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ABSTRACT 

 

Catalytic Properties and Mechanism Studies of the PepQ Prolidase 

from Escherichia coli. (August 2005) 

Min Sun Park., B.S., Sogang University 

Chair of Advisory Committee: Dr. Frank M. Raushel 

 

The PepQ prolidase from Escherichia coli catalyzes the hydrolysis of dipeptide 

substrates with proline residues at the C-terminus. The PepQ gene has been cloned, 

overexpressed and the enzyme purified to homogeneity. The kcat and kcat/Km values for 

the hydrolysis of Met-Pro are 109 s-1 and 8.4 x 105 M-1 s-1, respectively. The enzyme 

also catalyzes the stereoselective hydrolysis of organophosphate triesters and 

organophosphonate diesters. A series of 16 organophosphate triesters with a p-

nitrophenyl leaving group was assessed as substrates for this enzyme. The SP-enantiomer 

of methyl phenyl p-nitrophenyl phosphate was hydrolyzed with a kcat of 36 min-1 and a 

kcat/Km of 710 M-1 s-1. The corresponding RP-enantiomer was more slowly hydrolyzed 

with a kcat of 0.4 min-1 and a kcat/Km of 11 M-1 s-1. The PepQ prolidase can be utilized for 

the kinetic resolution of racemic phosphate esters. The PepQ prolidase was shown to 

hydrolyze the p-nitrophenyl analogs of the nerve agents GB (sarin), GD (soman), GF, 

and VX.  

         The pH-rate profiles for the wild-type E. coli prolidase using proline dipeptides as 

substrates were obtained. The roles of H346, H228, and E384 in the enzyme catalytic 
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mechanism were also investigated by obtaining the pH-rate profiles for the mutants 

H346N, H228N, and E384Q. In an effort to clarify the mechanistic role of the interaction 

of the α-amino group of Xaa-Pro with metal at the enzyme active site, comparisons of 

the hydrolytic activity for Ala-Pro and 1-(1-oxopropyl)-L-proline, in which a hydrogen 

replaces the α-amino group of Ala-Pro, were performed.  
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CHAPTER I 

INTRODUCTION 
 

           Proline is unique among the 20 natural amino acids found in proteins due to its 

cyclic structure. Since prolyl residues confer a conformational constraint on the 

structural aspects of peptides, only a few proteases are known that are able to recognize 

this residue specifically. Two distinct groups of proline-specific peptidases have been 

identified in a wide range of organisms. The first group contains enzymes which 

hydrolyze the Pro-Xaa bond while the second group consists of enzymes which 

specifically hydrolyze the Xaa-Pro bond. The former group, including lipases and 

esterases, belongs to a family of proteins with an α/β-hydrolase structural fold [1, 2].  

The second group belongs to a family of metallo-proteases that have a pita-bread 

structural fold [3, 4].  The N-terminal and C-terminal domains of the pita-bread family 

of enzymes contain two α-helices and two antiparallel β-strands. This family of enzymes 

is further subdivided into type I and type II classes where the type II enzymes have an 

extra helical subdomain of approximately 60 residues inserted within the C-terminal 

domain [4]. The pita-bread family of enzymes includes methionine aminopeptidase 

(MetAP), proline aminopeptidase (PepP), and prolidase (PepQ). Methionine 

aminopeptidase removes the N-terminal methionine from proteins (Met-/- 

Xaa-), whereas proline aminopeptidase catalyzes the cleavage of the peptide bond 

between any N-terminal amino acid and a penultimate proline residue (NH2-Xaa-/-Pro- 

 
_____________ 
This thesis follows the style and format of Biochemistry. 

  
 



                                                                                                                                                                           
  

2

Xaa-) in both short and long peptides. Prolidase is a ubiquitous enzyme, which 

hydrolyzes dipeptides with proline at the C-terminus (NH2-Xaa-/-Pro-CO2H).  Although 

its natural function is not clear, it may involve the metabolism of proline-containing 

proteins during the degradation of cellular dipeptides and in the recycling of proline [5]. 

A deficiency of this enzyme in human results in abnormalities of skin and other 

collagenous tissues [6]. These three enzymes have different activities and substrate 

specificities. However, the amino acid residues that are used to coordinate the binuclear 

metal center are conserved [3, 7, 8, 9].  Two metal ions are coordinated in the active site 

by ligation to two aspartates, two glutamates, and a histidine residue. Two histidines on 

either side of the metal center are also conserved residues in the common binuclear 

metal center found in the pita-bread family of enzymes. A representation of the binuclear 

metal center found in the prolidase from Pyrococcus furiosus (Pfpro) is shown in Figure 

1.  In addition to the fundamental interest of proline specificity, prolidase has potential 

pharmaceutical applications. The enzyme may serve as a potential target for a prodrug 

strategy since it is differently expressed in melanoma compared to cell lines derived 

from other tissues [10]. Further, the prolidase also catalyzes the stereoselective 

hydrolysis of organophosphate and organophosphonate analogs of toxic chemical 

warfare agents [11].  
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Figure 1: Structure of the binuclear metal center for the prolidase from Pyrococcus 

furiosus.  The coordinates are taken from Maher et al. [9] and can be obtained from the 

Protein Data Bank (PDB) (1PV9).      
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CHAPTER II 

  CATALYTIC PROPERTIES OF THE PEPQ PROLIDASE FROM Escherichia coli 

 

       Organophosphate triesters are acetyl cholinesterase (AChE) inhibitors that exhibit 

high toxicity because of their ability to promote the accumulation of acetylcholine and 

the disruption of nerve transmission [12]. The reaction mechanism for the enzymatic 

hydrolysis of acetylcholine by AChE is shown in Figure 2. An active-site serine residue 

initiates a nucleophilic attack on the carbonyl carbon of acetylcholine to form a covalent 

acetyl-enzyme intermediate. The free enzyme is regenerated by a hydrolytic attack of 

water and release of acetate. Organophosphate triesters apparently mimic the natural 

substrate, forming a phosphoenzyme intermediate. However, the regeneration of the free 

enzyme through the nucleophilic attack by water on the phosphoenzyme intermediate is 

extremely slow. Nevertheless, organophosphates have been distributed extensively for 

the control of insects and other agricultural pests. The hazardous nature of these 

compounds and their broad usage has led to efforts for the development of improved 

methods for the destruction of these toxic substances. The catalytic detoxification of 

organophosphates was first reported by Mazur, who identified an enzyme from rabbit 

tissue with the ability to hydrolyze DFP, a structural analog of the nerve agents, sarin 

and soman [13]. In an effort to find safer and more effective alternatives to chemical 

degradation, attention has turned to the discovery of more proficient enzymes for the 

recognition and catalytic detoxification of organophosphate nerve agents.   
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Figure 2: Reaction mechanism for the hydrolysis of acetylcholine by acetyl 

cholinesterase (AChE) and the inactivation of AChE by the organophosphate triester, 

paraoxon. 
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The amino acid sequences of MetAP, PepP, and PepQ have a high level of amino 

acid sequence similarity to organophosphorus acid anhydrolase (OpaA) from Altermonas 

sp. JD6.5.  OpaA is capable of hydrolyzing organophosphorus compounds with P-O and 

P-F bonds.   The amino acid sequence of OpaA is approximately 47% identical to that of 

the E. coli prolidase [7]. 

Organophosphorus acid anhydrolases are found in a wide variety of prokaryotes 

and eukaryotes [14, 15].  Although the natural function of these enzymes is not clear, 

these proteins may play an important role in the cellular metabolism of dipeptides.  The 

organophosphorus acid anhydrolase, possessing a high level of hydrolytic activity 

toward diisopropyl fluorophosphate (DFP), was purified from Altermonas sp. strain 

JD6.5 [14, 16].  The catalytic activity of OpaA toward a series of organophosphate (see 

Figure 3) and organophosphonate analogs of toxic chemical warfare agents has been 

reported [17, 18].    
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Figure 3: Structure of the organophosphate triester. 
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Materials and Methods 

Materials. A library of chiral organophosphate compounds (1-10) was 

synthesized as previously described [19, 20, 21]. The structures, based upon the template 

shown in Figure 3, are presented in the Table on the page 7. The chiral analogs of VX 

(11) sarin (12) rVX (13), GF (14) and soman (15) were prepared according to 

established protocols [22]. The structures of these compounds are presented in Figure 4.  

These organophosphonates are extremely toxic and should be used with the appropriate 

safeguards. DFP was purchased from Sigma. Wizard Genomic DNA purification kits 

were purchased from Promega. The gel extraction kit was obtained from QIAGEN.  

Restriction enzymes and T4 DNA ligase were acquired from New England BioLabs.  

The Xaa-Pro dipeptides listed in Table 3 were purchased from TCI America. 
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   Figure 4. The structures of the organophosphonate compounds. 
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Cloning of  pepQ Gene.  Chromosomal DNA from E. coli BL21 (DE3) was 

purified with a commercial kit (Promega) and used as a template for the amplification of 

the pepQ gene using the polymerase chain reaction (PCR).  PCR was carried out using 

two sets of primers, designed on the basis of the sequence deposited in GenBank 

(X54687). The sequence for the first primer was 5’-

GGAATTAAGCTTAAGGAGATATACATATGGAATCACTGGCCTCG-3’ while the 

sequence for the second primer was 5’-CCGGAATTCTTATTCTTCAATCGCTAACA-

3’.  The first primer included a HindIII restriction site and a ribosomal binding site.  The 

second primer included an EcoRI site.  PCR fragments were digested with HindIII and 

EcoRI and then subcloned into a pBluescript SK+ vector. The recombinant pBluescript 

vector was transferred to the host E. coli BL21 strain.  The DNA sequence of the cloned 

pepQ gene was confirmed by the Gene Technology Laboratory at Texas A&M 

University. 

Purification of PepQ.  The E. coli culture was grown at 37 oC in 2 liters of LB 

media in the presence of ampicillin (50 mg/L).  Protein expression was induced by the 

addition of 0.5 mM IPTG after 6 hours.  Incubation was continued at 37 oC for another 

10 hours.  The cells were harvested by centrifugation and suspended in 50 mM HEPES 

buffer (pH 8.5).  After disrupting the cells by ultra-sonication for 40 minutes, the cell 

debris was removed by centrifugation and the supernatant solution was fractionated with 

(NH4)2SO4 at 70 % saturation. After centrifugation, the pellet was dissolved in 50 mM 

HEPES buffer (pH 8.5) containing 0.1 mM MnCl2 and loaded onto a Superdex-200 

column.  The catalytically active fractions were applied to a Q-Sepharose column and 
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eluted from the column with a linear gradient of 50 mM HEPES buffer (pH 8.5) 

containing 1.0 M NaCl.  Fractions containing the enzyme were concentrated and loaded 

onto the Superdex-200 column to remove NaCl.  SDS gel electrophoresis indicated that 

the purity of the prolidase was >95%.  The purified protein was subjected to N-terminal 

amino acid sequence analysis.  The sequence obtained for the first five residues, M E S L 

A, agreed with the published gene sequence.  The elution profile from a calibrated gel-

filtration column was consistent with the formation of a dimer in solution.          

Enzyme Assays.  The activity of prolidase with a series of Xaa-Pro dipeptides 

was monitored by following the change in absorbance at 222 nm for the hydrolysis of 

the peptide bond using an extinction coefficient of 904 M-1 cm-1. The assays were 

conducted in a volume of 1.0 mL in 10 mM Tris-HCl buffer, pH 8.0, using a Gilford 260 

UV-vis spectrophotometer at 25 oC.  The initial velocities for the enzymatic hydrolysis 

of the series of organophosphate triesters (1-10) and organophosphonate diesters (11-15) 

were conducted by measuring the change in absorbance at 400 nm for the release of p-

nitrophenol. Each 3.0 mL assay contained 50 mM HEPES buffer, pH 8.0, 0.1 mM 

MnCl2, 10 % (v/v) methanol, substrate and various amounts of PepQ. The full time 

courses for the enzymatic hydrolysis of racemic mixtures of organophosphates and 

phosphonates were monitored by following the absorbance change for the complete 

hydrolysis of both enantiomers using variable enzyme concentrations. The total substrate 

concentration was determined by hydrolysis of all enantiomers with KOH.  The 

hydrolysis of DFP was monitored by following the release of fluoride.  
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Data Analysis.  The steady state initial velocities for the hydrolysis of dipeptides, 

organophosphates (1-10), and organophosphonates (11-15) were fit to equation 1.  In 

this equation kcat is the turnover number, Km is the Michaelis constant, A is the substrate 

concentration and Et is the total enzyme concentration. The full time courses that 

exhibited single and double exponential phases were fit to equations 2 and 3, 

respectively.   For these equations, A1 and A2 are the substrate concentrations for each 

enantiomer, k1 and k2 are the first-order rate constant for each phase, and t is time.  The 

kinetic constants and the associated errors were obtained by fitting the data to the 

appropriate equation using SigmaPlot. 

v / Et  =   kcat A / (Km +  A)                                                           (1)      

                                  y  =  A1(1 - e-kt)                                                                 (2)                            

y  = A1(1 - e-k
1
t)  +  A2(1 - e-k

2
t)                                                      (3) 
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Results 

Cloning and Sequencing of pepQ Gene.  The pepQ gene from the BL21 strain of 

E. coli was sequenced and found to contain a stop codon after 1329 nucleotides.  

Therefore, the prolidase is expected to contain 443 amino acids.  The DNA sequence 

from BL21 matched well with those of the pepQ gene from E. coli K12 (GenBank 

accession no. P21165) except for 24 differences at the third codon position.  However, 

the derived amino acid sequence was exactly the same as for E. coli K12.  The purified 

recombinant PepQ, cloned from E. coli BL21, has a molecular weight of ~50 kDa as 

determined from a calibrated SDS electrophoresis gel.  The molecular weight of PepQ, 

based on the DNA sequence, is calculated to be 50,176.  

Hydrolysis of Dipeptides. The substrate specificity of the recombinant E. coli 

prolidase was evaluated using fourteen proline-containing dipeptides (Table 1).  

Significant catalytic activity occurred with dipeptides containing nonpolar amino acids 

at the N-terminal position.  Dipeptides containing large hydrophobic side chains at the 

N-terminus have low Km values and high values of kcat/Km.  For example, Met-Pro has 

the lowest Km value of 0.13 mM and the highest value for kcat/Km of 8.4 x 105 M-1 s-1.   
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 Table 1:  Kinetic constants for the hydrolysis of Xaa-Pro dipeptides at pH 8.0 and 25oC. 

Substrate 
kcat/Km 

(M-1 s-1) 

kcat 

 (s-1) 

Km 

(mM) 

Ala-Pro 6.5 (0.5) x 104 120 ± 30 1.9 ± 0.5 

Leu-Pro 2.1 (0.05) x 105 215 ± 25 1.0 ± 0.1 

Gly-Pro 2.5 (0.1) x 104 34 ± 1 1.4 ± 0.2 

Phe-Pro 4.6 (0.3) x 105 200 ± 20 0.43 ± 0.06 

Met-Pro 8.4 (0.8) x 105 109 ± 7 0.13 ± 0.01 

Val-Pro 1.6 (0.1) x 105 64 ± 7 0.40 ± 0.07 

His-Pro 8.2 (0.3) x 105 123 ± 5 0.15 ± 0.01 

Tyr-Pro 7.1 (0.3) x 105 116 ± 6 0.16 ± 0.01 

Ser-Pro 6.0 (0.3) x 105 281 ± 25 0.46 ± 0.06 

Ile-Pro 5.7 (0.4) x 105 57 ± 3 0.10 ± 0.01 

Lys-Pro 8.8 (0.5) x 105 240 ± 11 0.27 ± 0.02 

Pro-Pro 4.1 (0.3) x 105 129 ± 15 0.31 ± 0.05 

Arg-Pro 1.4 (0.1) x 106 142 ± 5 0.10 ± 0.01  

Trp-Pro N/A N/A N/A 
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Hydrolysis of Organophosphates. The prolidase from E. coli has a broad 

substrate specificity toward the hydrolysis of organophosphate triesters (Table 2). The 

active site within the PepQ E. coli prolidase can accommodate a variety of bulky side 

chains attached to the phosphorus center. In addition, the enzyme exhibits a marked 

stereoselectivity toward the hydrolysis of chiral p-nitrophenyl phosphotriester substrates 

with a clear preference for the SP-enantiomer over the RP-enantiomer. The physically 

smaller substituent is preferentially found at the proR position (denoted by X in Figure 

3) while the physically larger substituent is preferentially attached to the proS position 

(denoted by Y in Figure 3). The stereoselectivity ranges from ~60 for the discrimination 

between phenyl and methyl substituents to ~1 for the discrimination between isopropyl 

and phenyl substituents.   

The catalytic constants are influenced by the specific substituents attached to the 

phosphorus center.  Those substrates with a methyl substituent at the proR position (X in 

Figure 3) have the highest values of kcat and kcat/Km.  The values of kcat are reduced when 

the methyl group is replaced by other substituents.  For example, (SP)-methyl phenyl p-

nitrophenyl phosphate (4) has a higher kcat value, compared to the values measured for 

either (SP)-ethyl phenyl p-nitrophenyl phosphate (7) or (SP)-isopropyl phenyl p-

nitrophenyl phosphate (9), which are reduced by 60- and 257-fold, respectively.  The 

enzyme exhibits the highest value of kcat/Km for (SP)-methyl phenyl p-nitrophenyl 

phosphate (4) and the lowest for (RP)-ethyl isopropyl p-nitrophenyl phosphate (6). The 

enzyme exhibited a clear stereoselective preference for the Sp-enantiomer over the Rp-

enantiomer when the substrate has a methyl substituent at the phosphorus center.  
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However, the chiral selectivity is essentially eliminated upon replacement of the methyl 

substituent with other groups, and the loss of stereoselectivity is also accompanied by 

poor overall kinetic parameters.  

Hydrolysis of Organophosphonates.  The catalytic activity of the prolidase from 

E. coli was also tested with a variety of methyl phosphonates that are analogs of the 

nerve agents, sarin (12), soman (15) GF (14), VX (11), and rVX (13). The kinetic 

constants are presented in Table 3.  For this set of substrates, the RP-configuration at the 

phosphorus center is clearly preferred over the Sp-configuration.  However, the relative 

stereochemical preference (with regard to the orientation of the large and small 

substituents) is the same as it is for the corresponding series of organophosphate 

substrates.  The best of the methyl organophosphonate substrates is the RP-enantiomer of 

the rVX analog (13) and the worst is the SP-enantiomer of the GF analog (14). The 

organophosphonate compounds containing a bulky carbon center within one substituent 

exhibited greater stereoselectivity.  For example, the RP-enantiomers of the VX (11) and 

rVX (13) analogs are 2 and 11 times faster than the corresponding SP-enantiomers, 

whereas the Rp-enantiomers of the analogs for sarin (12) and GF (14) are hydrolyzed 94 

and 121 times faster than the corresponding SP-enantiomers.   
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Table 2: Kinetic constants for the hydrolysis of organophosphates at pH 8.0, 25oC. 

Substrate X Y 
kcat  

(min-1) 

kcat/Km 

(M-1s-1) 

Km 

(mM) 

1 CH3 CH3 0.56 + 0.06 7.2 + 0.5 1.3 + 0.2 

(RP)-2 CH2CH3 CH3 0.36 + 0.04 2.6 + 0.2 2.3 + 0.4 

(SP)-2 CH3 CH2CH3 39 + 1 105 + 3 6.2 + 0.8 

(RP)-3 CH(CH3)2 CH3 0.15 + 0.01 4.8 + 0.3 0.51 + 0.07 

(SP)-3 CH3 CH(CH3)2 12 + 1.3 100 + 8 2.0 + 0.3 

(RP)-4 C6H5 CH3 0.40 + 0.03 11 + 1 0.58 + 0.07 

(SP)-4 CH3 C6H5 36 + 4 707 + 42 0.9 + 0.1 

5 CH2CH3 CH2CH3 1.2 + 0.1 3.2 + 0.1 6.2 + 0.5 

(RP)-6 CH(CH3)2 CH2CH3 0.12 + 0.01 1.1 + 0.06 1.8 + 0.3 

(SP)-6 CH2CH3 CH(CH3)2 0.59 + 0.06 8.3 + 0.6 1.2 + 0.2 

(RP)-7 C6H5 CH2CH3 0.22 + 0.02 4.6 + 0.2 0.8 + 0.1 

(SP)-7 CH2CH3 C6H5 0.6 + 0.1 28 + 2 0.37 + 0.06 

8 CH(CH3)2 CH(CH3)2 1.0 + 0.1 1.7 + 0.1 10 + 1 

(RP)-9 C6H5 CH(CH3)2 0.05 + 0.01 9.5 + 0.3 0.09 + 0.01 

(SP)-9 CH(CH3)2 C6H5 0.17 + 0.02 8.1 + 0.4 0.30 + 0.05 

10 C6H5 C6H5 0.05 + 0.01 6.9 + 0.5 0.13 + 0.02 
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Table 3: Kinetic constants for the hydrolysis of organophosphonates at pH 8.0, 25 oC. 

Substrate 
kcat  

(min-1) 

kcat/Km 

(M-1s-1) 

Km 

(mM) 

(SP)-11 1.6 + 0.1 8.1 + 0.3 3.3 + 0.4 

(RP)-11 3.4 + 0.3 17 + 1.7 3.3 + 0.5 

(SP)-12 0.07 + 0.01 0.32 + 0.01 3.7 + 0.5 

(RP)-12 2.3 + 0.2 30 + 1.6 1.3 + 0.2 

(SP)-13 2.7 + 0.2 20 + 1.7 2.3 + 0.3 

(RP)-13 134 + 27 218 + 6 10 + 2 

(SP)-14 nd 0.6 + 0.1 nd 

(RP)-14 45 + 7 73 + 3 10 + 2 

(SPSC)-15 0.010 +0.001 0.07 + 0.01 2.3 + 0.5 

(SPRC)-15 0.040 + 0.01 0.11 + 0.01 5.9 + 0.6 

(RPSC)-15 33 + 2 427 + 16 1.1 + 0.1 

(RPRC)-15 5.0 + 0.04 30 + 2 2.7 + 0.3 
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         The most extreme example of stereoselectivity is observed among the four analogs 

of soman (15) where there is an additional stereogenic carbon center within the O-

pinacolyl substituent. The stereochemical preference for the four soman analogs is as 

follows:  RpSc > RpRc > SpRc > SpSc. These results indicate that the Rp-configuration is 

preferred relative to the Sp-configuration whereas the preference for the configuration at 

the carbon center is dependent on configuration at the phosphorus center. The 

stereoselective preference for the phosphorus center is high, but the difference in the 

catalytic constants for the chiral carbon center within the O-pinacolyl group is relatively 

small. The RpSc-diastereomer of 15 is preferred by a factor of 6100 over the SpSc-

diastereomer.   

Hydrolysis of DFP.  The hydrolysis of the P-F bond in DFP is faster than the P-O 

bond in the organophosphate triesters and organophosphonate diesters tested for this 

investigation.  The values for kcat, kcat/Km, and Km for the hydrolysis of DFP are 590 min-

1, 250 M-1 s-1, and 38 + 17 mM, respectively.   The value of kcat/Km for the hydrolysis of 

DFP is ~150-fold higher than that for the hydrolysis of diisopropyl p-nitrophenyl 

phosphate (8).   
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Discussion 

The PepQ prolidase from E. coli catalyzes the hydrolysis of dipeptides 

possessing a proline residue at the C-terminus.  The enzyme also catalyzes the 

stereoselective hydrolysis of phosphate and phosphonate esters but the turnover numbers 

for the dipeptides are significantly greater than for the phosphorus containing esters.  

The hydrolysis of Met-Pro, for example, is hydrolyzed more than three orders of 

magnitude faster than (Sp)-methyl phenyl p-nitrophenyl phosphate (4), the 

organophosphate substrate with the largest kcat/Km. The proline amino peptidase (PepP) 

from E. coli has also been reported to cleave a limited number of dipeptides (Xaa-Pro) 

[23].  However, the catalytic activity with dipeptides is considerably slower than the 

turnover numbers for longer peptides.  Proline aminopeptidase preferentially hydrolyzes 

longer polypeptides and is able to distinguish among amino acids that occupy the third 

and forth amino acids from the N-terminus of the substrate [25].  The PepP and PepQ 

prolidases from E. coli are from the same enzyme superfamily and thus the amino acid 

residues that are used to coordinate the binuclear metal centers are conserved but the 

specific residues that define the substrate binding pockets are different.  Recently, the 

three-dimensional structure of the prolidase from Pyrococcus furiosus, that is analogous 

to PepQ, has been solved and the structural similarity within the active sites of this 

superfamily has been confirmed [25].   

        The PepQ prolidase from E. coli hydrolyzes the p-nitrophenyl analogs of the 

organophosphorus nerve agents GB, GD, GF, VX, and rVX. The enzyme 

stereoselectively hydrolyzes organophosphonate esters with a preference for the Rp-
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configuration of the substrates tested for this investigation (Table 3). This 

stereoselectivity is similar to that previously observed for OpaA [14]. However, the 

prolidase from E. coli exhibits a more restricted stereoselectivity and a reduced rate of 

hydrolysis for organophosphonate esters.  The kcat/Km value for the RPSC diastereomer of 

15 with PepQ is two orders of magnitude slower than the value previously measured for 

OpaA. Likewise, the kcat/Km value for the hydrolysis of the RP-enantiomer of 12 is 

approximately an order of magnitude slower than the value previously measured for 

OpaA.     

        The bacterial phosphotriesterase (PTE) is another enzyme with a demonstrated 

potential for utilization in the catalytic decomposition of chemical warfare agents.  This 

enzyme has a similar stereoselectivity to that displayed by PepQ for the set of p-

nitrophenyl analogs of the nerve agents 11-15 (Table 3) and the organophosphates 1-10 

(Table 2) [26, 20, 28].  However, the overall kinetic parameters obtained with PTE for 

these substrates are significantly higher than found in this study for PepQ.  For example, 

the kcat/Km values for (Sp)- and (Rp)-methyl ethyl p-nitrophenyl phosphate (2) with PTE 

are 104 and 105 -fold higher than for prolidase, respectively [27]. The stereochemical 

selectivity of prolidase for the organophosphates with a methyl substituent (e.g. 2, 3, and 

4), is higher than that of PTE.  However, the remaining p-nitrophenyl organophosphates 

have a similar degree of stereoselectivity as does PTE.   
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CHAPTER IV 

PH DEPENDENCE OF ENZYMATIC HYDROLYSIS BY THE PEPQ 

PROLIDASE FROM Escherichia coli 

          

        Since the pita-bread family of enzymes have a similar function (cleavage of a 

peptide bond) and a similar binuclear metal center, it is reasonable to infer that these 

enzymes share a common mechanism. The biochemical and structural analysis of 

methionine aminopeptidase (MetAP), proline aminopeptidase (PepP), and Pyrococcus 

furiosus prolidase (Pfpro) suggests that the substrate binds to the dinuclear metal center 

within the active site, and it may activate a metal-bridging water to attack the scissile 

bond. Hydrogen bonds established to the substrate by two histidines may stabilize the 

transition state of a noncovalent gem-diolate tetrahedral intermediate. The significant 

reduction of activity of the two-histidine mutants of MetAP and PepP suggests that these 

two histidines may play an important role for the enzyme catalytic activity [29,30,31].  

In vitro prolidase is most active in the presence of Mn2+ ions, and recently, EPR 

spectroscopic measurements have shown that both metals in the active site are 

manganese in the +2 oxidation state (unpublished results). The two metals are bridged 

by a water or hydroxide ion. The binuclear metal cluster may provide a substrate-binding 

site with the stabilization of the transition state and/or the activation of a nucleophile for 

the catalytic reaction. In previous studies on the catalytic properties of the prolidase from 

E. coli, the enzyme exhibited significant catalytic activity toward the hydrolysis of Xaa-

Pro dipeptides containing nonpolar amino acids at the N-terminal position [11].  
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 The structure of the MetAP from E. coli with the reaction product methionine and 

a phosphorus-containing transition state analog was determined by X-ray 

crystallography [32] in Figure 5.  The reaction products and transition state analogs bind 

to the active site in a similar manner. The N-terminus ligates to Co2, and an oxygen atom 

of the phosphonate or carboxylate is bridged between Co1 and Co2. His178 and His79 

have hydrogen bonds to the oxygen atoms of the inhibitors.    
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 Figure 5: Models of the binding mode of a phosphonate and carboxylate ligand in the 
  active site of MetAP from E. coli. The coordinates are taken from W. T. Lowther et al.
 [29] and can be obtained from the PDB (1C21 and 1C24).      
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         The X-ray structure of the prolidase from Pyrococcus furiosus (Pfpro) was recently 

solved in the presence of the inhibitor, (2S, 3R)-3-amino-2-hydroxyl-5-methyl-

hexanoyl-1-proline (AHMH-Pro), which resembles Xaa-Pro [9]. The AHMH-Pro is a 

dipeptide with a β-amino acid and a hydroxyl substituent at the α-position of leucine. 

The carbonyl oxygen from the proline moiety is coordinated to MA, the hydroxyl group 

at C-2 displaces the hydroxide that bridges the two divalent cations and the amino group 

from C-3 coordinates to MB. His-192 and His-291 form hydrogen bonds with the C-

terminal carboxylic acid and the carbonyl oxygen of the bound inhibitor, respectively. 

The binuclear metal-inhibitor complex of Pfpro is shown in Figure 6.  
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Figure 6: The model of Pfpro-inhibitor (AHMH-Pro) complex obtained from M. J.
 
Maher et al. [9].  
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Materials and Methods 

Materials.  Met-Pro, and Ala-Pro were purchased from Sigma. 1-(1-oxopropyl)-

L-proline was purchased from TimTec Stock Library. The structure of 1-(1-oxopropyl)-

L-proline is presented in Scheme 1. QuickChange site-directed mutagenesis kit was 

purchased from Stratagene. Wizard Genomic DNA purification kits were purchased 

from Promega.  The gel extraction kit was obtained from QIAGEN.  The Gene 

Technology Laboratory at Texas A&M University performed oligonucleotide primer 

synthesis and DNA sequencing reactions.   

                                                          

N

O

CO2H
S

 

 Figure 7. The structure of the 1-(1-oxopropyl)-L-proline 

 

     Site-Directed Mutagenesis.  Site-directed mutagenesis was performed using 

the QuickChange site-directed mutagenesis kit. Primers of 32 bases  

(5’-CCGCTGGGCCTGCAGGTGAATGACGTCGCTGG-3’) and 29 bases  

(5’-CGCTGCGGTGCTGAATTACACCAAACTGG-3’) were used to change the 

His346 and His228 codon (CAT) to the Asn codon (AAT). Primers of 28 bases  

(5’-GGTGTTAACCATCCAACCGGGTATCTAC-3’) were used to change the Glu384 

codon (GAA) to the Gln codon (CAA). The DNA was transformed into XL1-Blue cells.  

The mutated plasmids were sequenced to ensure the fidelity of the PCR reactions. Well-
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isolated colonies of the XL1-Blue cells from a fresh Luria-Bertani (LB) agar plate 

containing antibiotic were purified by Wizard Plus SV Miniperps DNA purification 

System, and they were introduced into competent BL21 cells by transformation.    

Purification of PepQ.  The E. coli culture was grown at 37 oC in 2 liters of LB 

media in the presence of ampicillin (50 mg/L).  Protein expression was induced by the 

addition of 0.5 mM IPTG after 6 hours.  Incubation was continued at 37 oC for another 

10 hours.  The cells were harvested by centrifugation and suspended in 20 mM HEPES 

buffer (pH 8.5).  After disrupting the cells by ultra-sonication for 40 minutes, the cell 

debris was removed by centrifugation and the supernatant solution was fractionated with 

(NH4)2SO4 at 70 % saturation. After centrifugation, the pellet was dissolved in 20 mM 

HEPES buffer (pH 8.5) and loaded onto a Superdex-200 column.  The catalytically 

active fractions were applied to a Q-Sepharose column and eluted from the column with 

a linear gradient of 20 mM HEPES buffer (pH 8.5) containing 1.0 M NaCl.  Fractions 

containing the enzyme were concentrated and loaded onto the Superdex-200 column to 

remove NaCl.  SDS gel electrophoresis indicated that the purity of the prolidase was 

>95%.   

Kinetic Measurements and Data Analysis.  The purified wild-type and mutant   

prolidase were activated by incubating the enzyme in 0.1 mM MnCl2 for 48h at 4oC.  

The activated wild-type or mutant prolidases were assayed by measuring the change in 

absorbance at 222 nm for the hydrolysis of the peptide bond (є = 904 M-1 cm-1). The 

assays were conducted in a micro-plate using a SPECTRAmax-340 spectrometer at 25 

oC. The kinetic parameters, kcat and kcat/Km, were determined by fitting the initial velocity 
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data to equation 1, where v is the initial velocity, kcat is the turnover number, Km is the 

Michaelis constant, A is the substrate concentration and Et is the total enzyme 

concentration.  

 

                                     v / Et  =   kcat A / (Km +  A)                                              (1)      

 

The pH-rate profiles were also determined for the wild-type and mutant pepQ 

prolidase with Met-Pro. The wild-type enzyme was also used for the pH-rate profiles 

with 1-(1-oxopropyl)-L-proline and Ala-Pro. Buffers (10 mM) were brought to the 

correct pH with NaOH and HCl. The buffers included the following: MES (5.0-6.75), 

HEPES (7.0-8.25), TEBS (8.5-9.5), CHES (9.75-10.0). The final pH was measured at 

the end of the enzyme-catalyzed reaction. The pKa values from the pH-rate profiles were 

determined by fitting the data to equation 2, 3 or 4, where y is kcat or kcat/Km, c is the pH 

independent value of y, H is the hydrogen-ion concentration, and Ka and Kb are the 

dissociation constants of the ionizable groups. 

 

     log y = log[c/(1 + H/Ka)]                                                                               (4) 

 

     log y = log[c/(1 + H/Ka + Kb/H)]                                                                   (5)  

 

     log y = log[c/(1 + H2/Ka
2 + Kb/H)]                                                                 (6)  
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Results 

         Kinetic Parameters of the Wild-type and Mutant Prolidases for Dipeptide.  The 

values of kcat, Km, and kcat/Km for the hydrolysis of the Met-Pro dipeptide at pH 8.0 and 

25 oC are listed in Table 4 for the wild-type, H228N, H346N, H346A, and E384Q 

mutants of E. coli prolidase. The activities of the mutants H228N, H346N, and E384Q 

toward Met-Pro are reduced. For example, the values of kcat/Km of H228N, H346N, 

H346A, and E384Q are reduced by  ~50-, 80-, 280-, and 110-fold, respectively. The 

mutant enzymes also have higher Km values compared to that of the wild-type enzyme. 

The kinetic constants suggest that the function of His228, His346, and Glu384 are 

important but not absolutely essential for catalytic activity. The significant decrease in 

the activity of the mutant H346A compared to the mutant H346N shows that the 

hydrogen bond in the enzyme-substrate complex plays an important role during the 

hydrolysis.  

       The hydrolysis of 1-(1-oxopropyl)-L-proline with wild-type enzyme displayed a 

dramatically lower activity than that of Ala-Pro dipeptide. The specific activity of the 

wild-type enzyme with 1-(1-oxopropyl)-L-proline was less than 7.2 x 10-4 sec-1, which 

reveals 6 x 10-4 % of the activity with Ala-Pro. The result indicates that the α-amino 

group of Xaa-Pro dipeptides is required for the enzyme-catalyzed reaction.       
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Table 4:  Kinetic constants for the hydrolysis of Met-Pro dipeptide at pH 8.0 and 25 oC. 

Prolidase 
kcat/Km 

(M-1 s-1) 

kcat 

 (s-1) 

Km 

(mM) 

Wild-type 8.4 (0.8) x 105 109 ± 7 0.13 ± 0.01 

H228N 1.8 (0.3) x 104 11 ± 3 0.6 ± 0.2 

H346N 1.1 (0.2) x 104  5.4 ± 0.5 0.5 ± 0.07  

H346A 3.0 (0.2) x 103 1.0 ± 0.5 3.2 ± 2.0 

E384Q 7.9 (1.5) x 103 2.8 ± 0.4 0.36 ± 0.09 

 

           

 

 

pH-Rate Profiles of the Wild-type, Mutant H228N, H346N, and E384Q  for Met-

Pro Dipeptide. The pH dependence of the kinetic parameters, kcat and kcat/Km, of the 

wild-type, H228N, H346N, and E384Q mutants of prolidase were determined with Met-

Pro as a substrate. The plots of log kcat and log kcat/Km against pH are shown in Figure 

8,9.  The shape of the log kcat profiles is identical to that of the log kcat/Km profiles. The 

pKa values of the log kcat and log kcat/Km profiles of the wild-type and H228N, H346N, 

and E384Q mutants of prolidase obtained from fitting the plots to eq 3 and 4 are shown 

in Table  5. 
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             Figure 8: pH-rate profiles for the hydrolysis of Met-Pro with wild-type (●) and H228N (■). 28
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                                   Figure 9: pH-rate profiles for the hydrolysis of Met-Pro with H346N (▲) and E384Q (♦).
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                      Table 5. pKa values of  the log kcat and log kcat/Km profiles for the hydrolysis of Met-Pro. 

pKa in low pH pKa in high pH 
Prolidase 

log kcat/Km  log kcat log kcat/Km  log kcat 

Wild-type 5.9 ± 0.09 5.8 ± 0.1 9.4 ± 0.1 9.1 ± 0.3 

H228N 5.7 ± 0.06 5.8 ± 0.06 9.7 ± 0.4 9.2 ± 0.09 

H346N 5.9 ± 0.06 6.0 ± 0.05 9.8 ± 0.2 9.7 ± 0.1 

E384Q 5.9 ± 0.07 5.7 ± 0.07 9.4 ± 0.3 9.2 ± 0.3 

 

 

The data of the wild-type enzyme were fit to eq 4. The slope of log kcat/Km 

profiles is approximately +2 at low pH, and –1 at high pH with pKa values of 5.9 ± 0.09 

and 9.4 ± 0.1, respectively. The pKa values of the log kcat profile are similar to these of 

log kcat/Km profiles. The plots indicate that the ionization of the two groups occurs with 

nearly identical pKa values at low pH, and the ionization of another group occurs at high 

pH in the enzyme-catalyzed reaction.      

          The pH-rate profiles for the mutant H228N and H346N are similar in shape to that 

of the wild-type enzyme. The data were also fit to eq 4 for the log kcat and log kcat/Km 

profiles with the mutants H228 and H346, which specifies ionization of three groups, 

two at low pH with similar pKa values and one at high pH. The values of pKa of log 

kcat/Km profile with the mutant H228 at the low pH and high pH were 5.7 ± 0.09 and 9.7 

± 0.4, respectively, which are similar to the values of wild-type enzyme. The log kcat/Km 

profile with H346N also shows similar pKa values to that of wild-type enzyme. 
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However, the shape of the pH-rate profile for the mutant E384Q is different from that for 

the wild-type enzyme, which is a symmetrical bell plot. The diminution of the slope in 

the log kcat and log kcat/Km profiles occurs with a slope of ~1 at low pH. It was fit to eq 3 

with a pKa of 5.9 ± 0.07 at low pH, and a pKa of 9.4 ± 0.3 at high pH, indicating the 

ionization of two groups. 

          Kinetic Parameters of the Wild-type and Mutant Prolidases for Phosphotriester. 

The kinetic parameters of the mutants H228N, H346N, H346A, and E384 were 

determined for the hydrolysis of the phosphotriester substrate and the results are present 

in Table 6.  The mutants H346A, H228N, and H346N hydrolyze the phosphotriester 

substrate are 2, 20, and 5 times faster than does the wild-type enzyme using kcat/Km as 

the kinetic parameter.  However, when Glu384 is mutated to glutamine, the value of 

kcat/Km is reduced 16-fold. The results suggest that E384 enhances the enzyme catalytic 

activity for organophosphate hydrolysis while His228 and His346 are not involved in the 

hydrolysis of phosphotriesters. The value of kcat of E384Q was not determined because 

of the high value of Km for the hydrolysis of the substrate.     
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Table 6:  Kinetic constants for the hydrolysis of diethyl p-nitrophenyl phosphotriester at 
pH 8.0 and 25 oC. 

Prolidase 
kcat/Km 

(M-1 s-1) 

kcat 

 (min-1) 

Km 

(mM) 

Wild-type 3.2 ± 0.1 1.2 ± 0.1 6.2 ± 0.5 

H346N 14 ± 1 6.2 ± 0.7 8.9 ± 0.8 

H346A 5.2 ± 0.5 2.0 ± 0.2 6.5 ± 1.0 

H228N 61 ± 2 32 ± 2 8.8 ± 0.7 

E384Q 0.2 ± 0.02 N/A N/A 

 

        pH-Rate Profiles of the Wild-type, Mutants H228N, H346N, and E384Q  for 

Phosphotriester.  The log kcat and log kcat/Km versus pH-rate profiles for the hydrolysis 

of diethyl p-nitrophenyl phosphotriester are presented in Figure 10,11, and the pKa 

values in Table 7 for the wild-type and H228N, H346N, and E384Q mutants. The 

shapes of the pH-rate profiles are similar, which are half-bell plots. The data for the 

mutant H228N were fitted to eq 2 and correspond to a pKa of 7.8 ± 0.06 for log kcat/Km 

profile, which is somewhat higher than the pKa of log kcat/Km profile for the hydrolysis of 

Met-Pro at the low pH. The pKa of log kcat/Km profile with the mutant H346N is similar 

to that of the mutant H228 with the value of 8.0 ± 0.3. However, the mutant E384Q has a 

pKa value of 6.0 ± 0.08, which is similar to the pKa values obtained from the hydrolysis 

of Met-Pro.       
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                                    Table 7. pKa values of  the log kcat and log kcat/Km profiles for the hydrolysis  

of diethyl p-nitrophenyl phosphotriester. 
 

pKa 
Prolidase 

log kcat/Km  log kcat 

Wild-type 7.0 ± 0.06 7.1 ± 0.8 

H228N 7.8 ± 0.08 7.7 ± 0.08 

H346N 8.0 ± 0.3 N/A 

E384Q 6.0 ± 0.08 N/A  
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Figure 10: pH-rate profiles for the hydrolysis of diethyl p-nitrophenyl phosphotriester with wild-type (●) and H228N (■). 34
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Figure 11: pH-rate profiles for the hydrolysis of diethyl p-nitrophenyl phosphotriester 

with H346N (▲) and E384Q (♦).
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Discussion  

Kinetic Parameters of the Wild-type and Mutants Prolidases for Dipeptide 

Substrates. The values of kcat, Km, and kcat/Km for the hydrolysis of Met-Pro by the 

mutants H228N and H346N are reduced. The result suggests that these histidines play an 

important role during the catalytic hydrolysis of peptides. However, the relative 

contributions of these histidines of MetAP and prolidase are different. The mutational 

analysis of His228, His346, and Glu384 of prolidase implies that these residues are not 

essential, but they facilitate catalysis. The more significant decrease of the catalytic 

activity of H346A compared to H346 suggests that the formation of a hydrogen bond to 

the substrate is an important factor for the enzyme-catalyzed reaction. The residual 

activity of mutants H178A (H346A in E. coli prolidase) and H79A (H228 in E. coli 

prolidase) of the MetAP from E. coli showed a 50-fold and 5 orders of magnitude 

reduction in activity in comparison to the wild-type enzyme [27].  The data 

demonstrated that the contribution of His178 is not critical for catalysis while His79 may 

help enzyme catalytic activity in a more productive manner. These results are different 

than observed effects upon mutation of His346 and His228 of the prolidase from E. coli. 

However, the contribution of the residues for hydrolysis may be different depending on 

the enzyme substrate even though the dinuclear metal clusters in the two enzymes are 

coordinated by identical sets of residues.               

        pH Dependence of Wild-type and Mutant Prolidase with Met-Pro Dipeptide. On the 

basis of the present results, it is concluded that the ionization states of specific amino 

acid residues are important.  The enzyme requires three ionizations to catalyze proline 
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dipeptides. Two groups must be ionized at low pH, and one group at high pH with pKa 

values of ~6 and ~9.5, respectively. The most logical candidate for the nucleophile that 

attacks the scissile bond of the proline dipeptides is the bridging water or hydroxide 

molecule between two metal ions. Therefore, an essential ionization with a pKa value of  

~6 within the active site of enzyme may be correlated to the deprotonation of the water 

molecule between two metal ions in the enzyme active site. The other candidate for 

ionization at low pH may be Glu384 with a similar pKa value of the bridging water as 

shown in pH-rate profiles with mutant G384Q.  Mutation of G384 resulted in ionization 

of one group at low pH in the enzyme-catalyzed reaction. The α-amino group within 

Xaa-Pro substrates appears to contribute to another ionization at high pH in the pH-rate 

profiles.     

             Mechanism of Prolidase for the Hydrolysis of Dipeptides. The X-ray crystal 

structures of the eMetAP- and Pfpro-inhibitor complexes provide some insight toward 

the role of the binuclear metal center for substrate hydrolysis and the binding of 

substrates within the enzyme active site. Combinations of the pH-rate profiles presented 

here, and the previous inhibitor-based studies suggest a potential mechanistic pathway. 

The mechanism in Figure 12 is consistent with the pH-rate profiles for the E. coli 

prolidase and the structures of the eMetAP- and Pfpro-inhibitor complexes. However, 

for the active site structure of Pfpro in complex with the AHMH-Pro, caution should be 

applied in using this structure as a guide for how true substrates actually bind to the 

active site. There are two carbon atoms between the carbonyl oxygen from the proline 

moiety and the free amino group at the β-carbon, which make a longer distance than that 
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of Leu-Pro. Comparisons of the structures of eMetAP- and Pfpro-inhibitor complexes 

suggest that the carboxyl oxygen of the scissile bond may be between metal A and B, 

and His346 may have a hydrogen bond to the imide-nitrogen atom of the proline in the 

binding mode of Leu-Pro substrate in the active site of the prolidase from E. coli. The 

hydrogen bond may reasonably reduce the partial double-bond character and the 

activation barrier for the peptide bond as shown in investigations of MetAP and 

creatinase [30, 32]. The carboxyl oxygen of the scissile peptide bond interacts with metal 

A, and His228 has a hydrogen bond to the carboxyl oxygen. The N-terminus of the 

substrate coordinates to metal B as shown in the X-ray crystal structures of the eMetAP- 

and Pfpro-inhibitor complexes. However, the detail mechanism for how the usually 

positively charged N-terminus amino group coordinates to metal B should be 

investigated. Although there is no evidence for an obvious candidate to accept the proton 

from the N-terminus of Xaa-Pro substrates, a reaction mechanism suggested by G. 

Schürer et al [31] can be considered. The proton transfer to the bridging hydroxide 

between metal ions, the coordination of the N-terminus, and the coordination cleavage of 

the water molecule to metal B occur as a concerted process. Glu384 binds to the 

hydrogen from the bridging water to promote the attack of a nucleophile on the substrate.  
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The resulting tetrahedral intermediate is stabilized by chelation to metal A and by 

hydrogen bonds with His228 and His346. Proton transfer from the gem-diolate group to 

the nitrogen atom of the proline may facilitate releasing the proline- leaving group.  

When the binding product is released, a proton transfer from Glu384 to the N-terminus 

binding to metal B may enhance the releasing product bound to metal ions and 

regeneration of the substrate and hydroxide in the active site.  

         The possible mechanistic pathway can reasonably explain why the enzyme activity 

in pH-rate profiles at high pH is reduced. When the N-terminus of dipeptide is 

deprotonated at high pH, a lack of proton source may cause the drop of the enzyme 

activity because the N-terminus amino acid plays a role as a proton source to the 

releasing proline-leaving group. In addition, the positively charged N-terminus has a 

hydrogen bond to the hydroxide between metal ions. However, the detail mechanism of 

the regeneration step remains unclear. Enzyme kinetics and EPR spectroscopy studies 

with substrates and inhibitors is being sought to support this mechanism.     
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Figure 12: Proposed mechanism for E. coli prolidase catalysis. The R-group is a 

nonpolar side chain of proline dipeptide. 

  
 



                                                                                                                                                                           
  

41

       Kinetic Parameters and pH-rate Profiles of the Wild-type and Mutants Prolidases 

for Phosphotriester Substrates. The activity of the mutants H228N and H346N toward a 

phosphotriester substrate was increased. The results suggest that the H228 and H346 are 

not involved in the enzyme-catalyzed reaction. However, the reduction of the enzyme 

activity of the mutant G384Q suggests that G384 enhances the hydrolysis of 

phosphotriester substrates. The shapes of the pH-rate profiles for the hydrolysis of 

phosphotriester substrates, half-bell plots, are different to those of the pH-rate profiles 

for the hydrolysis of Met-Pro dipeptide. The most logical candidate that corresponds to 

an essential enzyme functionality with a pKa value of ~6.5 in the pH-rate profiles is the 

bridging hydroxide between metal ions. However, the pKa value measured from the plots 

are somewhat higher than those of the pH-rate profiles for hydrolysis of Met-Pro at the 

low pH. The measured pKa value of the pH-rate profile for G384Q, matching the pKa 

values for the hydrolysis of Met-Pro at the low pH, implies that G384 is involved in 

ionization of the water molecule bound to metal ions.                    

         Mechanism of Prolidase for the Hydrolysis of Phosphotriesters. Although the 

kinetics of phosphotriester hydrolysis show different pH-rate profiles than observed for 

the Xaa-Pro substrate, an assumption concerning a general base mechanism that 

proceeds via an attack of a nucleophile to the phosphorus center of the phosphotriester 

substrate can be considered.  A possible mechanism is proposed in Figure 13. The 

suggested mechanism is similar to that of the Xaa-Pro dipeptide hydrolysis. The 

phosphoryl oxygen of the phosphotriester substrate is bound and polarized by the metal 

ions, and the metal-bound hydroxide attacks the phosphorus atom. However, since the p-
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nitrophenyl group (pKa is ~10 in water) is a good leaving group, the proton transfer from 

any proton source may be not necessary. It might be related to no activity reduction at 

high pH in the pH-rate profiles for phosphotriester hydrolysis. However, a proton 

acceptor from G384 in the regeneration step remains unclear.      
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Figure 13. Proposed mechanism for phosphotriester hydrolysis catalyzed by the
 
prolidase. 
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CHAPTER IV 

CONCLUSIONS 
 
 
         The PepQ prolidase from Escherichia coli catalyzes the hydrolysis of dipeptides 

substrates with proline residues at the C-terminus. Significant catalytic activity occurred 

with dipeptides containing nonpolar amino acids at the N-terminal position. The enzyme 

also catalyzes the stereoselective hydrolysis of phosphate and phosphonate esters but the 

turnover numbers for the dipeptides are significantly greater than for the phosphorus 

containing esters. In addition, the PepQ prolidase can be utilized for the kinetic 

resolution of racemic phosphate esters.  

        The activity of the mutants H228N, H346N, and E384Q toward Met-Pro was 

somewhat reduced. The mutational analysis of His228, His346, and Glu384 of prolidase 

implies that these residues are not essential, but they facilitate catalysis. Prolidase 

requires three ionizations to catalyze proline dipeptides. Two groups must be ionized at 

the low pH, and one group at the high pH with pKa values of ~6 and ~9.5, respectively. 

The comparison of the enzyme activity with 1-(1-oxopropyl)-L-proline and Ala-Pro 

suggests that the α-amino group of Xaa-Pro dipeptides plays an important role for the 

enzyme-catalyzed reaction. Combinations of the present pH-rate profile results and the 

previous inhibitor-based studies suggest a potential mechanistic pathway. However, the 

detail mechanism of the regeneration step remains unclear. The activity of the mutants 

H228N and H346N toward a phosphotriester substrate was increased. The results 

suggest that the H228 and H346 are not involved in the enzyme-catalyzed reaction. 
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However, the reduction of the enzyme activity of the mutant G384Q suggests that G384 

enhances the hydrolysis of phosphotriester substrates. A possible mechanism is proposed 

and the mechanism is similar to that of the Xaa-Pro dipeptide hydrolysis. However, a 

proton acceptor from G384 in the regeneration step remains unclear. 
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