of several different scenarios of a transportation system.

1.2 Specifications of the Research

This section describes the purpose, objectives, and goals of the research.

1.2.1 Purpose

The purpose of this research is to determine the viability of the High Level Architecture

as a framework for transportation system models.

 8

1.2.2 Research Objectives

The research objectives are as follows: (1) determine the feasibility of making existing

traffic management simulation environments HLA compliant; (2) evaluate the usability

of existing HLA support software in the transportation arena; (3) determine the usability

of methods developed by the military to test for HLA compliance on traffic simulation

models; and (4) examine the possibility of using the HLA to create Internet-based virtual

environments for transportation research.

1.3 Method of Approach

The HLA concept and existing tools and method used for implementation were studied

with respect to the development of a distributed transportation environment. The initial

step in the development was to identify and evaluate the most widely used transportation

simulation software packages for their ability to have the concept of the High Level

Architecture implemented upon them. Two transportation simulations were created

using CORSIM version 3.2 and Arena 4.0, respectfully. These software packages were

chosen for their widespread use throughout the simulation community, and their ability

to communicate with external software via an interface structure already present within

the software. These simulations comprise the transportation simulation environment

used to explore and demonstrate the HLA. The CORSIM model simulates a freeway

feeder road, and the Arena model simulates a tollbooth exchange. Vehicles created in

the CORSIM model are transferred to the Arena model using the HLA services.

 9

Each simulation model had an interface developed for it so the models could

communicate with one another. Each interface is essentially a bridge that allows each

model to exchange information with the Run-Time Infrastructure (RTI), the “operating

system” of the HLA. The RTI acts as a vehicle for information exchange among the

individual simulation models comprising the entire simulation environment. CORSIM’s

Run-Time Extension (RTE) feature was used to develop the CORSIM model’s interface.

Arena’s external subroutine capabilities were used to develop that model’s interface.

Existing tools and methods were employed throughout the development of this traffic

simulation environment. These utilities, including an HLA compliance testing

procedure, are evaluated with respect to their usefulness in transportation simulations.

1.4 Organization

This dissertation is organized into six chapters. Chapter II presents the literature

surveyed in the areas of distributed traffic simulation, web-based simulation, and the

High Level Architecture. Chapter III presents background information on the High

Level Architecture. Chapter IV details the two simulation models comprising the traffic

simulation environment. The procedure to implement the HLA functionality is

described for each model. Chapter V includes an evaluation of existing tools, methods,

and procedures used for the HLA implementation. Additionally, there is a discussion of

the HLA with respect to web-based simulation. Chapter VI is a final discussion and

gives future research directions.

 10

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

HLA is a very young science. Therefore, the amount of research done in this area is not

extensive, especially in relation to transportation systems modeling. However, some

researchers have contributed to the growing areas of distributed traffic simulation and

web-based simulation. This chapter surveys the relevant contributions on these topics as

well as studies on the HLA. The following three sections highlight some of the

important results published in these areas.

2.2 Distributed Traffic Simulation

Klein, Schulze, and Straβburger (1998) investigated traffic simulation based on the

HLA. Their work included enhancing classic simulation and animation tools for HLA

compatibility. It was also shown that legacy simulation models, independently extended

for HLA compatibility by different organizations, could exist in a distributed simulation

environment. Straβburger (1999) addressed the application of HLA-based coupling of

simulation tools. The concepts for the extension of simulation tools with HLA

capabilities and their realization are discussed. Schulze, Straβburger, and Klein (1999)

discussed the problems of a simulation interoperability standard with civil applications.

Solutions to these problems, especially in the area of transportation, were suggested

using the HLA. Ozaki, Furuichi, Nishi, and Kuroda (2000) developed a modular,

 11

flexible, and scalable micro-model car traffic simulation system. The HLA was applied

to every system module as a standard interface between each module for evaluating and

validating a variety of micro-model simulation schemes. Klein (2000) presented a new

information technology approach for simulation-based systems capable of serving

multiple purposes through the composition of components. Based on the HLA, a

prototype dispatching system for public transportation demonstrates the concept.

2.3 Web-based Simulation

The area of web-based simulation is becoming an area of great research interest. Page

(1998) explored the relationship between HLA and web-based simulation. The paper

discusses whether HLA could serve as an interoperability technology for the commercial

and academic sectors in the age of web-based simulations. Potential barriers of the

transfer of this DoD technology are illustrated, and mechanisms through which these

barriers may be overcome are suggested. Straβburger, Schulze, Klein, and Henriksen

(1998) presented approaches by which HLA can be used to interconnect distributed

model components which are developed using commercially available, off-the-shelf

simulation software. The requirements imposed on the simulation software by HLA are

discussed. Page and Opper (2000) described the evolution of web-based simulation and

derive a collection of modeling principles that characterize the future of web-based

simulation. These principles are examined in terms of their implications for next-

generation computer generated forces systems, a term used to describe simulations that

provide representations of military forces. Miller et. al (2001) reviewed the

 12

development of research in the area of web-based simulation. Potential opportunities

and areas of focus are identified in both academic and industrial arenas. Kuljis and Paul

(2000) discussed potential environments and languages for web-based simulation. They

concluded that web-based environments would continue to be isolated efforts as

simulation developers continue to resist newer simulation advancements.

2.4 High Level Architecture

There are several topics related to the HLA that are fertile research areas. Some of the

early works bearing relation to this research effort are presented below.

Pratt and Dugone (1999) presented a step-by-step guide for making legacy distributed

interactive simulation (DIS) HLA compliant using the HLA Gateway. The guide is

geared for developers with limited HLA backgrounds and funding to make their DIS-

based simulations HLA compliant, when HLA compliance is needed fast, and when

existing DIS capabilities for the simulation are to be maintained.

Buss and Jackson (1998) compared three architectures for supporting distributed

computing, HLA, Common Object Request Broker (CORBA), and Remote Method

Invocation (RMI). It was concluded that for situations involving legacy simulation

models written in different languages, HLA provides more than the other two due to its

orientation toward simulation and its simulation-related services.

 13

Horst and Woldt (2000) discussed using tools developed by the Defense Modeling and

Simulation Office (DMSO) to facilitate the HLA compliance testing process. Many of

these tools allow for federate developers to assess their simulations before submitting

them for formal HLA certification. Horst et al. (2000) offered improvements to the

HLA federate compliance testing process. Improvements are suggested for the runtime

component of the compliance testing process by eliminating the need for a

predetermined test sequence. Other upgrades include simplifying the compliance testing

process for the Certification Agent by implementing a single federate compliance testing

tool, and retooling the compliance testing website to handle the new testing process.

Paterson et al. (2000) describe how gateways and other middleware can aid in the

implementation of the HLA on individual simulations. It was found that the middleware

software can house several of the RTI services, such as data distribution management

and time management, in such a way that the HLA services are hidden. It is also noted

that the use of middleware could alleviate some of the cost required to make a simulation

HLA compliant. McLean and Fujimoto (2001) discuss the usefulness of the federated-

simulations development kit (FDK) in developing customized RTIs for use in a

distributed simulation environment. The FDK consists of modules so that RTI

developers can select only the modules that are most important for their RTI

implementation. Several instances in which the FDK software is used are described.

Sauerborn et al. (2000) recommend changes to the ownership management services

specification of the RTI. The changes include: allowing attribute transfer to be directed

 14

to a specific federate and providing a federate with the ability to inform the RTI that it is

unwilling or unable to accept a particular attribute instance. This paper represents a

beginning work in the research and upgrade of the HLA specification, a fertile area for

continued research.

Bachinsky et al. (2000) developed a federation engineering approach to distributed

simulation exercises. The approach includes system administration, network

configuration, and systems engineering. The approach serves as a vehicle to ensure the

success of the distributed simulation exercise. Rouget and Henry (2000) studied

developing tools to examine any HLA compliant object model and automatically

generate HLA federate source code. This source code separates the interface between

the RTI implementation and the federate developers application. This reduces the need

for developers to have an in-depth understanding of the RTI API, and allows developers

to concentrate on their particular simulation application. Pace (2001) discusses the

simulation conceptual model’s role in determining compatibility of candidate

simulations for a HLA federation. Key conceptual model attributes are presented, and

suggestions are given to guide the validation of proposed distributed simulation

environments. Federate compatibility issues and federation options when federates are

incompatible are identified. It is contended that federation compatibility is a key

element of federation validation and has a role in effective interoperability. Stytz and

Banks (2001) recommend improvements to the design and documentation of distributed

simulation environments using the unified modeling language (UML). Aspects of UML

 15

that can be used to complement the federation development process are discussed. Their

recommendation is that the majority of the federation and federate design and

documentation process be done using the tools provided by UML.

As can been seen, there are numerous areas in which the HLA can be explored and

applied. The next chapter introduces the HLA to familiarize the reader with it.

 16

CHAPTER III

THE HIGH LEVEL ARCHITECTURE

3.1 Introduction

The High Level Architecture (HLA) is an object-oriented approach to distributed

simulations developed by the Department of Defense (DoD) under the Defense

Modeling and Simulation Office (DMSO). More specifically, the HLA is intended to

address the issues of reuse and interoperability of simulations. Reusability means that

component simulation models can be reused in different simulation scenarios and

applications. Interoperability means that the reusable component simulations can be

combined with other components without the need for re-coding. Although the HLA

was developed for use in military applications, it appears to have great potential for

civilian applications including transportation systems modeling.

The HLA is an emerging technology for linking simulations of various types at multiple

locations to create a realistic, complex, “virtual world” for the simulation of highly

interactive activities. This technology brings together systems built for separate

purposes, technologies from different eras, products from various vendors, and diverse

hardware at different locations and permits them to interoperate together in a synthetic

environment. The HLA establishes a high-level common ground that facilitates the

interoperability of several simulation models. It essentially manages how data is

distributed among the participating simulations in the distributed environment. Unlike

 17

other previous network architectures, the HLA directs data to simulations on a need-to-

know basis only. This allows for reduced data traffic, and therefore, a more efficient

distributed simulation environment.

The next section will discuss the components defining the HLA. This is followed with

sections detailing the RTI and the process of creating and running a federation exercise.

3.2 Components of the HLA

The HLA is defined by three components: Federation Rules, the HLA Interface

Specification, and the Object Model Template. Table 3.1 below provides an overview of

these components (DMSO, 1999).

Table 3.1

HLA Components

Federation Rules
• Ensure proper interaction of

simulations in a federation
• Describe the simulation and federate

responsibilities

Interface Specification
• Defines Run-Time Infrastructure

services
• Identifies “callback” functions each

federate must provide

Object Model Template

• Provides a common method for
recording information

• Established the format of key models:
federation object model, simulation
object model, and management object
model

 18

The Run-Time Infrastructure (RTI) software is the backbone of any distributed

simulation system developed within the HLA framework. It is essentially an “operating

system” that provides services to the federates (simulations) participating in the

distributed environment.

3.2.1 Federation Rules

The federation rules consist of ten rules that describe the conduct of federates and their

interaction with the RTI (DMSO, 2000). Five rules relate to the federation and the other

five to the federate.

Federation Rules

1. Federations shall have an HLA Federation Object Model (FOM), documented in

accordance with the HLA Object Model Template (OMT).

2. In a federation, all representation of objects in the FOM shall be in the federates,

not in the RTI.

3. During a federation execution, all exchange of FOM data among federates shall

occur via the RTI.

4. During a federation execution, federates shall interact with the RTI in accordance

with the HLA interface specification.

5. During a federation execution, an attribute of an instance of an object shall be

owned only one federate at any given time.

Federate Rules

6. Federates shall have an HLA Simulation Object Model (SOM), documented in

accordance with the HLA OMT.

 19

7. Federates shall be able to update and/or reflect any attributes of objects in the

SOM and send and/or receive SOM object interactions externally, as specified in

their SOM.

8. Federates shall be able to transfer and/or accept ownership of an attribute

dynamically during a federation execution, as specified in their SOM.

9. Federates shall be able to vary the conditions under which they provide updates

of attributes of objects, as specified in their SOM.

10. Federates shall be able to manage local time in a way that will allow them to

coordinate data exchange with other members of a federation.

Federate developers must adhere to these ten rules in order for their federate to be HLA

compliant.

3.2.2 HLA Interface Specification

The interface specification mandates how the federates will interact with the federation

and each other. The specification is comprised of six management areas: federation

management, declaration management, object management, ownership management,

time management, and data distribution management.

 20

Table 3.2 below summarizes these management areas (DMSO, 1999).

Table 3.2

Management Areas of the Interface Specification

Management Area Responsibilities Example(s)

Federation Management Control an exercise
• Creating a federation
• Joining federates to a

federation

Declaration Management Define data publication and
subscription

• Publication of attributes
• Subscription of

attributes

Object Management Exchange object and
interaction data

• Register objects
• Update attributes

Ownership Management Transfer attribute ownership

• Divesture of an object’s
attribute(s)

• Acquisition of an
object’s attribute(s)

Time Management Control message ordering
• Request current time
• Advance time of the

simulation

Data Distribution
Management

Efficiently route data
between producers and
consumers

• Create a region
• Modify a region

Federation Management

This management area contains several services that any HLA compliant federate must

be capable of performing. The mandatory services are the following: creating a

federation, joining a federation, resigning from a federation, and destroying a federation.

All federates attempt to create a federation upon connection to the RTI process.

However, only the first federate to connect to the RTI process will be successful in doing

 21

this, while exceptions will be raised with the other federates. The other federate(s) will

then perform a join federation execution.

Declaration Management

This management area describes the publication and subscription functions of the HLA.

Typically, federates produce object instances or interactions. Each federate must declare

exactly what it is able to publish, or generate. Similarly, federates usually consume

object instances or interactions. Each federate must declare exactly the instances and

interactions in which it wishes to subscribe, or recognize. The RTI keeps tracks of each

federate’s interests to achieve the goal of efficient communication among the federates.

Object Management

This management area includes registering, discovering, and deleting object instances,

and updating and reflecting object attributes. Federates introduce object instances to the

federation via a registration process. However, attribute values for the instance are not

provided until a separate, second step is performed. This is done via update and

reflection methods.

Ownership Management

This management area describes how federates update and delete object instances.

Object instances may be wholly owned by one federate that would be solely responsible

for updating the attributes associated with the object or for deleting it. Multiple

 22

federates may share responsibility of updating an object’s attributes. In this case, each

of the participating federates has the responsibility of updating a mutually exclusive set

of attributes. Additionally, each participating federate has the right to delete an object

instance. Federates may also exchange attribute ownership by attempting to push

ownership on another federate or by attempting to acquire ownership of an attribute from

another federate.

Time Management

This management area presents the methods the RTI uses to manage time advances

during a federation execution. This is an optional service but would mandatory in

federations where time synchronization is key. In this research effort, time management

is ignored, as it is not necessary to implement in order to achieve HLA compliance.

Data Distribution Management

This management area describes how data can be efficiently routed during a federation

execution. Routing spaces are used to further isolate publication and subscription

interests. This aids the RTI being used as a switching device to transfer data among the

federates. Once again, this is an optional service and was not implemented.

3.2.3 Object Model Template (OMT)

The OMT provides a common method for recording information and establishes the

format of key models. These models are the Federation Object Model (FOM),

 23

Simulation Object Model (SOM), and Management Object Model (MOM). The key

features of the three models are listed below (DMSO, 1999).

Federation Object Model

• One per federation

• Introduces all shared information (e.g., objects, interactions)

• Contemplates interfederate issues (e.g., data encoding schemes)

Simulation Object Model

• One per federate

• Describes salient characteristics of a federate

• Presents objects and interactions which can be used externally

• Focuses on the federate’s internal operation

Management Object Model

• Universal definition

• Identifies objects and interactions used to manage a federation

The Object Model Development Tool (OMDT) can be used to construct these object

models. For this particular application, the FOM for the federation and the SOM for

each federate are identical since both federates in the distributed environment have the

same object instances and interactions. The OMDT also has a utility to automatically

 24

create the Federation Execution Data (FED) file. The FED file contains initialization

information required by the RTI relating to the FOM.

3.3 Run-Time Infrastructure (RTI)

Again, the RTI is the backbone of the HLA. It is software that serves as the “operating

system” for the federation by providing essential services for proper interaction. The

RTI has three components: the RTI Executive process (RtiExec), the Federation

Executive process (FedExec), and the libRTI library.

The RtiExec is a globally known process that manages the creation and destruction of

FedExecs. Each federate within a particular federation communicates with the RtiExec

to initialize RTI components. The RtiExec also assures that the FedExec has a unique

name. This is important because more than one federation (hence, multiple FedExecs)

can use the same RTI at the same time. The FedExec manages the federation in that it

allows federates to join and resign from a federation. It also oversees data exchange

between participating federates. The libRTI is a C++ library that provides the services

described in the HLA Interface Specification. These services were discussed in Section

3.2.2.

3.4 Federation Execution

This section describes the step-by-step process of executing a federation exercise.

 25

Step 1

Start the RTI from any terminal with a known IP address so that external federates can

locate it and use the services provided by the RTI. This action starts the RtiExec

process.

Step 2

A participating federate then begins simulating. This federate will register with the

RtiExec and create a federation. This action starts the FedExec process and reserves a

federation name with the RtiExec. The FedExec also registers a communication address

with the RtiExec.

Step 3

The remaining participating federates can now join the newly created federation. Each

federate obtains the FedExec address from the RtiExec and invokes a join federation

execution.

Step 4

As each federate finishes its activity within the federation execution, each federate must

resign from the federation. When the federates are done executing, a destroy execution

is invoked to eliminate the federation.

 26

CHAPTER IV

FEDERATION DEVELOPMENT AND EXECUTION

4.1 Introduction

This chapter details the development of a distributed simulation environment involving

two separate traffic simulation models (federates). More specifically, this chapter

discusses the accomplishment of the first objective of this research effort: (1) determine

the feasibility of making existing traffic management simulation environments HLA

compliant. The test environment consisted of federates developed using CORSIM and

Arena, respectively. CORSIM, developed by the Federal Highway Administration, is a

microscopic simulation software that models surface streets and freeways along with a

wide array of traffic control devices. CORSIM is an integration of two microsimulation

models, NETSIM and FRESIM, respectively. NETSIM is used to model traffic on

urban streets while FRESIM is used to model traffic on freeways. Arena is widely

known, commercially available, general simulation software capable of modeling many

different types of environments, including a traffic simulation environment.

The CORSIM federate models a freeway feeder road with an on-ramp leading to a

freeway tollbooth exchange. The second federate is the tollbooth exchange and is

modeled using Arena. The network has no signal control. The vehicles are the only

objects defined in the simulation with vehicle attributes of vehicle identification number,

status, and exit time. The development of this test environment includes: developing a

 27

separate interface for each federate so each federate can communicate with the RTI and

each other, and creating the appropriate support files so as to comply with the HLA

standard.

4.2 CORSIM

CORSIM is a continuous traffic simulation software in that it uses a continuously

advancing fixed time-step to describe traffic operations. Each vehicle is treated as a

distinct entity in the simulation and its state is updated every time-step. A time-step is

one second. The state of the vehicle is defined by its position relative to other vehicles

and the time-step. A simple network in CORSIM consists of entry nodes, exit nodes,

and internal nodes connected by unidirectional links. The links typically represent urban

streets or freeway sections, whereas nodes represent urban intersections or points of

traffic convergence/divergence.

The input file to CORSIM is a fixed format file that contains information about the

network. It specifies both spatial and time-varying characteristics of the network. The

input stream consists of a sequence of “block” data records. A block outlines the

conditions during one time period and up to nineteen such blocks may be specified.

Each block is divided into sections that are further divided into record types. Record

types contain specific data items and are divided into 80 columns each. Every column

holds pre-determined information about a part of the network or its characteristics.

CORSIM has a detailed procedure to test the validity of the input stream.

 28

CORSIM is available in a Microsoft Windows® environment called the Traffic Software

Integrated System (TSIS). TSIS provides a user interface to CORSIM and permits it to

interact with other software programs. TSIS’s CORSIM environment is composed of

four major components:

• TSIS.exe – the executable Microsoft Windows® program

• TSISINTF.dll – a dynamic link library that contains shared memory,

communication interface and the TSIS Application Programming Interface (API)

• CORSIM.dll – a dynamic link library that is built from configuration-controlled

source code

• Run-Time Extension (RTE) – an optional dynamic link library that can be used

to interact with CORSIM at runtime

CORSIM and TSIS exchange data by using a shared memory area in TSISINTF.dll. The

TSIS environment also controls any external libraries that interface with CORSIM.

CORSIM, developed by the Federal Highway Administration, is used to represent traffic

flow along surface streets and freeway systems. CORSIM is an integration of two

microscopic simulation components:

• NETSIM – used to model traffic on surface streets

• FRESIM – used to model traffic on freeways

 29

The CORSIM Data Dictionary lists pre-defined variables within the NETSIM and

FRESIM frameworks, respectively, that can be used to access information from the

CORSIM database. The RTE can import these variables in order to extract information

from the simulation. This information can be gathered and used as data for a statistical

analysis, or it can be passed on to external programs as necessary input for proper

execution. For example, the ENTIME(X) variable retrieves the time in tenths-of-a-

second that vehicle X entered the network.

TSIS’s CORSIM has three interface functions. These are listed below:

• INIT – an interface function called by TSIS at the start of the simulation

• JMAIN – an interface function called by TSIS once every simulation time-step

• JEXIT – an interface function called by TSIS at the end of the simulation run

The RTE can be configured to include corresponding routines that are called by these

functions. These three functions can thus act as entry points for that particular run-time

extension.

4.2.1 CORSIM Federate

In order to test ease of compliance of CORSIM simulations to the HLA standards, a

small feeder road simulation model was created. The model simulates a freeway feeder

road with an on-ramp. The network has no signal control.

 30

Figure 4.1 below depicts this simulation model.

3 4

2

1

Detector

Detector

On-ramp

Feeder Road
Traffic Flow

Figure 4.1. CORSIM Federate (Feeder Road with on-ramp)

Vehicles enter the network at node 1. All traffic is one-way; say traveling from “south

to north”. At node 2, vehicles can turn toward node 3 (the on-ramp) or continue toward

node 4 (continuation of the feeder road). It was arbitrarily set that 50% of the vehicles

take the on-ramp while the remaining vehicles stay on the feeder road. Vehicles that

reach node 4 are disposed while vehicles at node 3 (the end of the feeder road) are

“transferred” to the tollbooth exchange model (the Arena federate). Detectors reside at

nodes 1 and 3, respectively, and serve as triggering mechanisms during simulation

execution. The only objects defined in the simulation are vehicles with attributes of

 31

vehicle identification number, status, and exit time. The change in the value of the status

attribute of a particular object (vehicle) is used as an indication of the vehicle’s exit from

the feeder road. The interoperation between these two simulations can be achieved

using the RTI in accordance with the HLA standards.

4.2.2 CORSIM Interface Environment

CORSIM is interfaced with the RTI, and hence the HLA, via the RTE feature existing in

CORSIM. Three functions are declared in CORSIM that act as entry points to the RTE.

These functions are called upinit, upcntrl, and upexit, respectively. These functions are

called by the INIT, JMAIN, and JEXIT subroutines in CORSIM. These subroutines are

found in KSC.FOR, a file in CORSIM that provides interface capability for CORSIM.

The INIT subroutine calls the upinit C function, the JMAIN subroutine calls the upcntrl

C function, and the JEXIT subroutine calls the upexit C function.

A project workspace file, named interfac.dsw, was created to house the source and

header files responsible for interfacing with the RTI.

 32

These files are listed in Table 4.1 below.

Table 4.1

Source and Header Files in the CORSIM Interface Environment

Source Files Header Files
binarySequence.cpp binarySequence.h

corsim_interface_RTI.cpp detector.h
detector.cpp FederateAmbassador.h

FederateAmbassador.cpp Global_Variables.h
integer.cpp integer.h

lane.cpp lane.h
link.cpp link.h

network.cpp netsim.h
node.cpp network.h

signalState.cpp node.h
traf_RTI.cpp traf_RTI.h

upcntrl_HLA.cpp upcntrl.h

All the files listed above already exist within CORSIM with the exception of 3 source

files and 3 header files. Corsim_interface_RTI.cpp, FederateAmbassador.cpp,

traf_RTI.cpp, FederateAmbassador.h, Global_Variables.h, and traf_RTI.h are the added

files. Simply stated, CORSIM interfacing with the HLA is the interaction of the files

listed in Table 4.1. The following section details an execution of the CORSIM federate.

4.2.3 CORSIM Interface with the HLA

This section describes the interaction between the files listed in Table 4.1. Essentially, a

single entity (vehicle) is followed throughout the simulation.

 33

Primary services required for the CORSIM simulation to create and/or join the

federation are called from the upinit function. This function also calls the services

necessary to get handles to the object attributes and those needed for publish and

subscribe mechanisms. All these services are performed when the CORSIM model is

first executed and the entry of the first vehicle is detected by the detector placed at node

1 (see Figure 4.1). Every vehicle passing the detector triggers it. The upinit function

resides in upcntrl_HLA.cpp (see Appendix 1) and immediately calls another function,

InitialFunction(), which is in corsim_interface_RTI.cpp (see Appendix 2). The upinit

function code is shown below:

void UPINIT(char *fname)
{
 //initialization routine
 //called once at the beginning of simulation
 int i;
 int j;

 char outbuffer[132];
 InitialFunction();

 sprintf(outbuffer,"init done \n");
// CWRITE(outbuffer,132);

 endOfInit=0;
 prevInit=0;

 pNetwork=new CNetwork();

 //fname must be null terminated
 for (i=2;i<512;i++)
 {
 if (((fname[i-2]=='T')||(fname[i-2]=='t'))&&
 ((fname[i-1]=='R')||(fname[i-1]=='r'))&&

 34

 ((fname[i]=='F')||(fname[i]=='f')))
 {
 j=i+1;
 }
 }

 for (i=j;i<512;i++)
 {
 fname[i]='\0';
 }

 pNetwork->m_TrafInputFile=CString(fname);

 //read the traf file
 pNetwork->ReadTrafFile();
 return;
}

Within InitialFunction(), calls are made to three other functions in traf_RTI.cpp (See

Appendix 3), namely JoinFederation(), GetAttributeHandles(), and

PublishSubscribeAttributes(). The InitialFunction() function code is shown below:

void InitialFunction()
{
 JoinFederation();
 GetAttributeHandles();
 PublishSubscribeAttributes();
}

The JoinFederation() function serves to create a federation called “Feeder Road” or

allows the simulation (or federate) to join an existing federation named “Feeder Road”.

In the case of the first vehicle entering the network, the function will serve to create the

federation. All subsequent federates will join the existing federation. The

GetAttributeHandles() function gives the handles for the vehicle class (Vehicle) and the

attributes (ID, Status, and CorsimExitTime) for this class. The

 35

PublishSubscribeAttributes() function enables the federate to reveal and gather

information regarding each vehicle in terms of its attributes (vehicle identification

number, status, and exit time).

For every time step in which the first detector is triggered by a vehicle entering the

network, an object of the class ‘vehicle’ is instantiated in the federation by calling the

RTI service responsible for creating an object. Similarly, the departure of a vehicle from

this federate is detected using another detector at the end of the on-ramp (the detector at

node 3). In the event of a vehicle exiting the system, the value of the status attribute is

changed using the RTI service for updating attributes. All these tasks are included in the

upcntrl function, in upcntrl_HLA.cpp, so as to obtain an update of the network every

second. This function calls another function, CentralFunction(), which is in

corsim_interface_RTI.cpp. The upcntrl function code is shown below:

void UPCNTRL()
{
 int time;
 BOOL init;
 POSITION pos, detpos;
 CLink* pLink;
 CDetector* pDetector;
 static vector<int>count;

 init=yinit;

 //the algorithm that controlls the signal states at the
 //intersections assumes time is always increasing, but
 //the CORSIM clock starts over after initialization
 //so the time at which initialization is over must
 //be recorded

 36

 if ((!init)&&(prevInit))
 {
 //end of initialization
 endOfInit=prevTime+1;
 }

 //adjust the time by adding the end of initialization
 time=sclock+endOfInit;

 //get signal state for the node under corsim control
 //pNetwork->UpdateNodeSignalStates();

 //process any detector information

 pos=pNetwork->m_LinkList.GetHeadPosition();
 while (pos!=NULL)
 {
 pLink=pNetwork->m_LinkList.GetNext(pos);

 if(pLink->m_upnode->m_id==1 && pLink->m_dnnode->m_id==2)
 {
 pLink->ProcessDetectors();
 detpos = pLink->m_listOfDetectors.GetHeadPosition();
 pDetector = pLink->m_listOfDetectors.GetNext(detpos);
 count.push_back(pDetector->m_count);
 if(count[count.size()-1]-count[count.size()-2] && time>300) {
/*
 char outbuffer[132];
 char ch[20];
 _itoa (time-300,ch,10);
 sprintf(outbuffer,ch);
 CWRITE(outbuffer,132);

*/
 CentralFunction();
 }
 }

 }
 //record whether the simulation has reached equilibrium
 //or not, so the time at which initialization can be
 //recorded
 prevInit=init;

 37

 prevTime=time;

}

Within CentralFunction(), calls are made to two other functions in traf_RTI.cpp, namely

CreateVehicle() and UpdateStatus(). The CentralFunction() function code is shown

below:

void CentralFunction()
{
 int instance;
 long val=2;

 instance = CreateVehicle();

 UpdateStatus(instance);
}

The CreateVehicle() function is responsible for CORSIM notifying the RTI that a

vehicle has entered the network. The UpdateStatus() function serves to change the status

attribute of each vehicle as it exits the on-ramp. A vehicle in the CORSIM federate has

a status value of 1. This value is changed to 2 via the UpdateStatus () function upon the

vehicle entering the other participating federate, namely the tollbooth exchange.

Finally, calls to RTI services for resigning and destroying the federation are in the upexit

function located in upcntrl_HLA.cpp. These are used for clean up and release of the

CORSIM federate from the federation. This function calls another function,

ExitFunction(), which is in corsim_interface_RTI.cpp. The upexit function code is

shown below:

 38

void UPEXIT()
{
 //clean up
 //delete all objects that were created
 delete pNetwork;
 ExitFunction();
 CWRITE("You OK here",24);

}

Within ExitFunction(), calls are made to two other functions in traf_RTI.cpp, namely

ResignFederation() and DestroyFederation(). The ExitFunction() function code is

shown below:

void ExitFunction()
{
 ResignFederation();
 DestroyFederation();
}

The ResignFederation() function allows the CORSIM to withdraw from the network

after it is done executing. The CORSIM federate simulates the feeder road for 900

seconds. The DestroyFederation() function gives the federate the ability to destroy the

federation if it is the last executing federate. However, this will never be the case since

the Arena federate runs for a much longer period of time.

4.3 Arena

Arena is a general purpose, flow oriented event simulation from the Rockwell

Corporation. It has features that allow it to be used both as language and as a simulation

 39

tool. It has a flexible and powerful object oriented design, capable of being used with

different applications.

An important characteristic of Arena is that it allows users to create their own “user

code” (routines) by editing appropriate files (userc.cpp in this case). The user needs to

include two files, simlib.h and smsim.lib, when executing the user-written C/C++ source

files. Simlib.h contains a complete set of SIMAN function prototypes, macros and

typedefs to externally interface the code(C/C++ functions) with SIMAN. Smsim.lib is a

library for SIMAN components. The functions described in userc.cpp (see Appendix 4)

are called from SIMAN to allow linking in user-coded routines. In this federate,

userc.cpp is accessed by using incorporating an EVENT block in the Arena model.

These characteristics of Arena have proved to be quite helpful in applying the HLA to

Arena, which is discussed in the following section.

4.3.1 Arena Federate

The Arena model that simulates a tollbooth exchange was created to test for

compatibility with the HLA. This federate works in conjunction with the CORSIM

model. Once again, this network has no signal control.

 40

Figure 4.2 below depicts this simulation model.

Traffic Flow

Gate

Tollbooth

Figure 4.2. Arena Federate (Tollbooth Exchange)

Vehicles enter the tollbooth exchange after exiting the CORSIM federate via the on-

ramp. All traffic is one-way. After vehicles are serviced at the tollbooth, the model

disposes of them. The only objects defined in the simulation are vehicles with attributes

of vehicle identification number, status, and CORSIM exit time. The change in the

value of the status attribute of a vehicle triggers the process of the Arena federate

creating an entity (vehicle) to go through the tollbooth exchange. This process is

described in the next section.

4.3.2 Arena Interface Environment

Arena is interfaced with the RTI via the userc.cpp file existing in Arena. Userc.cpp

consists of subroutines that can be customized and activated for use during a simulation

run. In this instance, the cevent subroutine is used to generate the vehicles that will

eventually go through the tollbooth exchange. The cevent subroutine is triggered using

 41

an EVENT block in the Arena model. This construct, as well as the rest of the model, is

shown below in Figure 4.3.

 Seize Release Count Dispose Count Event Create

Figure 4.3. Arena Federate (Block Constructs)

The corresponding SIMAN code is shown below in Figure 4.4.

Model Frame
2$ CREATE, 1,0.0:10,500:NEXT(3$);

3$ COUNT: total_count,1;
0$ EVENT: 1;
Toll Booth Entry SEIZE, 1,Other:
 Toll_Booth,1:NEXT(Toll Booth Exit);

Toll Booth Exit RELEASE: Toll_Booth,1;
1$ COUNT: toll_count,1;
4$ DISPOSE: No;

Experiment Frame
PROJECT,"External input test","Industrial Engineering",,,No,No,No,No,No,No,No;

RESOURCES:Toll_Booth,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(N
o
,,);
COUNTERS: total_count,,Replicate:
 toll_count,,Replicate;

REPLICATE, 1,,,Yes,Yes,,,,24,Seconds,No,No;

Figure 4.4. Model Frame and Experiment Frame for the Arena Federate

 42

A project workspace file, named Msuserc.dsw, was created that contains the source and

header file involved in interfacing with the RTI. These files are listed in Table 4.2

below.

Table 4.2

Source and Header Files in the Arena Interface Environment

Source Files Header Files
arena_interface_RTI.cpp FederateAmbassador.h
FederateAmbassador.cpp Global_Variables.h

traf_RTI.cpp simlib.h
userc.cpp stdafx.h

 traf_RTI.h

Much like the CORSIM environment, most of the files already existed as part of the

structure required for Arena. The files added to the structure to implement the HLA

functionality are: arena_interface_RTI.cpp, FederateAmbassador.cpp, traf_RTI.cpp,

FederateAmbasssador.h, Global_Variables.h, and traf_RTI.h. The following section

details an execution of the Arena federate.

4.3.3 Arena Interface with the HLA

This section describes the interaction between the files listed in Table 4.2. A vehicle is

followed throughout the simulation. The Arena federate, much like any participating

federate, is capable of creating and/or joining a federation. When this federate is first

 43

executed, the userc.cpp file is read and the logic is carried out. The section of the

userc.cpp file relevant to this research effort is shown below.

void InitialFunction(void);
void ExitFunction(void);

// the entry point within the model is "cevent"
//**
//
// Routine : cevent
//
// Description : Maps the event number n to a call to the appropriate
// event subroutine containing the logic for the event
//
// Inputs : SMINT l - index of entity being processed by the event
// SMINT n - event number
//
//
//**

long ticker=0;
extern long check;
extern RTI::RTIambassador rtiAmb;

extern "C" void cdecl cevent (SMINT entityLoc, SMINT evntNum)
{

 for (int k=1; k<3000; k++)
 rtiAmb.tick();
 switch(evntNum) {
 case 1:
 if(check!=2)
 dispos(&entityLoc);
 else
 check=0;
 }
 ticker++;
 if(ticker==500)
 ExitFunction();

#ifdef TEST_FUNC

 44

 sr_Printf ("\n\nEntered cevent\n");
 sr_Printf ("entityLoc =%ld\n", entityLoc);
 sr_Printf ("evntNum =%ld\n", evntNum);
 sr_Printf ("tnow =%f\n", gettnw());
 sr_Printf ("numrun =%ld\n\n", nrep());
#endif
}

The first function encountered is InitialFunction(). The InitialFunction() function code

is shown below.

void InitialFunction()
{
 JoinFederation();
 GetAttributeHandles();
 PublishSubscribeAttributes();
}

This function resides in arena_interface_RTI.cpp (see Appendix 4) and makes calls to

three other functions in traf_RTI.cpp (see Appendix 3), namely JoinFederation(),

GetAttributeHandles(), and PublishSubscribeAttributes(). These functions perform the

same way as in the CORSIM environment. The JoinFederation() function allows the

Arena simulation to create a federation named “Feeder Road” or join a federation of the

same name. Since the Arena simulation runs for a considerably longer time period than

the CORSIM simulation, the Arena simulation is typically started first so that a greater

number of vehicles pass through the network. This is also beneficial when observing the

network to verify its proper functioning. The GetAttributeHandles() function gives the

handles for the vehicles class and its attributes. The PublishSubscribeAttributes()

 45

function permits the federate to show and capture information regarding each vehicle in

terms of its attributes.

In order to simulate the passing of vehicles from the CORSIM federate to the Arena

federate, the RTI, cevent subroutine in userc.cpp, and the EVENT block work in concert.

As a vehicle passes the detector at the end of the on-ramp of the CORSIM federate, the

CORSIM federate makes a call to the RTI to update the status attribute of the vehicle to

a value of 2. This is done via the UpdateStatus() function in traf_RTI.cpp in the

CORSIM environment workspace. The UpdateStatus() function code is shown below.

void UpdateStatus(int id)
{
 long val= 2;
 int tmp;

 tmp=htonl(val);

 for(int k=1; k<100; k++)
 rtiAmb.tick();

 RTI::AttributeHandleValuePairSet *pNameValuePairSet;

 pNameValuePairSet=RTI::AttributeSetFactory::create(1);

 pNameValuePairSet->add(statusID,(char*)&tmp,sizeof(tmp));

 try
 {
 rtiAmb.updateAttributeValues(RTI::ObjectHandle(id),

 *pNameValuePairSet,NULL);
 fout << " Updated Status of vehicle" << endl;

 }

 46

 catch (RTI::Exception& e)
 {
 fout << "Error [UpdateAnAttribute()]: " << &e << endl;
 }

 pNameValuePairSet->empty();

 delete pNameValuePairSet;
}

Since the Arena federate subscribes to changes in a vehicle’s attributes, the change in the

status attribute to a value of 2 is relayed to the Arena federate. This is achieved using a

reflect attribute method. The corresponding code for this method in

FederateAmbassador.cpp (see Appendix 5) is shown below.

void FedAmb::reflectAttributeValues(
 RTI::ObjectHandle theObject,
 const RTI::AttributeHandleValuePairSet& theAttributes,
 const char *theTag)
throw (
 RTI::ObjectNotKnown,
 RTI::AttributeNotKnown,
 RTI::FederateOwnsAttributes,
 RTI::FederateInternalError)
{

 RTI::AttributeHandle attrHandle;
 unsigned long valueLength;

 // Look up the object in the object table
 for (unsigned int i = 0; i < theAttributes.size(); i++) {
 attrHandle = theAttributes.getHandle(i);
 if (attrHandle == statusID) {
 long value;

 theAttributes.getValue(i, (char *)&value, valueLength);

 check=ntohl(value);
 ft<<"called"<<endl;

 47

 }
 }

}

The change in the status attribute forces the Arena federate to release a vehicle into the

tollbooth exchange. This is accomplished using the cevent subroutine in userc.cpp and

the EVENT block. When the Arena federate is started, the CREATE block generates an

entity that proceeds to the EVENT block. When this entity arrives at the EVENT block,

control of the entity passes to the user-coded event (cevent subroutine). Within this

subroutine, there is a check to see if the RTI has updated the status attribute of a vehicle

to a value of 2. If there has been an update, this means a vehicle has exited the CORSIM

federate via the on-ramp and is ready to proceed through the tollbooth exchange.

Control then passes back to the EVENT block where the entity (vehicle) is released to

the SEIZE block (tollbooth), processed, released, counted, and finally disposed.

This process continues until the CORSIM simulation completes execution after 900 time

steps and resigns from the federation. The CORSIM federate then tries to destroy the

federation but is unsuccessful since the Arena federate is continuing to run. The Arena

federate continues to run until 30,000 entities have been created; far exceeding the

simulation run time of the CORSIM federate. Being the last one to leave the simulation

environment, the Arena federate executes the ExitFunction() function in userc.cpp,

which deletes all objects and destroys the federation.

 48

4.4 Results

A simple check was performed to determine if the two federates were interacting

properly. At the end of the execution of both federates, the number of vehicles exiting

the CORSIM federate at the on-ramp should equal the number of vehicles serviced by

the tollbooth in the Arena federate. The number of vehicles that pass the detector at the

end of the on-ramp is stored in a CORSIM variable and can be accessed by importing it

into the application. The variable responsible for the cumulative number of vehicles

passing the detector is DTMOD(DT). The number of vehicles serviced by the tollbooth

in the Arena federate is counted using a COUNT block (toll_count) after the vehicle is

released from the tollbooth. The resulting values obtained from DTMOD(DT) and

toll_count were identical after several trial runs with each trial run using a different seed

value. Table 4.3 below shows the results from 5 trial runs.

Table 4.3

Vehicle Counts from the CORSIM and Arena Federates

Trial # DTMOD (DT) Value Toll_count Value
1 393 393
2 394 394
3 393 393
4 394 394
5 393 393

The federation execution was run on two PCs operating on a local area network (LAN).

The RTI was launched from a PC using Windows NT 4.0 as its operating system with

dual Pentium Pro processors (200 MHz each) and 128 MB RAM. This PC also hosted

 49

the CORSIM federate. The other PC used Windows NT 4.0 as its operating system with

a Pentium III 400 MHz processor and 256 MB RAM. This PC hosted the Arena

federate. The CORSIM simulation executes, on average, in 81.80 seconds; whereas the

Arena simulation executes, on average, in 163.20 seconds. The CORSIM federate is

simulating 15 minutes of traffic flow on the feeder road network while the Arena

federate is simulating for a total of 30,000 entities being produced. A discussion on

execution speed of the federation does not have much relevance in this situation. Most

implementations of the HLA are on powerful workstations, not PCs. In our case, a PC

was adequate and performed quickly due to the relatively small nature of the federation.

4.5 Conclusions

This chapter detailed the development of a distributed simulation environment that

functions according to the HLA specification. The successful development of this

environment demonstrates that it is feasible to make existing traffic simulation

environments HLA compliant. HLA functionality can be implemented on existing

traffic simulations as long as the traffic simulation software has an interface capability so

it can communicate with the RTI. This was shown in the development of separate

interfaces for the CORSIM and Arena federates, respectively. The next chapter will

address the remaining research objectives.

 50

CHAPTER V

HLA TOOLS AND PROCEDURES

5.1 Introduction

In Chapter III, an overview of the HLA was given. Necessary components for federates

and the federation to be HLA compliant were identified. These components include: a

simulation object model (SOM), a federation object model (FOM), and a Federation

Execution Data (FED) file. The creation of these components has been greatly

simplified with the development of a software tool by the DoD’s Defense Modeling and

Simulation Office (DMSO). The Object Model Development Tool (OMDT) provides a

Windows-based environment in which to create the necessary components. This chapter

discusses the use of the OMDT, procedures put in place by the DoD to test federates for

HLA compliance, and web-based simulation with respect to the HLA. More

specifically, this chapter discusses the accomplishment of the last three objectives of this

research effort: (2) evaluate the usability of existing HLA support software in the

transportation arena, (3) determine the usability of methods developed by the military to

test for HLA compliance on traffic simulation models, and (4) examine the possibility of

using the HLA to create Internet-based virtual environments for transportation research.

The discussion will be relative to the simulation environment described in Chapter IV.

 51

5.2 Object Model Development Tool

In order for a federation to be HLA compliant, each participating federate must have a

SOM, and the federation, as a whole, must have a FOM. Since the CORSIM and Arena

federates have the same object instances and attributes, the SOMs and the FOM are

identical. This simplifies the creation of the object models in that the OMDT is used

only once. The object models are essentially organized documentation of each federate

and the federation. A series of tables must be completed so that the entire simulation

environment is defined. This is done so that federation developers can easily determine

if other federates (those created by someone else) are pertinent to their federation. If so,

these “foreign” federates may be included in their federation execution.

HLA object models specify information about class of objects, their associations,

attributes, and interactions. Current HLA framework requires that this information be in

the form of tables. Federations and/or federates are not required to use all the tables, but

only those that are relevant to their purpose. All object models must include an

identification table, or “point of contact” table. This identifies the federate maker and

facilitates the exchange of information between federation developers. For the

federation and federates in this research effort only tables describing the class structure

and attributes are necessary. There are no interactions between the vehicles and no

vehicle parameters were established. This was intentionally done since the objective of

the research was to simply demonstrate the ability for information exchange between

two simulations using the HLA.

 52

The contents of the identification, class structure, and attributes tables are shown in

Tables 5.1 through 5.3 below.

Table 5.1

Object Model Identification Table

Category Information
Name Feeder Road
Version 1.0
Date 8/19/02
Purpose Traffic simulation network
Application Domain Transportation
Sponsor Texas A&M University, College Station
POC (Title, First, Last) Dr. Sharif Melouk
POC Organization Department of Industrial Engineering
POC Telephone 979-845-5199
POC Email sharif@tamu.edu

Table 5.2

Object Class Structure Table

Class1 Class2
Vehicle (P)

mailto:sharif@tamu.edu

 53

Table 5.3

Attribute Table

Object Attribute Datatype Cardinality Units Resolution Accuracy
Vehicle ID Long 1 perfect
 Status Short 1 perfect
 CorsimExitTime Float 1 seconds perfect

Accuracy Condition Update Type Update Condition Transferable/Acceptable
always Conditional N
always Conditional N
always Conditional N

Updateable/Reflectable Routing Space Delivery Message Ordering
U N/A best_effort receive
U N/A best_effort receive
U N/A best_effort receive

Table 5.2 shows the class structure table. The only object class defined in the entire

federation is the vehicle class. The “(P)” in the table indicates that vehicles are

publishable. The second column, “Class2”, and any other subsequent columns would be

used if there were subclasses within the federation. For example, possible subclasses for

the vehicle class would be cars, trucks, and buses. Table 5.3 shows the attribute table.

The attributes of the vehicle class are listed. Once again, the attributes are ID, Status,

and CorsimExitTime. The remainder of the table defines the properties of each attribute.

The most pertinent properties to the federation under consideration are datatype, units,

and updateable/reflectable. Lastly, sets of tables called lexicons are included in the

 54

object models. Lexicons are used to explicitly define the classes, interactions, attributes,

and parameters. For this federation, class and attribute lexicons are relevant. These

lexicons are shown in Tables 5.4 and 5.5 below.

Table 5.4

Object Class Definitions (Class Lexicon)

Term Definition

Vehicle simulations
Defines the sole objects in the

A finitions (Attribute Lex

s

Table 5.5

ttribute De icon)

Clas Term Definition
Vehicle ID Identifies the vehicle
 Status Status identifying the location of the object
 CorsimExitTime Time vehicle exits from CORSIM simulation

5.3 Federate Compliance Testing

A federate compliance test process has been established by the DMSO to help the

modeling and simulation community determine if their simulations are HLA compliant.

The test is a four-step process that “ensures that a federate performs in accordance with

the Interface Specification and the Object Model Template (OMT) standards, per the

HLA compliance checklist” (DMSO, 1999). A series of tests are performed on the

federate to determine if the federate is compliant. The CORSIM federate was subjected

 55

to this testing process. The four-step process, with respect to this federate, is detailed

below.

Step 1: Application

A request is made by the federate developer for an HLA Federate Compliance Test by

completing a test application at the DMSO website,

http://hlatest.msiac.dmso.mil/HLATest_1_3/htdocs/step1.html. The application is

simply providing contact information for the federate developer and a description of the

federate under test (FUT). Upon receiving the application, a Federate Certification

Agent will determine the priority of this compliance test request. The request for a

compliance test for the CORSIM federate was approved within two days of the initial

application. Additionally, a test-ID number was assigned, and a user ID number and

password are provided for access to the remaining parts of the test website necessary to

complete the compliance test.

Step 2: Federate Conformance Notebook

The federate developer submits a Federate Conformance Notebook that consists of the

SOM, the Federate Conformance Statement (CS), and (optional) Scenario Data. The CS

lists the services that the federate promises to perform during the test process. The SOM

(traffsim.omt), created using the OMDT, and the CS (FeederRoad.cs) were uploaded to

the DMSO website.

 56

The contents of the SOM were shown in the previous section, whereas the CS is shown

in Table 5.6 below.

Table 5.6

CORSIM Federate Conformance Statement

SERVICE GROUP SERVICE IF Ref OMT Ref Check List M/O
Create Federation
Execution 4.2 None Item 6 M

Create/Destroy Destroy Federation
Execution 4.3 None Item 6 M

Join Federation
Execution 4.4 None Item 6 M

Join/Resign Resign Federation
Execution 4.5 None Item 6 M

Publish Object
Class 5.2 4.2 Item 2 O

Publication
and
Subscription Subscribe Object

Class Attributes 5.6 4.2.2 Item 2 O

Object Register Object
Instance 6.2 4.2.2 Item 2 O

Update Attribute
Values 6.4 4.4.2 Item 2 O

Representation Reflect Attribute
Values † 6.5 4.4.2 Item 2 O

The certification agent checks the SOM for conformance to the OMT and then checks

the SOM for consistency with the CS.

 57

Step 3: Test Environment

The Certification Agent supplies the Federate Developer with the test sequence that will

be performed in Step 4 of the compliance test process. Additionally, the Federate

Developer provides information regarding the test environment. Test environment data

includes: API used, federation execution host information, operating system, and

hardware information. Table 5.7 below shows the information for the test environment

of the CORSIM federate.

Table 5.7

Test Environment Information for CORSIM Federate

Category Information
API Used C++

Operating System Microsoft Windows NT 4.0
RTI Execution Host Name shannon-grad
RTI Execution IP Number 165.91.246.90

RTI Execution Port Number 5996
FED Execution Host Name shannon-grad
FED Execution IP Number 165.91.246.90

Firewall Yes
FED File traffsim.fed
RID File RTI.rid

The last two entries in the table (the FED and RID files) are configuration files required

for proper functioning of the RTI. The FED file (see Appendix 6) contains the listing of

object and interaction classes used by the federation and the RTI. It is used during the

creation of the federation phase (DMSO, 1999). The FED file is automatically generated

 58

from the FOM using the OMDT. The RID, RTI Initialization Data, file (see Appendix

7) contains configuration parameters that are used to control the operation of the RTI

software (DMSO 1999). All parameters within this file have a default setting but can be

customized to fit a particular federation execution. For example, for this testing process,

in the Parameter Definition section of the RID file, the network address used by the RTI

Executive process was edited to “shannon-grad:5996”. This is a change from the default

IP address of 224.9.9.2:22605. In addition to port 5996 being opened on the host

computer, all high TCP ports (all above 1024) were opened temporarily during execution

of the test sequence.

Step 4: Interface Test and Reporting

The federate developer and the Certification Agent execute the interface test. The

interface test has two parts: the Nominal Test and the Representative SOM (RepSOM)

test. The Nominal Test ensures that the FUT can invoke and respond to all services

listed in its CS. The RepSOM test ensures that the FUT is capable of invoking and

responding to services using a range of data contained in its SOM (DMSO, 2002). After

the test is completed, the Certification Agent issues a Certification Summary Report that

contains the results of the test.

5.4 Web-Based Simulation and the HLA

An area of growing interest in the simulation community is web-based simulation.

There has been discussion on which technology or simulation language should be used

 59

in developing web-based environments. The HLA has been included as a potential

candidate to become the standard with respect to web-based simulation.

The driving force behind web-based simulation is the desire for simulation creators to

collaborate in a distributed simulation-like setting. The main idea is to promote reuse

and interoperability among simulations. These are the same reasons why the HLA was

developed. So, the HLA seems a logical choice to become the web-based simulation

standard. Technologically speaking, there are no barriers to prevent the HLA from being

implemented on the web. A web-based environment could exist in which transportation

federate developers logon at a website. Each developer would then execute their

federate and begin communicating with the other federates via the RTI that is running on

the host website’s server. This type of situation also takes advantage of the HLA being

non-software specific. Furthermore, this environment resembles a plug and play

situation in which several different traffic simulations can be exchanged to create

multiple transportation simulation environments to be analyzed.

5.5 Conclusions

This chapter detailed the development of the object models and the procedure to test for

HLA compliance of simulation models. Additionally, there is a discussion on web-

based simulation with respect to the HLA.

 60

Existing HLA support software, such as the OMDT, proved to be very useful in

transforming stand-alone traffic simulation models into HLA compliant traffic

simulation models. In order to create the object models, each traffic simulation model

must be broken down into its individual components such as objects and object

attributes. The Windows-based layout of the OMDT allows for easy documenting of

each component, thus creating the SOMs and FOM.

The compliance test process developed by the DoD is very beneficial and useful in

ensuring that a newly developed traffic federate is HLA compliant. The organized

structure of the step-by-step process ensures that the FUT delivers its stated

functionality. Federate developers communicate directly with the certification agent,

which is convenient if problems with testing arise. While the compliance test process

ensures that a federate is HLA compliant, it does not validate the federate. In other

words, the test does not guarantee that the federate is an accurate representation of the

real world environment, only that the federate is able to communicate with other

federates in accordance with the HLA specification. The CORSIM federate successfully

completed the four-step compliance test process. The entire process, commencing with

the test request and ending with the interface test, lasted 40 days. An official

Certification Letter and a Certificate of HLA Compliance for Feeder Road was issued.

The compliance certificate is shown in Appendix 8.

 61

The HLA has great promise in becoming the technology standard in creating Internet-

based virtual transportation environments. The benefits of the HLA, such as simulation

reuse and interoperability, align with the web-based simulation goals of increased

collaboration among simulationists and reuse of simulation models. HLA-driven virtual

transportation environments may lead to more cooperative efforts between national and

state transportation agencies as well as private transportation consultants due to the ease

of model sharing resulting from the HLA implementation.

 62

CHAPTER VI

CONCLUSION AND FUTURE RESEARCH

This dissertation deals with the High Level Architecture (HLA) and the accomplishment

of four research objectives. These research objectives are: (1) determine the feasibility

of making existing traffic management simulation environments HLA compliant; (2)

evaluate the usability of existing HLA support software in the transportation arena; (3)

determine the usability of methods developed by the military to test for HLA compliance

on traffic simulation models; and (4) examine the possibility of using the HLA to create

Internet-based virtual environments for transportation research. The HLA is an object-

oriented approach to distributed simulations developed by the Department of Defense

(DoD) under the Defense Modeling and Simulation Office (DMSO). It is intended to

handle the issues of reuse and interoperability of simulations. Although the HLA was

developed for use in military applications, it has great potential for civilian applications

including transportation systems modeling.

The first objective was accomplished by creating a distributed traffic environment to

explore and demonstrate the usefulness of the HLA and consisted of two traffic

simulations developed using two different software packages, namely CORSIM and

Arena. CORSIM is a microscopic simulation software developed by the Federal

Highway Administration. It models surface streets and freeways along with a wide array

of traffic control devices. The CORSIM model, or federate, used in this study simulates

 63

a freeway feeder road with a freeway on-ramp with no signal control. Arena is a widely

known, general purpose simulation software. It is capable of modeling many different

types of environments, including a traffic environment. The Arena federate models a

freeway tollbooth exchange where the entering vehicles come from the vehicles leaving

the freeway on-ramp of the CORSIM federate. The HLA functionality was successfully

implemented upon the two separate models, therefore allowing the federates to

communicate with one another under the HLA concept of federation.

In addition to the basic requirements of a distributed simulation such as synchronization

and data exchange, each federate must satisfy a technical requirement in order to

interoperate in an HLA federation, that being the ability to exchange information with

the RTI using the dual ambassador principle. This requires each federate to construct

proper calls to the methods of the RTI ambassador object and provide a federate

ambassador object, which contains callback functions, which in turn can be called by the

RTI. While each of these requirements can be easily satisfied for a simulation written in

C++, it can be a somewhat more difficult task to satisfy them for a simulation written

using other languages/tools. Straβburger (1999) suggested four possible methods for

implementing the HLA functionality into existing simulation tools.

 64

These methods are listed below.

1. Re-implementation of the tool with HLA extensions

This is possible if the source code of the tool is available. It is the simplest and most

desirable solution, as it would eliminate the need to program. However, for most

commercially available simulation tools, this can be made possible only by the tool

developer. Several software companies are considering such additions if the HLA

increases in popularity.

2. Extension of intermediate code

Some simulation tools translate model descriptions written in a tool-dependent modeling

language into another programming language (e.g. C++). It is possible to modify this

code to realize the HLA extensions. Since this code is compiler generated, typically it is

not an easy solution to the problem, and an automated solution is desirable.

3. External programming interface

This is possible if the tool offers an extensible and open architecture. The tools should

offer a library interface (a DLL interface in Windows) with the ability to call arbitrary

functions or methods in these libraries.

 65

4. Coupling via a gateway program

The last solution for tools that cannot be connected to the RTI by any of the prior

methods is the development of a gateway program. The gateway program could

communicate with the simulation tool via appropriate means (e.g. files, pipes, ports,

network) depending on the capabilities of the simulation tool.

An interface was created for both Arena and CORSIM, using method 3 from above,

allowing each federate to communicate with the Run-Time Infrastructure (RTI). The

RTI is a type of “operating system” that provides HLA services to the participating

federates of the simulation environment (federation). C++ was the interface language

used to connect each federate to the RTI. In CORSIM, the run-time extension (RTE)

feature was used. The RTE allows externally written code to be incorporated in the

simulation during its execution. Several source and header files were created to interact

with existing code in CORSIM and the RTI, thus linking the software. Similarly, in

Arena, a user interface file, userc.cpp, was used for interfacing. This file, already

existing within the Arena software, consists of several subroutines that can be called and

executed to perform special procedures during federation execution. This file, along

with other added files, interacts with the block and element constructs in Arena and the

RTI, thus linking the software. In general, this federation execution is essentially an

exercise in transferring the objects (vehicles) in the CORSIM federate to the Arena

federate.

 66

The HLA functionality was successfully implemented on the CORSIM and Arena

federates. This accomplishment emphasizes the point that the HLA is not software

specific. The reason for selecting these two software packages is two-fold: both

packages are very popular in the simulation community, and both have an interface

capability. While CORSIM trails Trafficware’s SimTraffic transportation software in

terms of use by the transportation simulation community, CORSIM does have an

interface capability, whereas SimTraffic does not. Thus, it is clear that not all

commercial simulation packages lend themselves for use in HLA applications. An

interface capability is absolutely necessary so that the simulation (federate) can

communicate with the RTI to take advantage of the HLA services. Otherwise, the actual

source code of the simulation software must be altered to incorporate the HLA concepts.

This is often an unrealistic option since most federate developers do not have access to

the software’s source code. Moreover, in the event the code is accessible, the prospect

of essentially developing new software is overwhelming, not to mention very time

consuming and rather costly. In the case of Arena, it is a very commonly used

 67

simulation package and is known by practically everyone in the simulation community.

In addition, Arena’s interface feature is easy to access, and the software can model a

multitude of environments, including transportation.

During the course of this investigation, several commercial simulation packages were

identified and evaluated for HLA interface feasibility. If the HLA interface seems

feasible, the most appropriate interface method (from the four methods suggested above)

has been identified, depending upon the functionalities offered by the tool. The

suggestions offered are based on our and other researchers experience of developing

prototype HLA federations using some of these tools. Tools for which there is no HLA

interface example available, the suggestions are based on the technical capabilities of the

tool and the information given by the vendor.

 68

Table 6.1 below lists the simulation packages evaluated.

Table 6.1

Simulation Package Evaluation

No. Software
HLA

Interface
Feasible

Prototyp
e

Available

Interface
Method Vendor

1 AnyLogic Yes No External Interface XJ Technologies
2 Arena Yes Yes External Interface Rockwell Software
3 AutoMod Yes Yes External Interface Brooks-PRI Automation
4 Awe Sim Yes No External Interface Frontstep Inc.

5 Decision Pro No No Possibly by using a
Gateway program

Vanguard Software
Corporation

6 Extend Suite Yes No External Interface Imagine That Inc.

7 Flexsim ED Yes No External Interface FlexSim
Software Products

8 GAUSS Yes Yes External Interface Aptech Systems

9 GPSS/H Yes Yes

Extension of
intermediate

Code for JavaGPSS
Coupling via gateway
program for GPSS/H

Wolverine Software
Corporation

10 MAST No No Possibly by using a
Gateway program CMS Research

11 ProModel Yes Yes External Interface ProModel Corporation
12 Quest Yes No External Interface Delmia Corporation

13 RDK Yes No External Interface Palisade
Corporation

14 SIGMA Yes No Extension of
Intermediate Code Custom Simulation

15 SimScript
II.5 Yes No External Interface CACI International

16 SIMUL8 Yes Yes External Interface Simul8 Corporation

17 SLX Yes Yes External Interface Wolverine Software
Corporation

18 Witness No No Possibly via a gateway
program Lanner Group

Research objectives (2) and (3) were accomplished by evaluating tools and procedures

developed by the DMSO to aid in making military simulations HLA compliant. These

 69

tools and procedures can also be used on non-military simulations. The creation of the

object models and some of the configuration files can be rather tedious. However, the

DMSO’s Object Model Development Tool (OMDT) provides a windows-based software

environment in which these can be easily created. The DMSO has also established a

four-step HLA compliance test process that a federate must successfully complete so

that it can be deemed HLA compliant. A Certification Agent from the DMSO

administers this test via the Internet. The test ensures that the simulation (federate)

performs in accordance with the Interface Specification and the Object Model Template

standards. In other words, the federate must perform the services that are detailed in its

SOM.

Organizations should consider adopting the HLA as their permanent simulation

architecture. This is especially true in situations where an organization depends heavily

on simulations and the connection of them in a distributed setting. A heavy reliance on

simulation to analyze system performance most likely translates to a significant amount

of time spent on maintaining and adapting the simulation models. Implementing the

HLA on the models would reduce the adaptation time and aid in the analysis of multiple

environments. Depending on the volume of simulation models produced by said

organization, a separate group within the organization (much like the DoD) could be

established to determine the compliance of all simulation models with the HLA

specification. In cases where few models are developed, a separate testing group is not

 70

necessary, so the individual federate developers would be responsible for compliance

verification of each model.

As research objective (4) states, the HLA was examined to determine its viability in

creating Internet-based virtual transportation environments. From a technical standpoint,

there seems to be no barriers preventing the HLA from becoming the technology

standard that drives web-based transportation simulation environments. The HLA

promotes collaboration among simulation creators since the transportation simulations

participating in the web-based environment will be HLA compliant, and hence, have

reuse and interoperability properties. Plug and play type environments will result and

lead to the analysis of multiple and diverse transportation systems.

While the HLA has tremendous potential to become a simulation standard, technical and

economic barriers could prevent this from happening. The two main economic barriers

are (1) implementing the HLA concept and (2) the cost of necessary computer hardware,

software, and network capabilities. The cost of implementation far exceeds the cost of

ensuring computer and network capabilities. Implementation costs include the cost of

salaries and training for simulation creators and supporting staff, and the transformation

of existing simulations to HLA-compliant simulations. For example, HLA training

classes are available through privately held engineering and software development

consultant companies. Distributed Simulation Technology, Inc. offers a 4-day class on

the HLA for $1795 per person at their facility in Florida. Additionally, the DMSO and

 71

the McLeod Institute of Simulation Sciences at California State University, Chico are

cooperating in developing the HLA University Outreach Program. This program is

disseminating information about the HLA to colleges and universities at the

undergraduate, graduate, and research levels. The program goals are to inform

simulation users at universities of the applicability of the HLA to a broad range of

simulation problems, to encourage application of the HLA to non-DoD models, to

stimulate research into open HLA-related problems, and to educate students in the use of

the HLA as a valuable job skill.

While the initial cost of transitioning to HLA-compliant models may be significant,

subsequent costs will be far less since the HLA promotes the reusability and

interoperability of simulation models. Furthermore, since the implementation of the

HLA functionality does not require specific software, costs will be reduced with respect

to purchasing computer software and software licenses. This should encourage more

organizations to experiment with the HLA as their simulation standard.

Determining the exact overall cost of implementing the HLA is quite difficult since

several variables can come into play. However, looking at the additional cost on an

individual simulation model basis, implementing the HLA should not increase initial

model development costs by more than 10-15%. A range is given because the

implementation of the HLA is directly related to the number of features in the simulation

model that must be made HLA compliant; features desired to be made available to the

 72

other federates. As the number of features increases, the time and cost of

implementation will increase accordingly. Of course, this estimate assumes that the

simulation creator is well versed with the simulation software and the concepts of the

HLA.

Another potential barrier to widespread adoption of the HLA as a simulation standard is

the unwillingness of the simulation community to change. Often, simulation creators

become complacent and satisfied with the status quo. However, if the benefits and

advantages of the HLA discussed above are relayed to the community as a whole, the

technology may become commonplace. This would be a great benefit to transportation

simulation creators and analysts. Situations could arise in which organizations, cities,

and possibly states work jointly to alleviate current transportation problems and develop

new transportation management strategies. The sharing of transportation management

models and ideas would be greatly enhanced by the HLA due to the structured nature

and documentation requirements of the technology.

Future research could explore opportunities with implementing the HLA with other

simulation packages. There are many types of simulation software currently being used.

There are many potential application areas in which linking two or more independent

simulations, each created in a different simulation package, would greatly benefit a

company or industry in terms of analyzing a process, method, or procedure. The HLA

would be a viable solution for linking the simulations given that each of the simulation

 73

packages involved have some sort of interfacing capabilities similar to CORSIM and/or

Arena. As long as the software has the ability to call functions in the RTI, the HLA is a

possible solution for the distributed environment. The possibilities with the HLA seem

limitless in terms of the type of environment that it can be applied. Other possible

industries, or environments, include, but are not limited to, manufacturing, logistics, and

service. Finally, the area of Homeland Security has become very important and widely

discussed. To fully address the issue of Homeland Security, many agencies and

organizations must cooperate to achieve established goals. A useful tool for studying

and examining possible security strategies is distributed simulation. Certainly, many

simulations already exist that would be of even more benefit by linking them together.

A likely vehicle for this linkage is the HLA. This would enable many security strategies

to be examined in relatively short periods of time.

 74

REFERENCES

S. Bachinsky, R. Briggs, B. Gibson and C. Turrell, “How to Plan, Set-up, and Run a
Distributed Simulation Exercise,” presented at Simulation Interoperability Workshop,
Orlando, FL, September 2000.

A. Buss and L. Jackson, “Distributed Simulation Modeling: A Comparison of HLA,
CORBA, and RMI,” presented at Winter Simulation Conference, Washington, D.C.,
December 1998.

DMSO, “HLA Hands-On Practicum Course Material,” August 2000.

DMSO, “RTI 1.3-Next Generation Programmer’s Guide,” October 1999.

M. M. Horst, D. Rosenbaum, K. A. Crawford and M. B. Woldt, “Improvements to the
HLA Federate Compliance Testing Process,” presented at Simulation Interoperability
Workshop, Orlando, FL, September 2000.

M. M. Horst and M. B. Woldt, “Using HLA Tools to Facilitate Compliance Testing,”
presented at Simulation Interoperability Workshop, Orlando, FL, March 2000.

U. Klein, “Simulation-based Distributed Systems: Serving Multiple Purposes through
Composition of Components”, Safety Science 35, 29-39 (2000).

U. Klein, T. Schulze and S. Straβburger, “Traffic Simulation Based on the High Level
Architecture,” presented at Winter Simulation Conference, Washington, D.C., December
1998.

J. Kuljis and R. J. Paul, “A Review of Web Based Simulation: Whither we wander?,”
presented at Winter Simulation Conference, Orlando, FL, December 2000.

T. McLean and R. Fujimoto, “The Federated-Simulation Development Kit (FDK): A
“Source-Available” HLA RTI,” presented at Simulation Interoperability Workshop,
Orlando, FL, March 2001.

J.A. Miller, P.A. Fishwick, S.J.E. Taylor, P. Benjamin and B. Szymanski, "Research and
Commercial Opportunities in Web-Based Simulation", Simulation Practice and Theory
9, 55-72 (2001).

A. Ozaki, M. Furuichi, N. Nishi and E. Kuroda, “The Use of High Level Architecture in
Car Traffic Simulations”, Transactions on Information and Systems 10, 1851-1859
(2000).

 75

D. Pace, “Simulation Conceptual Model Role in Determining Compatibility of
Candidate Simulations for a HLA Federation,” presented at Simulation Interoperability
Workshop, Orlando, FL, March 2001.

E. Page, “The Rise of Web-based Simulation: Implications for the High Level
Architecture,” presented at Winter Simulation Conference, Washington, D.C. December
1998.

E. Page and J. Opper, “Investigating the Application of Web-Based Simulation
Principles within the Architecture for a Next-Generation Computer Generated Forces
Model”, Future Generation Computer Systems 17, 159-169 (2000).

D. J. Paterson, E. S. Hougland and J. J. Sanmiguel, “A Gateway/Middleware HLA
Implementation and the Extra Services that can be provided to the Simulation,”
presented at Simulation Interoperability Workshop, Orlando, FL, September 2000.

S.M. Pratt and T.D. Dugone, “DIS to HLA Compliance in 21 days”, TRADOC Analysis
Center, Monterey, CA, 1999.

C. Rouget and P. Henry, “Utilising HLA Object Models within a C++ Repository to
generate tools to support the Federation Development and Execution Process,” presented
at Simulation Interoperability Workshop, Orlando, FL, March 2000.

G. Sauerborn, G. Moss, G. Tan, F. Moradi, R. Ayani and P. Oxenberg, “HLA Ownership
Management Services: We Almost Got It Right,” presented at Simulation
Interoperability Workshop, Orlando, FL, September 2000.

T. Schulze, S. Straβburger and U. Klein, “Migration of HLA into Civil Domains:
Solutions and Prototypes for Transportation Applications”, Simulation 73(5): 296-303
(1999).

S. Straβburger, “On the HLA-based Coupling of Simulation Tools”, Institute for
Simulation and Graphics, Department of Computer Science, Otto-von-Guericke
University, Magdeburg, Germany, 1999.

S. Straβburger, T. Schulze, U. Klein and J. Henriksen, “Internet-Based Simulation using
Off-The-Shelf Simulation Tools and HLA,” presented at Winter Simulation Conference,
Washington, D.C., December 1998.

M. R. Stytz and S. B. Banks, “Enhancing the Design and Documentation of High Level
Architecture Simulation Using the Unified Modeling Language,” presented at
Simulation Interoperability Workshop, Orlando, FL, March 2001.

 76

APPENDICES

 77

APPENDIX 1

#include "netsim.h"
#include "network.h"
#include "upcntrl.h"
#include "stdlib.h"
#include "stdio.h"
#include "link.h"
#include "conio.h"
#include "node.h"
#include "detector.h"
#include <vector>

using namespace std;

extern "C" { void UPINIT(char *fname); }
extern "C" { void UPCNTRL(void); }
extern "C" { void UPEXIT(void); }
extern "C" {void __stdcall CWRITE (char *a, unsigned int length_arg);};

void InitialFunction(void);
void ExitFunction(void);
void CentralFunction(void);

void UPINIT(char *fname)
{
 //initialization routine
 //called once at the beginning of simulation
 int i;
 int j;

 char outbuffer[132];
 InitialFunction();

 sprintf(outbuffer,"init done \n");
// CWRITE(outbuffer,132);

 endOfInit=0;
 prevInit=0;

 pNetwork=new CNetwork();

 78

 //fname must be null terminated
 for (i=2;i<512;i++)
 {
 if (((fname[i-2]=='T')||(fname[i-2]=='t'))&&
 ((fname[i-1]=='R')||(fname[i-1]=='r'))&&
 ((fname[i]=='F')||(fname[i]=='f')))
 {
 j=i+1;
 }
 }

 for (i=j;i<512;i++)
 {
 fname[i]='\0';
 }

 pNetwork->m_TrafInputFile=CString(fname);

 //read the traf file
 pNetwork->ReadTrafFile();
 return;
}

void UPCNTRL()
{
 int time;
 BOOL init;
 POSITION pos, detpos;
 CLink* pLink;
 CDetector* pDetector;
 static vector<int>count;

 init=yinit;

 //the algorithm that controlls the signal states at the
 //intersections assumes time is always increasing, but
 //the CORSIM clock starts over after initialization
 //so the time at which initialization is over must
 //be recorded
 if ((!init)&&(prevInit))
 {
 //end of initialization
 endOfInit=prevTime+1;

 79

 }

 //adjust the time by adding the end of initialization
 time=sclock+endOfInit;

 //get signal state for the node under corsim control
 //pNetwork->UpdateNodeSignalStates();

 //process any detector information

 pos=pNetwork->m_LinkList.GetHeadPosition();
 while (pos!=NULL)
 {
 pLink=pNetwork->m_LinkList.GetNext(pos);

 if(pLink->m_upnode->m_id==1 && pLink->m_dnnode->m_id==2)
 {
 pLink->ProcessDetectors();
 detpos = pLink->m_listOfDetectors.GetHeadPosition();
 pDetector = pLink->m_listOfDetectors.GetNext(detpos);
 count.push_back(pDetector->m_count);
 if(count[count.size()-1]-count[count.size()-2] && time>300) {
/*
 char outbuffer[132];
 char ch[20];
 _itoa (time-300,ch,10);
 sprintf(outbuffer,ch);
 CWRITE(outbuffer,132);
*/
 CentralFunction();
 }
 }

 }
 //record whether the simulation has reached equilibrium
 //or not, so the time at which initialization can be
 //recorded
 prevInit=init;
 prevTime=time;

}

void UPEXIT()
{

 80

 //clean up
 //delete all objects that were created
 delete pNetwork;
 ExitFunction();
 CWRITE("You OK here",24);

}

 81

APPENDIX 2

#include "traf_RTI.h"

void InitialFunction()
{
 JoinFederation();
 GetAttributeHandles();
 PublishSubscribeAttributes();
}

void ExitFunction()
{
 ResignFederation();
 DestroyFederation();
}

void CentralFunction()
{
 int instance;
 long val=2;

 instance = CreateVehicle();

 UpdateStatus(instance);
}

 82

APPENDIX 3

#include <stdio.h>
#include <sys/types.h>
#include <fstream>

#ifdef _WIN32
 #include <winsock2.h>
 #include <process.h>
 #include <windows.h>
 #define getpid _getpid
#else
 #include <unistd.h>
 #include <netinet/in.h>
#endif

#include "traf_RTI.h"
#include "FederateAmbassador.h"
#include "Global_Variables.h"

void SleepSeconds(int howlong)
{
#ifndef _WIN32
 sleep(howlong);
#else
 Sleep(howlong*1000);
#endif
}

ofstream fout("log.txt");

RTI::RTIambassador rtiAmb; // RTI Ambassador
FedAmb fedAmb; // Federate Ambassador

void JoinFederation(void)
{
 char federateName[100];
 char hostName[256];
 int ready=0;

#ifdef _WIN32

 83

 WSADATA wsaData;
 int err;

 err = WSAStartup(MAKEWORD(2, 2), &wsaData);
 if (err != 0)
 sprintf(hostName, "UNKNOWN");
 else
 gethostname(hostName, 256);
 WSACleanup();
#else
 gethostname(hostName, 256);
#endif

 sprintf(federateName, "%s_%s-%s",federationName, hostName, "Feeder Road");

 try
 {
 fout <<"Invoking createFederationExecution"<<endl;
 rtiAmb.createFederationExecution(federationName,fedfileName);
 fout << federationName << " federation created"<< endl;
 }
 catch(RTI::FederationExecutionAlreadyExists& e)
 {
 fout << " Federation "<<federationName<<" already exists" << endl;
 }
 catch(RTI::Exception& e)
 {
 fout << " EXCEPTION: caught in createFederationExecution call" << endl;
 fout << " " << & e << endl;
 fout << " TERMINATING" << endl;
 exit(1);
 }

 // Try to join the federation. If it doesn't exist, wait a while and
 // try again.
 while (!ready)
 {
 ready = 1;

 try
 {
 rtiAmb.joinFederationExecution(federateName, federationName, &fedAmb);
 fout<< " Created federate "<<federateName << endl;

 84

 }

 catch (RTI::FederationExecutionDoesNotExist& e)
 {
 // If the federation does not exist, then sleep for a second
 // and try to join again

 cerr << "Waiting for federation execution: " << &e << endl;
 ready = 0;
 SleepSeconds(1);
 }
 catch(RTI::Exception& e)
 {
 fout << " EXCEPTION: caught in joinFederationExecution call" <<
endl;
 fout << " " << & e << endl;
 fout << " TERMINATING" << endl;
 exit(1);
 }

 }
 return;
}

void GetAttributeHandles(void)
{

 try {

 objectRootClassID = rtiAmb.getObjectClassHandle("objectRoot");
 privilegeToDeleteValueID =
 rtiAmb.getAttributeHandle("privilegeToDelete", objectRootClassID);

 //Handle for Vehcile class
 vehicleClassID = rtiAmb.getObjectClassHandle("Vehicle");

 //Handle for Attributes of vehicle class
 vinID = rtiAmb.getAttributeHandle("ID",vehicleClassID);
 statusID = rtiAmb.getAttributeHandle("Status",vehicleClassID);
 corsimExitTimeID =
rtiAmb.getAttributeHandle("CorsimExitTime",vehicleClassID);

 fout << " Handles created successfully" << endl;
 }

 85

 catch (RTI::Exception& e)
 {
 cerr << "Error getting attributes: " << &e << endl;
 // Resign from "FoodFight" federation
 ResignFederation();
 rtiAmb.tick();
 DestroyFederation();
 }
}

void PublishSubscribeAttributes(void)
{
 RTI::AttributeHandleSet *attributes;

 attributes = RTI::AttributeHandleSetFactory::create(4);

 attributes->add(privilegeToDeleteValueID);
 attributes->add(vinID);
 attributes->add(statusID);
 attributes->add(corsimExitTimeID);

 try
 {
 rtiAmb.subscribeObjectClassAttributes(vehicleClassID, *attributes);

 rtiAmb.publishObjectClass(vehicleClassID, *attributes);

 fout << " Published and subscribed to all attributes
successfully" << endl;
 }
 catch (RTI::Exception& e)
 {
 cerr << "Error [PublishSubscribeAttribute()]: " << &e << endl;
 }
 attributes->empty();

 delete attributes;
}

void ResignFederation(void)
{

 try

 86

 {
 // clear the callback queue prior to resigning
 for (int i=0;i<3;i++)
 rtiAmb.tick();

rtiAmb.resignFederationExecution(RTI::DELETE_OBJECTS_AND_RELEASE_ATTR
IBUTES);
 }
 catch(RTI::Exception& e)
 {
 fout << " EXCEPTION: caught in resignFederationExecution call" << endl;
 fout << " " << & e << endl;
 fout << " TERMINATING" << endl;
 exit(1);
 }
}

void DestroyFederation(void)
{

 try
 {
 rtiAmb.destroyFederationExecution(federationName);
 }
 catch(RTI::Exception& e)
 {
 fout << " EXCEPTION: caught in destroyFederationExecution call" << endl;
 fout << " " << & e << endl;
 fout << " TERMINATING"<<endl;
 exit (1);
 }
}

int CreateVehicle(void)
{
 RTI::ObjectHandle id;

 try
 {
 id = rtiAmb.registerObjectInstance(vehicleClassID);
 fout << " Created Vehicle with success" << endl;

 87

 }
 catch (RTI::Exception& e)
 {
 fout << "Error [CreateWidget()]: " << &e << endl;
 }

 for(int k=1; k<100; k++)
 rtiAmb.tick();

 return (int)id;

}

void UpdateStatus(int id)
{
 long val= 2;
 int tmp;

 tmp=htonl(val);

 for(int k=1; k<100; k++)
 rtiAmb.tick();

 RTI::AttributeHandleValuePairSet *pNameValuePairSet;

 pNameValuePairSet=RTI::AttributeSetFactory::create(1);

 pNameValuePairSet->add(statusID,(char*)&tmp,sizeof(tmp));

 try
 {
 rtiAmb.updateAttributeValues(RTI::ObjectHandle(id),

 *pNameValuePairSet,NULL);
 fout << " Updated Status of vehicle" << endl;

 }
 catch (RTI::Exception& e)
 {
 fout << "Error [UpdateAnAttribute()]: " << &e << endl;
 }

 88

 pNameValuePairSet->empty();

 delete pNameValuePairSet;
}

 89

APPENDIX 4

#include "traf_RTI.h"

void InitialFunction()
{
 JoinFederation();
 GetAttributeHandles();
 PublishSubscribeAttributes();
}

void ExitFunction()
{
 ResignFederation();
 DestroyFederation();
}

 90

APPENDIX 5

#include <stdio.h>
#include <stdlib.h>
#include <fstream.h>

#include <sys/types.h>

#ifdef _WIN32
 #include <winsock2.h>
 #include <process.h>
 #include <windows.h>
 #define getpid _getpid
#else
 #include <unistd.h>
 #include <netinet/in.h>
#endif

#include "FederateAmbassador.h"

#include "traf_RTI.h"
long check=0;
ofstream ft("int.txt");

extern RTI::ObjectClassHandle vehicleClassID;
extern RTI::ObjectClassHandle objectRootClassID;
extern RTI::AttributeHandle privilegeToDeleteValueID;
extern RTI::AttributeHandle vinID;
extern RTI::AttributeHandle statusID;
extern RTI::AttributeHandle corsimExitTimeID;

void FedAmb::startRegistrationForObjectClass(
 RTI::ObjectClassHandle theClass)
throw (
 RTI::ObjectClassNotPublished,
 RTI::FederateInternalError)
{

}

 91

void FedAmb::discoverObjectInstance(
 RTI::ObjectHandle theObject,
 RTI::ObjectClassHandle theObjectClass,
 const char *theTag)
throw (
 RTI::CouldNotDiscover,
 RTI::ObjectClassNotKnown,
 RTI::FederateInternalError)
{

 // Insert code here

}

void FedAmb::reflectAttributeValues(
 RTI::ObjectHandle theObject,
 const RTI::AttributeHandleValuePairSet& theAttributes,
 const char *theTag)
throw (
 RTI::ObjectNotKnown,
 RTI::AttributeNotKnown,
 RTI::FederateOwnsAttributes,
 RTI::FederateInternalError)
{
 // Insert code here

 RTI::AttributeHandle attrHandle;
 unsigned long valueLength;

 // Look up the object in the object table
 for (unsigned int i = 0; i < theAttributes.size(); i++) {
 attrHandle = theAttributes.getHandle(i);
 if (attrHandle == statusID) {
 long value;

 theAttributes.getValue(i, (char *)&value, valueLength);

 check=ntohl(value);
 ft<<"called"<<endl;
 }
 }

 92

}

void FedAmb::receiveInteraction (
 RTI::InteractionClassHandle theInteraction,
 const RTI::ParameterHandleValuePairSet& theParameters,
 const char *theTag)
throw (
 RTI::InteractionClassNotKnown,
 RTI::InteractionParameterNotKnown,
 RTI::FederateInternalError)
{

 // Insert code here

}

void FedAmb::removeObjectInstance(
 RTI::ObjectHandle theObject,
 const char *theReason)
throw (
 RTI::ObjectNotKnown,
 RTI::FederateInternalError)
{

 // Insert code here
}

void FedAmb::provideAttributeValueUpdate(
 RTI::ObjectHandle theObject,
 const RTI::AttributeHandleSet& theAttributes)
throw (
 RTI::ObjectNotKnown,
 RTI::AttributeNotKnown,
 RTI::AttributeNotOwned,
 RTI::FederateInternalError)
{

}

 93

APPENDIX 6

(FED)
(Federation FederationName)
(FEDversion v1.3)
 (spaces
)
 (objects
 (class ObjectRoot
 (attribute privilegeToDelete reliable timestamp)
 (class RTIprivate)
 (class Vehicle
 (attribute ID best_effort receive)
 (attribute Status best_effort receive)
 (attribute CorsimExitTime best_effort receive)
)
 (class Manager
 (class Federation
 (attribute FederationName reliable receive)
 (attribute FederatesInFederation reliable receive)
 (attribute RTIversion reliable receive)
 (attribute FEDid reliable receive)
 (attribute LastSaveName reliable receive)
 (attribute LastSaveTime reliable receive)
 (attribute NextSaveName reliable receive)
 (attribute NextSaveTime reliable receive)
)
 (class Federate
 (attribute FederateHandle reliable receive)
 (attribute FederateType reliable receive)
 (attribute FederateHost reliable receive)
 (attribute RTIversion reliable receive)
 (attribute FEDid reliable receive)
 (attribute TimeConstrained reliable receive)
 (attribute TimeRegulating reliable receive)
 (attribute AsynchronousDelivery reliable receive)
 (attribute FederateState reliable receive)
 (attribute TimeManagerState reliable receive)
 (attribute FederateTime reliable receive)
 (attribute Lookahead reliable receive)
 (attribute LBTS reliable receive)
 (attribute MinNextEventTime reliable receive)

 94

 (attribute ROlength reliable receive)
 (attribute TSOlength reliable receive)
 (attribute ReflectionsReceived reliable receive)
 (attribute UpdatesSent reliable receive)
 (attribute InteractionsReceived reliable receive)
 (attribute InteractionsSent reliable receive)
 (attribute ObjectsOwned reliable receive)
 (attribute ObjectsUpdated reliable receive)
 (attribute ObjectsReflected reliable receive)
)
)
)
)
 (interactions
 (class InteractionRoot reliable timestamp
 (class RTIprivate reliable timestamp)
 (class Manager reliable receive
 (class Federate reliable receive
 (parameter Federate)
 (class Request reliable receive
 (class RequestPublications reliable receive
)

 (class RequestSubscriptions reliable receive
)

 (class RequestObjectsOwned reliable receive
)

 (class RequestObjectsUpdated reliable receive
)

 (class RequestObjectsReflected reliable receive
)

 (class RequestUpdatesSent reliable receive
)

 (class RequestInteractionsSent reliable receive
)

 (class RequestReflectionsReceived reliable receive
)

 95

 (class RequestInteractionsReceived reliable receive
)

 (class RequestObjectInformation reliable receive
 (parameter ObjectInstance)
)

)

 (class Report reliable receive
 (class ReportObjectPublication reliable receive
 (parameter NumberOfClasses)
 (parameter ObjectClass)
 (parameter AttributeList)
)

 (class ReportObjectSubscription reliable receive
 (parameter NumberOfClasses)
 (parameter ObjectClass)
 (parameter Active)
 (parameter AttributeList)
)

 (class ReportInteractionPublication reliable receive
 (parameter InteractionClassList)
)

 (class ReportInteractionSubscription reliable receive
 (parameter InteractionClassList)
)

 (class ReportObjectsOwned reliable receive
 (parameter ObjectCounts)
)

 (class ReportObjectsUpdated reliable receive
 (parameter ObjectCounts)
)

 (class ReportObjectsReflected reliable receive
 (parameter ObjectCounts)
)

 (class ReportUpdatesSent reliable receive

 96

 (parameter TransportationType)
 (parameter UpdateCounts)
)

 (class ReportReflectionsReceived reliable receive
 (parameter TransportationType)
 (parameter ReflectCounts)
)

 (class ReportInteractionsSent reliable receive
 (parameter TransportationType)
 (parameter InteractionCounts)
)

 (class ReportInteractionsReceived reliable receive
 (parameter TransportationType)
 (parameter InteractionCounts)
)

 (class ReportObjectInformation reliable receive
 (parameter ObjectInstance)
 (parameter OwnedAttributeList)
 (parameter RegisteredClass)
 (parameter KnownClass)
)

 (class Alert reliable receive
 (parameter AlertSeverity)
 (parameter AlertDescription)
 (parameter AlertID)
)

 (class ReportServiceInvocation reliable receive
 (parameter Service)
 (parameter Initiator)
 (parameter SuccessIndicator)
 (parameter SuppliedArgument1)
 (parameter SuppliedArgument2)
 (parameter SuppliedArgument3)
 (parameter SuppliedArgument4)
 (parameter SuppliedArgument5)
 (parameter ReturnedArgument)
 (parameter ExceptionDescription)
 (parameter ExceptionID)

 97

)

)

 (class Adjust reliable receive
 (class SetTiming reliable receive
 (parameter ReportPeriod)
)

 (class ModifyAttributeState reliable receive
 (parameter ObjectInstance)
 (parameter Attribute)
 (parameter AttributeState)
)

 (class SetServiceReporting reliable receive
 (parameter ReportingState)
)

 (class SetExceptionLogging reliable receive
 (parameter LoggingState)
)
)

 (class Service reliable receive
 (class ResignFederationExecution reliable receive
 (parameter ResignAction)
)

 (class SynchronizationPointAchieved reliable receive
 (parameter Label)
)

 (class FederateSaveBegun reliable receive
)

 (class FederateSaveComplete reliable receive
 (parameter SuccessIndicator)
)

 (class FederateRestoreComplete reliable receive
 (parameter SuccessIndicator)
)

 98

 (class PublishObjectClass reliable receive
 (parameter ObjectClass)
 (parameter AttributeList)
)

 (class UnpublishObjectClass reliable receive
 (parameter ObjectClass)
)

 (class PublishInteractionClass reliable receive
 (parameter InteractionClass)
)

 (class UnpublishInteractionClass reliable receive
 (parameter InteractionClass)
)

 (class SubscribeObjectClassAttributes reliable receive
 (parameter ObjectClass)
 (parameter AttributeList)
 (parameter Active)
)

 (class UnsubscribeObjectClass reliable receive
 (parameter ObjectClass)
)

 (class SubscribeInteractionClass reliable receive
 (parameter InteractionClass)
 (parameter Active)
)

 (class UnsubscribeInteractionClass reliable receive
 (parameter InteractionClass)
)

 (class DeleteObjectInstance reliable receive
 (parameter ObjectInstance)
 (parameter Tag)
 (parameter FederationTime)
)

 (class LocalDeleteObjectInstance reliable receive
 (parameter ObjectInstance)

 99

)

 (class ChangeAttributeTransportationType reliable receive
 (parameter ObjectInstance)
 (parameter AttributeList)
 (parameter TransportationType)
)

 (class ChangeAttributeOrderType reliable receive
 (parameter ObjectInstance)
 (parameter AttributeList)
 (parameter OrderingType)
)

 (class ChangeInteractionTransportationType reliable receive
 (parameter InteractionClass)
 (parameter TransportationType)
)

 (class ChangeInteractionOrderType reliable receive
 (parameter InteractionClass)
 (parameter OrderingType)
)

 (class UnconditionalAttributeOwnershipDivestiture reliable receive
 (parameter ObjectInstance)
 (parameter AttributeList)
)

 (class EnableTimeRegulation reliable receive
 (parameter FederationTime)
 (parameter Lookahead)
)

 (class DisableTimeRegulation reliable receive
)

 (class EnableTimeConstrained reliable receive
)

 (class DisableTimeConstrained reliable receive
)

 (class EnableAsynchronousDelivery reliable receive

 100

)

 (class DisableAsynchronousDelivery reliable receive
)

 (class ModifyLookahead reliable receive
 (parameter Lookahead)
)

 (class TimeAdvanceRequest reliable receive
 (parameter FederationTime)
)

 (class TimeAdvanceRequestAvailable reliable receive
 (parameter FederationTime)
)

 (class NextEventRequest reliable receive
 (parameter FederationTime)
)

 (class NextEventRequestAvailable reliable receive
 (parameter FederationTime)
)

 (class FlushQueueRequest reliable receive
 (parameter FederationTime)
)
)
)
)
)
)
)

 101

APPENDIX 7

;; BEGIN_INTERNAL_USE_ONLY -*- Lisp -*-
;; END_INTERNAL_USE_ONLY

;; RTI Next Generation RID (Run-Time Initialization Data) File
;; ===
;; This file contains configuration parameters that control the operation of the
;; RTI software. All parameters have a default setting that is used in the
;; event that a parameter value is not specified in the RID file or a RID file
;; is not specified.
;;
;; File Location
;; =============
;; The RTI-NG software looks for the environment variable, RTI_RID_FILE, which
;; defines the name and location of the RID file to be used by the application.
;; The file location may be absolute or relative using the appropriate file
;; naming convention for the particular operating system. The file name is not
;; required to have a special name or prefix, it only needs to be readable by
;; the application and provide the correct syntax.
;;
;; If the environment variable is not set, the RTI will attempt to open a file
;; named "RTI.rid" in the directory from which the application was launched.
;;
;; File Format
;; ===========
;; The format used for the RID file has only several rules relative to valid
;; parsing. The first item is that any text to the right of the comment token,
;; (two semi-colons, ";;"), is ignored by the parser. The next rule is that the
;; left and right parentheses are used for scoping and must always be used in
;; matching pairs.
;;
;; Within a pair of parentheses there can be the scope name or a parameter name
;; and value pair. The scope name is used to organize parameters that are
;; conceptually related and ensure uniqueness in case a parameter name is used
;; multiple times within different scopes. If a parameter name is not unique
;; only the last value will be used for the configuration control. The
;; parameter name is case insensitive and the value is parsed as a character
;; string and subsequently interpreted according to the particular parameter
;; type (e.g., integer, floating point, string).
;;
;; Parameter Scoping

 102

;; =================
;; Each RID parameter is identified by a scope name in which the scoping is
;; broken into three major categories according to the granularity of the
;; internal RTI components. The RTI-NG instantiates components when an RTI
;; process is initially started (the first create or join), when a federation
;; comes into existence within the process (first create or join of a new
;; federation), and when a particular federate joins a federation. These scope
;; names are defined below.
;;
;; ProcessSection - process level component parameters
;; FederationSection - federation level component parameters
;; FederateSection - federate level component parameters
;;
;; It is possible that a RID file used by a particular application will need to
;; support multiple federations and federates within a single process using
;; different RID parameter values for each federation or federate. This RID
;; structure can support this situation by creating a scope within the
;; federation or federate section with the scope name the same as the name of
;; the federation or name of the federate, respectively.
;;
;; As an example, assume that an application needs to support two different
;; federations named FederationA and FederationB. The RID parameter for the
;; multicast base address for FederationA needs to be different from
;; FederationB. An example RID is shown below where the BaseAddress used for
;; FederationB is "224.100.0.1" and for any other federations the value is
;; "224.2.0.1".
;;
;; (FederationSection
;; ...
;; (BaseAddress 224.2.0.1)
;; ...
;; (FederationB
;; ...
;; (BaseAddress 224.100.0.1)
;; ...
;;)
;;)
;;
;; Parameter Definition
;; ====================
;; Each parameter contained in the RID file provides a description of the effect
;; that the parameter value has on the operation of the RTI. The valid
;; parameter values are defined and the default value is specified within this
;; file. As previously mentioned, if the parameter and value is not specified

 103

;; within the RID file the default value will be used by the RTI.

(RTI
 ;; The RTI scope serves as a namespace for the RID user parameters. No
 ;; parameter entries should be made at this level.

 (ProcessSection
 ;; Entries in this section apply to the process level components.

 (RtiExecutive
 ;; The RTI Executive is a logically centralized process that is used as a
 ;; network wide resource manager to handle such items as the uniqueness of
 ;; federation names. It is logically centralized since redundant processes
 ;; can be used for fault tolerance (although this feature is currently not
 ;; supported). The parameters associated with the RTI Executive control
 ;; how the process is found on the network.

 ;; PARAMETER: ProcessSection.RtiExecutive.RtiExecutiveEndpoint
 ;; DESCRIPTION: The RTI Executive endpoint defines the network address and
 ;; port number used by the RTI Executive process (and hence the RTI Naming
 ;; Service). The network address can be a hostname or an IP address. The
 ;; endpoint is only necessary when the multicast discovery mechanism is not
 ;; used and the endpoint must match the value provided when the RTI Executive
 ;; process is started.
 ;; RANGE: A valid hostname or IP address followed by a colon and then the
 ;; port number.
 ;; DEFAULT VALUE: None, will use multicast discovery mechanism.
 ;;
 ;; NOTE FROM HLA CERTIFICATION AGENT:
 ;; Change hostname to your hostname (do not use an IP Address). Change the
 ;; port_number to either 5996 or 18134 (or some other high TCP port you would
 ;; like to use).
 ;;
 ;; Added for HLA Compliance Testing
 (RtiExecutiveEndpoint shannon-grad:5996)
 ;; End Added for HLA Compliance Testing

 ;; PARAMETER: ProcessSection.RtiExecutive.
 ;; RtiExecutiveMulticastDiscoveryEndpoint
 ;; DESCRIPTION: The RTI Executive discovery parameter defines the multicast
 ;; address and port number used for the multicast discovery protocol to find
 ;; the RTI Naming Service which is located in the RTI Executive process
 ;; The naming service will then enable the application to locate distributed
 ;; RTI components (e.g., RTI Executive).

 104

 ;; RANGE: A valid multicast IP address (or hostname) followed by a colon and
 ;; then the port number.
 ;; DEFAULT VALUE: 224.9.9.2:22605
 ;;
 ;;;; (RtiExecutiveMulticastDiscoveryEndpoint 224.9.9.2:22605)

 ;; PARAMETER:
ProcessSection.RtiExecutive.NumberOfAttemptsToFindRtiExecutive
 ;; DESCRIPTION: The NumberAttemptsToFindRtiExecutive parameter is used to
 ;; control how many attempts the application should use to locate the RTI
 ;; Naming Service using the multicast discovery mechanism.
 ;; RANGE: An integer value greater than zero.
 ;; DEFAULT VALUE: 10
 ;;
 ;;;; (NumberOfAttemptsToFindRtiExecutive 10)

 ;; PARAMETER:
ProcessSection.RtiExecutive.TimeToWaitAfterEachAttemptInSeconds
 ;; DESCRIPTION: The TimeToWaitAfterEachAttemptInSeconds parameter is used to
 ;; control how long the application should wait between attempts to find the
 ;; RTI Executive using the multicast discovery mechanism.
 ;; RANGE: A floating point value greater than zero.
 ;; DEFAULT VALUE: 2.0
 ;;
 ;;;; (TimeToWaitAfterEachAttemptInSeconds 2.0)
) ;; End of ProcessSection.RtiExecutive

 (Networking
 ;; The Networking section is used to define the communication configuration
 ;; information associated with all of the RTI components within the
 ;; application using this RID file.

 ;; PARAMETER: ProcessSection.Networking.FederateEndpoint
 ;; DESCRIPTION: The Networking endpoint defines the network address and port
 ;; number used by the federate application process using this RID file. The
 ;; network address can be a hostname or an IP address. The federate endpoint
 ;; is used by other distributed RTI components to communicate with internal
 ;; modules within this application. Typically the federate endpoint does not
 ;; need to be defined unless the computer has multiple network interfaces.
 ;; If an environmental variable named RTI_FEDERATE_ENDPOINT is found, its
 ;; value will be used in favor of what is specified here.
 ;; RANGE: A valid hostname or IP address followed by a colon and then the
 ;; port number.
 ;; DEFAULT VALUE: The default network card and the port.

 105

 ;;
 ;;;; (FederateEndpoint hostname:port)

 (MulticastOptions
 ;; The networking multicast options define the parameters that control the
 ;; behavior of UDP communication within the RTI that is used for Best Effort
 ;; transport.

 ;; PARAMETER: ProcessSection.Networking.MulticastOptions.Interface
 ;; DESCRIPTION: The Interface is used to specify which ethernet
 ;; interface shall be used to send and receive multicast traffic. On
 ;; most systems the possible interfaces can be listed with the netstat
 ;; command). If no interface is specified, the default is used.
 ;; NOTE: This parameter does not effect multicast name service discovery.[stb1]

 ;; DEFAULT VALUE: None.
 ;;
 ;;;; (Interface "eth0")

 (Fragmentation
 ;; The UDP communication protocol (used for Best Effort transport) does
 ;; not fragment and reassemble data. For messages larger than the UDP
 ;; fragmentation size the RTI must fragment the message into smaller
 ;; packets on the send side and then reassemble the packets on the
 ;; receiver side.

 106

A
PP

E
N

D
IX

 8

 107

VITA

Sharif Melouk received a Bachelor of Science degree in mechanical engineering from

Oklahoma State University in 1993. He also received a minor in mathematics. In

August 1995, he joined the College of Business graduate program at Oklahoma State

University. He was granted a Master of Business Administration degree in May 1997.

He joined the industrial engineering doctoral program at Texas A&M University in

September 1997, where he studied and carried out research under the guidance of

Professor Robert E. Shannon.

Sharif Melouk can be reached at the following address:

Department of Industrial Engineering

Texas A&M University

College Station, TX 77843-3131

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER I
	INTRODUCTION
	1.1 Background and Research Motivation
	1.2 Specifications of the Research
	1.2.1 Purpose
	1.2.2 Research Objectives

	1.3 Method of Approach
	1.4 Organization

	CHAPTER II
	LITERATURE REVIEW
	2.1 Introduction
	2.2 Distributed Traffic Simulation
	2.3 Web-based Simulation
	2.4 High Level Architecture

	CHAPTER III
	THE HIGH LEVEL ARCHITECTURE
	3.1 Introduction
	3.2 Components of the HLA
	
	
	
	
	
	
	Table 3.1
	HLA Components

	3.2.1 Federation Rules
	3.2.2 HLA Interface Specification
	
	
	
	
	
	Table 3.2
	Management Areas of the Interface Specification

	3.2.3 Object Model Template (OMT)

	3.3 Run-Time Infrastructure (RTI)
	3.4 Federation Execution

	CHAPTER IV
	FEDERATION DEVELOPMENT AND EXECUTION
	4.1 Introduction
	4.2 CORSIM
	4.2.1 CORSIM Federate
	
	
	
	
	Figure 4.1. CORSIM Federate (Feeder Road with on-ramp)

	4.2.2 CORSIM Interface Environment
	
	
	
	
	
	Table 4.1
	Source and Header Files in the CORSIM Interface Environment

	4.2.3 CORSIM Interface with the HLA

	4.3 Arena
	4.3.1 Arena Federate
	
	
	
	
	Figure 4.2. Arena Federate (Tollbooth Exchange)

	4.3.2 Arena Interface Environment
	
	
	
	
	Figure 4.3. Arena Federate (Block Constructs)
	Figure 4.4. Model Frame and Experiment Frame for the Arena Federate
	Table 4.2
	Source and Header Files in the Arena Interface Environment

	4.3.3 Arena Interface with the HLA

	4.4 Results
	
	
	
	
	
	
	Table 4.3
	Vehicle Counts from the CORSIM and Arena Federates

	4.5 Conclusions

	CHAPTER V
	HLA TOOLS AND PROCEDURES
	5.1 Introduction
	5.2 Object Model Development Tool
	
	
	
	
	
	
	Table 5.1
	Object Model Identification Table
	Table 5.2
	Object Class Structure Table
	Table 5.3
	Attribute Table
	Table 5.4
	Object Class Definitions (Class Lexicon)
	Table 5.5
	Attribute Definitions (Attribute Lexicon)

	5.3 Federate Compliance Testing
	
	
	
	
	
	
	Table 5.6
	CORSIM Federate Conformance Statement
	Table 5.7
	Test Environment Information for CORSIM Federate

	5.4 Web-Based Simulation and the HLA
	5.5 Conclusions

	CHAPTER VI
	CONCLUSION AND FUTURE RESEARCH
	
	
	
	
	
	
	
	Table 6.1
	Simulation Package Evaluation

	REFERENCES
	APPENDICES
	VITA

