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ABSTRACT 

Inheritance of Cotton Fiber Length 

and Distribution. (August 2005) 
 

Chris Alan Braden, B.S., Texas Tech University; 
 

M.S., Texas A&M University 
 

Co-Chairs of Advisory Committee:  Dr. C. Wayne Smith 
  Dr. Eric F. Hequet 
 
 

Fiber quality data from five upland cotton (Gossypium hirsutum L.) genotypes, 

which were grown at College Station, TX during 2001 and 2002, were subjected to 

diallel and generation means analyses to determine the potential for improvement of 

fiber length and to determine the inheritance of length distribution data.  Four near-long 

staple (NLS) upland cotton genotypes and one short-staple genotype were crossed in all 

combinations, excluding reciprocals.  Estimates of general (GCA) and specific 

combining ability (SCA) for fiber length based on Griffing’s diallel Model I, Method 4 

were calculated for high volume instrumentation (HVI) upper-half mean (UHM) fiber 

length and advance fiber information system (AFIS) mean fiber length by weight (FLw), 

mean fiber length by number (FLn), upper quartile length by weight (Uqlw), fiber length 

distribution cross entropy (using 3 different standard or check distributions - CEA, CEB, 

and CEC), fiber length distribution kurtosis (FLwKurt), and fiber length distribution 

skewness (FLwSkew) for FLw.  Across environments, GCA effects were significant for 

fiber length measurements of UHM, FLw, FLn, Uqlw, and SFCw and distribution 

measurements of CEA, CEB, FLwKurt, and FLwSkew.  On the basis of GCA effects, 
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TAM 94L-25 was the best parent to be used in a cross to improve upland fiber length, 

while Acala 1517-99 was the parent of choice to improve distribution among the 4 

parents tested. 

 The inheritance of AFIS fiber length measurements and distribution data was 

estimated using parents, F1, F2, and backcross generations.  The magnitude and 

significance of the estimates for non-allelic effects in the parental combinations suggest 

that epistatic gene effects are present and important in the basic mechanism of AFIS 

fiber length and length distribution inheritance for the populations studied.  Gene effects 

and variances for all AFIS fiber length and distribution data measurements were 

inherited differently in different environments and specific parental combination, 

suggesting environmentally specific mechanisms.  Developing genotypes with enhanced 

fiber length and an optimal fiber length distribution should be a priority to improve 

spinning performance and product quality of U.S. upland cotton. 
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CHAPTER I 
 

INTRODUCTION 
 

Cotton, an oilseed and fiber crop, is grown in more than 17 states in the U.S. and in 

more than 70 countries world wide.  The natural fiber of upland cotton, Gossypium 

hirsutum L., constitutes over 95% of the value of the cotton crop (Cotton Incorporated, 

2005).  It is a high-value crop that is grown by producers as raw material for the textile 

industry.  Global competition in the production and consumption of cotton fiber 

combined with technological advancements in yarn manufacturing has accelerated 

efforts to enhance cotton fiber quality.  Cotton fiber quality can be improved through 

genetics and crop management (Behery, 1993; Anthony, 1999).  Knowledge of the 

effects of fiber properties on processing and their inheritance, relationships, and 

environmental influences is necessary to devise improvement strategies and techniques.  

Breeders do not conduct direct selection for yarn properties because it is not feasible.  

The quantity of fiber required for a spinning test is not attainable from 40 foot 

experimental plots and larger plots would increase the expense and time of an already 

costly procedure.  Thus, breeders select for fiber properties that influence processing.  

The plant breeding industry should focus on enhancing fiber properties and reducing 

variation since variability in fiber properties is detrimental to fiber processing. 

 Connotation of fiber quality is different from the perspective of the cotton 

producer, ginners, and spinner.  For a cotton grower, the word implies the economic 

return 

__________________ 
This dissertation follows the style and format of Crop Science.                     
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return of the fiber properties (premium and discounts) of his product based upon the 

United States Department of Agriculture (USDA) classing office when delivered to the 

yarn mill, merchant, or cooperative marketing association.  Spinners are concerned with 

fiber quality impact on costly disruptions in yarn-spinning processes and with the 

presence of significant defects in yarn and finished fabrics.  Spinners criticize the 

general tendency of producers and ginners to increase the premium by producing higher-

grade cotton or lowering the cost of processing by increasing the speed of ginning 

(Anthony, 1994).  By drying the seed cotton to the extreme and increasing lint cleaning, 

the cotton processed is cleaner and more marketable.  However, short fibers and neps 

have been increased, lowering the spinnability of the cotton, which may lower the 

quality of cotton products.  The cotton producer’s production and ginning practices are 

more influenced by the government loan program and cotton merchants than by the 

ultimate customers for their fiber.  As a result, the price of cotton cannot be directly 

correlated with the quality of yarn produced.  Spinners want to change and raise the 

standards, but the marketplace is not sending the right signals to growers, ginners, and 

breeders.  The valuation of cotton in the future may be based on the true spinning value 

of fibers, changing the present cotton marketing system from its present grade and staple 

orientation to a system based on the fiber characteristics that the spinner, weaver, and 

consumer demands (El Mogahzy, 1999; ICAC 2004). 

Fiber properties of Texas cotton must be improved continually to remain 

competitive in world markets and meet the needs of new spinning and weaving methods.  

Cotton producers in Texas are confronted, in general, with lower yields and poorer fiber 
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quality than are producers in other sections of the cotton belt, especially when 

considering the hectares grown under dryland conditions.  Short staple and micronaire 

outside the premium range account for the majority of the discounts when calculating the 

Commodity Credit Corporation (CCC) loan value for any given bale.  In Texas during 

the 2003-04 crop year, only 44.1% of the bales classified achieved a U.S. base staple 

length of 34 (26.7 mm) (Hequet, 2004).  This number has substantially increased over 

the past few years with the private sector commercializing new long staple picker 

varieties that are capable of being grown across all regions of Texas.  However, 

considering the U.S. is exporting two-thirds of our cotton to overseas mills, a minuscule 

8.1 and 0.9% of classified Texas bales attained the International and International Cotton 

Advisory Committee (ICAC) base staple length of 35 (27.4 mm) and 36 (28.2 mm), 

respectively (Hequet, 2004).  Part of this problem is caused by more stressful and highly 

unpredictable environmental conditions (i.e., drought, adverse temperatures, hail, early 

frost, etc.) a crop will endure during the growing season.  A second problem may be the 

narrow genetic base and lack of adaptability that exists in current cotton cultivars (Van 

Esbroeck et al., 1999). 

Fiber length is one of the most important properties of cotton fibers in both 

marketing and processing (Bragg and Shofner, 1993).  A premium is paid for longer 

fiber length.  Length, i.e., the average length of all fibers in the sample or the average 

length of a given percentage, is related to other cotton fiber characteristics such as 

strength, fineness, maturity, and uniformity.  Longer staple cottons are generally 

stronger, finer, and more uniform than shorter staple cottons.  A few parameters affected 
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by length, or staple, during spinning are production efficiency, amount of waste, and fly 

generation.  Yarn quality parameters such as strength, elongation, hairiness, and 

evenness are correlated strongly with the length of cotton fibers (Perkins et al., 1984; El 

Mogahzy, 1999; El Mogahzy and Chewning, 2001).  Fiber length uniformity, or its 

distribution, has increased importance for the newer technologically advanced spinning 

systems, such as air-jet.   

Knowledge of fiber length is critical to manufacturing yarn of a specific size on 

ring spinning systems (Rusca and Reeves, 1968; El Mogahzy and Chewning, 2001).  

The known fiber length is used to set the distance between rollers in the drafting 

procedure during yarn manufacturing (Perkins et al., 1984; Behery, 1993; El Mogahzy 

and Chewning, 2001).  The draft setting should not be longer than the staple length to 

avoid floating fibers and unevenness or fibers flowing at undetermined speeds.  On the 

other hand, the setting should not be shorter than the staple length to avoid stretching 

and breaking of fibers.   

Inter-fiber friction is dependent upon fiber length, specific surface area, and 

surface characteristics of the fibers.  Longer fibers will improve the frictional resistance 

because of increased area of contact that they have with adjoining fibers, thus enhancing 

yarn strength.  Shorter fibers have a higher probability of slippage than longer fibers, 

therefore, if the frictional hold is less than the breaking load, the fiber will slip rather 

than break and will not make its full contribution to the strength of the yarn 

(Balasubramanian, 1995).  Holding other fiber properties constant, longer fibers require 

less twist to produce maximum yarn strength.  Fiber length and length uniformity are the 
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primary factors in yarn uniformity and defect level, while fineness dictates the spin limit 

and the number of fibers per yarn cross section (Deussen, 1993; El Mogahzy and 

Chewning, 2001).  Lack of fiber strength can be compensated partially by longer fibers 

to improve spinnability. 

Fiber length and its distribution is a quantitative trait.  Detection of gene action 

and inheritance among current near-long staple (NLS) genotypes will expedite the search 

and development of allelic or gene combinations necessary for the selection of parents 

and new germplasm.  Knowledge of heritability, magnitude, and type of genetic variance 

controlling fiber length in current NLS upland genotypes would allow a breeder to 

choose effective parents for developing segregating populations.  Maximizing fiber 

length while minimizing its variance in upland cotton will create a value added 

agricultural commodity. 

By studying the type of gene action and heritability among four NLS upland 

cotton genotypes and one short-staple genotype, the inheritance of NLS fiber length in 

upland cotton was determined.    Genetic information was obtained from a diallel mating 

design for estimates of general (GCA) and specific (SCA) combining ability.  The 

inheritance of cotton fiber length was studied using AFIS data and generation means 

analysis of the five parents, F1, F2, and backcross generations.  Growing the material for 

two years provided estimates of various genetic components controlling Advanced Fiber 

Information System (AFIS) fiber length.  The length distribution data available with the 

AFIS appeared to contain information that would be useful to both cotton breeders and 

spinners.  Mode of gene action for fiber length distribution data also was investigated.  
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The length distribution data may provide a new tool for cotton breeders in their efforts to 

reduce short fiber content, since it clearly appears to be cultivar related (Hequet and 

Ethridge, 2000). 

Objectives 

The objectives of this research project are to:  

1. Determine HVI and AFIS fiber length combining ability of the selected    

 parents. 

2. Estimate gene effects, genetic variance, and heritability of AFIS fiber  length 

 in near-long x near-long and near-long x short staple upland  parental 

 combinations.  

3. Determine combining ability of AFIS distribution data measurements with 

 the selected parents 

4. Determine the mode of gene action and inheritance of AFIS distribution data 

 measurements in near-long x near-long and near-long x short staple upland 

 parental combinations. 
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CHAPTER II 

REVIEW OF LITERATURE 

Factors affecting fiber length and length distribution 

 Enhancing fiber length is a complex issue because fiber samples from field 

research or cotton bales contain a range or distribution of fiber lengths (Behery, 1993), 

the variability of which generally is not measured.  Environmental conditions within a 

growing year affect the length distribution of cotton fibers.  The length of cotton fibers 

varies not only among cultivars, but also within a cultivar due to growth environment, 

within the same plant due to position of the boll, within the same boll due to individual 

seed nutrients, and within the same seed due to the positions of fibers on the seed 

(Bradow et al., 1997).  Besides genotypic selection and environmental conditions 

affecting fiber length, harvesting, ginning, and processing methods can also change the 

length distribution of cotton.     

Fiber quality, in general, plays an important role in how well the fiber withstands 

gin processing.  Cotton fiber strength is indirectly related to short fiber content (SFC).  

The strength of fiber contributes to its ability to withstand mechanical stresses during 

harvesting and ginning.  Weak fibers are prone to break during processing.  Stronger 

fibers reduce the potential for breakage during harvesting and ginning, thus the existence 

of fewer short fibers in the bale.  However, even with stronger fiber we have the 

potential to break fibers because of increasing stresses on the fiber that are caused by 

changes in harvesting and ginning.  Length distributions are influenced by fiber 

maturity, and maturity is directly related to growing conditions.  Immature fibers have 
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underdeveloped, weak, thin walls that are apt to break during harvesting and ginning.  

Fully mature fibers are less likely to be damaged or broken.  Thus, a growing season that 

has an early frost, water stress, or disease affects the fiber length distribution in a bale 

(Behery, 1993). 

Cotton lint possesses its highest fiber quality and best potential for spinning 

when the bolls are mature and freshly opened (Anthony, 1994).  Production practices 

and the degree of weathering after boll maturation will alter the length distribution 

(Anthony, 1999).  The method of harvest (picker vs. stripper) and harvest speed impact 

fiber quality and length distributions (Garner et al., 1970; Cocke et al., 1977; Behery, 

1993; ICAC, 2001).  Stripping cotton reduces the fiber length and contains more foreign 

matter than picked cotton (Garner et al., 1970; El Mogahzy and Chewning, 2001).  The 

type of ginning (hand, saw, or roller) used will also influence fiber length distributions.  

Roller ginned cotton fibers are removed from the seed with little movement of the fibers 

among each other whereas the saw gin produces much more blending or fiber to fiber 

movement (Hertel and Craven, 1960).  Fransen and Verschrage (1985) reported roller 

ginning decreased the fiber length by several millimeters and the percentage of fibers 

shorter than 13 mm increased 6 to 8 times the corresponding value for hand-ginning 

cotton samples.  This same source showed hand-ginned cotton had a nearly normal 

length distribution and it changes to a skew distribution for mechanically roller-ginned 

cotton.  Bradow et al. (1999) summarized more than 1,000 samples of hand-picked fiber 

samples ginned by hand, saw, and roller.  They concluded short fiber content by weight 
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(SFCw) for hand ginned samples was 6.2%, 10.2% for saw ginned, and 11.8% for roller 

ginned. 

Post-harvest management will introduce alterations to fiber length and the length 

distribution (Anthony, 1999).  Gin processing, especially the preliminary cleaning, and 

the effects of moisture content, processing rate, and gin machinery type can have a 

substantial effect on fiber length distribution (Anthony, 1985; Anthony, 1996a; Anthony, 

1996b; Anthony, 1998; Anthony, 1999; Behery, 1993; Gordon, 2001; ICAC, 2001).  The 

combination of heat and lint cleaning at the gin to improve producer’s grades can result 

in excessive fiber damage and cause an increase in SFC (Anthony, 1985; Columbus et 

al., 1989).  SFC has a negative influence on the manufacturing performance and end-use 

value of the cotton.  Anthony and Bragg (1987) reported that only one lint cleaner 

should be used at the gin in order to minimize SFC.   

Fiber length measurements 

Determining the length of individual fibers is difficult and time consuming so 

various methods of estimating fiber length have been devised (Steadman, 1997).  Most 

test methods and instruments for fiber length analysis measure the length and mass or 

weight of each group of fibers.  Fiber length characteristics can then be determined.  

Instruments measuring fiber length can be classified into two general categories on the 

basis of their capability to measure one or a few related properties.  The Suter-Webb 

fiber array method is the most difficult and expensive method since the fibers are first 

manually sorted by length group using a set of combs, then each length group is weighed 

and the length distribution by weight derived (ASTM, 1994a).  Fibrograph, High 
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Volume Instrumentation (HVI), and AFIS systems have been developed for fast 

measurements and contain inherent advantages and disadvantages.  The Fibrograph, a 

single-instrument measurement, evaluates fiber length parameters such as mean length, 

2.5%, and 50% span lengths (ASTM, 1994b).  HVI and AFIS measure a relatively 

complete profile of fiber properties.  HVI provides estimates of length, strength, and 

micronaire reading on the same fiber sample (ASTM, 1994c).  Compared with single-

instrument testing, the HVI technology for evaluation of fiber properties is faster and 

costs less per measurement.  Fiber property measurements by HVI have been beneficial 

to yarn manufacturers, especially when combined with bale selection software such as 

the Engineered Fiber Selection System (Chewning, 1994).   

Without knowledge of heritability and selection response data, instrument choice 

to evaluate fiber properties in breeding programs may be based on cost and availability.  

Breeders need information on which instrument will result in the fastest genetic gain in 

fiber length.  Green and Culp (1990) did not detect any significant GCA or SCA effects 

for any of the HVI fiber measurements, but did for standard laboratory instrumentation.  

They concluded that HVI was not useful to breeders in detecting small genetic 

differences.  In contrast, Latimer et al. (1996) reported measurements of fiber traits using 

HVI analyses provide higher heritability estimates than those obtained from 

conventional fiber quality techniques, and HVI is suitable for improvement of fiber 

quality traits.  May and Jividen (1999) reported that heritability estimates for 2.5% span 

length and UHM fiber length were similar between single- and HVI-instruments and of a 

magnitude to expect progress from selection.  Although 2.5% span length and upper-half 
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mean length are not the same measure of fiber length distribution, both give information 

on the length of the longest fibers in a sample of cotton (Kerr, 1961).  The current 

research will be the first to assess the inheritance and heritability of AFIS fiber length 

measurements. 

The fiber length of a cotton sample can only be fully described by its distribution, 

but fiber length distribution is a complex way to compare cotton lengths.  Various 

aspects of a length distribution are important for different reasons.  Different 

measurement techniques have resulted in more than one desired parameter from a length 

distribution.  Yarn characteristics and spinning parameters are affected by several 

aspects of the length distribution, and therefore certain fiber characteristics (statistical 

parameters) of a fiber length distribution have been developed over the years to be used 

in both trading and processing of cotton fiber.  Classer staple length (length estimated in 

32nd inches), effective length, mean length, upper-quartile length (UQL), span length, 

uniformity index, uniformity ratio, SFC, and upper-half mean (UHM) length are the 

most common length distribution parameters.   

Staple length 

 Staple length is the most commonly used parameter for characterizing cotton 

fiber length (Woo, 1967; El Mogahzy and Chewning, 2001).  Staple length was 

originally defined as a quality estimated by personal judgment by which a sample of 

fibrous raw material was characterized with regards to its technically most important 

fiber length (Woo, 1967).  It was never formally defined in terms of any statistical value 

of length distribution, but considered a measurement of the long fiber content.  The 
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concept of staple length was used long before satisfactory methods of measuring fibers 

had been developed, so that the merchants, spinners or graders would have a common 

language relative to fiber length (Munro, 1987; Behery, 1993; Steadman, 1997).  Staple 

length was estimated by the hand stapling process performed by the classer with the aid 

of some official standards.  The classer would pull a tuft of fibers from the sample, and 

by a process of lapping, pulling, and discarding, would make parallel a typical portion of 

the fibers.   

Mean length 

 ASTM defines the mean length as, “in testing of cotton fibers the average length 

of all fibers in the test specimen based on weight-length data” (ASTM, 1994a).  As an 

alternative, the mean length can be calculated by number-length data, too, and it is 

acknowledged to be the most important in engineering the yarn.  Depending on the type 

of cotton, there exist different relationships between these two lengths.  The length by 

number (FLn) data tends to emphasize the short fibers in the sample, whereas the length 

by weight (FLw) data tends to hide them.  Cui et al. (1998) showed theoretically and 

experimentally that number-based and weight-based statistics may give opposite rank 

orders in some cases when they are used to compare cotton fiber lengths.  They showed 

that FLw is always greater than FLn with the assumption that fiber length and linear 

density are statistically independent.  However, SFC and UQL by number and by weight 

may give opposite rank orders. 

 Mean length by weight is not as straight-forward as it seems because cotton, 

being a natural fiber, varies in diameter (fineness) at the same time as it varies in length.  
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If fibers all had the same fineness then there would be no difficulty in calculating the 

mean fiber length.  The only step necessary would be to add up all the individual fiber 

lengths and divide this sum by the number of fibers.  However, if the fibers have 

different diameters, then the thicker fibers will have a greater mass so that there is a case 

for taking the mass into account when calculating the mean length by weight. 

 Hequet et al. (1998) reported a strong correlation (R2 = 0.93) between the old 

AFIS (length and diameter module) FLw and HVI mean length.  The AFIS FLw was 

slightly higher than those obtained with the HVI. 

Upper-quartile length 

 ASTM defines the upper-quartile length as the fiber length which is exceeded by 

25% of the fibers by weight in the test specimen when tested by the array method 

(ASTM, 1994a).  As discussed above, upper-quartile length by weight is not always 

greater than upper-quartile by number.  Cui et al. (1998) found that 8.33% of 

measurements gave opposite ranks. 

Effective length 

 Effective length is longer than the average length and is a measure of the length 

of the majority of the longer fibers in the sample.  Effective length is statistically defined 

as the upper quartile of a numerical length distribution from which some of the short 

fibers have been eliminated by an arbitrary construction (Woo, 1967; Behery, 1993).  

Thus, the effective length is more independent of the tail of short fibers than is the 

upper-quartile of the complete fiber.  According to Woo (1967), the effective length is 

equal to 0.859 of the maximum length in the sample.   
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Modal length 

 Modal length is the length in a fiber length frequency diagram that has the 

highest frequency of occurrence.  The modal length for long staple cottons is more than 

the mean length because of the progressive increase in skewness of the fiber length 

distributions with increasing staple length.  The modal or most frequent length of the 

fibers when measured in a straightened condition corresponds very closely to the staple 

length (Woo, 1967). 

Span length 

 Span length is the distance spanned by a specified percentage of the fibers in the 

test beard when tested by the Fibrograph, taking the amount reading at the starting point 

of the scanning as 100% (ASTM, 1994b).  There are an infinite number of reference 

points for span lengths.  The 50 and 2.5% are used most commonly by industry.  The 

2.5% span length is that length at which only 2.5% of the fibers are that long or longer 

and likewise for the 50% span length.  The 2.5% span length references the shortest 

distance to which roller drafting ratch settings can be adjusted so that few, if any, fibers 

are broken (Hertel and Craven, 1960).  Behery (1993) stated that the draft setting should 

be set to the fiber length attained by 1% of the fibers (distribution according to number).  

Audivert and Castellar (1971) found that the 2.5% span length was less variable than 

others and increasing span lengths tended to increase the coefficient of variation from 

1% to 4%.  The 50% span length is more valuable as a potential measure of spinning 

performance and number of ends down.  Hertel and Carven (1960) emphasized that the 

67% span length was as good as mean length in describing breaking strength of yarns.  
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The 2.5% span length parameter has a strong relationship with HVI UHM (Hequet et al., 

1998). 

Uniformity index 

 Uniformity Index is obtained by dividing the mean length by the UHM length.  It 

is a measure of the uniformity of fiber lengths in the sample expressed as a percent.  

Thus, this uniformity value is the ratio of the average length of all fibers to the average 

length of the longest one half (ASTM, 1994c). 

Uniformity ratio 

 Uniformity ratio is determined by dividing the 50% span length by the 2.5% span 

length and expressed as a percentage (ASTM, 1994b).  It is a smaller value than the 

uniformity index by a factor close to 1.8.  Larger values indicate a more uniform fiber 

length distribution.  Lower values tend to be associated with manufacturing waste, more 

difficult processing, and lower the product quality. 

Short fiber content 

 The percentage of fibers, by number or weight, shorter than 12.7 mm (½ inch 

long) is associated with increased waste during combing and other processing steps.  In 

addition, short fibers produce weaker, hairier, less uniform yarns with higher CV% and 

poor surface integrity, resulting in poorer quality fabric (Backe, 1986; El Mogahzy, 

1999; Hequet and Ethridge, 2000).  Various attempts have been made to use 

measurements obtained from the fibrograph for estimating SFC.  However, the 

American Society of Testing and Materials (ASTM) only acknowledges one method for 



                                                                             16

measuring short fiber content in cotton, the Suter Webb Array (ASTM, 1994a).  AFIS is 

also capable of determining SFC but currently is not accepted as ASTM standard.   

 Traditionally, the SFCw has been used for most spinning quality experiments 

concerning SFC.  However, the number basis, short fiber content by number (SFCn), 

also has been used for comparisons because it is believed that the number of short fibers 

is more important than their small weight fraction implies.  The importance of SFC in 

determining fiber-processing success, yarn properties, and fabric performance has led 

the post-harvest sector of the U.S. cotton industry to assign top priority to minimizing 

SFC, whatever the cause (Rogers, 1997).  Behery (1993) reported that documentation of 

post-ginning SFC at the bale level would reduce the cost of textile processing and 

increase the value of raw fiber. 

HVI and UHM 

 Since 1980, USDA classing offices have relied almost entirely on HVI for 

measuring fiber length and other fiber properties (Moore, 1996).  The HVI system 

provides measures of cotton fiber length on the basis of the familiar Fibrograph method 

(Hertel, 1940) in which a span length of a cotton beard is tested (El Mogahzy and 

Chewning, 2001).  The standard device currently used by both fibrographs and HVIs is 

similar to that originally developed by Hertel.  This device uses a fiber comb with 

parallel needles attached with a spacing of 13 needles/inch (twice the spacing of Hertel 

hand comb).  The sample is placed in the fibrosampler so as to protrude through holes on 

a sampling plate, and the fibers are picked up by the needles on the comb as the comb is 

moved over the sample.  The fibers are then carded as they pass over a section of card 
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wire; this produces a fiber beard of parallel fibers and is similar to Hertel's hand comb 

process.   

 The outcome is that the fibers are placed on the comb in such a way that they are 

caught at random points along their length to form a beard.  The fibers in the test beard 

are assumed to be uniform in cross-section, but this is a false assumption because the 

cross section of each individual fiber in the beard varies significantly from tip to tip.  

The fibers are combed and brushed to form a fiber beard.  The density along the beard is 

then photoelectrically scanned from the base to the tip (ASTM, 1994c).  The light 

attenuation is assumed to be related to the fiber mass between the lenses.  If we assume 

that fibers have uniform linear density or fineness, the measured amount is proportional 

to the number of fibers.  The sample density is then plotted against distance from the 

comb.  The HVI fiber-length data are converted into the percentage of the total number 

of fiber present at each length value and into other length parameters, such as mean 

length, UHM length, and length uniformity (Behery, 1993; Steadman, 1997).  When 

tested on HVI, the UHM length is the average length by number of the longest (50%) of 

the fibers when they are divided on a weight basis (ASTM, 1994c).  The UHM length 

was chosen because it approximates the classer staple length.  This measure is slightly 

lower than the 2.5% span length (El Mogahzy and Chewning, 2001).   

The HVI and fibrograph measurements are not “length biased” samples 

according to Chu and Riley (1997), contradicting ASTM (1994b) and Zeidman et al. 

(1991) which stated fibers are extracted from the population in direct proportion to their 

length.  Chu and Riley (1997) showed that the length of the fibers sampled with the 
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fibrosampler were almost identical to the original fiber sample.  They assumed that the 

fibrosamplers used to prepare fiber beards have an equal probability of selecting any 

length fiber rather than being proportional to the fiber length, because the fibers are 

sampled in clumps rather than individually.  

Advanced fiber information system  

The accurate measurement of fiber length is important in evaluating cotton 

quality and in optimizing fiber processing.  The USTER® AFIS is a sophisticated and 

versatile laboratory instrument that was designed for single fiber measurements and 

results from this instrument are distinguishable from other methods.  The applications 

are useful not only in the context of commercial textile manufacturing operations, but 

they are proving to be valuable to the process of selection superior cotton cultivars 

(Ethridge and Hequet, 1999).  The USTER® AFIS utilizes small samples (usually 3,000 

or 5,000 fibers per rep), which is advantageous for testing cotton breeders’ fiber 

samples, and can be used extensively in research at the plant, boll, lock, or even seed 

level.  An optimized minimum AFIS sample size has been set empirically at ≥ 500 fibers 

or ≥ 100 mg per analysis (Wartelle et al., 1995).   

A simple schematic diagram of an AFIS instrument was given by Ghorashi et al. 

(1994), Steadman (1997), and Bragg and Shofner (1993), which illustrated the basic 

components of the measurement system.  USTER® AFIS is based on aeromechanical 

fiber processing, similar to opening and carding, followed by electro-optical sensing.  

The fibers are separated from microdust and trash and individualized using specially 

designed pinned, perforated cylinders and stationary carding flats.  Airflow into the 



                                                                             19

perforations of the cylinder allows efficient dust and trash removal by the combination 

of combing via the stationary carding flat and the airflow drawn through the cylinder 

(Hinohosa and Thibodeaux, 1994).   

Electro-optical sensors installed in the fiber channel use advanced signal 

processing technology to identify and characterize several thousand individual cotton 

fibers.  The Electro-optical sensor consists of three basic elements: tapered entrance and 

exit nozzles, beam-forming and collecting optics, and the detection circuitry.  Individual 

fibers are transported pneumatically from the fiber individualizer by a high-velocity air 

stream.  As the material enters the tapered nozzle, it is accelerated and aligned by the 

airflow.  As the fibers leave the entrance nozzle, they penetrate a collimated beam of 

light.  As the fibers pass through, they scatter light in relation to their size and cross 

sectional shape.  This light is detected and generates voltages characteristic of their 

length and cross sectional dimension.  The light blocked by an individual fiber is directly 

proportional to its mean optical diameter and length or time-of-flight in the sampling 

volume (Bragg and Shofner, 1993).  The light-attenuation signal is analyzed in AFIS-

length and maturity module.  The modular concept of the USTER® AFIS system 

provides comprehensive information on the frequency distribution of pertinent 

dimensional parameters.  The abundance of information provided by the USTER® AFIS 

is a result of determining the complete frequency distribution of each measurement.  

Such distributions include information on the mean values, standard deviations, the 

number of observations, and several other parameters that can be calculated using these 

few basic characteristics of a frequency distribution (Behery, 1993). 
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 There are a number of error sources in AFIS measurements.  Fiber damage may 

occur during the separation of fibers by the individualizer on the AFIS prior to actual 

measurement.  Bragg and Shofner (1993) indicated that the length distribution of fibers 

passing through the fiber individualizer is much the same as the length distribution of 

cotton passing through the cotton card.  Cui et al. (2004) stated that there are fiber 

breakages in the opening unit between 1 to 4%.  Bragg and Shofner (1993) concluded 

that the UHM is reduced by 1-2 mm and that the SFC readings increase approximately 

7% in comparison with slower, hand-sorting methods.  Furthermore, only a portion of 

the fibers may be counted since both entangled and hooked fibers are excluded.  Cui et 

al. (2004) reported only 9 to 33% of fibers were counted in the measurement unit, 

depending on the sample type (sliver or lint) and fiber properties (short or long) when 

using the recommended sliver density.  The percentage was significantly increased with 

a decrease in sliver density.  Average fiber length in their experiment was reduced by 

0.25 to 1.02 mm after AFIS measurement.  This reduction in the average fiber length is 

due to fiber breakage.  Therefore, there could be a bias for longer or shorter fiber 

lengths. 

 Cui et al. (2004) measured AFIS accuracy using acrylic filaments cut to lengths 

of 6.35, 12.7, 19.1, 25.4, and 31.8 mm long.  Samples of different length were mixed 

(20% by number of each) and the percentage of each fiber length group was measured 

by AFIS.  They reported that only a portion of the fibers were counted by AFIS, 

however, the data represented the sample population well with a slight bias towards the 

mean (19.1) and a negative bias towards longer fibers.  They observed also that lower 
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sample density increased the percentage of fibers counted, while higher density reduced 

testing time.  The length measurement was not affected significantly based on the 

densities and samples used.     

 Hequet and Ethridge (2000) stated that AFIS tended to measure fibers longer 

than 50.8 mm whereas neither the Peyer nor the Array showed any fibers in this 

category.  The authors concluded that fibers measured longer than 50.8 mm from AFIS 

were not anomalous since they exhibited the highest correlation with yarn count strength 

product but that their length was overestimated.  The AFIS tends to underestimate the 

length of the shorter fibers and to overestimate the length of the longest fibers because 

the speed difference between short and long fibers (more air - fiber friction with long 

fibers) is not totally compensated by the speed sensor.  Bragg and Shofner (1993) 

compared length measurements from AFIS to the Sutter-Webb method, and found that 

AFIS measurement of cotton fiber length is biased toward the shorter fiber lengths.  

They explained this bias as a breakage of fibers in the fiber individualizer of the 

instrument.  The UHM length was reduced by 1 to 2 mm, and SFC increased almost 7% 

compared with the traditional hand-sorting method.  Comparing AFIS and Sutter-Web 

Array measurements from 14 standard cottons, Hequet and Ethridge (2000) determined 

that the instruments correlate well for the shortest fiber percentages, although the levels 

were different.  The length distributions obtained were very similar for short staple 

cottons, however, as the staple length increased the Array reflected a higher percentage 

of the longest fibers, and the discrepancy between the instruments substantially 

increased as staple length increased. 
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 The sampling process of AFIS is a primary strength over other systems.  The 

fiber length reported from the AFIS instrument is based on the number-frequency 

methodology since it involves measurement of individual fibers.  First the length 

distribution by number is determined.  Then the apparatus computes the length 

distribution by weight assuming that all the fibers within the tested specimen have the 

same fineness.  Therefore, the distribution by weight is actually a length-biased 

distribution.  The frequencies obtained from the original measurement (by number) are 

weighted (multiplied) by the fiber length they represent.  In addition, construction of an 

array is not necessary for AFIS numerical sampling.  Any inaccuracy in the fibers’ 

alignment should be reflected in the length distribution, with short fibers being affected 

more than longer fibers (Bragg and Shofner, 1993; Krifa, 2004). 

Length distribution 

 The length characteristics of a cotton sample can only be fully described by its 

fiber length distribution.  Two cotton length distributions may differ in either shape and 

range, or both as is more often true.  Two distributions having the same range and shape 

are identical; thus, all their corresponding parameters are the same.  If the range is the 

same but the shape is different, some of the parameters of both location and dispersion 

(mean value, variance, skewness, uniformity index, etc.) may be different also.  Two 

distributions with different ranges cannot have the same shape.  At best, they can be 

“similar” if they comply with the following definition: if each fiber in a population has a 

corresponding fiber k times longer in another population, the distributions of the two 

populations are called similar.  To make comparisons, a number of different numerical 
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parameters are derived from the length distribution.  About ten parameters have practical 

applications and specific uses.  If a sample of fibers is sorted into common length groups 

onto a velvet board, the length distribution can be observed. 

Genetic diversity 

Many crops have a narrow genetic base relative to their undomesticated 

progenitors.  In cotton, successful cultivars are developed most frequently from closely-

related parents that further narrows the genetic base (Meredith et al., 1997).  Thus, 

limited progress in cultivar improvement in recent years has led some to advocate that 

cotton breeders expand the range of germplasm used in crosses (Meredith, 1991).  The 

genetic base of cotton may be decreasing due to the increasingly proprietary nature of 

germplasm, the large number of reselections in the pedigrees of modern cotton cultivars, 

the tendency to frequently use the same parents for the creation of new cultivars, and the 

planting of only a small portion of the available cultivars (Bowman et al., 1996; Van 

Esbroeck et al., 1998).  This narrowed genetic base in cotton germplasm results in a 

limited supply of alleles for traits of interest, and until the genetic diversity is expanded 

by the introgression of favorable and novel alleles from other populations, the trend to 

greater uniformity will continue.  May et al. (1995) assessed the diversity among 126 

upland cotton cultivars released between 1980 and 1990 by use of coefficient of 

parentage (CP).  They reported that the mean CP among the 126 cultivars was 0.07, 

implying a genetically diverse group.  However, the cluster analysis revealed 12 distinct 

gene pools, in which the analysis recommended that breeders consider the pedigree of 

parents to use in crosses and plan crosses that will provide genetic diversity.  Bowman et 
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al. (1996) determined the average CP for 260 upland cotton cultivars released between 

1970 and 1990 to be 0.07, suggesting substantial remaining diversity and ample 

opportunities for cultivar improvement.  However, the validity of the CP estimates were 

not verified until Van Esbroeck et al. (1999), who stated if relationships among ancestors 

are unknown, CP may not accurately estimate the true level of genetic diversity within a 

crop species.  The agronomic and fiber data from this study supported isozyme and DNA 

data showing a narrow genetic base in cotton. 

Tools for crop improvement 

Many genetic phenomena, such as linkage, influence expression of traits.  Genes 

controlling the expression of many traits lie close together on a chromosome linkage and 

therefore have a higher than random probability of being transmitted together to 

progeny.  Multiple alleles for each gene can exist in a population.  Epistasis can be 

present in which the expression of one gene is affected by the genotype of another gene 

at a separate locus.  Pleiotropy is a phenomenon in which a single gene affects multiple 

traits.  Finally, heterosis can exist in which progeny between unrelated parents perform 

better than would be expected based on the average performance of the parents.   

Crop improvement requires that genetic variation exist to select higher 

performing individuals from a population.  Within upland cotton, genetic variability for 

fiber quality exists among cultivars (USDA, 1995), among germplasm lines (Percival, 

1987), and in primitive germplasm converted to non-photoperiodic flowering habit 

(McCarty and Jenkins, 1993).  Quantitative traits, such as fiber quality, are controlled by 

multiple genes, such that as the gene number for a trait increases, the probability of 
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finding an individual with beneficial alleles at all of the genetic loci decreases.  

Sustained genetic advance requires that genetically diverse parents be mated to form 

segregating populations for selection followed by phenotypic screening. 

Heritability 

The likelihood of improvement is determined by the amount of and type of 

genetic control of the trait, which is referred to as heritability.  Broad-sense heritability is 

the ratio of the genetic variance to phenotypic variation, while narrow-sense heritability 

is the ratio of additive genetic variance to total phenotypic variation (Fehr, 1991).  

Highly heritable traits are easier to improve than those that are lowly heritable.  Low 

heritability can be caused by lack of genetic variation or high environmental variation or 

combination of both.  

When determining heritability estimates for fiber length measurements from a 

diverse collection of cotton populations and various selection units, May (1999) stated 

that selection for various length parameters should be effective.  Narrow-sense 

heritability estimates from eight experiments for 2.5% span length ranged from 0.10 to 

1.00, averaging 0.52.  Broad-sense heritability estimates from four experiments for 2.5% 

span length ranged from 0.54 to 0.91, averaging 0.77.  Calculating heritability and 

selection response from two populations derived from mating excellent fiber quality 

germplasm with lesser quality germplasm, May and Jividen (1999) reported similar 

heritability estimates for 2.5% span length and UHM length, and of a magnitude to 

expect progress from selection.  Herring et al. (2004) reported a narrow-sense 

heritability range of 0.29 to 0.46 for UHM fiber length from a chemically mutated 
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population of Paymaster HS 200.  May and Jividen (1999) reported a low heritability 

(0.19) for SFCn from parent-offspring regression in two populations. 

Environment 

The environment in which a crop is grown will affect trait performance.  

Attempts should be made to minimize environmental effects on selections through use of 

replications, locations, years, and sampling unit, thus increasing probability of selecting 

superior genotypes.  A good genotype evaluated in poor conditions often can be 

overlooked.  Many quantitative traits display interactions between genetic and 

environmental effects known as genotype by environment interaction (GxE).  This 

phenomenon can pose difficulties in selecting superior genotypes that are adapted to 

wide geographic areas, a goal of most crop improvement programs.   

However, most studies involving breeder fiber samples have considered the GxE 

interaction variance as small relative to genetic variation and thus do not consider GxE 

to be a serious bias in estimating heritability or response to selection (Meredith et al., 

1996; May and Taylor, 1998; May and Jividen, 1999; Meredith, 2003).  Analyzing 14 

experiments for the genetic and environmental influences on various measures of fiber 

length across the cotton belt, May (1999) reported a strong genetic basis for fiber length.  

Regardless of the instrument, classers staple, Suter-Webb array, or fibrograph (UHM or 

span length) used to measure fiber length the magnitude of genetic variance was greater 

than that of non-genetic influences in cases where genetic differences existed.  

Interactions of genotypes with locations, years, or higher-order were minor in magnitude 

when compared with genetic variation.  May (1999) concluded that extensive 
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environmental replication is not necessary to evaluate and select breeding material on 

the basis of fiber length parameters.  May (1999) also noted that in some studies the 

experimental error was of similar or greater magnitude as the genotypic variance, 

however, these non-genetic influences should not preclude the identification of 

genotypes with desired fiber length.  Meredith (2003) summarized breeding progress for 

fiber traits over 36 years of the USDA Regional High Quality Tests and concluded that 

the genetic variance component was comprised of 30.6% for UHM length and 29.3% for 

2.5% span length.  The location variance component contributed approximately 50% of 

the total variance component and the genetics by location interaction made up the 

remaining 19%. 

Diallel analysis 

The diallel crossing scheme, i.e., the mating of parents in all possible 

combinations, is a method that can be used to determine genetic variance components 

and heritability if the parents were selected randomly, to calculate repeatability, and to 

identify lines to serve as parents in a breeding program for trait improvement (Fehr, 

1991; Kearsey and Pooni, 1996).  Griffing (1956) described that the basic methods of the 

diallel analysis could be conducted with or without reciprocal crosses and with or 

without parental lines.  Method 1 involves parents and all F1 combinations including 

reciprocals.  Method 2 is composed of the parents and all F1 combinations without 

reciprocals.  Method 3 consists of all F1 combinations including reciprocal crosses but 

without parents, and Method 4 comprises only F1 combinations without reciprocals or 

parents.  Each method provides estimates of different genetic parameters and can be 
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evaluated as Model 1 or 2 (fix or random).  Fixed effects are required when the 

population is small (i.e., fewer than 10 parental lines) and/or the parental lines were 

selected prior to diallel mating.  Such a model is limiting in two ways.  First, the 

parameters that can be estimated with a fixed effects model are reduced.  Variance due 

to genetic sources cannot be estimated.  No conclusion regarding genetic control of the 

trait can be drawn.  Second, the scope of estimates is reduced to the genotypes in the 

study, the parental lines, and their F1 progeny.  No inferences can be made regarding the 

population as a whole. 

Baker (1978) stated that a diallel analysis can provide useful information 

regarding the combining ability of a quantitative trait, but from a genetic perspective two 

key assumptions must be made for interpretations to be valid.  First, the assumption 

concerning the independent distribution of genes in parents, presence or absence of an 

allele at a particular locus is statistically independent of the presence or absence of an 

allele at any other locus.  This is critical for proper interpretation and seems to be the 

least acceptable in actual practice.  Second, epistasis must not affect the trait, which may 

frequently be incorrect.  Difficulty in accepting these assumptions can bias genetic 

parameter estimates.  Baker (1978) stated that additive and dominance genetic variance 

and the number of genes for a trait could not be estimated from any diallel. 

Although genetic control of quantitative traits cannot be determined from a fixed 

diallel analysis, many researchers use the relative magnitude of GCA and SCA effects to 

obtain an approximation.  The GCA effects reflect performance of parental lines in 

combination with all other lines, so the parents with the highest GCA effects should have 
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the greatest impact on trait improvement.  SCA effects identify the best hybrid 

combinations, but they also identify complementary alleles for trait performance 

(Kearsey and Pooni, 1996).  GCA is associated with additive genetic effects whereas 

SCA reflects dominant genetic effects.   

Cheatham et al. (2003) evaluated the GCA among nine diverse cotton lines and 

reported that Fibermax 832, a parental line also being evaluated in the current 

experiment, had the numerically highest positive predicted GCA effect for 50% span 

length at 0.12, although not different from zero.  For 2.5% span length, Fibermax 832 

had the highest predicted effect of 0.58, which was significantly different from zero.  

The homozygous SCA for Fibermax 832 in the Cheatham et al. (2003) paper stated its 

predicted effects for 50 and 2.5% span length, 0.04 and 0.18 respectively, were 

significantly different from zero but less than the predicted effect for Suregrow 501.  In 

their discussion, they stated that Fibermax 832 combined well with the selected U.S. 

cultivars and would be good parental germplasm for improving fiber quality in cotton 

breeding programs in the United States.  Gutierrez et al. (2002), in a study with the same 

lines as Cheatham et al. (2003) plus two additional Australian cultivars, showed that the 

eleven cultivars had a low genetic distance based upon molecular markers (0.06 to 0.34).  

They suggested that genetic distance, based upon his set of 90 simple sequence repeat 

markers, was not a good indication of what to expect from crosses among these lines. 

Genetic control/gene action 

Generation means analysis is important tool in determining the gene action 

controlling the expression of traits in order to develop appropriate breeding procedures.  
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Several models have been developed for analysis of generation means (Anderson and 

Kempthorne, 1954; Hayman, 1958; Hayman, 1960; Gamble, 1962; Gardner and 

Eberhart, 1966a; Mather and Jinks, 1982).  Genetic improvement of a quantitative trait is 

based on effective selection among individuals that differ in genotypic value.  The 

amount and type of genetic control influences improvement because only certain types 

of genetic control can be reliably transmitted to progeny and the next generation.  An 

understanding of the various types of genetic control that determine the genotypic value 

of individuals in a population would be helpful in understanding the concept of genetic 

variance.  Genotypic value can be considered on the basis of a single locus (Falconer and 

Mackay, 1996) or the value of all loci considered together (Fehr, 1991).  In the formula 

for all loci considered together (G = A + D + I), G is the genotypic value, A is the 

additive effect of genes, D is the dominance effect of genes, and I is epistatic effect of 

the genes or the portion attributable to the interaction of alleles among loci.  Of these, 

epistatic effects for two loci can be further described as additive x additive, additive x 

dominance, and dominance x dominance.  Epistatic interactions are dependent on the 

average effects of genes and dominance deviations at individual loci.  As a result, they 

are dependent on the degree of dominance and the gene frequency in the population 

(Fehr, 1991).   

Numerous studies in which the genetic variation for cotton fiber length, 

measured as 50% span length, 2.5% span length or UHM, concluded that additive 

variance within upland cotton genotypes tended to be more prominent than non-additive 

variance (Miller and Marani, 1963; Ramey and Miller, 1966; Lee et al., 1967; Al-Rawi 
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and Kohel, 1969; Al-Rawi and Kohel, 1970; Meredith and Bridge, 1972; Green and 

Culp, 1990; Tang et al., 1993).  Quisenberry (1975) stated that genetic control for fiber 

length contained additive and non-additive genetic variance, but that the greater portion 

was additive.  He reported that 41% of the phenotypic variance from Acala cultivars was 

additive genetic variance compared to only 13% for Texas High Plains cultivars.  

However, a few older experiments and two more recent studies have found non-additive 

variance to be more important (Verhalen and Murray, 1969; Baker and Verhalen, 1973; 

May and Green, 1994; Cheatham et al., 2003).  May and Green (1994), using a Design II 

mating scheme and variances from the F2, F3, and F4, found dominance genetic variance 

to be greater than additive genetic variance for 50 and 2.5% span length in the Pee Dee 

cotton population.  Cheatham et al. (2003) using an extended additive-dominance model, 

also stated genetic variance for 50 and 2.5% span lengths was primarily dominance.  Of 

the sources cited above, none detected epistasis for fiber length except May and Green 

(1994), which reported additive x additive epistatic variance for 2.5% span length. 

Heterosis 

Heterosis, another method by which gene action can be determined, is measured 

usually as the deviation of the F1 from the high parent of mid-parent.  A significant 

heterosis would indicate the existence of non-additive gene effects caused either by 

dominance, or epistasis, or both.  Lee et al. (1967) reported heterosis for fiber length and 

Al-Rawi and Kohel (1969) reported heterosis for 50 and 2.5% span length.  

Summarizing nine experiments, May (1999) reported that heterosis for fiber length can 

occur, however, the deviation is small and apparently of no biological significance.   
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The disparity of genetic variation for fiber length from experiment to experiment 

must be due to different parental material used and different environments, since a large 

environment variance component would simply drive heritability toward zero.  The 

presence of additive effects suggests that selection for fiber length improvement can be 

obtained successfully from pedigree selection schemes and without the use of hybrid 

cultivars (Culp, 1982). 

Textile industry 

 Yarn manufacturing is the first step in the construction of cotton textile products, 

and it continues to undergo technological advance to produce more yarn at less unit cost 

to remain profitable (Deussen, 1993; Faerber, 1995).  With the technological evolution 

of yarn manufacturing from solely ring-based spinning to predominately rotor in the 

U.S. (Smith and Zhu, 1999), and potentially in the near future to air-jet spinning (El-

Mogahzy, 1998), needs for fiber profiles have been revised.  Breeders need to 

understand fiber property needs of different spinning systems.  Each yarn manufacturing 

method has distinct fiber profile needs in terms of the basic fiber properties to produce 

strong yarn for subsequent textile construction.  These profiles should guide breeding 

objectives that must evolve in tandem with processing methods.  

Technologically advanced equipment requires fibers to spin into consistent, high-

strength yarn at speeds unheard of just 20 years ago.  Newer textile mills can spin nearly 

272 kilograms of yarn/spinning position each year, when just a few years ago each 

spindle only transformed about 91 kilograms of cotton (National Cotton Council, 2004).  

Dramatic changes have been made in the speed of processing over the last 40 years.  
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Spindle speeds have risen from 12,000 rpm in the early 1970s to 25,000 rpm in the 

1990s through the development of automatic doffing and link-winding (Bragg, 1991).   

Ring spinning 

Ring spinning is a continuous system in which the fiber strand fed to the spinning 

system follows a continuous path throughout the entire spinning process from the 

feeding point to the yarn package.  Ring spinning is characterized by two main features, 

the continuity of fiber flow from roving to yarn and a tension-controlled spinning 

process (El Mogahzy and Chewning, 2001).  Because of these two features, ring 

spinning produces yarn quality that is unsurpassed by other spinning systems.  It is the 

only system that can produce yarns at the lowest twist possible without sacrificing yarn 

strength.  This method yields optimum comfort and is therefore the preferred system in 

the knit apparel market.  Another major advantage for ring spinning, its primary factor 

for survival, is its flexibility and capability of producing virtually any yarn count or any 

yarn style within the spun yarn range.  However, ring spinning is also the slowest 

spinning system primarily due to the use of the ring/traveler system for twisting and 

winding.  Ring spinning mandates respectable fiber length and length uniformity for 

more twists, followed by fiber strength and fineness (Deussen, 1993).  The increase in 

twists produces yarn and fabric strong enough to spin at finer yarn counts for higher 

quality cotton products and improves the overall spinning performance. 

Compact spinning 

 Compact, also called condensed spinning, is a continuous system and is a new 

concept of yarn forming that represents a fundamental modification of the conventional 
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ring-spinning system.  This method better controls the dimensions and minimizes the 

change in width of the fiber strand entering the delivery point of the drafting zone 

through the use of aerodynamic condensation (Artzt, 2000).  This results in a near 

elimination of the spinning triangle, the area between the clamping line of the delivery 

rollers of the drafting system and the point of twist insertion by the ring spindle.  From 

the quality perspective, when compared to the conventional ring-spun yarn, compact 

spinning results in a significant reduction in yarn hairiness, increases in yarn strength 

and elongation, considerable improvement in abrasion resistance, better yarn evenness, 

lower yarn imperfections, higher draft ratios, and better yarn performance in further 

processing steps (Artzt, 2000; El Mogahzy and Chewning, 2001; Krifa et al., 2002). 

 Compact spinning is currently replacing conventional ring spinning for all yarn 

styles where ring spinning is utilized.  Compact spinning can tolerate more short fibers, 

thus reducing the amount of waste, and produce stronger yarns at lower twist levels, 

which improves yarn performance during weaving and knitting and increasing the range 

textile products produced.  Aside from a few added input costs, the use of an 

aerodynamic system, additional rollers, and frequent cleaning, compact spinning offers 

substantial economical advantages in terms of yarn quality, processing performance, and 

diversity of end products created. 

Rotor spinning 

 Rotor spinning, commonly called open-end, is a non-continuous spinning system 

in which the fiber strand undergoes a complete or partial separation before it is finally 

reconsolidated into a yarn. (El Mogahzy and Chewning, 2001).  Rotor spinning uses a 
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direct spinning system in which a drawn sliver is directly spun into a yarn, eliminating 

the roving process and breaking the linkage between twisting and winding to overcome 

the low production rates in ring and compact spinning systems.  Rotor spinning consists 

of a drafting mechanism, a consolidation mechanism, and a winding mechanism. 

Rotor spinning has become the dominant U.S. yarn manufacturing process, 

replacing ring spinning, because of its economic superiority.  Its advantages include 

more yarn per unit of time combined with less labor and fewer prespinning fiber 

preparation operations.  Since the introduction of rotor spinning in the late 1960s, rotor 

speeds have increased from 25,000 rpm in 1967 to 130,000 rpm in the 1990s (Faerber, 

1995).  The anticipation of higher processing speeds in rotor spinning will have to be 

accompanied with improved fiber properties to counterbalance the increase in tensile and 

yarn strain.  The quality of fibers used is critical, and the processing equipment is very 

sensitive to the cleanliness of cotton.  Trash content is the primary cause of spinning 

endsdown.  For rotor spinning, good fiber strength is the primary quality factor, closely 

followed by fiber fineness (Deussen, 1993).  In regard to fiber length, rotor spinning has 

altered its importance.  Rotor spinning can handle a short UHM yet produce a strong 

coarse count.  Longer fibers are likely to be more disturbed by turbulent airflow than 

shorter fibers, resulting in lower yarn strength, and more unevenness compared to ring 

spun yarn.  However, a high percentage of short fibers will result in low yarn strength 

and excessive endsdown (El Mogahzy and Chewning, 2001). 
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Air-jet spinning 

 Air-jet spinning technology, specifically the Murata Vortex Spinning system, is 

the latest development in spinning technology and may become the dominant form of 

yarn manufacturing because of its productivity and ability to spin a broad range of yarn 

counts.  This system uses the principle of air vortex to produce a yarn similar in structure 

to that of the ring-spun yarn.  The two main actions in air-jet spinning are false twisting 

and end-opening.  False twisting aims at gathering and packing the fibers in the yarn 

structure, while end-opening action aims at separating some of the fibers from the 

bundle to form a wrapper.  El Mogahzy and Chewning (2001) stated it is necessary to 

balance the two actions by optimizing various spinning parameters.  Compared with 

older air-jet systems, the Murata Vortex Spinning system offers improvements in the 

number and length of wrapper fibers. 

This relatively new spinning method can spin a fine count yarn of similar quality 

to that of the same size of ring spun yarn (El Mogahzy, 1998).  In addition, it offers 

impressive manufacturing productivity gains and may push spinning speeds past 300 m 

min-1 as compared with 100 m min-1 for rotor and 20 m min-1 with ring spinning for 30 

count yarn (El Mogahzy and Chewning, 2001).  These elevated production speeds must 

be maintained to justify the cost of the high-tech processing equipment.  Similar to rotor 

spinning, the quality of the fibers used is vital, and this system in particular is very 

sensitive to dust and fine trash.  Strength of air-jet yarns requires effective fiber 

wrapping because of its ‘false twist’ yarn structure (El Mogahzy, 1998), thus air-jet 

spinning requires reputable fiber length and length uniformity so that the fascinating 
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fibers can lock the parallel fiber bundle together.  Fiber fineness, fiber strength, and fiber 

friction then follow these properties in importance (Deussen, 1993).  The Murata Vortex 

Spinning system also removes a significant percentage of short fibers, which gives the 

yarn a combed-like surface structure (El Mogahzy and Chewning, 2001). 

Yarn properties cannot be directly selected through breeding because their 

measurement is precluded in early generation breeding material by available lint sample 

size, genetic population size, and cost.  Breeders must therefore conduct indirect 

selection for yarn properties by selection of one or more fiber properties that influence 

yarn manufacturing (Meredith et al., 1991; May and Taylor, 1998).  Therefore, the 

challenge to the breeder is improving selection effects on yarn strength, the most 

important yarn property influencing textile performance.   
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CHAPTER III 

MATERIALS AND METHODS 

Experimental material 

Genotypes selected on the basis of their HVI UHM length of fibers and 

programmatic origins were TAM 94L-25, TTU 202, Acala 1517-99, Fibermax 832, and 

Tamcot CAMD-E (Table 1). 

Generation development 

Potential parental plants were screened for UHM length prior to the initiation of 

the crossing scheme.  Seed cotton was harvested from 10 individual plants of each 

genotype in the fall of 1999.  These plants were then stumped from the field, potted, and 

placed in a greenhouse.  Fiber samples were ginned and sent to the International Textile 

Center for HVI analysis.  To ensure long fiber phenotypes, TAM 94L-25, TTU 202, 

Fibermax 832, and Acala 1517-99 plants having an UHM fiber length 1.5 mm shorter 

than that of the parent plant with the longest UHM in each genotype were discarded.  To 

ensure that all Tamcot CAMD-E plants were short fiber phenotypes, plants having an 

UHM fiber length greater than 1.5 mm than the plant with the shortest UHM were 

discarded.  Parent plants thus selected were hybridized in a half-diallel during the winter 

of 2000.  The ten crosses made were: near-long x near-long staple (Fibermax 832 x 

TAM 94L-25, TAM 94L-25 x TTU 202, Fibermax 832 x Acala 1517-99, Fibermax 832 

x TTU 202, TAM 94L-25 x Acala 1517-99, Acala 1517-99 x TTU 202), near-long x 

short staple (TAM 94L-25 x Tamcot CAMD-E, Fibermax 832 x Tamcot CAMD-E, 

Acala 1517-99 x Tamcot CAMD-E, and TTU 202 x Tamcot CAMD-E).  During the  
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Table 1.  Pedigrees of the genotypes used in the diallel and generation means analysis 
study. 

• TAM 94L-25 
 

An early-fruiting upland cotton line that has superior fiber 
length and strength even under dryland conditions.  It is a 
cross between two breeding lines, TAM 8703-37 and TAM 
87G3-27 (Smith, 1994).  TAM 8703-37 has a complex 
pedigree that includes Stoneville 1023, ‘Lankart 57’, Rogers 
Acala, Lankart 3840, 'Gregg', 'Fox 4', and Acala 5675 (Smith, 
2003).  TAM 87G3-27 resulted from the cross of a breeding 
line developed by the Texas Agriculture Experiment Station 
and having AE 179, ‘Tideland 501’, ‘DeltaPine 14’, and a 
New Mexico Acala strain in its pedigree, along with PD 6992 
(Culp et al., 1985).  Both parents of TAM 87G3-27 have G. 
barbadense in their pedigree and may be the source of the 
near-long staple trait of TAM 94L-25. 
 

• TTU 202 
  

 
 

A gemplasm line developed by Texas Tech University and 
released in 1999.  It was created as a part of a mutation 
breeding program at Texas Tech University and this line has a 
HVI UHM fiber length 8% greater than that of the original 
cultivar HS 200 (Auld et al., 2000).   

• Acala 1517-99 
  

A high quality cultivar with released by the New Mexico 
Agricultural Experiment Station in 1999.  This cultivar 
originated from a single-plant selection from experimental 
B2541.  B2541 was derived from the cross B742/E1141.  The 
pedigree of B742 is Acala 9136/250.  Acala 9136 has 
significant introgression from G. barbadense.  Parents E1141 
and 250 are of unknown origin (Cantrell et al., 2000). 
 

• Fibermax 832 
    

An okra-leaf cultivar bred by Commonwealth Scientific and 
industrial Research Organisation (CSIRO) in Australia and 
sold by Bayer CropScience.  Fibermax cotton varieties 
currently have a reputation for very good fiber properties, and 
they continue to provide acceptable yields in the USA and 
Australia (Constable, 2001). 
  

• Tamcot CAMD-E 
 

A short-season, early-maturing, agronomically determinate 
cultivar with short fiber length, developed by the Texas 
Agricultural Experiment Station (Bird, 1979). 
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2000 growing season, parent plants were moved from the greenhouse to the field to 

increase the F1 seed base, and F1 seeds were planted to generate F2, BC1P1, and BC1P2 

populations. Selfed progeny of each parent plant was tested for homogeneity of UHM 

fiber length in a complete block design during the summer of 2000.  Fiber evaluation of 

selfed progeny of each parent plant confirmed homozygosity except for TTU 202.   

The parents used herein were specifically chosen and did not represent a random 

sample of all upland cultivars.  Thus, inferences derived from the data apply in the strict 

sense to the parents, crosses, and generations studied.  The degree to which the 

conclusions may be extended to the species as a whole is unknown. 

Experimental design 

In 2001 and 2002, parents and their filial generations (family) were grown at the 

Texas Agricultural Experiment Station Research Farm located near College Station in a 

randomized complete block design with four replications.  For each family and 

replication, the experimental unit for each non-segregating generations (P1, P2, and F1) 

consisted of 1 row, each back-cross generation (BC1P1 and BC1P2) of 2 rows, and the F2 

generation of 4 rows. Each row, 12 m x 1.0 m, was thinned to contain 25 plants spaced 

0.50 m apart to minimize inter- and intra- plot competition. Soil type for both years was 

a Westwood silt loam, a fine-silty, mixed thermic Fluventic Ustochrept, intergraded with 

Ships clay, a very fine, mixed, thermic Udic Chromustert.  Genotypes were planted on 

20 April 2001 and 25 April 2002. Cultural practices, including furrow irrigation, were 

designed to maximize boll retention 
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For HVI analysis, five plants of each non-segregating generation per family and 

replication were harvested individually and ginned on a laboratory saw gin.  HVI fiber 

quality parameters with 1 replication for mike and 2 replications for length amd strength 

were determined at the Texas Tech University International Textile Center.   

For AFIS analysis, five bolls/ plant from the middle fruiting zone were harvested.  

Across families and replications, a total of 10 plants of each parent and F1 were 

collected.  For each family, a total of 100 plants in the BC1P1 and BC1P2 populations and 

200 F2 plants were accumulated across replications.  Fiber samples were processed on a 

10 inch roller gin.  AFIS fiber properties were determined at the International Textile 

Center at Texas Tech University in Lubbock, Texas.  The non-segregating generation 

samples collected for the generation means analysis were also used to conduct a diallel 

analysis using AFIS data. 

Fiber length measurements 

 A diallel test for each fiber length measurement, i.e., UHM fiber length from 

HVI, and FLw, FLn, Uqlw, SFCw, and SFCn from AFIS, was conducted and results 

compared.  A generation means analysis test was performed using FLw, FLn, and Uqlw 

fiber measurements from AFIS. 

Fiber length distribution measurements 

In addition to providing an abundance of fiber measurements, AFIS also provides 

comprehensive information on the frequency distribution of FLw, FLn, maturity, and 

fineness.  Efforts were made in this study to find practical and effective applications of 

the distribution data provided.  FLw was the measurement selected to be analyzed by the 
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various distribution statistical parameters of cross entropy, kurtosis, and skewness.  

Microsoft Excel 2000 macros (Microsoft Corporation, 1999) were used to remove trivial 

information and organize the FLw distribution data of each sample, which contained 40 

length classes.   

Cross entropy is a method to measure how good one distribution approximates 

another distribution, with a value of 0 being a perfect match.  Scientific quandary with 

this procedure surrounds the proposition of what shall serve as the ideal cotton fiber 

length distribution to be compared with all other samples.  No published material exists 

identifying the optimal length distribution.  Questions arise as should the distribution be 

artificially fabricated, what genotype, how many samples or environments shall be 

appropriate.  In the current study, two genotypes grown in a single environment and one 

genotype grown in two environments were examined as possible cross entropy check 

candidates. 

To have a valid comparison of distributions from different samples, all FLw 

distributions were standardized with a mean of 0 and a variance of 1.  However, AFIS 

does not record the length of the 9,000 fiber observations needed to standardize the 

distribution for each sample.  AFIS does provide the percentage of fibers for each of the 

defined forty length classes.  Therefore, a SAS program (SAS, 2004) was created to 

generate random numbers corresponding to the frequency and range of each length class.  

The 9,000 fiber observations randomly generated were then uniformly divided into 40 

new length classes.  The 40 new length classes for each sample were then used to 
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standardize the distribution.  Cross entropy values according to Shore and Johnson 

(1980) were then calculated using a C++ program (Hequet, 2004). 

Acala 1517-99 was one check candidate contingent upon its reputation of 

spinning high quality yarn and spinning tests conducted for the Texas A&M Cotton 

Improvement Lab.  The average percentage of fibers for each of the forty length classes 

from 10 plant samples in 2002 was used to construct cross entropy A (CEA).  In 2002, 

Acala 1517-99 was grown in large spinning test experimental plots in Weslaco and 

College Station, TX.  Test plots were machined picked and saw ginned.  The average 

percentage of fibers for each of the forty length classes from both locations 

(environments) were combined to constitute cross entropy C (CEC).  Tamcot CAMD-E 

was another candidate chosen based upon possessing a large percentage of fibers in a 

narrow length range.  The average percentage of fibers for each of the forty length 

classes from ten plant samples in 2002 was used to construct cross entropy B (CEB).   

Two other distribution statistical parameters, kurtosis and skewness, were 

evaluated.  Kurtosis is a measure of whether the distribution data are peaked (narrow) or 

flat (wide) relative to a normal distribution.  Positive kurtosis indicates a relatively 

peaked distribution whereas a negative kurtosis signifies a relatively flat distribution.  A 

positive FLwKurt would indicate more fibers attained within a narrow length range, 

potentially indicating higher spinning speeds and yarn quality if all other fiber 

characteristics are equal.  Skewness is a measure of the asymmetry of a distribution.  The 

normal distribution is symmetric, and has a skewness value of zero.  Positive skewness 

indicates a distribution with a long asymmetric right tail.  A distribution with a negative 
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skewness has a long asymmetric left tail.  A skewness value greater than 1 generally 

indicates a distribution that differs significantly from a normal distribution.  A negative 

FLwSkew would indicate genotypes with longer fibers.  Kurtosis and skewness were 

calculated according to the formulas of Pearson (1895 and 1905). 

A diallel for the FLw distribution measurements of CEA, CEB, CEC, FLwKurt, 

and FLwSkew was conducted and results of CEA, CEB, and CEC compared.  A 

generation means analysis test was performed and results compared using the FLw 

distribution measurements of CEA, FLwKurt, and FLwSkew. 

AFIS sample preparation and variability 

Preparing AFIS specimen involved hand-drawing a 500 mg tuft of fibers into a 

25-cm length, which yields a silver of approximately 800 mtex.  Only a portion of the 

fibers in the silver is analyzed by the AFIS.  AFIS sample size can be set anywhere 

between 1 and 10,000 fibers, according to fiber availability and experimental design 

requirements.  In this study, 3,000 fibers per specimen were analyzed.  The stipulated 

number of fibers, however, does not represent the total number of fibers fed into the 

system.  Each specimen requires less than 5 min to produce, and for each sample, three 

specimens were prepared.  Conditioning and testing were carried out under constant 

standard atmospheric conditions.  The standard temperature for textile testing is 20 ± 2 

°C and 65 ± 2% relative humidity.  Prior to testing, the samples were arranged in single 

layers and allowed to equilibrate for 48 h under constant standard atmospheric 

conditions. 
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To control or reduce the experimental error involving AFIS fiber properties, the 

same technician and AFIS machine (USTER AFIS) was used to prepare and analyze the 

fiber.  A daily cleaning regimen with standard cottons was done to provide reliable and 

repeatable measurements.  Although the AFIS requires no external adjustments or daily 

calibration, three referenced samples were run each morning to monitor the consistency 

and ensure the AFIS machine was properly calibrated.  The data showed that the 

behavior of measurements on the three standard cottons was similar.  Therefore, it was 

concluded that the best way to monitor instrument changes was by taking the average 

over all three standard cottons.  All subsequent results are based on this average. 

The exponentially weighted moving average was calculated according to the 

formula of Montgomery (1985) to measure the long-term accuracy of the AFIS over the 

time frame the samples were analyzed in 2002 and 2003.  The exponentially weighted 

moving averages for FLw, FLn, Uqlw, SFCw, and SFCn in 2001 are shown in figures 1-

5.  The exponentially weighted moving averages for FLw, FLn, Uqlw, SFCw, and SFCn 

in 2002 are shown in figures 6-10.  In all cases, even small trends, drifts, or level shifts 

in the data are clearly revealed.  The boundary lines drawn above and below the mean 

value line in each figure encompass three standard deviations for the exponential moving 

average series.  The interval encompassing three standard deviations is narrow (Table 2).  

This could be attributed to the slight smoothing applied to the data series (moving 

average span = 2), but most of it is due to the remarkable stability of the AFIS 

instrument over a long period of time.   
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Table 2.  Range of AFIS fiber length measurements [Upper 
Control Limit (+3) – Lower Control Limit (-3)]. 

Trait 2002 2003 
FLw 
 
 
 
FLn 
 
 
 
UQLw 
 
 
 
SCFw% 
 
 
 
SFCn% 

0.28 mm 
 

( = 0.05 mm) 
 

0.41 mm 
 

( = 0.07 mm) 
 

0.23 mm 
 

( = 0.04 mm) 
 

0.88 % 
 

( = 0.15 %) 
 

1.89 % 
 

( = 0.32 %) 

0.20 mm 
 

( = 0.03 mm) 
 

0.28 mm 
 

( = 0.05 mm) 
 

0.17 mm 
 

( = 0.03 mm) 
 

0.57 % 
 

( = 0.10 %) 
 

1.21 % 
 

( = 0.20 %) 
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 In 2002, the data revealed slight level shifts up and down for FLw, FLn, and 

Uqlw (Figs. 1-3) that could be attributed to the natural variability of cotton slivers.  All 

three measurements had the same trend over the course of 96 days.  SFCw and SFCn 

showed the same level shifts in the contrasting direction (Figs. 4-5).  In 2003, the data 

were more within the boundaries with a slight trend toward longer fibers and reduced 

short fiber content over the course of 104 days (Figs. 6-10).  In conclusion, we detected 

no instrument malfunction, shift, or drift that could impact the values of the results 

presented in this work.  

As a tool to detect non-normality and trends, this exponentially weighted moving 

average is quite sensitive.  Because of its lagging behavior, however, it is not appropriate 

for deciding exacting when there should be an operator intervention to check and clean 

the instrument for the purpose of determining whether it is necessary to recalibrate it.  A 

short-term protocol is needed for this purpose (Ethridge and Hequet, 2001). 

Statistical analysis 

Diallel 

Analyses of variance were completed for all fiber length and distribution 

measurements using plot mean data.  Individual ANOVA across environments and per 

environment were conducted using PROC GLM (SAS, 2004).  Replications were 

considered random, and genotypes and environment were considered fixed effects in the 

ANOVA.  Significances of main effects and partitions of the main effects were tested 

against their respective interaction with environment, whereas the interaction with 

environment terms was tested against the error term. The average heterosis effect was 
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estimated by partitioning the total entry sums of squares into a single degree of freedom 

contrast between parents vs. crosses (Griffing, 1956; Gardner and Eberhart, 1966b).  

General combining ability effects of the parents and SCA effects for the crosses, as well 

as their mean squares at each environment and across environments, were estimated 

following Griffing’s Method 4 diallel analysis (Griffing, 1956). 

Generation means 

Analyses of variance were completed for all fiber length and distribution 

measurements using plot mean data.  The GLM procedure of SAS was used to perform a 

combined analysis of variance across environments for each upland parental 

combination and among all parental combinations.  Generations and environments were 

considered fixed effects, while replications were random.   

Generation means analysis was performed by the PROC MIXED procedure of 

SAS (SAS, 2004) to assess the inheritance of AFIS fiber length measurements and 

distributions.  The generation means were used to perform simple and joint scaling tests 

(Kearsey and Pooni, 1996).   

The scaling test is based on the assumption that generation means depend only on 

the additive and dominance gene effects and linear relationships among the means.  To 

test this assumption, the adequacy of the additive-dominance model in each cross was 

determined by the ABCD scaling tests (Mather, 1949; Singh and Chaudhary, 1985).  

Within the ABCD scaling test, A and B are contrasts of backcross means and provide 

tests for additive x dominance epistasis (A = 2BC1P1 - P1 - F1, B = 2BC1P2 - P2 - F1), C 

is a contrast among parental, F1, and F2 generation means and largely tests for 
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dominance x dominance epistasis (C = 4F2 - 2F1 - P1 - P2), and D indicates additive x 

additive epistasis (D = 2F2 - BC1P1 - BC1P2).  Generation means are assumed 

independent, so that variances (V) are V(A) = 4V(BC1P1) + V(P1) + V(F1), V(B) = 

4V(BC1P2) + V(P2) + V(F1), V(C) = 16V(F2) + 4V(F1) + V(P1) + V(P2), and V(D) = 

4V(F2) + V(BC1P1) + V(BC1P2).  In the ABCD scaling test, a simple t-test determined 

the presence or absence of gene interactions.  If the additive-dominance model is 

adequate, quantities A, B, C, and D will each equal zero within the limits of sampling 

error.  The standard errors were obtained by taking the square root of the corresponding 

variances.  This step is important because, in most cases, the estimation of additive and 

dominance components of variances was made assuming the absence of gene 

interaction.   

Gene effects 

The joint scaling test is based on a three-parameter model (m, a, and d).  The 

three genetic parameters were defined as follows: m = midparent value, a = the amount 

of variation among the means resulting from the additive effect of the genes, and d = the 

amount of variation among the means resulting from the dominance effect of the genes.  

This model was used and tested for goodness of fit by a weighted chi-square test with 

three degrees of freedom.  In this procedure, the weights were the reciprocal of the 

respective variances of generation means.  A six-parameter model (m, a, d, aa, ad, and 

dd) was used if a significant chi-square value (poor fit; P ≥ 0.05)) was obtained for the 

three-parameter model.  The six genetic parameters were defined as follows: m = the 

mean of the inbred population, a and d as defined for the three parameter model, aa = 
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the amount of variation among the means attributed to additive x additive epistasis, ad = 

the amount of variation among the means resulting from additive x dominance epistasis, 

and dd = the amount of variation among the means resulting from dominance x 

dominance epistasis.  These genetic parameters were tested for significance using a t-

test.  The adequacy of the six parameter model cannot be tested by a chi-square test 

because of the absence of degrees of freedom.  The relative importance of different gene 

effects on AFIS fiber length and distribution measurements was determined based on the 

magnitude and significance of the estimates.  Estimates of the six parameters can be 

calculated by the equations: 

 m = mean =  ½P1 + ½P2 + 4 F2 - 2BC1P1 - 2BC1P2 

  a = additive effect = ½P1 - ½P2 

  d = dominance effect = 6BC1P1 + 62BC1P2 - 8F2 - F1 – 3/2P1 – 3/2P2 

aa = additive x additive = 2BC1P1 + 2BC1P2 - 4F2 

ad = additive x dominance = 2BC1P1 - 2BC1P2 - P1 + P2 

dd = dominance x dominance = P1 + P2 +2F1 + 4F2 - 4BC1P1 - 4BC1P2  

Variances and heritability 

In the generation means analysis, additive and dominance (non-additive) genetic 

variances (σ2
A and σ2

D) were estimated following the method of Warner (1952), in which 

σ2
A = 2σ2

F2 – ( σ2
BC1P1 + σ2

BC2P2), σ2
D = σ2

F2 – (σ2
A + σ2

E).  Environmental variance were 

calculated by  σ2
E = (σ2

P1 + σ2
P2 + 2 σ2

F1)/4 (Wright, 1968).  The estimate of the genetic 

variance (σ2
G) is equal to the variance of the F2 generation minus the environment 
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variance (σ2
E).  In the variance components and heritability estimate, a negative variance 

was interpreted as zero.   

 Broad-sense heritability on a single-plant basis was estimated according to the 

equation: 

H2 = σ2
G / (σ2

G + σ2
E) 

 The method used to estimate narrow-sense heritability on a single-plant basis was 

as follows (Warner, 1952; Fehr, 1991): 

h2 = [2(σ2
F2) - (σ2

BC1P1 + σ2
BC1P2)] / σ2

F2 

Where: 

 σ2
F2 = the variance among F2 plants of the single-cross population; σ2

BC1P1 and 

σ2
BC1P2 are the variance among plants from the backcrosses of the single cross F1 to P1 

and to P2.  The numerator of the equation represented additive genetic variance, and σ2
F2 

in the denominator represented the phenotypic variance among plants.  A standard error 

for h2 was derived as the square root of the following (Ketata et al, 1976). 

σ2(h2) = 2{[(σ2
BC1P1 + σ2

BC1P2)2 / dfF2] + [(σ2
BC1P1)2 / (dfBC1P1)] +    [(σ2

BC1P2)2 / 

(dfBC1P2)]} / (σ2
F2)2 

Where: 

 σ2
F2, σ2

BC1P1, and σ2
BC1P2 are the variance of the F2, backcross to P1 and backcross 

to P2.  The terms dfF2, dfBC1P1, and dfBC1P2 refer to degree of freedom associated with 

σ2
F2, σ2

BC1P1, and σ2
BC1P2, respectively. 
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CHAPTER IV 
 

FIBER LENGTH DIALLEL 

Results and discussion 

Parents differed (P ≤ 0.05) for all fiber length measurements with the exception 

of SFCw and SFCn, for which these parents were not selected (Table 3).  The parent x 

environment interactions, except for SFC, were not significant, suggesting that parents 

tended to be consistent across the two environments and allowing environments to be 

combined for comparison of genotypic means (Table 4).  Fibermax 832 exhibited the 

longest UHM at 31.6 mm followed by TAM 94L-25 with an UHM fiber length of 31.2 

mm, Acala 1517-99 at 30.3, TTU 202 at 30.0, and Tamcot CAMD-E had the shortest 

UHM fiber length of 26.9 mm.  These data supported the rationale for selecting these 

parents for a diallel study.  Fibermax 832 had the longest FLw at 28.4 mm, followed by 

TAM 94L-25, Acala 1517-99, and TTU 202 at 27.3, 26.9, and 26.6 mm respectively.  

Tamcot CAMD-E produced the shortest FLw at 23.8 mm.  Fibermax 832 exhibited the 

numerically longest FLn at 22.7 mm and not different than Acala 1517-99.  TAM 94L-

25 and TTU 202 were similar in FLn to Acala 1517-99 and longer than Tamcot CAMD-

E.  Fibermax 832 had the longest upper quartile length by weight (Uqlw) at 34.4 mm and 

was followed by TAM94L-25 with an Uqlw measurement of 33.5 mm.  Acala 1517-99 

and TTU 202 were similar in Uqlw and Tamcot CAMD-E produced the shortest Uqlw at 

28.5 mm.  
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Table 3.  Combined analyses of variance of diallel crosses among five upland cotton 
genotypes for fiber length measurements at College Station, TX in 2001 and 2002.† 

  Mean squares 
Source df UHM FLw FLn Uqlw SFCw SFCn 
  ---------------------- mm ------------------------ ---------- % ------------ 
Environment 
(E) 

1 24.61** 83.38** 162.49** 46.84** 169.19** 1155.13** 

Reps/E 6 0.94** 0.50 0.82 0.47 1.75 9.82 
Genotypes 
(G) 

14 14.45** 15.28** 7.90* 26.54** 6.61 18.72 

  Parents (P) 4 27.07** 23.48** 12.06* 41.16** 10.38 33.91 
  P vs. F1 1 14.45 26.90 9.01 46.65* 25.07 13.09 
   F1 9 8.84** 10.35** 5.93** 17.80** 2.89** 12.60 
    GCA 4 19.33** 21.69** 10.09** 39.02** 2.69** 3.54 
    SCA 5 0.45 1.28* 2.61* 0.83 3.05* 19.84 
G x E 14 0.19** 0.81 2.86** 0.37 9.49** 54.57** 
  P x E 4 0.10 0.70 1.66 0.17 4.34** 18.77* 
  P vs. F1 x E 1 0.62** 6.53** 30.70** 0.10 111.77** 648.15** 
   F1 x E 9 0.18* 0.23 0.30 0.49 0.41 4.53 
    GCA x E 4 0.21* 0.28 0.28 0.54 0.15 2.93 
    SCA x E 5 0.16 0.19 0.32 0.44 0.62 5.81 
Error 84 0.08 0.46 0.70 0.49 1.30 6.66 
Mean  30.51 27.27 21.70 33.05 7.33 24.30 
CV, %  0.94 2.49 3.85 2.11 15.53 10.62 
*, **  Significant at the 0.05 and 0.01 probability level, respectively. 
† UHM, HVI upper half mean length;  FLw, AFIS fiber length by weight; FLn, AFIS 

fiber length by number;  Uqlw, AFIS upper quartile length by weight;  SFCw, AFIS 
short fiber content by weight;  SFCn, AFIS short fiber content by number; GCA, 
general combining ability; SCA, specific combining ability. 
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Table 4.  Means of five upland parental genotypes for fiber length measurements evaluated near College Station, TX in 2001 
and 2002.† 

Genotype UHM FLw FLn Uqlw                 SFCw                SFCn 
           2001     2002        2001    2002 
Fibermax 832 31.6 a‡ 28.4 a 22.7 a 34.4 a 8.4 a 5.2 ab 27.9 a 18.7 ab 
TAM 94L-25 31.2 b 27.3 b 21.4 b 33.5 b 12.5 a 5.1 ab 35.8 a 18.4 ab 
Acala 1517-99 30.3 c 26.9 b 21.9 ab 32.4 c 9.2 a 4.1 b 28.8 a 15.2 b 
TTU 202 30.0 d 26.6 b 21.2 b 32.1 c 10.8 a 6.1 a 31.7 a 20.2 a 
Tamcot CAMD-E 26.9 e 23.8 c 19.4 c 28.5 d 11.7 a 6.5 a 31.6 a 19.3 ab 
† UHM, HVI upper half mean length;  FLw, AFIS fiber length by weight; FLn, AFIS fiber length by number;  Uqlw, AFIS 

upper quartile length by weight;  SFCw, AFIS short fiber content by weight;  SFCn, AFIS short fiber content by number. 
‡ Means within a column followed by the same letter are not different at K = 100 (approximates p = 0.05) according to 

Waller-Duncan LSD. 
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GCA effects were observed (P ≤ 0.05) for all fiber length measurements except 

SFCn (Table 3).  The ANOVA revealed a significant GCA x environment interaction for 

UHM fiber length.  The preponderance of GCA effects implied that progeny 

performance relative to fiber length improvement can be predicted from GCA alone 

(97.2%, 93.1%, 75.6%, and 97.4% of total F1 sums of squares were attributable to GCA 

for UHM, FLw, FLn, and Uqlw respectively).  TAM 94L-25 had the highest significant 

GCA effects for improving HVI and AFIS fiber length measurements and for reducing 

short fiber content (Table 5).  Estimates of TAM 94L-25 GCA effects for HVI UHM 

were 0.77 and 1.06 in 2001 and 2002, respectively.  GCA effects for AFIS fiber 

measurements of FLw, FLn, and Uqlw were 1.03, 0.71, and 1.45 respectively, 

complemented with a significant -0.27 estimate for SFCw and non-significant -0.12 for 

SFCn.  Fibermax 832 also exhibited significant positive GCA effects for enhancing 

UHM, FLw, and Uqlw cotton fiber length.  Although not significant, Fibermax 832 

GCA effects were negative (desirable) and positive (undesirable) for SFCw and SFCn, 

respectively.  As expected, Tamcot CAMD-E combined for shorter fiber lengths and 

higher SFCw.  Acala 1517-99 and TTU 202 exhibited no significant GCA effects for any 

of the fiber length measurements, although the trend for TTU 202 as a combiner was for 

shorter UHM, longer AFIS fiber length measurements, and a reduction of short fiber 

content.   

F1 differed (P ≤ 0.05) for all fiber length measurements except SFCn (Table 3).  

Yet, the test for average heterosis (parents vs. F1) was significant only for Uqlw, where 

three F1 exhibited an Uqlw mean greater than the longest parent, which supports 
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Table 5.  Estimates of general combining ability (GCA) effects of five upland parents for 
fiber length measurements evaluated near College Station, TX in 2001 and 2002.† 

Genotype‡ UHM     FLw     FLn    Uqlw SFCw   SFCn 
 2001 2002      
 --------------------------- mm ------------------------- --------- % --------- 
832 0.53** 0.57** 0.53** 0.24 0.73** -0.04 0.41 
L-25 0.77** 1.06** 1.03** 0.71** 1.45** -0.27* -0.12 
1517 0.06 -0.02 -0.14 -0.10 -0.24 -0.06 -0.03 
202 -0.03 -0.07 0.08 0.18 0.03 -0.20 -0.56 
CD-E -1.34** -1.54** -1.50** -1.03** -1.96** 0.57* 0.30 
LSD (0.05) 
  (gi – gj) 

 
0.17 

 
0.22 

 
0.23 

 
0.23 

 
0.32 

 
0.35 

 
0.75 

*, **  Significant at the 0.05 and 0.01 probability level, respectively. 
† UHM, HVI upper half mean length;  FLw, AFIS fiber length by weight; FLn, AFIS 

fiber length by number;  Uqlw, AFIS upper quartile length by weight;  SFCw, AFIS 
short fiber content by weight;  SFCn, AFIS short fiber content by number. 

‡ 832, Fibermax 832; L-25, TAM 94L-25; 1517, Acala 1517-99; 202, TTU 202; CD-E, 
Tamcot CAMD-E. 
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previous reports of heterosis for fiber length in upland cotton (Lee et al., 1967; Al-Rawi 

and Kohel, 1969).  Except for UHM, all F1 x environment interactions and all SCA x 

environment effects were not significant.  For SFCw and SFCn, 58.6% and 87.5% of the 

total F1 sums of squares were attributable to SCA.   

The F1 of Fibermax 832 x Acala 1517-99 had significant SCA effects for 

increasing fiber length of all measurements except for Uqlw and reducing both SFCw 

and SFCn (Table 6).  The UHM and Uqlw means of Fibermax 832 x Acala 1517-99 

were 31.6, 32.1, and 34.3 mm, respectively (Table 7).  FLw and FLn means were similar 

to the longest F1 at 28.5 and 22.8 mm, and SFC means similar to the F1 with the smallest 

percentage of short fibers.  The cross between the best two general combiners, TAM 

94L-25 and Fibermax 832, exhibited significant negative SCA effects for AFIS FLw, 

FLn, and Uqlw, and significant positive SCA effects for SFCw and SFCn.  The F1 UHM 

was the longest of all crosses in 2001, 31.6 mm, and numerically exhibited the longest 

UHM in 2002 and Uqlw, 32.7 and 35.2 mm respectively.  The FLw mean, 28.7 mm, was 

not different from the longest F1 mean.  Of concern within this combination were the 

short FLn measurement of 22.2 mm and the high percentage of short fibers by weight 

and number.  This clearly indicates an undesirable length distribution and proves that 

breeding on UHM length alone can be misleading.  The current premium and discount 

schedule is rewarding this type of cotton whereas it should be discounted.  The wide 

distribution range of cotton lengths will encounter increased waste, loss of production 

efficiency during spinning processes, and inferior yarn quality.   
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Table 6.   Estimates of specific combining ability (SCA) effects of 10 upland F1 crosses 
for fiber length measurements evaluated near College Station, TX in 2001 and 2002.† 

F1 cross‡ UHM FLw FLn Uqlw SFCw SFCn 
 -------------------------- mm ------------------------ ------------ % ----------- 
832 x L-25 -0.07 -0.50** -0.62** -0.43* 0.61* 1.47* 
L-25 x 202 0.05 0.28* 0.51** 0.11 -0.56* -1.52* 
832 x 1517 0.28* 0.53** 0.80** 0.36 -0.87** -2.22** 
832 x 202 0.05 -0.01 -0.22 0.16 0.35 0.94 
L-25 x 1517 -0.24* -0.02 -0.17 0.06 0.20 0.69 
1517 x 202 -0.07 -0.29* -0.30 -0.26 0.28 0.64 
L-25 x CD-E 0.25* 0.24 0.28 0.26 -0.25 -0.64 
832 x CD-E -0.26* -0.03 0.04 -0.09 -0.08 -0.19 
1517 x CD-E 0.03 -0.22 -0.33* -0.16 0.39 0.89 
202 x CD-E -0.03 0.01 0.01 -0.01 -0.06 -0.06 
LSD (0.05) 
(sij – sik) 

 
0.37 

 
0.40 

 
0.52 

 
0.61 

 
0.73 

 
2.23 

LSD (0.05) 
(sij – skl) 

 
0.26 

 
0.28 

 
0.37 

 
0.43 

 
0.51 

 
1.57 

*, **  Significant at the 0.05 and 0.01 probability level, respectively. 
† UHM, HVI upper half mean length;  FLw, AFIS fiber length by weight; FLn, AFIS 

fiber length by number;  Uqlw, AFIS upper quartile length by weight;  SFCw, AFIS 
short fiber content by weight;  SFCn, AFIS short fiber content by number. 

‡  832 x L-25, Fibermax 832 x TAM 94L-25; L-25 x 202, TAM 94L-25 x TTU 202; 832 
x 1517, Fibermax 832 x Acala 1517-99; 832 x 202, Fibermax 832 x TTU 202; L-25 x 
1517, TAM 94L-25 x Acala 1517-99; 1517 x 202, Acala 1517-99 x TTU 202; L-25 x 
CD-E, TAM 94L-25 x Tamcot CAMD-E; 832 x CD-E, Fibermax 832 x Tamcot CD-
E; 1517 x CD-E, Acala 1517-99 x Tamcot CAMD-E; 202 x CD-E, TTU 202 x 
Tamocot CAMD-E. 
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Table 7.  Means of  F1 crosses for fiber length measurements evaluated near College 
Station, TX in 2001 and 2002.† 

F1 cross‡ UHM     FLw     FLn    Uqlw SFCw   SFCn 
 2001 2002      
 ---------------------------- mm --------------------------  -------- % -------- 
832 x L-25 31.6 a§ 32.7 a 28.7 ab 22.2 cd 35.2 a 7.3 ab 25.8 a 
L-25 x 202 31.1 b 32.2 ab 29.0 a 23.3 a 35.1 a 6.0 c 21.9 d 
832 x 1517 31.1 b 32.1 b 28.5 ab 22.8 ab 34.3 b 6.0 c 22.2 cd 
L-25 x 1517 31.0 b 31.6 c 28.5 ab 22.3 bc 34.8 ab 6.9 b 24.6 ab 
832 x 202  30.8 b 32.1 b 28.2 b 22.1 cd 34.4 b 7.1 b 24.9 ab 
1517 x 202 30.4 c 30.9 d 27.3 c 21.7 de 33.0 c 7.0 b 24.1 ab 
L-25 x CD-E 30.1 c 30.8 d 27.4 c 21.8 cd 33.2 c 7.1 b 23.6 bcd
832 x CD-E 29.2 d 30.0 e 26.6 d 21.1 ef 32.2 d 7.5 a 24.6 ab 
1517 x CD-E 29.2 d 29.5 f 25.7 e 20.4 g 31.1 e 7.9 a 25.2 ab 
202 x CD-E 28.8 e 29.7 ef 26.2 de 21.1 f 31.6 de 7.3 ab 23.8 bc 
† UHM, HVI upper half mean length;  FLw, AFIS fiber length by weight; FLn, AFIS 

fiber length by number;  Uqlw, AFIS upper quartile length by weight;  SFCw, AFIS 
short fiber content by weight;  SFCn, AFIS short fiber content by number. 

‡  832 x L-25, Fibermax 832 x TAM 94L-25; L-25 x 202, TAM 94L-25 x TTU 202; 832 
x 1517, Fibermax 832 x Acala 1517-99; 832 x 202, Fibermax 832 x TTU 202; L-25 x 
1517, TAM 94L-25 x Acala 1517-99; 1517 x 202, Acala 1517-99 x TTU 202; L-25 x 
CD-E, TAM 94L-25 x Tamcot CAMD-E; 832 x CD-E, Fibermax 832 x Tamcot CD-
E; 1517 x CD-E, Acala 1517-99 x Tamcot CAMD-E; 202 x CD-E, TTU 202 x 
Tamocot CAMD-E. 

§ Means within a column followed by the same letter are not different at K = 100 
(approximates p = 0.05) according to Waller-Duncan LSD. 
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TAM 94L-25 x TTU 202 combined well as it produced a significant positive 

SCA effect for FLw and FLn, 0.28 and 0.51 mm, respectively.  This parental 

combination exhibited also significant negative SCA effects for SFCw and SFCn, -0.56 

and -1.52 mm, respectively.  The FLw and FLn means of TAM 94 L-25 x TTU 202 were 

numerically the longest of all 10 crosses, and its UHM length of 32.2 mm in 2002 and 

Uqlw of 35.1 mm were not different from the longest F1 mean.  The SFCw and SFCn 

means were also superior as the lowest of all 10 crosses.  This parental combination had 

fiber characteristics that were favorable for a well-balanced distribution and should 

provide reputable yarn quality if all other parameters are equal.  Parental combinations 

TAM 94L-25 x Acala 1517-99, TAM 94L-25 x Tamcot CAMD-E, and Fibermax 832 x 

Tamcot CAMD-E exhibited significant SCA effects for UHM.  For FLw, Acala 1517-99 

x TTU 202 had a negative SCA effect. 

Summary and conclusions 

Successful breeding approaches are a direct consequence of the gene action 

prevalent in the breeding population under consideration.  The relative importance of 

additive vs. non-additive effects for fiber length measurements, HVI and AFIS, in diallel 

crosses is an indication of the type of gene action (Baker, 1978).  GCA estimates 

additive genetic effects.  The GCA effects reflect performance of parental lines in 

combination with all other lines evaluated, so the parents with the highest GCA effects 

should have the greatest impact on trait improvement.  The diallel reported herein 

demonstrated that there is sufficient genetic variation among the parents for fiber length 

to facilitate improvement though selection, but not for the percentage of short fibers.  
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The absolute SFC used in this study measured the percentage of fibers, by number or 

weight, shorter than 12.7 mm (½ inch long).  What is proposed is a relative SFC 

measurement because absolute SFC in not staple independent, shorter staple cottons will 

have more short fibers than long staple genotypes.  A relative SFC measurement by 

weight or number could be the percentage of fibers that are shorter than one-half the 

UHM length.  This staple independent SFC parameter would enable breeders to make 

more accurate selections for genotypes across a range of UHM lengths.   

The GCA effects for all fiber length measurements, except for SFCn, were 

significant (Table 3).  TAM 94L-25 was the best overall combiner, i.e., the best parent to 

be used in a cross to improve all fiber length measurements.  TAM 94L-25 showed 

positive GCA effects for UHM (both years), FLw, FLn, Uqlw, and negative GCA effects 

for SFCw.  SFCn was also lowered when TAM 94L-25 was utilized as a parent.  

Fibermax 832 combined well with selected U.S. cultivars to enhance fiber length, which 

agreed with Cheatham et al. (2003) but it did not exhibit the magnitude of TAM 94L-25 

in this study.  This study also indicated that additive genetic effects tended to be more 

prominent within upland cotton genotypes than non-additive genetic effects, as 

numerous other diallel studies have concluded (Miller and Marani, 1963; Lee et al., 

1967; Al-Rawi and Kohel, 1969; Al-Rawi and Kohel, 1970; Meredith and Bridge, 1972; 

Green and Culp, 1990; Tang et al., 1993).  Genotype x environment interactions were 

minimal, agreeing with May (1999), who reported a strong genetic basis for fiber length.  

Among these parents, only SFCw and SFCn measurements exhibited significant parent x 

environment interactions, which appear based more on magnitude than changes in rank.  



                                                                             72

Only HVI UHM fiber length, which was saw ginned, exhibited a F1 x environment and 

GCA x environment interaction with significance at P ≤ 0.05.   

SCA reflects dominant gene effects.  SCA effects represent the deviation of 

hybrid performance from that expected from the GCA effects of each parent.  SCA 

effects can identify the best hybrid combination, but they can also identify 

complementary alleles for trait performance (Kearsey and Pooni, 1996).  SCA effects 

were significant for only FLw, FLn, and SFCw (Table 3).  Of interest are combinations 

of lines with good to superior mean trait performance and beneficial GCA effects which 

also have beneficial SCA effects.  No such combination was observed for HVI UHM 

fiber length, but two combinations for AFIS fiber length measurements were prevalent.  

For FLw and Uqlw, the TAM 94 L-25 x TTU 202 cross exhibited positive SCA effects 

and means greater than the longest parent (Tables 6 and 7).  For FLn, this F1 exhibited 

the longest length, among parents and crosses, with a significant positive SCA effect of 

0.51 mm.  For FLw, the Fibermax 832 x Acala 1517-99 cross exhibited a mean greater 

than the longest parent and a significant positive SCA effect of 0.53 mm.   

The genetic interpretation of a diallel with a reduced number of parental inbreds, 

such as this one, can be biased by the lack of independent distribution of genes in the 

parental lines (Baker, 1978).  Therefore, combining abilities reported here could be 

biased by the correlation of gene frequencies and should be interpreted with caution.  

Despite these limitations, this diallel was useful in determining which near-long staple 

upland parent had the most desirable GCA expression of fiber length traits.  Where non-

additive gene action was prevalent, this diallel identified certain combinations that might 
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be useful since the parental performance would not necessarily be indicative of the 

performance in cross combination. 

Most current cotton breeding programs use HVI data for selection and 

advancements because of cost and availability.  Conclusions of past studies regarding 

instrument choice and probability for genetic gain have been variable.  Green and Culp 

(1990) did not detect any significant GCA or SCA effects for any HVI measurement but 

did for standard laboratory instrumentation, suggesting that HVI was not useful to 

breeders in detecting small genetic differences.  In contrast, Latimer et al. (1996) 

reported that HVI analyses provided higher heritability estimates than those obtained 

from single instrument techniques, and that HVI thus was suitable for improvement of 

fiber quality traits.  May and Jividen (1999) also reported that heritability estimates of 

HVI UHM fiber length were of a magnitude to expect progress from selection.  Uster’s 

AFIS is the newest instrument to be used by breeders, and it offers a plethora of fiber 

information, including distribution data.  However, high cost is a deterent to utilizing 

AFIS data for selections, especially during early generations.  In this study we detected 

significant GCA effects for both HVI and AFIS instruments, but only significant SCA 

effects were found with AFIS measurements.   

The whole plant samples for the diallel and HVI test were ginned on a laboratory 

saw gin to handle the bulk and acquire the mandatory 30 g lint sample needed for HVI 

analysis.  For the generation means analysis, AFIS was the preferred method to measure 

the fiber length from roller ginned samples because of its ability to analyze a small 

collection of bolls (Wartelle et al., 1995).  Parental and F1 samples in the generation 
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means analysis presented interesting comparisons.  Accordingly, a diallel for AFIS 

measurements was conducted to compare HVI and AFIS fiber length measurements.  

Behery (1993) noted that HVI UHM lengths do not always agree with AFIS length data 

due to effects of sample pooling, fiber crimp, specimen crimp characteristics, and other 

factors.  In the current study, even though HVI and AFIS measurements were ginned 

differently and varied in sample size, sound conclusions can plausibly be made 

concerning HVI and AFIS fiber length measurements. 

When comparing the HVI measurement of UHM to AFIS fiber trait 

measurements of FLw, FLn, and Uqlw, Uqlw most closely followed the mean separation 

order and magnitude of difference among the parents.  FLw attained the same rank as 

UHM, but magnitude differed slightly.  Overall, the three length by weight 

measurements, UHM, FLw, and Uqlw, discriminated the parental genotypes.  Also 

worth noting, the magnitude of difference between Acala 1517-99 and TTU 202 

averaged 0.33 mm for all three measurements.  Comparing the F1 data, the Waller-

Duncan LSD test for the three length by weight measurements clearly discriminated the 

longest five F1 from the shorter five, whereas FLn measurement did not.  The actual 

output recorded by the AFIS machine is the FLn for each fiber passing through the 

sensor, providing an un-bias measurement of fiber length and percentage of short fibers 

in a sample.  The FLw measurement is calculated from the recorded FLn assuming all 

fibers in the sample have the same linear density.  However, Hequet (2004) knows that 

this assumption is false, therefore creating a FLw bias in which the measurement can 

then hide the measured short fibers.  For example, the Fibermax 832 x TAM 94L-25 
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cross ranked near the top for all length by weight measurements, however its high 

percentage of short fibers lowered its FLn rank. 

Developing genotypes with superior fiber length is a priority of most breeding 

programs across the Cotton Belt.   In Texas during the 2003-04 crop year, only 44.1% of 

the bales classified achieved a U.S. base staple length of 34 (26.7 mm) (Hequet, 2004).  

This number has substantially increased over the past few years with the private sector 

commercializing new long staple picker varieties that are capable of being grown across 

all regions of Texas.  However, considering the U.S. is exporting two-thirds of our 

cotton to overseas mills, a minuscule 8.1 and 0.9% of classified Texas bales attained the 

International and ICAC base staple length of 35 (27.4 mm) and 36 (28.2 mm), 

respectively (Hequet, 2004).   

Knowledge of which instrument results in the fastest genetic gain and the type of 

genetic action controlling fiber length in current near-long staple genotypes would allow 

a breeder to choose effective parents for developing segregating populations.  Increasing 

the fiber length a few more millimeters into well-adapted genotypes would be valuable 

for the Texas cotton industry, even more so if our premiums and discounts were 

comparable with other cotton producing regions across the Cotton Belt.  Our results 

show considerable variation in GCA effects among the four near-long staple genotypes.  

U.S. breeders could benefit from using TAM 94L-25 to improve fiber length.  Since the 

cultivars chosen represented diverse programmatic origins, we conclude that most U.S. 

cotton breeding programs should gain from using TAM 94L-25 in crosses with their 

lines. 
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CHAPTER V 
 

AFIS FLw GENERATION MEANS ANALYSIS 
 
Results and discussion 
 

The parental, F1, F2, and backcross generations differed (P ≤ 0.01) in FLw for all 

parental combinations except Acala 1517-99 x TTU 202 (Table 8).  The ANOVA also 

revealed a significant generation x environment interaction in all parental combinations 

except Fibermax 832 x Acala 1517-99, Fibermax 832 x TTU 202, Acala 1517-99 x TTU 

202, and Acala 1517-99 x Tamcot CAMD-E, thus these four parental combinations were 

pooled over years.  The other parental combinations indicated that some generations 

reacted differently to each environment, suggesting that selection and evaluation should 

be conducted within environment if reliable knowledge of FLw is to be obtained. 

FLw means from P1 and P2 were different (P ≤ 0.05) in each parental 

combination except Fibermax 832 x TAM 94L-25 in 2002, TAM 94L-25 x TTU 202 in 

2001, TAM 94L-25 x Acala 1517-99 in 2001, and Acala 1517-99 x TTU 202 combined 

across years (Table 9).  Generally, F1 hybrids had FLw similar to the longest parent, 

although some parental combinations had means intermediate to the parents.  In 2001, F1 

means of TAM 94L-25 x TTU 202, TAM 94L-25 x Acala 1517-99, and TAM 94L-25 x 

Tamcot CAMD-E were greater than the longest parent, thus demonstrating heterosis.  

Depending upon the parental combination and environment, F2 means were either 

similar to the longest parent or intermediate.  The Fibermax 832 x TAM 94L-25 F2 mean 

in 2001 and Fibermax 832 x TTU 202 F2 mean combined across years was similar to the  
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Table 8.  Mean squares for FLw measured on P1, P2, F1, F2, BC1P1, and BC2 P2 (per parental combination and among all 
combinations) at College Station, TX in 2001 and 2002. 

 
A. 
  Parental Combinations† 
Source df 832 x L-25 L-25 x 202 832 x 1517  832 x 202 L-25 x 1517 1517 x 202 
Environment (E) 1 96.27** 75.25** 38.80** 62.03** 103.32** 51.83** 
Reps/E 6 0.67 0.36 0.37 0.20 0.27 0.44 
Generation (Gn) 5 1.88** 4.86** 3.09** 3.80** 2.65** 0.36 
Gn x E 5 1.90** 1.46** 0.35 0.46 2.44** 0.76 
Error 30 0.37 0.26 0.40 0.51 0.28 0.49 
 
 
 
B. 
  Parental Combinations‡ 
Source df L-25 x CD-E  832 x CD-E 1517 x CD-E  202 x CD-E      Among 
Environment (E) 1 38.56** 55.28** 58.32** 19.20** 57.55** 
Reps/E 6 0.41 0.22 0.09 0.38 0.04 
Generation (Gn) 5 16.15** 21.11** 10.24** 9.72** 4.90** 
Gn x E 5 1.87** 0.96* 0.17 1.30** 0.37** 
Error‡ 30 0.21 0.32 0.23 0.29 0.09 
*, **  Significant at the 0.05 and 0.01 probability level, respectively. 
†  832 x L-25, Fibermax 832 x TAM 94L-25; L-25 x 202, TAM 94L-25 x TTU 202; 832 x 1517, Fibermax 832 x TTU 202; 

L-25 x 1517, TAM 94L-25 x Acala 1517-99; 1517 x 202, Acala 1517-99 x TTU 202. 
‡  L-25 x CD-E, TAM 94L-25 x Tamcot CAMD-E; 832 x CD-E, Fibermax 832 x Tamcot CAMD-E; 1517 x CD-E, Acala 

1517-99 x Tamcot CAMD-E; 202 x CD-E, TTU 202 x Tamcot CD-E; Among, Among all combinations. 
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Table 9.  Means of P1, P2, F1, F2, BC1P1, and BC1P2 for FLw (mm) per parental combination and among all combinations at 
College Station, TX in 2001 and 2002.  First parent listed is P1, second parent is P2. 

 
A. 
 Parental Combinations† 
       832 x L-25     L-25 x 202 832 x 1517 832 x 202    L-25 x 1517 1517 x 202
Gen.‡   2001  2002 2001 2002   2001/02   2001/02 2001 2002   2001/02
P1 27.5 ab§ 29.2 ab 25.6 b 28.9 ab 28.4 a 28.4 a 25.6 b 28.9 ab 29.9 a 
P2 25.6 c 28.9 b 25.5 b 27.8 c 26.9 d 26.6 b 25.7 b 28.1 c 26.6 a
F1 27.9 a 29.5 ab 28.5 a 29.5 a 28.5 a 28.2 a 28.0 a 29.0 ab 27.3 a
F2 25.9 c 29.9 a 26.2 b 29.1 ab 27.7 bc 27.3 b 25.3 b 29.4 ab 26.9 a
BC1P1 26.6 bc 29.8 a 26.2 b 29.5 a 28.3 ab 28.1 a 26.1 b 29.6 a 27.1 a
BC1P2 26.6 bc 29.8 a 26.4 b 28.8 b 27.5 cd 27.2 b 25.4 b 28.8 bc 26.9 a
 
 
B. 
 Parental Combinations¶
       L-25 x CD-E      832 x CD-E  1517 x CD-E      202 x CD-E         Among
Gen.   2001  2002  2001 2002      2001/02   2001 2002  2001 2002
P1 25.6 b 28.9 a 27.5 a 29.2 a 26.9 a 25.5 a 27.8 a 26.4 ab 28.8 a 
P2 22.8 d 24.8 d 22.8 c 24.8 e 23.8 d 22.8 c 24.8 d 24.5 e 26.8 d
F1 26.6 a 28.2 a 25.8 b 27.4 c 25.7 c 25.7 a 26.7 b 26.9 a 28.3 b
F2 25.9 ab 26.8 b 24.8 b 26.3 d 26.3 b 25.8 a 25.9 c 25.8 cd 28.0 b
BC1P1 25.9 ab 28.3 a 25.3 b 28.4 b 26.6 ab 25.8 a 27.1 ab 26.2 bc 28.7 a
BC1P2 24.9 c 25.6 c 23.4 c 26.4 d 25.5 c 24.3 b 25.4 cd 25.3 d 27.7 c
†  832 x L-25, Fibermax 832 x TAM 94L-25; L-25 x 202, TAM 94L-25 x TTU 202; 832 x 1517, Fibermax 832 x TTU 202; 

L-25 x 1517, TAM 94L-25 x Acala 1517-99; 1517 x 202, Acala 1517-99 x TTU 202. 
‡  Gen., generation; P1, parent one; P2, parent two; F1, P1 x P2; F2, selfed F1; BC1P1, backcross to P1; BC1P2, backcross to P2. 
§  Means within a column followed by the same letter are not different at K = 100 (approximates p = 0.05) according to 

Waller-Duncan LSD. 
¶  L-25 x CD-E, TAM 94L-25 x Tamcot CAMD-E; 832 x CD-E, Fibermax 832 x Tamcot CAMD-E; 1517 x CD-E, Acala 

1517-99 x Tamcot CAMD-E; 202 x CD-E, TTU 202 x Tamcot CD-E; Among, Among all combinations.  78 
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shorter parent, TAM 94L-25 and TTU 202, respectively.  In most parental combinations, 

the mean values of the backcrosses were different and shifted toward the values 

observed for the recurrent parent.  However, the BC1P1 means were not different from 

BC1P2 means of Fibermax 832 x TAM 94L-25 in 2001 and 2002, TAM 94L-25 x TTU 

202 in 2001, TAM 94L-25 x Acala 1517-99 in 2001, and Acala 1517-99 x TTU 202 

combined across years. 

The parental combinations were divided into two categories, near-long x near-

long and near-long x short staple parental combinations.  For each parental combination, 

P1 was assigned accordingly to the parent with the longest FLw.  The near-long x near-

long parental combinations consisted of Fibermax 832 x TAM 94L-25, TAM 94L-25 x 

TTU 202, Fibermax 832 x Acala 1517-99, Fibermax 832 x TTU 202, TAM 94L-25 x 

Acala 1517-99, and Acala 1517-99 x TTU 202.  The near-long x short staple parental 

combinations were Fibermax 832, TAM 94L-25, Acala 1517-99, and TTU 202 crosses 

with Tamcot CAMD-E. 

FLw frequency distributions of each parental combination were constructed to 

visually gain a more comprehensive understanding into the generation means and to 

determine transgressive segregation (Figs. 11-28).  For each figure the y-axis is the 

number of plants, and the x-axis is FLw in mm divided into 10 length classes.  Within 

each figure classes are the same for the non-segregating and segregating populations.  

However, the overall range and class size does change from figure to figure. 

Examination of the frequency distribution of individual plant values of each 

parental combination indicated that the segregating populations followed a normal
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distribution, suggesting that FLw is quantitatively inherited.  Transgressive segregation, 

individual F2 or backcross plant observations with values exceeding the longest parent or 

F1 observation (Kearsey and Pooni, 1996), was visible in both near-long x near-long and 

near-long x short staple parental combinations.     

At least one segregating population in all near-long x near-long parental 

combinations exhibited transgressive segregation.  Averaging the percent of plants 

exhibiting transgressive segregation for each segregating population among the near-

long x near-long parental combinations, the BC1P1 had the highest percent transgressive 

segregation at 3.6%, followed by the F2 at 2.4%, and the BC1P2 at 1.7%.  In 2002, the 

BC1P1 population of TAM 94L-25 x TTU 202 had the highest percentage of 

transgressive segregation, 10.0% (Fig. 14).  In 2002, Fibermax 832 x TAM 94L-25 had 

the highest percent of transgressive segregation among the BC1P2 and F2 populations, 

7.0 and 8.0%, respectively (Fig. 12).  It is interesting to note that a high percentage of 

transgressive segregation for FLw was observed in Fibermax 832 x TAM 94L-25 

parental combination in 2002.  This suggests that the two longest genotypes in this study 

have different alleles for FLw and that further improvement of fiber length is possible.   

 Fewer transgressive segregates appeared in the near-long x short staple 

segregating populations, and none appeared in the backcross to Tamcot CAMD-E (Figs. 

20-28).  In 2001, TAM 94L-25 x Tamcot CAMD-E had the highest percentage of BC1P1 

and F2 transgressive segregation, 6.0 and 8.0%, respectively (Fig. 20).  Other near-long x 

short staple parental combinations either displayed no or a very low percentage of 

transgressive segregation. 
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Fig. 11.  Frequency distribution of FLw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generations for the near-long x near-long parental combination of Fibermax 832 (P1) x 
TAM 94L-25 (P2) in 2001. 
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generations for the near-long x near-long parental combination of Fibermax 832 (P1) x 
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Fig. 14.  Frequency distribution of FLw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generations for the near-long x near-long parental combination of TAM 94L-25 (P1) x 
TTU 202 (P2) in 2002. 
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Fig. 16.  Frequency distribution of FLw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generations for the near-long x near-long parental combination of Fibermax 832 (P1) x 
TTU 202 (P2) across 2001 and 2002. 
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Fig. 17.  Frequency distribution of FLw in the P1, P2, F1, BC1P1, BC1P1, and F2 
generations for the near-long x near-long parental combination of TAM 94L-25 (P1) x 
Acala 1517-99 (P2) in 2001. 
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Fig. 18.  Frequency distribution of FLw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generations for the near-long x near-long parental combination of TAM 94L-25 (P1) x 
Acala 1517-99 (P2) in 2002. 
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Fig. 19.  Frequency distribution of FLw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generations for the near-long x near-long parental combination of Acala 1517-99 (P1) x 
TTU 202 (P2) across 2001 and 2002. 
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Fig. 20.  Frequency distribution of FLw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generations for the near-long x short staple parental combination of TAM 94L-25 
(P1) x Tamcot CAMD-E (P2) in 2001. 
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Fig. 21.  Frequency distribution of FLw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generations for the near-long x short staple parental combination of TAM 94L-25 
(P1) x Tamcot CAMD-E (P2) in 2002. 
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Fig. 22.  Frequency distribution of FLw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generations for the near-long x short staple parental combination of Fibermax 832 
(P1) x Tamcot CAMD-E (P2) in 2001. 

mm mm



 93

 

 
 
 
 
 
 
 
 
 
 
 

0

5

10

0

20

40

0

5

10

0

20

40

0

5

10

0

30

60

  P1 

  P2 

  F1   F2 

BC1P1 

BC1P2 

N
um

be
r o

f p
la

nt
s 

21.5      23.5      25.5      27.5      29.5 
       22.5      24.5      26.5      28.5      30.5 

21.5      23.5      25.5      27.5      29.5 
       22.5      24.5      26.5      28.5      30.5 

Fig. 23.  Frequency distribution of FLw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generations for the near-long x short staple parental combination of Fibermax 832 
(P1) x Tamcot CAMD-E (P2) in 2002. 
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Fig. 24.  Frequency distribution of FLw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generations for the near-long x short staple parental combination of Acala 1517-99 
(P1) x Tamcot CAMD-E (P2) across 2001 and 2002. 
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Fig. 25.  Frequency distribution of FLw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generations for the near-long x short staple parental combination of TTU 202 (P1) x 
Tamcot CAMD-E (P2) in 2001. 
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Fig. 26.  Frequency distribution of FLw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generations for the near-long x short staple parental combination of TTU 202 (P1) x 
Tamcot CAMD-E (P2) in 2002. 
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Fig. 27.  Frequency distribution of FLw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generations among all parental combinations in 2001. 
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Fig. 28.  Frequency distribution of FLw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generations among all parental combinations in 2002. 
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Generation mean analyses tested three- and six-parameter models for the best fit 

to explain genetic control of FLw in various upland parental combinations.  Effects were 

first estimated with the three-parameter model and accepted if P ≥ 0.05.  The three-

parameter model satisfactorily explained the genetic differences for FLw in TAM 94L-

25 x TTU 202 in (Table 10).  In this combination and environment, the variation among 

generation means was explained by the simple additive-dominance model, indicating 

that epistasis was not involved in the inheritance of the trait.  The best approximation of 

additive and dominance effects can be obtained from the three-parameter additive-

dominance model because these effects are unbiased due to the absence of epistasis 

(Hayman, 1958).  TAM 94L-25 x TTU 202 in 2002 was the only near-long x near-long 

parental combinations to display significant additive effects with estimated values of 

0.70 (Table 10).  In 2002, TAM 94L-25 x TTU 202 was the only near-long x near-long 

parental combination to display a significant dominance effect with an estimated value 

two times larger than the additive effect.   

In the near-long x near-long parental combinations for FLw, only significant 

additive x additive gene effect estimates were attained among the non-allelic 

interactions.  Positive estimates were obtained in Fibermax 832 x TAM 94L-25 in 2001, 

Fibermax 832 x TTU 202 combined across years, TAM 94L-25 x Acala 1517-99 in 

2001, and Acala 1517-99 x TTU 202 combined across years with values of 2.91, 0.98, 

1.80, and 2.04, respectively, suggesting one parent contributed the alleles for FLw 

(Table 10).  Among the near-long x near-long parental combinations, additive effects 

accounted for a smaller portion of the observed variability than dominance effects.
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Table 10.  Estimates of gene effects for FLw (per parental combination and among all combinations) at College Station, TX in 
2001 and 2002. 

  Gene effects† 
Parental Combinations   Year          m          a          d         aa         ad         dd 
Fibermax 832 x TAM 94L-25‡ 2001 23.80** 1.19  4.47  2.91** -2.26  -0.67  
Fibermax 832 x TAM 94L-25‡ 2002 29.52** 0.18  1.25  -0.53  -0.30  -0.76  
TAM 94L-25 x TTU 202‡ 2001 25.41** -0.10  0.76  -0.05  -0.20  1.80  
TAM 94L-25 x TTU 202‡§ 2002 28.38** 0.70** 1.38**            -            -            - 
Fibermax 832 x Acala 1517-99‡ 2001/02 27.52** 0.55  0.64  0.77  1.07  -0.24  
Fibermax 832 x TTU 202‡ 2001/02 27.22** 0.67  1.17  0.98* 0.22  0.72  
TAM 94L-25 x Acala 1517-99‡ 2001 23.85** -0.03  1.18  1.80** 1.37  3.42  
TAM 94L-25 x Acala 1517-99‡ 2002 29.29** 0.16  0.86  -0.77  1.60  -1.44  
Acala 1517-99 x TTU 202‡ 2001/02 25.59** 0.30 3.38 2.04** -0.73 -1.65 
TAM 94L-25 x Tamcot CAMD-E¶ 2001 25.96** 1.46** -1.05  -1.82** -1.18  1.87  
TAM 94L-25 x Tamcot CAMD-E¶ 2002 27.08** 2.06** -1.81  -0.16  1.25  3.21* 
Fibermax 832 x Tamcot CAMD-E¶ 2001 26.62** 2.78** -6.54** -1.40** -1.83  5.63**
Fibermax 832 x Tamcot CAMD- E¶ 2002 22.68** 2.00** 9.97** 4.30** -0.10  -5.50**
Acala 1517-99 x Tamcot CAMD-E¶ 2001/02 25.85** 2.31** 2.51  -0.38  -2.01  -3.60**
TTU 202 x Tamcot CAMD-E¶ 2001 27.29** 1.62* -3.73  -2.92** -0.33  1.61  
TTU 202 x Tamcot CAMD-E¶ 2002 24.96** 1.44** 2.10  1.31** 0.55  -0.51  
Among all combinations 2001 25.39** 1.39** -0.18 -0.45* -0.79 1.80**
Among all combinations 2002 27.46** 0.66** -0.30 0.61** 1.06* 2.35**
*, **  Significant at the 0.05 and 0.01 probability level on the basis of t test with n – 1 =5 degrees of freedom, respectively. 
†  m = mean; a = additive; d = dominance; aa = additive x additive; ad = additive x dominance; dd = dominance x dominance. 
‡  Near-long x near-long parental combination. 
§  Three parameter model sufficiently fitted the six-generation means. 
¶  Near-long x short staple parental combination. 
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When reviewing all genetic effects, the relative magnitude of dominance or dominance x 

dominance effects were larger, except for Fibermax 832 x Acala 1517-99, in which 

additive x dominance effects were larger.   

 In the near-long x short staple parental combinations, the results of the three-

parameter model analysis indicated that epistasis was present in all parental 

combinations.  Therefore, the six-parameter model was used to determine the type and 

magnitude of gene effects involved in the inheritance of FLw.  In 2001 and 2002, 

additive effects were significantly positive for all parental combinations (Table 10).  

Dominance effects were only significant in Fibermax 832 x Tamcot CAMD-E.  In 2001, 

the dominance estimate was negative with a value of -6.54, while in 2002 it was positive 

with an estimated value of 9.97.  The direction of response of the dominance effect is a 

function of the F1 mean value in relation to the mid-parent value and indicates which 

parent was contributing to the dominance effect.  In 2001, the dominance effect was 

contributed by the alleles differing in Tamcot CAMD-E, while in 2002 the dominance 

effect was contributed by the alleles differing in Fibermax 832.  Additive x additive 

effects were significant in all parental combinations except for TAM 94L-25 x Tamcot 

CAMD-E in 2002 and Acala 1517-99 x Tamcot CAMD-E in 2002.  In 2001, negative 

additive x additive effects were obtained in TAM 94L-25 x Tamcot CAMD-E, Fibermax 

832 x Tamcot CAMD-E, and TTU 202 x Tamcot CAMD-E, indicating gene pairs 

responsible for FLw are in dispersive form (Mather and Jinks, 1977).  This means both 

parents contributed alleles for FLw.  In 2002, positive additive x additive estimates were 

produced in Fibermax 832 x Tamcot CAMD-E, and TTU 202 x Tamcot CAMD-E.  
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Dominance x dominance effects were significant in all near-long x short staple parental 

combinations except for TAM 94L-25 x Tamcot CAMD-E in 2001 and TTU 202 x 

Tamcot CAMD-E in 2001 and 2002.  Dominance x dominance effects were positive in 

TAM 94L-25 x Tamcot CAMD-E in 2002 and Fibermax 832 x Tamcot CAMD-E in 

2001 with values of 3.21 and 5.63, respectively.  Dominance x dominance effects were 

negative in Fibermax 832 x Tamcot CAMD-E in 2002 and Acala 1517-99 x Tamcot 

CAMD-E with values of -5.50 and -3.60, indicating a decrease of FLw.  In 2001, the 

dominance effect of Fibermax 832 x Tamcot CAMD-E was negative while the 

dominance x dominance effect was positive.  The contrasting direction of response 

among the dominance and dominance x dominance effects suggest negative duplicate 

epistasis (Kearsey and Pooni, 1996).  For this same parental combination in 2002, the 

direction of response was reversed suggesting positive duplicate epistasis.   

 Generation means analysis indicated that genetic control for FLw among near-

long x short staple parental combinations is complex, involving multiple alleles with 

several effects contributing significantly to the inheritance of FLw.  Generally, 

dominance effects were larger than additive effects, but additive effects were significant 

more often than dominance effects because the generation means analysis produced 

larger standard errors for dominance than for additive effects (data not shown).  Also, 

dominance x dominance effects accounted for a larger portion of the observed variability 

than additive x additive effects.  Among all combinations in 2001, additive, additive x 

additive, and dominance x dominance effects were significant with dominance x 

dominance effects being the largest in magnitude (Table 10).  Among all combinations 
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in 2002, additive, additive x additive, additive x dominance, and dominance x 

dominance effects were significant with dominance x dominance effects being the 

largest in magnitude. 

 Variance components and broad- and narrow-sense heritability estimates for FLw 

were calculated to determine the relative importance of the various determinants of the 

phenotype, the extent to which individuals’ phenotypes are determined by their 

genotypes, and the extent to which phenotypes are determined by the alleles transmitted 

from the parents (Falconer and MacKay, 1996).  Environmental variance among the ten 

near-long x near-long parental combinations ranged from 0.62 to 2.09 with an average of 

1.33, while the near-long x short staple parental combinations ranged from 0.42 to 1.84 

with an average of 0.92 (Table 11).  The additive variance among the near-long x near-

long parental combinations ranged from 0.00 to 1.90 with an average of 0.68, while the 

near-long x short staple parental combinations ranged from 0.00 to 2.10 with an average 

of 0.72.  The dominance variance among the near-long x near-long parental 

combinations ranged from 0.00 to 1.25 with an average of 0.67, while the near-long x 

short staple parental combinations ranged from 0.00 to 0.89 with an average of 0.32.  

Among all combinations in 2001, the environmental, additive, and dominance variance 

was 2.35, 0.00, and 0.11, respectively.  Among all combinations in 2002, the 

environmental, additive, and dominance variance was 2.09, 1.40, and 0.00, respectively. 

 Among the near-long x near-long parental combinations in 2001 and 2002, 

broad- (H2) and narrow-sense (h2) heritability estimates averaged 0.50 and 0.24, 

respectively (Table 11).  Fibermax 832 x Acala 1517-99, Fibermax 832 x TTU 202, and 
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Table 11.  Variance components and broad (H2) and narrow (h2) sense heritability estimates for FLw for 10 parental 
combinations grown at College Station, TX in 2001 and 2002. 

          Variance components†             Heritability estimates 
Parental Combinations      Year     σ2

E    σ2
A    σ2

D             H2            h2 
Fibermax 832 x TAM 94L-25‡ 2001 1.07 0.39 1.25      0.61 0.14 ± 0.05 
Fibermax 832 x TAM 94L-25‡ 2002 0.93 0.59 0.11 0.43  0.36 ± 0.04 
TAM 94L-25 x TTU 202‡ 2001 1.16 0.45 0.73 0.50  0.19 ± 0.04 
TAM 94L-25 x TTU 202‡ 2002 0.62 0.10 0.95 0.63  0.06 ± 0.05 
Fibermax 832 x Acala 1517-99‡ 2001/02 2.00 -0.88 0.65 0.25  0.00 ± 0.05 
Fibermax 832 x TTU 202‡ 2001/02 1.95 0.16 1.00 0.37  0.05 ± 0.04 
TAM 94L-25 x Acala 1517-99‡ 2001 0.99 1.83 0.60 0.71  0.54 ± 0.03 
TAM 94L-25 x Acala 1517-99‡ 2002 1.14 1.90 -0.61 0.63  0.63 ± 0.02 
Acala 1517-99 x TTU 202‡ 2001/02 2.09 0.67 0.78 0.41   0.19 ± 0.03 
TAM 94L-25 x Tamcot CAMD-E§ 2001 0.42 0.83 0.89 0.80  0.39 ± 0.03 
TAM 94L-25 x Tamcot CAMD-E§ 2002 0.90 2.10 -0.82 0.70  0.70 ± 0.01 
Fibermax 832 x Tamcot CAMD-E§ 2001 0.95 -0.04 0.46 0.33  0.00 ± 0.05 
Fibermax 832 x Tamcot CAMD- E§ 2002 0.70 0.51 -0.10 0.42  0.42 ± 0.03 
Acala 1517-99 x Tamcot CAMD-E§ 2001/02 1.84 0.69 0.86 0.46  0.20 ± 0.03 
TTU 202 x Tamcot CAMD-E§ 2001 1.06 0.14 0.05 0.15  0.11 ± 0.05 
TTU 202 x Tamcot CAMD-E§ 2002 0.57 0.75 -0.05 0.57  0.57 ± 0.03 
Among all combinations 2001 2.35 -0.36 0.11 0.04  0.00 ± 0.01 
Among all combinations 2002 2.09 1.40 -0.10 0.40  0.40 ± 0.00 
† σ2

E, environmental variance; σ2
A, additive variance; σ2

D, dominance variance.  Negative variance assumed zero in 
heritability estimates. 

‡  Near-long x near-long parental combination. 
§  Near-long x short staple parental combination. 
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1517-99 x TTU 202 were the three parental combinations in which the ANOVA 

indicated no significant generation x environment interaction and, thus, the data of 2001 

and 2002 were pooled together.  The lower heritability estimates for these three parental 

combinations is due to the generation x environment interaction being accounted for in 

the total phenotypic variance.  Fibermax 832 x Acala1517-99 had the lowest genetic 

variance due to the absence of any additive variance and in conjunction with the highest 

environmental variance had low broad- and zero narrow-sense heritability estimates.  

TAM 94L-25 x TTU 202 and Fibermax 832 x TTU 202 had low additive variances 

which correlated into low narrow-sense heritability estimates of 0.06 and 0.05, 

respectively.  Within the Fibermax 832 x TAM 94L-25 parental combination, the total 

genetic variance was higher in 2001 and corresponded to a higher broad-sense 

heritability estimate, however, the lower environmental variance, higher additive 

variance, and lower dominance variance translated to a higher narrow-sense heritability 

estimate in 2002 than in 2001.  Within the TAM 94L-25 x TTU 202 parental 

combination, higher total genetic variance was attained in 2001, however, a higher 

broad-sense heritability estimate was obtained in 2002 because of a lower environmental 

variance.  The narrow-sense heritability estimate was higher in 2001 due to the higher 

additive variance.  In 2002, the zero dominance variance within the TAM 94L-25 x 

Acala 1517-99 parental combination led to an increased narrow-sense heritability 

estimate of 0.63, compared to the narrow-sense heritability estimate of 0.54 in 2001.  

The Acala 1517-99 x TTU 202 parental combination had the highest environmental 

variance which lowered the broad- and narrow-sense heritability estimates. 
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Among the near-long x short staple parental combinations in 2001 and 2002, 

broad- and narrow-sense heritability estimates averaged 0.49 and 0.34, respectively 

(Table 11).  In 2002, the higher additive variance and zero dominance variance in TAM 

94L-25 x Tamcot CAMD-E, Fibermax 832 x Tamcot CAMD-E, and TTU 202 x Tamcot 

CAMD-E parental combinations resulted in higher narrow-sense heritability estimates.  

In 2001, TAM 94L-25 x Tamcot CAMD-E had a lower environmental variance and 

positive dominance variance which translated into higher broad-sense heritability 

estimate.  Also in 2001, the zero additive variance in Fibermax 832 x Tamcot CAMD-E 

corresponded to a 0.00 narrow-sense heritability estimate.  Acala 1517-99 x Tamcot 

CAMD-E was analyzed across 2001 and 2002 and had the highest environmental 

variance among all near-long x short staple parental combinations.  The broad- and 

narrow-sense heritability estimates took into account the generation x environment 

interaction in the total phenotypic variance.  In comparing TTU 202 x Tamcot CAMD-E 

in 2001 to 2002, environmental variance was higher, additive variance was lower, and 

total genetic variance was lower which corresponded into the lower broad- and narrow-

sense heritability estimates.   

Among all combinations in 2001, the broad- and narrow-sense heritability 

estimates were 0.04 and 0.00 (Table 11).  Among all combinations in 2002, the broad- 

and narrow-sense heritability estimates were 0.40 and 0.40.  

Estimates of additive effects could be small due to a high degree of dispersion of 

alleles increasing FLw between parents.  This might explain why the additive genetic 

components of variance varied greatly and a definitive relationship between additive 
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effects and additive genetic variance could not be detected.  The negative estimates of 

dominance variance seen in this study could have been due to sampling error and/or the 

fact that basic generations are inefficient when used for determining dominance 

variance.  

Summary and conclusions 

Cotton is a natural product with lint characteristics determined by environmental 

and genetic factors.  There is limited information available about the native fiber length 

distribution (i.e., on the seed), however it is believe that cotton possesses a normal fiber 

length distribution (probably is highly heritable) when bolls are hand picked cautiously 

and ginned carefully with a razor, tweezer, and aid of a microscope.  Whatever the 

genetic determination of length distribution, the mechanical operations in harvesting, 

ginning, and textile manufacturing alter the distribution by breaking longer fibers into 

shorter ones (Anthony and Griffin, 2001a; Anthony and Griffin, 2001b; Robert et al., 

2000).  These successive stages of mechanical handling and processing incrementally 

but unavoidably inflict some fractures upon fibers being processed. 

The degree of fiber breakage is dependent primarily upon fiber length, maturity, 

strength, and elongation.  Longer fibers allow for a greater chance of tension forces 

being held at both ends, so they therefore have a higher probability of breakage than 

shorter fibers.  Length distributions are also influenced by fiber maturity, and maturity is 

directly related to growing conditions.  Immature fibers have underdeveloped, weak, thin 

secondary walls that are prone to break during mechanical processes.  Fully mature 

fibers are less likely to be damaged or broken.  The load, a specimen of a single fiber or 
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bundle of fibers in its axial direction, at which the specimen breaks provides a measure 

of fiber strength.  Fiber elongation, the increase in length of fiber during tensile loading, 

is important in determining the processing propensity of fibers and the mechanical 

behavior of yarn.  Two cottons with the same strength, but with different elongations 

will behave differently under mechanical stresses. 

The environment influenced the magnitude of FLw in 2001 and 2002.  The mean 

responses of the generations indicated that plants had longer fibers by weight in 2002 

than in 2001.  The climatological conditions of the two years were normal in terms of 

temperature and rainfall.  However, rainfall events at physiological maturity during 2001 

extended the harvesting period and thus weathering of the fiber might have shortened the 

mean fiber length (Hequet, 2004).  Significant generation x environment interactions 

were detected in most parental combinations but mostly were due to changes in 

magnitude and not changes in genotype rank.  No distinct relationship between 

genotypic means and gene effects could be detected.  All near-long x near-long F1 

hybrids had an FLw mean similar to or greater than the longest parent suggesting 

dominance or overdominance, however, the generation means analysis does not 

substantiate this. 

Frequency distributions of individual plant values revealed that the segregating 

populations followed a normal distribution, suggesting that FLw is quantitatively 

inherited.  A higher percent of transgressive segregation appeared in the BC1P1 than in 

other segregating populations.  However, most breeders will attempt to select superior 

individual plants among the F2 population and continue selecting throughout subsequent 
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generations with the goal of looking for transgressive segregants among a population of 

inbred lines derived from the selfing of an F1 hybrid.  The presence of transgressive 

segregation in the segregating populations of these near-long x near-long combinations 

suggest that the parental material chosen for this study contained different length alleles 

for FLw, thus suggesting that breeders could make further improvements for upland 

cotton fiber length among these near-long staple parental genotypes, but only if the 

appropriate breeding method is implemented.  Cotton already has a narrow genetic base 

(Van Esbroeck et al., 1999) and limited progress in cultivar improvement has been made 

in recent years because closely-related parents have been used to make successful 

cultivars (Meredith, 1991; Meredith et al., 1997).  Even though transgressive segregation 

was present in this study, it was at a low frequency and thus requires large populations 

for exploration.  Most breeding programs use a pedigree method, in which seeds are 

harvested separately from each F2 to produce F3 families and continue to keep each F2 

pedigree distinct throughout successive generations.  However, if any of the seeds are 

bulked between the F2 to F4 generation so that it is not possible to identify which seeds 

are derived from individual F2 plants, considerable loss of already limited variability 

may occur. 

In general, parental combinations were analyzed within individual environments 

for FLw.  For most parental combinations, analyses of genetic effects indicated that a 

simple additive-dominance model did not account for most of the genetic variation for 

FLw.  Therefore, a six-parameter model fit the generation means indicating that epistatic 

effects were present and suggested that inheritance is complex such that multiple alleles 
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interacted to affect upland cotton fiber length.  Among the near-long x near-long 

parental combinations, few significant gene effects were detected, possibly indicating a 

high degree of dispersion of alleles increasing FLw between parents.  Among the near-

long x short staple parental combinations, significant gene effects were numerous.  Both 

additive and additive x additive effects were abundant in the expression of FLw, 

however the presence and magnitude of dominance x dominance effects can not be 

ignored.  For the parental combinations that were controlled by additive gene action, 

simple selection in early segregating generations would be successful.  Whereas for 

those parental combinations controlled by non-additive gene action, selection in later 

generations could prove to be more effective. 

Several explanations of the inconsistent gene effects in this study can be 

proposed.  First, parents used in this study were from vastly different genetic 

backgrounds.  The dispersion of alleles in the parents, complete or partial, affects the 

magnitude and composition of the additive component.  The mean and dominance 

components of the parents remain independent of gene dispersion.  Two loci having an 

inter-allelic interaction will change the F2 mean, the magnitude and direction of additive 

x additive and additive x dominance effects, and the magnitude and direction of the 

variances (Kearsey and Pooni, 1996).  Higher order interactions, such as trigenic 

interactions, may be needed with enough generations to adequately understand the 

inheritance of cotton fiber length.   

The environmental variance for FLw was moderate to high, contradicting May 

(1999) who concluded that extensive environmental replication is not necessary to 
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evaluate and select breeding material on the basis of fiber length parameters.  Among the 

near-long x near-long parental combinations, genetic control for FLw contained additive 

and non-additive genetic variance, but the greater portion was primarily non-additive, 

whereas among the near-long x short staple parental combinations, the additive gene 

effects were predominant.  Numerous studies in the past concluded that additive variance 

within upland cotton genotypes tended to be more prominent than non-additive variance 

(Miller and Marani, 1963; Ramey and Miller, 1966; Lee et al., 1967; Al-Rawi and 

Kohel, 1969; Al-Rawi and Kohel, 1970; Meredith and Bridge, 1972; Quisenberry 1975; 

Green and Culp, 1990; Tang et al., 1993), however, a few experiments have found non-

additive variance to be more important (Verhalen and Murray, 1969; Baker and 

Verhalen, 1973; May and Green, 1994; Cheatham et al., 2003). 

The moderate broad-sense heritability estimates found in this study suggest that 

improvement for FLw can be realized through breeding if some of the genetic variation 

is additive in nature.  Moderate to relatively high values for broad and narrow-sense 

heritability (H2 > 0.50 and h2 > 0.50) for fiber length parameters, 2.5% span length and 

UHM length, have been reported previously (May, 1999; May and Jividen, 1999; 

Herring et al., 2004).  Depending upon the parental combination and environment, the 

sometimes moderate to high values for narrow-sense heritability found in this study 

suggest that conventional pedigree and early generation selection methods should be 

effective for initial improvements in FLw in cotton.  However, most of the narrow-sense 

heritability estimates in this study were low, suggesting that the inheritance is complex 
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and that selection of individual plants in an F2 population with improved FLw will not 

be as simple as indicated by the broad-sense heritability estimate. 

Gene effects and variances for FLw were inherited quite differently in specific 

environments and specific parental combinations, suggesting environmentally specific 

mechanisms for FLw.   This type of interaction would make selection of fiber length and 

superior genotypes that are adapted to wide geographic areas much more difficult.  This 

would explain why improvement of fiber length in upland cotton has been slow, even 

though many genetic studies have indicated that fiber length is moderately to highly 

heritable.  Cotton fiber length is a complex trait, and improved fiber length is the result 

of many different loci.  These results show that both the adequacy of certain modes of 

inheritance as well as the importance and significance of gene effects were dependent 

upon the particular parental combination and environment, stressing the importance of 

the appropriate selection of both parents and environment for the success of a cotton 

breeding program. 
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CHAPTER VI 
 

AFIS FLn GENERATION MEANS ANALYSIS 

Results and discussion 

The parental, F1, F2, and backcross generations differed (P ≤ 0.01) in FLn, a 

length by number measurement, for all parental combinations except Fibermax 832 x 

Acala 1517-99, Fibermax 832 x TTU 202, TAM 94L-25 x Acala 1517-99, and Acala 

1517-99 x TTU 202 (Table 12).  The ANOVA also indicated a significant generation x 

environment interaction for all parental combinations except Fibermax 832 x Acala 

1517-99 and Fibermax 832 x TTU 202, thus these two parental combinations were 

pooled over years.  The other parental combinations indicated that some generations 

reacted differently to each environment, suggesting that selection and evaluation should 

be conducted with related environments if reliable knowledge of FLn is to be obtained. 

FLn means from P1 and P2 were different (P ≤ 0.05) in each parental combination 

except Fibermax 832 x TAM 94L-25 in 2002, TAM 94L-25 x TTU 202 in 2001, 

Fibermax 832 x Acala 1517-99 combined across years, TAM 94L-25 x Acala 1517-99 in 

2002, and Acala 1517-99 x TTU 202 in both years (Table 13).  Parents for this study 

were selected base upon HVI UHM, a length by weight measurement, and not a length 

by number measurement.  In 2001, all F1 hybrids had an FLn mean greater than or 

similar to the longest parent.  In 2001, F1 means of TAM 94L-25 x TTU 202, TAM 94L-

25 x Acala 1517-99, TAM 94L-25 x Tamcot CAMD-E, and TTU 202 x Tamcot CAMD-

E were greater than the longest parent, demonstrating heterosis.  In 2002, no trend was 

observed in the F1 means.  The F1 mean of TAM 94L-25 x Acala 1517-99 was shorter 
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Table 12.  Mean squares for FLn measured on P1, P2, F1, F2, BC1P1, and BC1P2 (per parental combination and among all 
combinations) at College Station, TX in 2001 and 2002. 

 
A. 
  Parental Combinations† 
Source df 832 x L-25 L-25 x 202 832 x 1517  832 x 202 L-25 x 1517 1517 x 202 
Environment (E) 1 193.90** 169.21** 100.09** 134.35** 202.92** 106.00** 
Reps/E 6 1.07 0.55 0.37 0.25 0.20 0.58 
Generation (Gn) 5 1.56* 4.50** 1.30 2.54 0.91 0.79 
Gn x E 5 3.86** 2.45** 1.23 1.11 5.05** 2.17* 
Error 30 0.61 0.40 0.75 1.09 0.41 0.85 
 
 
 
B.   
  Parental Combinations‡ 
Source df L-25 x CD-E  832 x CD-E 1517 x CD-E  202 x CD-E      Among 
Environment (E) 1 86.22** 98.56** 120.29** 44.74** 121.43** 
Reps/E 6 0.46 0.30 0.07 0.95 0.05 
Generation (Gn) 5 6.98** 11.10** 6.89** 4.53** 2.25** 
Gn x E 5 4.89** 2.11* 1.47** 3.45** 1.32** 
Error 30 0.32 0.70 0.39 0.43 0.19 
*, **  Significant at the 0.05 and 0.01 probability level, respectively. 
†  832 x L-25, Fibermax 832 x TAM 94L-25; L-25 x 202, TAM 94L-25 x TTU 202; 832 x 1517, Fibermax 832 x TTU 202; 

L-25 x 1517, TAM 94L-25 x Acala 1517-99; 1517 x 202, Acala 1517-99 x TTU 202. 
‡  L-25 x CD-E, TAM 94L-25 x Tamcot CAMD-E; 832 x CD-E, Fibermax 832 x Tamcot CAMD-E; 1517 x CD-E, Acala 

1517-99 x Tamcot CAMD-E; 202 x CD-E, TTU 202 x Tamcot CD-E; Among, Among all combinations.
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Table 13.  Means of P1, P2, F1, F2, BC1P1, and BC1P2 for FLn (mm) per parental combination and among all combinations at 
College Station, TX in 2001 and 2002.  First parent listed is P1, second parent is P2. 

 
A. 
 Parental Combinations† 
        832 x L-25      L-25 x 202 832 x 1517 832 x 202     L-25 x 1517      1517 x 202
Gen.‡   2001  2002 2001 2002  2001/02 2001/02 2001 2002  2001 2002
P1 21.3 a§ 24.2 ab 18.8 c 24.0 a 22.7 a 22.7 a 18.8 c 24.0 a 19.9 a 23.9 a 
P2 18.8 b 24.0 ab 19.3 c 23.0 b 21.9 a 21.2 b 19.9 b 23.9 a 19.3 a 23.0 ab 
F1 21.3 a 23.2 b 22.3 a 24.3 a 22.8 a 22.1 ab 21.8 a 22.9 b 21.1 a 22.2 b 
F2 19.2 b 24.8 a 19.7 bc 23.9 a 22.1 a 21.7 ab 19.0 bc 24.4 a 19.9 a 23.0 ab 
BC1P1 20.2 ab 24.5 a 19.7 bc 24.1 a 22.3 a 22.4 a 19.7 bc 24.0 a 20.5 a 23.0 ab 
BC1P2 20.0 ab 24.2 ab 20.6 b 23.7 ab 21.9 a 21.7 ab 19.2 bc 23.8 a 19.4 a 22.9 ab 
 
 
B.   
 Parental Combinations¶ 
 L-25 x CD-E 832 x CD-E 1517 x CD-E      202 x CD-E          Across
Gen.    2001  2002   2001 2002   2001 2002   2001 2002   2001 2002
P1  18.8 c 24.0 a 21.3 a 24.2 a 19.9 a 23.9 a 19.3 b 23.0 a 20.1 b 23.9 a 
P2 17.8 d 21.0 d 17.8 c 21.0 c 17.8 b 21.0 d 17.8 c 21.0 cd 18.8 c 22.4 c
F1 20.8 a 22.9 b 20.5 ab 21.8 c 19.7 a 21.2 d 20.4 ab 21.7 bc 21.1 a 22.7 bc
F2 20.5 ab 21.8 c 19.0 bc 21.0 c 19.8 a 23.0 b 20.9 a 20.9 cd 19.9 b 23.0 b
BC1P1 19.7 bc 23.1 b 19.0 bc 22.9 b 19.6 a 23.4 ab 20.3 ab 22.4 ab 20.0 b 23.6 a
BC1P2 19.6 bc 20.5 d 18.1 c 22.0 bc 18.7 ab 22.1 c 19.4 b 20.8 d 19.5 bc 22.7 bc
†  832 x L-25, Fibermax 832 x TAM 94L-25; L-25 x 202, TAM 94L-25 x TTU 202; 832 x 1517, Fibermax 832 x TTU 202; L-25 x 1517, TAM 94L-25 

x Acala 1517-99; 1517 x 202, Acala 1517-99 x TTU 202. 
‡  Gen., generation; P1, parent one; P2, parent two; F1, P1 x P2; F2, selfed F1; BC1P1, backcross to P1; BC1P2, backcross to P2. 
§  Means within a column followed by the same letter are not different at K = 100 (approximates p = 0.05) according to Waller-Duncan LSD. 
¶  L-25 x CD-E, TAM 94L-25 x Tamcot CAMD-E; 832 x CD-E, Fibermax 832 x Tamcot CAMD-E; 1517 x CD-E, Acala 1517-99 x Tamcot CAMD-
E; 202 x CD-E, TTU 202 x Tamcot CD-E; Among, Among all combinations. 
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than all other generations.  No trend was observed in F2 means for either year.  In 2001, 

the F2 mean of TAM 94L-25 x Tamcot CAMD-E and TTU 202 x Tamcot CAMD-E, 

which were greater than either parents, once again suggesting heterosis.  Among all 

parental combinations, BC1P1 and BC1P2 means were not different except for the 2002 

combinations of TAM 94L-25 x Tamcot CAMD-E and TTU 202 x Tamcot CAMD-E. 

As with FLw, the parental combinations were divided into two categories, near-

long x near-long and near-long x short staple parental combinations.  For each parental 

combination, P1 was assigned accordingly to the parent with the longest FLw.  The near-

long x near-long parental combinations consisted of Fibermax 832 x TAM 94L-25, 

TAM 94L-25 x TTU 202, Fibermax 832 x Acala 1517-99, Fibermax 832 x TTU 202, 

TAM 94L-25 x Acala 1517-99, and Acala 1517-99 x TTU 202.  The near-long x short 

staple parental combinations were Fibermax 832, TAM 94L-25, Acala 1517-99, and 

TTU 202 crosses with Tamcot CAMD-E. 

FLn frequency distributions of each parental combination were constructed to 

visually gain a more comprehensive understanding of the generation means and to 

determine transgressive segregation (Figs. 29-48).  For each figure the y-axis is the 

number of plants, and the x-axis is FLn in mm divided into 10 length classes.  Classes 

within each figure are the same for the non-segregating and segregating populations.  

However, overall range and class size does change from figure to figure. 

Examination of the frequency distribution of individual plant values of each 

parental combination indicated that the segregating populations followed a normal 

distribution, suggesting that FLn is quantitatively inherited.  Transgressive segregation, 
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i.e., individual F2 or backcross plant observations with values exceeding the longest 

parent or F1 observation (Kearsey and Pooni, 1996), was visible in near-long x near-long 

and near-long x short staple parental combinations.  At least one segregating population 

in all near-long x near-long parental combinations exhibited transgressive segregation 

except for Fibermax 832 x Acala 1517-99 combined across years (Fig. 33).  Averaging 

the percent of plants exhibiting transgressive segregation for each segregating population 

among the 10 near-long x near-long parental combinations, the BC1P1 had the highest 

transgressive segregation at 2.3%, followed by the F2 at 2.0%, and the BC1P2 at 1.0%.  

In 2001, the BC1P1 population of Acala 1517-99 x TTU 202 had the highest percentage 

of transgressive segregation, 8.0% (Fig. 37).  In 2002, TAM 94L-25 x Acala 1517-99 

had the highest percent of transgressive segregation among the BC1P2 and F2 populations 

at 5.0 and 7.0%, respectively (Fig. 36).  Fewer transgressive segregates appeared in the 

near-long x short staple segregating populations, and negligible numbers appeared in the 

backcross to Tamcot CAMD-E (Figs. 39-46).  In 2001, TAM 94L-25 x Tamcot CAMD-

E and TTU 202 x Tamcot CAMD-E had high percentages of BC1P1 and F2 transgressive 

segregation, 8.0 and 15.5% and 8.0 and 21.5%, respectively (Figs. 39 and 45).  TAM 

94L-25 x Tamcot CAMD-E also had 5% transgressive segregation in the BC1P2 

population. 

 Generation mean analyses using three- and six-parameter models were utilized to 

explain the genetic control of FLn in these upland parental combinations across 2001 

and 2002.  Effects were first estimated with the three-parameter model and accepted if P 

≥ 0.05.  The three-parameter model satisfactorily explained the genetic differences for 
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Fig. 29.  Frequency distribution of FLn in the P1, P2, F1, BC1P1, BC1P2, and F2 generation 
for the near-long x near-long parental of combination Fibermax 832 (P1) x TAM 94L-
25 (P2) in 2001. 
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Fig. 30.  Frequency distribution of FLn in the P1, P2, F1, BC1P1, BC1P2, and F2 generation 
for the near-long x near-long parental combination of Fibermax 832 (P1) x TAM 94L-
25 (P2) in 2002. 
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Fig. 31.  Frequency distribution of FLn in the P1, P2, F1, BC1P1, BC1P2, and F2 generation 
for the near-long x near-long parental combination of TAM 94L-25 (P1) x TTU 202 
(P2) in 2001. 
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Fig. 32.  Frequency distribution of FLn in the P1, P2, F1, BC1P1, BC1P2, and F2 generation 
for the near-long x near-long parental combination of TAM 94L-25 (P1) x TTU 202 
(P2) in 2002. 
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Fig. 33.  Frequency distribution of FLn in the P1, P2, F1, BC1P1, BC1P2, and F2 generation 
for the near-long x near-long parental combination of Fibermax 832 (P1) x Acala 1517-
99 (P2) across 2001 and 2002. 
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Fig. 34.  Frequency distribution of FLn in the P1, P2, F1, BC1P1, BC1P2, and F2 generation 
for the near-long x near-long parental combination of Fibermax 832 (P1) x TTU 202 
(P2) across 2001 and 2002. 
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Fig. 35.  Frequency distribution of FLn in the P1, P2, F1, BC1P1, BC1P2, and F2 generation 
for the near-long x near-long parental combination of TAM 94L-25 (P1) x Acala 1517-
99 (P2) in 2001. 
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Fig. 36.  Frequency distribution of FLn in the P1, P2, F1, BC1P1, BC1P2, and F2 generation 
for the near-long x near-long parental combination of TAM 94L-25 (P1) x Acala 1517-
99 (P2) in 2002. 
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Fig. 37.  Frequency distribution of FLn in the P1, P2, F1, BC1P1, BC1P2, and F2 generation 
for the near-long x near-long parental combination of Acala 1517-99 (P1) x TTU 202 
(P2) in 2001. 
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Fig. 38.  Frequency distribution of FLn in the P1, P2, F1, BC1P1, BC1P2, and F2 generation 
for the near-long x near-long parental combination of Acala 1517-99 (P1) x TTU 202 
(P2) in 2002. 
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Fig. 39.  Frequency distribution of FLn in the P1, P2, F1, BC1P1, BC1P2, and F2 generation 
for the near-long x short staple parental combination of TAM 94L-25 (P1) x Tamcot 
CAMD-E (P2) in 2001. 
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Fig. 40.  Frequency distribution of FLn in the P1, P2, F1, BC1P1, BC1P2, and F2 generation 
for the near-long x short staple parental combination of TAM 94L-25 (P1) x Tamcot 
CAMD-E (P2) in 2002. 
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Fig. 41.  Frequency distribution of FLn in the P1, P2, F1, BC1P1, BC1P2, and F2 generation 
for the near-long x short staple parental combination of Fibermax 832 (P1) x Tamcot 
CAMD-E (P2) in 2001. 
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Fig. 42.  Frequency distribution of FLn in the P1, P2, F1, BC1P1, BC1P2, and F2 generation 
for the near-long x short staple parental combination of Fibermax 832 (P1) x Tamcot 
CAMD-E (P2) in 2002. 
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Fig. 43.  Frequency distribution of FLn in the P1, P2, F1, BC1P1, BC1P2, and F2 generation 
for the near-long x short staple parental combination of Acala 1517-99 (P1) x Tamcot 
CAMD-E (P2) in 2001. 
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Fig. 44.  Frequency distribution of FLn in the P1, P2, F1, BC1P1, BC1P2, and F2 generation 
for the near-long x short staple parental combination of Acala 1517-99 (P1) x Tamcot 
CAMD-E (P2) in 2002. 
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Fig. 45.  Frequency distribution of FLn in the P1, P2, F1, BC1P1, BC1P2, and F2 generation 
for the near-long x short staple parental combination of TTU 202 (P1) x Tamcot 
CAMD-E (P2) in 2001. 
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Fig. 46.  Frequency distribution of FLn in the P1, P2, F1, BC1P1, BC1P2, and F2 generation 
for the near-long x short staple parental combination of TTU 202 (P1) x Tamcot 
CAMD-E (P2) in 2002. 
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Fig. 47.  Frequency distribution of FLn in the P1, P2, F1, BC1P1, BC1P2, and F2 generation 
among all parental combinations in 2001. 
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Fig. 48.  Frequency distribution of FLn in the P1, P2, F1, BC1P1, BC1P2, and F2 generation 
among all parental combinations in 2002. 
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FLn on 3 of the 22 parental combinations x environments tested, those being TAM 94L-

25 x TTU 202 in 2002 and Acala 1517-99 x TTU 202 in 2001 and 2002 (Table 14).  

TAM 94L-25 x TTU 202 was also fit by the three-parameter model for FLw (Table 9).  

In these combinations and environments, the variation among generation means for FLn 

was explained sufficiently by the simple additive-dominance model, indicating that 

epistasis was not involved in the inheritance of trait.  The best approximation of additive 

and dominance effects can be obtained from the three-parameter, additive-dominance 

model because these effects are unbiased due to the absence of epistasis (Hayman, 

1958).  TAM 94L-25 x TTU 202 in 2002 and Acala 1517-99 x TTU 202 in 2001 and 

2002 were the only near-long x near-long parental combinations to exhibit significant 

additive effects with values of 0.44, 1.02, and 0.34, respectively.  Acala 1517-99 x TTU 

202 in 2001 was the only near-long x near-long parental combinations to show 

significant dominance effects with a value of 1.63.   

 Results of the three-parameter model analysis indicated that non-allelic 

interactions were present in the other near-long x near-long parental combinations.  

Therefore, the six-parameter model was used to determine the type and magnitude of 

gene effects involved in the inheritance of FLn.  All near-long x near-long parental 

combinations displayed significant additive x additive effects except for Fibermax 832 x 

Acala 1517-99 and Fibermax 832 x TTU 202 combined across years (Table 14).  In 

2001, Fibermax 832 x TAM 94L-25, TAM 94L-25 x TTU 202, and TAM 94L-25 x 

Acala 1517-99 had positive additive x additive estimates of 3.33, 1.55, and 1.90, 

respectively.  In 2002, Fibermax 832 x TAM 94L-25 and TAM 94L-25 x Acala 1517-99
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Table 14.  Estimates of gene effects for FLn (per parental combination and across combinations) at College Station, TX in 
2001 and 2002. 

  Gene effects† 
Parental Combinations   Year         m         a         d        aa        ad        dd 
Fibermax 832 x TAM 94L-25‡ 2001 16.50** 1.41 5.93 3.33** -2.47  -1.03  
Fibermax 832 x TAM 94L-25‡ 2002 26.05** 0.15 -2.84 -1.99** 0.42  0.76  
TAM 94L-25 x TTU 202‡ 2001 17.60** -0.82 4.33 1.55* -0.04  -0.22  
TAM 94L-25 x TTU 202‡§ 2002 23.36** 0.44* 1.04          -         -         - 
Fibermax 832 x Acala 1517-99‡ 2001/02 22.85** 0.20 -1.68 0.42 0.67 1.67 
Fibermax 832 x TTU 202‡ 2001/02 21.85** 0.66 1.86 0.97 -0.23 -1.97 
TAM 94L-25 x Acala 1517-99‡ 2001 17.53** -0.65 1.36  1.90** 2.13  3.16  
TAM 94L-25 x Acala 1517-99‡ 2002 26.08** -0.03 -3.38  -2.28** 1.03  0.07  
Acala 1517-99 x TTU 202‡§ 2001 19.20** 1.02** 1.63*         -         -         - 
Acala 1517-99 x TTU 202‡§ 2002 23.51** 0.34* -1.07          -         -         - 
TAM 94L-25 x Tamcot CAMD-E¶ 2001 21.55** 0.47 -3.44  -3.34** -1.08  2.59  
TAM 94L-25 x Tamcot CAMD-E¶ 2002 23.33** 1.53** -4.96* -0.78  1.94  4.57** 
Fibermax 832 x Tamcot CAMD-E¶ 2001 21.08** 2.03* -7.52* -1.73** -2.25  6.85** 
Fibermax 832 x Tamcot CAMD-E¶ 2002 17.23** 1.55* 11.00** 5.33** -1.27  -6.59** 
Acala 1517-99 x Tamcot CAMD-E¶ 2001 21.13** 0.92 -3.57  -2.47** -0.10  1.79 
Acala 1517-99 x Tamcot CAMD-E¶ 2002 23.56** 1.46* -0.20  -1.04* -0.21  -1.92  
TTU 202 x Tamcot CAMD-E¶ 2001 23.44** 1.42** -6.73** -4.26** -1.01  3.38* 
TTU 202 x Tamcot CAMD-E¶ 2002 19.43** 0.98 4.23* 2.60** 1.09  -2.30  
Among all combinations 2001 19.82** 0.76** -0.48  -0.86** -0.41  1.35* 
Among all combinations 2002 22.85** 0.59* 0.73  0.40  0.82  -1.29  
*, **  Significant at the 0.05 and 0.01 probability level on the basis of t test with n – 1 =5 degrees of freedom, respectively. 
†  m = mean; a = additive; d = dominance; aa = additive x additive; ad = additive x dominance; dd = dominance x dominance. 
‡  Near-long x near-long parental combination. 
§  Three parameter model sufficiently fitted the six-generation means. 
¶  Near-long x short staple parental combination. 
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had negative estimates of -1.99 and -2.28, respectively.  The negative additive x additive 

estimate shows the genes pairs responsible for FLn are in dispersive form (Mather and 

Jinks, 1977).  This means both parents contributed alleles for FLn among these near-long 

x near-long parental combinations.  Among these combinations, additive effects 

accounted for a smaller portion of the observed variability than dominance effects.  

Reviewing all genetic effects, the dominance effects remained the largest, but significant 

additive x additive effects are probably the most important in determining FLn among 

the near-long x near-long parental combinations.     

In the near-long x short staple parental combinations, the six-parameter model 

was necessary to determine the type and magnitude of gene effects involved in the 

inheritance of FLn (Table 14).  In 2001 and 2002, additive effects were significant and 

positive for all near-long x short staple parental combinations except for TAM 94L-25 x 

Tamcot CAMD-E in 2001, Acala 1517-99 x Tamcot CAMD-E in 2001, and TTU 202 x 

Tamcot CAMD-E in 2002.  Two parental combinations had different direction of 

response for dominance effects in 2002 than in 2001, indicating that dominance effects 

were contributed differently among the parents depending upon the environment.  In 

2001, dominance effects for Fibermax 832 x Tamcot CAMD-E were negative with a 

value of -7.52, and positive in 2002 with a value of 11.00.  In 2001, dominance effects 

for TTU 202 x Tamcot CAMD-E were negative with a value of -6.53, yet positive in 

2002 with an estimated value of 4.23.  TAM 94L-25 x Tamcot CAMD-E and Acala 

1517-99 x Tamcot CAMD-E exhibited negative dominance effect estimates in both 

years.  Negative dominance effects resulted from alleles differing in the Tamcot CAMD-
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E, while the positive dominance effect was contributed by the genes differing in the 

longer parent.  Additive x additive gene effect estimates were significant in all near-long 

x short staple parental combinations except for TAM 94L-25 x Tamcot CAMD-E in 

2002.  In 2001, additive x additive effects were negative, suggesting both parents 

contributed alleles for FLn, while in 2002 additive x additive effect estimates were 

positive except for Acala 1517-99 x Tamcot CAMD-E which had an estimate  of -1.04.  

No additive x dominance effect estimates were significant for FLn.  In 2001, Fibermax 

832 x Tamcot CAMD-E, and TTU 202 x Tamcot CAMD-E had significant dominance x 

dominance effects with estimated values of 6.85 and 3.38, respectively.  In 2002, TAM 

94L-25 x Tamcot CAMD-E had a dominance x dominance effect estimate of 4.57 while 

Fibermax 832 x Tamcot CAMD-E had an estimated value of -6.59.  For TAM 94L-25 x 

Tamcot CAMD-E in 2002, Fibermax 832 x Tamcot CAMD-E in 2001, and TTU 202 x 

Tamcot CAMD-E in 2001, the dominance effects were negative while the dominance x 

dominance effects were positive.  The contrasting direction of response between 

dominance and dominance x dominance gene effect estimates suggests negative 

duplicate epistasis (Kearsey and Pooni, 1996).  The 2002 parental combination of 

Fibermax 832 x Tamcot CAMD-E had positive dominance and negative dominance x 

dominance gene effect estimates suggesting positive duplicate epistasis. 

Generation means analysis indicated that genetic control for FLn among these 

near-long x short staple parental combinations is complex, even more so than FLw.  

Several effects significantly contributed to the inheritance of FLn.  Except for one 

parental combination and environment, dominance effects accounted for a larger portion 
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of the observed variability than additive effects.  In comparing the relative magnitude of 

additive x additive to dominance x dominance effects, it depended on the parental 

combination and environment as to which one was greater.  Among all combinations in 

2001, additive, additive x additive, and dominance x dominance effects were significant 

with dominance x dominance being larger in magnitude.  Among all combinations in 

2002, only additive effects were significant.   

 Variance components and broad- and narrow-sense heritability estimates for FLn 

were calculated to determine the relative importance of the various determinants of the 

phenotype, the extent to which individuals’ phenotypes are determined by their 

genotypes, and the extent to which phenotypes are determined by the alleles transmitted 

from the parents (Falconer and MacKay, 1996).  Higher environmental variances were 

seen in 2001 than in 2002 (Table 15).  In 2001, environmental variance among the four 

near-long x near-long parental combinations ranged from 1.41 to 1.82 with an average of 

1.65, while the near-long x short staple parental combinations ranged from 0.79 to 1.85 

with an average of 1.39.  Environmental variance among the near-long x near-long 

combinations in 2002 ranged from 0.98 to 1.55 with an average of 1.31, while the near-

long x short staple parental combinations in 2002 ranged from 0.64 to 1.05 with an 

average of 0.84.  Additive variance was higher in 2002 than 2001, however, 85% of the 

sum in 2002 came from two near-long x near-long parental combinations, TAM 94L-25 

x Acala 1517-99 and Acala 1517-99 x TTU 202.  In 2001, the additive variance among 

the near-long x near-long parental combinations ranged from 0.00 to 1.25 with an 

average of 0.82, while the near-long x short staple combinations ranged from 0.00 to 



 143

Table 15.  Variance components and broad (H2) and narrow (h2) sense heritability estimates for FLn for 10 parental 
combinations grown at College Station, TX in 2001 and 2002. 

          Variance components†            Heritability estimates 
Parental Combinations      Year     σ2

E     σ2
A     σ2

D            H2            h2 
Fibermax 832 x TAM 94L-25‡ 2001 1.76 1.06 0.67 0.50  0.30 ± 0.04 
Fibermax 832 x TAM 94L-25‡ 2002 1.55 0.57 -0.21 0.27  0.27 ± 0.04 
TAM 94L-25 x TTU 202‡ 2001 1.59 1.25 0.56 0.53  0.37 ± 0.03 
TAM 94L-25 x TTU 202‡ 2002 0.98 -0.33 0.62 0.39  0.00 ± 0.06 
Fibermax 832 x Acala 1517-99‡ 2001/02 3.51 -2.79 0.66 0.16 0.00 ± 0.07 
Fibermax 832 x TTU 202‡ 2001/02 4.05 0.00 1.43 0.26 0.00 ± 0.04 
TAM 94L-25 x Acala 1517-99‡ 2001 1.41 0.98 1.57 0.64 0.25 ± 0.04 
TAM 94L-25 x Acala 1517-99‡ 2002 1.37 1.33 0.03 0.50  0.49 ± 0.03 
Acala 1517-99 x TTU 202‡ 2001 1.82 -1.79 1.29 0.42  0.00 ± 0.08 
Acala 1517-99 x TTU 202‡ 2002 1.32 2.31 -1.30 0.64  0.64 ± 0.01 
TAM 94L-25 x Tamcot CAMD-E§ 2001 0.79 0.45 1.29 0.69  0.18 ± 0.04 
TAM 94L-25 x Tamcot CAMD-E§ 2002 1.05 1.20 -0.26 0.53  0.53 ± 0.03 
Fibermax 832 x Tamcot CAMD-E§ 2001 1.85 -0.42 -0.06 0.00  0.00 ± 0.06 
Fibermax 832 x Tamcot CAMD- E§ 2002 0.99 0.56 -0.14 0.36  0.36 ± 0.03 
Acala 1517-99 x Tamcot CAMD-E§ 2001 1.26 1.66 0.20 0.60  0.53 ± 0.03 
Acala 1517-99 x Tamcot CAMD-E§ 2002 0.64 1.47 -0.09 0.69  0.69 ± 0.02 
TTU 202 x Tamcot CAMD-E§ 2001 1.67 0.36 -0.21 0.18  0.18 ± 0.04 
TTU 202 x Tamcot CAMD-E§ 2002 0.66 0.67 0.12 0.55  0.46 ± 0.03 
Among all combinations 2001 2.37 0.57 0.43 0.30  0.17 ± 0.00 
Among all combinations 2002 1.84 2.00 -0.37 0.52  0.52 ± 0.00 
†  σ2

E, environmental variance; σ2
A, additive variance; σ2

D, dominance variance.  Negative variance assumed zero in 
heritability estimates. 

‡  Near-long x near-long parental combination. 
§  Near-long x short staple parental combination. 
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1.66 with an average of 0.62.  In 2002, the additive variance among the near-long x near-

long parental combinations ranged from 0.00 to 2.31 with an average of 1.05, while the 

near-long x short staple parental combinations ranged from 0.56 to 1.47 with an average 

of 0.98.  Dominance variance was higher in 2001 than in 2002.  In 2001, the dominance 

variance among the near-long x near-long parental combinations ranged from 0.56 to 

1.57 with an average of 1.02, while the near-long x short staple combinations ranged 

from 0.00 to 1.29 with an average of 0.37.  In 2002, the dominance variance among the 

near-long x near-long combinations ranged from 0.00 to 0.62 with an average of 0.16, 

while the near-long x short staple parental combinations ranged from 0.00 to 0.12 with 

an average of 0.04.  Among all combinations in 2001, the environmental, additive, and 

dominance variance was 2.37, 0.57, and 0.43, respectively.  Among all combinations in 

2002, the environmental, additive, and dominance variance was 1.84, 2.00, and 0.00, 

respectively. 

Among the near-long x near-long parental combinations, broad-sense heritability 

(H2) averaged 0.52 in 2001, slightly higher than the 0.45 estimate in 2002, even though 

the environmental variance was higher in 2001 (Table 15).  In general, higher broad-

sense heritability estimates were attained in 2001 because of higher genetic variances.  

Narrow-sense heritability estimates (h2) were higher in 2002 than 2001, averaging 0.35 

and 0.23, respectively.  However, the 2002 narrow-sense heritability average is slightly 

skewed because of the 0.64 estimated attained in the Acala 1517-99 x Tamcot CAMD-E 

parental combination.  Fibermax 832 x Acala 1517-99 and Fibermax 832 x TTU 202 

were the two parental combinations in which the ANOVA indicated no significant 
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generation x environment interaction and, thus, the data of 2001 and 2002 were pooled 

together.  The lower heritability estimates for these three parental combinations is due to 

the generation x environment interaction being accounted for in the total phenotypic 

variance.  Fibermax 832 x Acala1517-99 had a low genetic variance due to the absence 

of any additive variance and in conjunction with a high environmental variance had low 

broad- and zero narrow-sense heritability estimates.  Fibermax 832 x TTU 202 had a low 

additive variance which correlated into minuscule narrow-sense heritability estimates of 

0.00.  Within the Fibermax 832 x TAM 94L-25 parental combination, the total genetic 

variance was higher in 2001 and corresponded to a higher broad-sense heritability 

estimate.  Narrow-sense heritability estimates in 2001 and 2002 were 0.30 and 0.27, 

respectively.  Within the TAM 94L-25 x TTU 202 parental combination, higher total 

genetic variance was attained in 2001 and translate into a higher broad-sense heritability 

estimate.  No additive variance was displayed in 2002.  Within the TAM 94L-25 x Acala 

1517-99 parental combination, the total genetic variance was higher in 2001, however 

the higher additive variance in 2002 led to an increased narrow-sense heritability 

estimate of 0.49, compared to the narrow-sense heritability estimate of 0.25 in 2001.  

The Acala 1517-99 x TTU 202 parental combination had zero additive variance in 2001, 

but the highest additive variance in 2002 with an estimate of 2.31 which corresponded 

into a narrow-sense heritability estimate of 0.64. 

Among the near-long x short staple parental combinations, broad-sense 

heritability averaged 0.37 and 0.53 in 2001 and 2002, respectively (Table 15).  The 

higher broad-sense heritability estimates attained in 2002 are attributed to either greater 
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total genetic variance or a lower environmental variance, or a combination of the two.  

Only TAM 94L-25 x Tamcot CAMD-E had higher broad-sense heritability estimate in 

2001 due to greater genetic and lower environmental variances.  Narrow-sense 

heritability averaged 0.22 and 0.53 in 2001 and 2002, respectively.  The higher narrow-

sense heritability estimates in 2002 are due to greater additive variance and zero or little 

dominance variance, except for Acala 1517-99 x Tamcot CAMD-E, which is due to less 

environmental variance.  Among all combinations in 2001, the broad- and narrow-sense 

heritability estimates were 0.30 and 0.17.  Among all combinations in 2002, the broad- 

and narrow-sense heritability estimates were 0.47 and 0.52. 

Estimates of additive effects could be small due to a high degree of dispersion of 

alleles increasing FLn between parents.  This might explain why additive genetic 

components of variance varied greatly and a definitive relationship between additive 

effects and additive genetic variance could not be detected.  The negative estimates of 

dominance variance seen for this trait could have been due to sampling error and/or the 

fact that basic generations are inefficient when used for determining dominance 

variance.  

Summary and conclusions 

Cotton is a natural product with lint characteristics determined by environmental 

and genetic factors.  There is limited information available about the native fiber length 

distribution (i.e., on the seed), however it is believe that cotton possesses a normal fiber 

length distribution (probably is highly heritable) when bolls are hand picked cautiously 

and ginned carefully with a razor, tweezer, and aid of a microscope.  Whatever the 
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genetic determination of length distribution, the mechanical operations in harvesting, 

ginning, and textile manufacturing alter the distribution by breaking longer fibers into 

shorter ones (Anthony and Griffin, 2001a; Anthony and Griffin, 2001b; Robert et al., 

2000).  These successive stages of mechanical handling and processing incrementally 

but unavoidably inflict some fractures upon fibers being processed. 

The degree of fiber breakage is dependent primarily upon fiber length, maturity, 

strength, and elongation.  Longer fibers allow for a greater chance of tension forces 

being held at both ends, so they therefore have a higher probability of breakage than 

shorter fibers.  Length distributions are also influenced by fiber maturity, and maturity is 

directly related to growing conditions.  Immature fibers have underdeveloped, weak, thin 

secondary walls that are prone to break during mechanical processes.  Fully mature 

fibers are less likely to be damaged or broken.  The load, a specimen of a single fiber or 

a bundle of fibers in its axial direction, at which the specimen breaks provides a measure 

of fiber strength.  Fiber elongation, the increase in length of fiber during tensile loading, 

is important in determining the processing propensity of fibers and the mechanical 

behavior of yarn.  Two cottons with the same strength, but with different elongations 

will behave differently under mechanical stresses. 

The environment influenced the magnitude of FLn in 2001 and 2002.  The mean 

responses of the generations indicated that plants had longer fibers by number in 2002 

than in 2001.  The climatological conditions of the two years were normal in terms of 

temperature and rainfall.  However, rainfall events at physiological maturity during 2001 

extended the harvesting period and thus weathering of fibers might have shortened the 
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mean fiber length (Hequet, 2004).  Significant generation x environment interactions 

were detected in all parental combinations.  No distinct relationship between genotypic 

means and gene effects could be detected.  In 2001, all near-long x near-long F1 hybrids 

had an FLn mean similar to or greater than the longest parent suggesting dominance or 

overdominance, however, the generation means analysis does not substantiate this 

conclusion.  In 2002, some near-long x near-long F1 means were similar to or shorter 

than the shorter parent.  

Frequency distributions of individual plant values revealed that segregating 

populations followed a normal distribution, implying that FLn is quantitatively inherited.  

A higher percent of transgressive segregation appeared in the BC1P1 than in other 

segregating populations.  However, most breeders will attempt to select superior 

individual plants among the F2 population and continue selecting throughout subsequent 

generations with the goal of looking for transgressive segregants among a population of 

inbred lines derived from the selfing of an F1 hybrid.  The presence of transgressive 

segregation in the segregating populations of these near-long x near-long combinations 

suggests that the parental material chosen herein for this study contained different length 

alleles for FLn, thus suggesting that breeders could make further improvements for 

upland cotton fiber length among these near-long staple parental genotypes, but only if 

the appropriate breeding method is implemented.  Cotton already has a narrow genetic 

base (Van Esbroeck et al., 1999) and limited progress in cultivar improvement has been 

made in recent years because closely-related parents have been used to make successful 

cultivars (Meredith, 1991; Meredith et al., 1997).  Even though transgressive segregation 
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was present in this study, it was at a low frequency thus, requiring large populations for 

detection.  Most breeding programs use a pedigree method, in which seeds are harvested 

separately from each F2 to produce F3 families and continue to keep each F2 pedigree 

distinct throughout successive generations.  However, if any of the seeds are bulked 

between the F2 to F4 generation so that it is not possible to identify which seeds are 

derived from individual F2 plants, considerable loss of already limited variability may 

occur. 

All parental combinations were analyzed by individual environments for FLn.  

For most parental combinations, analyses of genetic effects indicated that a simple 

additive-dominance model did not account for most of the genetic variation for FLn.  

Therefore, a six-parameter model fit the generation means indicating that epistatic 

effects were present and suggested that inheritance is complex such that multiple alleles 

interacted to affect upland cotton fiber length.  Among the near-long x near-long 

parental combinations, additive x additive gene effects were predominate, of which a 

few had negative estimates suggesting both parents contributed alleles for FLn.  Among 

the near-long x short staple parental combinations, significant gene effects were 

numerous.  Both additive and additive x additive gene effects were abundant in the 

expression of FLn, however the presence and magnitude of dominance and dominance x 

dominance gene effects can not be ignored.  For the parental combinations that were 

controlled by additive gene action, simple selection in early segregating generations 

would be successful.  Whereas for those parental combinations controlled by non-

additive gene action, selection in later generations could prove to be more effective. 
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Several explanations of the inconsistent gene effects in this study can be 

proposed.  First, parents used in this study were from vastly different genetic 

backgrounds.  The dispersion of alleles in the parents, complete or partial, affects the 

magnitude and composition of the additive component.  The mean and dominance 

components of the parents remain independent of gene dispersion.  Two loci having an 

inter-allelic interaction will change the F2 mean, the magnitude and direction of additive 

x additive and additive x dominance effects, and the magnitude and direction of the 

variances (Kearsey and Pooni, 1996).  Higher order interactions, such as trigenic 

interactions, may be needed with enough generations to adequately understand the 

inheritance of cotton fiber length. 

The environmental variance for FLn was high, contradicting May (1999) who 

concluded that extensive environmental replication is not necessary to evaluate and 

select breeding material on the basis of fiber length parameters.  Among the near-long x 

near-long parental combinations, genetic control for FLn contained additive and non-

additive genetic variance, as to which portion was greater depended upon the parental 

combination and environment.  Among the near-long x short staple parental 

combinations the predominant portion was additive.  Numerous studies in the past 

concluded that additive variance within upland cotton genotypes tended to be more 

prominent than non-additive variance (Miller and Marani, 1963; Ramey and Miller, 

1966; Lee et al., 1967; Al-Rawi and Kohel, 1969; Al-Rawi and Kohel, 1970; Meredith 

and Bridge, 1972; Quisenberry 1975; Green and Culp, 1990; Tang et al., 1993), 

however, a few experiments have found non-additive variance to be more important 
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(Verhalen and Murray, 1969; Baker and Verhalen, 1973; May and Green, 1994; 

Cheatham et al., 2003). 

The moderate broad-sense heritability estimates found in this study suggest that 

improvement for FLn can be realized through breeding if some of the genetic variation is 

additive in nature.  Moderate to relatively high values for broad and narrow-sense 

heritability (H2 > 0.50 and h2 > 0.50) for fiber length parameters, 2.5% span length and 

UHM length, have been reported previously (May, 1999; May and Jividen, 1999; 

Herring et al., 2004).  Depending upon the parental combination and environment, the 

sometimes moderate to high values for narrow-sense heritability found in this study 

suggest that conventional pedigree and early generation selection methods should be 

effective for initial improvements in FLn in cotton.  However, low narrow-sense 

heritability estimates were more often the norm, suggesting that inheritance is complex 

and progress will be difficult. 

Gene effects and variances for FLn were inherited quite differently in specific 

environments and specific parental combinations suggesting environmentally specific 

mechanisms for FLn.   This type of interaction would make selection of fiber length and 

superior genotypes that are adapted to wide geographic areas much more difficult.  This 

would explain why improvement of fiber length in upland cotton has been slow, even 

though many genetic studies have indicated that fiber length is moderately to highly 

heritable.  Cotton fiber length is a complex trait, and improved fiber length is the result 

of many different loci.  These results show that both the adequacy of certain modes of 

inheritance as well as the importance and significance of gene effects were dependent 
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upon the particular parental combination and environment, stressing the importance of 

the appropriate selection of both parents and environment for the success of a cotton 

breeding program. 
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CHAPTER VII 
 

AFIS Uqlw GENERATION MEANS ANALYSIS 

Results and discussion 

The parental, F1, F2, and backcross generations differed (P ≤ 0.01) in Uqlw, a 

length by weight measurement, for all parental combinations (Table 16).  The ANOVA 

also revealed a significant generation x environment interaction in four parental 

combinations, Fibermax 832 x TAM 94L-25, TAM 94L-25 x TTU 202,TAM 94L-25 x 

Acala 1517-99, and TAM 94L-25 x Tamcot CAMD-E.  The data from the six other 

parental combinations, Fibermax 832 x Acala 1517-99, Fibermax 832 x TTU 202, Acala 

1517-99 x TTU 202, Fibermax 832 x Tamcot CAMD-E, Acala 1517-99 x Tamcot 

CAMD-E, and TTU 202 x Tamcot CAMD-E, and among all combinations were pooled 

over years.  The lack of a significant effect of genotype x environment in these parental 

combinations for Uqlw supports the premise that there is a strong genetic basis for fiber 

length (May, 1999).   

 Uqlw means from P1 and P2 were different (P ≤ 0.05) in each parental 

combination except for Fibermax 832 x TAM 94L-25 in 2002 and Acala 1517-99 x TTU 

202 combined across years (Table 17).  Generally, F1 hybrids had an Uqlw similar to the 

longest parent or intermediate of the parental genotypes.  However, the F1 hybrids of 

Fibermax 832 x TAM 94L-25 in 2002, TAM 94L-25 x TTU 202 in 2001 and 2002, and 

TAM 94L-25 x Acala 1517-99 in 2001 and 2002, exhibited an Uqlw mean greater than 

the longest parent, thus demonstrating heterosis.  Depending upon the parental 

combination and environment, F2 means were either similar to the longest parent or 
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Table 16.  Mean squares for Uqlw measured on P1, P2, F1, F2, BC1P1, and BC1P2 (per parental combination and among all 
combinations) at College Station, TX in 2001 and 2002. 

 
A. 
  Parental Combinations †
Source df 832 x L-25 L-25 x 202 832 x 1517  832 x 202 L-25 x 1517 1517 x 202
Environment (E) 1 40.95** 29.47** 12.73** 27.03** 43.32** 21.21**
Reps/E 6 0.51 0.28 0.45 0.22 0.47 0.44
Generation (Gn) 5 2.85** 6.46** 7.03** 5.12** 7.45** 1.01*
Gn x E 5 0.90* 0.74** 0.08 0.21 1.11** 0.16
Error 30 0.34 0.21 0.40 0.32 0.29 0.39
 
 
 
B.   
  Parental Combinations‡
Source df L-25 x CD-E 832 x CD-E 1517 x CD-E 202 x CD-E    Among
Environment (E) 1 13.82** 31.55** 26.45** 8.49** 24.40**
Reps/E 6 0.54 0.24 0.17 0.14 0.04
Generation (Gn) 5 31.22** 35.67** 14.09** 17.51** 8.60**
Gn x E 5 0.65** 0.63 0.06 0.62 0.06
Error 30 0.19 0.28 0.24 0.27 0.05
*, **  Significant at the 0.05 and 0.01 probability level, respectively. 
†  832 x L-25, Fibermax 832 x TAM 94L-25; L-25 x 202, TAM 94L-25 x TTU 202; 832 x 1517, Fibermax 832 x TTU 202; 

L-25 x 1517, TAM 94L-25 x Acala 1517-99; 1517 x 202, Acala 1517-99 x TTU 202. 
‡  L-25 x CD-E, TAM 94L-25 x Tamcot CAMD-E; 832 x CD-E, Fibermax 832 x Tamcot CAMD-E; 1517 x CD-E, Acala 

1517-99 x Tamcot CAMD-E; 202 x CD-E, TTU 202 x Tamcot CD-E; Among, Among all combinations.
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Table 17.  Means of P1, P2, F1, F2, BC1P1, and BC1P2 for Uqlw (mm) per parental combination and across combinations at 
College Station, TX in 2001 and 2002.  First parent listed is P1, second parent is P2. 

 
A. 
 Parental Combinations† 
       832 x L-25             L-25 x 202 832 x 1517 832 x 202        L-25 x 1517 1517 x 202 
Gen.‡   2001  2002         2001     2002     2001/02      2001/02     2001 2002     2001/02
P1 34.0 ab§ 34.9 bc 32.6 b 34.3 b 34.4 a 34.4 a 32.6 bc 34.3 cd 32.1 b 
P2 32.6 c 34.3 c 31.7 c 33.2 c 32.1 c 32.4 c 31.4 d 32.7 e 32.4 ab 
F1 34.6 a 35.9 a 34.9 a 35.3 a 34.3 a 34.4 a 34.3 a 35.2 ab 33.0 a 
F2 32.9 bc 35.7 a 32.9 b 34.9 ab 33.3 b 33.5 b 31.9 cd 34.7 bc 32.6 ab 
BC1P1 33.5 abc 35.6 ab 33.3 b 35.5 a 34.3 a 34.2 a 33.0 b 35.5 a 32.7 ab 
BC1P2 33.7 abc 35.9 a 32.9 b 34.5 b 33.1 b 33.3 b 31.7 cd 33.9 d 33.0 a 
 
 
B.   
 Parental Combinations¶
        L-25 x CD-E  832 x CD-E 1517 x CD-E 202 x CD-E     Among
Gen.    2001  2002    2001/02    2001/02  2001/02     2001/02
P1 32.6 a 34.3 a 34.3 a 32.1 a 32.4 a 33.5 a 
P2 27.8 d 29.1 d 28.5 f 28.5 e 28.5 e 30.9 d
F1 32.6 a 33.9 a 32.2 c 31.1 cd 31.6 bc 33.5 a
F2 31.9 b 32.4 b 31.4 d 31.5 bc 31.1 c 32.7 b
BC1P1 32.7 a 34.1 a 33.0 b 31.9 ab 32.0 ab 33.5 a
BC1P2 30.7 c 31.0 c 30.2 e 30.8 d 29.9 d 32.2 c
†  832 x L-25, Fibermax 832 x TAM 94L-25; L-25 x 202, TAM 94L-25 x TTU 202; 832 x 1517, Fibermax 832 x TTU 202; L-25 x 1517, TAM 94L-25 

x Acala 1517-99; 1517 x 202, Acala 1517-99 x TTU 202. 
‡  Gen., generation; P1, parent one; P2, parent two; F1, P1 x P2; F2, selfed F1; BC1P1, backcross to P1; BC1P2, backcross to P2. 
§  Means within a column followed by the same letter are not different at K = 100 (approximates p = 0.05) according to Waller-Duncan LSD. 
¶  L-25 x CD-E, TAM 94L-25 x Tamcot CAMD-E; 832 x CD-E, Fibermax 832 x Tamcot CAMD-E; 1517 x CD-E, Acala 1517-99 x Tamcot CAMD-
E; 202 x CD-E, TTU 202 x Tamcot CD-E; Among, Among all combinations. 
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intermediate.  In 2002, the F2 mean of Fibermax 832 x TAM 94L-25, the two parents 

with the longest fiber length in this study, exhibited an Uqlw greater than the longest 

parent, thus demonstrating heterosis once again.  In most parental combinations, the 

mean values of the backcrosses were shifted toward the values observed for the recurrent 

parent.  However, the BC1P1 means were not different from the BC1P2 means in the near-

long x near-long parental combinations of Fibermax 832 x TAM 94L-25 in 2001 and 

2002, TAM 94L-25 x TTU 202 in 2001, and Acala 1517-99 x TTU 202 combined across 

years. 

As with FLw and FLn, the parental combinations were divided into two 

categories, near-long x near-long and near-long x short staple parental combinations.  

For each parental combination, P1 was assigned accordingly to the parent with the 

longest FLw.  The near-long x near-long parental combinations consisted of Fibermax 

832 x TAM 94L-25, TAM 94L-25 x TTU 202, Fibermax 832 x Acala 1517-99, 

Fibermax 832 x TTU 202, TAM 94L-25 x Acala 1517-99, and Acala 1517-99 x TTU 

202.  The near-long x short staple parental combinations were Fibermax 832, TAM 94L-

25, Acala 1517-99, and TTU 202 crosses with Tamcot CAMD-E. 

Uqlw frequency distributions of each parental combination were constructed to 

visually gain a more comprehensive understanding into the generation means and to 

determine transgressive segregation (Figs. 49-63).  For each figure the y-axis is the 

number of plants, and the x-axis is Uqlw in mm divided into 10 length classes.  The 

classes within each figure are the same for the non-segregating and segregating 
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populations.  However, the overall range and class size does change from figure to 

figure.  

 Examination of the frequency distribution of individual plant values of each 

parental combination indicated that the segregating populations followed a normal 

distribution, suggesting that Uqlw is quantitatively inherited.  Transgressive segregation, 

individual F2 or backcross plant observations with values exceeding the longest parent or 

F1 observation (Kearsey and Pooni, 1996), were visible in both near-long x near-long 

and near-long x short staple parental combinations.  At least two segregating populations 

in all near-long x near-long parental combinations exhibited transgressive segregation.  

Averaging the percent of plants exhibiting transgressive segregation for each segregating 

population among the near-long x near-long combinations, the BC1P1 had the highest 

transgressive segregation at 7.3%, followed by the F2 at 5.5%, and the BC1P2 at 3.2%.  

Within individual combinations, TAM 94L-25 x TTU 202, 2002, had the highest 

percentage of transgressive segregation among the BC1P1 and F2 populations, 25.0 and 

15.0%, respectively (Fig. 52).  Also, TAM 94L-25 x Acala 1517-99, 2002, had a high 

percentage of transgressive segregation among the BC1P1 and F2 populations, 23.0 and 

14.5%, respectively (Fig. 56).  In 2002, Fibermax 832 x TAM 94L-25, the longest staple 

length parents in the study, had the highest percent of transgressive segregation among 

the BC1P2 at 13.0% (Fig. 50).  Also, this parental combination and environment had 

10.5% transgressive segregation in the F2 population (Fig. 50).  It is interesting to note 

that a high percentage of transgressive segregation for Uqlw was observed in Fibermax 

832 x TAM 94L-25 parental combination in 2002.  This suggests that the two longest 
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Fig. 49.  Frequency distribution of Uqlw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generation for the near-long x near-long parental combination of Fibermax 832 (P1) x 
TAM 94L-25 (P2) in 2001. 
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Fig. 50.  Frequency distribution of Uqlw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generation for the near-long x near-long parental combination of Fibermax 832 (P1) x 
TAM 94L-25 (P2) in 2002. 
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Fig. 51.  Frequency distribution of Uqlw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generation for the near-long x near-long parental combination of TAM 94L-25 (P1) x 
TTU 202 (P2) in 2001. 
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Fig. 52.  Frequency distribution of Uqlw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generation for the near-long x near-long parental combination of TAM 94L-25 (P1) x 
TTU 202 (P2)  in 2002. 
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Fig. 53.  Frequency distribution of Uqlw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generation for the near-long x near-long parental combination of Fibermax 832 (P1) x 
Acala 1517-99 (P2) across 2001 and 2002. 
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Fig. 54.  Frequency distribution of Uqlw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generation for the near-long x near-long parental combination of Fibermax 832 (P1) x 
TTU 202 (P2) across 2001 and 2002. 
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Fig. 55.  Frequency distribution of Uqlw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generation for the near-long x near-long parental combination of TAM 94L-25 (P1) x 
Acala 1517-99 (P2) in 2001. 
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Fig. 56.  Frequency distribution of Uqlw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generation for the near-long x near-long parental combination of TAM 94L-25 (P1) x 
Acala 1517-99 (P2) in 2002. 
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Fig. 57.  Frequency distribution of Uqlw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generation for the near-long x near-long parental combination of Acala 1517-99 (P1) x 
TTU 202 (P2) across 2001 and 2002. 
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Fig. 58.  Frequency distribution of Uqlw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generation for the near-long x short staple parental combination of TAM 94L-25 (P1) x 
Tamcot CAMD-E (P2) in 2001. 
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Fig. 59.  Frequency distribution of Uqlw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generation for the near-long x short staple parental combination of TAM 94L-25 (P1) x 
Tamcot CAMD-E (P2) in 2002. 
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Fig. 60.  Frequency distribution of Uqlw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generation for the near-long x short staple parental combination of Fibermax 832 (P1) x 
Tamcot CAMD-E (P2) across 2001 and 2002. 

mm mm



 170

 

 
 
 
 
 
 
 
 
 
 
 

0

5

10

0

30

60

0

5

10

0

30

60

0

5

10

0

50

100

  P1 

  P2 

  F1   F2 

BC1P1 

BC1P2 

N
um

be
r o

f p
la

nt
s 

25.2      27.8      30.4      33.0      35.6 
       26.5      29.1      31.7      34.3      36.9 

  25.2      27.8      30.4      33.0     35.6 
        26.5      29.1      31.7      34.3     36.9 

Fig. 61.  Frequency distribution of Uqlw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generation for the near-long x short staple parental combination of Acala 1517-99 (P1) 
x Tamcot CAMD-E (P2) across 2001 and 2002. 
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Fig. 62.  Frequency distribution of Uqlw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generation for the near-long x short staple parental combination of TTU 202 (P1) x 
Tamcot CAMD-E (P2) across 2001 and 2002. 
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Fig. 63.  Frequency distribution of Uqlw in the P1, P2, F1, BC1P1, BC1P2, and F2 
generation among all parental combinations in 2001 and 2002. 
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genotypes in this study have different alleles for Uqlw and that further improvement of 

fiber length is possible. 

Fewer transgressive segregates appeared among the near-long x short staple 

parental combinations, and none appeared in the backcrosses to Tamcot CAMD-E (Figs. 

58-62).  In 2001, TAM 94L-25 x Tamcot CAMD-E had the highest percentage of BC1P1 

and F2 transgressive segregation, 13.0 and 8.0%, respectively (Fig. 58).  Other near-long 

x short staple parental combinations either displayed no or a very low percentage of 

transgressive segregation. 

Generation mean analyses tested three- and six-parameter models for the best fit 

to explain genetic control of Uqlw in various upland parental combinations.  Effects 

were first estimated with the three-parameter model and accepted if P ≥ 0.05.  The three-

parameter model did not satisfactorily explain the genetic differences of Uqlw for any of 

the parental combinations, indicating that epistasis was present (Table 18).  Therefore, 

the six-parameter model was fit to determine the type and magnitude of gene effects 

involved in the inheritance of Uqlw.  Fibermax 832 x Acala 1517-99 was the only near-

long x near-long parental combination to display additive effects with an estimate of 

1.15.  Dominance effects were exhibited in the parental combinations of Fibermax 832 x 

TAM 94L-25 in 2002, TAM 94L-25 x TTU 202 in 2002, and Fibermax 832 x Acala 

1517-99 combined across years. 

 Among the non-allelic interactions and near-long x near-long parental 

combinations, additive x additive, additive x dominance, and dominance x dominance 

gene effect estimates were significant for Uqlw.  This is unlike FLw and FLn, which had 
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Table 18.  Estimates of gene effects for Uqlw (per parental combination and among all combinations) at College Station, TX 
in 2001 and 2002. 

  Gene effects† 
Parental Combinations Year        m         a         d        aa        ad        dd 
Fibermax 832 x TAM 94L-25‡ 2001 31.10** 0.99  3.75  2.66** -2.39* -0.33  
Fibermax 832 x TAM 94L-25‡ 2002 33.80** 0.61  5.54** 0.41  -1.91* -3.56** 
TAM 94L-25 x TTU 202‡ 2001 31.57** 0.23 2.31 0.52 0.44 0.82 
TAM 94L-25 x TTU 202‡ 2002 32.95** 0.13 5.65** 0.50 1.80* -3.53* 
Fibermax 832 x Acala 1517-99‡ 2001/02 31.77** 1.15* 4.33* 1.73** 0.44  -2.50  
Fibermax 832 x TTU 202‡ 2001/02 33.14** 0.77  -0.85  0.80* 0.46  3.30** 
TAM 94L-25 x Acala 1517-99‡ 2001 30.01** 0.57  3.45  1.90** 1.34  0.62  
TAM 94L-25 x Acala 1517-99‡ 2002 33.41** 0.36  3.63  -0.04  2.66  -2.05  
Acala 1517-99 x TTU 202‡ 2001/02 31.09** -0.37 2.49 1.70** 0.09 0.65 
TAM 94L-25 x Tamcot CAMD-E§ 2001 30.81** 2.30** 2.12  -0.60  -0.74  0.01  
TAM 94L-25 x Tamcot CAMD-E§ 2002 31.04 ** 2.36** 2.72  0.43  1.52  0.28  
Fibermax 832 x Tamcot CAMD-E§ 2001/02 30.01** 3.28** 3.81* 1.31** -0.67 -2.01 
Acala 1517-99 x Tamcot CAMD-E§ 2001/02 30.51** 2.18** 2.71  -0.35  -1.97  -2.17  
TTU 202 x Tamcot CAMD-E§ 2001/02 31.22** 2.54** -0.99 -0.60 -0.78 1.60 
Among all combinations 2001/02 31.03** 1.71** 2.92** 0.80** -0.66* 0.51  
*, **  Significant at the 0.05 and 0.01 probability level on the basis of t test with n – 1 =5 degrees of freedom, respectively. 
†  m = mean; a = additive; d = dominance; aa = additive x additive; ad = additive x dominance; dd = dominance x 

dominance. 
‡  Near-long x near-long parental combination. 
§  Near-long x short staple parental combination. 
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only significant additive x additive gene effect estimates.  Additive x additive effects 

were significant in Fibermax 832 x TAM 94L-25 in 2001, Fibermax 832 x Acala 1517-

99 combined across years, Fibermax 832 x TTU 202, TAM 94L-25 x Acala 1517-99 in 

2001, and Acala 1517-99 x TTU 202 with estimated values of 2.66, 1.73, 0.80, 1.90, and 

1.70, respectively (Table 18).  Additive x dominance effects were negative for Fibermax 

832 x TAM 94L-25 in 2001 and 2002 with values of -2.39 and -1.91, while TAM 94L-

25 x TTU 202 in 2002 had a positive additive x dominance estimate of 1.80.  Dominance 

x dominance effects were significant in Fibermax 832 x TAM 94L-25 in 2002, TAM 94 

L-25 x TTU 202 in 2002, and Fibermax 832 x TTU 202 with estimated values of -3.56, -

3.53, and 3.30.  In 2002, the dominance effects for Fibermax 832 x TAM 94L-25 and 

TAM 94L-25 x TTU 202 were positive while the dominance x dominance effects were 

negative.  This contrasting direction of response suggests positive duplicate epistasis 

(Kearsey and Pooni, 1996).  Uqlw was the only AFIS measurement to have positive 

duplicate epistasis among a near-long x near-long combination.  Among the near-long x 

near-long parental combinations, additive effects accounted for a smaller portion of the 

observed variability than dominance effects.  In comparing the relative magnitude of 

additive x additive to dominance x dominance effects, it depended on the parental 

combination and environment as to which one was greater.  Overall, dominance and 

non-allelic interaction effects were the most important in determining Uqlw among near-

long x near-long parental combinations. 

For all near-long x short staple parental combinations, additive gene effect 

estimates were significant and positive.  Fibermax 832 x Tamcot CAMD-E combined 
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across years was the only parental combination to exhibit dominance and additive x 

additive gene effects with estimates of 3.81 and 1.31, respectively (Table 18).  No 

additive x dominance or dominance x dominance effects were significant among these 

near-long x short staple parental combinations.   

Generation means analysis indicated that genetic control for Uqlw among near-

long x short staple parental combinations was not as complex as other AFIS fiber length 

measurements, FLw and FLn.  Additive effects for Uqlw accounted for a larger portion 

of the observed variability when compared to FLw and FLn and were sometimes larger 

in magnitude than dominance effects.  Additive effects were significant more often than 

dominance effects because of the generation means analysis produced larger standard 

errors, although primarily among near-long x short staple parental combinations, for 

dominance than for additive effects (data not shown).  In comparing the relative 

magnitude of additive x additive to dominance x dominance, it depended on the parental 

combination and environment as to which one was greater.  Overall, additive effects 

appear to be a more important factor in Uqlw among near-long x short staple parental 

combinations.  The genetic data among all combinations had significant additive, 

dominance, additive x additive, and additive x dominance effects with dominance effects 

being the largest in magnitude. 

Variance components and broad- and narrow-sense heritability estimates for 

Uqlw were calculated to determine the relative importance of the various determinants 

of the phenotype, the extent to which individuals’ phenotypes are determined by their 

genotypes, and the extent to which phenotypes are determined by the alleles transmitted 
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from the parents (Falconer and MacKay, 1996).  Environmental variance among the nine 

near-long x near-long parental combinations ranged from 0.51 to 1.75 with an average of 

1.17, while the five near-long x short staple parental combinations ranged from 0.43 to 

1.16 with an average of 0.95 (Table 19).  The additive variance among the near-long x 

near-long parental combinations ranged from 0.17 to 2.55 with an average of 1.02, while 

the near-long x short staple parental combinations ranged from 0.00 to 2.58 with an 

average of 1.31.  The dominance variance among the near-long x near-long parental 

combinations ranged from 0.00 to 1.53 with an average of 0.55, while the near-long x 

short staple parental combinations ranged from 0.00 to 0.49 with an average of 0.17.  

Among all combinations, the environmental, additive, and dominance variance was 3.60, 

0.00, and 0.72, respectively. 

 Among the near-long x near-long parental combinations in 2001 and 2002, 

broad- (H2) and narrow-sense (h2) heritability estimates averaged 0.56 and 0.33, 

respectively (Table 19).  Fibermax 832 x TAM 94L-25 had the same broad-sense 

heritability estimate of 0.63 in 2001 and 2002, although a higher additive variance value 

in 2002 corresponded to a higher narrow-sense heritability estimate.  In 2002, TAM 

94L-25 x TTU 202 had a larger genetic and additive variance.  This in conjunction with 

a lower environmental variance led to higher broad- and narrow-sense heritability 

estimates in 2002 than in 2001.  In 2001, TAM 94L-25 x Acala 1517-99 had the highest 

total genetic variance among the near-long x near-long parental combinations.  In 2001 

and 2002, TAM 94L-25 x Acala 1517-99 had high narrow-sense heritability estimates of 

0.71 and 0.68, respectively.  Among the near-long x near-long parental combinations, 



 178

Table 19.  Variance components and broad (H2) and narrow (h2) sense heritability estimates for Uqlw for 10 parental 
combinations grown at College Station, TX in 2001 and 2002. 

        Variance components†           Heritability estimates 
Parental Combinations Year    σ2

E    σ2
A    σ2

D            H2            h2 
Fibermax 832 x TAM 94L-25‡ 2001 1.00 0.19 1.53 0.63  0.07 ± 0.05 
Fibermax 832 x TAM 94L-25‡ 2002 0.78 1.03 0.31 0.63  0.48 ± 0.03 
TAM 94L-25 x TTU 202‡ 2001 1.03 0.17 0.95 0.52 0.08 ± 0.04 
TAM 94L-25 x TTU 202‡ 2002 0.51 0.63 1.09 0.77 0.28 ± 0.04 
Fibermax 832 x Acala 1517-99‡ 2001/02 1.75 0.30 0.64 0.35  0.11 ± 0.04 
Fibermax 832 x TTU 202‡ 2001/02 1.55 0.35 0.17 0.25  0.17 ± 0.03 
TAM 94L-25 x Acala 1517-99‡ 2001 0.94 2.55 0.10 0.74  0.71 ± 0.02 
TAM 94L-25 x Acala 1517-99‡ 2002 1.20 2.50 -0.58 0.68  0.68 ± 0.02 
Acala 1517-99 x TTU 202‡ 2001/02 1.75 1.45 0.20 0.49  0.43 ± 0.03 
TAM 94L-25 x Tamcot CAMD-E§ 2001 0.43 1.70 0.49 0.83  0.65 ± 0.02 
TAM 94L-25 x Tamcot CAMD-E§ 2002 0.95 2.58 -0.67 0.73  0.73 ± 0.02 
Fibermax 832 x Tamcot CAMD-E§ 2001/02 1.51 -1.47 0.27 0.15 0.00 ± 0.08 
Acala 1517-99 x Tamcot CAMD-E§ 2001/02 1.67 1.73 0.07 0.52  0.50 ± 0.02 
TTU 202 x Tamcot CAMD-E§ 2001/02 1.22 0.53 -0.13 0.30 0.30 ± 0.03 
Among all combinations 2001/02 3.60 -0.11 0.72 0.14  0.00 ± 0.00 
†  σ2

E, environmental variance; σ2
A, additive variance; σ2

D, dominance variance.  Negative variance assumed zero in 
heritability estimates. 

‡  Near-long x near-long parental combination. 
§  Near-long x short staple parental combination. 
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Fibermax 832 x Acala 1517-99, Fibermax 832 x TTU 202, and Acala 1517-99 x TTU 

202 were the parental combinations in which the ANOVA indicated no significant 

generation x environment interaction and thus, the data of 2001 and 2002 were pooled.  

The heritability estimates for these parental combinations account for the generation x 

environment interaction in the total phenotypic variance.  Among these three parental 

combinations, Acala 1517-99 x TTU 202 had the highest total genetic and additive 

variance, which corresponded into higher broad- and narrow-sense heritability estimates. 

Among the near-long x short staple parental combinations, broad- and narrow-

sense heritability estimates averaged 0.51 and 0.44, respectively (Table 19).  In 2001, 

TAM 94L-25 x Tamcot CAMD-E, with a lower environment variance, had a higher 

broad-sense heritability estimate, despite a lower total genetic variance.  However in 

2002, TAM 94L-25 x Tamcot CAMD-E had a higher narrow-sense heritability estimate.  

Fibermax 832 x Tamcot CAMD-E combined across years had zero additive variance and 

a low broad-sense heritability estimate.  Acala 1517-99 x Tamcot CAMD-E and TTU 

202 x Tamcot CAMD-E combined over years had broad- and narrow-sense heritability 

estimates of 0.52, 0.50, 0.30, and 0.30 respectively.  Among all combinations, the broad 

and narrow-sense heritability estimates were 0.14 and 0.00, respectively. 

Estimates of additive effects could be small due to a high degree of dispersion of 

alleles increasing Uqlw between parents.  This might explain why the additive genetic 

components of variance varied and a definitive relationship between additive effects and 

additive genetic variance could not be detected.  The negative estimates of dominance 
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variance seen in this study could have been due to sampling error and/or the fact that 

basic generations are inefficient when used for determining dominance variance. 

Summary and conclusions 

Cotton is a natural product with lint characteristics determined by environmental 

and genetic factors.  There is limited information available about the native fiber length 

distribution (i.e., on the seed), however it is believe that cotton possesses a normal fiber 

length distribution (probably is highly heritable) when bolls are hand picked cautiously 

and ginned carefully with a razor, tweezer, and aid of a microscope.  Whatever the 

genetic determination of length distribution, the mechanical operations in harvesting, 

ginning, and textile manufacturing alter the distribution by breaking longer fibers into 

shorter ones (Anthony and Griffin, 2001a; Anthony and Griffin, 2001b; Robert et al., 

2000).  These successive stages of mechanical handling and processing incrementally 

but unavoidably inflict some fractures upon fibers being processed. 

The degree of fiber breakage is dependent primarily upon fiber length, maturity, 

strength, and elongation.  Longer fibers allow for a greater chance of tension forces 

being held at both ends, so they therefore have a higher probability of breakage than 

shorter fibers.  Length distributions are also influenced by fiber maturity, and maturity is 

directly related to growing conditions.  Immature fibers have underdeveloped, weak, thin 

secondary walls that are prone to break during mechanical processes.  Fully mature 

fibers are less likely to be damaged or broken.  The load, a specimen of a single fiber or 

a bundle of fibers in its axial direction, at which the specimen breaks provides a measure 

of fiber strength.  Fiber elongation, the increase in length of fiber during tensile loading, 
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is important in determining the processing propensity of fibers and the mechanical 

behavior of yarn.  Two cottons with the same strength, but with different elongations 

will behave differently under mechanical stresses. 

The environment influenced the magnitude of Uqlw in 2001 and 2002, but not to 

the extent seen with FLw and FLn.  Fewer significant generation x environment 

interactions were detected among the parental combinations.  The climatological 

conditions of the two years were normal in terms of temperature and rainfall.  However, 

rainfall events at physiological maturity during 2001 extended the harvesting period and 

thus weathering of the fiber might have shortened the mean fiber length.  All near-long x 

near-long F1 hybrids had an Uqlw mean similar to or greater than the longest parent 

suggesting dominance or overdominance, and the generation means analysis adequately 

validate this conclusion. 

Frequency distributions of individual plant values revealed that the segregating 

populations followed a normal distribution, implying that Uqlw is quantitatively 

inherited.  A higher percent of transgressive segregation appeared in the BC1P1 than in 

other segregating populations.  However, most breeders will attempt to select superior 

individual plants among the F2 population and continue selecting throughout subsequent 

generations with the goal of looking for transgressive segregants among a population of 

inbred lines derived from the selfing of an F1 hybrid.  The presence of transgressive 

segregation in the segregating populations of these near-long x near-long combinations 

suggests that the parental material chosen for this study contained different length alleles 

for Uqlw, thus suggesting that breeders could make further improvements for upland 
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cotton fiber length among these near-long staple parental genotypes, but only if the 

appropriate breeding method is implemented.  Cotton already has a narrow genetic base 

(Van Esbroeck et al., 1999) and limited progress in cultivar improvement has been made 

in recent years because closely-related parents have been used to make successful 

cultivars (Meredith, 1991; Meredith et al., 1997).  Even though transgressive segregation 

was present in this study, it was at a low frequency thus requiring large populations and 

suggesting incremental improvement will or should be expected.  Most breeding 

programs use a pedigree method, in which seeds are harvested separately from each F2 to 

produce F3 families and continue to keep each F2 pedigree distinct throughout successive 

generations.  However, if any of the seeds are bulked between the F2 to F4 generation so 

that it is not possible to identify which seeds are derived from individual F2 plants, 

considerable loss of already limited variability may be made. 

Half of the parental combinations for Uqlw were analyzed by individual 

environments and the other five with combined years.  Except for one parental 

combination, analyses of genetic effects indicated that a simple additive-dominance 

model did not account for most of the genetic variation for Uqlw.  Therefore, a six-

parameter model fit the generation means indicating that epistatic effects were present 

and suggested that inheritance is complex such that multiple alleles interacted to affect 

upland cotton Uqlw.  Among the near-long x near-long parental combinations, few 

allelic and non-allelic gene effects were detected.  This minimal number possibly 

indicates a high degree of dispersion of alleles increasing Uqlw between parents.  

Among the near-long x short staple parental combinations, significant gene effects were 



 183

numerous.  Additive effects were present in all parental combinations and additive x 

additive effects were identified in most.  While additive and additive x additive effects 

were abundant in the expression of Uqlw, the magnitude of some dominance and 

dominance x dominance effects can not be ignored.  For the parental combinations that 

were controlled by additive gene action, simple selection in early segregating 

generations would be successful.  Whereas for those parental combinations controlled by 

non-additive gene action, selection in later generations could prove to be more effective. 

Several explanations of the inconsistent gene effects in this study can be 

proposed.  First, parents used in this study were from vastly different genetic 

backgrounds.  The dispersion of alleles in the parents, complete or partial, affects the 

magnitude and composition of the additive component.  The mean and dominance 

components of the parents remain independent of gene dispersion.  Two loci having an 

inter-allelic interaction will change the F2 mean, the magnitude and direction of additive 

x additive and additive x dominance effects, and the magnitude and direction of the 

variances (Kearsey and Pooni, 1996).  Higher order interactions, such as trigenic 

interactions, may be needed with enough generations to adequately understand the 

inheritance of cotton fiber length. 

The environmental variance for Uqlw was moderate to high, contradicting May 

(1999) who concluded that extensive environmental replication is not necessary to 

evaluate and select breeding material on the basis of fiber length parameters.  Among the 

near-long x near-long parental combinations, genetic control for Uqlw contained 

additive and non-additive genetic variance, but the greater portion was additive.  Among 
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the near-long x short staple parental combinations the predominant genetic variance was 

additive.  Numerous studies in the past concluded that additive variance within upland 

cotton genotypes tended to be more prominent than non-additive variance (Miller and 

Marani, 1963; Ramey and Miller, 1966; Lee et al., 1967; Al-Rawi and Kohel, 1969; Al-

Rawi and Kohel, 1970; Meredith and Bridge, 1972; Quisenberry 1975; Green and Culp, 

1990; Tang et al., 1993).  However, a few experiments have found non-additive variance 

to be more important (Verhalen and Murray, 1969; Baker and Verhalen, 1973; May and 

Green, 1994; Cheatham et al., 2003). 

The moderate to high broad-sense heritability estimates found in this study 

suggest that improvement for Uqlw can be realized through breeding if some of the 

genetic variation is additive in nature.  Moderate to relatively high values for broad and 

narrow-sense heritability (H2 > 0.50 and h2 > 0.50) for fiber length parameters, 2.5% 

span length and UHM length, have been reported previously (May, 1999; May and 

Jividen, 1999; Herring et al., 2004).  Depending upon the parental combination and 

environment, the sometimes moderate to high values for narrow-sense heritability found 

in this study suggest that conventional pedigree and early generation selection methods 

should be effective for initial improvements in Uqlw in cotton.  However, among near-

long x near-long parental combinations narrow-sense heritability estimates were more 

often low, suggesting that the inheritance is complex and progress will be difficult. 

Gene effects and variances for Uqlw were inherited quite differently in specific 

environments and parental combinations suggesting environmentally specific 

mechanisms for Uqlw.   This type of interaction would make selection of fiber length 
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and superior genotypes that are adapted to wide geographic areas much more difficult.  

This would explain why improvement of fiber length in upland cotton has been so slow, 

even though many genetic studies have indicated that fiber length is moderately to 

highly heritable.  Cotton fiber length is a complex trait, and improved fiber length may 

be the result of many different loci.  These results show that both the adequacy of certain 

modes of inheritance as well as the importance and significance of gene effects were 

dependent upon the particular parental combination and environment, stressing the 

importance of the appropriate selection of both parents and environment for the success 

of a cotton breeding program. 
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CHAPTER VIII 

AFIS FLw DISTRIBUTION DIALLEL 

Efforts were made in this study to find practical and effective applications of the 

distribution data provided by the AFIS.  FLw was the trait selected to be analyzed by 

various distribution statistical parameters.  Cross entropy is a method to measure how 

good a distribution approximates another distribution, with a value of 0 being a perfect 

match.  Scientific quandary with this procedure surrounds the proposition of what shall 

serve as the ideal cotton fiber length distribution.  No published material exists 

identifying the optimal length distribution.  Questions arise as should the distribution be 

artificially fabricated, what genotype, how many samples or environments shall be 

appropriate.  In the current study, two genotypes grown in a single environment and one 

genotype grown in two environments were examined as possible cross entropy check 

candidates.  The raw AFIS FLw distribution data containing the 40 length classes of the 

three checks are graphed in Figure 64.  Additional fiber length data for the three checks 

are provided in Table 20. 

Results and discussion 

 Parents differed (P ≤ 0.05) in cross entropy values among the three different 

checks evaluated (Table 21).  Analysis of variance indicated a significant parent x 

environment interaction for CEA and CEB, but not CEC.  Genotypic rank varied 

depending upon the distribution used as the check, however, CEA and CEB more closely 

resembled each other in magnitude and rank than CEC to either CEA or CEB (Table 22).  

For CEA and CEB, large magnitude differences existed between 2001 and 2002.  The 
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Fig. 64.  Raw FLw distribution for (A) CEA, Cross entropy distribution data 
of Acala 1517-99 hand harvested plants averaged across 2002 as the 
check, (B) CEB, Cross entropy distribution data of Tamcot CAMD-E 
hand harvested plants averaged across 2002 as the check, and (C) CEC, 
Cross entropy distribution data of Acala 1517-99 combined over 2 
environments and machine harvested at two locations as the check. 
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Table 20.  Raw AFIS data for three cross entropy checks.† 
Check‡ FLw FLn Uqlw SFCw SFCn IFC Fine MR 
 -------------- mm ------------- -------------- % ---------------   
CEA 1.11 0.94 1.29 4.13 15.32 4.3 176 0.99 
CEB 0.98 0.83 1.14 6.40 18.99 4.5 189 0.97 
CEC 1.05 0.83 1.26 6.99 23.75 6.7 163 0.93 
†  FLw, mean fiber length by weight; FLn, mean fiber length by number; Uqlw, upper 

quartile length by weight; SFCw, short fiber content by weight; SFCn, short fiber 
content by number; IFC, immature fiber content; Fine, fineness; MR, maturity ratio. 

‡  CEA, Cross entropy distribution data of Acala 1517-99 hand harvested plants 
averaged across 2002 as the check; CEB, Cross entropy distribution data of Tamcot 
CAMD-E hand harvested plants averaged across 2002 as the check; CEC, Cross 
entropy distribution data of Acala 1517-99 combined over 2 environments and 
machine harvested at two locations as the check; 
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Table 21.  Combined analyses of variance of diallel crosses among five upland cotton 
genotypes for FLw distribution data measurements at College Station, TX in 2001 and 
2002.† 

  Mean squares 
Source Df      CEA      CEB      CEC FLwKurt FLwSkew 
Environment 
(E) 

1 378.15** 488.40** 34.43** 3.29** 6.84** 

Reps/E 6 3.22 2.84 1.61 0.08 0.31 
Genotypes 
(G) 

14 60.39 53.25 15.63 1.37** 19.97** 

  Parents (P) 4 115.34* 109.71* 9.99* 2.80** 29.86* 
  P vs. F1 1 16.16 14.71 143.44 2.10 34.26 
   F1 9 40.89** 32.43** 3.93 0.66** 13.99** 
    GCA 4 86.01* 67.25* 7.34 1.39** 30.40** 
    SCA 5 4.79 4.58 1.20 0.08 0.87 
G x E 14 38.38** 37.89** 6.79** 0.33** 1.86** 
  P x E 4 16.63** 12.08** 1.31 0.17* 2.68** 
  P vs. F1 x E 1 246.32** 200.87** 3.68 3.16** 10.66** 
   F1 x E 9 7.17 4.58 1.57 0.09 0.52 
    GCA x E 4 9.39* 5.68 1.42 0.07 0.65 
    SCA x E 5 5.39 3.70 1.69 0.11 0.41 
Error 84 3.82 4.18 1.46 0.06 0.57 
Mean  868.25 749.93 467.65 1.00 0.00 
CV, %  22.51 27.26 25.88 24.72 8963.75 
*, **  Significant at the 0.05 and 0.01 probability level, respectively. 
†  CEA, Cross entropy distribution data of Acala 1517-99 hand harvested plants averaged 

across 2002 as the check; CEB, Cross entropy distribution data of Tamcot CAMD-E 
hand harvested plants averaged across 2002 as the check; CEC, Cross entropy 
distribution data of Acala 1517-99 combined over 2 environments and machine 
harvested at two locations as the check; FLwKurt, mean fiber length by weight kurtosis;  
FLwSkew, mean fiber length by weight skewness. 
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Table 22.  Means of five upland parental genotypes for FLw distribution measurements evaluated near College Station, TX in 
2001 and 2002.† 

Genotype  CEA CEB  CEC            FLwKurt           FLwSkew 
      2001  2002      2001  2002   2001/02         2001   2002     2001   2002 
TAM 94L-25  2300 c‡ 596 bc   2252 c 465 bc     736 b 0.02 c 1.26 b -0.05 a 0.07 a 
TTU 202  1419 b 801 d   1294 b 552 c     531 ab 0.60 b 1.26 b 0.01 a -0.08 a 
Fibermax 832  1175 ab 621 cd   1062 ab 495 c     479 a 0.56 b 1.03 b -0.07 a -0.09 a 
Tamcot CAMD-E    918 ab 424 ab     724 ab 275 a     702 b 1.74 a 2.42 a 0.28 c 0.42 b 
Acala 1517-99    689 a 258 a     567 a 309 a     663 ab 1.03 b 1.93 a 0.12 b 0.30 b 
†  CEA, Cross entropy distribution data of Acala 1517-99 hand harvested plants averaged across 2002 as the check; CEB,   

Cross entropy distribution data of Tamcot CAMD-E hand harvested plants averaged across 2002 as the check; CEC, Cross 
entropy distribution data of Acala 1517-99 combined over 2 environments and machine harvested at two locations as the 
check; FLwKurt, mean fiber length by weight kurtosis;  FLwSkew, mean fiber length by weight skewness. 

‡  Means within a column followed by the same letter are not different at K = 100 (approximates p = 0.05) according to  
Waller-Duncan LSD at K = 100 (approximates p = 0.05) according to Waller-Duncan LSD. 
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data for CEC was combined over the two years.  In 2001, CEA and CEB had the same 

genotypic rank and subtle differences in 2002.  For CEA and CEB in 2001, Acala 1517-

99 had the lowest cross entropy values but not different from Tamcot CAMD-E or 

Fibermax 832.  TTU 202 followed and then TAM 94L-25 had the highest CEA and CEB 

values of 2300 and 2252, respectively.  In 2002, Acala 1517-99 once again had the 

lowest CEA value but not different from Tamcot CAMD-E, followed by  TAM 94L-25 

and Fibermax 832 which were similar to each other with TAM94L-25 being equivalent 

to Tamcot CAMD-E and Fibermax 832 being similar to TTU 202 with the highest CEA 

value of 801.  For CEB in 2002, Tamcot CAMD-E had the lowest value although not 

different from Acala 1517-99.  Of note, the average of the Tamcot CAMD-E plants from 

2002 was used to attain the CEB distribution.  TAM 94L-25 had the next lowest value at 

465 but was not different from Fibermax 832 and TTU 202 with values of 495 and 552, 

respectively.  The range of CEC values over 2001 and 2002 were minimal compared to 

CEA and CEB.  Fibermax 832 had the lowest CEC value of 479 but was only different 

from Tamcot CAMD-E and TAM 94L-25.   

Parents differed (P ≤ 0.05) in FLwKurt (Table 21), with significant parent x 

environment interactions detected.  In 2001 and 2002, Tamcot CAMD-E had the highest 

FLwKurt values of 1.74 and 2.42, respectively, however, the value in 2002 was not 

different from Acala 1517-99 value at 1.93 (Table 22).  In 2001, Acala 1517-99, TTU 

202, and Fibermax 832 had similar FLwKurt values of 1.03, 0.60, and 0.56, respectively.  

TAM 94L-25 had the lowest FLwKurt value of 0.02.  In 2002, TAM 94L-25, TTU 202, 

and Fibermax 832 had equivalent values of 1.26, 1.26, and 1.03, respectively. 
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Parents differed (P ≤ 0.05) in FLwSkew (Table 21).  Significant parent x 

environment interactions were detected for FLwSkew, due to changes in magnitude and 

not changes in genotypic rank.  In 2001, TTU 202 had a distribution closest to zero with 

a value of 0.01, but was not different from Fibermax 832 and TAM 94L-25, which had 

negative FLwSkew values of -0.07 and -0.05, respectively (Table 22).  Acala 1517-99 

followed with a FLwSkew value of 0.12 and Tamcot CAMD-E had a distribution 

farthest from normal with a FLwSkew value of 0.28. In 2002, TAM 94L-25, TTU 202, 

and Fibermax 832 once again had equivalent FLwSkew values of 0.07, -0.08, and -0.09, 

respectively.  Acala 1517-99 and Tamcot CAMD-E had distributions farthest from 

normal with FLwSkew values of 0.30 and 0.42. 

GCA effects were observed (P ≤ 0.05) for all FLw distribution data 

measurements except CEC (Table 21).    The ANOVA revealed a significant GCA x 

environment interaction for CEA.  The preponderance of GCA effects suggest that 

progeny performance for FLw distribution data measurements can be well predicted 

from GCA alone (93.5%, 92.5%, 93.6%, and 96.5% of total F1 sums of squares were 

attributable to GCA for CEA, CEB, FLwKurt, and FLwSkew respectively).  For CEB 

and CEC, Tamcot CAMD-E had the lowest negative GCA effects for improving 

distributions to resemble the check, i.e., lowering the cross entropy value (Table 23).  It 

had GCA effects of -213 and -82, respectively.  TAM 94L-25, a near-long parental 

genotype, had the highest positive significant GCA effects for impairing the shape of the 

distribution for CEB with a value of 231.  TTU 202, Fibermax 832, and Acala 1517-99 

had no significant GCA effects on the cross entropy values.  Tamcot CAMD-E and 
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TAM 94L-25 had again contrasting GCA effect for FLwKurt.  Tamcot CAMD-E had a 

GCA effect of 0.32 which contributed to peaking the distribution and attaining more 

fibers in a narrower length range, whereas TAM 94L-25 had a GCA effect of -0.32.  

This effect would impair and flatten the distribution, increasing the range in which the 

fibers were amassed.  Tamcot CAMD-E and TAM 94L-25 both had FLwSkew GCA 

effects in which they moved the distribution away from normal, although in opposite 

directions.  The positive GCA effect of Tamcot CAMD-E, 0.17, moved the distribution 

to the left and had a long right tail and TAM 94L-25 had a negative GCA effect of -0.13, 

moving the distribution to the right and having a long left tail.  

Crosses differed (P ≤ 0.05) for all FLw distribution data measurements except 

CEC (Table 21), however the ANOVA showed no significant SCA effects.  However, 

Fibermax 832 x Acala 1517-99 and Acala 1517-99 x Tamcot CAMD-E did have 

contrasting SCA effects for FLwSkew with estimates of -0.044 and 0.040 (Table 24).    

The test for average heterosis yielded no differences between the parents and crosses.  

All crosses x environment and SCA x environment effects were not significant.   

 As with the parental genotypes, CEA and CEB closely resembled each other in 

magnitude and had subtle changes in genotypic rank among the parental combinations 

(Table 25).  Compared with CEA and CEB, CEC not only differed with a lower 

magnitude, but had acute differences in discriminating the parental combinations.  For 

CEA, Acala 1517-99 x Tamcot CAMD-E and Fibermax 832 x Tamcot CAMD-E had the 

lowest cross entropy values of 503 and 636, respectively, while Acala 1517-99 x Tamcot 

CAMD-E, TTU 202 x Tamcot CAMD-E, and Fibermax 832 x Tamcot CAMD-E had the 
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Table 23.  Estimates of general combining ability (GCA) effects of five upland parents 
for FLw distribution measurements evaluated near College Station, TX in 2001 and 
2002. † 

Genotype CEA  CEB   CEC FLwKurt FLwSkew 
    2001 2002     
TAM 94L-25     361 151 231** 48 -0.32** -0.13** 
TTU 202         3   43 -12 -2 0.06 -0.03 
Fibermax 832       47 108 78 54 -0.13 -0.04 
Tamcot CAMD-E   -298 -184 -213** -82* 0.32** 0.17** 
Acala 1517-99   -113 -118 -85 -17 0.07 0.03 
LSD (0.05) 
  (gi – gj)     368 220 

 
105 52 

 
0.12 

 
0.04 

*, **  Significant at the 0.05 and 0.01 probability level, respectively. 
†  CEA, Cross entropy distribution data of Acala 1517-99 hand harvested plants 

averaged across 2002 as the check; CEB, Cross entropy distribution data of Tamcot 
CAMD-E hand harvested plants averaged across 2002 as the check; CEC, Cross 
entropy distribution data of Acala 1517-99 combined over 2 environments and 
machine harvested at two locations as the check; FLwKurt, mean fiber length by 
weight kurtosis;  FLwSkew, mean fiber length by weight skewness. 
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Table 24.   Estimates of specific combining ability (SCA) effects of 10 upland F1 crosses 

for FLw distribution measurements evaluated near College Station, TX in 2001 and 
2002. † 

F1 cross‡     CEA     CEB     CEC    FLwKurt   FLwSkew 
832 x L-25  105 92 41 -0.02 0.023 
L-25 x 202 -92 -86 28 0.13 -0.002 
L-25 x 1517 -4 3 -27 -0.06 -0.004 
832 x 202 4 37 -41 -0.11 0.019 
L-25 x CD-E -9 -9 -42 -0.04 -0.016 
1517 x 202 53 26 3 -0.02 0.009 
832 x 1517 -66 -72 -3 0.10 -0.044* 
202 x CD-E 35 23 11 0.01 -0.026 
832 x CD-E -42 -56 4 0.04 0.002 
1517 x CD-E 17 43 27 -0.01 0.040* 
LSD (0.05) 
(sij – sik) 

 
214 

 
178 

 
120 

 
0.30 

 
0.059 

LSD (0.05) 
(sij – skl) 

 
152 

 
126 

 
85 

 
0.22 

 
0.042 

*  Significant at the 0.05 probability level. 
†  CEA, Cross entropy distribution data of Acala 1517-99 hand harvested plants averaged 

across 2002 as the check; CEB, Cross entropy distribution data of Tamcot CAMD-E 
hand harvested plants averaged across 2002 as the check; CEC, Cross entropy 
distribution data of Acala 1517-99 combined over 2 environments and machine 
harvested at two locations as the check; FLwKurt, mean fiber length by weight 
kurtosis;  FLwSkew, mean fiber length by weight skewness. 

‡  832 x L-25, Fibermax 832 x TAM 94L-25; L-25 x 202, TAM 94L-25 x TTU 202; L-25 
x 1517, TAM 94L-25 x Acala 1517-99; 832 x 202, Fibermax 832 x TTU 202; L-25 x 
CD-E, TAM 94L-25 x Tamcot CAMD-E; 1517 x 202, Acala 1517-99 x TTU 202; 832 
x 1517, Fibermax 832 x Acala 1517-99; 202 x CD-E, TTU 202 x Tamcot CAMD-E; 
832 x CD-E, Fibermax 832 x Tamcot CAMD-E; 1517 x CD-E, Acala 1517-99 x 
Tamcot CAMD-E. 

 



 196

 
 

 

Table 25.  Means of  F1 crosses for FLw distribution measurements evaluated near 
College Station, TX in 2001 and 2002. † 

F1 cross‡     CEA     CEB     CEC    FLwKurt   FLwSkew 
      
832 x L-25 1280 h§  1126 g 533 e 0.43 g -0.18 f 
L-25 x 202 1029 g 859 ef 464 de 0.77 def -0.20 f 
L-25 x 1517 980 fg 875 f 394 bcd 0.59 fg -0.14 ef 
832 x 202 946 efg 828 ef 401 de 0.72 ef -0.09 de 
L-25 x CD-E 848 def 734 de 314 a 0.86 cde -0.01 c 
1517 x 202 803 cde 655 cd 373 abc 1.01 bc -0.03 cd 
832 x 1517 738 bcd 647 bcd 424 cd 0.95 bcd -0.09 de 
202 x CD-E 659 bc 523 ab 317 a 1.30 a 0.08 b 
832 x CD-E 636 ab 535 abc 366 abc 1.14 ab 0.10 b 
1517 x CD-E 503 a 471 a 318 ab 1.28 a 0.21 a 
†  CEA, Cross entropy distribution data of Acala 1517-99 hand harvested plants 

averaged across 2002 as the check; CEB, Cross entropy distribution data of Tamcot 
CAMD-E hand harvested plants averaged across 2002 as the check; CEC, Cross 
entropy distribution data of Acala 1517-99 combined over 2 environments and 
machine harvested at two locations as the check; FLwKurt, mean fiber length by 
weight kurtosis;  FLwSkew, mean fiber length by weight skewness. 

‡  832 x L-25, Fibermax 832 x TAM 94L-25; L-25 x 202, TAM 94L-25 x TTU 202; L-
25 x 1517, TAM 94L-25 x Acala 1517-99; 832 x 202, Fibermax 832 x TTU 202; L-25 
x CD-E, TAM 94L-25 x Tamcot CAMD-E; 1517 x 202, Acala 1517-99 x TTU 202; 
832 x 1517, Fibermax 832 x Acala 1517-99; 202 x CD-E, TTU 202 x Tamcot CAMD-
E; 832 x CD-E, Fibermax 832 x Tamcot CAMD-E; 1517 x CD-E, Acala 1517-99 x 
Tamcot CAMD-E. 

§  Means within a column followed by the same letter are not different at K = 100 
(approximates p = 0.05) according to Waller-Duncan LSD. 
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lowest CEB values of 471, 523, and 535, respectively.  For CEC, any parental 

combination with Tamcot CAMD-E, including TAM 94L-25, and Acala 1517-99 x TTU 

202 had the lower cross entropy values.  On the contrary, all three cross entropy checks 

showed Fibermax 832 x TAM 94L-25 as having the highest values of 1280, 1126, and 

533 for CEA, CEB, and CEC respectively, suggesting this parental combination had the 

least ideal FLw distribution.  TAM 94L-25 x TTU 202 also exhibited a CEC value 

similar to Fibermax 832 x TAM 94L-25.  Although no significant CEA GCA effects for 

TAM 94L-25 were exhibited because the data were analyzed for individual years 

because of a GCA x environment interaction, F1 means of all near-long parental 

combinations containing TAM 94L-25 when the data were combined showed higher 

CEA values (Table 23).  Also, when the data were combined all parental combinations 

with Tamcot CAMD-E, except with TAM 94L-25, exhibited lower CEA values.  The 

GCA effects and F1 means for CEB and CEC do corroborate with each other.  

The GCA effects and F1 means for FLwKurt and FLwSkew also appear to 

proceed with each other, as F1 means of parental combinations containing Tamcot 

CAMD-E, except with TAM 94L-25, increased the kurtosis or skewness values and 

those containing TAM 94L-25 decreased the values (Table 25).  By decreasing the 

values, TAM 94L-25 is flattening the distribution and skewing it to the right.  TAM 94L-

25 x Tamcot CAMD-E had a FLwSkew value of -0.01, two extremes combining to form 

an almost perfect normal distribution suggest additive gene action.  The additive effect 

of this combination is also seen with FLwKurt. 
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 Significant variation was found in all FLw distribution data, i.e., CEA, CEB, 

CEC, FLwKurt, and FLwSkew, for all sources of variation measured (Table 21).  GCA x 

environment for CEA was significant among these F1 while it was non-significant for all 

other distribution measurements.  When parents and F1 were combined, they did not 

differ in CEA, CEB, or CEC, but significant variation was found for FLwKurt and 

FLwSkew.  CEC did not detect the same trend of significance as CEA and CEB.  Of 

concern is the extremely high CV for FLwSkew, 8964, which makes this measurement 

useless.  The standardized distribution shape of CEA and CEB were similar to each other 

with a cross entropy value of 174 (data not shown).  CEC having a slightly wider 

distribution corresponded into higher cross entropy values of 549 and 550 (data not 

shown) when compared to CEA and CEB, respectively.  Even though this distribution is 

less than ideal, it is a more representative sample of commercial production practices 

and takes into account two environments and mechanical harvest.  All FLw distribution 

measurements, CEA, CEB, CEC, FLwKurt, and FLwSkew were associated (P < 0.01) 

with each other (Table 26).  As expected, CEA and CEB were highly correlated.  

FLwKurt had a poor negative correlation with CEA and CEB, however, it offers a 

promising description of the shape of a fiber length distribution.  FLwSkew had a high 

negative correlation with CEA and CEB, suggesting that undesirable length distributions 

are associated with longer staple genotypes. 
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Table 26.  Pearson’s correlation coefficient among FLw distribution data among non-
segregating and segregation population grown at College Station, TX in 2001 and 
2002.† 
         CEB        CEC    FLwKurt    FLwSkew 
CEA 0.98‡ 0.48 -0.18 -0.80 
 <0.01§ <0.01 <0.01 <0.01 
     
CEB  0.50 -0.10 -0.79 
  <0.01 <0.01 <0.01 
     
CEC   0.20 0.01 
   <0.01 <0.01 
     
FLwKurt    0.47 
    <0.01 
†  CEA, Cross entropy distribution data of Acala 1517-99 hand harvested plants 

averaged across 2002 as the check;  CEB, Cross entropy distribution data of Tamcot 
CAMD-E hand harvested plants averaged across 2002 as the check; CEC, Cross 
entropy distribution data of Acala 1517-99 combined over 2 environments and 
machine harvested at two locations as the check; FLwKurt, mean fiber length by 
weight kurtosis;  FLwSkew, mean fiber length by weight skewness.  

‡  Pearson correlation coefficient. 
§  Probability of a larger r value. 
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Summary and conclusions 

Successful breeding approaches are a direct consequence of the gene action 

prevalent in the breeding population under consideration.  The relative importance of 

additive vs. non-additive effects for FLw distribution measurements in diallel crosses is 

an indication of the type of gene action (Baker, 1978).  GCA estimates additive genetic 

effects.  The GCA effects reflect performance of parental lines in combination with all 

other lines, so the parents with the highest GCA effects should have the greatest impact 

on trait improvement.  The diallel reported herein has demonstrated that there is 

sufficient genetic variation among these parents for FLw distribution measurements to 

facilitate improvement though selection.  The ANOVA revealed GCA effects for all 

FLw distribution measurements, except CEC (Table 21).  GCA effects and F1 means 

containing Tamcot CAMD-E, except when crossed with TAM 94L-25, exhibited lower 

cross entropy values and higher peaked distribution curves that were skewed to the left.  

Also, GCA effects and F1 means containing TAM 94L-25, except with the Tamcot 

CAMD-E combination, showed higher cross entropy values and flattened distribution 

curves that were skewed to the right. 

In the opinion of the author, of the three cross entropy checks evaluated, CEA is 

the preferred standard although no significant GCA effects were detected.  It has a 

peaked distribution, large number of fibers uniform in length, and a lower percentage of 

short fibers than CEB.  FLwKurt and FLwSkew are also potential measurements that 

could be use to discriminate fiber length distributions, but only upon further testing and 



 201

experiments, especially since FLwSkew appears to be extremely variable as indicated by 

a percent CV of 8964 in this study. 

Knowledge of the type of genetic action controlling fiber length distribution in 

upland cotton genotypes would allow a breeder to choose effective parents for 

developing segregating populations.  Our results show considerable variation in GCA 

effects among the parental genotypes.  This study is the first to conclude that additive 

genetic effects for FLw distribution measurements tend to be more prominent within 

upland cotton genotypes than non-additive genetic effects.  Numerous other diallel 

studies, although studying cotton fiber length only and not its distribution characteristics, 

have concluded additive effects to be dominant (Miller and Marani, 1963; Lee et al., 

1967; Al-Rawi and Kohel, 1969; Al-Rawi and Kohel, 1970; Meredith and Bridge, 1972; 

Green and Culp, 1990; Tang et al., 1993). 

SCA reflects dominant gene effects.  SCA effects represent the deviation of 

hybrid performance from that expected from the GCA effects of each parent.  SCA 

effects can identify the best hybrid combination, but they also can identify 

complementary alleles for trait performance (Kearsey and Pooni, 1996).  The ANOVA 

revealed no SCA effects, however two parental combinations for FLwSkew were 

significant. 

The genetic interpretation of a diallel with a reduced number of parental inbreds, 

such as this one, can be biased by the lack of independent distribution of genes in the 

parental lines (Baker, 1978).  Therefore, combining abilities reported here could be 

biased by the correlation of gene frequencies and should be interpreted with caution.  
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Despite these limitations, this diallel is useful for determining which of these upland 

parents has the most desirable GCA expression of distribution data measurements.   

To enhance our research efforts, we need to determined which AFIS 

measurements and which fiber properties could aid in the selection and advancement of 

superior fiber quality genotypes.  Also, the massive quantity AFIS data generated needs 

to be refined and organized into a user-friendly spreadsheet.  The AFIS data currently 

produced includes a considerable amount of trivial information.  Slow and time-

consuming macros were widely depended upon in this project to arrange the fiber 

characteristics accumulated.  A software program is needed to take the electronic 

information and generate only the relevant data and statistics. 

Cotton is a natural product with lint characteristics determined by environmental 

and genetic factors.  There is limited information available about the native fiber length 

distribution (i.e., on the seed), however it is believe that cotton possesses a normal fiber 

length distribution (probably is highly heritable) when bolls are hand picked cautiously 

and ginned carefully with a razor, tweezer, and aid of a microscope.  Whatever the 

genetic determination of length distribution, the mechanical operations in harvesting, 

ginning, and textile manufacturing alter the distribution by breaking longer fibers into 

shorter ones (Anthony and Griffin, 2001a; Anthony and Griffin, 2001b; Robert et al., 

2000).  These successive stages of mechanical handling and processing incrementally 

but unavoidably inflict some fractures upon fibers being processed. 

The degree of fiber breakage is dependent primarily upon fiber length, maturity, 

strength, and elongation.  Longer fibers allow for a greater chance of tension forces 



 203

being held at both ends, so they therefore have a higher probability of breakage than 

shorter fibers.  Length distributions are also influenced by fiber maturity, and maturity is 

directly related to growing conditions.  Immature fibers have underdeveloped, weak, thin 

secondary walls that are prone to break during mechanical processes.  Fully mature 

fibers are less likely to be damaged or broken.  The load, a specimen of a single fiber or 

a bundle of fibers in its axial direction, at which the specimen breaks provides a measure 

of fiber strength.  Fiber elongation, the increase in length of fiber during tensile loading, 

is important in determining the processing propensity of fibers and the mechanical 

behavior of yarn.  Two cottons with the same strength, but with different elongations 

will behave differently under mechanical stresses. 

With this knowledge, two genotypes with the same native fiber length 

distribution could differ vastly after mechanical processing stages.  A parametric model 

incorporating these other fiber quality characteristics needs to be developed to gain a 

more comprehensive understanding on alterations to the fiber length distribution. 

Questions to be addressed while selecting genotypes with preferred length 

distributions involve how to harvest and gin lint samples.  Individual plant selections in 

segregating populations would be hand harvested, and if every cracked or open boll is 

harvested, this would include mature and immature fibers.  Subsequent advance yield 

and quality trails may be harvested by a plot picker or stripper, or a fifty to hundred boll 

sample may be harvested by hand.  If the true genetic potential was to be studied, hand 

harvesting would be the only method possible.  Selections and advancement within a 

breeding program could be done if the same harvesting machine is used for each test, 
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and if maintenance was the same across all trial locations.  As for ginning, true genetic 

potential, once again, could only be maintained if hand ginned.  Saw or roller ginning 

would have to be done on the same gin or on gins that perform the same according to 

ginning standards.  Frequent checks must be done to control for variation among gins.  

Selection, advancement, and release of genotypes or germplasm with an ideal length 

distribution within a breeding program could be successful.  Problems across breeding 

programs would occur, especially in the private industry that compares advance cotton 

fiber quality data from breeders that used different harvestors and gins.  By studying the 

true genetic potential, hopefully the influence of other fiber characteristics on length 

distributions could be more easily determined. 

Precautions were taken in this study to limit the variability for fiber breakage as 

all samples were hand picked from the middle fruiting zone, ginned on the same roller 

gin with the same personal, and analyzed with the same technician and AFIS machine. 

Cotton is not only competing against itself in terms of fiber quality but against 

man-made fibers which continue to expand market share because their distribution and 

other traits are not limited by natural variation.  Improving the length distribution, 

regardless of the staple length, will enable improved spinning performance and product 

quality.  Developing genotypes with an optimal fiber length distribution and high mean 

length should be a priority and selection criteria of breeding programs across the Cotton 

Belt.  Currently, most cotton programs are focused on breeding for longer fibers alone 

because the current premium and discount schedule rewards this type of cotton.  Long 

UHM length genotypes with an undesirable length distribution reward the producers but 
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presents challenges to spinners who are concerned with the fiber quality impact on costly 

disruptions in yarn-spinning processes and when significant defects appear in yarn and 

finished fabrics.  The U.S. already exports over two-thirds of our product to oversees 

mills, and foreign competition, in the production and processing of cotton, is advancing 

and presents a serious threat to the long-term survival of the U.S. cotton industry.  

Therefore, despite only small financial incentives offered by fiber markets to produce the 

highest quality cotton, we must enhance the value of U.S. fiber through research and 

breeding. 
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CHAPTER IX 

AFIS FLw DISTRIBUTION GENERATION MEANS ANALYSIS 
 
Results and discussion 
 

A generation means analysis is a simple but useful technique for estimating gene 

effects for a polygenic trait, such as the fiber length distribution of cotton.  The greatest 

merit of a generation means analysis lies in the ability to estimate epistatic gene effects, 

interaction of alleles at different loci, such as additive x additive, additive x dominance, 

and dominance x dominance effects.  Besides gene effects, breeders would also like to 

know how much variation in a crop is genetic and to what extent this variation is 

heritable because efficiency of selection depends mainly on additive genetic variance, 

influence of the environment, and interaction between genotype and environment.  No 

literature currently exists regarding the inheritance of the distribution of cotton fiber 

length.  Therefore, information about the gene effects and the available genetic 

variability, estimates of the variance components, and broad- and narrow-sense 

heritability estimates were calculated for FLw distribution data measurements. 

CEA 

From the distribution diallel analysis, it was determined that CEA possessed a 

more ideal distribution shape and adequately discriminated the parental genotypes.  CEA 

was selected as the check for a generations means analysis of fiber length distribution as 

determined by cross entropy.  The parental, F1, F2, and backcross generations differed (P 

≤ 0.01) in CEA for all parental combinations except Fibermax 832 x TTU 202 (Table 

27).  The ANOVA also revealed a significant generation x environment interaction in all 
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parental combinations except Fibermax 832 x Acala 1517-99.  The parental 

combinations indicated that some generations reacted differently to each environment, 

suggesting that selection and evaluation should be conducted within a given environment 

if reliable knowledge of CEA is to be obtained. 

CEA means from P1 and P2 were different (P ≤ 0.05) for most parental 

combinations, however there were six combinations and years in which P1 and P2 did not 

differ (Table 28).  A lower cross entropy value was preferred because the sample’s 

distribution more closely resembled the check.  As to which parent had the lower CEA 

value, it depended upon the parental combination and sometimes the year.   

In 2001, F1 hybrids had distribution shapes better or similar to the parent with the 

lower CEA value.  In 2002, F1 hybrids had distribution shapes worse or similar to the 

parent with the higher CEA value.  Fibermax 832 x Tamcot CAMD-E in 2001 and TTU 

202 x Tamcot CAMD-E in 2001 had CEA F1 hybrid means lower than the lowest parent.  

In 2001 and 2002, F2 means followed no established pattern.  The mean values of the 

backcrosses were not different (P ≤ 0.05) for eight parental combinations and years.  For 

the parental combinations in which the mean values of the backcrosses were different, 

CEA values were shifted toward the values observed for the recurrent parent only if the 

parents also differed. 

 The parental combinations were divided into two categories, near-long x near-

long and near-long x short staple parental combinations.  For each parental combination, 

P1 was assigned accordingly to the parent with the longest FLw in 2002.  The near-long 

x near-long parental combinations consisted of Fibermax 832 x TAM 94L-25, TAM 
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Table 27.  Mean squares for CEA of AFIS FLw distribution data measured on P1, P2, F1, F2, BC1P1, and BC2P2 (per parental 
combination and among all combinations) at College Station, TX in 2001 and 2002. 

 
A. 
  Parental Combinations† 
Source df 832 x L-25 L-25 x 202 832 x 1517 832 x 202 L-25 x 1517 1517 x 202 
Environment (E) 1 12231.97** 10494.61** 2954.99** 6091.14** 10813.35** 3952.84** 
Reps/E 6 64.93 14.61 45.28 31.49 35.41 43.60 
Generation (Gn) 5 394.82** 465.43** 203.57** 118.98 1011.07** 547.39** 
Gn x E 5 576.89** 459.34** 43.50 255.66** 560.80** 253.60** 
Error 30 31.35 48.78 33.37 51.26 27.48 55.86 
 
 
 
B.   
  Parental Combinations‡ 
Source df L-25 x CD-E  832 x CD-E 1517 x CD-E  202 x CD-E    Among 
Environment (E) 1 6086.47** 2919.60** 2579.72** 1103.79** 5326.96** 
Reps/E 6 6.63 37.43 14.65 39.56 2.73 
Generation (Gn) 5 889.96** 260.57** 84.00** 268.62** 98.72** 
Gn x E 5 595.46** 327.71** 76.22* 127.11** 144.40** 
Error  30 40.21 22.62 22.89 21.78 9.05 
*, **  Significant at the 0.05 and 0.01 probability level, respectively. 
†  832 x L-25, Fibermax 832 x TAM 94L-25; L-25 x 202, TAM 94L-25 x TTU 202; 832 x 1517, Fibermax 832 x TTU 202; 

L-25 x 1517, TAM 94L-25 x Acala 1517-99; 1517 x 202, Acala 1517-99 x TTU 202. 
‡  L-25 x CD-E, TAM 94L-25 x Tamcot CAMD-E; 832 x CD-E, Fibermax 832 x Tamcot CAMD-E; 1517 x CD-E, Acala 

1517-99 x Tamcot CAMD-E; 202 x CD-E, TTU 202 x Tamcot CD-E; Among, Among all combinations. 
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Table 28.  Means of P1, P2, F1, F2, BC1, and BC2 for CEA (per parental combination and among all combinations) at College 
Station, TX in 2001 and 2002.  First parent listed is P1, second parent is P2. 

 
A. 
 Parental Combinations† 
      832 x L-25      L-25 x 202 832 x 1517      832 x 202    L-25 x 1517    1517 x 202
Gen.‡    2001  2002  2001 2002  2001/02 2001  2002 2001 2002  2001 2002
P1 1175 a§   621 a 2300 c   596 a 898 b 1175 ab 621 a 2300 d 596 c   689 a 258 a 
P2 2300 c   596 a 1419 a  801 ab 474 a 1419 abc 801 ab  689 a 258 a 1419 bc 800 c
F1 1402 ab 1159 c 1224 a  835 bc 738 b 10003 a 888 b 1112 b 847 d  783 a 822 c
F2 2095 c   690 a 1836 b  986 bc 751 b 1660 c 646 a 1758 c 529 bc 1305 bc 521 b
BC1P1 1726 b   675 a 2334 c 1049 c 921 b 1505 bc 580 a 1920 c 852 d 1087 ab 443 b
BC1P2 2062 c   962 b 1757 b  992 bc 754 b 1738 c 689 ab 1425 b 427 b 1705 c 700 c
 
 
B.   
 Parental Combinations¶ 
        L-25 x CD-E      832 x CD-E     1517 x CD-E       202 x CD-E         Among
Gen.    2001    2002   2001 2002   2001 2002    2001 2002   2001 2002
P1 2300 b 596 ab 1175 b 621 b   689 a 258 a 1419 c 801 c 1440 c 559 ab 
P2   918 a 424 a  918 b 424 a  918 bc 424 b   918 ab 424 a 1161 b 521 a
F1 1020 a 677 bc  528 a 745 b  560 a 446 b   672 a 646 bc  919 a 761 d
F2 1294 a 871 cd 1151 b 725 b  865 abc 387 ab   789 a 760 c 1371 bc 666 cd
BC1P1 2005 b 1010 d 1622 c 611 b 1055 c 355 ab 1146 b 699 bc 1563 c 689 cd
BC1P2 1107 a 793 bcd 1129 b 437 a  991 bc 426 b   763 a 557 ab 1377 bc 640 bc
†  832 x L-25, Fibermax 832 x TAM 94L-25; L-25 x 202, TAM 94L-25 x TTU 202; 832 x 1517, Fibermax 832 x TTU 202; 

L-25 x 1517, TAM 94L-25 x Acala 1517-99; 1517 x 202, Acala 1517-99 x TTU 202. 
‡  Gen., generation; P1, parent one; P2, parent two; F1, P1 x P2; F2, selfed F1; BC1P1, backcross to P1; BC1P2, backcross to P2. 
§  Means within a column followed by the same letter are not different at K = 100 (approximates p = 0.05) according to 

Waller-Duncan LSD. 
¶  L-25 x CD-E, TAM 94L-25 x Tamcot CAMD-E; 832 x CD-E, Fibermax 832 x Tamcot CAMD-E; 1517 x CD-E, Acala 

1517-99 x Tamcot CAMD-E; 202 x CD-E, TTU 202 x Tamcot CD-E; Among, Among all combinations. 
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94L-25 x TTU 202, Fibermax 832 x Acala 1517-99, Fibermax 832 x TTU 202, TAM 

94L-25 x Acala 1517-99, and Acala 1517-99 x TTU 202.  The near-long x short staple 

parental combinations were Fibermax 832, TAM 94L-25, Acala 1517-99, and TTU 202 

crosses with Tamcot CAMD-E. 

Generation mean analyses tested three- and six-parameter models for the best fit 

to explain genetic control of CEA in various upland parental combinations.  Effects were 

first estimated with the three-parameter model and accepted if P ≥ 0.05.  In 2002, the 

three-parameter model satisfactorily explained the genetic differences for CEA in Acala 

1517-99 x Tamcot CAMD-E (Table 29).  In this combination and environment, the 

variation among generation means was explained sufficiently by the simple additive-

dominance model, indicating that epistasis was not involved in the inheritance of the 

trait.  The best approximation of additive and dominance effects can be obtained from 

the three-parameter additive-dominance model because these effects are unbiased due to 

the absence of epistasis (Hayman, 1958). 

 In the near-long x near-long parental combinations for CEA, TAM 94L-25 x 

TTU 202 in 2001, Fibermax 832 x Acala 1517-99 combined across years, and TAM 

94L-25 x Acala 1517-99 in 2001 had positive additive effects (Table 29).  Dominance 

effects were positive for the parental combinations of Fibermax 832 x TAM 94L-25 in 

2002, TAM 94L-25 x TTU 202 in 2001 and 2002, and TAM 94L-25 x Acala 1517-99 in 

2002.  A negative dominance effect was exhibited in Fibermax 832 x Acala 1517-99 

combined across years. 
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Table 29.  Estimates of gene effects for CEA of AFIS FLw distribution data (per crossing combination and among all 
combinations) at College Station, TX in 2001 and 2002.

 Gene effects†
Parental Combinations Year       m        a        d       aa       ad       dd
Fibermax 832 x TAM 94L-25‡ 2001 2801** -314 -1365 -856** -48 -58
Fibermax 832 x TAM 94L-25‡ 2002 115 -7 1325* 491** -626* -391
TAM 94L-25 x TTU 202‡ 2001 1091** 447* 2716** 816** 311 -2470**
TAM 94L-25 x TTU 202‡ 2002 574** -56 1675** 93 251 -1684**
Fibermax 832 x Acala 1517-99‡ 2001/02 1001** 645** -1121** -150 -731** 756**
Fibermax 832 x TTU 202‡ 2001 1661** 131* 507 -160 -713** -1085*
Fibermax 832 x TTU 202‡ 2002 771** -72 -707 -95 -110 903**
TAM 94L-25 x Acala 1517-99‡ 2001 1893** 824** 147 -445 -605 -829
TAM 94L-25 x Acala 1517-99‡ 2002 -95 205 1447** 501** 417 -508
Acala 1517-99 x TTU 202‡ 2001 992** -334 1260 -23 -922 -1310
Acala 1517-99 x TTU 202‡ 2002 260 -259 349 201 -22 302
TAM 94L-25 x Tamcot CAMD-E§ 2001 564 605* 2382* 1104** 694 -1902**
TAM 94L-25 x Tamcot CAMD-E§ 2002 307 120 1754** 177 136 -1364**
Fibermax 832 x Tamcot CAMD-E§ 2001 361 246 2991** 929** 487 -2879**
Fibermax 832 x Tamcot CAMD- E§ 2002 1264** 110* -1751** -771** 112 1281**
Acala 1517-99 x Tamcot CAMD-E§ 2001 208 -211 2512** 657** 473 -2476**
Acala 1517-99 x Tamcot CAMD-E§¶ 2002 286** -81** 190**        -        -        -
TTU 202 x Tamcot CAMD-E§ 2001 571** 152 720 646** 463 -580
TTU 202 x Tamcot CAMD-E§ 2002 1140** 174* -984* -586** 5 356
Among all combinations 2001 896** 486** 1261** 678** -461** -1361**
Among all combinations 2002 478** 16 376** -189 52 -236**
*, **  Significant at the 0.05 and 0.01 probability level on the basis of t test with n – 1 =5 degrees of freedom, respectively. 
†  m = mean; a = additive; d = dominance; aa = additive x additive; ad = additive x dominance; dd = dominance x 

dominance. 
‡  Near-long x near-long parental combination. 
§  Near-long x short staple parental combination 
¶  Three parameter model sufficiently fitted the six-generation means. 
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Among the non-allelic interactions, a negative additive x additive gene effect 

estimate was attained in Fibermax 832 x TAM 94L-25 in 2001, suggesting both parents 

contributed alleles for CEA.  Positive additive x additive effects were obtained in 

Fibermax 832 x TAM 94L-25 in 2002, TAM 94L-25 x TTU 202 in 2001, and TAM 

94L-25 x Acala 1517-99 in 2002.  Negative additive x dominance effects were 

demonstrated in Fibermax 832 x TAM 94L-25 in 2002 Fibermax 832 x Acala 1517-99 

combined across years, and Fibermax 832 x TTU 202 in 2001.  A positive dominance x 

dominance effect was attained in Fibermax 832 x Acala 1517-99 combined across years 

and Fibermax 832 x TTU 202 in 2002.  Negative dominance x dominance effects were 

obtained in TAM 94L-25 x TTU 202 in 2001 and 2002.  For the parental combination 

TAM 94L-25 x TTU 202 in 2001 and 2002, the dominance effects were positive while 

the dominance x dominance effects were negative.  The contrasting direction of response 

between dominance and dominance x dominance gene effect estimates suggests positive 

duplicate epistasis (Kearsey and Pooni, 1996).  For Fibermax 832 x Acala 1517-99 

combined across years, the dominance effect was negative while the dominance x 

dominance effect was positive, suggesting negative duplicate epistasis.  Among the near-

long x near-long parental combinations, additive effects accounted for a notable smaller 

portion of the observed variability than dominance effects.  In general, dominance x 

dominance effects were larger than additive x additive.  In reviewing all genetic effects, 

dominance and dominance x dominance effects are probably the most important in 

determining CEA among the near-long x near-long parental combinations. 
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 In the near-long x short staple parental combinations, the results of the three-

parameter model analysis indicated that epistasis was present in all but one combination.  

Additive effects were positive for TAM 94L-25 x Tamcot CAMD-E in 2001, Fibermax 

832 x Tamcot CAMD-E in 2002, and TTU 202 x Tamcot CAMD-E in 2002 (Table 29).  

In 2002, a negative additive effect was attained in Acala 1517-99 x Tamcot CAMD-E.  

All parental combinations displayed dominance effects except for TTU 202 x Tamcot 

CAMD-E in 2001.  Positive dominance effects were attained in TAM 94L-25 x Tamcot 

CAMD-E in 2001 and 2002, Fibermax 832 x Tamcot CAMD-E in 2001, and Acala 

1517-99 x Tamcot CAMD-E in 2001 and 2002.  In 2002, negative dominance effects 

were obtained in Fibermax 832 x Tamcot CAMD-E and TTU 202 x Tamcot CAMD-E.  

This indicates that the F1 mean was lower than the mid-parent value and that there 

existed a directional dominance of alleles with decreasing effect that exerted their 

influence in P1, rather than in P2, the parent with the lower CEA value.  Significant 

additive x additive effects were attained in all near-long x short staple parental 

combinations except TAM 94L-25 x Tamcot CAMD-E in 2002.  Positive additive x 

additive estimates were obtained in TAM 94L-25 x Tamcot CAMD-E in 2001, Fibermax 

832 x Tamcot CAMD-E in 2001, Acala 1517-99 x Tamcot CAMD-E in 2001, and TTU 

202 x Tamcot CAMD-E in 2001, while in 2002 negative estimates were attained in 

Fibermax 832 x Tamcot CAMD-E and TTU 202 x Tamcot CAMD-E.  No additive x 

dominance effects were demonstrated.  All near-long x short staple parental 

combinations displayed dominance x dominance effects except for TTU 202 x Tamcot 

CAMD-E.  TAM 94L-25 x Tamcot CAM-E in 2001 and 2002, Fibermax 832 x Tamcot 
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CAMD-E in 2001, and Acala 1517-99 x Tamcot CAMD-E in 2001 had negative 

dominance x dominance effects while Fibermax 832 x Tamcot CAMD-E in 2002 

showed a positive dominance x dominance effect.  For TAM 94L-25 x Tamcot CAMD-

E in 2001 and 2002, Fibermax 832 x Tamcot CAMD-E in 2001, and Acala 1517-99 x 

Tamcot CAMD-E in 2001, the dominance effect was positive while the dominance x 

dominance effect was negative, suggesting positive duplicate epistasis.  In 2002, the 

dominance estimate of Fibermax 832 x Tamcot CAMD-E was negative while the 

dominance x dominance estimate was positive.  The contrasting direction of response 

among the dominance and dominance x dominance effects suggest negative duplicate 

epistasis (Kearsey and Pooni, 1996). 

Generation means analysis indicated that genetic control for CEA among near-

long x short staple parental combinations was as dependent upon dominance or 

dominance x dominance gene action as was the near-long x near-long parental 

combinations.  All dominance effects were larger in magnitude than additive effects and 

significant more often.  Among the non-allelic interactions, dominance x dominance 

effects accounted for a larger portion of the observed variability than additive x additive.  

Among all combinations in 2001, all gene effects for CEA were significant (Table 29).  

Among all combinations in 2002, dominance and dominance x dominance effects were 

significant. 

Variance components and broad- and narrow-sense heritability estimates for 

CEA were calculated to determine the relative importance of the various determinants of 

the phenotype, the extent to which individuals’ phenotypes are determined by their 
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genotypes, and the extent to which phenotypes are determined by the alleles transmitted 

from the parents (Falconer and MacKay, 1996).  For all parental combinations, higher 

environmental variances were seen in 2001 than in 2002 (Table 30).  In 2001, 

environmental variance among the 5 near-long x near-long parental combinations ranged 

from 1243 to 1493 with an average of 1384, while the 4 near-long x short staple parental 

combinations ranged from 1144 to 1530 with an average of 1311.  Environmental 

variance among the near-long x near-long combinations in 2002 ranged from 429 to 

1120 with an average of 766, while the near-long x short staple parental combinations in 

2002 ranged from 337 to 723 with an average of 436.  Among the near-long x near-long 

parental combinations, Fibermax 832 x TAM 94L-25 and TAM 94L-25 x Acala 1517-99 

had the highest and lowest environmental variance for each year, respectively.  Among 

the near-long x short staple parental combinations, Fibermax 832 x Tamcot CAMD-E 

had the lowest environmental variance in 2001, yet the highest in 2002. 

 Additive variance was higher in 2001 for the near-long x near-long parental 

combinations, however, in the near-long x short staple parental combinations a higher 

additive variance was attained in 2002 (Table 30).  In 2001, the additive variance among 

the near-long x near-long parental combinations ranged from 0 to 3378 with an average 

of 1635, while the near-long x short staple combinations ranged from 0 to 249 with an 

average of 70.  In 2002, the additive variance among the near-long x near-long parental 

combinations ranged from 0 to 362 with an average of 175, while the near-long x short 

staple parental combinations ranged from 272 to 1588 with an average of 924.  Five
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Table 30.  Variance components and broad (H2) and narrow (h2) sense heritability estimates for CEA of AFIS FLw for 10 
parental combinations grown at College Station, TX in 2001 and 2002. 

          Variance components†           Heritability estimates 
Parental Combinations Year     σ2

E     σ2
A     σ2

D            H2            h2 
Fibermax 832 x TAM 94L-25‡ 2001 1493 3378 880 0.74  0.58 ± 0.03 
Fibermax 832 x TAM 94L-25‡ 2002 1120 -277 -231 0.00  0.00 ± 0.08 
TAM 94L-25 x TTU 202‡ 2001 1423 1830 1601 0.71  0.38 ± 0.03 
TAM 94L-25 x TTU 202‡ 2002 679 -132 328 0.33  0.00 ± 0.06 
Fibermax 832 x Acala 1517-99‡ 2001/02 1062 -1665 1507 0.59 0.00 ± 0.05 
Fibermax 832 x TTU 202‡ 2001 1402 1492 1372 0.67  0.35 ± 0.04 
Fibermax 832 x TTU 202‡ 2002 660 362 -150 0.35  0.35 ± 0.03 
TAM 94L-25 x Acala 1517-99‡ 2001 1243 1477 2599 0.77  0.28 ± 0.04 
TAM 94L-25 x Acala 1517-99‡ 2002 429 305 117 0.50  0.36 ± 0.04 
Acala 1517-99 x TTU 202‡ 2001 1357 -1240 3698 0.73  0.00 ± 0.06 
Acala 1517-99 x TTU 202‡ 2002 942 207 -161 0.18  0.18 ± 0.04 
TAM 94L-25 x Tamcot CAMD-E§ 2001 1354 249 1515 0.57  0.08 ± 0.04 
TAM 94L-25 x Tamcot CAMD-E§ 2002 337 495 594 0.76  0.35 ± 0.04 
Fibermax 832 x Tamcot CAMD-E§ 2001 1144 -782 1412 0.55  0.00 ± 0.07 
Fibermax 832 x Tamcot CAMD- E§ 2002 723 1588 -934 0.69  0.69 ± 0.01 
Acala 1517-99 x Tamcot CAMD-E§ 2001 1216 29 1788 0.60  0.01 ± 0.04 
Acala 1517-99 x Tamcot CAMD-E§ 2002 342 272 -89 0.44  0.44 ± 0.03 
TTU 202 x Tamcot CAMD-E§ 2001 1530 -150 97 0.06  0.00 ± 0.05 
TTU 202 x Tamcot CAMD-E§ 2002 342 1343 -359 0.80  0.80 ± 0.01 
Among all combinations 2001 2989 812 1886 0.47  0.14 ± 0.00 
Among all combinations 2002 877 109 292 0.31  0.09 ± 0.00 
†  σ2

E, environmental variance; σ2
A, additive variance; σ2

D, dominance variance.  Negative variance assumed zero in 
heritability estimates. 

‡  Near-long x near-long parental combination. 
§  Near-long x short staple parental combination. 
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parental combinations did not show any additive variance in one year, only for it to be 

present in the other. 

In 2001, the dominance variance among the near-long x near-long parental 

combinations ranged from 880 to 3698 with an average of 2087, while the near-long x 

short staple combinations ranged from 97 to 1788 with an average of 1203 (Table 30).  

In 2002, the dominance variance among the near-long x near-long combinations with 

three zero values ranged from 0 to 328 with an average of 89, while TAM 94L-25 x 

Tamcot CAMD-E was the only near-long x short staple parental combination to have a 

positive dominance variance of 594.  Six of the nine parental combinations demonstrated 

dominance variance in 2001, but none in 2002.  Fibermax 832 x Acala 1517-99 

combined across years had zero additive variance and a dominance variance estimate of 

1507.  Among all combinations in 2001, the environmental, additive, and dominance 

variance was 2989, 812, and 1886, respectively.  Among all combinations in 2002, the 

environmental, additive, and dominance variance was 877, 109, and 292, respectively. 

Among the near-long x near-long parental combinations, broad-sense heritability 

(H2) averaged 0.72 in 2001, higher than the 0.27 estimate in 2002 (Table 30).  Despite 

higher environmental variance in 2001, higher broad-sense heritability estimates were 

attained due to a higher total genetic variance.  Narrow-sense heritability estimates (h2) 

were low in 2001 and 2002, averaging 0.32 and 0.18, respectively.  Fibermax 832 x 

Acala 1517-99 combined across years had broad- and narrow-sense heritability estimates 

of 0.59 and 0.00, respectively. 
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Among the near-long x short staple parental combinations, broad-sense 

heritability averaged 0.45 and 0.67 in 2001 and 2002, respectively (Table 30).  Higher 

broad-sense heritability estimates were generally attained in the year with a lower 

environmental variance, however, Acala 1517-99 x Tamcot CAMD-E had a higher 

estimate in 2002 because of a greater total genetic variance.  Narrow-sense heritability 

averaged 0.02 and 0.57 in 2001 and 2002, respectively.  Higher narrow-sense heritability 

estimates were obtained in the year with smaller environmental and greater additive 

variance.  Among all combinations in 2001, the broad- and narrow-sense heritability 

estimates were 0.47 and 0.14.  Among all combinations in 2002, the broad- and narrow-

sense heritability estimates were 0.31 and 0.09. 

FLw kurtosis 

The parental, F1, F2, and backcross generations differed (P ≤ 0.01) in Uqlw, a 

length by weight measurement, for all parental combinations except Fibermax 832 x 

TTU 202 (Table 31).  The ANOVA also indicated a significant generation x 

environment interaction for all parental combinations except Fibermax 832 x Acala 

1517-99, thus this parental combination was pooled over years.  The other parental 

combinations indicated that some generations reacted differently to each environment, 

suggesting that selection and evaluation should be conducted within environment if 

reliable knowledge of FLw kurtosis is to be obtained. 

FLw kurtosis means from P1 and P2 were different (P ≤ 0.05) in each parental 

combination except Fibermax 832 x TAM 94L-25 in 2002, TAM 94L-25 x TTU 202 in 

2002, and Fibermax 832 x TTU 202 in 2001 and 2002 (Table 32).  For the majority of 
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the parental combinations, P2, parent with the shorter AFIS FLw for most combinations, 

had the higher FLw kurtosis measurement.  TAM 94L-25 had a FLw kurtosis value of 

0.02 in 2001 and 1.26 in 2002, so in combination with Fibermax 832 it switched from 

the low parent to the high parent from 2001 to 2002, respectively.  Acala 1517-99, 

representing P1 in combination with TTU 202, had a higher FLw kurtosis value than P2 

when averaged over years. 

In 2001, no established pattern of F1 hybrids could be identified as means 

fluctuated from being similar to low parent, intermediate, and similar to high parent 

(Table 32).  In 2002, all parental F1 hybrid combinations had FLw kurtosis means either 

lower than both parents or similar to the low parent.  No F1 hybrid had an FLw kurtosis 

mean greater than the highest parent.  In general, F2 means were similar to the shorter 

parent.  In most parental combinations, the mean values of the backcrosses were 

different and shifted toward the values observed for the recurrent parent.  Since P2 had a 

higher FLw kurtosis value in most parental combinations, BC1P2 values were higher than 

BC1P1.  However, the BC1P2 means were not different from BC1P1 means in the parental 

combinations of Fibermax 832 x TAM 94L-25 in 2001 and 2002, TAM 94L-25 x TTU 

202 in 2002, Fibermax 832 x TTU 202 in 2001 and 2002, Acala 1517-99 x TTU 202 in 

2001, and Acala 1517-99 x Tamcot CAMD-E in 2001 and 2002. 

The parental combinations were divided into two categories, near-long x near-

long and near-long x short staple parental combinations.  For each parental combination, 

P1 was assigned accordingly to the parent with the longest FLw.  The near-long x near-

long parental combinations consisted of Fibermax 832 x TAM 94L-25, TAM 94L-25 x
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Table 31.  Mean squares for FLw kurtosis from the distribution data measured on P1, P2, F1, F2, BC1P1, and BC2P2 (per 
parental combination and among all combinations) at College Station, TX in 2001 and 2002. 

 
A. 
  Parental Combinations† 
Source df 832 x L-25 L-25 x 202 832 x 1517  832 x 202 L-25 x 1517 1517 x 202 
Environment (E) 1 58.89** 59.13** 39.00** 34.20** 77.90** 43.65** 
Reps/E 6 0.33 0.19 0.35 0.38 0.35 0.30 
Generation (Gn) 5 1.80** 2.77** 5.19** 0.53 10.37** 4.55** 
Gn x E 5 2.39** 1.61** 0.75 2.54** 3.13** 2.28** 
Error 30 0.23 0.29 0.57 0.48 0.18 0.47 
 
 
 
B.  
  Parental Combinations‡ 
Source df L-25 x CD-E  832 x CD-E 1517 x CD-E  202 x CD-E      Among 
Environment (E) 1 39.10** 23.54** 46.95** 15.84** 42.13** 
Reps/E 6 0.81 0.30 0.53 1.02 0.10 
Generation (Gn) 5 24.39** 21.02** 6.54** 13.14** 4.50** 
Gn x E 5 2.79** 2.44* 2.20* 1.44* 1.31** 
Error 30 0.53 0.72 0.77 0.56 0.13 
*, **  Significant at the 0.05 and 0.01 probability level, respectively. 
†  832 x L-25, Fibermax 832 x TAM 94L-25; L-25 x 202, TAM 94L-25 x TTU 202; 832 x 1517, Fibermax 832 x TTU 202; 

L-25 x 1517, TAM 94L-25 x Acala 1517-99; 1517 x 202, Acala 1517-99 x TTU 202. 
‡  L-25 x CD-E, TAM 94L-25 x Tamcot CAMD-E; 832 x CD-E, Fibermax 832 x Tamcot CAMD-E; 1517 x CD-E, Acala 

1517-99 x Tamcot CAMD-E; 202 x CD-E, TTU 202 x Tamcot CD-E; Among, Among all combinations. 
 
 

 
 220 



 221

Table 32.  Means of P1, P2, F1, F2, BC1P1, and BC2P2 for FLw kurtosis (per parental combination and among all combinations) 
at College Station, TX in 2001 and 2002.  First parent listed is P1, second parent is P2. 

 
A. 
 Parental Combinations† 
        832 x L-25       L-25 x 202 832 x 1517        832 x 202     L-25 x 1517      1517 x 202
Gen.‡     2001  2002   2001 2002  2001/02   2001  2002   2001 2002   2001 2002
P1 0.56 a§ 1.03 a 0.02 c 1.26 a 0.80 c 0.56 ab 1.03 a 0.02 e 1.26 b 1.03 a 1.93 a 
P2 0.02 d 1.26 a 0.60 a 1.26 a 1.48 a 0.60 ab 1.26 a 1.03 a 1.93 a 0.60 b 1.26 bc
F1 0.32 b 0.55 c 0.55 a 0.98 ab 0.95 bc 0.81 a 0.65 b 0.54 b 0.63 e 1.04 a 0.98 c
F2 0.13 cd 0.99 ab 0.31 b 0.90 b 1.10 b 0.37 b 1.10 a 0.40 c 1.37 bc 0.69 ab 1.44 b
BC1P1 0.23 bc 0.98 ab 0.00 c 0.74 b 0.82 c 0.34 b 1.11 a 0.20 d 0.89 d 0.79 ab 1.48 b
BC1P2 0.05 cd 0.71 bc 0.40 ab 0.95 b 1.14 b 0.38 b 1.10 a 0.58 b 1.54 b 0.43 b 1.11 c
 
 
B.   
 Parental Combinations¶ 
 L-25 x CD-E 832 x CD-E 1517 x CD-E 202 x CD-E Among
Gen.     2001  2002    2001 2002    2001 2002     2001 2002    2001 2002
P1 0.02 c 1.26 bc 0.56 d 1.03 c 1.03 b 1.93 b 0.60 d 1.26 c 0.50 c 1.30 b 
P2 1.74 a 2.42 a 1.74 a 2.42 a 1.74 a 2.42 a 1.74 a 2.42 a 1.08 a 1.86 a
F1 0.75 b 0.97 cd 1.23 b 1.05 c 1.29 ab 1.28 c 1.27 bc 1.32 c 0.85 b 0.96 d
F2 0.82 b 1.19 bc 0.77 cd 1.06 c 1.19 b 1.84 b 1.37 ab 1.48 c 0.69 b 1.27 bc
BC1P1 0.24 c 0.86 d 0.40 d 1.04 c 0.92 b 1.82 b 0.97 cd 1.39 c 0.46 c 1.14 c
BC1P2 0.98 b 1.28 b 1.07 bc 1.83 b 1.08 b 1.71 b 1.56 ab 1.82 b 0.73 b 1.35 b
†  832 x L-25, Fibermax 832 x TAM 94L-25; L-25 x 202, TAM 94L-25 x TTU 202; 832 x 1517, Fibermax 832 x TTU 202; 

L-25 x 1517, TAM 94L-25 x Acala 1517-99; 1517 x 202, Acala 1517-99 x TTU 202. 
‡  Gen., generation; P1, parent one; P2, parent two; F1, P1 x P2; F2, selfed F1; BC1P1, backcross to P1; BC1P2, backcross to P2. 
§  Means within a column followed by the same letter are not different at K = 100 (approximates p = 0.05) according to 

Waller-Duncan LSD. 
¶  L-25 x CD-E, TAM 94L-25 x Tamcot CAMD-E; 832 x CD-E, Fibermax 832 x Tamcot CAMD-E; 1517 x CD-E, Acala 
1517-99 x Tamcot CAMD-E; 202 x CD-E, TTU 202 x Tamcot CD-E; Among, Among all combinations.  221 
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TTU 202, Fibermax 832 x Acala 1517-99, Fibermax 832 x TTU 202, TAM 94L-25 x 

Acala 1517-99, and Acala 1517-99 x TTU 202.  The near-long x short staple parental 

combinations were Fibermax 832, TAM 94L-25, Acala 1517-99, and TTU 202 crosses 

with Tamcot CAMD-E. 

Generation mean analyses tested three- and six-parameter models for the best fit 

to explain genetic control of FLw kurtosis in various upland parental combinations.  

Effects were first estimated with the three-parameter model and accepted if P ≥ 0.05.  

The three-parameter model did not satisfactorily explained the genetic differences for 

FLw kurtosis of any parental combination.  Therefore, the six-parameter model was used 

to determine the type and magnitude of gene effects involved in the inheritance of FLw 

kurtosis. 

 In the near-long x near-long parental combinations for FLw kurtosis, TAM 94L-

25 x TTU 202 in 2001, Fibermax 832 x Acala 1517-99 combined across years, and TAM 

94L-25 x Acala 1517-99 in 2001 had negative additive effects, reemphasizing that P2 

had a higher FLw kurtosis mean than P1 (Table 33).  Fibermax 832 x TAM 94L-25 in 

2001 and Acala 1517-99 x TTU 202 in 2002 had positive additive effects of 0.31 and 

0.31, respectively.  Dominance effects were negative for the parental combinations of 

Fibermax 832 x TAM 94L-25 in 2002, TAM 94L-25 x TTU 202 in 2001, Fibermax 832 

x TTU 202 in 2001, and Acala 1517-99 x TTU 202 in 2001 and 2002.  The negative 

dominance effect indicates that the F1 mean was lower than the mid-parent value and 

that there existed a directional dominance of alleles with decreasing effect that exerted 

their influence in the long staple genotype, P1, rather than in P2, the genotype with higher
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Table 33.  Estimates of gene effects for FLw kurtosis from the distribution data (per crossing combination and among all 
combinations) at College Station, TX in 2001 and 2002. 

 Gene effects†
Parental Combinations  Year      m      a       d      aa     ad     dd
Fibermax 832 x TAM 94L-25‡ 2001 0.13 0.31* -0.35 0.14 -0.24 0.58
Fibermax 832 x TAM 94L-25‡ 2002 1.87** 0.10 -2.21** -0.49** 0.35 0.85
TAM 94L-25 x TTU 202‡ 2001 0.82** -0.40** -1.80** -0.42** 0.02 1.53**
TAM 94L-25 x TTU 202‡ 2002 1.38** 0.00 -1.54 -0.18 -0.40 1.11
Fibermax 832 x Acala 1517-99‡ 2001/02 1.21** -0.68** 0.40 -0.09 0.44** -0.70
Fibermax 832 x TTU 202‡ 2001 0.73** -0.15 -1.44* -0.03 0.20 1.38*
Fibermax 832 x TTU 202‡ 2002 1.32** 0.11 -0.25 0.10 -0.20 -0.43
TAM 94L-25 x Acala 1517-99‡ 2001 0.58** -0.53** -0.67 0.01 0.32 0.58
TAM 94L-25 x Acala 1517-99‡ 2002 2.27** -0.32 -1.83 -0.76** -0.59 0.14
Acala 1517-99 x TTU 202‡ 2001 1.35** 0.10 -2.35** -0.38 0.51 2.00*
Acala 1517-99 x TTU 202‡ 2002 2.12** 0.31** -1.55* -0.56* 0.11 0.31
TAM 94L-25 x Tamcot CAMD-E§ 2001 1.68** -0.74* -2.49* -0.94** -0.03 1.51*
TAM 94L-25 x Tamcot CAMD-E§ 2002 2.44** -0.55 -3.52** -0.71** 0.15 2.06**
Fibermax 832 x Tamcot CAMD-E§ 2001 1.28** -0.45 -1.99 -0.25 -0.37 1.97
Fibermax 832 x Tamcot CAMD- E§ 2002 0.35 -0.42 2.19* 1.48** -0.75 -1.54
Acala 1517-99 x Tamcot CAMD-E§ 2001 1.97** -0.20 -2.56* -0.71** 0.11 1.94
Acala 1517-99 x Tamcot CAMD-E§ 2002 2.37** -0.18 -1.23 -0.31 0.58 0.32
TTU 202 x Tamcot CAMD-E§ 2001 1.58** -0.36 -0.44 -0.48* -0.47 0.01
TTU 202 x Tamcot CAMD-E§ 2002 1.21** -0.52* 0.90 0.54** 0.18 -0.77
Among all combinations 2001 0.81** -0.16** -0.74** -0.50** -0.08 0.48**
Among all combinations 2002 1.55** 0.05 -1.05** -0.08 -0.43** 0.58**
*, **  Significant at the 0.05 and 0.01 probability level on the basis of t test with n – 1 =5 degrees of freedom, respectively. 
†  m = mean; a = additive; d = dominance; aa = additive x additive; ad = additive x dominance; dd = dominance x 

dominance. 
‡  Near-long x near-long parental combination. 
§  Near-long x short staple parental combination. 
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FLw kurtosis value.  Negative additive x additive gene effect estimates were attained 

among Fibermax 832 x TAM 94L-25 in 2002, TAM 94L-25 x TTU 202 in 2001, TAM 

94L-25 x Acala 1517-99 in 2002, and Acala 1517-99 x TTU 202 in 2002, suggesting 

both parents contributed alleles for FLw kurtosis.  Fibermax 832 x Acala 1517-99 

exhibited a positive additive x dominance effect.  Positive dominance x dominance 

effects were attained in TAM 94L-25 x TTU 202 in 2001, Fibermax 832 x TTU 202 in 

2001, and Acala 1517-99 x TTU 202 in 2001.  For the 2001 parental combinations of 

TAM 94L-25 x TTU 202, Fibermax 832 x TTU 202, and Acala 1517-99 x TTU 202, the 

dominance effect was negative while the dominance x dominance effect was positive.  

The contrasting direction of response between dominance and dominance x dominance 

gene effect estimates suggests negative duplicate epistasis (Kearsey and Pooni, 1996).  

Among the near-long x near-long parental combinations, additive effects accounted for a 

smaller portion of the observed variability than dominance effects.  Significant dominant 

effects were at least four times greater than additive.  In general, dominance x 

dominance effects were larger than additive x additive, however, additive x additive 

effects were significant more frequently. 

 In the near-long x short staple parental combinations, the results of the three-

parameter model analysis indicated that epistasis was present.  Additive effects were 

negative for TAM 94L-25 x Tamcot CAMD-E in 2001 and TTU 202 x Tamcot CAMD-

E in 2002 (Table 33).  The negative additive effect once again only signifies that P2 had 

a higher FLw kurtosis mean than P1.  TAM 94L-25 x Tamcot CAMD-E in 2001 and 

2002 and Acala 1517-99 x Tamcot CAMD-E in 2001 had negative dominance effects.  
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Fibermax 832 x Tamcot CAMD-E in 2002 had positive dominance effects.  Significant 

additive x additive effects were attained in all near-long x short staple parental 

combinations except Fibermax 832 x Tamcot CAMD-E in 2001 and Acala 1517-99 x 

Tamcot CAMD-E in 2002.  Negative additive x additive estimates were obtained in 

TAM 94L-25 x Tamcot CAMD-E in 2001 and 2002, Acala 1517-99 x Tamcot CAMD-E 

in 2001, and TTU 202 x Tamcot CAMD-E in 2001, while positive estimates were 

attained in Fibermax 832 x Tamcot CAMD-E in 2002 and TTU 202 x Tamcot CAMD-E 

in 2002.  No additive x dominance effects were demonstrated.  TAM 94L-25 x Tamcot 

CAMD-E in 2001 and 2002 was the only near-long x short staple parental combination 

to display dominance x dominance effects.  In 2001 and 2002, the dominance estimate of 

TAM 94L-25 x Tamcot CAMD-E was negative while the dominance x dominance 

estimates were positive.  The contrasting direction of response among the dominance 

and dominance x dominance effects suggests negative duplicate epistasis (Kearsey and 

Pooni, 1996). 

Generation means analysis indicated that genetic control for FLw kurtosis among 

near-long x short staple parental combinations was as complex as among near-long x 

near-long parental combinations.  All dominance effects were larger in magnitude than 

additive effects.  Among the non-allelic interactions, in general, dominance x dominance 

effects accounted for a larger portion of the observed variability than additive x additive, 

however, additive x additive effects were significant more often because the generation 

means analysis produced larger standard errors for dominance x dominance than for 

additive x additive effects (data not shown).  Among all combinations in 2001, additive, 
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dominance, additive x additive, and dominance x dominance effects were significant 

(Table 33).  Among all combinations in 2002, dominance, additive x dominance, and 

dominance x dominance effects were significant. 

 Variance components and broad- and narrow-sense heritability estimates for FLw 

kurtosis were calculated to determine the relative importance of the various determinants 

of the phenotype, the extent to which individuals’ phenotypes are determined by their 

genotypes, and the extent to which phenotypes are determined by the alleles transmitted 

from the parents (Falconer and MacKay, 1996).  For the 10 near-long x near-long 

parental combinations, higher environmental variances were seen in 2002 than in 2001, 

however, among the 8 near-long x short staple parental combinations higher 

environmental variances were noted in 2001 (Table 34).  In 2001, environmental 

variance among near-long x near-long parental combinations ranged from 0.11 to 1.41 

with an average of 0.58, while the near-long x short staple parental combinations ranged 

from 1.64 to 2.66 with an average of 2.19.  Environmental variance among the near-long 

x near-long combinations in 2002 ranged from 0.12 to 1.21 with an average of 0.83, 

while the near-long x short staple parental combinations in 2002 ranged from 1.55 to 

2.02 with an average of 1.74.  Additive variances were higher in 2001 than 2002, except 

for TAM 94L-25 x Acala 1517-99 and Acala 1517-99 x TTU 202.  In 2001, the additive 

variance among the near-long x near-long parental combinations ranged from 0.21 to 

1.42 with an average of 0.78, while the near-long x short staple combinations ranged 

from 0.00 to 2.42 with an average of 1.32.  In 2002, the additive variance among the 

near-long x near-long parental combinations ranged from 0.08 to 2.29 with an average of
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Table 34.  Variance components and broad (H2) and narrow (h2) sense heritability estimates for FLw kurtosis for 10 parental 
combinations grown at College Station, TX in 2001 and 2002. 

        Variance components†          Heritability estimates
Parental Combinations   Year        σ2

E        σ2
A         σ2

D          H2           h2

Fibermax 832 x TAM 94L-25‡ 2001 0.39 1.42 -0.24 0.79 0.79 ± 0.01
Fibermax 832 x TAM 94L-25‡ 2002 1.21 0.94 -0.30 0.44 0.44 ± 0.03
TAM 94L-25 x TTU 202‡ 2001 0.36 1.27 0.31 0.81 0.65 ± 0.03
TAM 94L-25 x TTU 202‡ 2002 1.05 0.98 -0.20 0.48 0.48 ± 0.03
Fibermax 832 x Acala 1517-99‡ 2001/02 0.19 0.21 0.02 0.54 0.50 ± 0.02
Fibermax 832 x TTU 202‡ 2001 1.41 0.41 -0.46 0.23 0.23 ± 0.04
Fibermax 832 x TTU 202‡ 2002 0.99 0.08 0.65 0.43 0.05 ± 0.05
TAM 94L-25 x Acala 1517-99‡ 2001 0.65 0.59 0.58 0.64 0.32 ± 0.04
TAM 94L-25 x Acala 1517-99‡ 2002 0.77 2.29 0.24 0.77 0.70 ± 0.02
Acala 1517-99 x TTU 202‡ 2001 0.11 0.21 0.07 0.71 0.54 ± 0.03
Acala 1517-99 x TTU 202‡ 2002 0.12 0.28 0.01 0.71 0.68 ± 0.02
TAM 94L-25 x Tamcot CAMD-E§ 2001 1.64 1.52 -0.51 0.48 0.48 ± 0.03
TAM 94L-25 x Tamcot CAMD-E§ 2002 1.73 0.77 0.37 0.40 0.27 ± 0.05
Fibermax 832 x Tamcot CAMD-E§ 2001 2.06 -0.10 -0.47 0.00 0.00 ± 0.07
Fibermax 832 x Tamcot CAMD- E§ 2002 2.02 -1.13 -0.17 0.00 0.00 ± 0.11
Acala 1517-99 x Tamcot CAMD-E§ 2001 2.66 2.42 -1.28 0.48 0.48 ± 0.02
Acala 1517-99 x Tamcot CAMD-E§ 2002 1.64 3.76 0.06 0.70 0.69 ± 0.02
TTU 202 x Tamcot CAMD-E§ 2001 2.41 1.32 0.29 0.35 0.38 ± 0.04
TTU 202 x Tamcot CAMD-E§ 2002 1.55 1.75 -0.23 0.53 0.53 ± 0.03
Among all combinations 2001 2.87 1.43 -0.33 0.33 0.33 ± 0.00
Among all combinations 2002 2.57 0.76 0.39 0.31 0.20 ± 0.00
†  σ2

E, environmental variance; σ2
A, additive variance; σ2

D, dominance variance.  Negative variance assumed zero in 
heritability estimates. 

‡  Near-long x near-long parental combination.   
§  Near-long x short staple parental combination. 
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0.91, while the near-long x short staple parental combinations ranged from 0.00 to 3.76 

with an average of 1.57.  In 2001, the dominance variance among the near-long x near-

long parental combinations ranged from 0.00 to 0.58 with an average of 0.19, while the 

near-long x short staple combinations ranged from 0.00 to 0.29 with an average of 0.07.  

In 2002, the dominance variance among the near-long x near-long combinations ranged 

from 0.00 to 0.65 with an average of 0.18, while the near-long x short staple parental 

combinations ranged from 0.00 to 0.37 with an average of 0.11.  Among all 

combinations in 2001, the environmental, additive, and dominance variance was 2.87, 

1.43, and 0.00, respectively.  Among all combinations in 2002, the environmental, 

additive, and dominance variance was 2.57, 0.76, and 0.39, respectively. 

Among the near-long x near-long parental combinations, broad-sense heritability 

of FLw kurtosis (H2) averaged 0.64 in 2001, slightly higher than the 0.57 estimate in 

2002 (Table 34).  Generally, higher broad-sense heritability estimates were attained in 

the year with the lower environmental variance.  In 2002, a higher broad-sense 

heritability estimate was attained in TAM 94L-25 x Acala 1517-99 because of a larger 

total genetic variance.  Narrow-sense heritability estimates (h2) were similar in 2001 and 

2002, averaging 0.51 and 0.47, respectively.  The broad- and narrow-sense heritability 

estimates of FLw kurtosis in Fibermax 832 x Acala 1517-99 combined across years were 

0.54 and 0.50, respectively. 

Among the near-long x short staple parental combinations, broad-sense 

heritability averaged 0.33 and 0.41 in 2001 and 2002, respectively (Table 34).  Higher 

broad-sense heritability estimates were attained in the year with a lower environmental 
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variance and greater total genetic variance.  Narrow-sense heritability averaged 0.33 and 

0.37 in 2001 and 2002, respectively.  Higher narrow-sense heritability estimates were 

obtained in the year with smaller environmental and greater additive variance.  Of 

interest is the Fibermax 832 x Tamcot CAMD-E parental combination exhibiting zero 

additive and dominance variance in 2001 and 2002. 

Among all combinations in 2001, the broad- and narrow-sense heritability 

estimates were 0.33 and 0.33, respectively.  Among all combinations in 2002, the broad- 

and narrow-sense heritability estimates were 0.31 and 0.20, respectively. 

FLw skewness 

FLw skewness differed (P ≤ 0.05) across environments for the parental 

combinations of Fibermax 832 x TAM 94L-25, TAM 94L-25 x TTU 202, Fibermax 832 

x TTU 202, TAM 94L-25 x Acala 1517-99, Acala 1517-99 x Tamcot CAMD-E, and 

among all combinations (Table 35).  The ANOVA indicated that generations of all 

parental combinations differed (P ≤ 0.05) in FLw skewness, except for Fibermax 832 x 

TTU 202.  The ANOVA also revealed a significant generation x environment interaction 

in all parental combinations except Fibermax 832 x TTU 202, thus this parental 

combination was pooled over years.  The other parental combinations indicated that 

some generations reacted differently to each environment, suggesting that selection and 

evaluation should be conducted within environment if reliable knowledge of FLw 

skewness is to be obtained. 

FLw skewness means from P1 and P2 were different (P ≤ 0.05) in each parental 

combination except Fibermax 832 x TAM 94L-25 in 2001 and 2002, TAM 94L-25 x 
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TTU 202 in 2001 and 2002, Fibermax 832  x TTU 202 combined across years, and 

Acala 1517-99 x Tamcot CAMD-E in 2002 (Table 36).  For the majority of the parental 

combinations, P2, the parent with the shorter AFIS FLw for most combinations, had the 

higher FLw skewness measurement.  Acala 1517-99, representing P1 in combination 

with TTU 202, had a higher FLw skewness value than P2 in 2001 and 2002. 

In general, F1 hybrids means were either lower than both parents or similar to the 

low parent (Table 36).  No F1 hybrid had an FLw skewness mean greater than the 

highest parent.  No trend was observed in the F2 means.  All parental combinations and 

years in which P1 did not differ from P2, translated into BC1P1 not altering from BC1P2.  

In addition, BC1P1 of Acala 1517-99 x TTU 202 in 2001 and Acala 1517-99 x Tamcot 

CAMD-E did not contrast with BC1P2.  For all other parental combinations, the mean 

values of the backcrosses were different and shifted toward the values observed for the 

recurrent parent.  Since P2 had a higher FLw skewness value in these parental 

combinations, BC1P2 values were higher than BC1P1. 

 The parental combinations were divided into two categories, near-long x near-

long and near-long x short staple parental combinations.  For each parental combination, 

P1 was assigned accordingly to the parent with the longest FLw in 2002.  The near-long 

x near-long parental combinations consisted of Fibermax 832 x TAM 94L-25, TAM 

94L-25 x TTU 202, Fibermax 832 x Acala 1517-99, Fibermax 832 x TTU 202, TAM 

94L-25 x Acala 1517-99, and Acala 1517-99 x TTU 202.  The near-long x short staple 

parental combinations were Fibermax 832, TAM 94L-25, Acala 1517-99, and TTU 202 

crosses with Tamcot CAMD-E. 
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Table 35.  Mean squares for FLw skewness from the distribution data measured on P1, P2, F1, F2, BC1P1, and BC2P2 (per 

parental combination and among all combinations) at College Station, TX in 2001 and 2002. 
 
A. 
  Parental Combinations† 
Source df 832 x L-25 L-25 x 202 832 x 1517  832 x 202 L-25 x 1517 1517 x 202 
Environment (E) 1 157.42** 112.90** 1.23 69.81** 21.72** 9.23 
Reps/E 6 2.21 2.64 4.21 2.04 4.67 3.78 
Generation (Gn) 5 16.97** 28.34** 105.76** 7.00 135.12** 79.39** 
Gn x E 5 11.29** 13.79** 14.45** 1.86 31.46** 23.52** 
Error 30 2.17 1.60 3.00 3.58 2.09 3.23 
 
 
 
B.  
  Parental Combinations‡ 
Source df L-25 x CD-E  832 x CD-E 1517 x CD-E  202 x CD-E      Among 
Environment (E) 1 0.18 17.87 68.83** 1.22 12.68** 
Reps/E 6 8.31 6.36 4.66 2.22 0.80 
Generation (Gn) 5 209.98** 193.72** 25.60** 160.45** 44.62** 
Gn x E 5 12.76* 23.66** 16.86* 15.58* 6.80** 
Error 30 3.85 4.56 6.32 5.82 0.80 
*, **  Significant at the 0.05 and 0.01 probability level, respectively. 
†  832 x L-25, Fibermax 832 x TAM 94L-25; L-25 x 202, TAM 94L-25 x TTU 202; 832 x 1517, Fibermax 832 x TTU 202; 

L-25 x 1517, TAM 94L-25 x Acala 1517-99; 1517 x 202, Acala 1517-99 x TTU 202. 
‡  L-25 x CD-E, TAM 94L-25 x Tamcot CAMD-E; 832 x CD-E, Fibermax 832 x Tamcot CAMD-E; 1517 x CD-E, Acala 

1517-99 x Tamcot CAMD-E; 202 x CD-E, TTU 202 x Tamcot CD-E; Among, Among all combinations. 
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Table 36.  Means of P1, P2, F1, F2, BC1P1, and BC2P2 for FLw skewness (per parental combination and among all 
combinations) at College Station, TX in 2001 and 2002.  First parent listed is P1, second parent is P2. 

 
A. 
 Parental Combinations† 
        832 x L-25      L-25 x 202      832 x 1517 832 x 202     L-25 x 1517    1517 x 202
Gen.‡     2001  2002   2001 2002    2001 2002  2001/02   2001 2002  2001 2002
P1  -0.07 bc§ -0.09 ab -0.05 ab -0.07 a -0.07 b -0.09 c -0.08 ab -0.05 cd -0.07 c 0.12 a 0.30 a 
P2 -0.05 b -0.07 a 0.01 a -0.08 a 0.12 a 0.30 a -0.04 ab 0.12 a 0.30 a 0.01 b -0.08 c
F1 -0.12 c -0.25 d -0.21 c -0.20 b -0.06 b -0.12 c -0.09 b -0.11 d -0.18 d 0.02 b -0.09 c
F2 0.03 a -0.16 bc -0.08 b -0.20 b 0.04 a 0.02 b -0.01 a 0.07 ab -0.03 c 0.10 a 0.08 b
BC1P1 -0.02 ab -0.15 abc -0.02 ab -0.24 b -0.06 b -0.08 c -0.05 ab 0.01 bc -0.20 d 0.14 a 0.12 b
BC1P2 -0.03 ab -0.22 cd -0.05 ab -0.19 b 0.04 a 0.05 b -0.03 ab 0.10 a 0.07 b 0.07 ab -0.05 c
 
 
B.   
 Parental Combinations¶ 
 L-25 x CD-E 832 x CD-E 1517 x CD-E 202 x CD-E Among
Gen.      2001  2002     2001 2002     2001 2002      2001 2002     2001 2002
P1  -0.05 d -0.07 cd -0.07 d -0.09 c 0.12 c 0.30 ab 0.01 c -0.08 d -0.02 d -0.01 cd 
P2 0.28 a 0.42 a 0.28 a 0.42 a 0.28 a 0.42 a 0.28 a 0.42 a 0.13 a 0.20 a
F1 0.02 c -0.04 cd 0.19 b 0.01 c 0.25 ab 0.16 b 0.13 b 0.03 cd 0.01 cd -0.08 e
F2 0.03 c 0.02 c 0.19 b 0.14 b 0.19 abc 0.26 b 0.14 b 0.10 bc 0.07 b 0.02 bc
BC1P1 -0.03 d -0.12 d 0.08 c -0.02 c 0.16 bc 0.25 b 0.03 c 0.03 cd 0.03 c -0.05 de
BC1P2 0.14 b 0.15 b 0.26 ab 0.25 b 0.19 abc 0.26 b 0.22 a 0.24 b 0.09 b 0.05 b
†  832 x L-25, Fibermax 832 x TAM 94L-25; L-25 x 202, TAM 94L-25 x TTU 202; 832 x 1517, Fibermax 832 x TTU 202; 

L-25 x 1517, TAM 94L-25 x Acala 1517-99; 1517 x 202, Acala 1517-99 x TTU 202. 
‡  Gen., generation; P1, parent one; P2, parent two; F1, P1 x P2; F2, selfed F1; BC1P1, backcross to P1; BC1P2, backcross to P2. 
§  Means within a column followed by the same letter are not different at K = 100 (approximates p = 0.05) according to 

Waller-Duncan LSD. 
¶  L-25 x CD-E, TAM 94L-25 x Tamcot CAMD-E; 832 x CD-E, Fibermax 832 x Tamcot CAMD-E; 1517 x CD-E, Acala 
1517-99 x Tamcot CAMD-E; 202 x CD-E, TTU 202 x Tamcot CD-E; Among, Among all combinations. 
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Generation mean analyses tested three- and six-parameter models for the best fit 

to explain genetic control of FLw skewness in various upland parental combinations.  

Effects were first estimated with the three-parameter model and accepted if P ≥ 0.05.  

The three-parameter model satisfactorily explained the genetic differences for FLw 

skewness in Fibermax 832 x Acala 1517-99 (Table 37).  In this combination and 

environment, the variation among generation means was explained by the simple 

additive-dominance model, indicating that epistasis was not involved in the inheritance 

of the trait.  The best approximation of additive and dominance effects can be obtained 

from the three-parameter additive-dominance model because these effects are unbiased 

due to the absence of epistasis (Hayman, 1958).  For the remaining parental 

combinations, the six-parameter model was used to determine the type and magnitude of 

gene effects involved in the inheritance of FLw skewness. 

In the near-long x near-long parental combinations for FLw skewness, Fibermax 832 x 

Acala 1517-99 in 2001 and 2002, 2002 being fit with the three-parameter model, and 

TAM 94L-25 x Acala 1517-99 in 2001 had negative additive effects, reemphasizing that 

P2 had a higher FLw skewness mean than P1 (Table 37).  Dominance effects were 

negative for the parental combinations of Fibermax 832 x TAM 94L-25 in 2002 and 

TAM 94L-25 x TTU 202 in 2002.  The negative dominance effect of Fibermax 832 x 

TAM 94L-25 and TAM 94L-25 x TTU 202 coincides with the F1 means in relationship 

to their respective parents.  While TAM 94L-25 x TTU 202 in 2002 had a negative 

dominance effect of -0.54, it had a positive effect of 0.53 in 2001.  Negative additive x 

additive gene effect estimates were attained among Fibermax 832 x TAM 94L-25 in
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Table 37.  Estimates of gene effects for FLw skewness from the distribution data (per crossing combination and among all 
combinations) at College Station, TX in 2001 and 2002. 

 Gene effects†
Parental Combinations  Year     m      a       d      aa     ad     dd
Fibermax 832 x TAM 94L-25‡ 2001 0.07 -0.02 0.01 -0.17** 0.02 -0.19
Fibermax 832 x TAM 94L-25‡ 2002 0.04 -0.03 -0.49* -0.12* 0.20* 0.18
TAM 94L-25 x TTU 202‡ 2001 -0.21** -0.03 0.53** 0.18** 0.12* -0.53**
TAM 94L-25 x TTU 202‡ 2002 -0.03 0.01 -0.54** -0.03 -0.14 0.38*
Fibermax 832 x Acala 1517-99‡ 2001 0.18** -0.13** -0.36 -0.21** 0.06 0.17
Fibermax 832 x Acala 1517-99‡§ 2002 0.11* -0.16** -0.20        -        -        -
Fibermax 832 x TTU 202‡ 2001/02 0.02 -0.05 0.10 -0.09** 0.08 -0.33**
TAM 94L-25 x Acala 1517-99‡ 2001 0.07 -0.08** 0.18 -0.06 -0.03 -0.37**
TAM 94L-25 x Acala 1517-99‡ 2002 0.22 -0.18 -0.61 -0.11 -0.19 0.21
Acala 1517-99 x TTU 202‡ 2001 0.05 0.04 0.25 0.02 0.06 -0.29*
Acala 1517-99 x TTU 202‡ 2002 0.32** 0.18 -0.46 -0.21** -0.04 -0.03
TAM 94L-25 x Tamcot CAMD-E¶ 2001 0.01 -0.14** 0.09 0.08 -0.06 -0.08
TAM 94L-25 x Tamcot CAMD-E¶ 2002 0.27** -0.35** -0.73** 0.02 0.14* 0.41**
Fibermax 832 x Tamcot CAMD-E¶ 2001 0.11* -0.17** 0.22 -0.05 -0.03 -0.12
Fibermax 832 x Tamcot CAMD- E¶ 2002 0.41** -0.37** -0.68** -0.13** 0.18 0.30
Acala 1517-99 x Tamcot CAMD-E¶ 2001 0.24** -0.06 -0.21 -0.07 0.08 0.26
Acala 1517-99 x Tamcot CAMD-E¶ 2002 0.48** -0.17 0.61 -0.01 0.37 0.31
TTU 202 x Tamcot CAMD-E¶ 2001 0.15** -0.12** -0.00 -0.06 -0.16* -0.03
TTU 202 x Tamcot CAMD-E¶ 2002 0.14 -0.36** -0.07 0.14* 0.29** -0.03
Among all combinations 2001 -0.03 -0.00 0.35** -0.04* -0.15** -0.30**
Among all combinations 2002 0.26** -0.21** -0.68** -0.10** 0.21** 0.27**
*, **  Significant at the 0.05 and 0.01 probability level on the basis of t test with n – 1 =5 degrees of freedom, respectively. 
†  m = mean; a = additive; d = dominance; aa = additive x additive; ad = additive x dominance; dd = dominance x 

dominance. 
‡  Near-long x near-long parental combination. 
§  Three parameter model sufficiently fitted the six-generation means. 
¶  Near-long x short staple parental combination. 
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2001 and 2002, Fibermax 832 x Acala 1517-99 in 2001, Fibermax 832 x TTU 202 

combined across years, and Acala 1517-99 x TTU 202 in 2002, suggesting both parents 

contributed alleles for FLw skewness.  In 2001, a positive additive x additive effect was 

obtained in TAM 94L-25 x TTU 202 parental combination.  Fibermax 832 x TAM 94L-

25 in 2002 and TAM 94L-25 x TTU 202 in 2001 demonstrated additive x dominance 

effects.  Negative dominance x dominance effects were attained in TAM 94L-25 x TTU 

202 in 2001, Fibermax 832 x TTU 202 combined across years, TAM 94L-25 x Acala 

1517-99 in 2001, and Acala 1517-99 x TTU 202 in 2001, while a positive effect was 

obtained in TAM 94L-25 x TTU in 2002.  For TAM 94L-25 x TTU 202 in 2002, the 

dominance effect was negative while the dominance x dominance effect was positive.  

The contrasting direction of response between dominance and dominance x dominance 

gene effect estimates suggests negative duplicate epistasis (Kearsey and Pooni, 1996).  

The 2001 parental combination of TAM 94L-25 x TTU 202 had positive dominance and 

negative dominance x dominance gene effect estimates suggesting positive duplicate 

epistasis.  Among the near-long x near-long parental combinations, additive effects 

accounted for a smaller portion of the observed variability than dominance effects.  In 

general, dominance x dominance effects were larger than additive x additive, however, 

additive x additive effects were significant more frequently.   

 In the near-long x short staple parental combinations, the results of the three-

parameter model analysis indicated that epistasis was present.  In 2001 and 2002, 

additive effects were significant and negative for all parental combinations except Acala 

1517-99 x Tamcot CAMD-E in 2001 and 2002 (Table 37).  The negative additive effect 
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once again only signifies that P2 had a higher mean than P1.  TAM 94L-25 x Tamcot 

CAMD-E in 2002 and Fibermax 832 x Tamcot CAMD-E in 2002 had negative 

dominance effects with estimates of -0.73 and -0.68, respectively.  A negative additive x 

additive effect was attained in Fibermax 832 x Tamcot CAMD-E in 2002, while a 

positive additive x additive effect was obtained in TTU 202 x Tamcot CAMD-E in 2002.  

TAM 94L-25 x Tamcot CAMD-E in 2002 and TTU 202 x Tamcot CAMD-E in 2002 

had positive additive x dominance effects, while TTU 202 x Tamcot CAMD-E in 2001 

had a negative additive x dominance effect.  TAM 94L-25 x Tamcot CAMD-E in 2002 

was the only near-long x short staple parental combination to display a dominance x 

dominance effect.  Its negative dominance effect of -0.73 and positive dominance x 

dominance effect of 0.41, suggest negative duplicate epistasis (Kearsey and Pooni, 

1996). 

Generation means analysis indicated that genetic control for FLw skewness 

among near-long x short staple parental combinations was not as complex as among 

near-long x near-long parental combinations.  Dominance effects were twice the 

magnitude of additive effects when significant, however, additive effects were 

significant more often because the generation means analysis produced smaller standard 

errors for additive than for dominance effects (data not shown).  Among the non-allelic 

interactions, in general, dominance x dominance effects accounted for a larger portion of 

the observed variability than additive x additive, however, additive effects were 

significant more often.  Among all combinations in 2001, dominance, additive x 
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additive, additive x dominance, and dominance x dominance effects were significant 

(Table 37).  Among all combinations in 2002, all gene effects were significant. 

 Variance components and broad- and narrow-sense heritability estimates for FLw 

skewness were calculated to determine the relative importance of the various 

determinants of the phenotype, the extent to which individuals’ phenotypes are 

determined by their genotypes, and the extent to which phenotypes are determined by 

the alleles transmitted from the parents (Falconer and MacKay, 1996).  For the 10 near-

long x near-long parental combinations analyzed by individual years and 8 near-long x 

short staple, higher environmental variances were seen in 2002 than in 2001 (Table 38).  

In 2001, environmental variance among near-long x near-long parental combinations 

ranged from 0.50 to 1.04 with an average of 0.81, while the near-long x short staple 

parental combinations ranged from 0.63 to 1.18 with an average of 1.01.  Environmental 

variance among the near-long x near-long combinations in 2002 ranged from 0.89 to 

2.00 with an average of 1.41, while the near-long x short staple parental combinations in 

2002 ranged from 1.81 to 2.64 with an average of 2.14.  Except for the Fibermax 832 x 

Tamcot CAMD-E parental combination, additive variance was higher in 2002 than 2001.  

In 2001, the additive variance among the near-long x near-long parental combinations 

ranged from 0.00 to 0.64 with an average of 0.28, while the near-long x short staple 

combinations ranged from 0.04 to 0.81 with an average of 0.34.  In 2002, the additive 

variance among the near-long x near-long parental combinations ranged from 0.58 to 

2.49 with an average of 1.63, while the near-long x short staple parental combinations 

ranged from 0.00 to 3.86 with an average of 1.83.  In 2001, the dominance variance
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Table 38.  Variance components and broad (H2) and narrow (h2) sense heritability estimates for FLw skewness for 10 
parental combinations grown at College Station, TX in 2001 and 2002. 

          Variance components†          Heritability estimates 
Parental Combinations      Year         σ2

E         σ2
A         σ2

D          H2            h2 
Fibermax 832 x TAM 94L-25‡ 2001 0.74 -0.16 0.80 0.52  0.00 ± 0.06
Fibermax 832 x TAM 94L-25‡ 2002 1.07 0.78 -0.10 0.42  0.42 ± 0.03
TAM 94L-25 x TTU 202‡ 2001 0.74 0.38 0.62 0.57  0.22 ± 0.04
TAM 94L-25 x TTU 202‡ 2002 0.89 0.58 0.68 0.43  0.37 ± 0.03
Fibermax 832 x Acala 1517-99‡ 2001 1.01 0.64 0.63 0.56 0.28 ± 0.04
Fibermax 832 x Acala 1517-99‡ 2002 1.50 2.43 -0.38 0.62 0.62 ± 0.03
Fibermax 832 x TTU 202‡ 2001/02 1.42 -0.25 -0.06 0.00  0.00 ± 0.05
TAM 94L-25 x Acala 1517-99‡ 2001 0.50 0.36 0.99 0.73  0.19 ± 0.04
TAM 94L-25 x Acala 1517-99‡ 2002 1.59 1.86 0.00 0.54  0.54 ± 0.03
Acala 1517-99 x TTU 202‡ 2001 1.04 -0.21 0.84 0.45  0.00 ± 0.05
Acala 1517-99 x TTU 202‡ 2002 2.00 2.49 -0.16 0.55  0.55 ± 0.03
TAM 94L-25 x Tamcot CAMD-E§ 2001 0.63 0.42 0.36 0.55  0.30 ± 0.04
TAM 94L-25 x Tamcot CAMD-E§ 2002 1.88 1.75 -1.22 0.48  0.48 ± 0.03
Fibermax 832 x Tamcot CAMD-E§ 2001 1.08 0.04 0.11 0.13  0.03 ± 0.05
Fibermax 832 x Tamcot CAMD- E§ 2002 2.23 -0.81 -0.73 0.00  0.00 ± 0.10
Acala 1517-99 x Tamcot CAMD-E§ 2001 1.18 0.81 -0.07 0.39 0.39 ± 0.03
Acala 1517-99 x Tamcot CAMD-E§ 2002 2.64 3.86 -0.65 0.55 0.55 ± 0.02
TTU 202 x Tamcot CAMD-E§ 2001 1.16 0.08 0.58 0.36  0.04 ± 0.05
TTU 202 x Tamcot CAMD-E§ 2002 1.81 1.70 -0.72 0.48  0.48 ± 0.03
Among all combinations 2001 2.34 -0.05 -0.03 0.00  0.00 ± 0.01
Among all combinations 2002 4.21 0.09 0.33 0.09  0.02 ± 0.01
†  σ2

E, environmental variance; σ2
A, additive variance; σ2

D, dominance variance.  Negative variance assumed zero in 
heritability estimates. 

‡  Near-long x near-long parental combination.   
§  Near-long x short staple parental combination. 
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among the near-long x near-long parental combinations ranged from 0.62 to 0.99 with an 

average of 0.78, while the near-long x short staple combinations ranged from 0.00 to 

0.58 with an average of 0.265.  In 2002, only TAM 94L-25 x TTU 202, among all 

parental combinations, attained a non-zero dominance variance of 0.68.  Among all 

combinations in 2001, the environmental, additive, and dominance variance was 2.34, 

0.00, and 0.00, respectively.  Among all combinations in 2002, the environmental, 

additive, and dominance variance was 4.21, 0.09, and 0.33, respectively. 

Among the near-long x near-long parental combinations, broad-sense heritability 

(H2) averaged 0.57 in 2001, slightly higher than the 0.51 estimate in 2002 (Table 38).  

Generally, higher broad-sense heritability estimates were attained in 2001 because of the 

lower environmental variance.  In 2002, a higher broad-sense heritability estimate was 

attained in Fibermax 832 x Acala 1517-99 and Acala 1517-99 x TTU 202 because of a 

larger total genetic variance.  Narrow-sense heritability estimates (h2) were lower in 

2001 than 2002, averaging 0.14 and 0.50, respectively.  For the one near-long parental 

combinations combined over years, Fibermax 832 x TTU 202 had no total genetic 

variance resulting in 0.00 broad- and narrow-sense heritability estimates. 

Among the near-long x short staple parental combinations, broad-sense 

heritability averaged 0.36 and 0.38 in 2001 and 2002, respectively (Table 38).  Higher 

broad-sense heritability estimates were attained in the year with a lower environmental 

variance or a greater total genetic variance.  Narrow-sense heritability averaged 0.19 and 

0.38 in 2001 and 2002, respectively.  Higher narrow-sense heritability estimates were 

obtained in the year with greater additive variance.  Of interest is the Fibermax 832 x 
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Tamcot CAMD-E parental combination having low and zero additive and dominance 

variance in 2001 and 2002, respectively. 

Among all combinations in 2001, the broad- and narrow-sense heritability 

estimates were 0.00 and 0.00.  Among all combinations in 2002, the broad- and narrow-

sense heritability estimates were 0.09 and 0.02. 

Summary and conclusions 

Cotton is a natural product with lint characteristics determined by environmental 

and genetic factors.  There is limited information available about the native fiber length 

distribution (i.e., on the seed), however it is believe that cotton possesses a normal fiber 

length distribution (probably is highly heritable) when bolls are hand picked cautiously 

and ginned carefully with a razor, tweezer, and aid of a microscope.  Whatever the 

genetic determination of length distribution, the mechanical operations in harvesting, 

ginning, and textile manufacturing alter the distribution by breaking longer fibers into 

shorter ones (Anthony and Griffin, 2001a; Anthony and Griffin, 2001b; Robert et al., 

2000).  These successive stages of mechanical handling and processing incrementally 

but unavoidably inflict some fractures upon fibers being processed. 

The degree of fiber breakage is dependent primarily upon fiber length, maturity, 

strength, and elongation.  Longer fibers allow for a greater chance of tension forces 

being held at both ends, so they therefore have a higher probability of breakage than 

shorter fibers.  Length distributions are also influenced by fiber maturity, and maturity is 

directly related to growing conditions.  Immature fibers have underdeveloped, weak, thin 

secondary walls that are prone to break during mechanical processes.  Fully mature 
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fibers are less likely to be damaged or broken.  The load, a specimen of a single fiber or 

a bundle of fibers in its axial direction, at which the specimen breaks provides a measure 

of fiber strength.  Fiber elongation, the increase in length of fiber during tensile loading, 

is important in determining the processing propensity of fibers and the mechanical 

behavior of yarn.  Two cottons with the same strength, but with different elongations 

will behave differently under mechanical stresses. 

The environment influenced the magnitude of CEA and FLw kurtosis in 2001 

and 2002, however, AFIS FLw skewness was less affect by the environmental of 

production.  The mean responses of the generations indicated that samples had better 

fiber length distributions in 2002 than in 2001.  Besides the environment, the distribution 

check for CEA came from Acala 1517-99 samples in 2002, which may have contributed 

to the better distribution shapes.  In most parental combinations, significant generation x 

environment interactions were detected for CEA, FLw kurtosis, and FLw skewness, 

therefore parental combinations were analyzed within individual environments.  The 

climatological conditions of the two years were normal in terms of temperature and 

rainfall.  However, rainfall events at physiological maturity during 2001 extended the 

harvesting period and thus weathering of the fiber might have shortened the mean fiber 

length and increased the percentage of short fibers after processing (Hequet, 2004). 

For most parental combinations, analyses of genetic effects indicated that a 

simple additive-dominance model did not account for most of the genetic variation for 

the three distribution data traits.  Therefore, a six-parameter model fit the generation 

means indicating that epistatic effects were present and suggested that inheritance is 
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complex such that multiple alleles interacted to affect the upland cotton fiber length 

distribution.  Among the near-long x near-long parental combinations, dominance and 

dominance x dominance gene effects were larger in magnitude than additive or additive 

x additive.  However, significant additive, dominance, additive x additive, and 

dominance x dominance gene effects were predominantly displayed among the three 

distribution traits.  Among the near-long x short staple parental combinations, the 

prevalent gene effect varied depending upon the distribution trait.  For CEA, all 

dominance effects were larger in magnitude than additive and significant more often.  

Among the non-allelic interactions for CEA, dominance x dominance effects accounted 

for a larger portion of the observed variability than additive x additive.  For FLw 

kurtosis, all dominance effects were once again larger in magnitude than additive effects, 

and among the non-allelic interactions, in general, dominance x dominance effects 

accounted for a larger portion of the observed variability than additive x additive.  

However, additive x additive effects were significant more often because the generation 

means analysis produced larger standard errors for dominance x dominance than for 

additive x additive effects.  For FLw skewness, negative additive gene effects were 

predominant. 

For the parental combinations where distributions traits were controlled by 

additive gene action, simple selection in early segregating generations would be 

successful, while for those parental combinations exhibiting distribution traits controlled 

by non-additive gene action, selection in later generations could prove to be more 

effective.  These results show that both the adequacy of certain modes of inheritance as 



 243

well as the importance and significance of gene effects were dependent upon the 

particular parental combination and environment, stressing the importance of the 

appropriate selection of both parents and environment for the success of a cotton 

breeding program. 

Several explanations of the inconsistent gene effects across populations in this 

study can be proposed.  First, parents used in this study were from of vastly different 

genetic backgrounds.  The dispersion of alleles in the parents, complete or partial, affects 

the magnitude and composition of the additive component.  This might explain why 

additive genetic component of variance varied greatly and a definitive relationship 

between additive effects and additive genetic variance could not be detected.  The mean 

and dominance components of the parents remain independent of gene dispersion.  The 

dominance variance could be small due to its bi-directional nature and sometimes 

negative.  The negative estimates of dominance variance seen in this study could have 

been due to sampling error and/or the fact that basic generations are inefficient when 

used for determining dominance variance.  Two loci having an inter-allelic interaction 

will change the F2 mean, the magnitude and direction of additive x additive and additive 

x dominance effects, and the magnitude and direction of the variances (Kearsey and 

Pooni, 1996).  Higher order interactions, such as trigenic interactions, may be needed 

with enough generations to adequately understand the inheritance of cotton fiber length 

distributions. 

Gene effects and variances for the three distribution traits were inherited quite 

differently in specific environments and specific parental combinations, suggesting 
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environmentally specific mechanisms for fiber length distributions.  The environmental 

variance affected the heritability estimates for the three distribution traits, indicating that 

extensive environmental replication is necessary to evaluate and select breeding material 

on the basis of fiber length parameters.  For CEA and FLw skewness, as to whether 

additive or non-additive variance was the greater portion of genetic control depended 

upon the parental combination and year.  For FLw kurtosis, additive variance was the 

predominant genetic factor among all parental combinations, regardless of the year. 

The moderate to high broad-sense heritability estimates found in this study 

suggest that improvement for AFIS FLw distribution data can be realized through 

breeding if some of the genetic variation is additive in nature.  Depending upon the 

parental combination and environment, the moderate values for narrow-sense heritability 

suggest that conventional pedigree and early generation selection methods should be 

effective for initial improvements in AFIS FLw distribution data in cotton.  However, 

narrow-sense heritability estimates for CEA and FLw skewness were low, suggesting 

that the inheritance is complex and progress will be difficult. 

Distributions of cotton fiber length are difficult to study.  In addition to the 

natural variability of cotton fiber length, fiber weathering and mechanical handling and 

processing will further distort the native length and length distribution.  Sound statistical 

procedures to analyze the distribution data are lacking.  In this study, cross entropy, 

kurtosis, and skewness were evaluated as possible distribution measurements.  In the 

opinion of the author, kurtosis offers the most potential until an ideal length distribution 

for cross entropy is agreed upon by plant breeders and the textile industry.  Kurtosis is a 
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measure of whether the distribution data are peaked or flat relative to a normal 

distribution.  Positive kurtosis indicates a relatively peaked distribution with a large 

number of uniform fibers in a narrow length range.  Calculating kurtosis was easier and 

less time-consuming than calculating cross entropy values.  From the diallel data 

kurtosis separated the parents and in this study discriminated the different generations.  

Additive variance for FLw kurtosis was positive among all near-long x near-long 

parental combinations, unlike CEA and FLw skewness.  Broad- and narrow-sense 

heritability estimates were moderate to high depending upon the parental combination 

and environment, suggesting that improvements can be realized.  While kurtosis does 

not give us any indication of the mean length or percent of short fibers, it could be used 

in conjunction with these and other fiber quality measurements to select genotypes with 

superior fiber quality traits which in turn potentially would spin higher quality yarns. 
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CHAPTER X 

SUMMARY AND CONCLUSIONS 

 Fiber length and length distribution measurements from four elite NLS upland 

genotypes, with diverse programmatic origins, and one short staple genotype were 

evaluated by diallel and generation means analyses.  The fiber length diallel reported 

herein demonstrated that there is sufficient genetic variation among the parents for HVI 

and AFIS fiber length measurements to facilitate improvement through selection, but not 

for the percentage of short fibers.  While Fibermax 832 exhibited the longest fibers for 

all length measurements, TAM 94L-25 had the highest GCA effects for UHM, FLw, 

FLn, and Uqlw, thus would be the best parent to be used in parental combinations to 

improve fiber length.   When comparing the HVI UHM with AFIS fiber length 

measurements of Uqlw, FLw, and FLn, Uqlw most closely followed the UHM length 

mean separation order and magnitude of difference among the parents.  FLw attained the 

same rank as UHM, but magnitude differed slightly more. 

 In the generation means analysis for FLw and FLn, parental combinations were 

analyzed generally within individual environments due to significant G x E.  For Uqlw, 

more parental combinations were analyzed across environments.  For FLw, FLn, and 

Uqlw, analyses of genetic effects indicated generally that a simple additive-dominance 

model did not account for most of the genetic variation.  Therefore, generation means fit 

a six-parameter model indicating that epistatic effects were present and suggested that 

inheritance is complex such that multiple alleles interacted to affect upland cotton fiber 

length. 
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 Examination of the frequency distributions of individual plant values of each 

parental combination indicated that the segregating populations followed a normal 

distribution, suggesting that FLw, FLn, and Uqlw were quantitatively inherited.  

Transgressive segregation was visible in near-long x near-long and near-long x short 

staple parental combinations.  A higher percent of transgressive segregation appeared in 

the BC1P1 generation than in other segregating populations for all three AFIS length 

measurements.  The segregating populations in this study had a higher percentage of 

transgressive segregates for Uqlw and the lowest percentage for FLn.  The presence of 

transgressive segregation in the segregating populations of these near-long x near-long 

combinations, although at a low frequency, suggests that the parental material chosen for 

this study contained different length alleles, thus suggesting that breeders could make 

further improvements for upland cotton fiber length among these near-long staple 

parental genotypes if the appropriate breeding method was implemented and large 

enough populations were grown. 

 Among the near-long x near-long parental combinations, few significant gene 

effects were detected for FLw and Uqlw, possibly indicating a high degree of dispersion 

of alleles increasing among parents fiber length as measured by these measurements.  

Significant additive x additive effects for FLn were displayed.  Dominance effects 

generally were larger in magnitude than additive effects, contradicting the results of the 

fiber length diallel.  In comparing the relative magnitude of additive x additive to 

dominance x dominance effects, it depended on the parental combination and 

environment as to which one was greater. 
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 Among the near-long x short staple parental combinations, significant gene 

effects were numerous.  Additive gene effects for FLw and Uqlw were significant for all 

parental combinations, and in five of the eight parental combinations and environments 

were significant for FLn.  Significance of additive x additive effects for FLw and FLn 

were numerous.  In addition, several significant dominance and dominance x dominance 

effects were detected among these parents for FLn, suggesting that the genetic control of 

this measurement is the most complex. 

 The environmental variance for all three measurements was moderate to high.  

Among the near-long x near-long parental combinations, genetic control for all three 

AFIS measurements contained additive and non-additive genetic variance, but the 

greater portion was primarily non-additive for FLw, dependant upon the parental 

combination and environment for FLn, and generally additive for Uqlw.  Among the 

near-long x short staple parental combinations, the predominant portion was additive for 

FLw, FLn, and Uqlw. 

 The combining ability and mode of gene action and inheritance of three 

distribution statistical parameters, cross entropy, kurtosis, and skewness, were evaluated. 

Significant variation for FLw distribution data measurements can be detected within the 

five parental genotypes.  The diallel analysis demonstrated that there was sufficient 

genetic variation in these measurements to facilitate trait improvement through selection.  

Environmental interactions indicate that multiple years and environments will be 

necessary to breed for improved length distributions.  The parents, within this study, 

with the greatest potential to improve fiber length distributions were Tamcot CAMD-E, 
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the short staple genotype, followed by Acala 1517-99.  The parent with the least 

potential to improve fiber length distributions was TAM 94L-25, the parent with the 

most potential to increase fiber length.  Currently, most cotton programs are focused on 

breeding for longer fibers alone because the current premium and discount schedule 

rewards this type of cotton.  However, long UHM length genotypes with an undesirable 

length distribution reward the producers but present challenges to spinners.  Spinners are 

concerned with the fiber quality impact on costly disruptions in yarn-spinning processes 

and with the presence of significant defects in yarn and finished fabrics. 

 In the generation means analysis for FLw distribution measurements, parental 

combinations generally were analyzed within individual environments.  For CEA, 

FLwKurt, and FLwSkew, analyses of genetic effects indicated that a simple additive-

dominance model would not account for most of the genetic variation.  Therefore, 

generation means fit a six-parameter model indicating that epistatic effects were present 

and suggested that inheritance is complex such that multiple alleles interacted to affect 

upland cotton fiber length distribution.  Among the near-long x near-long parental 

combinations, dominance and dominance x dominance gene effects were larger in 

magnitude than additive or additive x additive.  However, significant additive, 

dominance, additive x additive, and dominance x dominance gene effects were 

predominantly displayed among the three distribution measurements.  Among the near-

long x short staple parental combinations, the prevalent gene effect varied depending 

upon the distribution measurement. 
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 Environmental variance was high for the three distribution measurements, once 

again indicating that extensive environmental replication is necessary to evaluate and 

select breeding material on the basis of fiber length parameters. 

 The moderate broad-sense heritability estimates found in this study for fiber 

length and length distribution measurements suggest that improvement can be realized if 

some of the genetic variation was additive in nature.  Depending upon the parental 

combination and environment, the sometimes moderate to high values for narrow-sense 

heritability found in this study suggest that conventional pedigree and early generation 

selection methods should be effective for initial improvements in cotton.  However, most 

of the narrow-sense heritability estimates in this study for fiber length and length 

distribution were low, suggesting that the inheritance is complex and that selection of 

individual plants in an F2 population will not be as simple as indicated by the broad-

sense heritability estimate. 

 Gene effects and variances for the three AFIS fiber length and distribution 

measurements were inherited quite differently in specific environments and specific 

parental combinations, suggesting environmentally specific mechanisms for fiber length 

and its distribution.  The results showed that both the adequacy of certain modes of 

inheritance as well as the importance and significance of gene effects were dependent 

upon the particular parental combination and environment, stressing the importance of 

the appropriate selection of both parents and environment for the success of a cotton 

breeding program. 
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 Further research with fiber length distribution needs to occur.  A software 

program is needed to remove the trivial distribution information and to generate only the 

relevant data and statistics.  An area for further study is what will serve as the ideal 

cotton fiber length distribution.  No published material exists identifying this optimal 

length distribution.  Important questions such as, should the distribution be artificially 

fabricated? How many samples or environments will be appropriate?  CEA and FlwKurt 

could be potential measurements used to discriminate fiber length distributions of 

different genotypes, but only upon further testing and substantiation with future 

experimental data collection. 
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APPENDIX 
 

ACRONYMS 
 

AFIS –  
 

CCC –  
 

CEA - 
 
 

CEB – 
 
 

CEC – 
 
 

CP – 
 

FLn –  
 

FLw –  
 

FLwKurt – 
 

FLwSkew – 
 

GCA –  
 

GxE –  
 

HVI –  
 

ML –  
 

NLS –  
 

SCA –  
 

SFC –  
 

SFCn – 
 

SFCw –  

Advance fiber information system 
 
Commodity credit corporation 
 
Cross entropy distribution data of Acala 1517-99 hand harvested plants 
averaged across 2002 as the check 
 
Cross entropy distribution data of Tamcot CAMD-E hand harvested 
plants averaged across 2002 as the check 
 
Cross entropy distribution data of Acala 1517-99 combined over 2 
environments and machine harvested at two locations as the check 
 
Coefficient of parentage 
 
Mean fiber length by number (AFIS) 
 
Mean fiber length by weight (AFIS) 
 
Mean fiber length by weight kurtosis 
 
Mean fiber length by weight skewness 
 
General combining ability 
 
Genotype x environment interaction 
 
High volume instrumentation 
 
Mean length 
 
Near-long staple 
 
Specific combining ability 
 
Short fiber content 
 
Short fiber content by number (AFIS) 
 
Short fiber content by weight (AFIS) 
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UHM –  

 
UQL –  

 
Uqlw –  

 
USDA –  

 

 
Upper-half mean fiber length (HVI) 
 
Upper-quartile length 
 
Upper-quartile length by weight (AFIS) 
 
United States Department of Agriculture 
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