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ABSTRACT

High Resolution Laser Spectroscopy of Cesium and Rubidium Molecules with

Optically Induced Coherence. (August 2006)

Hui Chen, B.S.; M.S., University of Science and Technology of China;

M.S., Texas A&M University

Co–Chairs of Advisory Committee: Dr. Marlan O. Scully
Dr. M. Suhail Zubairy

This work is devoted to the study of the quantum coherent effects in diatomic molecu-

lar systems by using high resolution laser spectroscopy. In particular, we have studied

the rubidium diatomic molecular gaseous medium’s absorption spectrum with high

resolution single mode laser spectroscopy. The derived electronic and rotational vi-

brational constants were used in the backward Raman amplification experiment of

Rb diatomic molecule. Both experimental results and theoretical calculation con-

firms that there is strong backward directionally dependent radiation. This effect can

further be utilized in remote detection of chemical material.

In the saturated spectroscopy experiment of the cesium diatomic molecule, long-

lived ground state coherence was observed. The coherence would decay at a rate less

than the natural life time of the excited states, which indicates great possibility for

performing the quantum optics experiments previously performed in atomic systems

only.

Electromagnetically induced transparency has been observed in many atomic

systems for many years, while it has been seldom realized in molecular systems.

In our experiment of electromagnetically induced transparency in cesium diatomic

molecules, we utilized Λ energy levels, and observed subnatural linewidth. This is
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the first time to realize a Λ type EIT in a molecular ensemble. This experiment will

lead to many other experiments of quantum effects in a molecular system, such like

magnetic optical rotation, light storage in ensemble of molecules.

Magnetically induced chirality in an atomic ensemble is also investigated in my

research.
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CHAPTER I

INTRODUCTION

A. Motivation

The macroscopic coherence in the interaction of light and matter reveals the quantum

nature of the world. On the other hand, besides its philosophical general meaning,

coherent preparation is a method that produces remarkable changes in the optical

properties of a gas phase atomic or molecular medium that has enormous number of

applications.

Laser induced coherence of the atomic or molecular energy states causes the

modification of optical response of the medium. This coherence leads to quantum

interference between the excitation alternative that allows one to pathways which

control the optical response. Therefore electromagnetic fields provide a method to

manipulate the properties of matter such as absorption, dispersion and a variety of

nonlinear characteristics.

A coherent light allows one to go beyond the natural limit and get high reso-

lution spectroscopy and other unconventional phenomenons such like Raman gain,

electromagnetically induced transparency, nonlinear magnetic optical rotation. The

enhanced nonlinearity can also bring the light pulse to slow down dramatically there-

fore useful to quantum information storage.

Chirality has been observed in the crystal with magnetic field and in the solution

of organic molecule. The idea that quantum coherent effect can enhance the chiral

effect in medium was proposed by several researcher. We investigated the effect in

the rubidium atom.

The journal model is Physical Review A.
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B. Optically induced coherent effects

Quantum coherence in atomic and molecular physics has led to many exciting and

surprising results [1]. In the last several decades, many experiments and theoretical

works plotted the subtle picture of quantum mechanical nature of atom and molecule.

Among them, coherent effects played important roles.

Hanle effect [2] probably was the first light-matter interaction,which clearly

demonstrated the coherence between atomic levels played an important role. linear

polarized light excites the ensemble of atoms in a week magnetic field, the polarization

of fluorescence will evolve under the influence of the magnetic field.

Laser was invented in the 1960s. Its invention greatly enhanced the research of

quantum coherence and nonlinear spectroscopy. A lot of experiments were conducted

in the 60 and 70’s. Among them, interaction between two level atoms/molecule with

single mode electromagnetic radiation are the most fundamental and subtle. The

splitting of a level under strong optical field was firstly described by Autler and

Townes [3]. Interference between decay processes was discovered by Fano [4]. Mol-

low predicted three-peak spectrum of resonance fluorescence [5] and experimentally

demonstrated by several groups.

The more generalized models involve multilevel atom interacting with several

single mode field, which reveals more unexpected nature. Coherent population trap-

ping was investigated by researchers in Pisa. Coherent superposition of the atomic

ground states causes the absorption of resonant field dramatically decreased. This

effect be explained with dark state and bright state.

Stimulated Raman Adiabatic Passage (STIRAP) using the adiabatically turn-

on and turn-off pulses can transfer atom from one ground state to another one and

therefore manipulate state population and create maximum coherence [6].
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Quantum interference between two upper states introduced by a strong pump

field, will turn an opaque medium for probe laser into a transparent one [7]. The

optical property such as absorption and transmission spectrum of a medium could be

significantly modified by the effects of atomic/molecular coherence under the interac-

tion between coherent radiation field and quantized system. Near electromagnetically

induced transparency resonance, the dispersion is so huge and the absorption is nearly

zero that people use EIT to reduce the speed of light to nearly zero and even negative.

Since the group speed of the light in the EIT medium is very small, people can

achieve light storage in such conditions, which will be very important to the quantum

communication.

1. Physics

The most fundamental aspects in the interaction of atom-field is a two level atom

coupled with a single mode electromagnetic field. Within dipole approximation and

rotating wave approximation interaction of a single atom with a single-mode field can

be solved exactly.

We can write the wave function of a two level atom as

|ψ(t)〉 = Ca(t)|a〉+ Cb(t)|b〉, (1.1)

where Ca and Cb are the probability amplitude of finding the atom in the states |a〉
and|b〉. The Schrödinger equation is

|ψ̇(t)〉 = − i

~
H |ψ(t)〉, (1.2)

with

H = H0 + H1. (1.3)
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ν

|a〉

|b〉

∆ = ω − ν

Fig. 1. Two-level atom interacting with a single mode field

The Hamiltonian for a free atom H0 can be write as

H0 = ~ωa|a〉〈a|+ ~ωb|b〉〈b|; (1.4)

The interaction hamiltonian H1 = −er · E(r0, t) is given by

H1 = −e(|a〉〈a|+ |b〉〈b|)x(|a〉〈a|+ |b〉〈b|)E(z, t)

= −(℘ab|a〉〈b|+ ℘ba|b〉〈a|)E(t); (1.5)

℘ab = ℘∗ba = e〈a|x|b〉 is the electric dipole moment matrix element. Solving the

schrödinger equation, along with initial conditions, we can determine the evolution

of atom under the influence of the single mode field.
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2. CPT, dark and bright states

Coherent superposition of atomic states leads to many novel effects such like coherent

population trapping. In this effect the the atom is prepared in a coherent superpo-

sition of the ground states, it will keep in this state and will not jump to the upper

state, therefore no absorption or fluorescence emission will be observed.

v2

|a〉

|c〉

|b〉

v1

Fig. 2. Λ configuration of three level atom. Two laser fields with frequency ν1 and ν2

coupling three levels |a〉,|b〉 and |c〉

The Hamiltonian for a three level atom can be written as

H = H0 + H1, (1.6)

where,

H0 = ~ωa|a〉〈a|+ ~ωb|b〉〈b|+ ~ωc|c〉〈c| (1.7)

H1 = −~
2
(ΩR1e

−iφ1e−iν1t|a〉〈b|+ ΩR2e
−iφ2e−iν2t|a〉〈c|) + H.c. (1.8)

(ΩR1e
−iφ1 and ΩR2e

−iφ2 are Rabi frequency of the pump and probe fields, which are

equal to ℘abE /~ and ℘acE /~. The atomic wave function can be written as
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|ψ(t)〉 = ca(t)e
−iωat|a〉+ cb(t)e

−iωbt|b〉+ cc(t)e
−iωct|c〉. (1.9)

The equation of motion of the atom wave function can be derived from solving

the Schrödinger equation i~|ψ̇〉 = H |ψ〉,assume the laser fields are on resonance,

ċa =
i

2
(ΩR1e

−iφ1cb + ΩR2e
−iφ2cc) (1.10)

ċb =
i

2
ΩR1e

iφ1ca (1.11)

ċc =
i

2
ΩR2e

iφ2ca (1.12)

it can be easily shown that if the atom in the state

|ψ(t)〉 =
ΩR2e

−iφ2|b〉 − ΩR1e
−iφ1|c〉√

Ω2
R1 + Ω2

R2

(1.13)

We can find that |ψ̇(t)〉 = 0, it means that the population is trapped in the lower

states and there is no absorption even we have another field present. This is due to

destructive interference between the two transitions in this three level atom.

The bright state is

|ψ(t)〉 =
ΩR1e

−iφ1|b〉+ ΩR1e
−iφ1 |c〉√

Ω2
R1 + Ω2

R2

(1.14)

As shown in Fig. 3, only the bright state will interact with the incident light field,

if the atom is prepared in the dark state, it will not interact with light. If both fields

are pulses, by carefully designing the time difference of the pulses, the population

transferring from one state to another state can be achieved. The technique is called

stimulated Raman adiabatic passage(STIRAP). The STIRAP technique can be used

to create maximum coherence for atoms and molecules [8, 6].
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Ωnew

|dark〉|Bright〉

|a〉

Fig. 3. Bright state and dark state interaction with field, Ωnew =
√

Ω2
1 + Ω2

2

3. Electromagnetically induced transparency

For a three level and two coupling fields system, there could be three kinds of config-

uration, (Λ, V , or cascade configuration). If one field is very strong, it can introduce

interference between two levels, the other field( probe), will have much less absorption,

the medium for it become effectively transparent.

For example, in the Λ system, we can write the Hamiltonian as,

H = ~ωa|a〉〈a|+~ωb|b〉〈b|+~ωc|c〉〈c|+−~
2
(
℘abE

~
e−iνt|a〉〈b|+Ωµe

−iφµe−iνµt|a〉〈c|)+H.c.

(1.15)

Solving the density matrix equation of motion,

ρ̇ = − i

~
[H , ρ]− 1

2
{Γ, ρ} (1.16)

we get the off diagonal density matrix element as,
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Drive

νµ

|a〉

|b〉

|c〉

ν

Probe

Fig. 4. Electromagnetically induced transparency in Λ configuration. Three-level atom

interacting with two fields of frequencies of ν and νp

ρab(t) =
i℘abEe−iνt(γ3 + i∆)

2~[(γ1 + i∆)(γ3 + i∆) + Ω2
µ/4]

(1.17)

The real and imaginary parts of the complex susceptibility χ = χ′ + iχ′′ are given

below:

χ′ =
Na|℘ab|2∆

ε0~Z
[γ3(γ1 + γ3) + (∆2 − γ1γ3 − Ω2

mu/4)] (1.18)

χ′′ =
Na|℘ab|2

ε0~Z
[∆2(γ1 + γ3)− γ3(∆

2 − γ1γ3 − Ω2
mu/4)] (1.19)

Na is the atomic number density,

Z = (∆2 − γ1γ3Ω
2
mu/4)2 + ∆2(γ1 + γ3)

2 (1.20)
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In figure 5, we can see at the ω0, the reduced absorption can be achieved.

-10 -5 0 5 10
-0.1

-0.05

0

0.05

0.1

0.15

Χ'

Χ''

Fig. 5. Absorption and dispersion curve near atomic resonance

4. Slow light

Group velocity dispersion relation is

vg =
dω

dk
=

c

n(ω) + ω dn(ω)
d(ω)

. (1.21)

Near the atomic transition, dispersion is big but the absorption is also huge. but with

the help of electromagnetically induced transparency, the absorption is close to zero

while the dispersion is even sharper. George Welch achieved the very slow of speed

of light in HOT rubidium vapor cell as low as 90m/sec [9].

5. Dark polariton and light storage

Due to the slow group velocity of light in the EIT medium, the light pulse gets

compressed in the medium. The atoms are driven into a coherent superposition of

ground states or sublevels of ground state. M.D. Lukin named them as dark polariton
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state. Switching off the control field will effectively stop the probe light pulse and the

information of probe pulse field will be stored in the atomic medium. The coupling

laser is turned back on at a later time and the probe pulse is regenerated. The

quantum information is read out from the quantum memory device then.

This idea will have application in the quantum information processing and quan-

tum communication.

6. Chirality

The terrestrial life can only utilize the L-enantiomers of of amino acids, which is

known as ’homochirality of life’. In searching the origin of the phenomenon, scien-

tists investigated the chirality in the photochemical reactions. The external influence

of circularly polarized light was found causing the chirality of the reaction. Natural

optical activity in the media lacking mirror symmetry can cause the polarization

rotation of light, while the magnetic optical activity can also has the same effect.

Scientists were trying to connect magnetic effect to enantioselectivity in chemical

reaction. Recently, magnetically induced chiral effects experimentally verified mag-

netically induced chirality was reported in the complex ion [10].

Agarwal proposed new idea about create magnetochiral effect in the media under

the influence of a coherent control field that is resonant or close to resonance to an

appropriate atomic transition [11]. Vladamir Sautenkov experimentally demonstrated

this effect in 2004 [12].

7. Raman scattering

Raman spectroscopy is a powerful tool to investigate the molecular vibrational and

rotational transitions. Raman spectroscopy was brought to practically importance by

the invention of laser.
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g

n

n’

ω

ωs

Fig. 6. Raman process that

generates Stokes field

ωs

g

n

n’

ωa

ω

Fig. 7. Raman process that

generates anti-Stokes

field ωas

a. Spontaneous Raman scattering

Spontaneous Raman scattering is typically very weak, and as a result the main diffi-

culty of Raman spectroscopy is separating the weak inelastically scattered light from

the intense Rayleigh scattered laser light.

b. Stimulated Raman scattering

If the pump laser intensity is large, an appreciable fraction of the molecules will

be excited into the final state and the intensity of Raman scattered light will be

correspondingly large.

c. Coherent anti-Stokes Raman spectroscopy

Coherent anti-Stokes Raman spectroscopy (CARS) use two lasers. The frequency of

two lasers ω1, ω2 are chosen that ω1 − ω2 = ωv. here the ωv is the vibrational or

rotational energy been investigated. New Stokes and anti-Stokes waves are generated

from nonlinear interaction. as in Fig. 8, the ω1 and ω2 excited molecule to the
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Raman-active level, these excited molecules then interact with incident light ω1 and

generate anti-Stokes wave ωa = 2ω1 − ω2. CARS is call four-wave parametric mixing

process since there are four waves involved in generating the anti-Stokes wave.

ωas

ω1

ω2

Fig. 8. Level diagram of coherent anti-Stokes Raman spectroscopy

C. Laser spectroscopy

The basic knowledge of the structure of atom-molecule has been obtained from optical

spectroscopy. Information about molecular structure and the interaction with their

surroundings may be derived in many measures from the absorption or emission

spectra.

Wavelength of spectra lines can determine the energy of different levels of atomic

or molecular system. The line intensity can give the transition probability. The

natural linewidth can determine the lifetimes of the excited states. The Doppler

width will give the velocity distribution. Pressure broadening gives the information
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about collision process and the intermolecular potential. The Zeeman splitting give

the magnetic moments. The hyperfine splitting yields information about the inter-

action between the nuclei and the electrons. Femtosecond spectroscopy can give the

dynamics about molecular association and dissociation.

Many spectroscopic instruments helped to bring this technology into the new

era. But laser re-invented the whole area since its debutante. Not only its intensity

but also the coherent property of the electromagnetic radiation gives rise of many

new spectroscopy technology.

1. Doppler free spectroscopy

As our knowledge of spectroscopy got deeper, the limit of the line broadening become

essential. Among several reasons of broadening, Doppler broadening is usually the

dominant contribution. to the observed width of lines.

The moving atom with the quantum transition frequency ω0 will have an effective

frequency

ω = ω0 − kv, (1.22)

Since the thermal distribution of atoms obeys Maxwell distribution,

f(v)dv =

√
M

π2kBT
exp(− Mv2

2kBT
)dv, (1.23)

we find that the absorption has the Gaussian line shape fucntion

gD(ω) =
c

uω0

√
π

exp{− c2

u2
(
ω − ω0

ω0

)2} (1.24)

The Doppler broadening line has a full width at half maximum
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∆ωD

ω0

= 2
√

ln 2
u

c
(1.25)

There are several methods to overcome this Doppler broadening, crossed atom

or molecule beam with light beam, the saturated absorption spectroscopy and two

photon spectroscopy.

a. Saturated absorption spectroscopy

This method use an intense pump laser beam to reduce the population difference

between two levels as atoms are excited to the upper level. It is also called as hole

burning. The hole burnt has a width

∆ωhole = Γ

(
1 +

I

Isat

)1/2

. (1.26)

As in Fig. 9, The pump and probe beams are in opposite directions, so they

have opposite k. They will interact with different atoms with different velocity, only

when the velocity of the atoms are zero, the pump beam with change the population

difference for the probe beam and thereafter a Doppler free peak will appear on the

absorption line of the probe beam.
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Fig. 9. Saturated absorption spectroscopy experiment
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There are several ways to overcome the Doppler broaden effect, like satura-

tion spectroscopy, polarization spectroscopy, two-photon spectroscopy and molecular

beam technology.

D. Goal

The main objectives of my research are to:

• To study the Rubidium diatomic molecule spectrum, energy levels and potential

of the ground state and first electronic excited state using laser spectroscopy

and laser induced fluorescence spectroscopy, to experimentally demonstrate the

backward Raman amplification.

• To investigate the ground coherence of Cesium Molecule using saturation spec-

troscopy , to design and experimentally explore electromagnetically induced

transparency in Cesium molecular gaseous medium.

• To study the magnetically induced chirality in Rubidium medium under EIT

condition.
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CHAPTER II

SPECTROSCOPY OF RUBIDIUM DIMER

A. High resolution optical spectrum of rubidium diatomic molecule

1. Introduction

Alkali molecular spectroscopy, which has been studied intensively for years, is very

important for fundamental physics and applications [13, 14, 15]. In the last thirty

years, laser methods have greatly improved molecular spectroscopic techniques [16,

17, 18]. In particular, laser-induced fluorescence has become a powerful method to

probe the energy levels of atoms and molecules. Recent improvements in tunable

diode lasers have given us a very efficient spectroscopic tool, with resolution that

may be limited only by laser linewidth [19].

One application is the use of alkali diatomic molecules as a medium for high-

power tunable lasers. Lasing in Na2, Bi2 and Te2 bands has already been observed [20].

Another possible application derives from quantum coherence effects in these mole-

cules [21].

In this paper, we describe our experiments on absorption and fluorescence spectra

within the transition band A1Πu → X1Σ+
g of rubidium molecules in the wavelength

range 640–740 nm.

2. The experiment

Our experimental setup is shown in Fig. 10. A tunable free-running single-mode

diode laser (Sanyo DL4039-011) is used for spectroscopy of rubidium molecules. The

temperature of the diode laser is regulated by a Peltier junction driven by a temper-

ature controller. The laser wavelength is set coarsely by adjusting the temperature
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(+0.3 nm/K). Fine frequency tuning is performed by variation of injection current

(−0.1 cm−1/mA). The laser is tunable over a range of about 20 GHz without mode

hopping.

Digital

Wavemeter

Splitter

Spectrometer
Diode Laser

Beam

Splitter
Beam 

Rb + Rb2

Fiber

Current
Controller

Ramp
Generator

Attenuator

Confocal Cavity

Oscilloscope

665.9485

Mirror
PD: Photodiode

PD

PD

Fig. 10. Rubidium diatomic molecular spectroscopy: experimental setup

We use an all-sapphire cell [22] of length l = 15 cm in an oven heated to the

range of 500◦K–600◦K. The cell contains a natural isotopic mixture of rubidium

metal. Three thermocouples placed at the ends and center point of the cell are used

to monitor the temperature of the rubidium vapor. At high temperature, when the

vapor pressure is greater than 0.01 Torr, the saturated rubidium vapor is a mixture

of atoms and diatomic molecules due to atomic collisions. A large percentage of total

rubidium atoms will form rubidium diatomic molecules.

Transmission spectra of rubidium molecules at different cell temperatures are

shown in Fig. 11. Transmission of white light through rubidium vapor is measured by

a diffraction spectrometer Ocean Optics HR2000 (spectral resolution 0.065 nm). We

start to observe absorption signal when the temperature of the cell reaches 450◦K.
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At this temperature, the density of rubidium atoms is 2.1 × 1014 cm−3. When the

temperature reaches 515◦K, the density of rubidium atoms is 3.4 × 1015 cm−3, the

absorption can reach as much as 60%. If we raise the temperature above 550◦K, the

absorption in the center of the vibrational band is saturated (meaning that practically

all light at these wavelengths is absorbed). The absorption spectra appear as gaussian

shaped envelopes with a small modulation, which reflects transitions between different

vibrational sublevels of ground and first excited electronic states of the rubidium

molecule.
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Fig. 11. Transmission of white light through Rb2 molecules at different temperatures:

Ta = 483◦K, Tb = 512◦K.



19

In order to resolve transitions between rotational sublevels a tunable diode laser

is used. The laser beam power is reduced to avoid non-linear effects. The collimated

laser beam is propagated through the rubidium cell and then detected by a photo-

diode. Part of the laser beam before the cell is sent to a reference confocal cavity

with free spectral range 1.5 GHz. Signals from photodiodes are recorded on a digital

oscilloscope. When the laser wavelength is fixed, it can be measured with accuracy

±0.0002 nm by a Burleigh wavemeter WA-1500.

3. Results

The transmission spectra for different wavelengths (667 nm and 666 nm) are presented

in Figs. 12 and 13. Molecules in the ground state absorb a photon, jump to the next

electronic state A1Π+
u , then decay to many vibrational sublevels in the ground elec-

tronic states. From fluorescence spectra, we find that only specific ground vibrational

sublevel can be pumped. In our experiments, vibrational quantum number of the

initial X1Σ+
g state that can be pumped is 6. Rotational spectral components are well

resolved in these two figures. The resolution of spectra is near 0.001 cm−1, which is

limited by laser linewidth. Using the separations of these rotational absorption peaks,

we can estimate the rotational constant for the ground state, B = 0.020 cm−1. This

value is in good agreement with previously published data [15, 23].

We have chosen several different laser frequencies for study. After tuning the laser

to the desired wavelength (within the Doppler width), we then obtain fluorescence

spectra from the molecules being pumped by the laser. Fig. 12 and 13 show absorption

spectra for two different narrow spectral regions. In each of these regions, one sees

various rotational and hyperfine components. The two regions differ by approximately

1 nm and correspond to different vibrational transitions. In the first region, we have

chosen two different rotational components, marked by arrows in the figure, and in
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the second region we have marked three different peaks. For each of these 5 peaks,

the wavelength of the laser has been accurately measured with a wavemeter.
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Fig. 12. Rotational transmission spectrum at wavelength λ = 667 nm. The spectral

components labelled 1 and 2 have wavelengths λ1 = 666.9485(2) nm and

λ2 = 666.9455(2) nm

For each of the chosen wavelengths we have measured the laser-induced fluo-

rescence spectra. A small part of the backward fluorescence is collected with an

optical fiber and analyzed wth a diffraction spectrometer. The results are shown in

Figs. 14 and 15. Vibrational spectral components are very well resolved in laser-

induced fluorescence spectra and the laser populates only one rotational sublevel of
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Fig. 13. Rotational transmission spectrum at wavelength λ = 666 nm. The spectral

components labelled 1, 2, and 3 have wavelengths λ1 = 665.9800(2) nm,

λ2 = 665.9761(2) nm and λ3 = 665.9780(2) nm

the vibrational excited level. Then the population decays to different vibrational

sublevels of the ground electronic state according to the Frank-Condon principle and

produces different spectral components in the fluorescence. These components are

well resolved. From Ref. [23] we know that for each level

E = Te + ωe(ν +
1

2
)− ωexe(ν +

1

2
)2 (2.1)
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so, the transition energy T is given by:

T = Te + ω′e(ν
′ +

1

2
)− ω′ex

′
e(ν

′ +
1

2
)2 (2.2)

−[ω′′e (ν
′′ +

1

2
)− ω′′ex

′′
e(ν

′′ +
1

2
)2]

The vibrational splitting of the ground state is obtained by fitting of the spectra

and a polynomial approximation of the peaks positions. We find ω′′e = 57.58 cm−1

and ω′′ex
′′
e = 0.15 cm−1, which are in good agreement with Ref. [15].
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Fig. 14. Fluorescence spectrums of Rb2 induced by laser excitation at the wavelengths

1 and 2, marked in Fig. 12

One of the interesting aspects of these fluorescence spectra that there are fluo-

rescence lines on the red side (above 720 nm) where the absorption of the rubidium
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Fig. 15. Fluorescence spectrums of Rb2 induced by laser excitation at the wavelengths

1,2 and 3, marked in Fig. 13.

molecules is relatively small. This could provide a way to build up a rubidium molecu-

lar laser system similar to optically pumped sodium, Te2, and Bi2 molecular lasers [24].

To realize this, one has to reach high enough optical pump intensity to create popu-

lation inversion and gain on these transitions. Coupling between vibrational modes

can be studied by using 2D coherent femtosecond spectroscopy [25].

Another interesting point is that the rubidium molecule has the potential for

realization of many coherence effects in a molecular system, such as electromagneti-

cally induced transparency (EIT), Stimulated Raman Adiabatic Passage (STIRAP)

and Femtosecond Adaptive Spectroscopic Techniques Coherent anti-Stokes Raman
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Spectroscopy (FAST CARS).

4. Conclusions

We have measured well-resolved rotational spectral components in rubidium diatomic

molecules using a tunable diode laser. Wavelengths of several rotational components

were measured with good accuracy using a wavemeter. The vibrational structure of

the ground state is well resolved by the laser-induced fluorescence technique. Fluo-

rescence is observed in the red wing of the band where molecular absorption is small.

This indicates that an optically pumped rubidium molecular laser may be realized in

these spectral regions.

With the knowledge of the transmission and fluorescence spectra, further study

of many coherent effects in Rubidium diatomic molecules, such as EIT, STIRAP and

FAST CARS may be possible.

B. Backward Raman amplification in rubidium molecules

1. Introduction

The continuous monitoring of the atmosphere for traces of various gases and biopathogens

at parts-per-million (ppm) concentrations and distances of the order of 1–10 km is

a challenging problem with applications from the control of environmental pollution

to national security [26]. However, in order to continuously scan the 2π sector of the

sky, new technology is needed. Recently a new approach (Stand-Off Superradiant

(SOS) spectroscopy) to improve LIDAR performance has been suggested [27].

There are several implementations of SOS. The first detection scenario of SOS

has two logical steps. In the first step, Raman or two photon pumping of the gas

molecules from the ground state to an appropriate excited state takes place. The
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excitation is achieved via simultaneous action of two synchronized picosecond laser

pulses with a difference frequency that is resonant with the ground to the vibrationally

excited state energy difference, or a sum frequency being resonant with the ground

to the electronically excited state energy difference. Then, in the second step, strong

emission in the backward direction is generated via swept-gain superradiance (see

Refs. [28, 29] and references therein).

The second implementation is based on the Raman gain in a molecular medium [30,

31, 32]. One sends a train of pulses, and a pulse is amplified in the backward direc-

tion. The selectivity of the method is determined by resonance with the vibrational

frequencies or the electronic transition of molecules.

Both these schemes have the potential for a real-time detection of poison gases

(e.g., COCl2) and atmospheric pollutants (e.g., NO). The essential advantage of this

scheme is that the signal intensity exceeds the backscattering signal intensity of the

usual LIDAR schemes by many orders of magnitude.

In this paper, we have experimentally demonstrated backward Raman gain in

Rb diatomic molecules vapor within the transition band A1Πu → X1Σ+
g of rubidium

molecules in the wavelength range 640–740 nm and performed simulations to support

our experimental results. The motivation of our research is to demonstrate an exper-

imental possibility to implement and study a system exhibiting swept gain. We show

that molecular diatomic molecules can be used for this purpose, as they are formed

under reasonable experimental conditions available in the laboratory [33]. The spec-

troscopic properties of the diatomic molecules are known; alkali molecules have been

studied intensively for years, their parameters are very important for fundamental

physics and applications [34, 14, 15, 16, 17, 18, 19]. Such information allows us to

perform simulations to explain experimental results.

The structure of the paper is the following. In the next section we describe the
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experimental setup has been used. Then, we discuss the obtained results and present

simulations that supports the observed results.

2. Experimental setup

The experimental setup is shown in Fig. 16. A tunable free-running single-mode diode

laser is used for observation and study backscattering from rubidium molecules. The

laser wavelength is set coarsely by adjusting the temperature (+0.3 nm/K). The

temperature of the diode laser is regulated by a Peltier junction driven by a temper-

ature controller. Fine frequency tuning is performed by variation of injection current

(−0.1 cm−1/mA). The laser is tunable over a range of about 20 GHz without mode

hopping. Laser emission radiation is collimated into parallel beam with diameter of

0.12 cm.

Fig. 16. Experimental setup for backward Raman amplification

The cell contains a natural isotopic mixture of rubidium metal. Three thermo-

couples placed at the ends and in the center point of the cell are used to monitor

the temperature of the rubidium vapor. We use an all-sapphire cell [22] of length

l = 15 cm in an oven heated to the range of 500◦K–600◦K. At higher temperatures,
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when the vapor pressure is greater than 0.01 Torr, the saturated rubidium vapor is a

mixture of atoms and diatomic molecules formed via atomic collisions.

Transmission spectra of rubidium molecules at different cell temperatures are

shown in Fig. 11. Transmission of white light through rubidium vapor is measured

by a diffraction spectrometer Ocean Optics HR2000 (spectral resolution 0.065 nm).

We observe absorption signal when the temperature of the cell higher than 450◦K. If

we raise the temperature above 550◦K, the absorption in the center of the vibrational

band is saturated (meaning that practically all light at these wavelengths is absorbed).

The experimental condition to study the backward Raman amplification are the

following. We focus the laser beam (power of 8 mW) by a lens (f = 15 cm) into a

spot of 0.015 cm of a cell with a rubidium vapor. The temperature of the cell is 493 K.

At this temperature, the pressure of rubidium molecules is 2 10−4 Torr. Under these

conditions, the emission measured in backward direction consists of two parts: well

collimated amplified Raman scattering and diffuse scattered radiation. The scattered

light collected by the lens and send to a beam-splitter. Spatial dependence of scattered

emission spectra is analyzed by the diffraction spectrometer (SM) with a fiber input.

The fiber is installed at xy translation stage.

3. Results and discussion

The absorption spectra are shown in Fig. 11 for two different temperatures. Rb2 di-

atomic molecule molecule in the ground state (X1Σ+
g ) absorbs a photon to get excited

to the electronic state A1Π+
u see schematic level structure of Rb2 shown in 29, then

decay to many vibrational sublevels in the ground state. Because the vibrational en-

ergy for Rb2 is much smaller than kT , the population is distributed by thermal motion

among vibrational levels of the ground state, and hence there are many absorption

lines originated from the ground state.
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In the current experiments, we drive the Rb2 molecular system with relatively

strong CW laser field (we use a lens to focus the laser beam from the diode laser into

the Rb cell, see Fig. 16) and measure scattered radiation in the backward direction.

We have chosen for study a laser frequency that corresponds to λ = 667 nm. The

frequency of observed lines correspond to two-photon transitions between vibrational

states of ground state, X1Σ+
g .

X Σ g
+1

ΠA u
1

v=2

v=0
v=1

b
c

a

Fig. 17. Molecular level structure of Rb2.

Vibrational spectral components are very well resolved in scattered spectra pre-

sented in Fig. 19. Vibrational energies for ground state are given by

Λv = ωe(v +
1

2
)− ωexe(v +

1

2
)2 (2.3)



29

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

670 680 690 700 710 720 730 740 750

’ratio’ us 1:4
’ratio’ us 1:3

wavelength (nm)

A
bi

tr
ar

y 
un

its

Fig. 18. Scattered Raman spectra

where v is the vibrational quantum number; ωe = 57.58 cm−1 is the vibrational fre-

quency and ωexe = 0.15 cm−1 the factor accounting for anharmonizm of the molecular

potential energy surface (we used these parameters known from our previous study

and literature [33, 15]). We fit the lines by finding vibrational quantum numbers v1

and v2 that meet condition νs = νl + Λv1 − Λv2 as seen in Fig. 19.

We have recorded scattered radiation for two cases: first, when the fiber pigtail is

in the central part of the scattered emission shown in Fig. 18a, and second, when the

fiber pigtail is shifted outside collimated part of scattered light (shift 0.3 cm) shown

in Fig. 18b. We take ratio of these two signals and obtain spectral dependence shown
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Fig. 19. Raman gain of experiment and theoretical calculation

in Fig. 19a. To obtain the intensity of scatterd light one needs to integrate over the

cell taking into account absorption or amplification of the medium which is given

Is(ω) =

∫ L

0

dzI0(ω) exp(−α(ω)z), (2.4)

where I0(z, ω) is the intensity of the scattered light at frequency ω and position z;

α(ω) is the absorption coefficient, L is the length of the medium where scattering

occurs. Neglecting space dependence of scattering intensity I0(z, ω) ' I0(ω), we
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obtain by integration

Is(ω) ' I0(ω)
1− exp(−α(ω)L)

α(ω)
. (2.5)

One can see that, in dense absorptive media (α > 0), scattered light intensity does

not depend on the path inside medium L while in the case of α < 0 (amplification),

there is dependence on L which leads to an angle dependence of the observed intensity

of the scattered light. Experimental data shows that, for some lines, the intensity of

the scattered light is the same, but for some other lines, the backscattering intensity

of the scattered light is higher than the intensity at a small angle. These results we

interpret as evidence of Raman amplification.

To support this interpretation, let us analyze the susceptibility of the molecular

medium. Event though, the system has many levels, let us first, to gain physical

insight, consider just three levels (marked by a, b(v = 2) and c(v = 1) in Fig. 29).

For these three levels, the coherence between vibrational levels can be calculated. It is

this coherence that makes a major contribution to Raman gain of molecular medium.

Thus the effect of the fields in two-photon resonance is taken into account. We neglect

the influence of weak fields of fluorescence between electronic levels. The driving field

coupled between other ground and excited levels are off two photon resonance, so

there is only contribution to power broadening. Thus, the susceptibility given from

these three levels is given [1] by

χ(ω) = iη
nab +

Ω2
R

ΓcbΓca

ncb

Γab +
Ω2

R

Γca

, (2.6)

where nab and nbc are the population inversion between levels a and b and between

levels b and c correspondingly; ΩR is the Rabi frequency of the driving field; Γab =

γab + i∆; γab is the relaxation rate of the molecular coherence; ∆ = ωab − νp is the
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detuning from the resonance; η = 3λ2Nγr/8π; the transition frequency ωab is given

by:

ωab = ωe + ω′e(v
′ +

1

2
)− ω′ex

′
e(v

′ +
1

2
)2 (2.7)

−[ω′′e (v
′′ +

1

2
)− ω′′ex

′′
e(v

′′ +
1

2
)2]

where v′ and v′′ are the vibrational quantum numbers. We take into account thermal

population on the vibrational levels nv = nv=0 exp[−Λv/kT ]. Doppler broadening can

be taking into account by averaging over the thermal distribution function FD(v) of

velocities v

χ =

∫
dvFD(v)χ(v, ω). (2.8)

Finally we take into account for all the other vibrational levels of diatomic molecule

molecule in both the ground and the excited electronic states.

The results of calculation (note that we have not calculated Frank-Condon factors

for these lines) are shown in Fig 19. where one can see that it is in qualitative

agreement with the experimental ratio of scattered light on and off the axis. To obtain

quantitative agreement, we need to measure the field distribution more accurately and

take into account Frack-Condon factors.

4. Conclusion

In conclusion, we have observed Raman gain in the backward direction in rubidium

diatomic molecules. We have performed simulations that support this interpreta-

tion. Note here that what lasing in diatomic molecules via optically pumped popu-

lation inversion in the excited electronic states has previously been demonstrated in

other diatomic molecules (see, for example, optically pumped lasers with Li2 [35, 36],

Na2 [35, 36, 37], K2 [35, 38, 39]).
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CHAPTER III

QUANTUM COHERENT EFFECTS IN CESIUM DIMER

A. Saturated absorption spectroscopy of cesium molecules

We study sub-Doppler saturation resonances at cesium molecular transitions in the

absorption band B1Πu ← X1Σ+
g near 780 nm by using a commercial diode laser.

The saturation power is measured as low as 5.7 mW with the laser beam diameter

of 0.1 cm. Optical saturation is associated with velocity selective optical pumping

of molecular ground state levels. We propose to use the molecular transitions as

references for doubled frequency sources in the communication band around 1550

nm.

1. Introduction

Cesium diatomic molecules have a strong absorption band B1Πu ← X1Σ+
g starting at

near 750 nm and covering more than 50 nm to the infra-red[40]. The band is densely

filled by electric dipole allowed transitions with a typical frequency splitting of the

order of the Doppler broadening 0.01 cm−1 and can be used as frequency references

for stabilization of diode lasers directly or through second harmonic generation (SHG)

for frequency stabilization of communication diode lasers in the spectral region 1500

- 1600 nm by applying the SHG technique. Earlier spectroscopic investigations of the

absorption band B1Πu ← X1Σ+
g with sub-Doppler resolution were performed with

two tunable dye lasers to select coupled transitions.

In this paper we report the observation of sub-Doppler saturation resonances

at the cesium molecular transitions with modest pump power (a few mW) from a

commercial diode laser. The long relaxation time of ground states and the optical
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pumping (depletion) of molecular ground states are demonstrated.

2. Experimental results
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Fig. 20. Experimental setup of saturated absorption in Cs2: LD - laser diode, Ch -

chopper, PD - photodetector, A - lock-in amplifier, C - computer

The experimental scheme is presented in Fig. 20. A free-running laser diode

Sanyo DL7140-201S is used in experiment. The line width of the diode laser slowly

drifts over interval 10 to12 MHz probably due to a small optical feedback from optical

elements before the isolator. The laser frequency can be linear scanned by changing an

injection current. The output laser beam is split into several beams. Two laser beams,

pump and probe, are sent to a glass cell with cesium vapor in counter-propagating

geometry. The probe beam power (0.06 mW) is much less then the pump beam power.

The diameters of the pump and probe beams are equal to 0.1cm. The commercial

available glass cell (Opthos Instruments, Inc) is installed in an oven. The length of

the cell is of 7.5 cm. Vapor pressure of cesium atoms and molecules is controlled via
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the temperature of the cell. After the cell the probe beam is sent to a photo-detector.

The signal from the photo-detector can be directly analyzed by a digital oscilloscope.

Also, in order to select only the non-linear response of the sample, the pump beam is

modulated by a chopper. The modulated component of the signal is amplified by a

lock-in amplifier and recorded by a computer. We select several molecular transitions

between vibrational levels µe = 5 and µg = 10 in the neighborhood of rubidium

atomic transitions at 780 nm. The frequencies of the atomic rubidium transitions

are measured with very high accuracy. The Doppler-free absorption spectrum of

atomic 87Rb vapor serves as the frequency reference. The frequencies of the molecular

sub-Doppler resonances are measured relative to absolute frequency of the rubidium

transition 5S1/2(F = 2)−5P3/2(F
′ = 3). The frequency scale is checked by a confocal

cavity with a free spectral range of 300 MHz.

The observation of the non-linear response of cesium molecules in the cell is

presented in Fig. 21. The curves are recorded at the cell temperature 230oC. The

total atomic and molecular gas pressure is 2.410−1 mm Hg (Ntot = 4.61015cm−3)

and the cesium molecular gas pressure is 6.510−4 mm Hg (Nmol = 1.31013cm−3).

The curve (a) in Fig. 21 represents the sub-Doppler structure observed with the

pump beam power of P = 7.5 mW. The pump and probe beams have a small angle

between them 510−3 radians, and cross in the central part of the cell. The strongest

saturation resonances are marked as R1 - R5. The resonances are near 7% of maximal

linear absorption which is 0.15 at frequencies R1 and R2. The contrast of saturation

resonances is reduced due to overlap of the Doppler-broadened molecular transitions.

At least two processes can contribute to the saturation of absorption: 1- satu-

ration of an optical transition, 2 - velocity selective optical pumping of ground state

levels. If the lifetime of the ground state population distribution is much longer than

the lifetime of the excited state population, optical pumping gives the main contri-
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Fig. 21. The saturation resonances at cesium molecular transitions.

curve (a) - sub-Doppler resonances observed with overlapped laser beams;

curve (b) - saturation resonances observed with separated beams;

dotted curve (c) - the fit by Lorentzian functions. Difference frequency is mea-

sured relative to the Doppler-free resonance at the atomic rubidium transition

5S1/2(F = 2)− 5P3/2(F
′ = 3)

bution to the non-linear variation of molecular absorption. In order to check the

contribution of optical pumping, we study the non-linear response of cesium mole-

cules with spatially separated, parallel, pump and probe beams. A similar approach

with separated beams was applied for observation of a long lived Larmor precession

of Na atoms11, and for observation of a long lived ground state coherence (quantum

state memory of light) in Rb atoms. The curve (b) in Fig. 21 presents the non-linear

response recorded with a space between beams of 0.3 cm. There is no overlapping of
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the beams in the cell. The distribution of optical intensity is checked by a line CCD

camera. The spectral shape of the non-linear part of absorption, shown in Fig. 21,

reflects the shape of the Doppler-broadened linear absorption lines. It occurs due to

velocity changing collisions between cesium molecules and cesium atoms. One can

see that there is practically no Doppler-broadened background in the curve (a). It

means that the free mean path for velocity changing collisions is more than the beam

diameter 0.1 cm and less than the beam separation 0.3 cm. Therefore in the case

of overlapped beams (Fig. 21, the relaxation time of the ground state population is

defined by time-of-flight of the molecules through laser beam, and can be roughly

estimated to be 10−5 sec. The optical saturation is associated with selective optical

pumping of the molecular ground state levels. Collisions with cesium atoms do not

destroy the ground state population distribution in the cesium molecules, they change

only the velocity distribution of the cesium molecules. In the mixture of cesium atoms

and cesium molecules the atomic vapor is working as a buffer gas, for instance, like

neon atoms for sodium atoms. Resonance exchange effects between cesium atoms

and molecules are small due to a big energy difference between resonance atomic and

molecular transitions (wavelengths of cesium D2 and D1 lines are 852 nm and 895

nm).

The sub-Doppler resonances are fit by Lorentzian functions. The fit is shown

in Fig. 21 as a dotted curve (c). Full-width at half maximum ∆ωof the strongest

five resonances varies from 42 to 55 MHz. We measure the power broadening of

the narrowest and the most isolated resonance R3. The results are presented in

Fig 22. From the fitting by the well known expression for power broadening10,15

∆ω = ∆ω0[1+(1+P/P0)
1/2]/2, we have obtained the magnitudes of saturation power,

P0 = 5.7 mW, and the low power limit of the width ∆ω0 = 32MHz. By taken into

account the laser line width and the residual Doppler broadening we have estimated
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the minimal width of the selected saturation resonance as 20 MHz. The saturation

intensity can be written as I0 = P0/S ∼ [∆ω0/(Td2
ge)], where dge is effective dipole

moment of the optical transition, T is the effective lifetime of population difference

between ground and excited state, and S is the laser beam area. When the condi-

tion for ground state optical pumping is satisfied (the ground state non-equilibrium

population lifetime is much longer than the excited state lifetime) the saturation ef-

fects are enhanced. The ground state optical pumping in cesium molecules helps to

compensate the relatively small electric dipoles of the molecules.
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Fig. 22. Power broadening of the saturation resonance R3 in Fig. 21. The experimen-

tal data (circles) and the fit are presented



39

The spectral shapes of the sub-Doppler resonances are studied at different tem-

peratures from 195 C to 260 C. The vapor pressure induced variation of the resonance

width and shift is less then 2 MHz in this temperature region. The spectral resolution

is limited by the drift of the laser line width. Populations of molecular ground state

sub-levels are not destroyed by molecular-atom collisions.

3. Conclusion

The cesium molecular absorption lines in the band B1u X1g+ can be considered as

frequency references. The sub-Doppler absorption resonances in the another cesium

band A1Πu ← X1Σ+
g were used for frequency stabilization of diode lasers (1083 nm)16

and Nd:YAG lasers (1064 nm). The Nd:YAG laser frequency stability was reached

a minimum 1.310−11 for a measurement time of 20 s. These results support our

proposal to use the absorption lines in the shorter wavelength band B1Πu ← X1Σ+
g for

frequency stabilization of frequency-doubled communication lasers in the spectral

window around 1550 nm. Also the observation of ground state optical pumping

in cesium molecular vapor shows that it is possible to observe electromagnetically

induced transparency (EIT) in a -levels scheme in diatomic molecules. Recently EIT

was observed in cascade systems in Li2 and K2 molecules. It opens the way to realize

the quantum state memory of light in a molecular gas.
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B. Λ scheme electromagnetically induced transparency

1. Introduction

Coherent effects such as electromagnetically induced transparency (EIT) and coherent

population trapping (CPT) [7, 41] attract a lot of attention because of their ability

to suppress a linear absorption and enhance the non-linear response of a resonant

medium. These complimentary coherent effects impact new techniques such as high

precision spectroscopy [42, 43], atomic clocks [44], nonlinear interaction with weak

light fields at the single photon level [45, 46, 47], greatly reduced phase matching

requirements [48], large Kerr nonlinearities [49], etc.

The CPT was first reported in [50], where the elimination of resonant fluores-

cence of sodium atoms was observed under conditions where the mode spacing of a

multi-mode dye laser was equal to the ground state splitting. Description of other

experiments with CW lasers can be found in the review. The CPT has also been

observed in the pulsed regime [51]. CPT in sodium dimers has been observed in

[52, 53].

Growing interest in EIT was stimulated by Harris’s theoretical work [54]. EIT

has been successfully demonstrated in different experiments: in continuous wave and

pulsed regimes [54]; with atomic gases at room temperature [55, 56] or with cold

atoms [57], with solids doped by rare-earth ionsand semiconductor quantum wells ; for

different wavelengths ranging from gamma-rays, optics to microwaves [55, 54, 58, 59].

In this paper, we have experimentally demonstrated EIT in Cs dimers vapor

within the transition band B1Πu → X1Σ+
g and performed simulations to support our

experimental results.

The structure of the paper is the following. In the next section we describe the

experimental setup has been used. Then, we discuss the obtained results and present
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simulations that supports the observed results.

2. Experimental setup

Pum
p

Probe

Magnetic Shield
 {    Thermal Isolator

          {Heating Chamber

}
}

               {Cs Atom+Dimer Cell}

��
��
��
��

Fig. 23. Experimental setup of electromagnetically induced transparency in diatomic

cesium molecular gas

The experimental setup is shown in Fig. 23. The outputs of two external cavity

diode lasers operating around 780nm are used to pump Cesium diatomic molecules

from ground electronic state to B1Πu state and to probe at very close frequency to

form the Λ type electromagnetically induced transparency. The third free running

laser is used to beat these two lasers on detectors, the beating signals are used to
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compare with signal from a Rubidium absorption lines to get accurate frequency of

pumping and probing laser.

The Cesium metal sample, is placed in a cylindrical pyrex glass cell (75mm long

and 25 mm in diameter). A thermocouple is placed in touch with the cold spot of the

cell to monitor the temperature of Cesium vapor. The cell is placed inside an oven

and heated to above 500 Kelvin. The cell and oven are inside a magnetic fild shield

to minimize any effect from earth magnetic field. For the temperature from 470K to

520K, the density of Cesium dimer is from 1013 to 1014 cm−3. the atomic Cesium

density is from 1015 to 1016 cm−3.

To characterize spectral resolution of the experimental setup, we measure the

beat note signal between pump and probe lasers, the beat note signal was sent to

spectrum analyzer, it is shown in Fig. 24, we can see that the width of the two laser

measured ia as narrow as 0.5 to 0.7 MHz.

3. Obtained results and discussion

Cs dimers have several absorption band, the one from 750nm to 800nm correspondent

B1Πu ← X1Σ+
g . With pumping at ω0 and probing at ω1, we get very narrow peak

width as 2Mhz, it is narrower than the nature line width.

Cs2 dimer molecule in the ground state (X1Σ+
g ) absorbs a photon to get excited

to the electronic state B1Π+
u see schematic level structure of Cs2 shown in Fig. 29.

Because the vibrational energy for Cs2 is much smaller than kT , the population is

distributed by thermal motion among vibrational levels of the ground state, and hence

there are many absorption lines originated from the ground state.

Vibrational spectral components are very well resolved in scattered spectra pre-
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sented in Fig. 25. Vibrational energies for ground state are given by

Λv = ωe(v +
1

2
)− ωexe(v +

1

2
)2 (3.1)

where v is the vibrational quantum number; ωe = 57.58 cm−1 is the vibrational fre-

quency and ωexe = 0.15 cm−1 the factor accounting for anharmonizm of the molecular

potential energy surface.

In the current experiments, we drive the Cs2 molecular system with a relatively
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Fig. 26. Cs2 EIT experiment: pump laser Doppler free peak width and frequency

strong CW laser field and simultaneously we measure transmission of a relatively

weak probe laser.

First, we measure the width of by using Doppler free saturation spectroscopy

for the this we fix the frequency of the drive laser and scan the frequency of the

probe laser around the frequency of the drive laser. The obtained results are shown

in Fig 26. The beat signal of two lasers shows the peak width that is corresponding

to the co-propagating doppler free, the width is about 25MHz.



46

-30 -25 -20 -15 -10 -5 0 5 10 15 20

Tr
an

sm
is

si
on

 A
.U

.

relative frequency MHz

EIT Width 3MHz

Fig. 27. Cs2 EIT narrow peak in the transmission spectra of probe laser

Next we turn to study transparency for larger detuning of the probe laser. When

the probe frequency is in two-photon resonance with the drive, we observe enhance-

ment of transparency in a narrower region, as shown in Fig 28. Since at the same

pump laser frequency, we also have observed a sub-natural EIT width.

The examples of different EIT widths are shown in Figs. 28 and 30. These plots

are obtained for different densities of Cs dimers. By changing the temperature of the

cell, we have also study the dependence of EIT width on the Cs dimer density. The

narrowest width is about 3 MHz.

Also it turns out that we manage to find V-type scheme configuration. This EIT
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Fig. 29. Molecular level structure of Cs2

transparency peak with width is about 40 MHz (as shown in Fig. 31). It is broader

than the width of EIT in Lambda configuration because the relaxation of coherence

is faster.

4. Λ scheme EIT

The linear transmission signal of the Cesium diatomic molecule is shown in Fig 25.

The pump and probe laser frequencies are label on the curve. The two photon de-

tuning is around 62 GHz.

Since we observed both wide and narrow peaks at different probe frequency and

the narrow one is narrower than natural line width. Based on the pump and probe

analysis, we can tell that we find Λ transition in molecule. while Cascade type EIT

was reported in some’s paper.
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Based on the Dunham Coefficients of X1Σ+
g and B1Πu from Demtröder’s and

Amiot’s papers. we calculated the transition energy and Franck Condon factor of

the transition it shows that the electronic transition is B-X,vibrational is 6-11 and

rotational 88-90.

We fit EIT peak width with temperature with exponential function. It gives an

acceptable result showing that the EIT peak width has exponential dependency on

temperature.

In Fig 32, we present the dependence of the EIT peak width on the temperature.

We fit the curve with an exponential increasing function, we get the extrapolate EIT

peak width at zero temperature is around 1.7 MHz. in the real experiment we can

never decrease our temperature very low since below 170 degree, the linear absorption

of cesium dimer becomes negligible.

To make an comparison, Doppler free peak width is also measured over 200 to 260

degree range. In this range there is no obvious density or temperature dependency.

In fig 33, we can see at the working temperature range, there is practically no

temperature dependence of Doppler free peak width with temperature. When the

temperature is below 210 degree, the width becomes bigger, since at this temperature

the density of cesium dimer become so dilute that even same laser power as other

temperature measurement will saturate the dimers.

We can calculate rotational quantum number from two photon detuning. since

the ground states are in the same electronic states and vibrational state. Then,

from the selection rule and energy formula and constants from spectroscopic study

of the Cesium dimer, we get the rotational quantum number as 89 and 90 of the

ground states and upper state has rotational quantum number 90. We can thereafter

determine the vibrational quantum numbers. They are 11 for the ground states and

6 for excited states.
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Fig. 32. Width of EIT peak vs. temperature
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To support the observed results, let us analyze the susceptibility of the molecular

medium. Even though, the system has many levels, let us first, to gain physical

insight, consider just three levels (marked by a, b(v = 2) and c(v = 1) in Fig. 29).

For these three levels, the coherence between vibrational levels can be calculated. It is

this coherence that makes a major contribution to Raman gain of molecular medium.

Thus the effect of the fields in two-photon resonance is taken into account. We neglect

the influence of weak fields of fluorescence between electronic levels. The driving field

coupled between other ground and excited levels are off two photon resonance, so

there is only contribution to power broadening. Thus, the susceptibility given from

these three levels is given [1] by

χ(ω) = iη
nab +

Ω2
R

ΓcbΓca

ncb

Γab +
Ω2

R

Γca

, (3.2)

where nab and nbc are the population inversion between levels a and b and between

levels b and c correspondingly; ΩR is the Rabi frequency of the driving field; Γab =

γab + i∆; γab is the relaxation rate of the molecular coherence; ∆ = ωab − νp is the

detuning from the resonance; η = 3λ2Nγr/8π; the transition frequency ωab is given

by:

ωab = ωe + ω′e(v
′ +

1

2
)− ω′ex

′
e(v

′ +
1

2
)2 (3.3)

−[ω′′e (v
′′ +

1

2
)− ω′′ex

′′
e(v

′′ +
1

2
)2]

where v′ and v′′ are the vibrational quantum numbers. We take into account thermal

population on the vibrational levels nv = nv=0 exp[−Λv/kT ]. Doppler broadening can

be taken into account by averaging over the thermal distribution function FD(v) of
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velocities v

χ =

∫
dvFD(v)χ(v, ω). (3.4)

Finally we take into account for all the other vibrational levels of dimer molecule in

both the ground and the excited electronic states.

5. Conclusion

In conclusion, we have experimentally observed electromagnetically induced trans-

parency in cesium molecular gaseous medium.

With the same drive laser frequency, we observed two kinds of transmission

increasing peak, the narrower one is due to Λ type transition, and the broader one is

due to V type transition.

The narrow EIT peak width is much smaller than the natural linewidth of the

linear transition(single photon transition), which also confirms that the two lower

states of Λ type transition belong to the ground states.

The extrapolated curve of the width intersect with y axis at 1.7MHz, subtracting

the two laser width 0.7 MHz, there is still 1 MHz left. Time of flight is around

6 × 10−6s, it gives width of 0.17MHz. The additional width is probably due to

rotational relaxation of ground states.

We have performed simulations that support this interpretation.

C. Light storage in a dense diatomic medium

We know that electromagnetically induced transparency can modify the absorption

properties of the medium. The basic manifestation of EIT is a significant reduction

of light absorption in the medium near a resonance transition frequency.

Using Λ type atoms or molecules, we can realize the light storage. Strong ”writ-
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Fig. 34. Configuration of fields in molecular medium light storage. Drive and probe

field couple three level atom

ing” and weak ”signal” light pulses propagate in a Λ type three level gaseous system

and excite a spatial distributed long lived coherence between ground states |b〉 and

|c〉. This coherence profile stores information about the single probe pulse, once we

turn off drive field. Subsequently we send a strong ”reading” pulse into the medium,

the reading pulse will results Raman scattering off the atomic coherence and generate

a ”retrieved” pulse. The retrieved pulse can be identical to the signal pulse in the

frequency and quantum statistics and propagating direction.

1. Experimental setup

Laser light from a diode laser is split by the beam splitter and then modulated by two

acoustic optical modulators. We focus the beam into the AOM to get sharp rising
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Fig. 35. Illustration of pulses sequences of light storage experiment

edge. One beam is rotated by a half waveplate and then combined with the other

beam at the polarized beam splitter. Combined beam go through a quart waveplate

to get clockwise and counter clockwise circular polarized light. The beams then go

through a Cesium Cell heated to over 200 degree. The beams after the oven then go

through a quart wave plate and split by a polarized beam splitter and detected by

two fast photodiode.

2. Result of light storage in molecule experiment

The rising and falling edge of light pulse is less than 10 nanosecond. The signal pulse

is around 30 nanosecond wide. Both writing and reading pulse are from drive beam.

The delay between the falling edge of writing pulse and the rising edge of reading

pulse is variable. We can can see the retrieved pulse for delay from 30 nanosecond to

around 80 nanosecond. When the delay is bigger than 80 nanosecond the retrieved

pulse becomes too small to be observed.
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Fig. 36. Light storage experiment setup. Linear polarized light from diode laser is split

into two beams and modulated by Acoustic Optical Modulator into pulses,

one beam is then converted into perpendicular polarized by a half wave plate.

Two beams are combined into one by Polarized beam splitter and converted

into circular polarized light by quarter wave plate. The transmission light is

detected by two fast photo-detectors

3. Conclusion

From the experiment of electromagnetically induced transparency, we found the EIT

width is less than 2 MHz. The corresponding lifetime of ground state coherence is

big than 80 nanosecond. In the allowed time region, We have observed the retrieved

pulse in the same direction and with the same polarization of the signal pulse.

For diatomic molecule as Cesium dimer, at our working temperature, the most

populated rotational quantum number is around 120. We work with circular polarized

light of same frequency, therefore we work on the rotational sublevels of Cesium

molecule.
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CHAPTER IV

CHIRAL EFFECT IN RUBIDIUM ATOMS

A. Optically induced chirality in Rb vapor

Atoms and molecules in electromagnetic fields can be considered a new state of mat-

ter that continues to attract a great deal of attention. Electromagnetic fields provide

a method to manipulate the properties of matter such as absorption, dispersion and

a varieties of nonlinear characteristics [60, 61, 62, 63]. Similar to the fabrication of

new materials, like photonic crystals or nanostructures, an applied coherent field al-

lows one to improve the performance of devices and go beyond the limitations set

by natural materials by themselves. In particular, it creates conditions for lasers to

operate without population inversion between levels relevant for the lasing transi-

tion. Giant nonlinearities [61] and large refractive indexes [63] have been achieved.

Giant nonlinearities may enable one to generate nonlinear signals using single pho-

tons [64]. The enhanced nonlinearity can also bring the light pulse to slow down

considerably [65, 66, 67] and this is used for quantum information storage [68, 69].

Here we would like to answer the question of whether it is possible to use the

quantum coherent effects to enhance the effect of optical activity [70]. Optically

active molecules are abundant in nature. In fact, the nearly exclusive utilization of

one form of the optical antipode pair may be considered as a characteristic feature

of living systems. Optical activity has always stimulated researchers’ imagination,

as the substitution and modification of natural products is not only a challenge but

also of high practical importance. It is important to control chirality or to create an

environment that displays chirality in a controllable way, which can have applications

in drug production, spin chemistry, etc. In this letter we report the experimental
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observation of very large optically induced chirality in a Rb cell.

The chirality of a molecule is a symmetry property: chiral molecules are either

asymmetric, i.e. they do not have any symmetry element, or they are asymmetric,

i.e. they have only axes of rotation. If an atomic or molecular system has spherical

symmetry then the transmission coefficient is the same for light propagating parallel

to the magnetic field and for light propagating in the anti-parallel direction with

respect to the magnetic field. If a symmetry operation of reflection is performed on

a chiral molecule it is transformed into a different chiral system of equal energy and

other nonvectorial properties. This molecule is called a mirror image, the optical

antipode, or the enantiomer. Molecular systems that show chirality have an obvious

or hidden screw property, or a handedness. In the case when the molecule has no

symmetry then there is the phenomenon of optical chirality. Arago’s discovery in

1811 of natural optical activity in chiral crystals and Faraday’s discovery in 1846 of

magnetically induced optical activity have contributed much to our understanding

of the wave nature of light and the electronic properties of molecules. Both effects

are manifest as a rotation in the polarization of transmitted light: the former is due

to the intrinsic properties of media that lack mirror symmetry, whereas the latter

(which occurs in all materials) is due to magnetic-field-induced changes in the optical

properties.

Recently, a new polarization-independent optical effect was discovered: magne-

tochiral anisotropy (MCA). The existence of this effect may be important in the

context of fundamental interactions between light and matter, and in molecular

spectroscopy, although the effect is generally very weak for naturally occurring sys-

tems [71, 72, 73, 74, 10, 75, 76]. In a recent paper Agarwal and Dasgupta [11] discov-

ered that it is possible to produce very large MCA using electric dipole transitions

and by applying a properly polarized coherent field so as to break the symmetry
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of the system. We will refer to this type of MCA as electromagnetically induced

magnetochiral anisotropy (EIMCA). We note that very interesting experiments on

birefringence induced by laser fields in the absence of any magnetic field have been

reported [77].

The idea of optically induced chirality is the following. First, consider a simplified

model of the Rb atom, a three-level atom (see Fig. 39b); the Hamiltonian of the atom

in magnetic and optical fields is given by

H = ~ω+|−〉〈−|~ω−|+〉〈+|+ ~Ω|+〉〈f |+ h.a. (4.1)

where |−〉 ≡ |m = −1〉, |+〉 ≡ |m = +1〉, |f〉 ≡ |f, m = 0〉 and ω−, ω+ are the atomic

states and their eigenvalues in the magnetic field. The Hamiltonian has a symmetry

with respect to a change on the direction of the magnetic field, namely, if B → −B,

then |−〉 → |+〉, |−〉 → |+〉 and ω+ → ω−, ω+ → ω−. The term coupled to an

auxiliary field Ω breaks symmetry and introduces chirality in the system. Indeed, the

susceptibility is given by

χij(ω, k,B, Ω) = χ̃ij(ω, Ω) + αijl(ω, Ω)kl + βijl(ω, Ω)Bl (4.2)

+γijlm(ω, Ω)klBm, (4.3)

where αijl describes natural optical activity and βijl describes magnetic optical activ-

ity; γijlm describes the magnetochiral effect; ω and k are the frequency and the wave

vector of the optical field. In the case of atomic vapors, γijlm is zero. Applying an

external driving field Ω leads to magneto-chirality via the last term.

1. Experimental setup

The experiment that demonstrates the symmetry breaking effect is performed in

Rubidium vapor (level structure shown in Fig.39a). A schematic diagram of the
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Fig. 38. Experimental setup of magnetically induced chirality

experimental setup is shown in Fig.38. Two external cavity diode lasers (ECDL) are

used in our measurements. Radiation from the first ECDL used as a pump is tuned

to the D1 transition of Rb87 5S1/2(F = 1) − 5P1/2 (F ′ = 2). Radiation from the

second ECDL used as a probe is tuned over the transition. The linearly polarized

laser beams are combined by a polarizing beam-splitter and then sent into the cell

with the atomic rubidium vapor. Both beams are parallel and the diameters of the

beams are the same, 1 mm. The glass cell (l = 7.5 cm) with atomic rubidium vapor at

room temperature (NRb ' 1010 cm−3) is installed in a magnetic shield. A longitudinal

magnetic field is created by a solenoid. The polarization of the pump field is strictly

right circular. The probe field is a superposition of (uncorrelated) fields with left

and right polarizations and equal optical power (the difference is less then 1%). The

polarization of the probe field is not defined at any moment of time, and the probe

field can be considered as an unpolarized light field. We change the time delay (' 3

ns) between field components of the probe field with opposite polarizations, and we

do not observe any influence on the recorded curves.

The typical Doppler-free resonances are shown in Fig. 40. The resonances are

recorded on the transitions of Rb87 for different longitudinal magnetic fields. The

power of the pump beam is 0.6 mW; the estimated Rabi frequency is several γ′s
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Fig. 39. (a) Rb level structure and configuration of laser fields. The pump field is

circularly polarized; probe field is not polarized and can be viewed as a non–

coherent mixture of left and right circular polarized light. (b) A 3-level model

is used in our simulations. Relaxation of population γ is shown by undu-

lating arrows. The simple model also accounts for flight time broadening at

rate γout out of the system from all levels, and population relaxation from

electronic excited states |m = −1〉 and |m = +1〉 to other than |f, m = 0〉
levels of ground state manifold via spontaneous decay. Note that for our sim-

ulation we use a simplified 3-level model; the real D1 line of Rb has three

sets of similar 3-level systems: |m = −2〉 ↔ |f,m = −1〉 ↔ |m = 0〉,
|m = 0〉 ↔ |f, m = +1〉 ↔ |m = 2〉, and the one shown above.
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Fig. 40. Doppler-free resonances on the transition for zero magnetic field B = 0 (a)

and opposite directions of magnetic field B = 77 Gauss (b and c).
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Fig. 41. Relative difference between absorption curves recorded for opposite directions

of magnetic field (B = ±77 Gauss).
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(γ = 2π × 6 MHz). This value of the Rabi frequency satisfies conditions for EIMCA

in the V -scheme. The probe beam power (total) is less than 10% of the pump beam.

The transition is chosen because the effect is most pronounced in this case. In

the linear regime of propagation, the laser light intensity is very small, and the probe

transmission on the transition frequency is near 0.9. Nonlinear variation of absorption

induced by the pump beam is near 30% of linear resonance absorption.

Note that it is difficult to define the real amplitude of Doppler-free resonance

at zero detuning. Doppler free resonance on the transition has an additional narrow

structure in the center. This narrow structure results from two contributions: one

signal is a beat note between the pump and probe fields, and another signal is the

EIT narrow resonance due to ground state coherence. (Beat note at zero frequency

difference and dark resonance overlap).

2. Analysis

The first curve (Fig. 40 curve a) is the resonance on the transition at zero magnetic

field, B = 0. The other two curves (Fig. 40 curve b) and (Fig. 40 curve c) are recorded

for positive and negative longitudinal magnetic field B = 77 Gauss (corresponding

current is I = 1.4 A, magnetic field B is related to current I by B = kI, where

k = 55 G/A). Sharp narrow resonances which are combinations of the dark resonance

and beat note indicate zero frequency difference between the pump and probe fields.

It is to be noted that the pump laser frequency is tuned to the maximum of linear

absorption. One can see that absorption spectra are very different for positive and

negative magnetic field. There is an asymmetry in the absorption coefficient of the

resonant atomic medium induced by a circular polarized pump beam.

In Figure 41, the frequency dependence of absorption difference for opposite

magnetic field is presented (the result of subtraction of curves (b) and (c) shown in
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previous Fig. 40 normalized to linear absorption). To the best of our knowledge,

it is the largest EIMCA which has been experimentally observed. Our finding of

the giant magneto-chiral anisotropy is related to the allowed electric dipole moments

of resonance transitions in atoms. For a fixed laser intensity we also studied the

dependence of the asymmetry on the magnetic field. The experimentally observed

absorption difference as a function of the magnetic field is presented in Fig. 42. One

can see that for small magnetic fields the asymmetry increases for a range of magnetic

fields (where Zeeman splitting is comparable to the resonance width). Once the

magnetic field is strong enough to separate resonances, the asymmetry saturates and

does not depend on the magnitude of the magnetic field. We observed that above

0.6 mW of laser pump power the asymmetry changes very little. At 2.4 mW maximal

symmetry is just near 30%.

As one can see, the observed asymmetry is very strong. The effect originates from

the different interaction between different polarizations of unpolarized laser light and

atomic levels. It can be viewed that one polarization of the probe laser interacts with

a different magnetic level of the excited state than the driving laser, forming the so-

called V -type configuration of atomic levels. For this component the EIT conditions

can be satisfied, and it travels through the medium without absorption. Meanwhile,

the orthogonal polarization of the weak probe field interacts with the same excited

level as the driving field does, so the probe field experience less absorption because of

saturation of the transition by the driving field. These two mechanism are different

and they create substantially different responses for different polarizations, leading

to chirality.

To answer the question of whether the asymmetry observed in the experiment

is close to the maximal theoretical limit, we perform numerical simulations of the
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self-consistent set of density matrix and Maxwell equations given by

∂ρ

∂τ
= − i

~
[H, ρ]− 1

2
(Γρ + ρΓ),

∂Ωij

∂z
= −iηρij(z, τ), (4.4)

where Γ is the decay operator, and ρ is the atomic density matrix; Ωij is the Rabi

frequency of the field frequency ν which is coupled to the transition i ↔ j; ρij and

℘ij are the coherence and the dipole moment between levels i and j correspondingly;

η = νN℘ij/(2ε0c); N is the atomic density; ε0 is the permittivity of the vacuum; c

is the speed of light in vacuum. It is instructive to analyze χ(ω) = ηγ(ω − iγ)/[(γ +

iω)(γ + ikv + iω)+ |Ω|2], where ω = ω+f +gB−ν; γ is the relaxation rates for optical

coherence. χ′′ = ηγ2

|Ω|2 + 3ηγ2ω2

|Ω|4 + 2ηγ2ωkv
|Ω|4 where one can see that it is the spatial dispersion

term kv (Doppler shift due to atomic motion) that leads to magneto-chirality in Rb

vapor.

We have performed theoretical simulations by using the experimental parameters,

and the results of simulations are presented in Fig. 42, where the dependence on

magnetic field is shown. One can see a good agreement between the simulation

and the experiment. The calculated asymmetry is higher for smaller magnetic fields

because Rb atom has more levels (three sets of of V -schemes originated from the

sublevels of the ground state F = 1,m = 0,±1).

There are various applications of the obtained results ranging from optics to

chemistry and biology. For example, the effect of large chirality can be used to create

an optically non-isotropic environment which results in different rates of chemical

photo reactions with different enantiomers.

In summary, we have implemented optically induced chirality in the Rb vapor

cell. The observed anisotropy is huge. It is about 30%, and one has the possibility of

creating a chiral environment for optical control of chemical reactions involving one

type of enanotiomer. Another interesting possibility is to observe an inverse effect to
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Fig. 42. Crosses dots: the laser light induced variation of absorption versus magnetic

field. Solid line: the calculated laser induced relative variation of absorption

versus magnetic field.
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the one demonstrated here.



72

CHAPTER V

CONCLUSION

Let us summarize now the results obtained in the dissertation.

It has been show in the present work that atomic coherence have considerable

impacts on the absorptive and dispersive properties of optical media, one can achieve

Doppler-free high resolution spectroscopy via atomic coherence and quantum interfer-

ence in coherently prepared media. That promises to open a new avenue to manipulate

the optical property of medium quantum mechanically.

The main results in this study can be summarized as follows: In the high resolu-

tion optical spectrum experiment of Rubidium diatomic molecule, we have measured

well-resolved rotational spectral components in rubidium diatomic molecules using

a tunable diode laser. Wavelengths of several rotational components were measured

with good accuracy using a wavemeter. The vibrational structure of the ground state

is well resolved by the laser-induced fluorescence technique. Fluorescence is observed

in the red wing of the band where molecular absorption is small. This indicates

that an optically pumped rubidium molecular laser may be realized in these spectral

regions.

With the knowledge of the transmission and fluorescence spectra, further study

of many coherent effects in Rubidium diatomic molecules, such as EIT, STIRAP and

FAST CARS may be possible.

Based on the spectroscopic knowledge of Rubidium diatomic molecule, , we did

the Raman gain in the backward direction in rubidium diatomic molecules experi-

ment. In this experiment, we succussed to observe the signal of Raman gain in the

backward direction of probe laser. We have performed simulations that support this

interpretation. Note here that what lasing in diatomic molecules via optically pumped
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population inversion in the excited electronic states has previously been demonstrated

in other diatomic molecules.

Cesium diatomic molecule has similar electronic, vibrational and rotational en-

ergy levels with different transition frequency.

The cesium molecular absorption transition lines in the band B1Πu ← X1Σ
+
g can

be considered as frequency references. The sub-Doppler absorption resonances in the

another cesium band A1Πu ← X1Σ+
g are used for frequency stabilization of diode

lasers (1083 nm)16 and Nd:YAG lasers (1064 nm)17. The Nd:YAG laser frequency

stability was reached a minimum 1.310−11 for a measurement time of 20 s17. These

results support our proposal to use the absorption lines in the shorter wavelength

band B1Πu ← X1Σ+
g for frequency stabilization of frequency-doubled communication

lasers in the spectral window around 1550 nm. Also the observation of ground state

optical pumping in cesium molecular vapor shows that it is possible to observe electro-

magnetically induced transparency (EIT) in a Λ levels scheme in diatomic molecules.

Recently EIT was observed in cascade systems in Li2 and K2 molecules. It opens the

way to realize the quantum state memory of light in a molecular gas.

In the electromagnetically induced transparency experiment, we have experimen-

tally observed EIT in cesium molecular gaseous medium.

With the same drive laser frequency, we observed two kinds of transmission

increasing peak, the narrower one is due to Λ type transition, and the broader one is

due to V type transition.

The narrow EIT peak width is much smaller than the natural linewidth of the

linear transition(single photon transition), which also confirms that the two lower

states of Λ type transition belong to the ground states.

The extrapolated curve of the width intersect with y axis at 1.7MHz, subtracting

the two laser width 0.7 MHz, there is still 1 MHz left. Time of flight is around
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6 × 10−6s, it gives width of 0.17MHz. The additional width is probably due to

rotational relaxation of ground states.

From the experiment of electromagnetically induced transparency, we found the

EIT width is less than 2 MHz. The corresponding lifetime of ground state coherence

is greater than 80 nanosecond. In the allowed time region, we have observed the

retrieved pulse in the same direction and with the same polarization of the signal

pulse.

For diatomic molecule as Cesium dimer, at our working temperature, the most

populated rotational quantum number is around 120. We work with circular polarized

light of same frequency, therefore we work on the rotational sublevels of Cesium

molecule.

In the atomic system there are also a lot of interesting effects of quantum optics.

Magnetic induced chirality is a very novel one. we have implemented optically induced

chirality in the Rb vapor cell. The observed anisotropy is huge. It is about 30%, and

one has the possibility of creating a chiral environment for optical control of chemical

reactions involving one type of enanotiomer. Another interesting possibility is to

observe an inverse effect to the one demonstrated here.
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