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ABSTRACT 

 

Transportation Systems Modeling 

Using the High Level Architecture. (August 2003) 

Sharif Melouk, B.S., Oklahoma State University; 

M.B.A., Oklahoma State University 

Chair of Advisory Committee: Dr. Robert E. Shannon 

 

This dissertation investigates the High Level Architecture (HLA) as a possible 

distributed simulation framework for transportation systems.  The HLA is an object-

oriented approach to distributed simulations developed by the Department of Defense 

(DoD) to handle the issues of reuse and interoperability of simulations.  The research 

objectives are as follows: (1) determine the feasibility of making existing traffic 

management simulation environments HLA compliant; (2) evaluate the usability of 

existing HLA support software in the transportation arena; (3) determine the usability of 

methods developed by the military to test for HLA compliance on traffic simulation 

models; and (4) examine the possibility of using the HLA to create Internet-based virtual 

environments for transportation research.  These objectives were achieved in part via the 

development of a distributed simulation environment using the HLA.  Two independent 

traffic simulation models (federates) comprised the environment (federation).  A 

CORSIM federate models a freeway feeder road with an on-ramp while an Arena 

federate models a tollbooth exchange. 
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CHAPTER I 

INTRODUCTION 

 

This dissertation investigates the High Level Architecture (HLA) as a possible 

distributed simulation framework for transportation systems.  Section 1.1 gives the 

background and research motivation.  Section 1.2 describes the research specifications in 

terms of the purpose, objectives, and goal.  Section 1.3 discusses the method of approach 

for achieving each of the objectives.  Section 1.4 presents the organization of the 

dissertation. 

 

1.1 Background and Research Motivation 

In traffic engineering, the concept of traffic control is giving way to the broader 

philosophy of Transportation Systems Management (TSM) whose purpose is to optimize 

the utilization of transportation resources and improve the movement of people and 

goods without impairing the community.  The economic importance of traffic 

management grows each day.  Well designed and well managed highway systems reduce 

the cost of transporting goods, cut energy consumption, and save countless hours of 

driving time. The state-of-the-art in transportation engineering has advanced 

dramatically over the past decade with the emergence and application of new, more 

 flexible traffic control devices, software system

                                                

s, computer hardware, communications 

 

 This dissertation follows the style and format of Transportation Science. 
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and surveillance technologies, and analysis methods.  However, only recently has the 

state-of-the-art been able to tap the full potential of these advances to effectively address 

and resolve transportation issues within existing transportation infrastructures. 

 

One of the most important analytical tools of traffic engineering and transportation 

systems management is computer simulation.  When a traffic system is simulated, it is 

possible to predict the effect of traffic control and traffic systems management strategies 

on the system’s operational performance.  Typical measures of effectiveness are average 

vehicle speed, vehicles stops, delays, vehicle-hours of travel, fuel consumption, and 

pollutant emissions. 

 

TSM simulation models are designed to represent traffic in a particular physical 

environment (streets and freeways) and at a specific level of simulation detail 

(microscopic or macroscopic).  Traffic can be viewed as a complex system, and 

developing macro models is one of the primary approaches to modeling complex 

systems.  Macro models follow a top-down approach, focusing on the observable 

behavior of a system in terms of aggregate, abstract parameters and their probability 

distributions.  In the case of traffic, macro models are usually derived from fluid 

dynamics and involve aggregate parameters such as traffic volume and average speed on 

arteries in a traffic network.  Simulation-based macro models have the advantage that 

run-time can be relatively short, as the computation is based on aggregate, abstract 

parameters.  Macroscopic models are helpful when a coarse prediction of conditions is 
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sufficient.  However, most aspects of complex systems are highly nonlinear.  Such 

systems are often extremely sensitive to initial conditions, and even very small 

perturbations in initial conditions can have a very large impact on the global system 

behavior.  In the process of aggregating and abstracting information, macro models lose 

their sensitivity and capture the behavior of traffic only under idealistic conditions. 

An alternative approach that can potentially produce better results is micro modeling.  

This is a bottom-up approach, where a complex system is viewed as a large set of small, 

interacting components. The main focus is on identifying the components of the system, 

discovering their local behaviors, and the interactions among them. The global system 

behavior emerges from the local behaviors of the individual components and their 

interactions.  Developing microscopic simulation models represent movements of 

individual vehicles including the influences of driver behavior. 

 

Traditionally, traffic simulation models have been developed as monolithic, stand-alone 

systems that are well suited for the purpose for which they were designed.  Microscopic 

traffic simulation models are typically characterized by a high degree of detail.  These 

monolithic models contain many static components of the infrastructure (e.g. streets, 

intersections, traffic lights etc.), decision rules, and dynamic entities like vehicles, 

pedestrians and bicycles.  The number of components and the number of relations 

between components lead to large-scale models.  Often, microscopic traffic simulation 

models become too large, unwieldy, and difficult to maintain and adapt.  These 

circumstances lead to: 
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• Long run times (hours) for simulation runs 
• Long times for developing and testing of such monolithic models 
• Excessive human effort to maintain models and adapt models for other 

purposes 
• Low flexibility and reusability 

 

One solution is the employment of more powerful hardware.  Another is breaking up the 

model into a distributed set of sub-models and using distributed computing.  Different 

approaches exist for how a monolithic simulation task can be divided into sub-models.  

The two main approaches are: 

(A) Every component describes a different functional subsystem.  A traffic 
simulation could consist of separate models for vehicle traffic, traffic light 
control, and pedestrian traffic.  

(B) Every component describes a complex independent model for a small 
geographic region.  

 

By far the most promising approach to distributed simulations is the High Level 

Architecture (HLA) being developed by the Department of Defense under the Defense 

Modeling and Simulation Office (DMSO).  The High Level Architecture (HLA) is a 

major ongoing effort of the Department of Defense (DOD) to define a standard 

specification of a common technical architecture for use across all classes of DOD 

simulations.  Begun in 1995, the goal is reusability and interoperability.  By this they 

mean the ability to take stand alone, monolithic simulations developed for a particular 

purpose and put them together in various combinations (federations) for the study of 

new, more complex problems.  Some of the DOD motivation was for large war games 

and training simulations.  Although developed for use in the military arena, the HLA 
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appears to have great potential for use in civilian applications and, in particular, traffic 

management problems. 

 

The HLA does not prescribe a specific implementation, nor does it mandate use of any 

particular hardware, software, or programming language.  It is a form of distributed 

computing where the different simulations, databases, and human decision makers (also 

called viewers) can be on different machines and in different geographical locations.  

The importance of distributed simulations has increased.  Because of this, there have 

been several efforts in the commercial sector to enable distributed computing.  Two of 

the most viable recent efforts are the Common Object Request Broker (CORBA) by the 

Object Management Group, and Remote Method Invocation (RMI) from Sunsoft's Java 

Development kit (Buss and Jackson, 1998).  Each of these architectures for distributed 

computing offers much to the problem of distributed simulation.  However, the HLA 

was chosen for the following reasons: (a) Both CORBA and the HLA are concerned 

with legacy applications (federates), possibly in different languages, i.e. they are 

language neutral while RMI federates must be written in JAVA.   (b) CORBA and RMI 

are oriented toward general applications whereas the HLA is specifically targeted at 

distributed simulations.  Thus, the HLA provides more powerful support for simulation 

issues such as time management.  (c) The HLA allows transfer of object ownership 

between federates whereas CORBA and RMI do not.  For situations involving legacy 

simulation models written in different languages and running on different hardware, the 
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HLA provides more than the other two, in large part due to its simulation related 

services. 

 

Although it is just now being explored, the HLA seems to be suited for civilian 

applications.  The coupling of geographically, organizationally or otherwise distributed 

systems, simulations, viewers, information systems etc. is a feature especially interesting 

for traffic management applications. 

 

Much like any computer programmer, each simulation modeler has their own modeling 

style, which leads to unique modeling approaches even when the same type of 

environment, such as transportation, is being modeled.  This is a significant problem 

when it would be beneficial for two or more of these models to communicate.  For 

example, modelers can have different interpretations of object classes and their 

corresponding attributes and interactions.  One modeler may refer to all vehicles as 

“cars” while another modeler may classify vehicles as “cars”, “trucks”, and “buses”.  

These differences in naming convention can also exist with the attributes and 

interactions.  These elementary types of inconsistencies make it difficult to determine 

whether certain simulations are viable candidates for the same distributed environment.  

This problem would be eliminated if each simulation were HLA-compliant. 

 

The HLA standard not only defines the types of services it provides and how it will 

provide them, but it also calls for standardization in terms of documentation.  This 
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documentation completely defines each simulation (federate) in terms of its object 

classes, attributes, interactions, parameters, etc.  Everything is explicitly documented, 

including naming convention, so that federation developers can determine if a particular 

federate’s offerings are suited for their federation execution.  Via this documentation, 

federation developers are able to look at the basic structure of foreign federates, but they 

are shielded from viewing potential proprietary information, such as the simulation 

source code itself.  The ease and secure nature in which federates can be reviewed leads 

to increased collaboration among simulation creators, which may lead to distributed 

transportation environments being developed that otherwise would not have.  A set of 

HLA-compliant simulations essentially creates a “plug and play” situation.  Once viable 

candidates for a distributed simulation execution are identified, the participating 

federates are linked and begin to interact with little modification.  This allows for 

federates to be swapped with one another to create alternate federations and contributes 

to the analysis of several different scenarios of a transportation system. 

 

1.2 Specifications of the Research 

This section describes the purpose, objectives, and goals of the research. 

 

1.2.1 Purpose 

The purpose of this research is to determine the viability of the High Level Architecture 

as a framework for transportation system models. 
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1.2.2 Research Objectives 

The research objectives are as follows: (1) determine the feasibility of making existing 

traffic management simulation environments HLA compliant; (2) evaluate the usability 

of existing HLA support software in the transportation arena; (3) determine the usability 

of methods developed by the military to test for HLA compliance on traffic simulation 

models; and (4) examine the possibility of using the HLA to create Internet-based virtual 

environments for transportation research. 

 

1.3 Method of Approach 

The HLA concept and existing tools and method used for implementation were studied 

with respect to the development of a distributed transportation environment.  The initial 

step in the development was to identify and evaluate the most widely used transportation 

simulation software packages for their ability to have the concept of the High Level 

Architecture implemented upon them.  Two transportation simulations were created 

using CORSIM version 3.2 and Arena 4.0, respectfully.  These software packages were 

chosen for their widespread use throughout the simulation community, and their ability 

to communicate with external software via an interface structure already present within 

the software.  These simulations comprise the transportation simulation environment 

used to explore and demonstrate the HLA.  The CORSIM model simulates a freeway 

feeder road, and the Arena model simulates a tollbooth exchange.  Vehicles created in 

the CORSIM model are transferred to the Arena model using the HLA services. 
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Each simulation model had an interface developed for it so the models could 

communicate with one another.  Each interface is essentially a bridge that allows each 

model to exchange information with the Run-Time Infrastructure (RTI), the “operating 

system” of the HLA.  The RTI acts as a vehicle for information exchange among the 

individual simulation models comprising the entire simulation environment.  CORSIM’s 

Run-Time Extension (RTE) feature was used to develop the CORSIM model’s interface.  

Arena’s external subroutine capabilities were used to develop that model’s interface. 

 

Existing tools and methods were employed throughout the development of this traffic 

simulation environment.  These utilities, including an HLA compliance testing 

procedure, are evaluated with respect to their usefulness in transportation simulations. 

 

1.4 Organization 

This dissertation is organized into six chapters.  Chapter II presents the literature 

surveyed in the areas of distributed traffic simulation, web-based simulation, and the 

High Level Architecture.  Chapter III presents background information on the High 

Level Architecture.  Chapter IV details the two simulation models comprising the traffic 

simulation environment.  The procedure to implement the HLA functionality is 

described for each model.  Chapter V includes an evaluation of existing tools, methods, 

and procedures used for the HLA implementation.  Additionally, there is a discussion of 

the HLA with respect to web-based simulation.  Chapter VI is a final discussion and 

gives future research directions. 
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Introduction 

HLA is a very young science.  Therefore, the amount of research done in this area is not 

extensive, especially in relation to transportation systems modeling.  However, some 

researchers have contributed to the growing areas of distributed traffic simulation and 

web-based simulation.  This chapter surveys the relevant contributions on these topics as 

well as studies on the HLA.  The following three sections highlight some of the 

important results published in these areas. 

 

2.2 Distributed Traffic Simulation 

Klein, Schulze, and Straβburger (1998) investigated traffic simulation based on the 

HLA.  Their work included enhancing classic simulation and animation tools for HLA 

compatibility.  It was also shown that legacy simulation models, independently extended 

for HLA compatibility by different organizations, could exist in a distributed simulation 

environment.  Straβburger (1999) addressed the application of HLA-based coupling of 

simulation tools.  The concepts for the extension of simulation tools with HLA 

capabilities and their realization are discussed.  Schulze, Straβburger, and Klein (1999) 

discussed the problems of a simulation interoperability standard with civil applications.  

Solutions to these problems, especially in the area of transportation, were suggested 

using the HLA.  Ozaki, Furuichi, Nishi, and Kuroda (2000) developed a modular, 
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flexible, and scalable micro-model car traffic simulation system.  The HLA was applied 

to every system module as a standard interface between each module for evaluating and 

validating a variety of micro-model simulation schemes.  Klein (2000) presented a new 

information technology approach for simulation-based systems capable of serving 

multiple purposes through the composition of components.  Based on the HLA, a 

prototype dispatching system for public transportation demonstrates the concept. 

 

2.3 Web-based Simulation 

The area of web-based simulation is becoming an area of great research interest.  Page 

(1998) explored the relationship between HLA and web-based simulation.  The paper 

discusses whether HLA could serve as an interoperability technology for the commercial 

and academic sectors in the age of web-based simulations.  Potential barriers of the 

transfer of this DoD technology are illustrated, and mechanisms through which these 

barriers may be overcome are suggested.  Straβburger, Schulze, Klein, and Henriksen 

(1998) presented approaches by which HLA can be used to interconnect distributed 

model components which are developed using commercially available, off-the-shelf 

simulation software.  The requirements imposed on the simulation software by HLA are 

discussed.  Page and Opper (2000) described the evolution of web-based simulation and 

derive a collection of modeling principles that characterize the future of web-based 

simulation.  These principles are examined in terms of their implications for next-

generation computer generated forces systems, a term used to describe simulations that 

provide representations of military forces.  Miller et. al (2001) reviewed the 
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development of research in the area of web-based simulation.  Potential opportunities 

and areas of focus are identified in both academic and industrial arenas.  Kuljis and Paul 

(2000) discussed potential environments and languages for web-based simulation.  They 

concluded that web-based environments would continue to be isolated efforts as 

simulation developers continue to resist newer simulation advancements. 

 

2.4 High Level Architecture 

There are several topics related to the HLA that are fertile research areas.  Some of the 

early works bearing relation to this research effort are presented below. 

 

Pratt and Dugone (1999) presented a step-by-step guide for making legacy distributed 

interactive simulation (DIS) HLA compliant using the HLA Gateway.  The guide is 

geared for developers with limited HLA backgrounds and funding to make their DIS-

based simulations HLA compliant, when HLA compliance is needed fast, and when 

existing DIS capabilities for the simulation are to be maintained. 

 

Buss and Jackson (1998) compared three architectures for supporting distributed 

computing, HLA, Common Object Request Broker (CORBA), and Remote Method 

Invocation (RMI).  It was concluded that for situations involving legacy simulation 

models written in different languages, HLA provides more than the other two due to its 

orientation toward simulation and its simulation-related services. 
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Horst and Woldt (2000) discussed using tools developed by the Defense Modeling and 

Simulation Office (DMSO) to facilitate the HLA compliance testing process.  Many of 

these tools allow for federate developers to assess their simulations before submitting 

them for formal HLA certification.  Horst et al. (2000) offered improvements to the 

HLA federate compliance testing process.  Improvements are suggested for the runtime 

component of the compliance testing process by eliminating the need for a 

predetermined test sequence.  Other upgrades include simplifying the compliance testing 

process for the Certification Agent by implementing a single federate compliance testing 

tool, and retooling the compliance testing website to handle the new testing process. 

 

Paterson et al. (2000) describe how gateways and other middleware can aid in the 

implementation of the HLA on individual simulations.  It was found that the middleware 

software can house several of the RTI services, such as data distribution management 

and time management, in such a way that the HLA services are hidden.  It is also noted 

that the use of middleware could alleviate some of the cost required to make a simulation 

HLA compliant.  McLean and Fujimoto (2001) discuss the usefulness of the federated-

simulations development kit (FDK) in developing customized RTIs for use in a 

distributed simulation environment.  The FDK consists of modules so that RTI 

developers can select only the modules that are most important for their RTI 

implementation.  Several instances in which the FDK software is used are described.  

Sauerborn et al. (2000) recommend changes to the ownership management services 

specification of the RTI.  The changes include: allowing attribute transfer to be directed 
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to a specific federate and providing a federate with the ability to inform the RTI that it is 

unwilling or unable to accept a particular attribute instance.  This paper represents a 

beginning work in the research and upgrade of the HLA specification, a fertile area for 

continued research. 

 

Bachinsky et al. (2000) developed a federation engineering approach to distributed 

simulation exercises.  The approach includes system administration, network 

configuration, and systems engineering.  The approach serves as a vehicle to ensure the 

success of the distributed simulation exercise.  Rouget and Henry (2000) studied 

developing tools to examine any HLA compliant object model and automatically 

generate HLA federate source code.  This source code separates the interface between 

the RTI implementation and the federate developers application.  This reduces the need 

for developers to have an in-depth understanding of the RTI API, and allows developers 

to concentrate on their particular simulation application.  Pace (2001) discusses the 

simulation conceptual model’s role in determining compatibility of candidate 

simulations for a HLA federation.  Key conceptual model attributes are presented, and 

suggestions are given to guide the validation of proposed distributed simulation 

environments.  Federate compatibility issues and federation options when federates are 

incompatible are identified.  It is contended that federation compatibility is a key 

element of federation validation and has a role in effective interoperability.  Stytz and 

Banks (2001) recommend improvements to the design and documentation of distributed 

simulation environments using the unified modeling language (UML).  Aspects of UML 
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that can be used to complement the federation development process are discussed.  Their 

recommendation is that the majority of the federation and federate design and 

documentation process be done using the tools provided by UML. 

 

As can been seen, there are numerous areas in which the HLA can be explored and 

applied.  The next chapter introduces the HLA to familiarize the reader with it. 
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CHAPTER III 

THE HIGH LEVEL ARCHITECTURE 

 

3.1 Introduction 

The High Level Architecture (HLA) is an object-oriented approach to distributed 

simulations developed by the Department of Defense (DoD) under the Defense 

Modeling and Simulation Office (DMSO).  More specifically, the HLA is intended to 

address the issues of reuse and interoperability of simulations.  Reusability means that 

component simulation models can be reused in different simulation scenarios and 

applications.  Interoperability means that the reusable component simulations can be 

combined with other components without the need for re-coding.  Although the HLA 

was developed for use in military applications, it appears to have great potential for 

civilian applications including transportation systems modeling. 

 

The HLA is an emerging technology for linking simulations of various types at multiple 

locations to create a realistic, complex, “virtual world” for the simulation of highly 

interactive activities.  This technology brings together systems built for separate 

purposes, technologies from different eras, products from various vendors, and diverse 

hardware at different locations and permits them to interoperate together in a synthetic 

environment.  The HLA establishes a high-level common ground that facilitates the 

interoperability of several simulation models.  It essentially manages how data is 

distributed among the participating simulations in the distributed environment.  Unlike 
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other previous network architectures, the HLA directs data to simulations on a need-to-

know basis only.  This allows for reduced data traffic, and therefore, a more efficient 

distributed simulation environment. 

 

The next section will discuss the components defining the HLA.  This is followed with 

sections detailing the RTI and the process of creating and running a federation exercise. 

 

3.2 Components of the HLA 

The HLA is defined by three components: Federation Rules, the HLA Interface 

Specification, and the Object Model Template.  Table 3.1 below provides an overview of 

these components (DMSO, 1999). 

Table 3.1 

HLA Components 

 

Federation Rules 
• Ensure proper interaction of 

simulations in a federation 
• Describe the simulation and federate 

responsibilities 

Interface Specification 
• Defines Run-Time Infrastructure 

services 
• Identifies “callback” functions each 

federate must provide 

Object Model Template 

• Provides a common method for 
recording information 

• Established the format of key models: 
federation object model, simulation 
object model, and management object 
model 
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The Run-Time Infrastructure (RTI) software is the backbone of any distributed 

simulation system developed within the HLA framework.  It is essentially an “operating 

system” that provides services to the federates (simulations) participating in the 

distributed environment. 

3.2.1 Federation Rules 

The federation rules consist of ten rules that describe the conduct of federates and their 

interaction with the RTI (DMSO, 2000).  Five rules relate to the federation and the other 

five to the federate. 

Federation Rules 

1. Federations shall have an HLA Federation Object Model (FOM), documented in 

accordance with the HLA Object Model Template (OMT). 

2. In a federation, all representation of objects in the FOM shall be in the federates, 

not in the RTI. 

3. During a federation execution, all exchange of FOM data among federates shall 

occur via the RTI. 

4. During a federation execution, federates shall interact with the RTI in accordance 

with the HLA interface specification. 

5. During a federation execution, an attribute of an instance of an object shall be 

owned only one federate at any given time. 

Federate Rules 

6. Federates shall have an HLA Simulation Object Model (SOM), documented in 

accordance with the HLA OMT. 
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7. Federates shall be able to update and/or reflect any attributes of objects in the 

SOM and send and/or receive SOM object interactions externally, as specified in 

their SOM. 

8. Federates shall be able to transfer and/or accept ownership of an attribute 

dynamically during a federation execution, as specified in their SOM. 

9. Federates shall be able to vary the conditions under which they provide updates 

of attributes of objects, as specified in their SOM. 

10. Federates shall be able to manage local time in a way that will allow them to 

coordinate data exchange with other members of a federation. 

Federate developers must adhere to these ten rules in order for their federate to be HLA 

compliant. 

 

3.2.2 HLA Interface Specification 

The interface specification mandates how the federates will interact with the federation 

and each other.  The specification is comprised of six management areas: federation 

management, declaration management, object management, ownership management, 

time management, and data distribution management. 
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Table 3.2 below summarizes these management areas (DMSO, 1999). 

 

Table 3.2 

Management Areas of the Interface Specification 

 
Management Area Responsibilities Example(s) 

Federation Management Control an exercise 
• Creating a federation 
• Joining federates to a 

federation 

Declaration Management Define data publication and 
subscription 

• Publication of attributes 
• Subscription of 

attributes 

Object Management Exchange object and 
interaction data 

• Register objects 
• Update attributes 

Ownership Management Transfer attribute ownership 

• Divesture of an object’s 
attribute(s) 

• Acquisition of an 
object’s attribute(s) 

Time Management Control message ordering 
• Request current time 
• Advance time of the 

simulation 

Data Distribution 
Management 

Efficiently route data 
between producers and 
consumers 

• Create a region 
• Modify a region 

 

Federation Management 

This management area contains several services that any HLA compliant federate must 

be capable of performing.  The mandatory services are the following: creating a 

federation, joining a federation, resigning from a federation, and destroying a federation.  

All federates attempt to create a federation upon connection to the RTI process.  

However, only the first federate to connect to the RTI process will be successful in doing 
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this, while exceptions will be raised with the other federates.  The other federate(s) will 

then perform a join federation execution. 

 

Declaration Management 

This management area describes the publication and subscription functions of the HLA.  

Typically, federates produce object instances or interactions.  Each federate must declare 

exactly what it is able to publish, or generate.  Similarly, federates usually consume 

object instances or interactions.  Each federate must declare exactly the instances and 

interactions in which it wishes to subscribe, or recognize.  The RTI keeps tracks of each 

federate’s interests to achieve the goal of efficient communication among the federates. 

 

Object Management 

This management area includes registering, discovering, and deleting object instances, 

and updating and reflecting object attributes.  Federates introduce object instances to the 

federation via a registration process.  However, attribute values for the instance are not 

provided until a separate, second step is performed.  This is done via update and 

reflection methods. 

 

Ownership Management 

This management area describes how federates update and delete object instances.  

Object instances may be wholly owned by one federate that would be solely responsible 

for updating the attributes associated with the object or for deleting it.  Multiple 
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federates may share responsibility of updating an object’s attributes.  In this case, each 

of the participating federates has the responsibility of updating a mutually exclusive set 

of attributes.  Additionally, each participating federate has the right to delete an object 

instance.  Federates may also exchange attribute ownership by attempting to push 

ownership on another federate or by attempting to acquire ownership of an attribute from 

another federate. 

 

Time Management 

This management area presents the methods the RTI uses to manage time advances 

during a federation execution.  This is an optional service but would mandatory in 

federations where time synchronization is key.  In this research effort, time management 

is ignored, as it is not necessary to implement in order to achieve HLA compliance. 

 

Data Distribution Management 

This management area describes how data can be efficiently routed during a federation 

execution.  Routing spaces are used to further isolate publication and subscription 

interests.  This aids the RTI being used as a switching device to transfer data among the 

federates.  Once again, this is an optional service and was not implemented. 

 

3.2.3 Object Model Template (OMT) 

The OMT provides a common method for recording information and establishes the 

format of key models.  These models are the Federation Object Model (FOM), 
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Simulation Object Model (SOM), and Management Object Model (MOM).  The key 

features of the three models are listed below (DMSO, 1999). 

 

Federation Object Model 

• One per federation 

• Introduces all shared information (e.g., objects, interactions) 

• Contemplates interfederate issues (e.g., data encoding schemes) 

 

Simulation Object Model 

• One per federate 

• Describes salient characteristics of a federate 

• Presents objects and interactions which can be used externally 

• Focuses on the federate’s internal operation 

 

Management Object Model 

• Universal definition 

• Identifies objects and interactions used to manage a federation 

 

The Object Model Development Tool (OMDT) can be used to construct these object 

models.  For this particular application, the FOM for the federation and the SOM for 

each federate are identical since both federates in the distributed environment have the 

same object instances and interactions.  The OMDT also has a utility to automatically 
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create the Federation Execution Data (FED) file.  The FED file contains initialization 

information required by the RTI relating to the FOM.   

 

3.3 Run-Time Infrastructure (RTI) 

Again, the RTI is the backbone of the HLA.  It is software that serves as the “operating 

system” for the federation by providing essential services for proper interaction.  The 

RTI has three components: the RTI Executive process (RtiExec), the Federation 

Executive process (FedExec), and the libRTI library. 

 

The RtiExec is a globally known process that manages the creation and destruction of 

FedExecs.  Each federate within a particular federation communicates with the RtiExec 

to initialize RTI components.  The RtiExec also assures that the FedExec has a unique 

name.  This is important because more than one federation (hence, multiple FedExecs) 

can use the same RTI at the same time.  The FedExec manages the federation in that it 

allows federates to join and resign from a federation.  It also oversees data exchange 

between participating federates.  The libRTI is a C++ library that provides the services 

described in the HLA Interface Specification.  These services were discussed in Section 

3.2.2. 

 

3.4 Federation Execution 

This section describes the step-by-step process of executing a federation exercise. 
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Step 1 

Start the RTI from any terminal with a known IP address so that external federates can 

locate it and use the services provided by the RTI.  This action starts the RtiExec 

process. 

 

Step 2 

A participating federate then begins simulating.  This federate will register with the 

RtiExec and create a federation.  This action starts the FedExec process and reserves a 

federation name with the RtiExec.  The FedExec also registers a communication address 

with the RtiExec. 

 

Step 3 

The remaining participating federates can now join the newly created federation.  Each 

federate obtains the FedExec address from the RtiExec and invokes a join federation 

execution. 

 

Step 4 

As each federate finishes its activity within the federation execution, each federate must 

resign from the federation.  When the federates are done executing, a destroy execution 

is invoked to eliminate the federation. 
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CHAPTER IV 

FEDERATION DEVELOPMENT AND EXECUTION 

 

4.1 Introduction 

This chapter details the development of a distributed simulation environment involving 

two separate traffic simulation models (federates).  More specifically, this chapter 

discusses the accomplishment of the first objective of this research effort: (1) determine 

the feasibility of making existing traffic management simulation environments HLA 

compliant.  The test environment consisted of federates developed using CORSIM and 

Arena, respectively.  CORSIM, developed by the Federal Highway Administration, is a 

microscopic simulation software that models surface streets and freeways along with a 

wide array of traffic control devices.  CORSIM is an integration of two microsimulation 

models, NETSIM and FRESIM, respectively.  NETSIM is used to model traffic on 

urban streets while FRESIM is used to model traffic on freeways.  Arena is widely 

known, commercially available, general simulation software capable of modeling many 

different types of environments, including a traffic simulation environment. 

 

The CORSIM federate models a freeway feeder road with an on-ramp leading to a 

freeway tollbooth exchange.  The second federate is the tollbooth exchange and is 

modeled using Arena.  The network has no signal control.  The vehicles are the only 

objects defined in the simulation with vehicle attributes of vehicle identification number, 

status, and exit time.  The development of this test environment includes: developing a 
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separate interface for each federate so each federate can communicate with the RTI and 

each other, and creating the appropriate support files so as to comply with the HLA 

standard. 

 

4.2 CORSIM 

CORSIM is a continuous traffic simulation software in that it uses a continuously 

advancing fixed time-step to describe traffic operations.  Each vehicle is treated as a 

distinct entity in the simulation and its state is updated every time-step.  A time-step is 

one second.  The state of the vehicle is defined by its position relative to other vehicles 

and the time-step.  A simple network in CORSIM consists of entry nodes, exit nodes, 

and internal nodes connected by unidirectional links.  The links typically represent urban 

streets or freeway sections, whereas nodes represent urban intersections or points of 

traffic convergence/divergence.  

 

The input file to CORSIM is a fixed format file that contains information about the 

network.  It specifies both spatial and time-varying characteristics of the network.  The 

input stream consists of a sequence of “block” data records.  A block outlines the 

conditions during one time period and up to nineteen such blocks may be specified.  

Each block is divided into sections that are further divided into record types.  Record 

types contain specific data items and are divided into 80 columns each.  Every column 

holds pre-determined information about a part of the network or its characteristics.  

CORSIM has a detailed procedure to test the validity of the input stream. 
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CORSIM is available in a Microsoft Windows® environment called the Traffic Software 

Integrated System (TSIS).  TSIS provides a user interface to CORSIM and permits it to 

interact with other software programs.  TSIS’s CORSIM environment is composed of 

four major components: 

• TSIS.exe – the executable Microsoft Windows® program 

• TSISINTF.dll – a dynamic link library that contains shared memory, 

communication interface and the TSIS Application Programming Interface (API) 

• CORSIM.dll – a dynamic link library that is built from configuration-controlled 

source code 

• Run-Time Extension (RTE) – an optional dynamic link library that can be used 

to interact with CORSIM at runtime 

 

CORSIM and TSIS exchange data by using a shared memory area in TSISINTF.dll.  The 

TSIS environment also controls any external libraries that interface with CORSIM. 

 

CORSIM, developed by the Federal Highway Administration, is used to represent traffic 

flow along surface streets and freeway systems.  CORSIM is an integration of two 

microscopic simulation components: 

• NETSIM – used to model traffic on surface streets 

• FRESIM – used to model traffic on freeways 
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The CORSIM Data Dictionary lists pre-defined variables within the NETSIM and 

FRESIM frameworks, respectively, that can be used to access information from the 

CORSIM database.  The RTE can import these variables in order to extract information 

from the simulation.  This information can be gathered and used as data for a statistical 

analysis, or it can be passed on to external programs as necessary input for proper 

execution.  For example, the ENTIME(X) variable retrieves the time in tenths-of-a-

second that vehicle X entered the network. 

 

TSIS’s CORSIM has three interface functions.  These are listed below: 

• INIT – an interface function called by TSIS at the start of the simulation 

• JMAIN – an interface function called by TSIS once every simulation time-step 

• JEXIT – an interface function called by TSIS at the end of the simulation run 

 

The RTE can be configured to include corresponding routines that are called by these 

functions.  These three functions can thus act as entry points for that particular run-time 

extension. 

 

4.2.1 CORSIM Federate 

In order to test ease of compliance of CORSIM simulations to the HLA standards, a 

small feeder road simulation model was created.  The model simulates a freeway feeder 

road with an on-ramp.  The network has no signal control. 
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Figure 4.1 below depicts this simulation model.   

 

 

 

 

 

 

 

 

 

 

 

3 4 

2 

1 

Detector 

Detector 

On-ramp 

Feeder Road 
Traffic Flow 

 

Figure 4.1. CORSIM Federate (Feeder Road with on-ramp) 

 

Vehicles enter the network at node 1.  All traffic is one-way; say traveling from “south 

to north”.  At node 2, vehicles can turn toward node 3 (the on-ramp) or continue toward 

node 4 (continuation of the feeder road).  It was arbitrarily set that 50% of the vehicles 

take the on-ramp while the remaining vehicles stay on the feeder road.  Vehicles that 

reach node 4 are disposed while vehicles at node 3 (the end of the feeder road) are 

“transferred” to the tollbooth exchange model (the Arena federate).  Detectors reside at 

nodes 1 and 3, respectively, and serve as triggering mechanisms during simulation 

execution.  The only objects defined in the simulation are vehicles with attributes of 
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vehicle identification number, status, and exit time.  The change in the value of the status 

attribute of a particular object (vehicle) is used as an indication of the vehicle’s exit from 

the feeder road.  The interoperation between these two simulations can be achieved 

using the RTI in accordance with the HLA standards. 

 

4.2.2 CORSIM Interface Environment 

CORSIM is interfaced with the RTI, and hence the HLA, via the RTE feature existing in 

CORSIM.  Three functions are declared in CORSIM that act as entry points to the RTE.  

These functions are called upinit, upcntrl, and upexit, respectively.  These functions are 

called by the INIT, JMAIN, and JEXIT subroutines in CORSIM.  These subroutines are 

found in KSC.FOR, a file in CORSIM that provides interface capability for CORSIM.  

The INIT subroutine calls the upinit C function, the JMAIN subroutine calls the upcntrl 

C function, and the JEXIT subroutine calls the upexit C function. 

 

A project workspace file, named interfac.dsw, was created to house the source and 

header files responsible for interfacing with the RTI. 
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These files are listed in Table 4.1 below. 

 

Table 4.1  

Source and Header Files in the CORSIM Interface Environment 

Source Files Header Files 
binarySequence.cpp binarySequence.h 

corsim_interface_RTI.cpp detector.h 
detector.cpp FederateAmbassador.h 

FederateAmbassador.cpp Global_Variables.h 
integer.cpp integer.h 

lane.cpp lane.h 
link.cpp link.h 

network.cpp netsim.h 
node.cpp network.h 

signalState.cpp node.h 
traf_RTI.cpp traf_RTI.h 

upcntrl_HLA.cpp upcntrl.h 
 

 

All the files listed above already exist within CORSIM with the exception of 3 source 

files and 3 header files.  Corsim_interface_RTI.cpp, FederateAmbassador.cpp, 

traf_RTI.cpp, FederateAmbassador.h, Global_Variables.h, and traf_RTI.h are the added 

files.  Simply stated, CORSIM interfacing with the HLA is the interaction of the files 

listed in Table 4.1.  The following section details an execution of the CORSIM federate. 

 

4.2.3 CORSIM Interface with the HLA 

This section describes the interaction between the files listed in Table 4.1.  Essentially, a 

single entity (vehicle) is followed throughout the simulation. 

 



 33 

Primary services required for the CORSIM simulation to create and/or join the 

federation are called from the upinit function.  This function also calls the services 

necessary to get handles to the object attributes and those needed for publish and 

subscribe mechanisms.  All these services are performed when the CORSIM model is 

first executed and the entry of the first vehicle is detected by the detector placed at node 

1 (see Figure 4.1).  Every vehicle passing the detector triggers it.  The upinit function 

resides in upcntrl_HLA.cpp (see Appendix 1) and immediately calls another function, 

InitialFunction(), which is in corsim_interface_RTI.cpp (see Appendix 2).  The upinit 

function code is shown below: 

 

void UPINIT( char *fname ) 
{ 
 //initialization routine 
 //called once at the beginning of simulation 
 int i; 
 int j; 
 
 
 char outbuffer[132]; 
 InitialFunction(); 
   
 sprintf(outbuffer,"init done \n"); 
// CWRITE(outbuffer,132); 
  
 endOfInit=0; 
 prevInit=0; 
 
 pNetwork=new CNetwork(); 
 
 //fname must be null terminated 
 for (i=2;i<512;i++) 
 { 
  if (((fname[i-2]=='T')||(fname[i-2]=='t'))&& 
   ((fname[i-1]=='R')||(fname[i-1]=='r'))&& 
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   ((fname[i]=='F')||(fname[i]=='f'))) 
  { 
   j=i+1; 
  } 
 } 
 
 for (i=j;i<512;i++) 
 { 
  fname[i]='\0'; 
 } 
 
 pNetwork->m_TrafInputFile=CString(fname); 
 
 //read the traf file 
 pNetwork->ReadTrafFile(); 
 return; 
} 
 

Within InitialFunction(), calls are made to three other functions in traf_RTI.cpp (See 

Appendix 3), namely JoinFederation(), GetAttributeHandles(), and 

PublishSubscribeAttributes().  The InitialFunction() function code is shown below: 

 

void InitialFunction() 
{ 
 JoinFederation(); 
 GetAttributeHandles(); 
 PublishSubscribeAttributes(); 
} 
 

The JoinFederation() function serves to create a federation called “Feeder Road” or 

allows the simulation (or federate) to join an existing federation named “Feeder Road”.  

In the case of the first vehicle entering the network, the function will serve to create the 

federation.  All subsequent federates will join the existing federation.  The 

GetAttributeHandles() function gives the handles for the vehicle class (Vehicle) and the 

attributes (ID, Status, and CorsimExitTime) for this class.  The 
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PublishSubscribeAttributes() function enables the federate to reveal and gather 

information regarding each vehicle in terms of its attributes (vehicle identification 

number, status, and exit time).   

 

For every time step in which the first detector is triggered by a vehicle entering the 

network, an object of the class ‘vehicle’ is instantiated in the federation by calling the 

RTI service responsible for creating an object.  Similarly, the departure of a vehicle from 

this federate is detected using another detector at the end of the on-ramp (the detector at 

node 3).  In the event of a vehicle exiting the system, the value of the status attribute is 

changed using the RTI service for updating attributes.  All these tasks are included in the 

upcntrl function, in upcntrl_HLA.cpp, so as to obtain an update of the network every 

second.  This function calls another function, CentralFunction(), which is in 

corsim_interface_RTI.cpp.  The upcntrl function code is shown below: 

 

void UPCNTRL() 
{ 
 int time; 
 BOOL init; 
 POSITION pos, detpos; 
 CLink* pLink; 
 CDetector* pDetector; 
 static vector<int>count; 
  
 init=yinit; 
 
 //the algorithm that controlls the signal states at the 
 //intersections assumes time is always increasing, but 
 //the CORSIM clock starts over after initialization 
 //so the time at which initialization is over must 
 //be recorded 
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 if ((!init)&&(prevInit)) 
 { 
  //end of initialization 
  endOfInit=prevTime+1; 
 } 
 
 //adjust the time by adding the end of initialization 
 time=sclock+endOfInit; 
 
 //get signal state for the node under corsim control 
 //pNetwork->UpdateNodeSignalStates(); 
 
 //process any detector information 
 
 pos=pNetwork->m_LinkList.GetHeadPosition(); 
 while (pos!=NULL) 
 { 
  pLink=pNetwork->m_LinkList.GetNext(pos); 
 
   
  if(pLink->m_upnode->m_id==1 && pLink->m_dnnode->m_id==2) 
  {  
   pLink->ProcessDetectors(); 
   detpos = pLink->m_listOfDetectors.GetHeadPosition(); 
   pDetector = pLink->m_listOfDetectors.GetNext(detpos); 
   count.push_back(pDetector->m_count); 
   if(count[count.size()-1]-count[count.size()-2] && time>300) { 
/* 
    char outbuffer[132]; 
    char ch[20]; 
    _itoa (time-300,ch,10); 
    sprintf(outbuffer,ch); 
    CWRITE(outbuffer,132); 
 
*/ 
    CentralFunction(); 
   } 
  } 
   
 } 
 //record whether the simulation has reached equilibrium 
 //or not, so the time at which initialization can be 
 //recorded 
 prevInit=init; 
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 prevTime=time; 
   
} 
 

Within CentralFunction(), calls are made to two other functions in traf_RTI.cpp, namely 

CreateVehicle() and UpdateStatus().  The CentralFunction() function code is shown 

below: 

 

void CentralFunction() 
{ 
 int instance; 
 long val=2; 
  
 instance = CreateVehicle(); 
  
 UpdateStatus(instance); 
} 
 

The CreateVehicle() function is responsible for CORSIM notifying the RTI that a 

vehicle has entered the network.  The UpdateStatus() function serves to change the status 

attribute of each vehicle as it exits the on-ramp.  A vehicle in the CORSIM federate has 

a status value of 1.  This value is changed to 2 via the UpdateStatus () function upon the 

vehicle entering the other participating federate, namely the tollbooth exchange. 

 

Finally, calls to RTI services for resigning and destroying the federation are in the upexit 

function located in upcntrl_HLA.cpp.  These are used for clean up and release of the 

CORSIM federate from the federation.  This function calls another function, 

ExitFunction(), which is in corsim_interface_RTI.cpp.  The upexit function code is 

shown below: 
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void UPEXIT() 
{ 
 //clean up 
 //delete all objects that were created 
 delete pNetwork; 
 ExitFunction(); 
 CWRITE("You OK here",24); 
   
} 
 

Within ExitFunction(), calls are made to two other functions in traf_RTI.cpp, namely 

ResignFederation() and DestroyFederation().  The ExitFunction() function code is 

shown below: 

 

void ExitFunction() 
{ 
 ResignFederation(); 
 DestroyFederation(); 
} 
 

The ResignFederation() function allows the CORSIM to withdraw from the network 

after it is done executing.  The CORSIM federate simulates the feeder road for 900 

seconds.  The DestroyFederation() function gives the federate the ability to destroy the 

federation if it is the last executing federate.  However, this will never be the case since 

the Arena federate runs for a much longer period of time. 

 

4.3 Arena 

Arena is a general purpose, flow oriented event simulation from the Rockwell 

Corporation.  It has features that allow it to be used both as language and as a simulation 
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tool.  It has a flexible and powerful object oriented design, capable of being used with 

different applications. 

 

An important characteristic of Arena is that it allows users to create their own “user 

code” (routines) by editing appropriate files (userc.cpp in this case).  The user needs to 

include two files, simlib.h and smsim.lib, when executing the user-written C/C++ source 

files.  Simlib.h contains a complete set of SIMAN function prototypes, macros and 

typedefs to externally interface the code(C/C++ functions) with SIMAN.  Smsim.lib is a 

library for SIMAN components.  The functions described in userc.cpp (see Appendix 4) 

are called from SIMAN to allow linking in user-coded routines.  In this federate, 

userc.cpp is accessed by using incorporating an EVENT block in the Arena model.  

These characteristics of Arena have proved to be quite helpful in applying the HLA to 

Arena, which is discussed in the following section. 

 

4.3.1 Arena Federate 

The Arena model that simulates a tollbooth exchange was created to test for 

compatibility with the HLA.  This federate works in conjunction with the CORSIM 

model.  Once again, this network has no signal control. 



 40 

Figure 4.2 below depicts this simulation model. 
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Figure 4.2. Arena Federate (Tollbooth Exchange) 

 

Vehicles enter the tollbooth exchange after exiting the CORSIM federate via the on-

ramp.  All traffic is one-way.  After vehicles are serviced at the tollbooth, the model 

disposes of them.  The only objects defined in the simulation are vehicles with attributes 

of vehicle identification number, status, and CORSIM exit time.  The change in the 

value of the status attribute of a vehicle triggers the process of the Arena federate 

creating an entity (vehicle) to go through the tollbooth exchange.  This process is 

described in the next section. 

 

4.3.2 Arena Interface Environment 

Arena is interfaced with the RTI via the userc.cpp file existing in Arena.  Userc.cpp 

consists of subroutines that can be customized and activated for use during a simulation 

run.  In this instance, the cevent subroutine is used to generate the vehicles that will 

eventually go through the tollbooth exchange.  The cevent subroutine is triggered using 
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an EVENT block in the Arena model.  This construct, as well as the rest of the model, is 

shown below in Figure 4.3. 

 

 Seize Release Count Dispose Count Event Create 

  

Figure 4.3. Arena Federate (Block Constructs) 

 

The corresponding SIMAN code is shown below in Figure 4.4. 

 

Model Frame 
2$              CREATE,       1,0.0:10,500:NEXT(3$); 
 
3$              COUNT:          total_count,1; 
0$              EVENT:          1; 
Toll Booth Entry  SEIZE,       1,Other: 
                               Toll_Booth,1:NEXT(Toll Booth Exit); 
 
Toll Booth Exit  RELEASE:     Toll_Booth,1; 
1$              COUNT:         toll_count,1; 
4$              DISPOSE:      No; 
 
Experiment Frame 
PROJECT,"External input test","Industrial Engineering",,,No,No,No,No,No,No,No; 
 
RESOURCES:Toll_Booth,Capacity(1),,Stationary,COST(0.0,0.0,0.0),,AUTOSTATS(N
o 
,,); 
COUNTERS:  total_count,,Replicate: 
               toll_count,,Replicate; 
 
REPLICATE,    1,,,Yes,Yes,,,,24,Seconds,No,No; 

 

Figure 4.4. Model Frame and Experiment Frame for the Arena Federate 
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A project workspace file, named Msuserc.dsw, was created that contains the source and 

header file involved in interfacing with the RTI.  These files are listed in Table 4.2 

below. 

 

Table 4.2 

Source and Header Files in the Arena Interface Environment 

Source Files Header Files 
arena_interface_RTI.cpp FederateAmbassador.h 
FederateAmbassador.cpp Global_Variables.h 

traf_RTI.cpp simlib.h 
userc.cpp stdafx.h 

 traf_RTI.h 
 

 

Much like the CORSIM environment, most of the files already existed as part of the 

structure required for Arena.  The files added to the structure to implement the HLA 

functionality are:  arena_interface_RTI.cpp, FederateAmbassador.cpp, traf_RTI.cpp, 

FederateAmbasssador.h, Global_Variables.h, and traf_RTI.h.  The following section 

details an execution of the Arena federate. 

 

4.3.3 Arena Interface with the HLA 

This section describes the interaction between the files listed in Table 4.2.  A vehicle is 

followed throughout the simulation.  The Arena federate, much like any participating 

federate, is capable of creating and/or joining a federation.  When this federate is first 
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executed, the userc.cpp file is read and the logic is carried out.  The section of the 

userc.cpp file relevant to this research effort is shown below. 

 
void InitialFunction(void); 
void ExitFunction(void); 
 
//  the entry point within the model is "cevent" 
//********************************************************************** 
// 
// Routine :      cevent 
// 
// Description : Maps the event number n to a call to the appropriate 
//                 event subroutine containing the logic for the event 
// 
// Inputs :        SMINT l - index of entity being processed by the event 
//                 SMINT n - event number 
// 
// 
//********************************************************************** 
 
long ticker=0; 
extern long check; 
extern RTI::RTIambassador    rtiAmb; 
 
extern "C" void cdecl cevent  (SMINT entityLoc, SMINT evntNum) 
{ 
 
 for (int k=1; k<3000; k++) 
   rtiAmb.tick(); 
 switch(evntNum)   { 
   case 1:  
  if(check!=2) 
      dispos(&entityLoc); 
  else 
   check=0; 
 } 
 ticker++; 
 if(ticker==500) 
  ExitFunction(); 
  
#ifdef TEST_FUNC 
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   sr_Printf  ("\n\nEntered cevent\n"); 
   sr_Printf  ("entityLoc     =%ld\n",   entityLoc); 
   sr_Printf  ("evntNum     =%ld\n",   evntNum); 
   sr_Printf  ("tnow  =%f\n",    gettnw()); 
   sr_Printf  ("numrun  =%ld\n\n", nrep()); 
#endif 
} 
 

The first function encountered is InitialFunction().  The InitialFunction() function code 

is shown below. 

 

void InitialFunction() 
{ 
 JoinFederation(); 
 GetAttributeHandles(); 
 PublishSubscribeAttributes(); 
} 
 

This function resides in arena_interface_RTI.cpp (see Appendix 4) and makes calls to 

three other functions in traf_RTI.cpp (see Appendix 3), namely JoinFederation(), 

GetAttributeHandles(), and PublishSubscribeAttributes().  These functions perform the 

same way as in the CORSIM environment.  The JoinFederation() function allows the 

Arena simulation to create a federation named “Feeder Road” or join a federation of the 

same name.  Since the Arena simulation runs for a considerably longer time period than 

the CORSIM simulation, the Arena simulation is typically started first so that a greater 

number of vehicles pass through the network.  This is also beneficial when observing the 

network to verify its proper functioning.  The GetAttributeHandles() function gives the 

handles for the vehicles class and its attributes.  The PublishSubscribeAttributes() 
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function permits the federate to show and capture information regarding each vehicle in 

terms of its attributes. 

 

In order to simulate the passing of vehicles from the CORSIM federate to the Arena 

federate, the RTI, cevent subroutine in userc.cpp, and the EVENT block work in concert.  

As a vehicle passes the detector at the end of the on-ramp of the CORSIM federate, the 

CORSIM federate makes a call to the RTI to update the status attribute of the vehicle to 

a value of 2.  This is done via the UpdateStatus() function in traf_RTI.cpp in the 

CORSIM environment workspace.  The UpdateStatus() function code is shown below. 

 

void UpdateStatus(int id) 
{ 
 long val= 2; 
 int tmp; 
 
 tmp=htonl(val); 
 
 for(int k=1; k<100; k++) 
   rtiAmb.tick(); 
 
 RTI::AttributeHandleValuePairSet *pNameValuePairSet; 
 
 pNameValuePairSet=RTI::AttributeSetFactory::create(1); 
 
 pNameValuePairSet->add(statusID,(char*)&tmp,sizeof(tmp)); 
 
 try 
 { 
  rtiAmb.updateAttributeValues(RTI::ObjectHandle(id), 
        
 *pNameValuePairSet,NULL); 
  fout << "  Updated Status of vehicle" << endl; 
 
 } 
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 catch (RTI::Exception& e) 
    { 
        fout << "Error [UpdateAnAttribute()]: " << &e << endl; 
    } 
 
    pNameValuePairSet->empty(); 
 
    delete pNameValuePairSet; 
} 
 

Since the Arena federate subscribes to changes in a vehicle’s attributes, the change in the 

status attribute to a value of 2 is relayed to the Arena federate.  This is achieved using a 

reflect attribute method.  The corresponding code for this method in 

FederateAmbassador.cpp (see Appendix 5) is shown below. 

 

void FedAmb::reflectAttributeValues( 
    RTI::ObjectHandle                       theObject, 
    const RTI::AttributeHandleValuePairSet& theAttributes, 
    const char                             *theTag) 
throw ( 
  RTI::ObjectNotKnown, 
  RTI::AttributeNotKnown, 
  RTI::FederateOwnsAttributes, 
  RTI::FederateInternalError) 
{ 
 
    RTI::AttributeHandle attrHandle; 
    unsigned long valueLength; 
     
    // Look up the object in the object table 
 for (unsigned int i = 0; i < theAttributes.size(); i++) { 
  attrHandle = theAttributes.getHandle(i); 
  if (attrHandle == statusID) { 
   long value; 
       
   theAttributes.getValue(i, (char *)&value, valueLength); 
 
   check=ntohl(value); 
   ft<<"called"<<endl; 
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  } 
 } 
 
} 
 

The change in the status attribute forces the Arena federate to release a vehicle into the 

tollbooth exchange.  This is accomplished using the cevent subroutine in userc.cpp and 

the EVENT block.  When the Arena federate is started, the CREATE block generates an 

entity that proceeds to the EVENT block.  When this entity arrives at the EVENT block, 

control of the entity passes to the user-coded event (cevent subroutine).  Within this 

subroutine, there is a check to see if the RTI has updated the status attribute of a vehicle 

to a value of 2.  If there has been an update, this means a vehicle has exited the CORSIM 

federate via the on-ramp and is ready to proceed through the tollbooth exchange.  

Control then passes back to the EVENT block where the entity (vehicle) is released to 

the SEIZE block (tollbooth), processed, released, counted, and finally disposed. 

 

This process continues until the CORSIM simulation completes execution after 900 time 

steps and resigns from the federation.  The CORSIM federate then tries to destroy the 

federation but is unsuccessful since the Arena federate is continuing to run.  The Arena 

federate continues to run until 30,000 entities have been created; far exceeding the 

simulation run time of the CORSIM federate.  Being the last one to leave the simulation 

environment, the Arena federate executes the ExitFunction() function in userc.cpp, 

which deletes all objects and destroys the federation. 
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4.4 Results 

A simple check was performed to determine if the two federates were interacting 

properly.  At the end of the execution of both federates, the number of vehicles exiting 

the CORSIM federate at the on-ramp should equal the number of vehicles serviced by 

the tollbooth in the Arena federate.  The number of vehicles that pass the detector at the 

end of the on-ramp is stored in a CORSIM variable and can be accessed by importing it 

into the application.  The variable responsible for the cumulative number of vehicles 

passing the detector is DTMOD(DT).  The number of vehicles serviced by the tollbooth 

in the Arena federate is counted using a COUNT block (toll_count) after the vehicle is 

released from the tollbooth.  The resulting values obtained from DTMOD(DT) and 

toll_count were identical after several trial runs with each trial run using a different seed 

value.  Table 4.3 below shows the results from 5 trial runs. 

Table 4.3 

Vehicle Counts from the CORSIM and Arena Federates 

Trial # DTMOD (DT) Value Toll_count Value 
1 393 393 
2 394 394 
3 393 393 
4 394 394 
5 393 393 

 

 

The federation execution was run on two PCs operating on a local area network (LAN).  

The RTI was launched from a PC using Windows NT 4.0 as its operating system with 

dual Pentium Pro processors (200 MHz each) and 128 MB RAM.  This PC also hosted 
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the CORSIM federate.  The other PC used Windows NT 4.0 as its operating system with 

a Pentium III 400 MHz processor and 256 MB RAM.  This PC hosted the Arena 

federate.  The CORSIM simulation executes, on average, in 81.80 seconds; whereas the 

Arena simulation executes, on average, in 163.20 seconds.  The CORSIM federate is 

simulating 15 minutes of traffic flow on the feeder road network while the Arena 

federate is simulating for a total of 30,000 entities being produced.  A discussion on 

execution speed of the federation does not have much relevance in this situation.  Most 

implementations of the HLA are on powerful workstations, not PCs.  In our case, a PC 

was adequate and performed quickly due to the relatively small nature of the federation. 

 

4.5 Conclusions 

This chapter detailed the development of a distributed simulation environment that 

functions according to the HLA specification.  The successful development of this 

environment demonstrates that it is feasible to make existing traffic simulation 

environments HLA compliant.  HLA functionality can be implemented on existing 

traffic simulations as long as the traffic simulation software has an interface capability so 

it can communicate with the RTI.  This was shown in the development of separate 

interfaces for the CORSIM and Arena federates, respectively.  The next chapter will 

address the remaining research objectives. 
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CHAPTER V 

HLA TOOLS AND PROCEDURES 
 

 

5.1 Introduction 

In Chapter III, an overview of the HLA was given.  Necessary components for federates 

and the federation to be HLA compliant were identified.  These components include: a 

simulation object model (SOM), a federation object model (FOM), and a Federation 

Execution Data (FED) file.  The creation of these components has been greatly 

simplified with the development of a software tool by the DoD’s Defense Modeling and 

Simulation Office (DMSO).  The Object Model Development Tool (OMDT) provides a 

Windows-based environment in which to create the necessary components.  This chapter 

discusses the use of the OMDT, procedures put in place by the DoD to test federates for 

HLA compliance, and web-based simulation with respect to the HLA.  More 

specifically, this chapter discusses the accomplishment of the last three objectives of this 

research effort: (2) evaluate the usability of existing HLA support software in the 

transportation arena, (3) determine the usability of methods developed by the military to 

test for HLA compliance on traffic simulation models, and (4) examine the possibility of 

using the HLA to create Internet-based virtual environments for transportation research.  

The discussion will be relative to the simulation environment described in Chapter IV. 
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5.2 Object Model Development Tool 

In order for a federation to be HLA compliant, each participating federate must have a 

SOM, and the federation, as a whole, must have a FOM.  Since the CORSIM and Arena 

federates have the same object instances and attributes, the SOMs and the FOM are 

identical.  This simplifies the creation of the object models in that the OMDT is used 

only once.  The object models are essentially organized documentation of each federate 

and the federation.  A series of tables must be completed so that the entire simulation 

environment is defined.  This is done so that federation developers can easily determine 

if other federates (those created by someone else) are pertinent to their federation.  If so, 

these “foreign” federates may be included in their federation execution. 

 

HLA object models specify information about class of objects, their associations, 

attributes, and interactions.  Current HLA framework requires that this information be in 

the form of tables.  Federations and/or federates are not required to use all the tables, but 

only those that are relevant to their purpose.  All object models must include an 

identification table, or “point of contact” table.  This identifies the federate maker and 

facilitates the exchange of information between federation developers.  For the 

federation and federates in this research effort only tables describing the class structure 

and attributes are necessary.  There are no interactions between the vehicles and no 

vehicle parameters were established.  This was intentionally done since the objective of 

the research was to simply demonstrate the ability for information exchange between 

two simulations using the HLA. 
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The contents of the identification, class structure, and attributes tables are shown in 

Tables 5.1 through 5.3 below. 

 

Table 5.1 

Object Model Identification Table 

Category Information 
Name Feeder Road 
Version 1.0 
Date 8/19/02 
Purpose Traffic simulation network 
Application Domain Transportation 
Sponsor Texas A&M University, College Station 
POC (Title, First, Last) Dr. Sharif Melouk 
POC Organization Department of Industrial Engineering 
POC Telephone 979-845-5199 
POC Email sharif@tamu.edu 

 

 

Table 5.2 

Object Class Structure Table 

Class1 Class2 
Vehicle (P)  

 

 
 

mailto:sharif@tamu.edu
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Table 5.3 

Attribute Table 

Object Attribute Datatype Cardinality Units Resolution Accuracy 
Vehicle ID Long 1   perfect 
 Status Short 1   perfect 
 CorsimExitTime Float 1 seconds  perfect 
  

Accuracy Condition Update Type Update Condition Transferable/Acceptable 
always Conditional  N 
always Conditional  N 
always Conditional  N 
 

Updateable/Reflectable Routing Space Delivery Message Ordering 
U N/A best_effort receive 
U N/A best_effort receive 
U N/A best_effort receive 
 

 

Table 5.2 shows the class structure table.  The only object class defined in the entire 

federation is the vehicle class.  The “(P)” in the table indicates that vehicles are 

publishable.  The second column, “Class2”, and any other subsequent columns would be 

used if there were subclasses within the federation.  For example, possible subclasses for 

the vehicle class would be cars, trucks, and buses.  Table 5.3 shows the attribute table.  

The attributes of the vehicle class are listed.  Once again, the attributes are ID, Status, 

and CorsimExitTime.  The remainder of the table defines the properties of each attribute.  

The most pertinent properties to the federation under consideration are datatype, units, 

and updateable/reflectable.  Lastly, sets of tables called lexicons are included in the 
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object models.  Lexicons are used to explicitly define the classes, interactions, attributes, 

and parameters.  For this federation, class and attribute lexicons are relevant.  These 

lexicons are shown in Tables 5.4 and 5.5 below. 

 

Table 5.4 

Object Class Definitions (Class Lexicon) 

Term Definition 

Vehicle simulations 
Defines the sole objects in the 

 

 

A finitions (Attribute Lex

s

Table 5.5 

ttribute De icon) 

Clas  Term Definition 
Vehicle ID Identifies the vehicle 
 Status Status identifying the location of the object 
 CorsimExitTime Time vehicle exits from CORSIM simulation 
 

 

5.3 Federate Compliance Testing 

A federate compliance test process has been established by the DMSO to help the 

modeling and simulation community determine if their simulations are HLA compliant.  

The test is a four-step process that “ensures that a federate performs in accordance with 

the Interface Specification and the Object Model Template (OMT) standards, per the 

HLA compliance checklist” (DMSO, 1999).  A series of tests are performed on the 

federate to determine if the federate is compliant.  The CORSIM federate was subjected 
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to this testing process.  The four-step process, with respect to this federate, is detailed 

below. 

 

Step 1: Application 

A request is made by the federate developer for an HLA Federate Compliance Test by 

completing a test application at the DMSO website, 

http://hlatest.msiac.dmso.mil/HLATest_1_3/htdocs/step1.html.  The application is 

simply providing contact information for the federate developer and a description of the 

federate under test (FUT).  Upon receiving the application, a Federate Certification 

Agent will determine the priority of this compliance test request.  The request for a 

compliance test for the CORSIM federate was approved within two days of the initial 

application.  Additionally, a test-ID number was assigned, and a user ID number and 

password are provided for access to the remaining parts of the test website necessary to 

complete the compliance test. 

 

Step 2: Federate Conformance Notebook 

The federate developer submits a Federate Conformance Notebook that consists of the 

SOM, the Federate Conformance Statement (CS), and (optional) Scenario Data.  The CS 

lists the services that the federate promises to perform during the test process.  The SOM 

(traffsim.omt), created using the OMDT, and the CS (FeederRoad.cs) were uploaded to 

the DMSO website. 
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The contents of the SOM were shown in the previous section, whereas the CS is shown 

in Table 5.6 below. 

 

Table 5.6 

CORSIM Federate Conformance Statement 

SERVICE GROUP SERVICE IF Ref OMT Ref Check List M/O 
Create Federation 
Execution 4.2 None Item 6 M 

Create/Destroy Destroy Federation 
Execution 4.3 None Item 6 M 

Join Federation 
Execution 4.4 None Item 6 M 

Join/Resign Resign Federation 
Execution 4.5 None Item 6 M 

Publish Object 
Class 5.2 4.2 Item 2 O 

     
Publication 
and 
Subscription Subscribe Object 

Class Attributes 5.6 4.2.2 Item 2 O 
 

Object Register Object 
Instance 6.2 4.2.2 Item 2 O 

Update Attribute 
Values 6.4 4.4.2 Item 2 O 

Representation Reflect Attribute 
Values † 6.5 4.4.2 Item 2 O 

 

 

The certification agent checks the SOM for conformance to the OMT and then checks 

the SOM for consistency with the CS. 
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Step 3: Test Environment 

The Certification Agent supplies the Federate Developer with the test sequence that will 

be performed in Step 4 of the compliance test process.  Additionally, the Federate 

Developer provides information regarding the test environment.  Test environment data 

includes: API used, federation execution host information, operating system, and 

hardware information.  Table 5.7 below shows the information for the test environment 

of the CORSIM federate. 

 

Table 5.7 

Test Environment Information for CORSIM Federate 

Category Information 
API Used C++ 

Operating System Microsoft Windows NT 4.0 
RTI Execution Host Name shannon-grad 
RTI Execution IP Number 165.91.246.90 

RTI Execution Port Number 5996 
FED Execution Host Name shannon-grad 
FED Execution IP Number 165.91.246.90 

Firewall Yes 
FED File traffsim.fed 
RID File RTI.rid 

 

 

The last two entries in the table (the FED and RID files) are configuration files required 

for proper functioning of the RTI.  The FED file (see Appendix 6) contains the listing of 

object and interaction classes used by the federation and the RTI.  It is used during the 

creation of the federation phase (DMSO, 1999).  The FED file is automatically generated 
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from the FOM using the OMDT.  The RID, RTI Initialization Data, file (see Appendix 

7) contains configuration parameters that are used to control the operation of the RTI 

software (DMSO 1999).  All parameters within this file have a default setting but can be 

customized to fit a particular federation execution.  For example, for this testing process, 

in the Parameter Definition section of the RID file, the network address used by the RTI 

Executive process was edited to “shannon-grad:5996”.  This is a change from the default 

IP address of 224.9.9.2:22605.  In addition to port 5996 being opened on the host 

computer, all high TCP ports (all above 1024) were opened temporarily during execution 

of the test sequence. 

 

Step 4: Interface Test and Reporting 

The federate developer and the Certification Agent execute the interface test.  The 

interface test has two parts: the Nominal Test and the Representative SOM (RepSOM) 

test.  The Nominal Test ensures that the FUT can invoke and respond to all services 

listed in its CS.  The RepSOM test ensures that the FUT is capable of invoking and 

responding to services using a range of data contained in its SOM (DMSO, 2002).  After 

the test is completed, the Certification Agent issues a Certification Summary Report that 

contains the results of the test. 

 

5.4 Web-Based Simulation and the HLA 

An area of growing interest in the simulation community is web-based simulation.  

There has been discussion on which technology or simulation language should be used 
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in developing web-based environments.  The HLA has been included as a potential 

candidate to become the standard with respect to web-based simulation. 

 

The driving force behind web-based simulation is the desire for simulation creators to 

collaborate in a distributed simulation-like setting.  The main idea is to promote reuse 

and interoperability among simulations.  These are the same reasons why the HLA was 

developed.  So, the HLA seems a logical choice to become the web-based simulation 

standard.  Technologically speaking, there are no barriers to prevent the HLA from being 

implemented on the web.  A web-based environment could exist in which transportation 

federate developers logon at a website.  Each developer would then execute their 

federate and begin communicating with the other federates via the RTI that is running on 

the host website’s server.  This type of situation also takes advantage of the HLA being 

non-software specific.  Furthermore, this environment resembles a plug and play 

situation in which several different traffic simulations can be exchanged to create 

multiple transportation simulation environments to be analyzed. 

 

5.5 Conclusions 

This chapter detailed the development of the object models and the procedure to test for 

HLA compliance of simulation models.  Additionally, there is a discussion on web-

based simulation with respect to the HLA. 
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Existing HLA support software, such as the OMDT, proved to be very useful in 

transforming stand-alone traffic simulation models into HLA compliant traffic 

simulation models.  In order to create the object models, each traffic simulation model 

must be broken down into its individual components such as objects and object 

attributes.  The Windows-based layout of the OMDT allows for easy documenting of 

each component, thus creating the SOMs and FOM. 

 

The compliance test process developed by the DoD is very beneficial and useful in 

ensuring that a newly developed traffic federate is HLA compliant.  The organized 

structure of the step-by-step process ensures that the FUT delivers its stated 

functionality.  Federate developers communicate directly with the certification agent, 

which is convenient if problems with testing arise.  While the compliance test process 

ensures that a federate is HLA compliant, it does not validate the federate.  In other 

words, the test does not guarantee that the federate is an accurate representation of the 

real world environment, only that the federate is able to communicate with other 

federates in accordance with the HLA specification.  The CORSIM federate successfully 

completed the four-step compliance test process.  The entire process, commencing with 

the test request and ending with the interface test, lasted 40 days.  An official 

Certification Letter and a Certificate of HLA Compliance for Feeder Road was issued.  

The compliance certificate is shown in Appendix 8. 
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The HLA has great promise in becoming the technology standard in creating Internet-

based virtual transportation environments.  The benefits of the HLA, such as simulation 

reuse and interoperability, align with the web-based simulation goals of increased 

collaboration among simulationists and reuse of simulation models.  HLA-driven virtual 

transportation environments may lead to more cooperative efforts between national and 

state transportation agencies as well as private transportation consultants due to the ease 

of model sharing resulting from the HLA implementation. 
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CHAPTER VI 

CONCLUSION AND FUTURE RESEARCH 

 

This dissertation deals with the High Level Architecture (HLA) and the accomplishment 

of four research objectives.  These research objectives are: (1) determine the feasibility 

of making existing traffic management simulation environments HLA compliant; (2) 

evaluate the usability of existing HLA support software in the transportation arena; (3) 

determine the usability of methods developed by the military to test for HLA compliance 

on traffic simulation models; and (4) examine the possibility of using the HLA to create 

Internet-based virtual environments for transportation research.  The HLA is an object-

oriented approach to distributed simulations developed by the Department of Defense 

(DoD) under the Defense Modeling and Simulation Office (DMSO).  It is intended to 

handle the issues of reuse and interoperability of simulations.  Although the HLA was 

developed for use in military applications, it has great potential for civilian applications 

including transportation systems modeling. 

 

The first objective was accomplished by creating a distributed traffic environment to 

explore and demonstrate the usefulness of the HLA and consisted of two traffic 

simulations developed using two different software packages, namely CORSIM and 

Arena.  CORSIM is a microscopic simulation software developed by the Federal 

Highway Administration.  It models surface streets and freeways along with a wide array 

of traffic control devices.  The CORSIM model, or federate, used in this study simulates 
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a freeway feeder road with a freeway on-ramp with no signal control.  Arena is a widely 

known, general purpose simulation software.  It is capable of modeling many different 

types of environments, including a traffic environment.  The Arena federate models a 

freeway tollbooth exchange where the entering vehicles come from the vehicles leaving 

the freeway on-ramp of the CORSIM federate.  The HLA functionality was successfully 

implemented upon the two separate models, therefore allowing the federates to 

communicate with one another under the HLA concept of federation. 

 

In addition to the basic requirements of a distributed simulation such as synchronization 

and data exchange, each federate must satisfy a technical requirement in order to 

interoperate in an HLA federation, that being the ability to exchange information with 

the RTI using the dual ambassador principle.  This requires each federate to construct 

proper calls to the methods of the RTI ambassador object and provide a federate 

ambassador object, which contains callback functions, which in turn can be called by the 

RTI.  While each of these requirements can be easily satisfied for a simulation written in 

C++, it can be a somewhat more difficult task to satisfy them for a simulation written 

using other languages/tools.  Straβburger (1999) suggested four possible methods for 

implementing the HLA functionality into existing simulation tools. 
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These methods are listed below. 

 

1. Re-implementation of the tool with HLA extensions 

This is possible if the source code of the tool is available.  It is the simplest and most 

desirable solution, as it would eliminate the need to program.  However, for most 

commercially available simulation tools, this can be made possible only by the tool 

developer.  Several software companies are considering such additions if the HLA 

increases in popularity. 

 

2. Extension of intermediate code 

Some simulation tools translate model descriptions written in a tool-dependent modeling 

language into another programming language (e.g. C++).  It is possible to modify this 

code to realize the HLA extensions.  Since this code is compiler generated, typically it is 

not an easy solution to the problem, and an automated solution is desirable. 

 

3. External programming interface 

This is possible if the tool offers an extensible and open architecture.  The tools should 

offer a library interface (a DLL interface in Windows) with the ability to call arbitrary 

functions or methods in these libraries. 
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4. Coupling via a gateway program 

The last solution for tools that cannot be connected to the RTI by any of the prior 

methods is the development of a gateway program.  The gateway program could 

communicate with the simulation tool via appropriate means (e.g. files, pipes, ports, 

network) depending on the capabilities of the simulation tool. 

 

An interface was created for both Arena and CORSIM, using method 3 from above, 

allowing each federate to communicate with the Run-Time Infrastructure (RTI).  The 

RTI is a type of “operating system” that provides HLA services to the participating 

federates of the simulation environment (federation).  C++ was the interface language 

used to connect each federate to the RTI.  In CORSIM, the run-time extension (RTE) 

feature was used.  The RTE allows externally written code to be incorporated in the 

simulation during its execution.  Several source and header files were created to interact 

with existing code in CORSIM and the RTI, thus linking the software.  Similarly, in 

Arena, a user interface file, userc.cpp, was used for interfacing.  This file, already 

existing within the Arena software, consists of several subroutines that can be called and 

executed to perform special procedures during federation execution.  This file, along 

with other added files, interacts with the block and element constructs in Arena and the 

RTI, thus linking the software.  In general, this federation execution is essentially an 

exercise in transferring the objects (vehicles) in the CORSIM federate to the Arena 

federate. 
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The HLA functionality was successfully implemented on the CORSIM and Arena 

federates.  This accomplishment emphasizes the point that the HLA is not software 

specific.  The reason for selecting these two software packages is two-fold: both 

packages are very popular in the simulation community, and both have an interface 

capability.  While CORSIM trails Trafficware’s SimTraffic transportation software in 

terms of use by the transportation simulation community, CORSIM does have an 

interface capability, whereas SimTraffic does not.  Thus, it is clear that not all 

commercial simulation packages lend themselves for use in HLA applications.  An 

interface capability is absolutely necessary so that the simulation (federate) can 

communicate with the RTI to take advantage of the HLA services.  Otherwise, the actual 

source code of the simulation software must be altered to incorporate the HLA concepts.  

This is often an unrealistic option since most federate developers do not have access to 

the software’s source code.  Moreover, in the event the code is accessible, the prospect 

of essentially developing new software is overwhelming, not to mention very time 

consuming and rather costly.  In the case of Arena, it is a very commonly used  
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simulation package and is known by practically everyone in the simulation community.  

In addition, Arena’s interface feature is easy to access, and the software can model a 

multitude of environments, including transportation. 

 

During the course of this investigation, several commercial simulation packages were 

identified and evaluated for HLA interface feasibility.  If the HLA interface seems 

feasible, the most appropriate interface method (from the four methods suggested above) 

has been identified, depending upon the functionalities offered by the tool.  The 

suggestions offered are based on our and other researchers experience of developing 

prototype HLA federations using some of these tools.  Tools for which there is no HLA 

interface example available, the suggestions are based on the technical capabilities of the 

tool and the information given by the vendor. 
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Table 6.1 below lists the simulation packages evaluated. 

 

Table 6.1 

Simulation Package Evaluation 

No. Software 
HLA 

Interface 
Feasible 

Prototyp
e 

Available 

Interface 
Method Vendor 

1 AnyLogic Yes No External Interface XJ Technologies 
2 Arena Yes Yes External Interface Rockwell Software 
3 AutoMod Yes Yes External Interface Brooks-PRI Automation 
4 Awe Sim Yes No External Interface Frontstep Inc. 

5 Decision Pro No No Possibly by using a 
Gateway program 

Vanguard Software 
Corporation 

6 Extend Suite Yes No External Interface Imagine That Inc. 

7 Flexsim ED Yes No External Interface FlexSim 
Software Products 

8 GAUSS Yes Yes External Interface Aptech Systems 

9 GPSS/H Yes Yes 

Extension of 
intermediate 

Code for JavaGPSS 
Coupling via gateway 
program for GPSS/H 

Wolverine Software 
Corporation 

10 MAST No No Possibly by using a 
Gateway program CMS Research 

11 ProModel Yes Yes External Interface ProModel Corporation 
12 Quest Yes No External Interface Delmia Corporation 

13 RDK Yes No External Interface Palisade 
Corporation 

14 SIGMA Yes No Extension of 
Intermediate Code Custom Simulation 

15 SimScript 
II.5 Yes No External Interface CACI International 

16 SIMUL8 Yes Yes External Interface Simul8 Corporation 

17 SLX Yes Yes External Interface Wolverine Software 
Corporation 

18 Witness No No Possibly via a gateway 
program Lanner Group 

 

 

Research objectives (2) and (3) were accomplished by evaluating tools and procedures 

developed by the DMSO to aid in making military simulations HLA compliant.  These 
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tools and procedures can also be used on non-military simulations.  The creation of the 

object models and some of the configuration files can be rather tedious.  However, the 

DMSO’s Object Model Development Tool (OMDT) provides a windows-based software 

environment in which these can be easily created.  The DMSO has also established a 

four-step HLA compliance test process that a federate must successfully complete so 

that it can be deemed HLA compliant.  A Certification Agent from the DMSO 

administers this test via the Internet.  The test ensures that the simulation (federate) 

performs in accordance with the Interface Specification and the Object Model Template 

standards.  In other words, the federate must perform the services that are detailed in its 

SOM. 

 

Organizations should consider adopting the HLA as their permanent simulation 

architecture.  This is especially true in situations where an organization depends heavily 

on simulations and the connection of them in a distributed setting.  A heavy reliance on 

simulation to analyze system performance most likely translates to a significant amount 

of time spent on maintaining and adapting the simulation models.  Implementing the 

HLA on the models would reduce the adaptation time and aid in the analysis of multiple 

environments.  Depending on the volume of simulation models produced by said 

organization, a separate group within the organization (much like the DoD) could be 

established to determine the compliance of all simulation models with the HLA 

specification.  In cases where few models are developed, a separate testing group is not 
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necessary, so the individual federate developers would be responsible for compliance 

verification of each model. 

 

As research objective (4) states, the HLA was examined to determine its viability in 

creating Internet-based virtual transportation environments.  From a technical standpoint, 

there seems to be no barriers preventing the HLA from becoming the technology 

standard that drives web-based transportation simulation environments.  The HLA 

promotes collaboration among simulation creators since the transportation simulations 

participating in the web-based environment will be HLA compliant, and hence, have 

reuse and interoperability properties.  Plug and play type environments will result and 

lead to the analysis of multiple and diverse transportation systems. 

 

While the HLA has tremendous potential to become a simulation standard, technical and 

economic barriers could prevent this from happening.  The two main economic barriers 

are (1) implementing the HLA concept and (2) the cost of necessary computer hardware, 

software, and network capabilities.  The cost of implementation far exceeds the cost of 

ensuring computer and network capabilities.  Implementation costs include the cost of 

salaries and training for simulation creators and supporting staff, and the transformation 

of existing simulations to HLA-compliant simulations.  For example, HLA training 

classes are available through privately held engineering and software development 

consultant companies.  Distributed Simulation Technology, Inc. offers a 4-day class on 

the HLA for $1795 per person at their facility in Florida.  Additionally, the DMSO and 
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the McLeod Institute of Simulation Sciences at California State University, Chico are 

cooperating in developing the HLA University Outreach Program.  This program is 

disseminating information about the HLA to colleges and universities at the 

undergraduate, graduate, and research levels.  The program goals are to inform 

simulation users at universities of the applicability of the HLA to a broad range of 

simulation problems, to encourage application of the HLA to non-DoD models, to 

stimulate research into open HLA-related problems, and to educate students in the use of 

the HLA as a valuable job skill. 

 

While the initial cost of transitioning to HLA-compliant models may be significant, 

subsequent costs will be far less since the HLA promotes the reusability and 

interoperability of simulation models.  Furthermore, since the implementation of the 

HLA functionality does not require specific software, costs will be reduced with respect 

to purchasing computer software and software licenses.  This should encourage more 

organizations to experiment with the HLA as their simulation standard. 

 

Determining the exact overall cost of implementing the HLA is quite difficult since 

several variables can come into play.  However, looking at the additional cost on an 

individual simulation model basis, implementing the HLA should not increase initial 

model development costs by more than 10-15%.  A range is given because the 

implementation of the HLA is directly related to the number of features in the simulation 

model that must be made HLA compliant; features desired to be made available to the 
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other federates.  As the number of features increases, the time and cost of 

implementation will increase accordingly.  Of course, this estimate assumes that the 

simulation creator is well versed with the simulation software and the concepts of the 

HLA. 

 

Another potential barrier to widespread adoption of the HLA as a simulation standard is 

the unwillingness of the simulation community to change.  Often, simulation creators 

become complacent and satisfied with the status quo.  However, if the benefits and 

advantages of the HLA discussed above are relayed to the community as a whole, the 

technology may become commonplace.  This would be a great benefit to transportation 

simulation creators and analysts.  Situations could arise in which organizations, cities, 

and possibly states work jointly to alleviate current transportation problems and develop 

new transportation management strategies.  The sharing of transportation management 

models and ideas would be greatly enhanced by the HLA due to the structured nature 

and documentation requirements of the technology. 

 

Future research could explore opportunities with implementing the HLA with other 

simulation packages.  There are many types of simulation software currently being used.  

There are many potential application areas in which linking two or more independent 

simulations, each created in a different simulation package, would greatly benefit a 

company or industry in terms of analyzing a process, method, or procedure.  The HLA 

would be a viable solution for linking the simulations given that each of the simulation 
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packages involved have some sort of interfacing capabilities similar to CORSIM and/or 

Arena.  As long as the software has the ability to call functions in the RTI, the HLA is a 

possible solution for the distributed environment.  The possibilities with the HLA seem 

limitless in terms of the type of environment that it can be applied.  Other possible 

industries, or environments, include, but are not limited to, manufacturing, logistics, and 

service.  Finally, the area of Homeland Security has become very important and widely 

discussed.  To fully address the issue of Homeland Security, many agencies and 

organizations must cooperate to achieve established goals.  A useful tool for studying 

and examining possible security strategies is distributed simulation.  Certainly, many 

simulations already exist that would be of even more benefit by linking them together.  

A likely vehicle for this linkage is the HLA.  This would enable many security strategies 

to be examined in relatively short periods of time. 
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APPENDIX 1 

 

#include "netsim.h" 
#include "network.h" 
#include "upcntrl.h" 
#include "stdlib.h" 
#include "stdio.h" 
#include "link.h" 
#include "conio.h" 
#include "node.h" 
#include "detector.h" 
#include <vector> 
 
using namespace std; 
 
extern "C" { void UPINIT(char *fname); } 
extern "C" { void UPCNTRL(void); } 
extern "C" { void UPEXIT(void); } 
extern "C" {void __stdcall CWRITE (char *a, unsigned int length_arg);}; 
 
void InitialFunction(void); 
void ExitFunction(void); 
void CentralFunction(void); 
 
void UPINIT( char *fname ) 
{ 
 //initialization routine 
 //called once at the beginning of simulation 
 int i; 
 int j; 
 
 
 char outbuffer[132]; 
 InitialFunction(); 
   
 sprintf(outbuffer,"init done \n"); 
// CWRITE(outbuffer,132); 
  
 endOfInit=0; 
 prevInit=0; 
 
 pNetwork=new CNetwork(); 
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 //fname must be null terminated 
 for (i=2;i<512;i++) 
 { 
  if (((fname[i-2]=='T')||(fname[i-2]=='t'))&& 
   ((fname[i-1]=='R')||(fname[i-1]=='r'))&& 
   ((fname[i]=='F')||(fname[i]=='f'))) 
  { 
   j=i+1; 
  } 
 } 
 
 for (i=j;i<512;i++) 
 { 
  fname[i]='\0'; 
 } 
 
 pNetwork->m_TrafInputFile=CString(fname); 
 
 //read the traf file 
 pNetwork->ReadTrafFile(); 
 return; 
} 
 
void UPCNTRL() 
{ 
 int time; 
 BOOL init; 
 POSITION pos, detpos; 
 CLink* pLink; 
 CDetector* pDetector; 
 static vector<int>count; 
  
 init=yinit; 
 
 //the algorithm that controlls the signal states at the 
 //intersections assumes time is always increasing, but 
 //the CORSIM clock starts over after initialization 
 //so the time at which initialization is over must 
 //be recorded 
 if ((!init)&&(prevInit)) 
 { 
  //end of initialization 
  endOfInit=prevTime+1; 
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 } 
 
 //adjust the time by adding the end of initialization 
 time=sclock+endOfInit; 
 
 //get signal state for the node under corsim control 
 //pNetwork->UpdateNodeSignalStates(); 
 
 //process any detector information 
 
 pos=pNetwork->m_LinkList.GetHeadPosition(); 
 while (pos!=NULL) 
 { 
  pLink=pNetwork->m_LinkList.GetNext(pos); 
 
  if(pLink->m_upnode->m_id==1 && pLink->m_dnnode->m_id==2) 
  {  
   pLink->ProcessDetectors(); 
   detpos = pLink->m_listOfDetectors.GetHeadPosition(); 
   pDetector = pLink->m_listOfDetectors.GetNext(detpos); 
   count.push_back(pDetector->m_count); 
   if(count[count.size()-1]-count[count.size()-2] && time>300) { 
/* 
    char outbuffer[132]; 
    char ch[20]; 
    _itoa (time-300,ch,10); 
    sprintf(outbuffer,ch); 
    CWRITE(outbuffer,132); 
*/ 
    CentralFunction(); 
   } 
  } 
   
 } 
 //record whether the simulation has reached equilibrium 
 //or not, so the time at which initialization can be 
 //recorded 
 prevInit=init; 
 prevTime=time; 
   
} 
 
void UPEXIT() 
{ 
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 //clean up 
 //delete all objects that were created 
 delete pNetwork; 
 ExitFunction(); 
 CWRITE("You OK here",24); 
 
} 
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APPENDIX 2 

 

#include "traf_RTI.h" 
 
void InitialFunction() 
{ 
 JoinFederation(); 
 GetAttributeHandles(); 
 PublishSubscribeAttributes(); 
} 
 
void ExitFunction() 
{ 
 ResignFederation(); 
 DestroyFederation(); 
} 
 
void CentralFunction() 
{ 
 int instance; 
 long val=2; 
  
 instance = CreateVehicle(); 
  
 UpdateStatus(instance); 
} 
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APPENDIX 3 

 

#include <stdio.h> 
#include <sys/types.h> 
#include <fstream> 
 
#ifdef _WIN32 
 #include <winsock2.h>     
    #include <process.h> 
    #include <windows.h> 
    #define getpid _getpid 
#else 
    #include <unistd.h> 
    #include <netinet/in.h> 
#endif 
 
#include "traf_RTI.h" 
#include "FederateAmbassador.h" 
#include "Global_Variables.h" 
 
void SleepSeconds(int howlong) 
{ 
#ifndef _WIN32 
    sleep(howlong); 
#else 
    Sleep(howlong*1000); 
#endif 
} 
 
ofstream fout("log.txt"); 
 
RTI::RTIambassador    rtiAmb;      // RTI Ambassador 
FedAmb                fedAmb;      // Federate Ambassador 
 
 
void JoinFederation(void) 
{ 
  char federateName[100]; 
  char hostName[256]; 
  int ready=0; 
 
#ifdef _WIN32 
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 WSADATA wsaData; 
    int err; 
 
    err = WSAStartup( MAKEWORD( 2, 2 ), &wsaData ); 
    if ( err != 0 ) 
        sprintf(hostName, "UNKNOWN"); 
    else 
        gethostname(hostName, 256); 
    WSACleanup(); 
#else 
    gethostname(hostName, 256); 
#endif 
 
  sprintf(federateName, "%s_%s-%s",federationName, hostName, "Feeder Road"); 
   
  try 
  { 
    fout <<"Invoking createFederationExecution"<<endl; 
 rtiAmb.createFederationExecution(federationName,fedfileName); 
    fout << federationName << " federation created"<< endl; 
  } 
  catch(RTI::FederationExecutionAlreadyExists& e) 
  { 
    fout << " Federation "<<federationName<<" already exists" << endl; 
  } 
  catch(RTI::Exception& e) 
  { 
    fout << "   EXCEPTION: caught in createFederationExecution call" << endl; 
    fout << "   " << & e << endl; 
    fout << "   TERMINATING" << endl; 
    exit(1); 
  } 
   
  // Try to join the federation.  If it doesn't exist, wait a while and  
  // try again. 
  while (!ready) 
  { 
      ready = 1; 
 
      try 
      { 
        rtiAmb.joinFederationExecution(federateName, federationName, &fedAmb); 
  fout<< " Created federate "<<federateName << endl; 
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      } 
       
      catch (RTI::FederationExecutionDoesNotExist& e) 
      { 
        // If the federation does not exist, then sleep for a second 
        // and try to join again 
             
  cerr << "Waiting for federation execution: " << &e << endl; 
        ready = 0; 
        SleepSeconds(1); 
      } 
      catch(RTI::Exception& e) 
   { 
  fout << "   EXCEPTION: caught in joinFederationExecution call" << 
endl; 
  fout << "   " << & e << endl; 
  fout << "   TERMINATING" << endl; 
  exit(1); 
   } 
  
    } 
  return; 
} 
 
void GetAttributeHandles(void) 
{ 
 
 try { 
    
   objectRootClassID = rtiAmb.getObjectClassHandle("objectRoot"); 
   privilegeToDeleteValueID =  
            rtiAmb.getAttributeHandle("privilegeToDelete", objectRootClassID); 
   
   //Handle for Vehcile class 
   vehicleClassID = rtiAmb.getObjectClassHandle("Vehicle"); 
 
   //Handle for Attributes of vehicle class 
   vinID = rtiAmb.getAttributeHandle("ID",vehicleClassID);  
   statusID = rtiAmb.getAttributeHandle("Status",vehicleClassID);  
   corsimExitTimeID = 
rtiAmb.getAttributeHandle("CorsimExitTime",vehicleClassID);  
 
   fout << "  Handles created successfully" << endl; 
 } 
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 catch ( RTI::Exception& e ) 
    { 
      cerr << "Error getting attributes: " << &e << endl; 
   // Resign from "FoodFight" federation  
   ResignFederation(); 
   rtiAmb.tick(); 
   DestroyFederation(); 
    } 
} 
 
void PublishSubscribeAttributes(void) 
{ 
 RTI::AttributeHandleSet *attributes; 
 
    attributes = RTI::AttributeHandleSetFactory::create(4); 
 
    attributes->add(privilegeToDeleteValueID); 
    attributes->add(vinID); 
    attributes->add(statusID); 
 attributes->add(corsimExitTimeID); 
 
    try 
    { 
        rtiAmb.subscribeObjectClassAttributes(vehicleClassID, *attributes); 
 
        rtiAmb.publishObjectClass(vehicleClassID, *attributes); 
 
  fout << "  Published and subscribed to all attributes 
successfully" << endl; 
    } 
    catch (RTI::Exception& e) 
    { 
        cerr << "Error [PublishSubscribeAttribute()]: " << &e << endl; 
    } 
    attributes->empty(); 
 
    delete attributes; 
} 
  
void ResignFederation(void) 
{ 
 
  try 
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  {  
 // clear the callback queue prior to resigning 
    for (int i=0;i<3;i++) 
      rtiAmb.tick(); 
 
    
rtiAmb.resignFederationExecution(RTI::DELETE_OBJECTS_AND_RELEASE_ATTR
IBUTES); 
  } 
  catch(RTI::Exception& e) 
  { 
    fout << "   EXCEPTION: caught in resignFederationExecution call" << endl; 
    fout << "   " << & e << endl; 
    fout << "   TERMINATING" << endl; 
    exit(1); 
  } 
} 
 
 
 
void DestroyFederation(void) 
{ 
 
  try 
  { 
    rtiAmb.destroyFederationExecution(federationName); 
  } 
  catch(RTI::Exception& e) 
  { 
    fout << "   EXCEPTION: caught in destroyFederationExecution call" << endl; 
    fout << "   " << & e << endl; 
 fout << " TERMINATING"<<endl; 
 exit (1); 
  } 
} 
 
int CreateVehicle(void) 
{ 
 RTI::ObjectHandle id; 
  
    try 
    { 
        id = rtiAmb.registerObjectInstance(vehicleClassID); 
  fout << "  Created Vehicle with success" << endl; 
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    } 
    catch (RTI::Exception& e) 
    { 
        fout << "Error [CreateWidget()]: " << &e << endl; 
    } 
  
 for(int k=1; k<100; k++) 
   rtiAmb.tick(); 
 
 return (int)id; 
  
} 
 
 
void UpdateStatus(int id) 
{ 
 long val= 2; 
 int tmp; 
 
 tmp=htonl(val); 
 
 for(int k=1; k<100; k++) 
   rtiAmb.tick(); 
 
 
 RTI::AttributeHandleValuePairSet *pNameValuePairSet; 
 
 pNameValuePairSet=RTI::AttributeSetFactory::create(1); 
 
 pNameValuePairSet->add(statusID,(char*)&tmp,sizeof(tmp)); 
 
 try 
 { 
  rtiAmb.updateAttributeValues(RTI::ObjectHandle(id), 
        
 *pNameValuePairSet,NULL); 
  fout << "  Updated Status of vehicle" << endl; 
 
 } 
 catch (RTI::Exception& e) 
    { 
        fout << "Error [UpdateAnAttribute()]: " << &e << endl; 
    } 
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    pNameValuePairSet->empty(); 
 
    delete pNameValuePairSet; 
} 
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APPENDIX 4 

 

#include "traf_RTI.h" 
 
void InitialFunction() 
{ 
 JoinFederation(); 
 GetAttributeHandles(); 
 PublishSubscribeAttributes(); 
} 
 
void ExitFunction() 
{ 
 ResignFederation(); 
 DestroyFederation(); 
} 
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APPENDIX 5 

 

#include <stdio.h> 
#include <stdlib.h> 
#include <fstream.h> 
 
 
#include <sys/types.h> 
 
#ifdef _WIN32 
 #include <winsock2.h>     
    #include <process.h> 
    #include <windows.h> 
    #define getpid _getpid 
#else 
    #include <unistd.h> 
    #include <netinet/in.h> 
#endif 
 
#include "FederateAmbassador.h" 
 
#include "traf_RTI.h" 
long check=0; 
ofstream ft("int.txt"); 
 
extern RTI::ObjectClassHandle vehicleClassID; 
extern RTI::ObjectClassHandle objectRootClassID; 
extern RTI::AttributeHandle   privilegeToDeleteValueID; 
extern RTI::AttributeHandle vinID; 
extern RTI::AttributeHandle statusID; 
extern RTI::AttributeHandle corsimExitTimeID; 
 
 
void FedAmb::startRegistrationForObjectClass( 
    RTI::ObjectClassHandle         theClass) 
throw ( 
  RTI::ObjectClassNotPublished, 
  RTI::FederateInternalError) 
{ 
 
} 
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void FedAmb::discoverObjectInstance( 
    RTI::ObjectHandle          theObject, 
    RTI::ObjectClassHandle     theObjectClass, 
    const char                *theTag) 
throw ( 
  RTI::CouldNotDiscover, 
  RTI::ObjectClassNotKnown, 
  RTI::FederateInternalError) 
{ 
 
    // Insert code here 
 
} 
 
void FedAmb::reflectAttributeValues( 
    RTI::ObjectHandle                       theObject, 
    const RTI::AttributeHandleValuePairSet& theAttributes, 
    const char                             *theTag) 
throw ( 
  RTI::ObjectNotKnown, 
  RTI::AttributeNotKnown, 
  RTI::FederateOwnsAttributes, 
  RTI::FederateInternalError) 
{ 
     // Insert code here 
 
 
    RTI::AttributeHandle attrHandle; 
    unsigned long valueLength; 
     
    // Look up the object in the object table 
 for (unsigned int i = 0; i < theAttributes.size(); i++) { 
  attrHandle = theAttributes.getHandle(i); 
  if (attrHandle == statusID) { 
   long value; 
       
   theAttributes.getValue(i, (char *)&value, valueLength); 
 
   check=ntohl(value); 
   ft<<"called"<<endl; 
  } 
 } 
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} 
 
void FedAmb::receiveInteraction ( 
        RTI::InteractionClassHandle       theInteraction, 
  const RTI::ParameterHandleValuePairSet& theParameters, 
  const char                             *theTag) 
throw ( 
  RTI::InteractionClassNotKnown, 
  RTI::InteractionParameterNotKnown, 
  RTI::FederateInternalError) 
{ 
 
    // Insert code here 
 
} 
 
void FedAmb::removeObjectInstance( 
    RTI::ObjectHandle          theObject, 
    const char                *theReason) 
throw ( 
  RTI::ObjectNotKnown, 
  RTI::FederateInternalError) 
{ 
 
    // Insert code here 
} 
 
void FedAmb::provideAttributeValueUpdate( 
    RTI::ObjectHandle                  theObject, 
    const RTI::AttributeHandleSet& theAttributes) 
throw ( 
  RTI::ObjectNotKnown, 
  RTI::AttributeNotKnown, 
  RTI::AttributeNotOwned, 
  RTI::FederateInternalError) 
{ 
 
} 
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APPENDIX 6 

 

(FED) 
(Federation FederationName) 
(FEDversion v1.3) 
 (spaces  
 ) 
 (objects  
    (class ObjectRoot  
       (attribute privilegeToDelete  reliable timestamp) 
       (class RTIprivate) 
 (class Vehicle 
     (attribute ID best_effort receive) 
     (attribute Status best_effort receive) 
     (attribute CorsimExitTime best_effort receive) 
 ) 
 (class Manager 
 (class Federation 
     (attribute FederationName reliable receive) 
     (attribute FederatesInFederation reliable receive) 
     (attribute RTIversion reliable receive) 
     (attribute FEDid reliable receive) 
     (attribute LastSaveName reliable receive) 
     (attribute LastSaveTime reliable receive) 
     (attribute NextSaveName reliable receive) 
     (attribute NextSaveTime reliable receive) 
 ) 
 (class Federate 
     (attribute FederateHandle reliable receive) 
     (attribute FederateType reliable receive) 
     (attribute FederateHost reliable receive) 
     (attribute RTIversion reliable receive) 
     (attribute FEDid reliable receive) 
     (attribute TimeConstrained reliable receive) 
     (attribute TimeRegulating reliable receive) 
     (attribute AsynchronousDelivery reliable receive) 
     (attribute FederateState reliable receive) 
     (attribute TimeManagerState reliable receive) 
     (attribute FederateTime reliable receive) 
     (attribute Lookahead reliable receive) 
     (attribute LBTS reliable receive) 
     (attribute MinNextEventTime reliable receive) 
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     (attribute ROlength reliable receive) 
     (attribute TSOlength reliable receive) 
     (attribute ReflectionsReceived reliable receive) 
     (attribute UpdatesSent reliable receive) 
     (attribute InteractionsReceived reliable receive) 
     (attribute InteractionsSent reliable receive) 
     (attribute ObjectsOwned reliable receive) 
     (attribute ObjectsUpdated reliable receive) 
     (attribute ObjectsReflected reliable receive) 
 ) 
 ) 
    ) 
) 
 (interactions  
    (class InteractionRoot  reliable timestamp 
       (class RTIprivate  reliable timestamp) 
  (class Manager reliable receive 
  (class Federate reliable receive 
     (parameter Federate) 
   (class Request reliable receive 
  (class RequestPublications reliable receive 
 ) 
 
  (class RequestSubscriptions reliable receive 
 ) 
 
  (class RequestObjectsOwned reliable receive 
 ) 
 
  (class RequestObjectsUpdated reliable receive 
 ) 
 
  (class RequestObjectsReflected reliable receive 
 ) 
 
  (class RequestUpdatesSent reliable receive 
 ) 
 
  (class RequestInteractionsSent reliable receive 
 ) 
 
  (class RequestReflectionsReceived reliable receive 
 ) 
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  (class RequestInteractionsReceived reliable receive 
 ) 
 
  (class RequestObjectInformation reliable receive 
     (parameter ObjectInstance) 
  ) 
 
 ) 
 
  (class Report reliable receive 
  (class ReportObjectPublication reliable receive 
     (parameter NumberOfClasses) 
      (parameter ObjectClass) 
      (parameter AttributeList) 
  ) 
 
  (class ReportObjectSubscription reliable receive 
     (parameter NumberOfClasses) 
      (parameter ObjectClass) 
      (parameter Active) 
      (parameter AttributeList) 
  ) 
 
  (class ReportInteractionPublication reliable receive 
     (parameter InteractionClassList) 
  ) 
 
  (class ReportInteractionSubscription reliable receive 
     (parameter InteractionClassList) 
  ) 
 
  (class ReportObjectsOwned reliable receive 
     (parameter ObjectCounts) 
  ) 
 
  (class ReportObjectsUpdated reliable receive 
     (parameter ObjectCounts) 
  ) 
 
  (class ReportObjectsReflected reliable receive 
     (parameter ObjectCounts) 
  ) 
 
  (class ReportUpdatesSent reliable receive 
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     (parameter TransportationType) 
      (parameter UpdateCounts) 
  ) 
 
  (class ReportReflectionsReceived reliable receive 
     (parameter TransportationType) 
      (parameter ReflectCounts) 
  ) 
 
  (class ReportInteractionsSent reliable receive 
     (parameter TransportationType) 
      (parameter InteractionCounts) 
  ) 
 
  (class ReportInteractionsReceived reliable receive 
     (parameter TransportationType) 
      (parameter InteractionCounts) 
  ) 
 
  (class ReportObjectInformation reliable receive 
     (parameter ObjectInstance) 
      (parameter OwnedAttributeList) 
      (parameter RegisteredClass) 
      (parameter KnownClass) 
  ) 
 
  (class Alert reliable receive 
     (parameter AlertSeverity) 
      (parameter AlertDescription) 
      (parameter AlertID) 
  ) 
 
  (class ReportServiceInvocation reliable receive 
     (parameter Service) 
      (parameter Initiator) 
      (parameter SuccessIndicator) 
      (parameter SuppliedArgument1) 
      (parameter SuppliedArgument2) 
      (parameter SuppliedArgument3) 
      (parameter SuppliedArgument4) 
      (parameter SuppliedArgument5) 
      (parameter ReturnedArgument) 
      (parameter ExceptionDescription) 
      (parameter ExceptionID) 
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  ) 
 
 ) 
 
  (class Adjust reliable receive 
  (class SetTiming reliable receive 
     (parameter ReportPeriod) 
  ) 
 
  (class ModifyAttributeState reliable receive 
     (parameter ObjectInstance) 
      (parameter Attribute) 
      (parameter AttributeState) 
  ) 
 
  (class SetServiceReporting reliable receive 
     (parameter ReportingState) 
  ) 
 
  (class SetExceptionLogging reliable receive 
     (parameter LoggingState) 
  ) 
 ) 
 
  (class Service reliable receive 
  (class ResignFederationExecution reliable receive 
     (parameter ResignAction) 
  ) 
 
  (class SynchronizationPointAchieved reliable receive 
     (parameter Label) 
  ) 
 
  (class FederateSaveBegun reliable receive 
 ) 
 
  (class FederateSaveComplete reliable receive 
     (parameter SuccessIndicator) 
  ) 
 
  (class FederateRestoreComplete reliable receive 
     (parameter SuccessIndicator) 
  ) 
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  (class PublishObjectClass reliable receive 
     (parameter ObjectClass) 
      (parameter AttributeList) 
  ) 
 
  (class UnpublishObjectClass reliable receive 
     (parameter ObjectClass) 
  ) 
 
  (class PublishInteractionClass reliable receive 
     (parameter InteractionClass) 
  ) 
 
  (class UnpublishInteractionClass reliable receive 
     (parameter InteractionClass) 
  ) 
 
  (class SubscribeObjectClassAttributes reliable receive 
     (parameter ObjectClass) 
      (parameter AttributeList) 
      (parameter Active) 
  ) 
 
  (class UnsubscribeObjectClass reliable receive 
     (parameter ObjectClass) 
  ) 
 
  (class SubscribeInteractionClass reliable receive 
     (parameter InteractionClass) 
      (parameter Active) 
  ) 
 
  (class UnsubscribeInteractionClass reliable receive 
     (parameter InteractionClass) 
  ) 
 
  (class DeleteObjectInstance reliable receive 
     (parameter ObjectInstance) 
      (parameter Tag) 
      (parameter FederationTime) 
  ) 
 
  (class LocalDeleteObjectInstance reliable receive 
     (parameter ObjectInstance) 
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  ) 
 
  (class ChangeAttributeTransportationType reliable receive 
     (parameter ObjectInstance) 
      (parameter AttributeList) 
      (parameter TransportationType) 
  ) 
 
  (class ChangeAttributeOrderType reliable receive 
     (parameter ObjectInstance) 
      (parameter AttributeList) 
      (parameter OrderingType) 
  ) 
 
  (class ChangeInteractionTransportationType reliable receive 
     (parameter InteractionClass) 
      (parameter TransportationType) 
  ) 
 
  (class ChangeInteractionOrderType reliable receive 
     (parameter InteractionClass) 
      (parameter OrderingType) 
  ) 
 
  (class UnconditionalAttributeOwnershipDivestiture reliable receive 
     (parameter ObjectInstance) 
      (parameter AttributeList) 
  ) 
 
  (class EnableTimeRegulation reliable receive 
     (parameter FederationTime) 
      (parameter Lookahead) 
  ) 
 
  (class DisableTimeRegulation reliable receive 
 ) 
 
  (class EnableTimeConstrained reliable receive 
 ) 
 
  (class DisableTimeConstrained reliable receive 
 ) 
 
  (class EnableAsynchronousDelivery reliable receive 
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 ) 
 
  (class DisableAsynchronousDelivery reliable receive 
 ) 
 
  (class ModifyLookahead reliable receive 
     (parameter Lookahead) 
  ) 
 
  (class TimeAdvanceRequest reliable receive 
     (parameter FederationTime) 
  ) 
 
  (class TimeAdvanceRequestAvailable reliable receive 
     (parameter FederationTime) 
  ) 
 
  (class NextEventRequest reliable receive 
     (parameter FederationTime) 
  ) 
 
  (class NextEventRequestAvailable reliable receive 
     (parameter FederationTime) 
  ) 
 
  (class FlushQueueRequest reliable receive 
     (parameter FederationTime) 
  ) 
 ) 
 ) 
 ) 
    ) 
 ) 
) 
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APPENDIX 7 

 

;; BEGIN_INTERNAL_USE_ONLY -*- Lisp -*- 
;; END_INTERNAL_USE_ONLY 
 
;; RTI Next Generation RID (Run-Time Initialization Data) File 
;; =========================================================== 
;; This file contains configuration parameters that control the operation of the 
;; RTI software.  All parameters have a default setting that is used in the 
;; event that a parameter value is not specified in the RID file or a RID file 
;; is not specified. 
;; 
;; File Location 
;; ============= 
;; The RTI-NG software looks for the environment variable, RTI_RID_FILE, which 
;; defines the name and location of the RID file to be used by the application. 
;; The file location may be absolute or relative using the appropriate file 
;; naming convention for the particular operating system.  The file name is not 
;; required to have a special name or prefix, it only needs to be readable by 
;; the application and provide the correct syntax. 
;; 
;; If the environment variable is not set, the RTI will attempt to open a file 
;; named "RTI.rid" in the directory from which the application was launched. 
;; 
;; File Format 
;; =========== 
;; The format used for the RID file has only several rules relative to valid 
;; parsing.  The first item is that any text to the right of the comment token, 
;; (two semi-colons, ";;"), is ignored by the parser.  The next rule is that the 
;; left and right parentheses are used for scoping and must always be used in 
;; matching pairs. 
;; 
;; Within a pair of parentheses there can be the scope name or a parameter name 
;; and value pair.  The scope name is used to organize parameters that are 
;; conceptually related and ensure uniqueness in case a parameter name is used 
;; multiple times within different scopes.  If a parameter name is not unique 
;; only the last value will be used for the configuration control.  The 
;; parameter name is case insensitive and the value is parsed as a character 
;; string and subsequently interpreted according to the particular parameter 
;; type (e.g., integer, floating point, string). 
;; 
;; Parameter Scoping 
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;; ================= 
;; Each RID parameter is identified by a scope name in which the scoping is 
;; broken into three major categories according to the granularity of the 
;; internal RTI components.  The RTI-NG instantiates components when an RTI 
;; process is initially started (the first create or join), when a federation 
;; comes into existence within the process (first create or join of a new 
;; federation), and when a particular federate joins a federation.  These scope 
;; names are defined below. 
;; 
;;  ProcessSection    - process level component parameters 
;;  FederationSection - federation level component parameters 
;;  FederateSection   - federate level component parameters 
;; 
;; It is possible that a RID file used by a particular application will need to 
;; support multiple federations and federates within a single process using 
;; different RID parameter values for each federation or federate.  This RID 
;; structure can support this situation by creating a scope within the 
;; federation or federate section with the scope name the same as the name of 
;; the federation or name of the federate, respectively. 
;; 
;; As an example, assume that an application needs to support two different 
;; federations named FederationA and FederationB.  The RID parameter for the 
;; multicast base address for FederationA needs to be different from 
;; FederationB.  An example RID is shown below where the BaseAddress used for 
;; FederationB is "224.100.0.1" and for any other federations the value is 
;; "224.2.0.1". 
;; 
;;  (FederationSection 
;;     ... 
;;     (BaseAddress 224.2.0.1) 
;;     ... 
;;     (FederationB 
;;        ... 
;;        (BaseAddress 224.100.0.1)        
;;        ... 
;;     ) 
;;  ) 
;; 
;; Parameter Definition 
;; ==================== 
;; Each parameter contained in the RID file provides a description of the effect 
;; that the parameter value has on the operation of the RTI.  The valid 
;; parameter values are defined and the default value is specified within this 
;; file.  As previously mentioned, if the parameter and value is not specified 
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;; within the RID file the default value will be used by the RTI. 
 
(RTI 
 ;; The RTI scope serves as a namespace for the RID user parameters.  No 
 ;; parameter entries should be made at this level. 
  
 (ProcessSection 
  ;; Entries in this section apply to the process level components. 
 
  (RtiExecutive 
   ;; The RTI Executive is a logically centralized process that is used as a 
   ;; network wide resource manager to handle such items as the uniqueness of 
   ;; federation names.  It is logically centralized since redundant processes 
   ;; can be used for fault tolerance (although this feature is currently not 
   ;; supported).  The parameters associated with the RTI Executive control 
   ;; how the process is found on the network. 
    
   ;; PARAMETER: ProcessSection.RtiExecutive.RtiExecutiveEndpoint 
   ;; DESCRIPTION: The RTI Executive endpoint defines the network address and 
   ;; port number used by the RTI Executive process (and hence the RTI Naming  
   ;; Service).  The network address can be a hostname or an IP address.  The  
   ;; endpoint is only necessary when the multicast discovery mechanism is not  
   ;; used and the endpoint must match the value provided when the RTI Executive  
   ;; process is started. 
   ;; RANGE: A valid hostname or IP address followed by a colon and then the 
   ;; port number. 
   ;; DEFAULT VALUE: None, will use multicast discovery mechanism. 
   ;; 
   ;; NOTE FROM HLA CERTIFICATION AGENT: 
   ;; Change hostname to your hostname (do not use an IP Address).  Change the 
   ;; port_number to either 5996 or 18134 (or some other high TCP port you would 
   ;; like to use). 
   ;; 
   ;; Added for HLA Compliance Testing 
   (RtiExecutiveEndpoint shannon-grad:5996) 
   ;; End Added for HLA Compliance Testing 
 
   ;; PARAMETER: ProcessSection.RtiExecutive. 
   ;;            RtiExecutiveMulticastDiscoveryEndpoint 
   ;; DESCRIPTION: The RTI Executive discovery parameter defines the multicast 
   ;; address and port number used for the multicast discovery protocol to find 
   ;; the RTI Naming Service which is located in the RTI Executive process 
   ;; The naming service will then enable the application to locate distributed  
   ;; RTI components (e.g., RTI Executive). 
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   ;; RANGE: A valid multicast IP address (or hostname) followed by a colon and 
   ;; then the port number. 
   ;; DEFAULT VALUE: 224.9.9.2:22605 
   ;; 
   ;;;;   (RtiExecutiveMulticastDiscoveryEndpoint 224.9.9.2:22605) 
 
   ;; PARAMETER: 
ProcessSection.RtiExecutive.NumberOfAttemptsToFindRtiExecutive 
   ;; DESCRIPTION: The NumberAttemptsToFindRtiExecutive parameter is used to 
   ;; control how many attempts the application should use to locate the RTI 
   ;; Naming Service using the multicast discovery mechanism. 
   ;; RANGE: An integer value greater than zero. 
   ;; DEFAULT VALUE: 10 
   ;; 
   ;;;;   (NumberOfAttemptsToFindRtiExecutive 10) 
 
   ;; PARAMETER: 
ProcessSection.RtiExecutive.TimeToWaitAfterEachAttemptInSeconds 
   ;; DESCRIPTION: The TimeToWaitAfterEachAttemptInSeconds parameter is used to 
   ;; control how long the application should wait between attempts to find the 
   ;; RTI Executive using the multicast discovery mechanism. 
   ;; RANGE: A floating point value greater than zero. 
   ;; DEFAULT VALUE: 2.0 
   ;; 
   ;;;;   (TimeToWaitAfterEachAttemptInSeconds 2.0) 
   ) ;; End of ProcessSection.RtiExecutive 
 
  (Networking 
   ;; The Networking section is used to define the communication configuration 
   ;; information associated with all of the RTI components within the 
   ;; application using this RID file. 
 
   ;; PARAMETER: ProcessSection.Networking.FederateEndpoint 
   ;; DESCRIPTION: The Networking endpoint defines the network address and port 
   ;; number used by the federate application process using this RID file.  The 
   ;; network address can be a hostname or an IP address.  The federate endpoint 
   ;; is used by other distributed RTI components to communicate with internal 
   ;; modules within this application.  Typically the federate endpoint does not 
   ;; need to be defined unless the computer has multiple network interfaces. 
   ;; If an environmental variable named RTI_FEDERATE_ENDPOINT is found, its  
   ;; value will be used in favor of what is specified here. 
   ;; RANGE: A valid hostname or IP address followed by a colon and then the 
   ;; port number. 
   ;; DEFAULT VALUE: The default network card and the port. 
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   ;; 
   ;;;;   (FederateEndpoint hostname:port) 
 
   (MulticastOptions 
    ;; The networking multicast options define the parameters that control the 
    ;; behavior of UDP communication within the RTI that is used for Best Effort 
    ;; transport. 
 
    ;; PARAMETER: ProcessSection.Networking.MulticastOptions.Interface 
    ;; DESCRIPTION: The Interface is used to specify which ethernet 
    ;; interface shall be used to send and receive multicast traffic. On 
    ;; most systems the possible interfaces can be listed with the netstat 
    ;; command).  If no interface is specified, the default is used. 
    ;; NOTE: This parameter does not effect multicast name service discovery.[stb1] 
 
    ;; DEFAULT VALUE: None. 
    ;; 
    ;;;;   (Interface "eth0") 
     
    (Fragmentation 
     ;; The UDP communication protocol (used for Best Effort transport) does 
     ;; not fragment and reassemble data.  For messages larger than the UDP 
     ;; fragmentation size the RTI must fragment the message into smaller 
     ;; packets on the send side and then reassemble the packets on the 
     ;; receiver side. 
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