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ABSTRACT

Time-lapse Seismic Monitoring Of

Subsurface Fluid Flow. (May 2003)

Sung H. Yuh, B.S., Korea University, Korea;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Richard L. Gibson, Jr.

Time-lapse seismic monitoring repeats 3D seismic imaging over a reservoir to

map fluid movements in a reservoir. During hydrocarbon production, the fluid satu-

ration, pressure, and temperature of a reservoir change, thereby altering the acoustic

properties of the reservoir. Time-lapse seismic analysis can illuminate these dynamic

changes of reservoir properties, and therefore has strong potential for improving reser-

voir management. However, the response of a reservoir depends on many parameters

and can be difficult to understand and predict.

Numerical modeling results integrating streamline fluid flow simulation, rock

physics, and ray-Born seismic modeling address some of these problems. Calculations

show that the sensitivity of amplitude changes to porosity depends on the type of

sediment comprising the reservoir. For consolidated rock, high-porosity models show

larger amplitude changes than low porosity models. However, in an unconsolidated

formation, there is less consistent correlation between amplitude and porosity. The

rapid time-lapse modeling schemes also allow statistical analysis of the uncertainty in

seismic response associated with poorly known values of reservoir parameters such as

permeability and dry bulk modulus. Results show that for permeability, the maximum

uncertainties in time-lapse seismic signals occur at the water front, where saturation
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is most variable. For the dry bulk-modulus, the uncertainty is greatest near the

injection well, where the maximum saturation changes occur.

Time-lapse seismic methods can also be applied to monitor CO2 sequestration.

Simulations show that since the acoustic properties of CO2 are very different from

those of hydrocarbons and water, it is possible to image CO2 saturation using seismic

monitoring. Furthermore, amplitude changes after supercritical fluid CO2 injection

are larger than liquid CO2 injection.

Two seismic surveys over Teal South Field, Eugene Island, Gulf of Mexico, were

acquired at different times, and the numerical models provide important insights to

understand changes in the reservoir. 4D seismic differences after cross-equalization

show that amplitude dimming occurs in the northeast and brightening occurs in the

southwest part of the field. Our forward model, which integrates production data,

petrophysicals, and seismic wave propagation simulation, shows that the amplitude

dimming and brightening can be explained by pore pressure drops and gas invasion,

respectively.
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CHAPTER I

INTRODUCTION

Many of the hydrocarbon reserves in the world have already been found and are being

rapidly depleted, while at the same time, the worldwide demand for hydrocarbons

is increasing significantly. To relieve this problem, it is vital to increase the lifetime

of reservoirs and the efficiency of recovery. The recovery rates of most reservoirs are

typically low, about 30 to 40 %, in part, because we do not understand the complexity

of subsurface fluid flow.

3D seismic surveys provide images of subsurface structures that are now essential

tools in the exploration for and production of hydrocarbons, and the cost for these

surveys is rapidly decreasing. In turn, the repetition of these surveys over a period

of time at a single site can monitor drainage pattern of fluid flow in the subsurface

effectively. The formations outside the reservoir generally change only slightly during

production, but reservoir properties such as pore pressure, pore fluid, and tempera-

ture change significantly. The subtraction of two 3D seismic data acquired at different

times, the seismic difference image, can indicate the effects of changes of those reser-

voir properties on seismic data. Such time-lapse (4D) seismic analysis can then be

applied to quantify hydrocarbon drainage patterns and to define secondary recovery

strategies. The ultimate goal of 4D seismic monitoring is to detect fluid migration in

the subsurface, but in practice, there are several difficulties in achieving this task.

Optimal 4D seismic monitoring requires consistent seismic acquisition and pro-

cessing, so that the seismic difference image can represent reservoir property changes,

This dissertation follows the style and format of Geophysics.



2

not acquisition or processing artifacts. However, if a repeated survey has different

acquisition geometry or parameters, the two data sets must be calibrated before com-

puting the seismic difference image. Another problem in 4D seismic monitoring is

that these experiments are not always successful for all reservoirs since fluid migra-

tion cannot be detected under some reservoir conditions. Furthermore, the signals in

the seismic difference image are quite weak compared to the signals in each survey.

Thus, if the signal-to-noise ratio is poor, we might not identify the seismic difference

caused by the changes in reservoir properties. Even though the seismic difference im-

age is clearly identified and the signal-to-noise ratio is good, we still may not clearly

understand which changes in reservoir properties caused these seismic difference. The

time-lapse difference image only shows the combined result of all changes in reservoir

properties.

The physical basis of time-lapse seismic monitoring for a reservoir is closely linked

to rock physics studies (Nur, 1989). Significant research on the seismic properties of

rocks was done in the 1960s and 1970s, and this work became the foundation for the

development of new concepts for 4D seismic monitoring. Most early studies based on

laboratory measurements show that the seismic velocity of porous rocks depends on

porosity, lithology, pressure, temperature, density, pore geometry, and fluid properties

(e.g. Gassmann (1951); Toksöz et al. (1976)). The changes in reservoir properties

during production include pore pressure, temperature, and pore fluids. Reservoir

pore pressure declines near producing wells as fluids are extracted and increases as

gas or fluids are injected, which changes seismic velocity (Nur and Simmons, 1969;

Toksöz et al., 1976). Reservoir temperature during oil production is quite constant,

but injection of cold water into a reservoir decreases temperature in the flooded

area, which increases seismic velocities (Wang et al., 1986). Jenkins et al. (1997)

showed that hot steam injection into an oil reservoir vaporizes pore fluid into steam,
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which decreases the seismic velocity. Changes in fluid contents during production,

such as the substitution of water or gas for oil, change seismic velocities (Gassmann,

1951; Biot, 1956). The acoustic properties and densities of pore fluids depend on the

pressure and temperature conditions in the reservoir (Batzle and Wang, 1992). The

design of a geological model is an important step in 4D seismic modeling since the

simulation results might be quite different depending on the initial geological model.

Comprehensive modeling studies integrating production history, petrophysics, and

seismic modeling have been developed (Lumley, 1995; Biondo et al., 1998; Jack,

1998; Johnston et al., 1998; Yuh et al., 2000).

The repeatability of a 3D seismic survey is also an important issue in seismic

monitoring, since seismic images can be quite different depending on the acquisition

method, such as streamer or ocean bottom cable survey, acquisition direction or

geometry, and processing steps. Thus, many techniques have been developed to

cross-equalize different 3D seismic data sets before computing the difference images

(Eastwood et al., 1999; Rickett and Lumley, 2001). Another area of research in

4D seismic monitoring is the separation of the effects of pressure and saturation

changes on seismic reflection amplitudes, since final 4D images include both effects

(Aly et al., 1999; Landrø, 2001). Since pressure change in a reservoir is quite broad

and smooth, it possibly can obscure the fluid drainage path. One of goals of 4D

seismic monitoring is to find bypassed hydrocarbon with comparison of forward model

results and images from field data; however, there are significant uncertainties in

the simplified reservoir models due to heterogeneity of the earth. Thus, uncertainty

estimation in 4D modeling is also an important issue (Sengupta and Mavko, 1999;

Landrø, 2002; Yuh and Gibson, Jr., 2002). Another difficulty in 4D seismic modeling

is that 3D reservoir volume requires expensive numerical computations.

The primary objective of this thesis is to develop new standard modeling tech-
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niques for time-lapse seismic monitoring; techniques that are computationally efficient

and provide realistic results. Using these techniques, we try to answer several of the

questions we outlined above, including: uncertainties in time-lapse modeling due to

uncertainties in model paramertes; effects of elastic properties of a reservoir on 4D

images; applications of 4D monitoring to envrionmental problem such as CO2 seques-

tration; application of 4D seismic modeling to a real field example.

In chapter II, we discuss the theories involved in time-lapse seismic modeling. The

relationships among fluid flow, rock physics, and seismic response are described. Also,

geostatistical methods are introduced to facilitate modeling heterogeneous reservoirs.

In chapter III, we investigate the sensitivity of time-lapse seismic amplitude to

changes in fluid saturation as a function of porosity with two different bulk-modulus

models, which are consolidated and unconsolidated reservoir models. We also compare

the 4D images computed from two rock physics models.

Chapter IV discusses uncertainty in time-lapse seismic modeling caused by uncer-

tainties in reservoir properties such as dry bulk modulus and permeability. Multiple

realizations of permeability and dry bulk modulus models are generated from one

porosity model using the cloud-transform technique. Synthetic 2D time-lapse seismic

profiles across the reservoir demonstrate variability in the time-lapse signals.

In chapter V, we discuss the application of time-lapse seismic monitoring to CO2

sequestration in a subsurface reservoir. Using our modeling techniques, we compare

the 4D seismic images of CO2 injection models for two different CO2 phases, liquid

and super critical fluid CO2 .

In chapter VI, we apply our modeling techniques to a field example. We develop

a forward model for the 4500 ft reservoir in the Eugene Island, block 354 field (Teal

South), the Gulf of Mexico, based on well logs, production history, a rock physics

model, and a seismic model.
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CHAPTER II

THEORIES

2.1 Overview

In this chapter, we discuss theoretical results that relate changes in elastic properties,

and, therefore, seismic images, to variations in pore fluid contents and rock proper-

ties such as porosity. Combining these results provides the basis for the complete

procedure for forward modeling of time-lapse seismic monitoring. This includes rock-

physics modeling, fluid simulation, and seismic modeling to predict time-lapse seismic

responses caused by reservoir property changes.

2.2 Introduction

The ultimate goal of time-lapse seismic monitoring is to detect changes in reservoir

properties such as pore fluid contents and pressure during production. An accurate

interpretation of the results of time-lapse seismic experiments requires an under-

standing of basic rock physics relating changes in subsurface fluids to variations in

the elastic proprieties of a reservoir. It is also essential to understand which reservoir

properties have the most significant influence on the magnitude of time-lapse seismic

responses. To address these issues and to provide a basis for subsequent chapters,

we summarize the theories involved in time-lapse seismic monitoring in this chapter.

First, to consider the fluid effects on the bulk modulus of porous rock, we apply the

Gassmann equation (Gassmann, 1951). The assumptions, limitations, and advan-

tages of this Gassmann model are also discussed. The dry bulk modulus of the rock
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frame in the Gassmann equation is one of major parameters that controls changes in

saturated-rock seismic velocities. Thus we propose two general models for the dry bulk

modulus representing unconsolidated sands and consolidated sandstones to investi-

gate the sensitivity of amplitude changes to changes in fluid saturation for two broad

classes of realistic reservoir materials. (Eberhart-Phillips et al., 1989; Dvorkin and

Nur, 1996). Next, to mimic heterogeneous reservoir properties, we applied stochastic

methods, a sequential Gaussian simulation and the cloud transform (Srivastava, 1992;

Deutsch and Journel, 1998). Fluid flow in a reservoir is simulated using the stream-

line method, which is an efficient and fast algorithm suitable for stochastic modeling

or reservoir characterization studies (King and Datta-Gupta, 1998). The final step

is the seismic-wave-propagation modeling, which we performed using the ray-Born

method. This method is also a fast method suitable for time-lapse study so that we

can test seismic models having different reservoir properties within a reasonable time

period (Gibson, Jr. et al., 1993).

2.3 Rock physics

2.3.1 The Gassmann equation

The effects of pore fluids on the elastic properties of the rock frame can be computed

using the Gassmann equation (Gassmann, 1951). In the Gassmann model, a rock

is assumed to be a porous skeleton that moves together with the pore fluid. In this

equation, the fluid-saturated bulk modulus of a rock is expressed as

κ = κ∗ +

(
1− κ∗

κs

)2

φ
(

1
κf
− 1

κs

)
+ 1

κs

(
1− κ∗

κs

) , (2.1)
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where κ∗ is dry bulk modulus, κs is mineral bulk modulus, κf is fluid bulk modulus,

and φ is porosity.

The derivation of this Gassmann equation assumes that the rock is subject to

the following conditions (Gassmann, 1951; Cheng, 1978; Mavko et al., 1998):

• Low frequency, such that induced pore pressure is equilibrated throughout the

pore space.

• No fluid enters or leaves the Gassmann model, which means pore volume changes

are equal to fluid volume changes under pressure increments.

• The pores are interconnected to each other and pore pressure is communicated

throughout the rock volume.

• The theory implicitly assumes that dry- and fluid- saturated shear moduli are

same.

Because of the above conditions, the Gassmann equation cannot be applied directly

to consider the effects of pressure dependency, pore geometry, or heterogeneous ma-

trix.To overcome some of these limitations, we can apply following solutions:

• If the matrix of rocks is composed of multiple minerals such as quartz and

feldspar, we can apply the average moduli to compute effective matrix bulk

modulus.

• The Gassmann equation does not consider the dependence of effective bulk

modulus on pore geometry, even though this geometry may affect the dry frame

bulk modulus. To consider pore geometry, we can apply theoretical models to

compute effective dry bulk modulus, κ∗, of different pore geometries (Kuster

and Toksöz, 1974; Cheng, 1978).
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• To consider pressure dependence, we can apply empirical relations of dry bulk

modulus versus pressure (Eberhart-Phillips et al., 1989) or theoretical models

(Cheng and Toksöz, 1979; Dvorkin and Nur, 1996).

Furthermore, when the pore fluid is a mixture of two different fluids, Wood’s equation

can compute the effective modulus:

1

κf

=
Sl

κliquid

+
1− Sl

κgas

(2.2)

where κliquid and κgas are bulk moduli of liquid and gas, respectively, and Sl is liquid

saturation.

2.3.2 Unconsolidated rock model

The effective bulk and shear moduli of a random, dense pack of identical spheres are

expressed as

KHM =

(
n2(1− φ0)

2G2

18π2(1− ν)2
P

)1/3

,

GHM =
5− 4ν

5(2− ν)

(
3n2(1− φ0)

2G2

2π2(1− ν)2
P

)1/3

,

(2.3)

where n is average number of contacts per grain, G is grain shear modulus, φ0 is

critical porosity, P is effective pressure, and ν is the Poisson’s ratio (Mindlin, 1949).

This equations can be applied to precompacted granular rocks with the assumption

that there is no slip at sphere contact (Mavko et al., 1998). Critical porosity, φ0, is

the limit of high porosity, where rock behaves like a suspension beyond this point

(Nur et al., 1995).

To generalize the above equation for different porosity values, Dvorkin and

Nur (1996) developed the modified Hashin-Shtrikman lower bound (Hashin and Shtrik-



9

man, 1963)

Keff =

(
φ/φ0

KHM + 4
3
GHM

+
1− φ/φ0

K + 4
3
GHM

)−1

− 4

3
GHM ,

Geff =

[
φ/φ0

GHM + GHM

6

(
9KHM+8GHM

KHM+2GHM

)
+

1− φ/φ0

G + GHM

6

(
9KHM+8GHM

KHM+2GHM

)]−1

− GHM

6

(
9KHM + 8GHM

KHM + 2GHM

)
,

(2.4)

where K is grain bulk modulus and φ is porosity. Figure 2.1 is an example of dry

bulk modulus versus porosity as a function of pressure, based on equations 2.3 and

2.4, showing typical, nonlinear trends for unconsolidated sands.

Th advantages of the above equations are that the effective moduli are expressed

as functions of pressure and porosity, which is quite suitable for rock-physics mod-

eling of time-lapse seismic monitoring. This model also matches well with measured

velocities of unconsolidated sands (Blangy et al., 1993).

2.3.3 Consolidated rock model

Effective-medium theories have been studied to estimate elastic properties of com-

posite porous medium. One approach is to use the bounding methods that limit the

upper and lower bounds of elastic moduli when properties and volume fractions of each

component are known (Reuss, 1929; Hashin and Shtrikman, 1963). Other approaches

consider the pore geometry and spatial distributions of the components based on

first order scattering theories (Kuster and Toksöz, 1974). Self consistent approxima-

tions (Budiansky, 1965) extend Kuster and Toksöz’s model to higher concentrations

of inclusions by replacing the background medium with the effective medium using a
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Fig. 2.1. Dry bulk modulus versus porosity for various effective pressure based on
equations 2.3 and 2.4 (modified from Dvorkin and Nur (1996)).

recursive method.

In our reservoir modeling for consolidated sandstone, we employ empirical equa-

tions of P - and S-wave velocities in terms of porosity, clay content, and effective

pressure (Eberhart-Phillips et al., 1989). The advantages of this empirical model are

that information about the pore geometry is not required and effects of clay content

on velocities can be considered. Han et al. (1986) measured ultrasonic P - and S-wave

velocities of water-saturated sandstones over an effective pressure range of 1 to 49

MPa. The confining pressure varied from 1 to 80 MPa with the pore-pressure range

of 0 to 40 MPa. The clay content was measured by point counting. Eberhart-Phillips

et al. (1989) developed the empirical equations based on Han et al.’s measurements.

P - and S-wave velocities can be predicted using (Eberhart-Phillips et al., 1989)

Vp = 5.77− 6.94φ− 1.73
√

C + 0.446(Pe − e−16.7Pe)

Vs = 3.70− 4.94φ− 1.57
√

C + 0.361(Pe − e−16.7Pe),

(2.5)
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where φ is porosity, C is clay content, and Pe is effective pressure. Each of the

coefficients in these equations was determined by regression. To compute changes

in dry-frame bulk modulus, κ∗, in time-lapse seismic modeling, we first solved the

above equations for water-saturated bulk modulus and shear modulus, and applied

the Gassmann equation to compute the dry bulk modulus (Gassmann, 1951). Then,

the elastic moduli of the reservoir model can be expressed in terms of porosity and

pressure. By using these equations to estimate κ∗ at arbitrary values of pressure

and porosity, it is straightforward to estimate velocities in saturated rock using the

Gassmann equation.

2.4 Sequential Gaussian simulation

The stochastic modeling method has two major advantages in reservoir modeling:

First, it can consider heterogeneity of the earth. In most reservoir modeling, the

available information is sparse well logs. Traditional method for modeling is homoge-

neous layer cake stratigraphy, lithologic units that are continuous to next well or pinch

out. However, the stochastic technique can generate a realistic level of heterogeneity.

Thus it is closer to real earth than traditional, simplified, smooth reservoir model

(Srivastava, 1994). Second, the stochastic method can generate multiple equally-

probable models that honor all the hard data. Thus, it is quite useful for estimating

uncertainties in our reservoir models (Deutsch and Journel, 1994). In our stochastic

modeling, we applied sequential simulation, which recursively computes a value at

random nodes based on the original data plus previously simulated values (Deutsch

and Journel, 1998). Specifically, we applied sequential Gaussian simulation for our

porosity modeling which assumes that the probability distribution of the data follows

Gaussian distribution. The steps of sequential Gaussian simulation are as follows
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Fig. 2.2. Sequential Gaussian simulation. (a) Original data. (b) Choose random
node. (c) Compute local probability distribution using simple kriging. (d) Draw a
new value from the lcpd (modified from Srivastava, 1994).

(Srivastava, 1994; Deutsch and Journel, 1998) (Figure 2.2):

• Determine the node to be simulated at random.

• Determine the local conditional probability distribution (lcpd) at that location

using a simple kriging method.

• Draw a simulated value from the lcpd.

• Add the simulated value to the conditioning data.

• Repeat the above steps until all nodes are simulated.
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Fig. 2.3. Cross plot of permeability versus porosity. Core data are obtained from the
Gulf Coast Field (modified from Timur, 1968).

2.5 Cloud transform

The cloud transform is a probability-field simulation for estimating an unknown reser-

voir property based on another known property (Srivastava, 1992). For example, it

can estimate permeability for a reservoir model based on a known porosity model.

The advantages of the cloud-transform approach are that it honors the relationship

between properties such as porosity and permeability, and that it preserves the hetero-

geneity of the property (Aly et al., 1999). It also honors the spatial continuity of the

reservoir property (Srivastava, 1992). For example, many laboratory measurements

show that the permeability-porosity relationship has a log-linear trend (Figure 2.3)

(Timur, 1968), but conventional regression methods estimating a linear function fit-

ting the data can not preserve the variability (the scatter) of the data.
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The steps involved in a cloud transform to generate permeability from a porosity

map are as follows (Srivastava, 1992; Aly et al., 1999) (Figure 2.4):

• The first step in the cloud transform is to generate a scatter plot of poros-

ity/permeability based on core measurements. In our modeling, we generated a

synthetic cross plot using a Gaussian random function and a log-linear function

(Figure 2.4a).

• Divide the entire range of porosity into subgroups and compute the local cumu-

lative distribution function of each subgroup (Figure 2.4a and b). If a subgroup

is too small, output realization may be too heterogeneous and if it is too large,

output realization may be too smooth.

• Simulate an unconditional probability field based on the same variogram models

with porosity. In our modeling, we used sequential Gaussian simulation to

generate the probability field (Figure 2.4c).

• Pick a cumulative probability value from the unconditional probability field and

estimate the permeability value using the CDF curve (Figure 2.4b).

An example of permeability field computed using cloud transform is shown in

Figure 2.5. Both fields have similar anisotropic trends in the direction of north-east

and south-west. The high-porosity region correlates well with the high-permeability

region, but details of both fields are different.

If we repeat the above steps using multiple realizations of unconditional prob-

ability fields, we can generate multiple realizations of permeability models that are

equally probable. Thus, we can apply this technique to estimate the uncertainty

analysis in reservoir properties. For example, dry bulk and shear moduli are inversely

proportional to porosity with large scatter, much like porosity/permeability, because
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of earth heterogeneity (Han et al., 1986) (Figure 2.6). Thus we can also apply the

cloud transform technique to simulate multiple realizations of elastic moduli to esti-

mate the uncertainties in time-lapse response.

2.6 Streamline-based 3D reservoir simulation

The streamline method is applied to simulate fluid flow in a reservoir. The advan-

tages of this method compared to conventional, finite-difference schemes are its fast

computation speed and relatively small numerical diffusion. Thus this method is

quite appropriate for large size, heterogeneous, multiwell, and multiphase simulations

(King and Datta-Gupta, 1998; Crane and Blunt, 1999).

The procedure for streamline simulation involves: (1) solving for the pressure

field based on petrophysical properties, (2) tracing streamlines based on the velocity

field, (3) computing traveltime of tracer along streamlines, (4) transforming coordi-

nates from 3D physical space to 1D traveltime coordinate, (5) Solving 1D saturation

equation along the streamlines, (6) updating the pressure field occasionally (Yoon,

2000).

In this study we used the S3D streamline simulator developed at Texas A&M

University (Yoon, 2000). The S3D simulator assumes two-phase incompressible flow

without considering gravitational effects. Examples of fluid-simulation results using

S3D are shown in Figure 2.7. We can notice the high density of streamlines located

in the high-permeability zone.

There exists an analogy between the migration of a water front and wave prop-

agation. The streamline time of flight equations have the same form as the eikonal

equations in ray theory (Vasco et al., 1999). Ray theory is a high-frequency, asymp-

totic solution of the wave equation, which assumes that the medium properties vary
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Fig. 2.7. Example of streamline simulation. (a) Permeability field. (b) Streamlines.
(c) Water saturation. An injector is located on the left side and a producer is located
on the right side (modified from Yoon, 2000).



20

smoothly (Červený, 2001). Likewise, the streamline simulation assumes velocity field

changes smoothly, even though this can be overcome by updating the streamlines.

2.7 Ray-Born seismic modeling

Synthetic seismograms for use in modeling the time-lapse seismic image of a reservoir

are computed using ray-Born algorithm (Beydoun and Mendes, 1989; Gibson, Jr. and

Ben-Menahem, 1991; Gibson, Jr. et al., 1993). This method is a hybrid method com-

bining ray theory and the Born approximation. The Born approximation is a linear

approximation for the scattered wavefield generated by localized perturbations of elas-

tic properties and densities in a given background medium (Miles, 1960; Hudson and

Heritage, 1981; Wu and Aki, 1985; Gibson, Jr. and Ben-Menahem, 1991). The scat-

tered displacements in heterogeneous and anisotropic media can be expressed in terms

of the Green’s tensor and displacements in the background medium (Gibson, Jr. and

Ben-Menahem, 1991). To compute the Green’s tensors in the background medium,

dynamic raytracing with paraxial approximation is applied, assuming a smooth back-

ground medium (Gibson, Jr. et al., 1993; Červený, 2001). The perturbed region

is discretized and an individual cell acts as secondary source. Perturbations of the

density and elastic constants act as a single force source and moment tensor, respec-

tively (Wu and Aki, 1985). The scattered wavefield is computed by summing the

contribution of each scattering element. The conditions in ray-Born methods are

that the background is a smoothly varying medium to which we apply the ray trac-

ing to compute the Green’s tensor; and that perturbations to the elastic constants

and density should be relatively weak to validate the first-order Born approximation.

Also, the perturbed region must be small since the wave propagation only occurs in

the background (Beydoun and Tarantola, 1988; Gibson, Jr. et al., 2000).
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2.8 Integration of time-lapse seismic monitoring theories

Modeling of time-lapse seismic monitoring is the integration of the theories described

in the previous sections. The first step in our modeling starts with creating a het-

erogeneous porosity field using sequential Gaussian simulation and well logs. Then,

the permeability field is computed using the cloud transform based on the porosity

field. Based on permeability and porosity, we perform streamline fluid simulation to

compute fluid saturation and pore-pressure distribution over a certain time period.

The next step is rock-physics modeling. Based on theoretical rock-physics models or

empirical equations of seismic velocities, we can derive the elastic moduli in terms

of porosity and pressure. The final step of time-lapse seismic modeling is computing

synthetic seismograms for different times using ray-Born seismic modeling.

2.9 Conclusions

We have discussed theories in rock physics for fluid substitution and elastic properties.

Based on these theories we have linked the fluid flow in a reservoir to time-lapse seismic

responses. We have also showed the stochastic modeling methods to consider the

heterogeneity of the earth and uncertainty analysis in time-lapse seismic monitoring.
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CHAPTER III

SENSITIVITY ANALYSIS OF TIME-LAPSE SEISMIC AMPLITUDE

SIGNALS TO CHANGES IN FLUID SATURATION

3.1 Introduction

Time-lapse seismic monitoring is a repeated application of 3D seismic surveys over

a period of time to estimate changes in reservoir properties such as fluid contents

and pore pressure during production. However, this technique is not always success-

ful because of unfavorable reservoir conditions or changing survey procedures, even

though processing methods often assume perfect seismic repeatability (Lumley et al.,

1997). Thus it is important to understand which physical conditions of a reservoir

control the time-lapse seismic response to determine when the method is likely to be

successful prior to expending the effort to acquire data.

Lumley et al. (1997) developed a set of criteria to quantify success rate of 4D

seismic projects. The major petrophysical properties affecting 4D images are effective

pressure, dry bulk modulus, porosity, fluid saturation change, and fluid properties.

For example, if the rock frame is quite soft, as would be the case for unconsolidated

sands, the saturated bulk modulus is quite sensitive to fluid compressibility. However,

since reservoir parameters are also related to each other, it is difficult to interpret final

results of time-lapse seismic data quantitatively (Wang, 1997).

We have tested a number of different 4D seismic models having a variety of

reservoir properties using our fast modeling techniques and have found some results

of 4D seismic images cannot be explained by these results of previously published

papers. High porosity rock is believed to be more favorable to 4D seismic than
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low porosity rocks, since a larger amount of fluid is replaced for high porosity rock

than low porosity rock (Lumley et al., 1997). This in turn causes greater changes in

elastic properties. However, our modeling results are not fully consistent with this

explanation. When we model the heterogeneous reservoir having elastic moduli for

unconsolidated rock, the amplitude changes after fluid substitution show that high

porosity region shows smaller amplitude changes than lower porosity region. This

means that there is no unique rule for the relation between amplitude change in time-

lapse seismic monitoring and rock porosity, even though most sedimentary rocks show

lower velocity at higher porosities and higher velocity at lower porosities. Thus we

need to understand the effects of porosity and elastic properties of a reservoir on

time-lapse amplitude. To solve this problem, we used Mavko and Mukerji (1995)’s

method to explain the sensitivity of bulk modulus to changes in fluid saturation, which

is basically a graphical interpretation of Gassmann equation. In this method they

derived another expression of Gassmann equation using pore-space compressibility

and they found that increasing pore-space compressibility increases the sensitivity of

bulk modulus to changes in pore fluids at constant porosity (Mavko and Mukerji,

1995).

In this chapter, we expand their analysis further to understand the sensitivity

of bulk modulus to changes in pore fluid as a function of porosity for two different

reservoir models, corresponding to consolidated and unconsolidated formations. In

the first part, we summarize the definition of pore-space compressibility and present

graphical results to facilitate an analysis of the Gassmann equation. Then, we apply

this method to two reservoir models.
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3.2 Pore-space compressibility

Pore-space compressibility is the rock-physics parameter defined by the ratio of change

in pore volume to pressure variation in a porous medium. This property directly links

pore fluid changes to effective bulk moduli, so it helps to understand the Gassmann

equation and amplitude changes in time-lapse seismic monitoring. The compressibil-

ity of the dry rock frame at constant pore pressure can be expressed as (Walsh, 1965;

Zimmerman, 1991)

1

Kd

=
1

K0

+
φ

Kφ

, (3.1)

where K0 is mineral bulk modulus, K−1
φ is effective dry rock pore-space compressibil-

ity, and φ is porosity. K−1
φ is defined as

1

Kφ

=
1

νp

∂νp

∂σ

∣∣∣∣
p

, (3.2)

where νp is pore volume, σ is external hydrostatic stress, and p is pore pressure.

Note that K−1
φ is not fluid compressibility. In equation 3.1, increasing the pore-

space compressibility, K−1
φ , decreases the rock frame dry bulk modulus, Kd, which

causes a decrease in seismic velocity. The saturated rock compressibility, K−1
s , can

be expressed as (Mavko and Mukerji, 1995)

1

Ks

=
1

K0

+
φ

K̃φ

, (3.3)

where

K̃φ = Kφ +
K0Kf

K0 −Kf

, (3.4)

where Kf is fluid bulk modulus and Kφ is the dry pore space stiffness in equation 3.1.

The above equations assume there is no fluid-induced pressure gradient, which is the

same as the low frequency assumption in the Gassmann equation. The difference

between equation 3.1 and 3.3 is that the term K̃φ in equation 3.3 includes the fluid
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term

F = (K0Kf )/(K0 −Kf ). (3.5)

Values of the normalized saturated bulk modulus, Ks/K0, computed as a function

of porosity using equation 3.3, are shown for various values of K̃φ/K0 in Figure 3.1.

In Figure 3.1, each curve corresponds to a single value of saturated pore-space com-

pressibility, thus displaying changes in rock properties for a particular pore fluid, if

the grain and pore space moduli are held constant. Thus, if Kf = 0, the vertical

axis in Figure 3.1 represents the normalized dry bulk modulus, and if Kf 6= 0, it

represents the normalized saturated bulk modulus. These contours fall between the

Voigt and Reuss upper and lower bounds if the K value used in the ratio K/K0 (the

value on the vertical axis) represents dry-rock bulk modulus (Mavko et al., 1998).

The value of K̃φ depends on the pore space, fluid and solid grain moduli, so to better

compare the predicted variations in properties to real media, we superimposed the
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values computed using three different dry bulk modulus models on the normalized

pore-space compressibility contours. The blue curve in Figure 3.1 is an empirical

model of dry bulk modulus obtained from ultrasonic velocities of a variety of water

saturated, consolidated sandstones (Eberhart-Phillips et al., 1989). The red curve in

Figure 3.1 shows the dry bulk modulus values computed from a model based on Hertz-

Mindlin contact theory with the modified Hashin-Shtrikman lower bound (Dvorkin

and Nur, 1996), representing unconsolidated sands. The green curve in Figure 3.1

is empirical model of dry bulk modulus obtained from P - and S - wave velocities of

freshly packed sands (Gardner and Harris, 1968). In the consolidated model, the

bulk modulus shows a relatively high, steep gradient and almost linear trend with

respect to porosity. In contrast, the unconsolidated model (Dvorkin and Nur, 1996)

shows relatively smaller values and a nonlinear trend with respect to porosity. These

characteristics are typical for most unconsolidated sands and consolidated sandstones

(Blangy et al., 1993). Both reservoir models, the red and blue curves in Figure 3.1,

cross contours of constant K̃φ, which means that the pore-space compressibility typi-

cally decreases (softer rock) with increasing porosity. The Gardner and Harris (1968)

results, based on comparatively old measurements, display different trend than Hertz-

Mindlin model prediction, with a gradual, linear reduction in K/K0 with porosity.

Though different from the larger number of measurements presented by Blangy et

al. (1993), the values still emphasize the different behavior of unconsolidated sands.
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3.3 Fluid substitution

The Gassmann equation predicts that the bulk modulus is a function of changes in

fluid saturation via changes in the fluid modulus Kf (Gassmann, 1951):

K = K∗ +

(
1− K∗

Ks

)2

φ
(

1
Kf
− 1

Ks

)
+ 1

Ks

(
1− K∗

Ks

) , (3.6)

where κ∗ is dry bulk modulus, κs is mineral bulk modulus, κf is fluid bulk modulus,

and φ is porosity. The above equation can also be derived from equations 3.1, 3.3,

and 3.4 by eliminating the Kφ term. Thus, the effect of fluids on the effective bulk

modulus can be estimated from both equations. Mavko and Mukerji (1995) described

a graphical technique to measure changes in effective bulk modulus by changes in fluid

saturation using the following steps (Figure 3.1):

1. Point A in Figure 3.1 is the known-saturated bulk modulus with fluid 1. Read

the value of pore-space compressibility on the contour corresponding to point

A.

2. Compute the fluid term, F, in equation 3.5 for both the original fluid 1 and

the new fluid 2, and then compute the changes in the fluid term by subtracting

Ffluid1 from Ffluid2.

3. From the original point A of the saturated bulk modulus with fluid 1, move

vertically up or down a number of contours corresponding to ∆F computed in

the previous step, and then read the new saturated bulk modulus on the left

axis (e.g., move up from point A to B in Figure 3.1).

This graphical technique assumes no dry bulk modulus change during fluid substi-

tution, or, in other words, no pressure change. This method can be applied to any
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kind of fluid substitution such as from oil to water or even from dry to any fluid. In

Figure 3.1, at a fixed porosity value, a contour interval of K̃φ/K0 is wider for low

bulk modulus (point A) and tighter for high bulk modulus (point C). In other words,

the sensitivity of bulk modulus to changes in fluid modulus is larger at point A than

at point B with the same amount of change in fluid modulus.

Sensitivities of bulk modulus to changes in fluid saturation for consolidated

(Eberhart-Phillips et al., 1989) and unconsolidated (Dvorkin and Nur, 1996; Gard-

ner and Harris, 1968) reservoir models are computed in Figure 3.2 using Gassmann

equation. The vertical axis in Figure 3.2 represents changes in normalized, effective

bulk modulus, ∆K/K0, when pore fluid is replaced from oil to water. Thus, these

curves represent the sensitivity of bulk modulus to changes in fluid saturation as a

function of porosity. The bulk moduli of oil and brine are assumed to be 1.8 and 3.9

GPa, respectively. One of the unconsolidated models, the dashed curve in Figure 3.2,

shows an almost linear relationship between porosity and change in bulk modulus

for porosiy > 0.08. The other unconsolidated model, the doted curve in Figure 3.2,

shows that changes in bulk modulus, ∆K/K0, increase with increasing porosity up to

porosity values of about 0.14, and decrease with increasing porosity up to a porosity

of 0.4. Thus second model is probably more realistic, as it displays behavior similar

to a larger number of measurements (Blangy et al., 1993). Thus there is no direct

correlation between sensitivity of bulk modulus to changes in fluid saturation and

porosity. However, the consolidated model, solid curve in Figure 3.2, shows that

the sensitivity of bulk modulus to changes in fluid saturation increases constantly

with increasing porosity. Another observation is that the unconsolidated rock models

shows much higher ∆K/K0 than the consolidated rock model over the entire porosity

range, which is quite obvious since softer rock is more sensitive to the changes in fluid

saturation.
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Fig. 3.2. Changes in normalized saturated bulk modulus versus porosity when pore
fluid is replaced from oil to water. Gassmann equation is applied to compute these
curves. Dry bulk modulus in Gassmann equation for each curve is computed from
Gardner and Harris (1968) model (dashed curve), Dvorkin and Nur (1996) model
(dotted curve), and Eberhart-Phillips et al. (1989) model (solid curve).

3.4 Examples

We tested two time-lapse seismic models based on the models of unconsolidated and

consolidated formations (Dvorkin and Nur model, and Eberhalt-Phillips et al. model,

respectively) to test the sensitivity of 4D amplitude to changes in fluid saturation.

Our reservoir model has a horizontal reservoir layer, and the overburden layer

has homogeneous velocity and density. The model dimensions are 2000 x 2000 x 10 m

and it is discretized to a block with size of 10 x 10 x 10 m. A heterogeneous porosity

model is created using sequential Gaussian simulation (Deutsch and Journel, 1998).

The porosity ranges from 0.05 to 0.3 (Figure 3.3a). We assumed the reservoir is ini-

tially saturated with 100% oil. To estimate only the effects of fluid substitution on

the 4D seismic image, we assumed the pore fluid is replaced by 100% brine and no

pressure changes. To apply fluid substitution calculations, the Gassmann equation
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is applied (equation 3.6). Two models for dry bulk modulus, K∗, in equation 3.6,

are consolidated sandstone (Eberhart-Phillips et al., 1989) and unconsolidated sands

(Dvorkin and Nur, 1996). The changes in saturated bulk modulus after fluid substi-

tution for both models are computed by subtracting the oil-saturated bulk modulus

from brine-saturated bulk modulus (Figure 3.3b and c). In Figure 3.3b and c, the un-

consolidated model shows greater changes in saturated bulk modulus with an average

of 4 GPa than changes in the consolidated model with an average of 1.9 GPa, since

again soft rock is more sensitive to changes in fluid saturation. The highest porosity

region circled in Figure 3.3a shows the maximum change in saturated bulk modu-

lus for the consolidated model (Figure 3.3c) but not for the unconsolidated model

(Figure 3.3b). This is because in the consolidated model, bulk modulus has greater

sensitivity to changes in pore fluids at higher porosities, but the unconsolidated model

doesn’t show consistent trends (Figure 3.2).

Elastic moduli computed from the above reservoir models are utilized in the

seismic modeling. Synthetic seismograms are computed using the ray-Born algorithm

to model the time-lapse seismic image of the reservoir (Beydoun and Mendes, 1989;

Gibson, Jr. et al., 1993). This method was developed to estimate the wave fields

scattered by the small perturbation in properties of an elastic medium. In our seismic

models, we simulated zero offset sources and receivers with 20 m spacing. Thus there

are 101 by 101 sources and receivers covering the reservoir. After computing the

synthetic seismograms, a conventional phase-shift migration is applied.

Figure 3.4b and c show amplitude changes from the consolidated and unconsoli-

dated models, respectively. These results are quite consistent with the bulk modulus

changes in Figure 3.3. The consolidated model (Figure 3.4c) shows a stronger corre-

lation with porosity (Figure 3.4a) than the unconsolidated model (Figure 3.4b). The

average amplitude changes for the unconsolidated model is about 18%, which is three
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times larger than the consolidated model.

3.5 Conclusion

In this chapter, we analyzed the sensitivity of effective bulk modulus to changes

in fluid saturation for different reservoir models. The consolidated reservoir model

shows that high porosity shows high sensitivity of bulk modulus to changes in pore

fluids, but the unconsolidated reservoir model shows little relation between porosity

and sensitivity of bulk modulus to changes in pore fluids. Thus we should be more

cautious when we try to relate 4D seismic response and porosity for the unconsolidated

sand reservoir.

Overall 4D seismic responses are larger for the unconsolidated reservoir model

than for the consolidated model, since soft rock is more sensitive to changes in fluid

saturation.
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CHAPTER IV

UNCERTAINTY ANALYSIS IN TIME-LAPSE SEISMIC MODELING

4.1 Introduction

Time-lapse seismic monitoring repeats 3D seismic surveys in a particular location to

estimate the changes in reservoir properties during production. The general goal is

often to map the changes in reservoir fluid or pore pressure to locate bypassed oil

in selecting infill drilling locations. However, 4D seismic images depend on many

reservoir properties such as the elastic moduli of rock, fluid properties, and porosity,

although most of these can only be measured from well logs or core measurements.

Thus, there is significant, poorly constrained, spatial variability in property values

between wells, and this causes uncertainties in the final 4D seismic image. Previous

work has measured these uncertainties in several ways. For example, Lankston (1998)

computed the possible range of reflection coefficient change using the Monte Carlo

simulation method. He defined the range of each reservoir parameter and determined

the value for each parameter randomly from related equations. The parameters he

tested are oil gravity, GOR, water saturation, and porosity. Lumley and Behrens

(1998) showed examples of different 4D seismic images with multiple realizations of

rock properties. In this chapter, we extended these results to quantify directly the

uncertainties in 4D seismic images associated with permeability, the major property

that controls fluid flow, and the dry bulk modulus of a reservoir using stochastic

modeling.

To do so, we generated 27 equiprobable realizations of permeability based on

one porosity model using cloud transforms and sequential Gaussian simulation (SGS)
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methods (Aly et al., 1999). Then we applied a streamline fluid-flow simulator for the

27 permeability models, providing the fluid saturations and pressure distributions.

Based on these results, we designed a rock-physics model and computed 2D synthetic

seismograms for the 3D flat reservoir model using a ray-Born technique (Beydoun

and Mendes, 1989; Gibson, Jr. et al., 1993). Finally, we generated 27 realizations

of dry bulk modulus and then computed the synthetic seismogram to estimate the

uncertainties in time-lapse seismic amplitude.

4.2 Analysis of permeability uncertainties

4.2.1 Permeability realizations

Many laboratory measurements show that the permeability-porosity relationship is

nearly a log-linear trend, although with much scatter (Nelson, 1994) (Figure 4.1).

The slope, intercept, and degree of scatter in Figure 4.1 depend on grain size, sorting,

diagenetic history, and compaction history (Nelson, 1994; Berg, 1970). We applied

cloud transforms to generate multiple realizations of a permeability model based on

one reference porosity model. The cloud transform utilizes a probability-field simula-

tion to estimate unknown reservoir property based on the known property (Srivastava,

1992; Aly et al., 1999). Our porosity model was generated using sequential Gaussian

simulation. (Figure 4.2). Two horizontal variogram models with ranges of 600 m and

300 m, respectively, in orthogonal directions are applied to the sequential Gaussian

simulation. The principal axes are rotated to a NE-SW direction to simulate the

effects of statistical anisotropy. Porosity ranges from 0.15 to 0.33, with mean value of

0.23. The geometry of the model is 2000 x 2000 x 10 m, and it is discretized with 10

x 10 x 10 m blocks. It is a horizontally flat reservoir model. The depth of the reser-

voir model is 2 km. The 27 realizations of permeability models are generated using
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the cloud transform (Srivastava, 1992; Aly et al., 1999). The permeability-porosity

model used in the cloud transform is illustrated in Figure 4.3, which shows a sample

realization of permeability values as a function of porosity. The log-linear equation

used for this model is

log κ = 16.865φ− 2.693, (4.1)

where κ and φ are permeability and porosity, respectively. The coefficients in this

equation are typical values for the poorly consolidated and high porosity sandstones

in the Gulf of Mexico (Timur, 1968). Some examples of unconditional cumulative

distribution functions (CDF) used for the unconditional probability field in the cloud

transform are shown in Figure 4.4 (see details in chapter 2.5). These CDF models

have the same variogram models and anisotropy parameters used in the porosity
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Fig. 4.3. Cross plot of permeability versus porosity used for cloud transform.

map in Figure 4.2. The permeability realizations in Figure 4.5 are equally probable

models, even though they do not have the same permeability values. Permeability

ranges from 0.1 to 4000 mD, with a mean value of 150 mD.

4.2.2 Streamline simulation for fluid flow

For the fluid-flow simulation, we used a streamline simulator, which provides very

rapid modeling of large-scale, 3D reservoirs (King and Datta-Gupta, 1998). This

method is an approximate solution analogous to ray theory in wave propagation, since

the transport equation can be expressed in the form of the eikonal equation (Vasco et

al., 1999). The reservoir model is assumed to be initially saturated with 80% light oil

and 20% brine. Brine was injected at the center of the model, and the 7 production

wells located around the injection well are marked with dots in Figs. 4.6 and 4.7(b).

Water flooding was simulated for 9-years for each of the 27 permeability models using

the streamline flow simulator. The injection rate was constant at 800 STB/day, and
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production wells were pressure-constrained to 3000 psi.

Fluid simulation results are shown in Figure 4.6. Permeability was the only dif-

ferent parameter in all 27 models. Water breakthrough occurred at the upper-left

production wells only for model 1 and 22 in Figure 4.6a and d. Maximum pore

pressures for permeability model 2 and 22 are also different, 26 and 31 MPa, respec-

tively, because we simulated a constant injection rate rather than constant pressure

at the injection well (Figure 4.6b and d). The mean and standard deviation of

brine saturation and effective pressure from the 27 fluid-flow simulations are shown

in Figure 4.7. The brine-swept region in Figure 4.7a shows a NE-SW trend since the

high porosity region is aligned in this direction. The high variance of brine saturation

occurs at the brine front, which is the boundary between brine and oil, but the region

close to the injection well shows approximately zero variance. Thus, we can expect

a high uncertainty of 4D response around the brine front region (Figure 4.7b). The

average minimum effective pressure is about 17 MPa at the center of the reservoir

in Figure 4.7c. The variance of effective pressure in Figure 4.7d is maximum at the

injection well because the constant injection rate produces different pore pressures in

the injection region depending on the permeability.

4.2.3 Rock-physics modeling

In addition to these 27 results of the fluid-flow simulations, we also generated sev-

eral realizations of important rock properties. The Gassmann equation then allowed

us to consider the resulting effects of fluids on the elastic property of the reservoir

(Gassmann, 1951). The dry bulk and shear moduli were computed, based on em-

pirical relations predicting elastic properties of consolidated sandstone formations

(Eberhart-Phillips et al., 1989). The fluid properties are also computed from empiri-

cal equations (Batzle and Wang, 1992).
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In the water-flood simulation, the effective pressure decreases because of the brine

injection, and fluid modulus and fluid density increase because of the substitution

of brine for light oil. To illustrate the expected behavior, the P -wave velocity was

computed as a function of effective pressure for 20% and 75% brine-saturation cases in

Figure 4.8. Porosity is assumed to be 0.2. The arrows in Figure 4.8 show one possible

scenario of water flooding. The initial Vp at 25 MPa and 20% brine saturation begins

to decrease as effective pressure decreases, but it also increases as brine replaces oil.

Both processes are combined, and either effect might be greater than the other one

depending on the reservoir location and the actual pressure and saturation conditions.

The ∆Vp in Figure 4.8 represents the final velocity change after water flooding. Thus,

if the pressure effect is dominant in some region, the velocity decreases after brine

injection, and if the saturation effect is dominant, the velocity increases after water

brine injection.



46

4.2.4 Seismic modeling

The elastic properties of the reservoir model computed in the previous section provide

the basis for seismic modeling using a ray-Born technique to model the time-lapse

seismic image of the reservoir. This method estimates the wave fields scattered by

small perturbations in properties of an elastic medium (Beydoun and Mendes, 1989;

Gibson, Jr. et al., 1993).

Our model includes a horizontal reservoir layer with a homogeneous overburden

of velocity and density (Vp = 2.11 km/s, Vs = 1.05 km/s, density = 1.8 g/cm3). It

is located at the depth of 2 km. The synthetic seismogram were computed along a

2D seismic profile over the reservoir at Y = 0.8 km. The seismic models simulated

a zero offset array with 20 m source/receiver spacing, and we applied a phase shift

migration to these data. Example synthetic seismograms before and after water

flooding and changes in amplitudes are plotted in Figure 4.9. The same amplitude

normalization factor is applied to plot in Figure 4.9a and b so that amplitudes can

be directly compared, but Figure 4.9c is normalized by a different scale. It is hard to

see the difference in amplitudes in Figure 4.9a and b. However, by subtracting one

image from the other, we can see the changes in seismic amplitude in Figure 4.9c.

To determine the amplitude change after water flooding, we picked the amplitude

at 1.89 s, which is the time for minimum amplitude in the before- and after-traces

(Figure 4.9). The polarities of seismic traces in Figure 4.9c change from positive to

negative and again to positive. This is caused by the competing effects of pressure

and fluid substitution on seismic impedance explained in the previous section.

The average and standard deviation of amplitude changes for all 27 permeability

models are shown in Figure 4.10. In our particular reservoir models, the negative

amplitude changes indicate a seismic impedance increase. This occurs when satura-
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Fig. 4.10. Black dots and error bars represent the average amplitude changes and
standard deviations, respectively, computed from 27 permeability realizations. The
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tion effects are dominant, and positive amplitude changes mean the pressure effects

are dominant (Figure 4.10). Fluid simulation results for brine saturation and pres-

sure are shown in Figure 4.6 and 4.7. The average amplitude changes (black dots in

Figure 4.10) are negative at the center region, and positive outside of brine-saturated

region where pressure effects are dominant. For X ≥ 1.4 km in Figure 4.10, the

amplitude changes are constantly positive since there are only pressure effects in this

region. The red curve and error bars in Figure 4.10 represent the standard deviations

in seismic amplitude change from the 27 models, which therefore measure the uncer-

tainty in amplitude change. The maximum uncertainties in amplitude change occur

around X = 0.75 and 1.25 km, which are the edges of the brine-saturated region

(Figure 4.10). This is because the uncertainties in brine saturation are maximum

at the edge of the brine saturated region and the uncertainties in pore pressure are

relatively constant over the saturated region as shown in Figure 4.7.
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Fig. 4.11. Cross plot of dry bulk modulus versus porosity computed from P and S
wave velocities of water saturated sandstones (Han et al., 1986).

4.3 Analysis of dry bulk modulus uncertainties

Relations between the dry bulk modulus and porosity in sandstone typically display

large scatter, much like the log permeability-porosity data (Han et al., 1986) (Fig-

ure 4.11). We generated model results for dry bulk modulus versus porosity, using

empirical relations for consolidated sandstone formations (Eberhart-Phillips et al.,

1989) (Figure 4.12). We applied the cloud transform technique to generate 27 dry-

bulk-modulus models based on the same cumulative distribution functions used in the

permeability models. Figure 4.13 shows examples of realizations of dry bulk modulus

fields. The average water saturation and pore pressure results from the fluid simu-

lations obtained during permeability stochastic modeling are applied to compute the
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Gassmann equation.

We computed the synthetic seismograms along the Y = 0.8 km line for before

and after water flooding based on 27 dry bulk modulus models. This is the same

geometry as was used for the permeability tests, so results can be compared directly.

The average amplitude changes are almost same as those in Figure 4.10, but the

uncertainties in amplitude change are maximum at the center of the model (X =

1 km) (Figure 4.14). The red curve and error bars in Figure 4.14 represent the

uncertainties in amplitude change associated with uncertainties in dry bulk modulus.

The red curve in Figure 4.14 is well correlated with water saturation (Figure 4.7a)

even though the same brine saturation is applied to compute the Gassmann equation

for the 27 dry-bulk-modulus models. For example, the standard deviations in the

pressure-change-only region (X > 1.4 km) are less than 0.1%, but those in the water-

saturated region (0.6 km< X <1.4 km) are maximum of 0.7% (Figure 4.14). This

is because the sensitivity of saturated bulk modulus in fluid substitution strongly



51

0

1

2

Y
(k

m
)

0 1 2
X(km)

Bulk Modulus 1

0 10 20
Gpa

0

1

2

Y
(k

m
)

0 1 2
X(km)

Bulk Modulus 2

0 10 20
Gpa

0

1

2

Y
(k

m
)

0 1 2
X(km)

Bulk Modulus 20

0 10 20
Gpa

0

1

2

Y
(k

m
)

0 1 2
X(km)

Bulk Modulus 22

0 10 20
Gpa

Fig. 4.13. Examples of dry-bulk-modulus realizations using the cloud transform.
White dots represent the injection well at the center and the production wells at four
corners.



52

0.0 0.5 1.0 1.5 2.0
-4

-2

0

2

4

0.0

0.5

1.0

1.5
Mean  (%)

Std. Dev.  (%)

M
ea

n 
of

 A
m

pl
itu

de
 C

ha
ng

e 
(%

)

S
td

. D
ev

. o
f A

m
pl

itu
de

 C
ha

ng
e 

(%
)

X(Km)

Fig. 4.14. Black dots and error bars represent the average amplitude changes and
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depends on the dry bulk modulus (Lumley et al., 1997). For example, a rock with

low dry bulk modulus shows large change in saturated bulk modulus but the rock

with high dry bulk modulus shows relatively small changes in saturated bulk modulus

(see Figure 3.1 and 3.2 in chapter III). Thus, in Figure 4.14, different dry-bulk-

modulus models cause different amounts of change in saturated bulk modulus, which

means large uncertainty in amplitude changes at the water-saturated center region.

However, the different pressure changes for different dry-bulk-modulus models cause

almost-same amount of change in the saturated bulk modulus (X > 1.4 km).

4.4 Conclusions

We have applied stochastic modeling methods that quantify uncertainty in a time-

lapse seismic amplitude changes caused by the uncertainties in permeability and dry

bulk modulus.
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The uncertainty associated with poorly constrained permeability values is great-

est near the edges of the water flood, where saturation is changing most rapidly. The

variability in time-lapse signal is much less in the center of the model, which is always

almost completely water flooded, and in the distal regions, which are less affected by

the flooding. In contrast, the uncertainty in dry bulk modulus causes more variability

in seismic signals near the water injection well, which is where the saturation change

is consistently large. At the same time, the uncertainty caused by the bulk modulus is

less than that associated with the permeability field, suggesting that accurate models

of the drained modulus are less important for accurate interpretation and modeling

of time-lapse seismic data.
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CHAPTER V

TIME-LAPSE SEISMIC MONITORING OF CO2 SEQUESTRATION

IN HYDROCARBON RESERVOIRS: MODEL STUDY

5.1 Introduction

Emissions of CO2 , a greenhouse gas, from combustion of fossil fuels are about 27

billion tone per year worldwide (DOE, 1999). Many technologies have been developed

to reduce CO2 in the atmosphere, such as injecting CO2 into deep coal seems, deep

ocean, or geologic formations (Gale et al., 2001; Gentzis, 2000; Haugan and Drange,

1992). One of the promising solutions for this problem is to sequestrate CO2 in

underground rock formations (Beecy and Kuuskraa, 2001). For example, the first

large-scale CO2 sequestration project has been conducted at the Sleipner field in the

northern North Sea since 1996 at annual rates of about 1 million tons CO2 (Gale et

al., 2001).

CO2 can be accumulated in the subsurface in a gas, liquid, or supercritical fluid

state, depending on the pressure and temperature in the aquifer. Also, it is possible

for the accumulated CO2 to migrate to other traps because of the heterogeneity of

the rock formation. It is important to monitor the saturation of CO2 and identify the

phase of CO2 during the injection process in order to manage the injection.

Time-lapse seismic surveys have been applied successfully to monitoring fluid

changes in hydrocarbon reservoirs during oil production (e.g. Lumley et al., 1999;

Jack, 1998). The elastic properties of reservoir formations are directly affected by the

fluid changes, since the bulk density and the bulk modulus of rock change when the

pore fluid is replaced. Although CO2 sequestration itself is a relative new application,
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seismic experiments conducted during CO2 flood operations designed to enhance hy-

drocarbon production from many reservoirs have shown clearly that CO2 injection

considerably changes the P - and S -wave velocities of the reservoir (Holtz et al., 2001;

Wang et al., 1998; Hadlow, 1992). The seismic monitoring of Sleipner field also shows

a large increase in reflectivity and a large traveltime-delay caused by CO2 injection

(Eiken et al., 2000).

Measurements of the physical properties such as compressibility and density of

carbon dioxide suggest that different phases of CO2 should have distinctly different

effects on seismic wavefields reflected from formations in which the waste material

is sequestered. This, together with the previous experiments for CO2 injection, sug-

gests that time-lapse seismic monitoring should be effective. Therefore the goal of

this chapter is to utilize numerical modeling of both fluid simulation of carbon dioxide

sequestration and seismic-wave propagation in a representative model of a sequestra-

tion site to quantify the difference in seismic reflections from different CO2 phase

cases that might be observed in realistic applications.

In this chapter, we compare the physical properties of different pore fluids and

phases. Then, we outline the rock-physics model we use to quantify the expected

changes in seismic velocities for different phases of CO2 and the results of reservoir

fluid-flow simulation for both CO2 injection models. Finally, we present examples

for a laterally heterogeneous, stochastic reservoir model to evaluate the feasibility

of time-lapse seismic monitoring of CO2 sequestration. The ray-Born method is ap-

plied to computation of the 3D synthetic seismograms (Beydoun and Mendes, 1989;

Gibson, Jr. et al., 1993).
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are 31◦C, and 7.4 MPa, respectively. Red and blue bars represent the pressure ranges
of liquid and SCF CO2 in our reservoir simulations, respectively.

5.2 Fluid properties

Our model simulates the injection of CO2 into a water-saturated reservoir. CO2 can

exist in three separate phases; gaseous CO2 liquid CO2 or supercritical fluid (SCF)

CO2 depending on pore pressures and temperatures in the reservoir. The critical

temperature and critical pressure of CO2 are 31◦C and 7.4 MPa, respectively. Above

the critical temperature and critical pressure, there is no distinction among solid,

liquid, and gas, which is the state of the SCF (Figure 5.1). In this study, we tested

two different reservoir models. The temperature of the first model is 27◦C, which

is below the critical temperature, and the second model is 77◦C, which is above the

critical temperature. The initial pore pressure for both models is 8 MPa, above the

critical pressure, and it is increased up to 11.5 MPa for the liquid CO2 model and



57

13.3 MPa for the SCF CO2 model, based on fluid flow simulations (Figure 5.1). Thus

the CO2 phase of the first model is liquid and the second model is SCF. Figure 5.2

shows the density and velocity of liquid and SCF CO2 versus pressure at temperature

of 27◦C and 77◦C, respectively (Kennedy, 1954; Vargaftik, 1975). The density and

velocity of water as a function of pressure and temperature in Figure 5.2 are computed

based on empirical equations (Batzle and Wang, 1992). Since the properties of water

vary only slightly over this temperature range, we show only the density and velocity

at the lower temperature value in this figure.

In Figure 5.2, the density of liquid CO2 at 12 MPa is 78% of the water density,

but the velocity of liquid CO2 is only 29% of the water value, which means that the

compressibility of CO2 is quite large compared to water. In contrast, the density and

velocity of SCF CO2 are 36% and 16% of water at 13 MPa. The velocity of liquid CO2

increases with increasing pressure, but those of SCF CO2 are only a weak function

of pressure (Figure 5.2b). The velocities of both liquid and SCF CO2 are still much

lower than those of water and oil under a broad range of conditions. Thus, based on

the velocity and density contrasts between water and the different phases of CO2 in

Figure 5.2, we can expect larger changes in seismic response after CO2 injection for

SCF CO2 than for liquid CO2 .

5.3 Reservoir modeling

Because the density and velocities in the various phases of carbon dioxide are very

different from those of water, substitution of water in the pore space of a reservoir

rock with CO2 will likely be easily detectable. However, in complex, heterogeneous

formations, it is possible that the effects of fluid changes could be obscured by other

wave-propagation phenomena. Our numerical modeling tests are designed to test how
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strong the effects of the fluid changes are likely to be.

5.3.1 Porosity and permeability

The conceptual earth model that we consider is based on a porosity map that was

generated using sequential Gaussian simulation (Figure 5.3) (Deutsch and Journel,

1998). We applied two different semivariogram models in two orthogonal directions

to simulate a spatially anisotropic distribution of porosity. The porosity range is from

5 to 30%. A cloud-transform technique was used to generate the permeability field

(Srivastava, 1992; Aly et al., 1999). The cloud transform is one of probability field

simulation to estimate an unknown reservoir property, based on the known property

(Srivastava, 1992; Aly et al., 1999). Advantages of the cloud transform are that it hon-

ors the relationship between properties such as porosity/permeability and preserves

the heterogeniety of the property such as scatters (Aly et al., 1999) (Figure 5.4).
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Therefore, the permeability values are spatially correlated with porosity, but there is

no one specific value of permeability that is mapped to the porosity (Figure 5.5).

The permeability model ranges from 700 to 3900 mD, which are relatively high values

since we assumed the reservoir consists of unconsolidated sands. The reservoir depth

is assumed to be 884 m, and the confining pressure for the formation was estimated

from the hydrostatic pressure for this depth.

5.3.2 Fluid flow simulations

The movement of carbon dioxide in this model reservoir formation was performed us-

ing the ECLIPSE reservoir simulator that considers the chemical reactions in reservoir

fluids at reservoir conditions but doesn’t consider fluid-rock reactions. We considered

two scenarios, one with liquid CO2 and one with SCF CO2 , in order to compare

the effects of the two different states on the time-lapse seismic response. Reservoir

temperatures for liquid CO2 and SCF CO2 models are 27◦C and 77◦C, respectively,
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and these values are assumed to be constant during injection for both models. The

reservoir model was also assumed to be 100% water-saturated initially, and the CO2

was injected at the center. In the ECLIPSE simulation we chose the compositional

model to consider the reaction among fluids. The reservoir model consists of one layer

with 200 by 200 grid blocks. A grid block size is 10 m by 10 m. The saturation and

pore pressure for liquid and SCF CO2 are shown in Figure 5.6 for a time point of 180

and 90 days after the initiation of injection, respectively. The maximum pore pres-

sure for SCF CO2 is higher than for liquid CO2 , even though the liquid CO2 model

has twice the injection time and both have the same injection rate (Figure 5.6b and

d). This is because volumetric expansion of SCF CO2 is larger than that of liquid

CO2 . The SCF CO2 moves more rapidly through the formation, since the viscosity

of SCF CO2 is much lower than that of liquid CO2 (Figure 5.6a and c). Thus, SCF

CO2 occupies a similar area of the model in only half of the injection period of liquid
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CO2 . The seismic modeling experiments will help to demonstrate whether or not we

can distinguish seismically between these two cases in order to make better in situ

condition inference.

5.3.3 Rock-physics modeling

Seismic simulations require a quantitative estimate of the effects of pore fluids on

the elastic properties of a porous rock, which we obtain from the Gassmann (1951)

equation (2.1). The fluid bulk modulus in the Gassmann equation is computed us-

ing Wood’s (1955) average equation and the empirical equations (Kennedy, 1954;

Vargaftik, 1975; Batzle and Wang, 1992). CO2 saturation is computed from fluid

simulation.

In our modeling, we assumed that the reservoir rock is unconsolidated sand, and

we applied the modified contact theory to model the dry bulk and shear moduli as

functions of pressure and porosity (Dvorkin and Nur, 1996) (Figure 5.7).

Another factor we considered in our modeling is heterogeneity of rock properties.

Much published data shows that the relation between elastic moduli of porous rock

and porosity displays tremendous scatter (e.g., Han et al., 1986). Thus, the cloud-

transform technique is applied to simulate the scattered dry bulk and shear moduli

as functions of porosity (Srivastava, 1992; Aly et al., 1999) (Figure 5.7).

Once we obtain the dry bulk modulus values, we can apply Gassmann’s equation

to any kind of pore fluids such as gas, CO2 oil, or water. For example, Figure 5.8a

shows P -wave velocities of unconsolidated sands as a function of CO2 saturation at

constant pressure. The velocity of liquid-CO2 model decreases continuously as the

CO2 saturation increases. This trend is similar to that of the velocity changes in

the oil-water reservoir. The velocities of the SCF CO2 model drop rapidly at low

CO2 saturation and then start to increase slightly. This trend is similar to that of
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the gas-water reservoir. If the CO2 saturation increases from 0 to 80%, velocities

decrease 17 and 18% for the liquid and SCF CO2 models, respectively. Acoustic

impedance as a function of CO2 saturation is computed in Figure 5.8b. Even though

the reservoir velocities of the liquid and the SCF CO2 models are close to each other

over 80% CO2 saturation, the acoustic impedance for SCF CO2 is lower than that of

liquid CO2 due to its low density (Figure 5.2). We assumed that porosity, dry bulk

modulus, and pressure were constant in Figure 5.8. Decreases of effective pressure

resulting from CO2 injection are another factor that decreases the velocity of the

reservoir. We computed the velocity as a function of effective pressure with different

fluid saturations in Figure 5.9a. Initial effective pressure is 12 MPa, which decreases to

8 MPa and 7 MPa for liquid and SCF CO2 models, respectively. The velocity decreases

caused by these pressure drops are 5% and 8% for liquid and SCF CO2 respectively.

Acoustic impedance as a function of effective pressure for three different fluid models

are computed in Figure 5.9b. The SCF CO2 model shows larger impedance contrast

with water saturation than liquid CO2 model over the entire pressure range, which

means we can expect larger amplitude changes in the SCF CO2 model. Each curve

in Figure 5.9 is computed with the assumption of 80% water or CO2 saturation and

constant porosity. The bulk density of the reservoir is computed using

ρbulk = (1− φ)ρmatrix + φ(ρCO2SCO2 + ρwater(1− SCO2)) (5.1)

where ρbulk is reservoir bulk density, ρmatrix is rock matrix density, ρCO2 is CO2 density,

ρwater is water density, and SCO2 is CO2 saturation. The fluid densities in equation

(5.1) are computed from the ECLIPSE simulation.

Based on the above rock-physics properties and fluid simulation results, we com-

puted synthetic seismograms using the ray-Born technique to model the time-lapse

seismic image of the reservoir. This method estimates the wave fields scattered by
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the small perturbations in properties of an elastic medium (Beydoun and Mendes,

1989; Gibson, Jr. et al., 1993).

5.3.4 Seismic modeling

We complete our model definition by assuming that the reservoir formation is overlain

by a homogeneous overburden with velocities Vp = 4.6 km/s, Vs = 2.4 km/s and

density ρ = 2.6 g/cm3. The reservoir, which is 2000 × 2000 × 10 m, is discretized to

10 ×10 ×10 m blocks. The depth of reservoir is 884 m. We examined the effect of the

CO2 on the seismic response by computing zero-offset and far-offset seismograms, to

which we applied a phase-shift migration. The seismic arrays are 101 × 101 source-

geophones with 20 m spacing. The far-offset seismic arrays have 1 km source-geophone

offset corresponding to a 30◦ incident angle.

The seismic amplitudes of the zero-offset models computed for before and after

CO2 injection are shown in Figure 5.10. The amplitudes after liquid CO2 injection

increased a little was compared to one for the before-injection model (Figure 5.10a

and b). For the SCF CO2 model, the CO2 saturated zone after the injection can be

identified more clearly in Figure 5.10d. Time-lapse amplitudes of both models are

computed by subtracting the seismic image for before CO2 injection from one for

after CO2 injection (Figure 5.11). The four time-lapse amplitudes in Figure 5.11 are

normalized by individual scalar values computed from the average amplitude of the

before-injection model of each case. The maximum amplitude change for each model

is listed in Table 5.1. The time-lapse amplitudes for far-offset models are larger than

for the zero-offset model, which means that it can be detected more easily in real field

examples (Figure 5.11 and Table 5.1). Furthermore, the amplitude change is larger

for the SCF CO2 than for the liquid phase. This difference can be explained easily;

it is a consequence of the different properties of the two CO2 phases (Figure 5.2).
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Specifically, the contrast between the density and compressibility of SCF CO2 and

the corresponding properties of water is larger than for liquid CO2 . As the CO2

replaces the water, the SCF phase will, in general, produce a larger change in the

acoustic impedance of the formation than will liquid carbon dioxide (Figure 5.8b). In

Figure 5.11d, the ampliutde changes within a saturated zone are different, depending

on the location. This is due to the heterogeneity of reservoir properities such as

porosity and bulk modulus.

Table 5.1. Maximum amplitude changes for four different models. The far-offset SCF
CO2 model shows the largest amplitude changes among these models.

Model Maximum Amplitude Change (%)

Liquid CO2 Zero Offset 32

Liquid CO2 Far Offset 41

SCF CO2 Zero Offset 43

SCF CO2 Far Offset 54

5.3.5 Time-lapse AVO analysis

AVO response has been applied successfully to estimate reservoir rock properties

(Castagna et al., 1993) and to detect hydrocarbons (Smith and Gidlow, 1987). This

techinique is also being applied to time-lapse seismic monitoring to detect the changes

of reservoir properties (Tura and Lumley, 1999; Foster and Keys, 1999; Ross, 2000).

Standard AVO analysis uses an approximate form of the Zoeppritz reflection coeffi-

cient equations for small incident angle:

R(θ) ≈ A + B sin2 θ, (5.2)
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where θ is the incident angle, A is the intercept at the normal incidence, and B is

the gradient of reflection coefficient (Shuey, 1985). We computed the A and B values

using the zero- and far- offset data for both before and after injection models. The

time-lapse AVO are computed by subtracting A and B for the before-injection model

from values for the after-injection model. Figure 5.12 shows the time-lapse AVO of

liquid and SCF CO2 models. The color scale represents the CO2 saturation. We can

divide the scattered values in Figure 5.12 into two groups: red points correspond to

less than 10% CO2 saturation, and green and blue points correspond to more than

50% CO2 saturation. Time-lapse AVO responses for the SCF CO2 model show larger

changes than ones for liquid CO2 model. Thus, we can separate AVO responses of

liquid CO2 from SCF CO2 in favorable conditions, even though they might overlap

in conventional cross plots of intercept and gradient.

5.3.6 Uncertainties in time-lapse seismic modeling

One of the reservoir properties sensitive to time-lapse seismic modeling is the dry

bulk modulus (Lumley et al., 1997). For example, stiffer rocks are less sensitive to

time-lapse seismic modeling, while softer rocks such as unconsolidated rocks shows

stronger time-lapse seismic reponse (see Figure 3.1 and 3.2 in chapter III). However,

bulk modulus data for reservoirs are only availble from well logs or core measurements,

which are quite sparse. Thus, there is generally significant uncertainty in values of dry

bulk modulus of the reservoir for time-lapse seismic modeling. Also, the cross plot of

dry bulk modulus as a function of porosity has large scatter due to its heterogeneity

(Han et al., 1986). Thus, in this section, we generated multiple models of dry bulk

modulus of the reserovir using cloud transforms to estimate the uncertainty in time-

lapse seismic modeling due to the uncertainty in bulk modulus (Srivastava, 1992; Aly

et al., 1999). Figure 5.13 shows examples of realizations of dry bulk modulus fields.
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Fig. 5.12. Cross plot of intercept, A, and gradient, B, for time-lapse AVO responses
in (a) liquid and (b) SCF CO2 models. Color scale represents CO2 saturation. SCF
CO2 model shows a little larger time-lapse AVO responses compared to those in liquid
CO2 model.



74

The CO2 saturation and pore pressure from the ECLIPSE simulation of the liquid

CO2 model are applied to compute the Gassmann equation.

We computed the 2D synthetic seismograms along the X = 0.7 km line for before

and after liquid CO2 injection based on 30 dry bulk modulus models. To evaluate

correlations among porosity, dry bulk modulus, and amplitude changes, we plotted

these values along X =0.7 km in Figure 5.14. Average dry bulk modulus of 30

models shows an inverse correlation with porosity in Figure 5.14a and b, which is due

to its inverse relationship with porosity (Han et al., 1986) (Figure 5.3). The standard

deviation of the 30 dry bulk modulus models does not correlate with porosity, since

the cloud transform generates multiple models based on an unconditional probability

field (Srivastava, 1992; Aly et al., 1999). The range of dry bulk modulus at X =0.7

km is from 2 to 17 GPa, and the average standard deviation is about 1 GPa in our

model (Figure 5.14b). The average amplitude change for the 30 dry bulk modulus

models is about 30%, and standard deviation of this is about 1.5% (Figure 5.14c).

If the standard deviation of dry bulk modulus models increases by a factor of 5, we

might expect standard deviations in amplitude changes roughly 5 times larger, which

are about 7%. That is still low compared to a 30% amplitude change. Thus, the

effects of the uncertainty in dry bulk modulus on time-lapse seismic modeling is small

because the amplitude change due to CO2 injection is relatively large, as much as

30%.

5.4 Conclusions

We have used numerical modeling to study the seismic response of liquid and super-

critical fluid (SCF) CO2 sequestration in a reservoir. For both models, we computed

zero-offset and far-offset seismic modeling before and after CO2 injection. The liquid
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and SCF CO2 model show maximum 32% and 43% amplitude changes, respectively,

for zero-offset seismic modeling. Far-offsect seismic modeling shows lager amplitude

change than zero-offset model such as 43% and 54% for liquid and SCF CO2 mod-

els, respectively. The time-lapse AVO analysis using zero-offset and far-offset seismic

data was computed. The SCF CO2 model shows larger changes in time-lapse AVO

responses in the cross plot of the intercept-gradient than liquid CO2 model.

The uncertainty analysis of time-lapse seismic monitoring based on 27 different

models of dry bulk modulus was evaluated. For about 1 GPa standard deviation of

dry bulk modulus causes about 1.5% standard deviation in amplitude change, which

is relatively small uncertainty compared to about 30% amplitude change after liquid

CO2 injection. In similiar reservoir conditions with our model, the uncertainty in dry

bulk modulus doesn’t much affect on the time-laspe seimic modeling.
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CHAPTER VI

TIME-LAPSE SEISMIC MONITORING OF A 4500 FT RESERVOIR

IN EUGENE ISLAND BLOCK 354 FIELD (TEAL SOUTH), THE

GULF OF MEXICO

6.1 Introduction

Time-lapse seismic monitoring has been applied to increase efficiency of hydrocarbon

recovery in existing fields (Jack, 1998; Lumley et al., 1999; Shyeh et al., 1999). Pri-

mary production of a reservoir will replace hydrocarbon with water or gas cap in a

formation, which causes the changes in acoustic impedance of a reservoir (Nur, 1989;

Wang et al., 1991). Forward models of time-lapse seismic monitoring based on well

logs, production history, and core measurements can help to predict the changes in

seismic response during production and to interpret and understand results of field

data. Specifically, comparison of the forward model with actual time-lapse seismic

data can help to interpret 4D seismic images and find by-passed reservoir sites (John-

ston et al., 2002).

Our study area is the Teal South Field (Eugene Island block 354) in the Gulf of

Mexico. Energy Research Clearing House (ERCH) organized the consortium for Teal

South time-lapse seismic monitoring project. The main goal of this project is to study

the feasibility of a permanent reservoir monitoring system using multi-component

ocean bottom cable (OBC) (Ebrom et al., 1998). Several academic members in this

consortium have contributed to this project. Straub et al. (2000) contributed to

cross-equalization of 1995 and 997 seismic data sets, and Ashbaugh et al. (2000)

contributed to production history match. Based on these previous studies, in this



79

chapter, we develop a forward model for the 4500-ft sand reservoir by integrating

seismic interpretation, well logs, production history, and 4D seismic data.

6.2 Teal South Field

6.2.1 4500-ft reservoir geologic setting

The Teal South Field is located in the Gulf of Mexico, offshore Louisiana, in 85 m of

water (Figure 6.1a). It consists of multiple minibasins at depths of 1300 m to 2400

m, and reservoirs are unconsolidated Tertiary sands. The structure of this field is

a deep-seated anticlinal ridge terminated by counter-regional growth faults (Andre

and Rinehart, 1997). The intersections of north-south growth faults with east-west

growth faults create many structural traps (Andre and Rinehart, 1997). The average

thickness of the reservoir is about 70 m. Fast drops in production rates and the

small size of reservoirs, which might mean fast flow rates and high permeability, are

the the reason to be chosen as a test site for time-lapse seismic monitoring. Our

target reservoir is the 4500-ft sand, which is bounded by normal faults on the east

and the west, and dipping to the north (Figure 6.2a). A seismic cross section with

the interpretation of 4500-ft reservoir shows the segment of our target horizon at the

center (Figure 6.2b).

6.2.2 Production history

Oil and gas production started on November, 1996, and the second seismic survey

was acquired on July, 1997. Thus, in our study we only consider the production data

until July, 1997. The production history match is computed based on production rate

of oil, gas, and water, and pressure data from well D 10 (Ashbaugh et al., 2000). Pore

pressure was initially 19 MPa and declined quickly during the 8-month production
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Fig. 6.1. (a) Location map of Eugene Island in the Gulf of Mexico. (b) Two vintage
maps for 3D streamer survey in 1995 (yellow rectangle) and 3D OBC survey in 1997
(orange rectangle) (Straub et al., 2000).
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to 13 MPa, which are computed based on shut-in tubing pressure (SITP). Pressure

drops caused a gas cap invasion on the top of the 4500-ft sand. Water saturation

increased from 22 to 31% during production. Table 6.1 summarizes the changes in

reservoir conditions (Ashbaugh et al., 2000). Temperature is 60◦C in 1996 and we

assumed it wasn’t changed during production.

Table 6.1. Changes in pore pressure and fluid contents over production period. Pres-
sure is measured from shut-in tubing pressure (SITP) and temperature for 1996 is
measured from well logs and assumed to be constant. Saturation is computed from
production history (Ashbaugh et al., 2000).

1996 1997

Pore Pressure (MPa) 19 13

Temperature (◦C) 60 60

Swater 0.22 0.31

Soil 0.78 0.67

Sgas 0 0.02

6.2.3 Seismic data

The Teal South field has been surveyed more than three times since 1995. The first

legacy survey prior to production was done in 1995, and the other two ocean bottom

cable (OBC) surveys were performed in 1997 and 1999. Yellow and orange rectangles

represent streamer and OBC data, respectively, in the map illustrating these surveys

(Figure 6.1b). In this study, we analyze two 3D seismic data sets acquired in 1995

and 1997.
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reservoir. (b) Seismic cross-section from A to A’. The green horizon represents 4500-ft
reservoir with two normal faults (Straub et al., 2000).
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6.2.4 Processing and analysis of time-lapse seismic data

Cross equalization for streamer 1995 and OBC 1997 data includes re-binning of OBC

1997 data for trace-to-trace comparison, cross-correlation between bins to estimate

time-shift, bandpass filtering for the same frequency contents, and amplitude nor-

malization (Straub et al., 2000). An amplitude-difference image was computed based

on cross-equalized data of 1995 and 1997 (Figure 6.3). Amplitude brightening oc-

curs in the southwest region and amplitude dimming occurs in the northeast region

(Figure 6.3).

6.3 Modeling

The 3D reservoir model is constructed using on the depth-converted 4500 ft time

horizon. Regridding is done for discretized blocks of the model using ordinary kriging.

The dimension of the model are 1220 × 530 m, with a thickness of 70 m, and it is

discretized into 5 × 5 × 5 m blocks.

6.3.1 Rock physics modeling

A simple porosity model of the reservoir was generated using a conventional kriging

method based on three known values from porosity logs (Deutsch and Journel, 1998)

(Figure 6.4). The porosity of the resulting 4500 ft reservoir model ranges from 0.26

to 0.34.

Empirical relationships of elastic moduli to porosity and pressure are provided

constraints for the rock-physics model. Gardner and Harris (1968) developed the

empirical equations based on measurements of dry, freshly packed quartz sand as
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follows:

µ = 0.15(0.58− φ)
√

P ,

E = 0.32(0.58− φ)
√

P ,

(6.1)

where µ is shear modulus, E is Young’s modulus, φ is porosity, and P is effective

pressure in MPa. We modified the coefficients of the above equations to fit our P -

and S - wave sonic velocities from well D10 as follows:

µ = 0.145(0.58− φ)
√

P ,

E = 0.269(0.58− φ)
√

P .

(6.2)

6.3.2 Fluid saturation modeling

Changes in reservoir properties during production between November, 1996 and July,

1997 are estimated based on previously established production history (Table 6.1)
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(Ashbaugh et al., 2000). Because we did not have sufficient constraints to perform

a full fluid-flow simulation, we assigned values of saturation based on interpretations

of the original oil-water contact (OOWC) (Figure 6.5). This allows us to model only

the part of the reservoir which may have changed fluid conditions during production.

The northern portion of the 4500-ft reservoir, which is above the OOWC, is 100%

water-saturated during the production period. We assumed that fluid contents and

pressure change only occur in the southern part of the 4500-ft reservoir (Figure 6.5).

At initial production in November 1996, the 4500 ft reservoir was saturated with 22%

water and 78% oil. By July 1997, a gas cap had been generated and oil saturation was

reduced to 67% (Table 6.1). In the seismic data, amplitude dimming was detected in

the northeast portion of the 4500-ft reservoir, and amplitude brightening was observed

towards the southwest (Figure 6.3). To model these negative and positive amplitude

changes, we increased gas saturation by 2% only in the southwest region of the 4500-ft

reservoir, with the gas saturation decreasing to 0% towards the northeast.

6.3.3 Gassmann equation

Once we assigned values for the elastic properties and pore fluids of the 4500 ft

reservoir, we applied the Gassmann equation to predict changes in elastic proper-

ties (Gassmann, 1951). The bulk density was computed using the volume average

equation:

ρbulk = (1− φ)ρmatrix + φ(ρgasSgas + ρoilSoil + ρwaterSwater), (6.3)

where the matrix was assumed to be quartz, the hydrocarbon properties were values

provided by Texaco, and water properties were computed from empirical equations

(Batzle and Wang, 1992). The bulk modulus of mixed fluids was computed using
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Wood’s equation:

1

Kf

=
Sgas

Kgas

+
Soil

Koil

+
Swater

Kwater

. (6.4)

The velocities, densities, and acoustic impedance of the 1996 model are plotted

in Figures 6.6. In this model, the reservoir properties of the northern part of 4500-ft

reservoir (above the OOWC line) are not homogeneous, even though we assumed

homogeneous pore pressure. This is because porosity is not homogeneous in our

model (Figure 6.4). Vp drops occur in the southwest region of 4500-ft reservoir due

to gas-cap invasion and Vp increases in the northeast region due to the pore pressure

drops (Figure 6.7a). Vs changes are due to pore pressure drops (Figure 6.7b). Bulk

density increases because water saturation increase (Figure 6.7c). Acoustic impedance

increases in the northeast region due to pore-pressure drops and it 1decreases in the

southwest region due to gas-cap invasion (Figure 6.7d).

6.3.4 Ray-Born seismic modeling

3D synthetic seismograms for the 1996 and 1997 reservoir models are computed using

the ray-Born algorithm (Beydoun and Mendes, 1989; Gibson, Jr. et al., 1993). This

method was developed to estimate the wave fields scattered by the small perturbations

in properties of an elastic medium. We assumed that the velocities and density of

overburden layers are homogeneous. Even though this is not true for earth, it is still

acceptable for time-lapse seismic modeling, since during hydrocarbon production the

properties and geology of overburden layers are changed little. In our seismic models,

we simulated zero-offset sources and receivers with 20-m spacing. There are 112

and 77 sources and receivers in the north-south and east-west directions, respectively,

covering the 3D reservoir. After computing the synthetic seismograms, a conventional

phase-shift migration is applied.



89

0 0.5X(km)
0

0.4

0.8

1.2
Y(

km
)

Vp

1.6

1.9

2.2

2.5

km
/s

0 0.5
X(km)

0

0.4

0.8

1.2

Y(
km

)

Bulk Density

2.0

2.1

2.2

2.3

g/
cm

3

0 0.5
X(km)

0

0.4

0.8

1.2

Y(
km

)

Vs

0.8

1.1

1.4

1.7

km
/s

0 0.5
X(km)

0

0.4

0.8

1.2

Y(
km

)

Impedance

3.5

4.0

4.5

5.0

5.5

OWC

(a) (b)

(c) (d)

OWC

OWC
OWC

km
/s

 . g
/c

m
3

Fig. 6.6. (a) P -wave velocity, (b) S-wave velocity, (c) bulk density, and (d) acoustic
impedance of 1996 reservoir model.



90

0 0.5X(km)
0

0.4

0.8

1.2
Y(

km
)

Vp

0 0.5
X(km)

0

0.4

0.8

1.2

Y(
km

)

Bulk Density

0 0.5
X(km)

0

0.4

0.8

1.2

Y(
km

)

Vs

0 0.5
X(km)

0

0.4

0.8

1.2

Y(
km

)

Impedance

OWC

(a) (b)

(c) (d)

OWC

OWC
OWC

km
/s

km
/s

g/
cm

3

km
/s

 . g
/c

m
3

-0.2

-0.1

0

0.1

0.2

-0.01

0

0.01

-0.2

-0.1

0

0.1

0.2

-0.4

-0.2

0

0.2

0.4

Fig. 6.7. Changes in (a) P -wave velocity, (b) S-wave velocity, (c) bulk density, and
(d) acoustic impedance of the reservoir model during production.



91

2D seismic profiles across the reservoir in the north-south direction are plotted

in Figure 6.8 for both the 1996 and the 1997 models, as are the difference traces.

The reservoir horizon is dipping toward the northerly direction (Figure 6.8). The

difference traces are computed by subtracting 1996 traces from 1997 traces. Polarity

changes along the horizon occur in the difference traces because opposite changes

in acoustic impedance occur within the reservoir during production, thereby causing

opposite effects on amplitude changes.

Amplitudes for 1996 and 1997 models are plotted in Figure 6.9a. Amplitudes

for both models show a bright region below the OWC, which is similar to the field

seismic data in Figure 6.9b (Straub et al., 2000). The amplitude changes based on the

model and the field data are plotted in Figure 6.10. Negative amplitude changes due

to pore-pressure drops, which occur in the northeast region, and positive amplitude

changes due to gas cap generation occurred in the southwest region (Figure 6.10a).

These amplitude changes are also similar to those in field data (Figure 6.10b). There

is a difference between the modeled and actual seismic differences in Figure 6.10a,

which is partially caused by the heterogeneities in actual reservoir properties that we

did not consider in our model due to lack of well logs.

However, it is important to recall that this is an unconsolidated reservoir. The

sensitivity analysis in chapter III(Figure 3.2) showed that for unconsolidated sands,

bulk modulus change due to fluid substitution is not sensitive to porosity. Assuming

that porosity changes in the reservoir are not too significant, the lack of horizontal

variability of bulk modulus in our models should not cause very large errors.
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6.4 Conclusions

3D seismic data acquired at different times over Teal South field (Eugene Island

block 354) in the Gulf of Mexico have been interpreted and modeled to map reservoir

property changes linked to production. A production history match shows 2% gas

invasion occurs on the top of the horizon, oil saturation decreased to 67% from 78%,

and pore pressure drops from 19 MPa to 13 Mpa. We constructed the seismic model

based on a production history match and a petrophysical model to compute the

amplitude differences associated with production. The modeled time-lapse seismic

difference shows amplitude changes similar to actual amplitude changes: positive

amplitude changes in the northeast of the reservoir and negative amplitude changes

in the southwest of the reservoir, which can be interpreted as pore-pressure drops

causing amplitude dimming in the northeast and gas invasion causing amplitude

brightening in the southwest.
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CHAPTER VII

CONCLUSIONS

In this work we developed a fast, forward-modeling procedure that combines fluid

flow, rock physics, and seismic-wave propagation. It includes streamline fluid-flow

simulation, which is a fast method analogous to seismic ray theory; rock-physics

modeling, which is critical to determining the sensitivity of seismic velocity to fluid

contents; and ray-Born seismic modeling, which is a hybrid method combining ray

theory and the Born approximation. Using our techniques, we tested many reservoir

models to understand time-lapse seismic experiments conducted in a variety reservoir

conditions.

The primary contributions of this dissertation are as follows:

• We developed a new modeling procedure for time-lapse seismic monitoring,

which includes streamline fluid-flow simulation, rock physics, and 3D ray-Born

seismic modeling. This high-speed modeling techniques can consider the het-

erogeneous nature of porosity, permeability, and elastic moduli of a reservoir.

It can also consider different rock-physics models such as consolidated and un-

consolidated sandstone.

• We quantified the sensitivity of amplitude changes to fluid contents for different

rock-physics models. For rock-physics models of consolidated sandstone, the

high-porosity region shows larger amplitude changes than low-porosity regions

during fluid substitution, but an unconsolidated sandstone model shows that

there are no uniform relationships between porosity and amplitude changes.
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• We estimated the uncertainties in time-lapse seismic modeling caused by un-

certainties in permeability and dry bulk modulus values of a reservoir using

stochastic methods. In the stochastic modeling of permeability, the maximum

uncertainties in amplitude change occur around the water front, since this re-

gion has maximum uncertainties in water saturation. We applied the same test

to stochastic modeling of dry bulk modulus. The maximum uncertainties in

amplitude change occur at the injection well where the maximum saturation

changes occur, because in the Gassmann equation, the sensitivity of saturated

bulk modulus to dry bulk modulus is maximum where changes in fluid satura-

tion are maximum.

• We applied our modeling technique to model CO2 injection in a depleted reser-

voir. Different phases of CO2 , supercritical fluid and liquid, have different

acoustic properties. We computed the time-lapse seismic images for the super-

critical fluid CO2 and liquid CO2 injection cases. The amplitude changes after

supercritical fluid CO2 injection are larger than those in the liquid CO2 model

because contrasts in acoustic properties between water and CO2 are larger for

supercritical fluid CO2 than liquid CO2 .

• Two seismic surveys over the Eugene Island block 354 (Teal South) in the Gulf

of Mexico, were acquired in 1995 and 1997. We developed a forward model for

a 4500-ft sand reservoir to understand which changes in reservoir properties are

responsible for observed 4D images. The results of our forward modeling suggest

that the amplitude dimming in the northeast region of the reservoir is caused

by pore-pressure decreases and that amplitude brightening in the southeast is

caused by gas exsolution.
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7.1 Future work

• The ray-Born seismic modeling method computes seismic-wave propagation

caused by the perturbation of elastic moduli and density relative to background

properties. This algorithm is quite a fast method compared to finite difference

schemes. However, we still need to repeat 3D seismic modeling over a period of

time, which is computationally expensive. A possible solution for this problem

is that we compute the changes in perturbations of elastic moduli and density

caused by the changes in reservoir properties during fluid substitution, and then

compute seismic-wave propagation only for changes in perturbations during pro-

duction. If we can verify this idea theoretically, it can dramatically reduce the

computation times. This idea is originally based on the work of Kirchner and

Shapiro (2001).

• The reservoir model in our study is a quite thin layer with 10-m thickness, since

the ray-Born algorithm assumes homogeneous background. Thus, to model a

relatively thick reservoir, a hybrid method combining ray-tracing and a finite

difference scheme might be a more accurate method to model a thick reservoir,

even though it is more computationally expensive.

• Time-lapse seismic image is caused not only by changes in fluid saturation

but also by pressure changes under an assumpiton of a perfect repeatability

condition. To separate these combined effects of reservoir property changes

on a 4D image, seismic inversion of elastic moduli and density using multi-

component seismic data can provide important information to delineate the

changes in reservoir properties during production.

• In our rock-physics, fluid-flow, and seismic modeling, we applied uniform grid
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block size with 10 x 10 x 10 m. However, upscaling or downscaling of the

block size depending on each modeling step may be more efficient to reduce

computational time. For example, seismic wavelength used in our modeling is

about 150 m, and it can’t resolve the geologic feature with 10 m size. Thus,

if we upscale the rock physics model to larger block size, we can optimize the

computational cost.

• Our forward modeling of Teal South field is based on a 4D image computed

from 1995 streamer data and 1997 OBC data. However, due to different seismic

acquisition methods and the geometry of two seismic data sets, there might be

a large uncertainty in cross-equalizations of two different data sets. If we can

analyze OBC data acquired in 1997 and 1998, which have the same acquisition

geometry and processing, we can reduce the uncertainties in 4D images caused

by acquisition foot print. Also, fluid saturation and pressure information based

on fluid simulation using production history might improve the reservoir forward

model.
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