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ABSTRACT 
 
 
 

Modeling the Biodegradability and Physicochemical Properties  

of Polycyclic Aromatic Hydrocarbons. (August 2005) 

Petros Dimitriou-Christidis, B.S., University of the Aegean; 

 M.S., University of California, Berkeley 

Chair of Advisory Committee: Dr. Robin L. Autenrieth 

 
 
 

The biodegradability and physicochemical properties of unsubstituted and 

methylated polycyclic aromatic hydrocarbons (PAHs) were investigated. The focus was 

on the development of models expressing the influence of molecular structure and 

properties on observed behavior.  

Linear free energy relationships (LFERs) were developed for the estimation of 

aqueous solubilities, octanol/water partition coefficients, and vapor pressures as 

functions of chromatographic retention time. LFERs were tested in the estimation of 

physicochemical properties for twenty methylated naphthalenes containing up to four 

methyl substituents. It was determined that LFERs can accurately estimate 

physicochemical properties for methylated naphthalenes.  

Twenty unsubstituted and methylated PAHs containing up to four aromatic rings 

were biodegraded individually by Sphingomonas paucimobilis strain EPA505, and 

Monod-type kinetic coefficients were estimated for each PAH using the integral method. 

Estimated extant kinetic parameters included the maximal specific biodegradation rate, 

the affinity coefficient, and the inhibition coefficient. The generic Andrews model 

adequately simulated kinetic data. The ability of PAHs to serve as sole energy and 

carbon sources was also evaluated. 

Quantitative structure-biodegradability relationships (QSBRs) were developed 

based on the estimates of the kinetic and growth parameters. A genetic algorithm was 

used for QSBR development. Statistical analysis and validation demonstrated the 
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predictive value of the QSBRs. Spatial and topological molecular descriptors were 

essential in explaining biodegradability. Mechanistic interpretation of the kinetic data 

and the QSBRs provided evidence that simple or facilitated diffusion through the cell 

membranes is the rate-determining step in PAH biodegradation by strain EPA505.  

A kinetic experiment was conducted to investigate biodegradation of PAH 

mixtures by strain EPA505. The investigation focused on 2-methylphenanthrene, 

fluoranthene, and pyrene, and their mixtures. Integrated material balance equations 

describing different interaction types were fitted to the depletion data and evaluated on a 

statistical and probabilistic basis. Mixture degradation was most adequately described by 

a pure competitive interaction model with mutual substrate exclusivity, a fully predictive 

model utilizing parameters estimated in the sole-PAH experiments only. 

The models developed in this research provide insight into how molecular 

structure and properties influence physicochemical properties and biodegradability of 

PAHs. The models have considerable predictive value and could reduce the need for 

laboratory testing. 
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1CHAPTER I 

INTRODUCTION 

 

STATEMENT OF PURPOSE 

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants of significant 

public health and environmental concern. The health effect of particular concern 

associated with PAHs is cancer. Several PAHs exhibit acute and chronic toxicity, 

microbial recalcitrance, bioaccumulation potential, and low removal efficiency in 

traditional detoxification processes (Herbes and Schwall, 1978). PAHs rank number 8 on 

the 2003 CERCLA Priority List of Hazardous Substances (ATSDR, 2003). PAHs are 

often present as complex mixtures characterized by a broad range of properties and 

behavior.  

The risk assessment/management methodology provides a quantitative 

framework for the calculation and reduction of risk posed to humans and ecosystems by 

pollutants. Knowledge of physicochemical behavior, bioavailability, and fate of PAHs is 

necessary for accurate exposure assessment and implementation of effective 

detoxification strategies for wastes and contaminated sites. Considerable uncertainties 

are introduced to risk assessment/management involving complex mixtures of PAHs 

because a very limited number of individual PAHs are fully characterized for their 

physical, chemical, and biological activities. In addition, chemical interactions and their 

effects on the activities of the compounds are largely unknown. 

This research focuses on physicochemical properties and biodegradability of 

PAHs. Physicochemical properties determine environmental partitioning and 

bioavailability of organic pollutants; biodegradation is the primary mechanism of PAH 

removal from the environment (NRC, 2003) and a valuable clean-up technology. Due to 

the enormous number and diversity of PAHs, it is impossible to experimentally test 

every compound for properties and behavior. Alternatively, models can be trained on 

experimental data, which can provide quantitative information on the physicochemical 
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properties and biodegradability. Models include linear free energy relationships 

(LFERs), quantitative structure-activity relationships (QSARs), and interaction kinetic 

models. The importance of these models is twofold: (i) they explain properties and 

behavior on a quantitative and mechanistic basis; and (ii) they predict properties and 

behavior without requiring full laboratory testing. These and other similar models can be 

integrated into the risk assessment/management methodology for a more accurate 

evaluation of exposures and provide guidance for appropriate detoxification strategies. 

The research approach followed in this dissertation is an adaptation of the risk 

assessment/management paradigm proposed by the National Research Council 

recommending the development of extrapolation methods based on experimental data 

and development of regulatory options for risk management (NRC, 1983). 

 
 
 

Table 1.1 
PAHs used in the four experiments discussed in this dissertation. PAHs included 
parent compounds, as well as methylated versions of naphthalene, fluorene, 
phenanthrene, anthracene, and pyrene - a total of 40 PAHs. 

    
naphthalene and 

methylnaphthalenes acenaphthene acenaphthylene fluorene 
and methylfluorenes 

    
phenanthrene and 

methylphenanthrenes 
anthracene and 

methylanthracenes fluoranthene chrysene 

 

 

pyrene 
and methylpyrenes benzo[k]fluoranthene benzo[a]pyrene  
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BACKGROUND 

PAHs 

PAHs constitute an enormously large and diverse class of organic compounds 

(Harvey, 1997). It is believed that PAHs are the most abundant organic compounds in 

the universe (Allamandola, et al., 1987) and that they may have played a role in 

biogenesis and evolution. For example, UV photolysis of naphthalene in ice produces 

1,4-naphthoquinone, which is a precursor to key biomolecules (Bernstein et al., 2002). 

PAHs are composed of two or more fused rings (Table 1.1). PAHs can be classified as 

alternant, containing only six-membered rings, and nonalternant, with six-membered 

rings and rings with an odd number of members. Aromatic rings are planar or nearly 

planar circular configurations of sp2 hybridized atoms with overlapping p-orbitals that 

form π-molecular orbitals occupied by 4 2n +  electrons. PAHs with 24 or more aromatic 

ring carbons are named large PAHs and are characterized by significantly different 

properties and behavior than smaller PAHs (Fetzer, 2000). PAHs are thermodynamically 

and chemically stable, which distinguishes them from aliphatic hydrocarbons.  

PAHs are released into the environment by a number of sources, anthropogenic 

and natural. Creosote, with a PAH mass fraction of 85% (Mueller et al., 1989), is an 

obvious source. Coal tar creosote is the most common wood preservative in the United 

States. Various kinds of creosote are used for road paving, roofing, coking, and 

aluminum smelting (ATSDR, 1997). Petroleum is another significant source. Petroleum 

is a complex mixture containing thousands of hydrocarbons including PAHs. It is 

estimated that the annual global input of petroleum hydrocarbons to the environment is 

1.7 – 8.8 million metric tons with anthropogenic sources responsible for the majority of 

it (NRC, 2003). PAHs are emitted into the atmosphere by both natural and 

anthropogenic processes. Examples include combustion of fossil fuels, forest fires, and 

volcanic activity. It is believed that anthropogenic sources are predominant. For 

example, it was found that concentration patterns in soil and sediments are closely 

related to the degree of urbanization (U.S. EPA, 2000). The type of source and, more 

specifically, the temperature of generation determines the composition of a PAH 
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mixture. Pyrogenic mixtures generated at low temperatures consist primarily of alkylated 

PAHs, while those generated at high temperatures consist of unsubstituted PAHs 

(Harvey, 1997). Petroleum contains mostly methylated PAHs (Youngblood and Blumer, 

1975). The composition of a mixture is also affected by the maturity and the degree of 

degradation that a mixture undergoes. 

Several PAHs have the potential to cause harmful effects to humans and 

ecosystems. Detailed information on the toxicity of PAHs can be found in a number of 

sources including IARC (1987), ATSDR, (1995), WHO (1998), and U.S. EPA (2005), 

and the references therein. The health effect of particular concern associated with PAHs 

is cancer. PAHs have caused tumors in laboratory animals via different routes of 

exposure, i.e., inhalation, ingestion, and dermal contact (ATSDR, 1995). Studies on 

humans showed that individuals exposed to PAHs via inhalation or dermal contact for 

extended periods develop cancer (WHO, 1998). Mutagenicity and carcinogenicity of a 

number of PAHs have been associated to the degree of nonplanarity, which can be 

caused by methylation or steric interference between rings (Dabestani and Ivanov, 

1999). Mutagenicity is expressed through covalent binding of a PAH or its metabolites 

to DNA, potentially leading to tumor initiation. 

This research focuses on the list of 17 nonheterocyclic PAHs considered by the 

ATSDR (1995) and the similar list of 16 PAHs regulated by the U.S. EPA as priority 

pollutants (Hodgeson et al., 1990). As explained in the Toxicological Profile by the 

ATSDR (1995), these compounds were chosen based on their toxicity, occurrence in 

contaminated sites, potential for exposure, and extent of available information. In 

addition to these compounds, methylated homologues of naphthalene, fluorene, 

phenanthrene, anthracene, and pyrene were used in this research based on their 

abundance in petroleum and their commercial availability as pure compounds. Jointly, 

40 PAHs were involved in the four experimental chapters (Chapters II through V) of this 

research, including 29 methylated PAHs.  

Physicochemical properties 

The distribution and partitioning of organic pollutants in the environment (air, 
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water, soil/sediment, and biota) is determined by the physicochemical properties of the 

pollutants. Physicochemical properties are widely used in transport and fate modeling, as 

well as risk assessment. For example, the octanol/water partition coefficient, an indicator 

of hydrophobicity, is used to estimate bioconcentration factors (Veith et al., 1979). 

Similarly, physicochemical properties determine the bioavailability of PAHs to target 

populations or microorganisms. Also, the rates of biodegradation of organic substrates in 

aqueous suspensions are affected by the aqueous solubility of the substrates (Leahy and 

Colwell, 1990). Other significant physicochemical properties include the Henry’s law 

constants and vapor pressure, which determine the potential for air pollution and 

atmospheric transport. Generally, PAHs are hydrophobic, tending to sorb to solid phases 

and are characterized by low volatility. Values of physicochemical properties of PAHs 

are available from a number of individual studies or compilations including Howard and 

Meylan (1997) and its on-line database version (SRC, 2005), Mackay et al. (1992), 

Karcher (1985), LaGrega et al. (2001), and WHO (1998). However, information is 

generally limited to the most common PAHs, as identified by the ATSDR and U.S. EPA, 

while it is scarce for substituted versions and high-molecular-weight PAHs. 

Physicochemical properties can be measured directly using pure compounds and 

analytical methods dictated by the definition of a property. However, for hydrophobic 

compounds, some limitations, e.g., low aqueous phase concentrations and slow 

equilibration between phases, are thought to be responsible for widespread discrepancies 

in reported values (Karickhoff and Brown, 1979). Indeed, a literature review, e.g., as 

presented by Mackay et al. (1992), reveals wide ranges, often of 1-2 orders of 

magnitude, in reported values. This research investigates the accuracy of indirect 

methods requiring less experimentation and allowing for prediction of physicochemical 

properties. 

Biodegradation  

Biodegradation greatly influences the persistence, fate, and toxicity potential of 

most organic pollutants. Biodegradation is a complex process involving action of 

microbial consortia on multi-component substrates. Biodegradation by natural microbial 
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populations is one of the main mechanisms by which PAHs are eliminated from the 

environment (NRC, 2003). Also, biodegradation is an important clean-up technology 

applicable to organic wastes and contaminated sites. Better knowledge of the kinetics 

and extent to which PAHs are biodegraded, as well as the ecology of PAH-degrading 

microorganisms, could enhance our understanding of the environmental fate of PAHs 

and lead to the implementation of effective detoxification strategies. 

Many microorganisms are capable of degrading PAHs as energy and carbon 

sources or cometabolically (Atlas, 1995). A step necessary in all catabolic pathways is 

the cleavage of aromatic rings. Aerobic catabolism of PAHs by bacteria begins with the 

oxygenation of an aromatic ring or alkyl-side chain. In most cases these reactions are 

catalyzed by dioxygenases (Gibson and Parales, 2000). Dioxygenases are versatile in 

catalyzing a wide range of catabolic reactions and are utilized by a variety of 

microorganisms, as presented in the University of Minnesota Biocatalysis 

/Biodegradation Database (UMBBD, 2005). 

While biochemical reactions are crucial, biodegradation of PAHs in nature or 

engineered systems is also governed by a number of environmental conditions including 

the presence of electron acceptors and microorganisms capable of degrading PAHs. 

Anaerobic biodegradation of PAHs is possible (Coates et al., 1997), but uncommon and 

slow compared to aerobic degradation. Under aerobic conditions oxygen acts as direct 

reactant in ring destabilization and as terminal electron acceptor. This research addresses 

aerobic degradation only. Certain microorganisms are particularly competent in 

degrading PAHs. Members of the genus Sphingomonas have been recognized for their 

ability to degrade a wide range of aromatic hydrocarbons including certain five-ring 

PAHs (Mueller et al., 1990). A phylogenetic comparison of PAH-degrading bacteria 

from geographically diverse soils indicated that sphingomonads are common in 

creosote- and fuel oil-contaminated soils (Mueller et al., 1997). Despite their unique 

abilities and ubiquity, sphingomonads have been barely characterized in terms of 

biodegradation kinetics. The kinetics of PAH biodegradation by Sphingomonas 
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paucimobilis strain EPA505 and its ability to utilize individual PAHs as sole energy and 

carbon sources are investigated in this research.  

Microbial kinetics relate the rates of substrate uptake to the rates of microbial 

growth. Microbial kinetics are important in determining the persistence of PAHs in the 

environment and the extent of their removal in engineered systems. Despite their 

importance, a review of the literature reveals the following inadequacies: (i) testing often 

excludes alkylated PAHs; (ii) kinetic measurements are often limited to the calculation 

of simplistic and system-specific quantities, e.g., percent degradation or first-order 

degradation coefficients; and (iii) measurement of kinetics in complex mixtures, e.g., 

creosote or petroleum, neglects interaction effects, whereas mathematical modeling of 

mixture degradation is very limited for specified mixtures. In addition, kinetic 

experiments are often performed under undefined kinetic conditions (Kovárová-Kovar 

and Egli, 1998) or do not account for other potential rate-determining processes, e.g., 

bioavailability and mass transfer from solid phases, resulting in wide ranges in reported 

kinetic parameter values (for example, see Aronson et al., 1998). This research addresses 

the above issues by: testing degradation of both parent and methylated PAHs; applying 

standard microbial kinetic models, e.g., the Monod and Andrews models and calculating 

the uncertainties in the estimates of the kinetic coefficients; applying mechanistic 

interaction models, e.g., competitive interaction model, among others; conducting 

kinetic experiments under extant conditions (Grady et al., 1996); and eliminating or 

accounting for bioavailability constraints influencing biodegradation kinetics. This 

approach has resulted in a consistent and reproducible set of biokinetic coefficients 

reflecting the effects of substrate molecular structure on the rates of PAH 

biotransformation and allowing for the development of quantitative structure 

biodegradability relationships (QSBRs). In addition, use of standard interaction models 

and well-defined PAH mixtures can allow for a mechanistic and quantitative explanation 

of mixture effects. 
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LFERs and QSARs 

Due to the existence of a large number of PAHs it is impossible to 

experimentally test properties and behavior for all PAHs of concern. Thus, developing 

predictive models would be very beneficial. LFERs and QSARs can predict 

physicochemical properties and biological activities of PAHs based on limited 

experimental data. They can also offer insight into the molecular characteristics, 

properties, and processes that are responsible for the observed properties and behavior of 

PAHs.  

An LFER is a relationship describing the change in the shapes of the potential 

energy surfaces of a reaction as a function of the change in a similar standard process 

(Williams, 2003). In terms of the Gibbs free energy, this relationship can be written as: 

                                                           ΔG = aΔGs + b                                                  (1.1) 

where ΔG is the Gibbs free energy change for the process of interest, ΔGs is the Gibbs 

free energy change for a similar standard process, and a and b are linear regression 

coefficients. The slope a is also known as the similarity coefficient. Note that the 

relationship refers to a single compound but the regression can be applicable to more 

than one homologue. Given the relationship between ΔG of a reaction and the 

equilibrium constant, K, Eq. 1.1 can be written as follows: 

                                           logK = a1logKs + b1                                               (1.2) 

where Ks is the equilibrium constant of the standard process. Other classes of LFERs 

include (Williams, 2003):  

                                            logk = a2logKs + b2                                               (1.3) 

                                            logk = a3logks + b3                                                (1.4) 

where k is a rate coefficient and ks is the rate coefficient for a standard process. LFERs 

are routinely used for the estimation of physicochemical properties by establishing 

relationships between the retention time in a chromatographic column and a 

physicochemical property based on a set of reference compounds. The suitability of 

high-pressure liquid chromatography (HPLC) for the estimation of physicochemical 

properties involving liquid phases, e.g., the octanol/water partition coefficient and 
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solubility, has been demonstrated (Veith and Morris, 1978; Finizio et al., 1997). Gas 

chromatography (GC) has been used to estimate physicochemical properties for the 

gaseous phase, e.g., the vapor pressure (Fischer et al., 1992; Kurz and Ballschmiter, 

1999). The same approach is tested in this research in estimating physicochemical 

properties for methylated naphthalenes. LFERs are closely related to QSARs. The 

Hammett equation, of the form of Eq. 1.2, provided the mechanistic basis for the 

development of the QSAR methodology by Hansch and Fujita (1964).  

A QSAR is a multivariate relationship between a set of n 2D and 3D molecular 

descriptors, D, and a biological activity, BA. In most cases QSARs are linear: 

                                            BA = d0 + d1D1 + d2D2 + … + dnDn                                  (1.5) 

where coefficients d represent multiple regression coefficients. Molecular descriptors 

quantify the structure, properties, and other features of molecules. The general QSAR 

theory introduced three major descriptor types: electronic, steric, and hydrophobic 

(Hansch and Leo, 1995). Biological activity pertains to an aspect of a specific and 

uniform biological function that is quantifiable and related to ΔG, i.e., standard 

equilibrium constants and rate constants. Examples include Michaelis-Menten 

coefficients, inhibition coefficients, biochemical equilibrium constants, and toxicity 

coefficients. QSAR development is based on a set of reference compounds, or a training 

set, with accurately known biological activity values. The essence of QSAR is the 

prediction of biological activity based on the values of molecular descriptors, allowing 

quantitative and mechanistic interpretation of the underlying biological process. 

Attempts to construct QSBRs have been made as early as 1966 (Alexander and 

Lustigman, 1966); however, QSBRs are scarce compared to other types of QSAR, e.g., 

for toxicity. No QSBRs could be found for PAHs in the literature; therefore, this 

research examines their feasibility. 

RESEARCH OBJECTIVES 

The overall goal of this research was to develop models describing 

physicochemical properties and biodegradability of PAHs. The specific objectives, 

corresponding to the four experimental chapters of this dissertation, were the following: 
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1. To develop and evaluate LFERs for the aqueous solubilities, octanol/water 

partition coefficients, and vapor pressures of methylated naphthalenes based on 

chromatographic retention data.  

2. To measure extant biodegradation rate coefficients for individual unsubstituted 

and methylated PAHs in a consistent manner capturing the effects of substrate 

molecular structure on kinetics; to determine which of the PAHs can serve as 

sole energy and carbon sources. 

3. To develop QSBRs for biodegradation rate and microbial growth coefficients and 

to evaluate the relationships on a statistical and mechanistic basis; to determine 

the most important molecular descriptors explaining kinetics and to identify the 

rate-limiting process in biodegradation.  

4. To investigate biodegradation kinetics in binary and ternary mixtures of PAHs; to 

apply standard mechanistic models to kinetic data and to make inferences about 

receptor-ligand interactions based on model fit. 
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CHAPTER II 

ESTIMATION OF SELECTED PHYSICOCHEMICAL PROPERTIES FOR 

METHYLATED NAPHTHALENES* 

 

OVERVIEW 

Liquid aqueous solubility, Sw,L, octanol/water partition coefficients, Kow, liquid 

vapor pressure, Pv,L, and Henry’s law constants, Hc, were estimated for 20 methylated 

naphthalenes consisting of monomethyl to tetramethyl homologues. Linear free energy 

relationships (LFERs) were developed for the estimation. Chromatographic retention 

measurements were conducted for eleven reference polycyclic aromatic hydrocarbons 

(PAHs) and regressions were fit between the retention indices and the physicochemical 

properties. A high-pressure liquid chromatography (HPLC) octadecylsilyl column with 

acetonitrile/water eluent was used for the estimation of Sw,L and Kow. Two gas 

chromatography (GC) columns, the HP5-MS and the more hydrophobic HP-1, were 

tested for the estimation of Pv,L. Measured retention indices for the methylated 

naphthalenes were entered to the regression equations to calculate the physicochemical 

properties of these compounds. Available literature values were used for comparison and 

validation. The method accurately estimated physicochemical properties. Estimated Sw,L 

and Pv,L decreased with the number of methyl groups, while Kow increased. There was no 

obvious relation between Hc and the number of methyl groups. LogSw,L ranged from 0.88 

for 1,2,5,6-tetramethylnaphthalene to 2.27 for 1-methylnaphthalene (mmol m-3). LogKow 

ranged from 3.89 for 1-methylnaphthalene to 4.95 for 1,2,5,6-tetramethylnaphthalene. 

LogPv,L ranged from -0.98 for 1,2,5,6-tetramethylnaphthalene to 0.79 for 2-

methylnaphthalene (Pa). LogHc ranged from 1.03 for 1,4,5-trimethylnaphthalene to 1.73 

for 2,6-dimethylnaphthalene (Pa m3 mol-1). There were no apparent effects of GC 

column hydrophobicity on the accuracy of the estimates. Estimates of Sw,L and Kow based 

on GC retention indices were not as accurate as those based on HPLC. Comparison of 

                                                 
*Reprinted from Chemosphere, Vol. 52, P. Dimitriou-Christidis, B.C. Harris, T.J. McDonald, E. Reese, 
R.L. Autenrieth, Estimation of selected physicochemical properties for methylated naphthalene 
compounds, Pages 869-881, Copyright 2003, with permission from Elsevier. 
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the estimated values with values predicted by EPIWIN indicated that this software is 

useful in performing order-of-magnitude predictions of physicochemical properties.  

INTRODUCTION 

Physicochemical properties provide an understanding of the transport and fate of 

organic pollutants and allow a variety of environmental models to predict media-specific 

distribution of the pollutants in the environment (air, water, soil/sediment, and biota). 

Physicochemical properties are important in pollutant transport and fate modeling, risk 

assessment, and biodegradation studies. For example, the octanol/water partition 

coefficient, an indicator of hydrophobicity, is used to estimate bioconcentration factors 

(Veith et al., 1979). Furthermore, aqueous solubility greatly affects biodegradability of 

organic compounds in the environment (Leahy and Colwell, 1990). 

 
 
 

 
 

Fig. 2.1. Structure and ring numbering of naphthalene. 
 
 
 
Naphthalene is an aromatic hydrocarbon consisting of two fused rings with a 

total of ten carbon atoms. Fig. 2.1 shows the planar structure of naphthalene and its ring 

numbering. Naphthalene and its family of methylated homologues are common 

components of complex mixtures of PAHs such as crude oil, coal tar, gasoline, cigarette 

smoke, diesel engine exhaust, among other sources. Methylated naphthalenes are 

reported to occur in crude oil with up to six methyl substituents and are ubiquitous 

constituents of sedimentary organic matter (van Aarssen et al., 1999). Production 

capacity of naphthalene in the United States was estimated at 159,000 metric tons in 

1992 (SRI International, 1992). Naphthalene has been identified in at least 536 of the 
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1408 hazardous waste sites proposed for inclusion in the National Priority List (ATSDR, 

1994). The two monomethylated naphthalenes, 2-methylnaphthalene and 1-

methylnaphthalene, have been identified in at least 328 of the sites. Naphthalene 

contamination of up to 46,000 mg/kg is reported in the soils and sediments at these sites. 

Naphthalene has a relatively high volatility compared to other PAHs, which may explain 

its widespread distribution in the environment. 

There is considerable toxicological interest in naphthalene and its substituted 

homologues because of widespread human exposure and the potential formation of toxic 

and carcinogenic metabolites (Wilson et al., 1996). Naphthalene toxicity to humans can 

be expressed as hemolytic anemia in children and adults. Higher incidence of both 

cataracts and laryngeal tumors has been reported in workers in the naphthalene chemical 

industry (Wilson et al., 1996). Little to no toxicity data is available on substituted 

naphthalene compounds.  

In this paper the aqueous solubilities, octanol/water partition coefficients, vapor 

pressures, and Henry’s law constants were estimated for 20 members of the naphthalene 

family including mono- through tetramethylated homologues. These four 

physicochemical properties describe partitioning of the compounds of interest in air, 

water, and biota. Among other applications, they can be used to quantify risk of 

exposure and optimize detoxification efforts, such as bioremediation.  

Physicochemical properties can be measured directly using pure compounds and 

analytical methods dictated by the definition of a property. For example, the shake-flask 

and slow-stirring methods are commonly used for measurement of Kow. However, some 

characteristics of hydrophobic compounds, e.g., low aqueous phase concentrations and 

slow equilibration between phases, have been reported to be responsible for widespread 

discrepancies in reported values (Karickhoff and Brown, 1979). A literature review of on 

some well-studied compounds reveals wide ranges, often of 1-2 orders of magnitude, in 

reported values. Chromatographic methods use mixtures of compounds of much lower 

concentrations to estimate physicochemical properties. These methods are generally 

accurate and, because they are indirect, fast, and inexpensive.  
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The chromatographic approach establishes LFERs between the retention time 

and physicochemical properties. The approach is based on the assumption that transfer 

between the stationary and mobile phases can be expressed as a chemical equilibrium 

and the free energy of the equilibrium is related to the retention time (Snow, 1996). 

Chromatographic retention measurements are conducted for a set of reference 

compounds with known physicochemical properties and linear regressions are fitted 

between the retention times and the values of the physicochemical properties. The 

resulting LFERs can then be used to estimate physicochemical properties of other 

similar compounds given their measured retention times. The suitability of HPLC has 

been demonstrated for the estimation of physicochemical properties involving liquid 

phases, e.g., Kow and Sw,L (Veith and Morris, 1978; Finizio et al., 1997). GC has been 

used for the estimation of physicochemical properties involving gaseous phases, e.g., 

Pv,L (Fischer et al., 1992; Kurz and Ballschmiter, 1999). In this study, HPLC was used to 

estimate Kow and Sw,L, while GC to estimate Pv,L. The chromatographic technique holds 

promise for determining physicochemical behavior in the absence of direct 

measurements. For complex mixtures consisting of many chemicals, some of which may 

not be fully characterized for physicochemical, biological, and toxicological behavior, 

this approach provides an easy and accurate alternative for estimating properties. 

MATERIALS AND METHODS 

Chemicals  

Naphthalene is abbreviated as NAP. Methylated naphthalenes with 1, 2, 3, and 4 

methyl substituents are abbreviated as MNAP, DMNAP, TMNAP, and TeMNAP, 

respectively. The number in front of the acronym specifies the position of the methyl 

groups on the carbon skeleton (Fig. 2.1). For example, 146TMNAP corresponds to 

1,4,6-trimethylnaphthalene. NAP, 1MNAP, 15DMNAP, 16DMNAP, 17DMNAP, 

23DMNAP, 26DMNAP, and 27DMNAP were purchased from Alfa Aesar (Ward Hill, 

MA). 2MNAP, 12DMNAP, 13DMNAP, 14DMNAP, 18DMNAP, 124TMNAP, 

137TMNAP, 145TMNAP, 146TMNAP, 236TMNAP, 245TMNAP, 1256TeMNAP, and 

1467TeMNAP were purchased from Chiron AS (Trondheim, Norway). The EPA 610 
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PAH Mix, used as the mixture containing the reference PAHs, was purchased from 

Supelco (Bellefonte, PA). N-phenylalkanes (C1-C10) were purchased from Sigma 

Aldrich (St. Louis, MO); C11 (Undecylbenzene) and C12 (Dodecylbenzene) 

phenylalkanes were purchased from VWR (West Chester, PA). Arabian medium crude 

oil was used as the source of n-alkanes (C11-C33).  

Chromatographic analyses 

GC measurements were conducted on a HP 5890 Series II chromatograph 

interfaced with a HP 5972 mass selective detector (Agilent Technologies Inc., Palo Alto, 

CA). Two non-polar columns were used: the HP-5MS ((5%-Phenyl)-

Methylpolysiloxane, 0.25 mm × 30 m × 0.25 μm, J&W Scientific (Palo Alto, CA)), and 

the HP-1 (Polydimethylsiloxane, 0.25 mm × 30 m × 0.25 μm, J&W Scientific (Palo Alto, 

CA)). The following temperature program was used for both columns: 60 ºC, 7.0 ºC/min, 

225 ºC, 15.0 ºC/min, 300 ºC (11.43 min). The mass spectrometer was operated in the 

selective ion mode (SIM) for the naphthalene compounds. N-alkanes were detected in 

full scan mode using the same temperature program. The compounds were injected three 

times and the retention index for each compound was calculated for each run. The mean 

values from the three runs were used in the regression analyses.  

HPLC analysis was performed on a Finnigan Mat Spectra System (Thermo 

Electron Corporation, San Jose, CA) with an octadecylsilyl SUPELCOSIL LC-PAH 

column (4.6 mm × 25 cm × 5 μm, Supelco (Bellefonte, PA)). The UV6000LP 

photodiode array detector measured peak response at a wavelength of 254 nm. A 

mixture of acetonitrile (ACN) and water at a flow rate of 2.0 mL/min constituted the 

eluent. The percentage of ACN in the mix ramped from 40% to 100% between minutes 

5 and 30 and then stayed at 100% for 20 minutes. Triplicate analyses were performed on 

the compounds and a retention index for each compound was calculated for each run. 

The mean values from the three runs were used in the regression analyses.  

Regression analysis and retention indices 

LFERs can be constructed between the chromatographic retention index (RI) and 

the logarithm of a physicochemical property: 
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Table 2.1 
Measured mean retention indices (RI) on the three chromatography columns (LC-
PAH, HP-5MS, and HP-1), and logarithmic values of Sw,L, Kow, and Pv,L of the 11 
reference PAHs. Reference compounds are listed from low to high molecular
weight (MW). Uncertainty in RI is expressed as one standard deviation from the 
mean. Physicochemical property values are reported at 25 ºC. 
Reference 
Compound MW RIHPLC,LC-PAH RIGC,HP-5MS RIGC,HP-1 logSw,L

a,b logKow
a,b logPv,L

a,b 

        (mmol/m3)  (Pa) 

Naphthalene 128.18 210.16 ± 2.06 1184.04 ± 0.24 1159.35 ± 0.56 2.91 3.30 1.58 
Acenaphthylene 152.20 266.85 ± 0.80 1453.37 ± 0.62 1418.54 ± 0.71 2.68 3.94 -0.26 
Acenaphthene 154.21 333.62 ± 0.48 1488.20 ± 0.18 1455.06 ± 1.28 2.10 3.92 0.22 
Fluorene 166.22 363.89 ± 0.78 1586.39 ± 0.72 1552.98 ± 1.90 1.85 4.18 -0.23 
Phenanthrene 178.24 423.36 ± 1.02 1784.21 ± 1.48 1744.37 ± 0.52 1.38 4.46 -1.26 
Anthracene 178.24 483.55 ± 0.70 1793.42 ± 1.40 1754.97 ± 0.46 1.39 4.45 -0.64 
Fluoranthene 202.26 543.73 ± 0.65 2068.42 ± 1.24 2020.45 ± 0.23 0.83 5.16 -2.19 
Pyrene 202.26 590.09 ± 0.23 2120.64 ± 1.04 2069.70 ± 0.16 0.71 4.88 -2.34 
Chrysene 228.29 792.55 ± 1.45 2471.68 ± 2.97 2409.82 ± 1.24 -0.04 5.81 -4.07 
Benzo[k]fluoranthene 252.32 982.40 ± 1.13 2789.11 ± 2.13 2722.00 ± 1.17 -0.61 6.11 -5.38c 

Benzo[a]pyrene 252.32 1026.95 ± 0.43 2872.45 ± 3.49 2798.00 ± 1.27 -0.67 6.13 -4.67c 

a From Howard and Meylan (1997). 
b From SRC (2005). 
c From Mackay et al. (1992). 

 
 
 
                                                            logK = aRI + b                                                   (2.1) 

where K is a physicochemical property of interest. The values of the linear coefficients a 

and b are obtained from the regression with the reference compounds, a set of 

compounds with known K values and experimentally measured RI values. Estimation of 

Pv,L as a linear function of a retention parameter on a GC column, as described by Eq. 

2.1, was introduced by Fischer et al. (1992). This approach is one of several suggested 

for nonpolar columns. Five of these methods, including the one used in this study, are 

compared in Koutek et al. (2001) for a range of compounds. The method by Fisher et al. 

(1992) and two other methods resulted in the lowest average percent error when the 

accuracy of the five models was tested against literature values. Another reason for using 

this method in this study was uniformity, since Eq. 2.1 is also used for the estimation of 

Sw,L and Kow. Table 2.1 provides a list of the 11 reference compounds used in this study 

and their calculated RI values on the HPLC (LC-PAH) and the two GC columns (HP-5-
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MS and HP-1). The physicochemical properties of the reference compounds are reported 

at 25 ºC.  

Development and validation of LFERs required accuracy in physicochemical 

property values for the reference compounds and for methylated naphthalenes, where 

available. Compilations considered and evaluated for reliability as sources of 

physicochemical property values included Howard and Meylan (1997) and its on-line 

database version SRC (2005), Mackay et al. (1992), Karcher (1985), LaGrega et al. 

(2001), and WHO (1998). Howard and Meylan (1997) and SRC (2005), and Mackay et 

al. (1992) contained the most extensive collection of values for the compounds of 

interest. Howard and Meylan (1997) and SRC (2005) provide values for a larger number 

of methylated naphthalenes. The disadvantage of these sources is that they provide one 

value for each property and the literature reference but no information on the exact 

technique used to determine the property value. Nevertheless, they make a distinction 

between experimentally determined and estimated or extrapolated values. Mackay et al. 

(1992) reports values for a smaller number of compounds of interest, yet it provides a 

series of values by different studies as well as the technique used for the determination 

of each value. Accurate values are easily discernible when different techniques resulted 

in similar values. Single values from Howard and Meylan (1997) and SRC (2005) were 

compared with accurate values from Mackay et al. (1992) and the differences were 

found to be minimal. For reasons of consistency, physicochemical property values for 

the reference compounds and the naphthalene compounds, when available, were all 

obtained from Howard and Meylan (1997) and SRC (2005), unless otherwise stated. 

Only experimental values were considered; extrapolated or estimated values were 

disregarded. Aqueous solubilities and vapor pressures were converted to liquid aqueous 

solubilities and liquid vapor pressures respectively, as a common basis for calculations 

and comparison. Conversion was necessary because a solid solute has lower solubility 

and vapor pressure than the same solute in a hypothetical liquid state under the same 

conditions. Solid-liquid fugacity factors f s/f l were used for the conversion. Fugacity 

factors were calculated using the following equation (Prausnitz et al., 1986): 



 
18

                                          ln 1
l fus

m
s

g m

Tf h
R T Tf
Δ ⎛ ⎞= −⎜ ⎟

⎝ ⎠
                                           (2.2) 

where Δhfus is the enthalpy of fusion at the melting temperature, Tm, T is the system 

temperature, and Rg is the ideal gas constant. No conversion was required for liquid 

solutes, since the fugacity factor for liquids is 1. Fugacity factors were computed using 

data from Daubert and Danner (1989) when available; otherwise fugacity factors from 

Mackay et al. (1992) were used.  

Retention time can be expressed in a normalized manner as the retention index, 

RI. RIGC, the retention index in temperature programmed GC, was calculated as (van den 

Dool and Kratz 1963): 

                                                  1
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−
                                         (2.3) 

where tx is the retention time of x, the compound of interest, and tn and tn+1 are the 

retention times of the two n-alkanes bracketing x with carbon numbers n and n+1, 

respectively. The n-alkanes were used as the retention index markers for GC 

measurements. To calculate RI from HPLC measurements, a similar equation was used 

(Kurz and Ballschmiter 1999): 

                                           1
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−
                                  (2.4) 

A mixture of n-phenylalkanes was selected as retention index markers for HPLC 

measurements.  

RESULTS 

RI generally increased with the molecular weight of the reference compounds. 

Average RI values for each reference compound on each chromatography column are 

presented in Table 2.1. For the analysis, 10 n-phenylalkanes, from C1 (toluene) to C10 

(decylbenzene), were used as the retention index markers for the HPLC-based RIs. 

Nineteen (19) n-alkanes, from n-undecane to n-heneicosane, were used to calculate the 

GC-based RIs. LFERs between RIs and the logarithm of physicochemical properties are 

depicted in Fig. 2.2 for the reference compounds. Naphthalenes with known literature
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Fig. 2.2. Linear regressions between the retention indices of the reference compounds 
and the logarithm of their physicochemical properties. The reference compounds (●) 
were used to establish the linear models; literature values for methylated naphthalenes 
(□) were superimposed for evaluation of the models. Horizontal error bars appear in the 
graphs but they are narrower than the symbols.  
 
 
 
values are also depicted for model evaluation. Horizontal error bars generated from 

triplicate chromatographic measurements are depicted but they are insignificantly small. 

LFERs regression equations are presented below. Uncertainties in regression coefficients 

correspond to the margins of error at the 95% confidence level. The correlation 
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coefficient, r, and the coefficient of determination, r2, were calculated for each equation 

as measures of fit. The F-statistic was used to test the significance of r2.  

 

logSw,L = (- 0.00433 ± 0.00052) · RIHPLC,LC-PAH + (3.510 ± 0.393)                               (2.5) 

 n = 11, r = - 0.981, r2 = 0.962, F = 230.0 

logKow = (0.00333 ± 0.00072) · RIHPLC,LC-PAH + (2.938 ± 0.351)                                  (2.6) 

 n = 11, r = 0.975, r2 = 0.950, F = 170.2 

logPv,L = (- 0.00391 ± 0.00068) · RIGC,HP5-MS + (5.934 ± 0.981)                                   (2.7) 

 n = 11, r = - 0.987, r2 = 0.974, F = 336.5 

logPv,L = (- 0.00402 ± 0.00070) · RIGC,HP-1 + (5.972 ± 0.987)                                      (2.8) 

 n = 11, r = - 0.987, r2 = 0.974, F = 335.7 

 

The values of r indicate valid linear relationships between RIs and the 

physicochemical parameters of interest. The high r2 values (0.950 – 0.974) and their 

significance indicate the validity of the linear relationship between the RIs and 

physicochemical properties. Given the compound diversity in the training set and the 

wide range of RI observed, Eq. 2.5 through 2.8 can be used for the estimation of 

unknown physicochemical properties for various PAHs; in this study they were used for 

the estimation methylated naphthalenes. To estimate Henry’s law constants the 

following equation was used (Mackay et al., 1992): 

           Hc = Pv,L / Sw,L                                                    (2.9) 

This equation is valid only for sparingly-soluble chemicals, e.g., PAHs. 

Estimated physicochemical property values are presented in Table 2.2 with 

uncertainties expressed as the 95% margins of error, E95%, from the regression analysis. 

Literature values for naphthalenes, when available, are also provided for comparison. 

Calculation of Pv,L and Hc, used only the data from the HP5-MS column, as it generated 

values closer to literature values than the HP-1 column. Selection of HP5-MS over the 

HP-1 column is further justified in the DISCUSSION section. Generally, Sw,L and Pv,L 

decreased with the number of methyl groups. LogSw,L ranged from 0.88 for
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Table 2.2  
Estimated physicochemical property values of 20 methylated naphthalenes.
Uncertainties are expressed as the margin of error at the 95% confidence level.
Literature values, Lit., are provided for comparison. Non-available literature values 
are marked as NA. Solubility and vapor pressure are expressed as liquid solubility and
liquid vapor pressure. All physicochemical properties are reported at 25 ºC. 

          logSw,L  
     (mmol/m3)                logKow              logPv,L 

               (Pa) 
              logHc 
        (Pa m-3 mol-1)

Compound Estim. Lit.a, b           Estim. Lit.a, b          Estim. Lit.a, b          Estim. Lit.a, b

1MNAP 2.27 ± 0.24 2.26 3.89 ± 0.21 3.87 0.72 ± 0.40 0.95 1.45 ± 1.87 1.72 

2MNAP 2.18 ± 0.23 2.30 3.96 ± 0.21 3.86 0.79 ± 0.40 0.93 1.61 ± 1.77 1.72 

12DMNAP 1.85 ± 0.20 NA 4.21 ± 0.18 4.31 0.15 ± 0.35 0.23 1.29 ± 1.51 NA 

13DMNAP 1.78 ± 0.20 1.71 4.27 ± 0.18 4.42 0.29 ± 0.36 NA 1.51 ± 1.42 NA 

14DMNAP 1.83 ± 0.20 1.86 4.22 ± 0.18 4.37 0.20 ± 0.35 NA 1.37 ± 1.48 NA 

15DMNAP 1.84 ± 0.20 1.80 4.22 ± 0.18 4.38 0.20 ± 0.35 NA 1.35 ± 1.49 1.55 

16DMNAP 1.77 ± 0.20 NA 4.27 ± 0.17 NA 0.25 ± 0.36 0.29 1.50 ± 1.41 NA 

17DMNAP 1.88 ± 0.20 NA 4.19 ± 0.18 4.44 0.29 ± 0.36 NA 1.41 ± 1.52 NA 

18DMNAP 1.92 ± 0.21 NA 4.16 ± 0.18 4.26 0.06 ± 0.34 NA 1.14 ± 1.58 NA 

23DMNAP 1.81 ± 0.20 1.90 4.25 ± 0.18 4.40 0.20 ± 0.35 -0.04 1.40 ± 1.45 1.97 

26DMNAP 1.62 ± 0.19 1.93 4.39 ± 0.17 4.31 0.35 ± 0.36 NA 1.73 ± 1.26 NA 

27DMNAP 1.64 ± 0.19 NA 4.37 ± 0.17 NA 0.34 ± 0.36 NA 1.70 ± 1.28 NA 

124TMNAP 1.49 ± 0.18 NA 4.49 ± 0.16 NA -0.36 ± 0.31 NA 1.15 ± 1.18 NA 

137TMNAP 1.63 ± 0.19 NA 4.38 ± 0.17 NA -0.14 ± 0.32 NA 1.22 ± 1.31 NA 

145TMNAP 1.51 ± 0.18 1.46c 4.48 ± 0.16 4.90 -0.46 ± 0.30 NA 1.03 ± 1.20 NA 

146TMNAP 1.41 ± 0.18 NA 4.55 ± 0.16 NA -0.22 ± 0.32 NA 1.36 ± 1.10 NA 

236TMNAP 1.21 ± 0.17 NA 4.70 ± 0.15 4.73 -0.24 ± 0.32 NA 1.55 ± 0.89 NA 

245TMNAP 1.45 ± 0.18 NA 4.52 ± 0.16 NA -0.37 ± 0.31 NA 1.17 ± 1.14 NA 

1256TeMNAP 0.88 ± 0.17 NA 4.95 ± 0.16 NA -0.98 ± 0.27 NA 1.13 ± 0.61 NA 

1467TeMNAP 1.16 ± 0.17 NA 4.74 ± 0.15 NA -0.78 ± 0.28 NA 1.06 ± 0.87 NA 
a From Howard and Meylan (1997). 
b From SRC (2005). 
c From Mackay et al. (1992). 

 
 
 

1256TeMNAP to 2.27 for 1MNAP. LogPv,L ranged from –0.98 for 1256TeMNAP to 

0.79 for 2MNAP. In contrast, Kow increased with the number of methyl groups. LogKow 

ranged from 3.89 for 1MNAP to 4.95 for 1256TeMNAP. No relation was evident 

between Hc and RI, or the number of methyl groups. For example logHc was 1.61 for 

2MNAP and 1.55 for 236TMNAP. Additionally, logHc varied only 0.70 units between 
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the minimum (1.03 for 145 TMNAP) and the maximum value (1.73 for 26DMNAP). 

E95% values were small for Sw,L and Kow, larger for Pv,L, and significantly larger for Hc. 

Values varied from 0.17 to 0.24 units for logSw,L and from 0.15 to 0.21 units for logKow. 

E95% was larger for logPv,L ranging from 0.27 to 0.40 units. E95% for logHc exceeded 

those for Pv,L, ranging from 0.61 to 1.87 log units. This is due to propagation of both Sw,L 

and Pv,L errors. The available literature values were contained within the 95% confidence 

intervals for the estimated values. The only exceptions were 26DMNAP for Sw,L and 17 

DMNAP and 145TMNAP for Kow. Generally, the mean estimated values were 

comparable to the literature values. The average absolute difference between estimated 

and predicted values and the maximum difference (in parentheses) for logSw,L, logKow, 

logPv,L, and logHc were 0.09 (–0.31), 0.14 (–0.42), 0.14 (0.24), and 0.29 (–0.57), 

respectively. The low average absolute difference from the literature values indicates 

that the models accurately estimated physicochemical properties. 

DISCUSSION 

Validation of physicochemical property estimates 

A similar study (Abraham et al., 2005) used the Abraham linear solvation energy 

relationships (LSERs) (Eq. 2.10 and 2.11) to predict physicochemical properties for the 

naphthalenes investigated in this research and other alkylated naphthalenes. The two 

solvation equations were of the form (Abraham et al., 2005): 

                                         K1 = c1 + e1Es + s1Ss + a1As + b1Bs + vVs                           (2.10) 

                                         K2 = c2 + e2Es + s2Ss + a2As + b2Bs + lLs                            (2.11) 

where K1 and K2 represent a set of solute properties in a condensed and gas-condensed 

systems, respectively, Es, Ss, As, Bs, Vs, and Ls are chemical descriptors, and c, e, s, a, b, 

v, and l are multiple regression coefficient determined from a set of reference 

compounds. It was found that the estimates from Eq. 2.10 and 2.11 were essentially 

identical to those found in this study, even for Hc, and with experimental observations, 

where available. In general, predictions by Eq. 2.10 and 2.11 were characterized by 

lower uncertainties compared to the estimates from the chromatographic method because 

they included only predictive and not experimental error (Abraham et al., 2005). 
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Selection of reference compounds 

Accuracy in estimated values using chromatographic LFERs depends on 

appropriate selection of reference compounds. A set of non-heterocyclic, unsubstituted 

PAHs used in EPA Method 550.1 for the determination of PAH concentrations in 

drinking water (Hodgeson et al., 1990) were selected as the reference compounds. The 

set was selected because it is readily available as a standard mixture and because it 

contains a broad range of PAHs from naphthalene to benzo[g,h,i]perylene. Despite the 

fact that compounds of interest were substituted naphthalenes, selection of unsubstituted 

compounds for the reference set was justified by the suitable selection of the 

chromatography columns. Separation in a chromatography column is determined by the 

Gibbs free energy. The quantity, enthalpy or entropy, having the largest contribution to 

the free energy of solute transfer to the stationary phase is the driving force of the 

separation. Alkylated PAHs have moieties that have rotational degrees of freedom. Thus, 

their entropies of transfer are different from those of unsubstituted PAHs. However, it is 

believed that the nonpolar character of the three columns used in this study favored 

enthalpic-driven partitioning. Separation was based on the size and geometry of the 

solutes (enthalpic contribution) and not on entropies of mixing/dissolution (entropic 

contribution). Wysocki (2001) investigated the thermodynamic force of separation of 

alkylbenzenes on a C18 liquid chromatography stationary phase with acetonitrile and 

water as the mobile phase. It was found that the partitioning was enthalpically driven. 

Of the 16 PAHs in the EPA method, 11 were selected as reference compounds. 

Indeno[1,2,3-cd]pyrene was excluded because literature data was available only for 

aqueous solubility and not for any other properties. Benz[a]anthracene, 

benzo[b]fluoranthene, dibenzo[a,h]anthracene, and benzo[g,h,i]perylene were also 

excluded as influence points in the regression analysis. Their leverage values and Cook’s 

distances were within acceptable ranges for non-outliers. However, they exhibited 

considerable unstandardized residuals compared to the other data points resulting in 

lower coefficients of determination and broad confidence intervals of estimated 

properties. Further removal of individual data points from the regressions would result in 
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improved goodness of fit; however, some deviation from the perfect fit was to account 

for unexpected property variability within the naphthalene family. It is noted that the 

number of reference compounds used in this study is greater than 6, the minimum 

number proposed by Finizio et al. (1997). Furthermore, besides structural differences 

between naphthalenes and larger PAHs, residual analysis and values of influence 

statistics did not justify removal of compounds such as chrysene, benzo[k]fluoranthene, 

and benzo[a]pyrene. Due to the broad range of PAH properties described by the models 

in this study, the same equations can be used for estimation of physicochemical 

properties of other PAHs or substituted PAH families, e.g. phenanthrene, fluorene, 

anthracene, and chrysene.  

Chromatography performance and column selection  

Instrument performance also influences the accuracy of the results. Both 

chromatography instruments were consistent between runs, resulting in small standard 

deviations in RI (Table 2.1). Measurement precision was also evident by the small 

horizontal error bars in Fig 2.2. Precision was assured by the use of retention indices 

instead of retention times or capacity factors used in similar studies. The RI can be 

normalized to any changes that affect the retention time, such as temperature changes 

and column degradation.  

Accuracy in the results also depends on the choice of chromatography column. In 

HPLC analysis, only the LC-PAH column was used because this is the standard for the 

separation and quantification of the given set of reference compounds (EPA Method 

550.1). Two non-polar columns were used in GC/MS analysis: the HP5-MS column and 

the more hydrophobic HP-1 column. The second column was chosen to investigate the 

proposition that accuracy in physicochemical property estimates improves with column 

hydrophobicity (Kurz and Ballschmiter, 1999). Both columns generated similar 

relationships between RI and Pv,L (Eq. 2.7 and 2.8) and the same r2 of 0.974. A 

comparison of the estimated values from the two columns with literature values is 

presented in Table 2.3. The difference from the literature values, expressed as the 

estimated minus the literature value, is also calculated. Uncertainty values in Table 2.3
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Table 2.3 
Comparison between estimated vapor pressure values from the two GC
columns, HP5-MS and HP-1. Uncertainties represent the margins of error at 
the 95% confidence level. Literature values (Lit.) are provided as the basis for 
comparison. Non-available literature values are marked as NA. The last two 
columns calculate the difference from the literature value. All physicochemical 
properties are reported at 25 ºC. 

         HP5-MS
         column 

         HP-1  
        column Lit.a,b Difference 

Compound             logPv,L 
              (Pa) 

          logPv,L 
            (Pa) 

logPv,L
(Pa) 

HP5-MS − Lit. 
(Pa) 

 HP-1 − Lit. 
       (Pa) 

1MNAP 0.72 ±  0.40 0.70  ±  0.40 0.95 -0.23 -0.252 
2MNAP 0.79 ±  0.40 0.77  ±  0.40 0.93 -0.14 -0.16 
12DMNAP 0.15 ±  0.35 0.11  ±  0.35 0.23 -0.08 -0.12 
13DMNAP 0.29 ±  0.36 0.25  ±  0.36 NA NA NA 
14DMNAP 0.20 ±  0.35 0.18  ±  0.35 NA NA NA 
15DMNAP 0.20 ±  0.35 0.16  ±  0.35 NA NA NA 
16DMNAP 0.28 ±  0.36 0.24  ±  0.36 0.29 -0.01 -0.05 
17DMNAP 0.29 ±  0.36 0.25  ±  0.36 NA NA NA 
18DMNAP 0.06 ±  0.34 0.05  ±  0.34 NA NA NA 
23DMNAP 0.20 ±  0.35 0.18  ±  0.35 -0.04 0.24 0.20 
26DMNAP 0.35 ±  0.36 0.32  ±  0.36 NA NA NA 
27DMNAP 0.34 ±  0.36 0.31  ±  0.36 NA NA NA 
124TMNAP -0.36 ±  0.31 -0.40  ±  0.31 NA NA NA 
137TMNAP -0.14 ±  0.32 -0.19  ±  0.32 NA NA NA 
145TMNAP -0.47 ±  0.30 -0.49  ±  0.30 NA NA NA 
146TMNAP -0.23 ±  0.32 -0.27  ±  0.32 NA NA NA 
236TMNAP -0.24 ±  0.32 -0.29  ±  0.32 NA NA NA 
245TMNAP -0.38 ±  0.31 -0.40  ±  0.31 NA NA NA 
1256TeMNAP -0.98 ±  0.27 -1.03  ±  0.27 NA NA NA 
1467TeMNAP -0.78 ±  0.28 -0.84  ±  0.28 NA NA NA 

a From Howard and Meylan (1997). 
b From SRC (2005). 
c From Mackay et al. (1992). 

 
 
 

show that the models developed from the two columns resulted in comparable error 

values for each naphthalene compound. Therefore, preference of one column over the 

other could not be based on statistical significance. Nevertheless, the HP5-MS column 

generated consistently higher Pv,L values than the HP-1 column. Differences from 

literature values are smaller with the HP5-MS column, except for the case of 
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23DMNAP. Literature data is limited for methylated naphthalenes, therefore, it is not 

clear which column provided the most accurate results. Nevertheless, HP5-MS results 

were closer to the literature values and were used in the estimation of Pv,L and Hc 

reported in Table 2.2. 

A similar study (Wang and Wong, 2002) used only gas chromatography to 

estimate vapor pressures, water solubilities, Henry’s law constants and octanol/water 

partition coefficients for polychlorinated-dibenzo-dioxins (PCDDs). Quadratic 

regressions of the form logK = aRI2 + bRI + c were performed, where K is a 

physicochemical property. This methodology was applied in this research to investigate 

how well the GC models can estimate Sw,L and Kow in addition to Pv. A regression 

analysis was performed between the RI on HP5-MS and the logarithms of Sw,L and Kow. 

Two types of regressions were used: quadratic regression, as proposed by Wang and 

Wong (2002), and linear regression, as used in this research. Regression equations are as 

follows for linear (Eq. 2.10) and quadratic (Eq. 2.12) estimates of Sw,L, and linear (Eq. 

2.11) and quadratic (Eq. 2.13) estimates of Kow.  

 

logSw,L = (- 0.00218 ± 0.00064) · RIGC,HP5-MS  + (5.431 ± 0.474)                           (2.10) 

 n = 11, r = - 0.990, r2 = 0.980, F = 450.6 

logKow = (0.00169 ± 0.00031) · RIGC,HP5-MS + (1.439 ± 0.353)                          (2.11) 

 n = 11, r = 0.991, r2 = 0.982, F = 485.1 

log Sw,L = (3.7·10-7 ± 1.9·10-7) · 2
, 5GC HP MSRI − + (-0.00371 ± 0.00078) · , 5GC HP MSRI −  

               + (6.904 ± 0.772)                                                                                          (2.12) 

 n = 11, multiple r = 0.993, r2 = 0.987 

logKow = (-2.6·10-7 ± 1.4·10-7) · 2
, 5GC HP MSRI − + (0.00277 ± 0.00060) · , 5GC HP MSRI −   

              + (0.400 ± 0.590)                                                                                           (2.13) 

 n = 11, multiple r = 0.994, r2 = 0.987 

 

Fits were improved over those of Eq. 2.5 and 2.6. Table 2.4 presents a 

comparison between literature Sw,L and Kow values with those estimated by the GC linear
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Table 2.4 
Comparison of Sw,L and Kow values estimated by the linear and quadratic GC models 
(GClin. and GCquad., respectively) with literature values (Lit.).  

Compound            logSw,L 
        (mmol/m3) 

  Difference 
  (mmol/m3) 

logKow 
 

Difference 
 

    GClin.  
   est. 

  GCquad 
   est. 

   Lit.   GClin. –  
  Lit. 

GCquad. − 
Lit. 

   GClin 
    est. 

  GCquad. 
   est. 

Lit.   GClin. –  
     Lit. 

  GCquad. – 
  Lit. 

1MNAP 2.52 2.61 2.26 0.259 0.352 3.69 3.63 3.87 -0.20 -0.26 
2MNAP 2.56 2.66 2.30 0.253 0.355 3.66 3.59 3.86 -0.30 -0.37 
12DMNAP 2.20 2.22 NA - - 3.94 3.93 4.31 -0.27 -0.28 
13DMNAP 2.28 2.31 1.71 0.567 0.605 3.88 3.85 4.42 -0.39 -0.42 
14DMNAP 2.23 2.26 1.86 0.366 0.393 3.92 3.90 4.37 -0.31 -0.33 
15DMNAP 2.23 2.25 1.80 0.428 0.455 3.92 3.90 4.38 -0.30 -0.32 
16DMNAP 2.27 2.31 NA - - 3.88 3.86 NA - - 
17DMNAP 2.28 2.31 NA - - 3.88 3.85 4.44 -0.31 -0.34 
18DMNAP 2.15 2.16 NA - - 3.98 3.97 4.26 -0.18 -0.19 
23DMNAP 2.23 2.26 1.90 0.328 0.355 3.92 3.90 4.40 -0.33 -0.35 
26DMNAP 2.31 2.35 1.93 0.378 0.422 3.85 3.82 4.31 -0.53 -0.57 
27DMNAP 2.31 2.35 NA - - 3.86 3.83 NA - - 
124TMNAP 1.91 1.88 NA - - 4.16 4.18 NA - - 
137TMNAP 2.04 2.03 NA - - 4.06 4.07 NA - - 
145TMNAP 1.86 1.82 1.46c 0.392 0.354 4.20 4.23 4.90 -0.27 -0.25 
146TMNAP 1.99 1.97 NA - - 4.10 4.11 NA - - 
236TMNAP 1.98 1.96 NA - - 4.11 4.12 4.73 -0.60 -0.59 
245TMNAP 1.91 1.88 NA - - 4.17 4.19 NA - - 
1256TeMNAP 1.57 1.49 NA - - 4.43 4.48 NA - - 
1467TeMNAP 1.68 1.62 NA - - 4.34 4.38 NA - - 

 
 
 
and quadratic models. LogSw,L values from both GC models were consistently greater 

than literature values, as indicated by the positive differences. The mean difference and 

the standard deviation of the difference for the linear and quadratic GC models were 

0.37 ± 0.10 log units and 0.41 ± 0.09 log units, respectively. On the other hand, logKow 

values from both GC models were consistently lower than those from the literature, as 

indicated by the negative difference values. The mean difference and the standard 

deviation of the difference for the linear and quadratic GC models were –0.41 ± 0.17 log 

units and –0.47 ± 0.14 log units. To summarize, both GC models consistently 

overestimated Sw,L while underestimating Kow. Therefore, use of GC to estimate 

physicochemical properties involving liquid phases only is not recommended. In the 
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case of the SUPELCOSIL LC-PAH column, partitioning takes place between the solute 

and an octadecylsilyl (liquid) phase bonded on silica surface. 

 
 
 

Table 2.5 
Physicochemical property values of methylated naphthalenes predicted by EPIWIN
(U.S. EPA and SRC, 2000) and their comparison to the estimated values from the 
present study. Each set of columns reports values predicted by EPIWIN (EPIW.) and
those estimated in the present study (Est.). LogHc was calculated in EPIWIN by both 
the bond (EPIW.-bond) and the group method (EPIW.-group). All values are reported 
at 25 ºC. 
Compound        logKow 

 
       logSw,L 
   (mmol/m3) 

       logPv,L 
         (Pa) 

               logHc 
          (Pa m3/mol) 

 EPIW. Est. EPIW. Est. EPIW.  Est. EPIW.-
bond 

EPIW.-
group Est. 

1MNAP 3.72 3.89 2.46 2.27 0.69 0.72 1.77 1.61 1.45 
2MNAP 3.72 3.96 2.46 2.18 0.76 0.79 1.77 1.61 1.61 
12DMNAP 4.26 4.21 1.98 1.85 0.21 0.15 1.81 1.63 1.29 
13DMNAP 4.26 4.27 1.88 1.78 0.26 0.29 1.81 1.63 1.51 
14DMNAP 4.26 4.22 1.93 1.83 0.14 0.20 1.81 1.63 1.37 
15DMNAP 4.26 4.22 1.92 1.85 0.22 0.20 1.81 1.63 1.35 
16DMNAP 4.26 4.27 1.87 1.77 0.23 0.28 1.81 1.63 1.50 
17DMNAP 4.26 4.19 1.87 1.88 0.23 0.29 1.81 1.63 1.41 
18DMNAP 4.26 4.16 1.92 1.92 0.07 0.06 1.81 1.63 1.14 
23DMNAP 4.26 4.25 1.90 1.81 0.15 0.20 1.81 1.63 1.40 
26DMNAP 4.26 4.39 1.98 1.62 0.34 0.35 1.81 1.63 1.73 
27DMNAP 4.26 4.37 1.98 1.64 0.23 0.34 1.81 1.63 1.70 
124TMNAP 4.81 4.49 1.45 1.49 -0.17 -0.36 1.86 1.66 1.15 
137TMNAP 4.81 4.38 1.45 1.64 -0.19 -0.14 1.86 1.66 1.22 
145TMNAP 4.81 4.48 1.37 1.51 -0.09 -0.47 1.86 1.66 1.03 
146TMNAP 4.81 4.55 1.45 1.41 -0.47 -0.23 1.86 1.66 1.36 
236TMNAP 4.81 4.70 1.52 1.21 -0.17 -0.24 1.86 1.66 1.55 
245TMNAP 4.81 4.52 1.45 1.45 -0.17 -0.38 1.86 1.66 1.17 
1256TeMNAP 5.36 4.95 0.88 0.89 -0.52 -0.98 1.90 1.69 1.13 
1467TeMNAP 5.36 4.74 0.88 1.16 -0.52 -0.78 1.90 1.69 1.06 

 
 
 
Evaluation of the EPIWIN prediction software 

A number of computer programs are available that predict physicochemical 

properties of organic compounds. EPIWIN (Estimations Programs Interface for 

Windows) v3.10 (U.S. EPA and SRC, 2000) is an interface program that executes 10 
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prediction algorithms and presents their output. These algorithms can predict 

physicochemical properties based on simple chemical structure entered as SMILES 

(Simplified Molecular Input Line Entry System) notation. Property values estimated via 

the regression relationships of this study were compared to the values predicted by 

EPIWIN. Of the 10 EPIWIN prediction programs, KOWWIN, WSKOWWIN, 

MPBWIN, and HENRYWIN predict octanol/water partition coefficients, solubilities, 

vapor pressures, and Henry’s law constants, respectively. KOWWIN uses a 

methodology in which a structure is divided into fragments, and coefficient values 

corresponding to each fragment are added together to generate a logKow value (Meylan 

and Howard, 1995). WSKOWWIN uses a simple linear regression equation between the 

octanol/water partition coefficient and solubility to predict logSw (Meylan and Howard, 

1994). MPBWIN estimates solid vapor pressures, Pv,S, through three different methods 

using the boiling point. The program then picks one estimate based on melting point and 

chemical class. HENRYWIN predicts Henry’s law constants using two different 

methods: the bond contribution method and the group contribution method (Meylan and 

Howard, 1991), yielding two separate values.  

Table 2.5 summarizes the physicochemical property values predicted by EPIWIN 

for the methylated naphthalenes. Values estimated in the present study are included to 

allow comparison. Pv,S values from the EPIWIN output were converted to Pv,L using 

fugacity factors. EPIWIN yielded values comparable to the estimates of this study (Table 

2.5). A fundamental difference is that EPIWIN predicted a single value of Kow and Hc for 

all isomers, i.e., naphthalenes with the same number of methyl substituents. EPIWIN 

does not account for molecular structure in its prediction procedure, as captured by the 

chromatographic retention indices. The greater variability in the predicted Sw,L and Pv,L 

values for isomers was due to differences in melting point and boiling point. 

Nevertheless, in the cases of 16DMNAP and 17DMNAP, liquids with similar melting 

points and boiling points, EPIWIN predicted the same value of Sw and Pv for both 

compounds. Use of melting and boiling points in Sw and Pv predictions can account, in 

part, for the effects of structural variation on the property values. Finally, it was found 
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that the Hc values predicted by the group contribution method are closer to the estimated 

values than those by the bond contribution method. 
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Fig. 2.3. Comparison between property values predicted by EPIWIN and values 
estimated via the chromatographic LFERs. Graphs (a) through (d) compare the two set 
of values for logSw,L, logKow, logPv,L, and logHc, respectively. The solid diagonal lines 
have a slope of 1:1. The distance of the two dashed lines from the 1:1 line is equal to the 
average margin of error calculated for the estimated property of interest. 
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A comparison between property values predicted by EPIWIN and those 

estimated in this study is illustrated in Fig. 2.3. The two sets of values, estimated and 

predicted, are plotted in each graph (a through d). A straight line with slope of 1:1 

represents absolute accordance between the two sets. The distance of the two dashed 

lines from the 1:1 line is equal to the average margin of error calculated for the estimated 

property of interest. Average margins of error were calculated from Table 2.2, and were 

equal to 0.19, 0.17, 0.34, and 1.32 units for logSw,L, logKow, logPv,L, and logHc, 

respectively. Only the Hc values predicted by the group contribution method were 

compared to the estimated values. EPIWIN adequately predicted aqueous solubility (Fig. 

2.3a). Although a perfect match with the estimated values was not observed, only 6 of 

the 20 predicted values were located outside the confidence bands for the estimated 

values. Prediction of Kow was not accurate, especially for naphthalenes with high Kow 

values, containing three and four methyl groups (Fig. 2.3b). EPIWIN successfully 

predicted vapor pressure as illustrated in Fig. 2.3c. All but two predicted values were 

located inside the confidence bands for the estimated values. Prediction was more 

accurate for monomethyl and dimethylnaphthalenes than for the eight trimethyl- and 

tetramethylnaphthalenes (scattered points). Prediction of Hc was statistically acceptable, 

but only due to the large uncertainty in the estimated values (Fig. 2.3d). Significant 

discrepancies from the estimated value were observed, especially with decreasing Hc. To 

summarize, EPIWIN accurately predicted vapor pressure, particularly for naphthalenes 

with one and two methyl groups; it adequately predicted aqueous solubility; and it 

provided order-of-magnitude predictions of octanol/water partition coefficient and 

Henry’s law constants. Overall, EPIWIN provides acceptable approximations of 

physicochemical properties in the absence of experimental data. 

An extension of the chromatographic method for estimation of physicochemical 

properties would be the prediction of RIs for the compounds of interest. The predicted 

RIs could then be entered into chromatographic LFERs like those developed in this 

study. As a first step, this would eliminate the need for RI measurements, the most time-

consuming and expensive part in the LFER development. This strategy is indirect and it 
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could introduce considerable uncertainties. However, it is simple to implement, as it only 

requires the introduction of a QSRR (Quantitative Structure-Retention Relationship). 

The development of QSRRs is discussed in detail in Kaliszan (1987). Ledesma and 

Wornat (2000) used QSRRs to predict chromatographic retention of ethynyl-substituted 

PAHs. QSPRs (Quantitative Structure-Property Relationships) for the prediction of 

physicochemical properties is another tool that could eliminate experimentation. QSPR 

models consider the effects of geometric and spatial molecular structure on properties 

(Dunnivant et al., 1992). Such models could be supplemental to LFERs or could stand 

independent when reliable QSPR relationships are available for specific categories of 

compounds. 
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CHAPTER III 

MEASUREMENT OF BIODEGRADABILITY PARAMETERS FOR 

UNSUBSTITUTED AND METHYLATED POLYCYCLIC AROMATIC 

HYDROCARBONS 

 

OVERVIEW 

Substrate depletion experiments were conducted to characterize biodegradability 

of 20 individual polycyclic aromatic hydrocarbons (PAHs) by induced cells of 

Sphingomonas paucimobilis strain EPA505, a potent PAH degrader. PAHs consisted of 

low-molecular-weight, unsubstituted, and methyl-substituted homologues. A material 

balance equation containing the Andrews kinetic model, an extension of the Monod 

model accounting for substrate inhibition, was numerically fitted to batch depletion data 

to estimate extant kinetic parameters including the maximal specific biodegradation 

rates, qmax, the affinity coefficients, KS, the specific affinities, qmax/KS, and the inhibition 

coefficients, KI. The uncertainties in the best estimates of the kinetic parameters were 

calculated using a sensitivity method and are reported as the margins of error at the 95% 

confidence level. Strain EPA505 degraded all PAHs tested. The Monod and Andrews 

models adequately described biodegradation kinetics. A novel cell proliferation assay 

involving reduction of the dye WST-1 was used to investigate the ability of strain 

EPA505 to utilize individual PAHs as sole energy and carbon sources. Of the 22 PAHs 

tested, 9 supported bacterial growth. The experiments were designed to capture the 

effects of substrate molecular structure on the kinetic and growth parameters. The 

generated data is essential for the development of quantitative structure-biodegradability 

relationships (QSBRs) and for modeling biodegradation of simple mixtures of PAHs. 

INTRODUCTION 

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental 

pollutants (Harvey, 1991). PAHs usually occur in complex mixtures containing parent 

compounds and substituted homologues (Luthy et al., 1994). The PAH composition of a 

mixture depends on the type of source; for example, PAHs from petroleum are primarily 
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present as methylated versions (Youngblood and Blumer, 1975). The health effect of 

particular concern from exposure to PAHs is cancer (IARC, 1987; U.S. EPA, 2005). It 

has been found that several methylated PAHs have a greater carcinogenic potential than 

the parent counterparts (Weis et al., 1998). Knowledge of the extent and rate of the 

primary removal processes would help assess the threat that these compounds pose to 

humans and ecosystems and could suggest effective detoxification strategies.  

Biodegradation, the primary mechanism of PAH removal from the environment 

(NRC, 2003), is a complex process that involves action of microbial consortia on 

multiple substrates. Biodegradation of a specific component of a mixture can be strongly 

influenced by the other components. Modeling mixture effects requires knowledge of the 

metabolic role that each substrate plays for the microorganisms. The metabolic role is 

often expressed in terms of kinetic models relating microbial growth to substrate uptake. 

Kinetic modeling for microbial transformation of hydrocarbons has typically been based 

on the Monod model. Development of a sum Monod model, with or without any form of 

interaction between substrates, usually requires knowledge of the Monod parameters for 

the individual substrates (Reardon et al., 2002). Measurement of kinetic parameters for 

all compounds in a complex mixture of PAHs is not feasible due to the complexity of 

typical PAH mixtures. This chapter and the next (Chapter IV) examine the feasibility of 

QSBRs (Peijnenburg and Damborsky, 1996), which could reduce the need for 

experimental determination of biodegradability. QSBRs determine how the molecular 

structure and properties of PAHs influence their microbial metabolism. 

To establish a sufficiently large training set of PAHs for QSBR development, 

microorganisms are needed that are able to degrade a wide range of PAHs. Kinetic 

experiments with mixed cultures are often a “black box” approach, in which kinetic 

parameters are assigned to the total biomass whose composition and activity may vary 

with time (Kovárová-Kovar and Egli, 1998). To avoid this complication and produce a 

consistent dataset, a simplistic approach was adopted that implemented the use of a 

single microorganism. Several microorganisms possess the enzymatic capability of 

degrading PAHs (Atlas, 1995). Members of the genus Sphingomonas have recently been 
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recognized for their ability to degrade a wide range of aromatic hydrocarbons. 

Sphingomonas paucimobilis strain EPA505, originally isolated from a bacterial 

community present at a creosote waste site (Mueller et al., 1989), was one of the first 

microorganisms found to utilize PAHs with more than three rings as the sole source of 

energy and carbon (Mueller et al., 1990). When induced with fluoranthene, EPA505 was 

able to metabolize several PAHs, including four- and five-ring forms (Ye et al. 1996; 

Siddiqi et al., 2002). A detailed discussion on the induction of EPA505 by different 

aromatic compounds can be found in a study by Story et al. (2000). A phylogenetic 

comparison of PAH-degrading bacteria from geographically diverse soils indicated that 

EPA505 is common in creosote- and fuel oil-contaminated soils (Mueller et al., 1997). 

A limited number of studies reported the kinetics of PAH degradation by strain 

EPA505, often in the presence of surfactants (Ye et al., 1996; Lantz et al., 1997; 

Willumsen and Arvin, 1999; Barkay et al., 1999; Luning Prak and Pritchard, 2002; 

Siddiqi et al., 2002; Daugulis and McCracken, 2003). Only two (Luning Prak and 

Pritchard, 2002; Siddiqi et al., 2002) measured the zero- or first-order biodegradation 

rates for a limited number of PAHs, whereas others observed the percentage 

disappearance of PAHs. The majority of these studies focused on biodegradation of 

unsubstituted PAHs.  

The objective of this study was to measure Monod-type kinetic parameters 

describing the biodegradation of select PAHs by Sphingomonas paucimobilis strain 

EPA505 and to determine which of the tested compounds can support growth 

individually. The focus was on priority PAHs containing up to 4 aromatic rings and 

commercially available methylated homologues; the larger PAHs, i.e., containing 5 and 

6 rings, were not tested due to their low solubilities. A total of 20 PAHs were tested in 

the kinetic experiments; 22 PAHs were tested in the growth experiment. The kinetic 

experiments were designed to exclude bioavailability constraints by using initial 

substrate concentrations below solubility and account for unavailable PAH fractions in 

material balances. The resulting dataset reflects the influence of substrate molecular 
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structure on biodegradability and can be used in the development of QSBRs. It can also 

be used in modeling biodegradation of simple PAH mixtures.  

MATERIALS AND METHODS 

Chemicals 

Acenaphthene (ACE), anthracene (ANT), fluorene (FLE), nutrient media, and 

Tween 80 were purchased from Sigma Chemical Co. (St Louis, MO). Acenaphthylene 

(ACY), 1-methylanthracene (1MANT), 1-methylfluorene (1MFLE), 1-

methylphenanthrene (1MPHE), and 2-methylphenanthrene (2MPHE) were purchased 

from Ultra Scientific (North Kingstown, RI). 9-Methylanthracene (9MANT), 

fluoranthene (FLA), 1-methylnaphthalene (1MNAP), 1,5-dimethylnaphthalene 

(15DMNAP), 1,6-dimethylnaphthalene (16DMNAP), 2,3-dimethylnaphthalene 

(23DMNAP), 2,6-dimethylnaphthalene (26DMNAP), and pyrene (PYR) were purchased 

from Avocado Research Chemicals (Heysham, England). Naphthalene (NAP) and 

phenanthrene (PHE) were purchased from Alfa Aesar (Ward Hill, MA). 2-

Methylnaphthalene (2MNAP) was purchased from Chem Service (West Chester, PA). 

2,3,5-Trimethylnaphthalene (235TMNAP), 3,6-dimethylphenanthrene (36DMPHE), and 

1-methylpyrene (1MPYR) were purchased from TCI America (Portland, OR). All PAHs 

were of the highest purity available, generally greater than 98%. The internal standard 

for PAH quantification via gas chromatography was a 1:1 mix of 20016 and GRH-IS 

purchased from Absolute Standards, Inc. (Hamden, CT) and AccuStandard, Inc. (New 

Haven, CT), respectively. The protein assay kit with Bovine Serum Albumin (BSA) as 

the standard was purchased from Bio-Rad (Hercules, CA). WST-1 was purchased from 

Roche Diagnostics (Indianapolis, IN). 

Bacterium, culture conditions, and preparation of inocula  

Sphingomonas paucimobilis DSM 7526 (strain EPA505) was purchased from 

DSMZ (Braunschweig, Germany). Cells grown on casein-peptone soymeal-peptone 

(CASO) broth were added to a sterile mineral salts base (MSB) containing 100 mg/L 

fluoranthene and 200 mg/L Tween 80 (Mueller et al., 1990). Tween 80 is a 

polyoxyethylene derivative of sorbitan esters used for dispersion of oils. Tween 80 at the 
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concentration used in this study does not inhibit the growth of EPA505 and does not 

serve as a carbon source (Story et al., 2000). The culture was incubated in the dark for 

72 h at 30 ºC on a horizontal shaker operating at 160 rpm (Ye et al., 1996). Cells were 

washed once with MSB and resuspended in the same base. Autoclaved glycerol was 

added (10% by volume) to the suspension and aliquots were stored at -80 ºC until used 

as the inoculum for the biokinetic experiments. To grow biomass for the biokinetic 

experiments, 5 mL of the cryopreserved inoculum were added to 0.8 L nutrient broth 

supplemented with 0.4 g/L glucose (Ye et al., 1996). The culture was incubated at 30 ºC 

on a horizontal shaker (160 rpm) for 36 h. The suspension was centrifuged (RCF = 7500, 

10 min) and cells were washed with Bushnell-Haas (BH) broth three times and then 

resuspended in 100 mL of the same medium. Biomass was added to batch reactors for 

biodegradation experiments immediately after measurement of the BSA concentration. 

Kinetic modeling  

Kinetic modeling of microbial biodegradation of PAHs has typically been based 

on the Monod equation: 

       max LL

S L

q CdC
X

dt K C
− =

+
                                              (3.1) 

where CL is the substrate concentration in the liquid phase (μmol/L), qmax is the maximal 

specific biodegradation rate (μmol substrate mg-1 biomass h-1), KS is the affinity 

coefficient (μmol/L), and X is the biomass concentration (mg/L). At increased 

concentrations, some PAHs may become inhibitory. In this case, biodegradation kinetics 

can be described by the Andrews equation (Andrews, 1968): 

                                               max
2 /

LL

S L L I

q CdC
X

dt K C C K
− =

+ +
                            (3.2) 

where KI is an inhibition coefficient (μmol/L). The Andrews model is a generalized form 

of the Monod model that includes substrate inhibition. For KI → ∞, i.e., no inhibition, 

the two models become equivalent. Kinetic modeling in this study used the generic 

Andrews from (Eq. 3.2). 
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Kinetic behavior of a pure culture is not set, but depends in part on the culture 

history, as well as metabolic adjustments during a kinetic test (Kovárová-Kovar and 

Egli, 1998). Consistency in kinetic behavior is essential for data reproducibility and 

comparison of kinetics from different experiments or studies, as well as for the 

development of a consistent QSBR training set. Kinetic parameters obtained under low 

initial substrate-to-biomass ratios ( 0
LC :X < 0.05 by mass) are termed extant, whereas 

those obtained under high ratios, intrinsic (Grady et al., 1996). Intrinsic parameters 

depend on the type of bacterial culture, the nature of the substrate, and the environmental 

conditions. Extant conditions result in minimal cell growth and multiplication. Extant 

parameters reflect the physiological state of the biomass specific to the environment 

from which it originated and can better predict effluent quality of continuous reactors 

with respect to individual substrates (Ellis et al., 1996). Whether extant or intrinsic 

kinetics better describe biodegradation and predict the fate of organic compounds in 

engineered systems and the environment is not yet definitive (Kovárová-Kovar and Egli, 

1998). In this study, all biokinetic measurements were conducted under extant 

conditions, in part because of low aqueous solubilities of most PAHs in the study, which 

dictate low aqueous substrate concentrations. 

Estimation of Monod kinetic parameters follows two approaches. Classical 

methods directly fit the Monod equation or a linearized form of it to initial rate data at 

different substrate levels. Apart from the statistical drawbacks of linearization, a major 

disadvantage is that testing at a wide range of substrate concentrations is required, 

typically ranging from 0.5 to 10 · KS (Eisenthal and Danson, 1992), which is not always 

feasible for sparingly-soluble compounds. The integral method involves integration of 

the Monod equation and curve fitting on data obtained from batch experiments. This 

method is appealing particularly when a large number of compounds require testing. The 

disadvantage of this method emanates from the fact that biokinetic parameters are 

correlated, resulting in difficulties in the estimation of unique values (Robinson, 1985). 

Nevertheless, establishing appropriate experimental conditions can result in sufficient 
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independence between the parameters. This study used the integral method to estimate 

the kinetic parameters of the Andrews equation. 

Given that PAHs are lipophilic, sorption to the biomass can be significant. To 

evaluate kinetics of different PAHs on a common basis given the differences in 

lipophilicity, it can be assumed that any sorbed PAH is unavailable for cell uptake, at 

least in the case of Monod-type kinetic modeling. The total concentration, CT, of the 

substrate in a liquid sample taken from a bioreactor is: 

                                                         CT = CL + XKbCL                                                 (3.3) 

where Kb is the partition coefficient for the linear biosorption model. Abiotic losses can 

be modeled using a first-order loss coefficient, ka. Details about biosorption and abiotic 

loss modeling are discussed in the corresponding paragraphs. Including biosorption and 

abiotic losses and assuming instantaneous partitioning, the substrate balance in a liquid 

sample becomes: 

                                max
2

21 (1 )

TT
a T

T T
S

b I b

q C XdC
k C

dt C C
K

XK K XK

− = +
+ +

+ +

                           (3.4) 

The biomass concentration is a function of substrate utilization according to: 

                                                         LdX YdC bXdt= −                                                (3.5) 

where Y is the yield coefficient and b is the biomass first-order decay rate coefficient. 

Under extant kinetics and for short durations, the right-hand side of Eq. 3.5 becomes 

minimal and X in Eq. 3.4 can be assumed constant.  

 Kinetic parameters for each PAH were determined using best-fit simulations of 

Eq. 3.4 with a fourth-order Runge-Kutta algorithm. The algorithm performed integration 

of the equation over a series of time steps corresponding to the sampling events. 

Nonlinear regression was used to obtain best estimates of 0
TC , qmax, KS, and KI from two 

independent duplicate reactors. Specifically, the sum of squared errors (SSE) based on n 

observations was minimized: 

                                                     2

1

ˆ( )
n

j j
T T

j
SSE C C

=

= −∑                                             (3.6) 
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where j
TC  is the observed total concentration in the jth sample and ˆ j

TC  is the 

corresponding concentration predicted by the model. Minimization of SSE was 

accomplished with the Solver function in Microsoft Excel (Microsoft Corporation, 

Redmond, WA). Uncertainties in the best estimates of 0
TC , qmax, KS, and KI, expressed as 

the margins of error at the 95% confidence level, E95%, were calculated using the method 

of Smith et al. (1998). In brief, uncertainties were calculated using the mean square 

fitting error, s2, and the inverse of a pp× matrix containing sensitivity coefficients 

quantifying the sensitivity of fit to changes in the best estimate of a parameter. The 

mean-square fitting error is defined as: 

                                                              2 SSEs
n p

=
−

                                                      (3.7) 

where p is the number of fitting parameters (3 for non-inhibitory PAHs and 4 for 

inhibitory PAHs). The E95% for the specific affinity, qmax/KS, was calculated from the 

E95% for qmax and KS using a propagation of error relationship for ratios. 

Batch biokinetic experiments  

Stock solutions of 20 PAHs were prepared in hexane to a typical concentration of 

10000 mg/L. A volume of the hexane solution was added to a sterile 1-L amber bottle. 

After evaporation of hexane, 0.5 L of autoclaved BH broth was added to achieve the 

desired 0
TC  of 2.0 mg/L or 0.9 times the solubility of the PAH, whichever was smaller. 

The PAH solution was shaken in the dark for three days prior to each experiment to 

achieve full dissolution and to reach saturation of dissolved oxygen (DO). Duplicate 

reactors were prepared by transferring 150 mL of the PAH solution to each of two sterile 

250 mL amber serum bottles with PFTE-coated caps. Reactors were shaken overnight to 

achieve equilibration between phases. To initiate biodegradation, approximately 2 mL of 

the concentrated biomass was added to each reactor to achieve X ≈ 4.0 mg BSA/L. This 

was equivalent to approximately 60 mg dry cells per L, which satisfied the extant-

kinetics condition for a maximum 0
LC  of 2.0 mg/L. Ten, or in some cases eleven, 7-mL 

samples were taken from each reactor at designated sampling times. Exact sampling 
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times and initial substrate and biomass concentrations were determined from preliminary 

experiments. Samples were added to 16-mL screw cap tubes with Teflon-coated caps 

containing 3 mL dichloromethane (DCM) and then shaken on a rotary shaker for at least 

4 h. One mL of the DCM extract was removed with a glass pipette and added together 

with 10 μL internal standard to an autosampler vial for gas chromatography/mass 

spectrometry (GC/MS) analysis. A 5-mL sample was taken from each reactor at the 

beginning and at the end of each run for BSA measurement. At the end of each run, the 

dissolved oxygen concentration (DO) was measured in each reactor to check that DO 

had not been exhausted. Experiments were conducted at 22 °C. For each PAH, a single 

control reactor receiving autoclaved inoculum was treated identically, but substrate 

concentration was measured in 3 (beginning, middle, and end of a run) of the 10 

samples. 

Spectrophotometric phenanthrene uptake rate assay  

It was not possible to measure biokinetic parameters for 20 PAHs in the same 

experiment. Consequently, a variable was necessary to account for variations in the 

extant activity of the biomass between experiments. For this purpose, a 

spectrophotometric phenanthrene uptake rate assay measuring the specific uptake rate at 

a given substrate level was performed with each experimental run. The assay was based 

on the method of Stringfellow and Aitken (1995). An amount of a PHE solution 

(4.5 μmol/L) in BH broth was added to a 4-mL quartz cuvette. The solution was 

inoculated with approximately 50 μL of the same biomass used in the biokinetic 

experiments to a final volume of 3.0 mL and X ≈ 4.0 mg BSA/L. The cuvette was 

capped and immediately placed in an HP 8452 UV-Visible spectrophotometer (Agilent 

Technologies Inc., Palo Alto, CA). The suspension in the cuvette was mixed by a PTFE 

stir bar and micromagnetic stirrer. Absorbance at 250 nm (A250) was measured 

automatically every 9-10 s for 10 min and was converted to phenanthrene concentration 

by using an extinction coefficient of 6.46 10-2 L μmol-1 cm-1. At the end of the assay, 2.5 

mL were taken from the cuvette for BSA analysis. The assay was performed in triplicate. 

Blank cuvettes contained a cell suspension as above but without PHE. The extant 
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activity, qe, was estimated as the specific uptake rate at 3.6 μmol/L expressed in μmol 

mg-1 BSA min-1. Estimation involved polynomial regression and calculation of the slope 

of the uptake curve at the selected concentration (Eisenthal and Danson, 1992). 

Negligible uptake was observed in the presence of a suspension of killed cells. It was 

found that the assay was sensitive enough to detect differences in activity of biomass 

harvested at different growth stages. However, no significant correlation could be 

established between these differences and biokinetic parameter values obtained when 

using biomass harvested at different stages. 

Quantification of bacterial growth on PAHs  

An experiment was conducted to test the ability of different PAHs to serve as 

sole energy and carbon sources. In addition to the 20 PAHs tested in the biokinetic 

experiments, two extra PAHs, 16DMNAP and 9AMNT, were tested. The procedure was 

based on a method developed to detect growth of EPA505 and other bacterial strains on 

various PAHs (Johnsen et al., 2002; Johnsen, 2004). In principle, cells were allowed to 

grow in a solution containing excess PAH as the sole energy and carbon source and then 

an assay was used to quantify cell proliferation and viability based on the reduction of 

4-[3-(4-Iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-

1) by mitochondrial dehydrogenases in viable cells. It has been argued that this method 

is more suitable for PAHs compared to standard growth assays because it can reliably 

quantify growth despite the low solubility and bioavailability of the PAHs (Johnsen et 

al., 2002). Strain EPA505, induced with fluoranthene as described above, was grown to 

the late exponential phase in phosphate minimal medium (PPM) supplemented with 1.0 

g/L glucose and glycerol (Johnsen et al., 2000). Cells were washed once in PPM and 

resuspended in the same medium to A540 = 0.4. A volume of a PAH solution in hexane 

(typically 10.0 mg/mL) containing 0.7 mg of the PAH was added to a semi-micro methyl 

acrylate cuvette. Cuvettes receiving pure hexane were used as controls. Hexane was 

allowed to evaporate in a laminar flow hood. After evaporation, each cuvette received 

1.4 mL PPM and 70 μL of the cell suspension. Cuvettes were capped and incubated in 

the dark at 22 ºC for 10 days. After incubation, cuvettes received 350 μL of an electron 
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donor solution (16.6 mM of each of glucose, pyruvate, and succinate in 40 mM Tris 

buffer, pH = 6.5) and 70 μL WST-1 reagent. Absorbance was measured immediately at 

450 nm with a reference wavelength of 630 nm (net A450). Cuvettes were capped and 

incubated on a shaker table (300 rpm) at 22 ºC for 6 h. After 6 h, net A450 was measured 

again and the change in net absorbance, Δ(net A450), was calculated as a measure of cell 

growth. All PAHs and the control were tested in triplicate. WST-1 reduction in cuvettes 

receiving PAHs was compared to reduction in the control using a one-tail t-test.  

Measurement of biosorption partition coefficients  

A method developed to measure equilibrium partition coefficients, Kb, for the 

sorption of PAHs, primarily PHE, to bacterial biomass (Stringfellow and Alvarez-

Cohen, 1999) was followed. Partition coefficients were measured for 11 PAHs. 

Anticipating a relationship between Kb and hydrophobicity (Sikkema et al., 1994), the 11 

selected PAHs represented the whole range of the octanol/water partition coefficient, 

Kow, values observed in the biokinetic experiments. Cells were grown and harvested as 

described for the biokinetic experiments. After washing with BH broth, the cell 

suspension was concentrated to 100 mL with X ≈ 1500 mg BSA/L and treated with 5 mL 

formalin (37% formaldehyde) to start inactivation of the cells. Stock solutions of the 11 

PAHs were prepared in BH broth to a concentration of 2.0 mg/L or 0.9 times the 

solubility, whichever was smaller. Portions of the stock solutions were diluted five and 

ten times. A volume of 39 mL from each concentration level was transferred to each of 

four 40-mL glass EPA vials. Of the four vials, two (duplicate treatments) received 2.1 

mL formalin, and 0.7 mL cell suspension, while the others (duplicate controls) were 

treaded identically but received 0.7 mL of BH broth instead of the cell suspension. 

Formalin was used to prevent biodegradation by inactivating the cells. The target 

concentration of formaldehyde in each vial was 1.9%. It was found that use of 

formaldehyde did not significantly affect sorption of PAHs by different strains 

(Stringfellow and Alvarez-Cohen, 1999). Duplicate treatments contained biomass at a 

target concentration of 26.0 mg/L as BSA. The zero-headspace EPA vials were sealed 

with PTFE-lined caps and shaken at 25 ºC for 72 h. After 72 h, a 5-mL sample from each 
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EPA vial was transferred to a 16 mL screw cap tube with PTFE-coated cap containing 3 

mL DCM for liquid-liquid extraction. Also, approximately 30 mL were transferred from 

each EPA vial to a solvent-washed, high-strength glass centrifuge tube to zero 

headspace. Centrifuge tubes were sealed with PTFE-lined caps and were centrifuged at 

RCF = 13100 for 15 minutes. After centrifugation, a 7-mL sample was taken and 

extracted in DCM. Liquid-liquid extractions and GC/MS measurements were performed 

as described for the biokinetic experiments. A 2.5-mL sample was taken from the 

remaining liquid of each EPA vial for BSA measurement. The difference in PAH 

concentration before and after centrifugation was a measure of the PAH sorbed on the 

biomass. Data from the controls were used to account for PAH losses from the liquid 

phase due to processes other than biosorption. Linear sorption isotherms were fitted to 

relate the equilibrium concentration on the solid phase, Qe (mg/g BSA), to the 

equilibrium concentration in the liquid phase, e
LC  (mg/L). The partition coefficient, Kb 

(L/g BSA), was calculated as the slope of a linear isotherm. After all partition 

coefficients were calculated, a linear regression was applied to relate the logarithm of Kb 

to the logarithm of Kow. The regression equation was used to estimate Kb values for the 9 

remaining PAHs of the biokinetic experiments.  

 A separate experiment was performed to determine whether shorter equilibration 

periods result in significant differences in partition coefficients. The reason was that the 

3-day equilibration period suggested by Stringfellow and Alvarez-Cohen (1999) was 

significantly longer than the timeframe of the biokinetic experiments described in this 

study, in which instantaneous sorption was assumed for modeling. The additional 

biosorption experiment for NAP and PYR, two PAHs at the opposite ends of the 

hydrophobicity range of interest, allowed equilibration for only 45 minutes.  

Measurement of abiotic loss rate coefficients  

An independent experiment was performed to quantify abiotic losses from the 

bioreactors. Abiotic losses were modeled as first-order processes and first-order rate 

coefficients, ka (h-1), were determined (Smith et al., 1997; Knightes and Peters, 2000). It 

was assumed that abiotic losses were mostly due to volatilization; therefore only NAP, 
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1MNAP, 2MNAP, ACE, and FLE, the most volatile compounds based on their Henry’s 

law constants, were tested. Compounds were tested in duplicate, as in the biokinetic 

experiments, but without the addition of biomass. From each reactor, 10 samples were 

taken every hour for 9 hours. Linear regressions between lnCT and time were fitted to 

calculate the rate coefficients. 

Analytical procedure  

Gas chromatography measurements were conducted on a HP 5890 Series II 

chromatograph interfaced with an HP 5972 mass selective detector (Agilent 

Technologies Inc., Palo Alto, CA). The type of the column was HP-5MS ((5%-Phenyl)-

Methylpolysiloxane, 0.25 mm × 30 m × 0.25 μm, J&W Scientific (Palo Alto, CA)). The 

following temperature program was used: 60 ºC, 8.0ºC/min for 30 min to 300 ºC. The 

mass spectrometer was operated in the selective ion mode (SIM). The quantitation limit 

of the method was 0.001 mg/L. 

RESULTS AND DISCUSSION 

Biosorption experiment 

The results of the biosorption experiment are illustrated in Fig. 3.1. ANOVA 

showed that the assumption of a linear isotherm was valid. The partition coefficients 

ranged from 6.0 ± 0.8 for NAP to 256.5 ± 46.3 for PYR, in units of L/g BSA, with the 

uncertainty being equal to E95%. A linear relationship was observed between logKow and 

logKb, which was used to determine Kb for the rest of the PAHs in the study. The 

relationships had the following expression:  

                                      logKb = 0.98(±0.36) · logKow – 2.71(±1.55)                            (3.8) 

with the uncertainty in the coefficients expressed as the E95%. In addition, the partition 

coefficient for NAP at 45 min and at 72 h was 7.1 ± 1.5 L/g BSA and 6.0 ± 0.8 L/g BSA, 

respectively. The same values for PYR were 298.6 ± 66.6 and 256.5 ± 46.3 L/g BSA. 

These results show that the shorter equilibration time did not significantly affect the 

values of the partition coefficients. Therefore, use of the partition coefficients 

determined after the 3-day equilibration was appropriate for the kinetic modeling and the 

assumption of instantaneous partitioning was realistic. A definitive verification of the 
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Fig. 3.1. Fitting of linear sorption isotherms for the calculation of the biomass partition 
coefficients, Kb.(a) A regression was performed between the measured Kb values and the 
octanol/water partition coefficient, Kow. (b) The dashed lines and the dotted lines 
represent the 95% confidence intervals and prediction intervals, respectively. Error bars 
represent standard errors.  
 
 
 
instantaneous partitioning assumption would involve measurements of the kinetics of 

partitioning and their comparison to the biodegradation kinetics. Use of partition 

coefficients in kinetic modeling significantly decreased the estimates of qmax and KS 

while leaving their ratio unaffected. The scale of this effect increased with higher Kb 

values; for instance, estimates of qmax and KS for 1MPYR decreased by more than 100% 

when Kb was included in the kinetic model.  

Abiotic losses experiment 

ANOVA indicated that the hypothesis of a first-order abiotic loss rate was valid. 

The first-order abiotic loss coefficient, ka, was found to be 0.016 ± 0.023 for NAP, 0.031 

± 0.016 for 1MNAP, 0.030 ± 0.022 for 2MNAP, 0.028 ± 0.009 for ACE, and 0.006 ± 

0.019 for FLE, all in h-1. As the data shows, ka was not significantly different from zero 

for NAP and FLE; therefore, it was not used in the estimation of the biokinetic 

parameters for those two compounds.  

Biokinetic experiments 

No significant changes in the biomass concentration, X, were observed during the 

biokinetic experiments and negligible changes were random and not indicative of
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Fig. 3.2. Biodegradation of select PAHs by Sphingomonas paucimobilis strain EPA505. 
Estimation of kinetic parameters was accomplished by fitting an integrated form of the 
Monod model (curves) to the data (symbols) from batch bioreactors. Compounds are 
distributed into graphs (a) and (b) according to 0

TC . Compound abbreviations are 
explained in the Materials and Methods section.  
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bacterial growth. The lowest DO measured at the end of a run was 6.5 mg/L suggesting 

that no oxygen limitations occurred that could influence kinetic estimates. Liquid 

temperature measured in all bioreactors at the end of each run ranged from 22 to 23 °C. 

No significant degradation was observed in the presence of autoclaved cells. 

Strain EPA505 was able to degrade all 20 PAHs, which is consistent with its 

ability to degrade several four- and five-ring PAHs (Ye et al., 1996; Siddiqi et al., 2002). 

Biodegradation was also rapid. Assuming first order kinetics for the sake of illustration, 

the characteristic time of biodegradation ranged from approximately 4 minutes for ANT 

and 2MPHE to 15 minutes for ACE and 1MPYR with a mean value of 7 minutes. The 

ability of strain EPA505 to metabolize a wide range of PAHs may be indicative of loose 

specificity of initial dioxygenases. It may also be related to the fact that strain EPA505 

possesses glutathione-S-transferase (GST) activity (Lloyd-Jones and Lau, 1997) that 

may protect it from oxidative damage from PAH metabolites. 

The Monod or Andrews model successfully simulated the experimental data. 

Depletion data and model fitting are illustrated in Fig. 3.2 and Fig. 3.3 for select PAHs. 

Estimated biokinetic parameters are summarized in Table 3.1. Consistency in depletion 

curves and parameter estimates between independent duplicate reactors indicated that 

experimental conditions and parameter estimates were reproducible. Each aspect of the 

results is discussed separately in the following paragraphs.  

The maximal specific biodegradation rate, qmax, ranged from 0.01 ± 0.00 for 

1MPYR to 2.19 ± 0.07 for 2MNAP in units of μmol mg-1 BSA h-1. In the case of NAP, 

FLE, and PHE and 2MPHE, presence of a methyl group resulted in a higher qmax 

compared to the parent compound. This is consistent with the findings of Siddiqi et al. 

(2002). However, as illustrated by the NAP and PHE homologues, presence of a second 

methyl group resulted in a significant decrease in degradation rates. Decreased activity 

as a result of alkylation is often attributed to steric hindrance of the substrate-enzyme 

interaction or to decreased flux of the substrate to the cell interior (Bressler and Gray, 

2003). However, it is possible for methylation to increase bioavailability of high-

molecular-weight PAHs and potentially enhance their biodegradation rates. 
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Fig. 3.3. Biodegradation of two PAHs exhibiting substrate inhibition. Of the 20 PAHs 
tested, only 1-methylnaphthalene (1MNAP, graph A), 2-methylnaphthalene, and 
2,3-dimethylnaphthalene (23DMNAP, graph B) exhibited inhibitory behavior, which 
was manifested as an increase in the slope of the depletion curve with time.  
 
 
 

Estimation of the affinity coefficient, KS, from batch depletion curves often 

presents considerable challenges. Specifically, when 0
LC  >> KS model fitting becomes 

insensitive to changes in KS. Consequently, estimation of KS can be inaccurate 

(Kovárová-Kovar and Egli, 1998). In contrast, for 0
LC :KS < 0.1, qmax and KS cannot be 

estimated uniquely; good separation between the two parameters occurs at 0
LC :KS ≥ 1.0 

(Ellis et al., 1996). Good separation also depends on the number of observations and the 

quality of the data (Knightes and Peters, 2000). Based on results from preliminary runs, 

kinetic experiments were designed such that 0
LC  was greater than the expected KS. In 

addition, data quality was ensured by retesting compounds for which depletion data was 

insufficient. The experiments described in this study satisfied the above conditions for 

all PAHs. KS ranged from 0.01 ± 0.01 μmol/L for 1MPYR to 1.35 ± 0.55 and 1.27 ± 0.28 

μmol/L for 2MNAP and 1MNAP, respectively. Data suggests that KS generally 

decreases with molecular size and, in the case of methylated naphthalenes, degree of 

methylation. This can be translated into increased affinity for the substrate with

(a) (b) 
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Table 3.1  
Estimated biokinetic parameter values for 20 PAHs. PAHs are grouped into families 
in order of their MW. Uncertainty is expressed as the margin of error at the 95% 
confidence level. 

Comp.    Sol.a         0
TC             qmax             KS     qmax/KS         KI 

  (μmol/L)     (μmol/L)       (μmol mg-1 h-1)             (μmol/L)     (L mg-1 h-1)       (μmol/L) 
NAP 241.8 12.11 ± 0.07 1.11 ± 0.02 0.62 ± 0.09 1.80 ± 0.26    
1MNAP 181.4 4.49 ± 0.07 1.84 ± 0.05 1.27 ± 0.28 1.45 ± 0.33 1.40 ± 0.03 
2MNAP 173.0 2.39 ± 0.07 2.19 ± 0.07 1.35 ± 0.55 1.64 ± 0.60 0.50 ± 0.02 
15DMNAP 17.54 0.56 ± 0.01 0.39 ± 0.06 0.34 ± 0.08 1.16 ± 0.30    
23DMNAP 12.74 0.63 ± 0.01 0.53 ± 0.06 0.31 ± 0.12 1.74 ± 0.67 0.05 ± 0.00 
26DMNAP 12.80 0.40 ± 0.01 0.18 ± 0.02 0.12 ± 0.02 1.56 ± 0.35    
235TMNAP 28.07 0.18 ± 0.00 0.07 ± 0.01 0.03 ± 0.01 2.18 ± 0.57    

ACE 25.29 0.37 ± 0.00 0.29 ± 0.02 0.37 ± 0.04 0.79 ± 0.10    
ACY 105.78 13.96 ± 0.15 0.87 ± 0.03 0.70 ± 0.19 1.24 ± 0.34    

FLE 11.37 0.90 ± 0.02 0.32 ± 0.03 0.10 ± 0.04 3.11 ± 1.11    
1MFLE 6.05 0.74 ± 0.01 1.51 ± 0.21 0.53 ± 0.10 2.86 ± 0.66    

ANT 0.24 0.21 ± 0.00 0.19 ± 0.01 0.04 ± 0.01 4.56 ± 0.73    
1MANT 1.28b 0.16 ± 0.00 0.14 ± 0.02 0.05 ± 0.01 2.70 ± 0.60    

PHE 6.45 0.50 ± 0.01 0.18 ± 0.02 0.09 ± 0.03 2.09 ± 0.79    
1MPHE 1.40 0.44 ± 0.01 0.14 ± 0.02 0.04 ± 0.02 3.24 ± 1.44    
2MPHE 1.46 0.61 ± 0.02 0.54 ± 0.10 0.15 ± 0.06 3.73 ± 1.56    
36DMPHE 0.35b 0.08 ± 0.00 0.05 ± 0.01 0.03 ± 0.01 1.56 ± 0.36    

FLA 1.29 0.70 ± 0.02 0.20 ± 0.02 0.07 ± 0.03 2.96 ± 1.16    

PYR 0.67 0.34 ± 0.01 0.16 ± 0.03 0.15 ± 0.04 1.10 ± 0.31    

1MPYR 0.27b 0.08 ± 0.00 0.01 ± 0.00 0.01 ± 0.01 0.82 ± 0.50    
a Aqueous solubility values, taken from Howard and Meylan (1997) and converted into μmol/L. 
b Estimated according to the method of Meylan et al. (1996).  

 
 
 
increasing substrate hydrophobicity. Indeed, a significant correlation (r = 0.76) was 

found between logKow and log(1/KS). In other words, a degradative enzyme or another 

receptor, e.g., a membrane transporter, has an increased affinity for more hydrophobic 

compounds.  

Due to the correlation between qmax and KS at low concentrations, unique 

estimates of these parameters are not always accurate. For this reason, the specific 

affinity, defined as the ratio qmax/KS, was calculated for all PAHs. It has been argued that 

the specific affinity is a better measure of degradation kinetics (Healy, 1980). Another 
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advantage of this parameter is that it is independent of biosorption. Numerical analysis 

showed that estimates of the specific affinity were consistent, even when the algorithm 

converged to unrealistic estimates for qmax and KS. Specific affinity estimates are 

presented in Table 3.1. Values ranged from 0.79 ± 0.10 for ACE to 4.56 ± 0.73 for ANT, 

in units of L mg-1 BSA h-1. No trend was evident in the specific affinity variation as a 

function of molecular size or degree of methylation. 

Of the 20 PAHs of the biokinetic experiment only 3 exhibited inhibitory 

behavior, namely 1MNAP, 2MNAP, and 23DMNAP. Substrate inhibition was 

manifested as an increase in the depletion rate with decreasing substrate concentrations 

(Fig. 3.3). Since kinetic modeling used the generic Andrews model, an inhibition 

coefficient, KI, was estimated for every PAH in the study. It was found that KI values 

above 15 · 0
TC  did not significantly affect the model fit, and thus these values were 

omitted. Estimation of KI is particularly challenging because it is influenced by 0
LC , 

whose selection depends on KS. Lack of inhibition evidence does not preclude inhibition 

(and existence of a KI) at higher concentrations; however, at low 0
LC , modeling of qmax 

and KS is insensitive to the presence or absence of a KI. The value of KI was 0.05 ± 0.00 

for 23DMNAP, 0.50 ± 0.02 for 2MNAP, and 1.40 ± 0.03 for 1MNAP in units of μmol/L. 

The data may indicate that a methyl substituent on carbon 2 of naphthalene is 

responsible to substrate inhibition; however, no toxicity was evident for 26DMNAP and 

235TMNAP at the concentrations tested. 

Spectrophotometric activity assays  

A typical uptake curve from the activity assays is presented in Fig. 3.4. There 

was no statistically significant difference in the biomass extant activity between the six 

experimental runs. The average extant activity of the biomass, qe, was 0.015 ± 0.001 

μmol PHE mg-1 BSA min-1 with the uncertainty representing the E95%. Also, biomass 

stored at room temperature maintained its activity level for at least 3 h. Kinetic 

parameters for 2MPHE, FLA, and PYR were consistent when measured in separate 

experiments (see Results in Chapter V). The consistent kinetic behavior does not support 

the claim that small differences in activity of separate batches of cells degrading
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Fig. 3.4. Spectrophotometric phenanthrene uptake rate assay. The assay was performed 
with each experiment to test the extant activity of the biomass. A250 was measured every 
9-10 s and converted to concentration using an extinction coefficient. The specific 
uptake rate at 3.60 μmol/L (equivalent to A250 = 0.23) was used as a measure of the 
biomass activity. The rapid initial uptake rate is believed to be the result of biosorption 
and intake. 

 
 
 

PAHs are an inherent characteristic of strain EPA505 (Luning Prak and Pritchard, 2002). 

Uptake rates from the activity assays, qe, were approximately 5 times greater than the 

PHE qmax estimated in the biokinetic experiments. Biokinetic experiments recorded 

kinetics of PHE depletion from all phases, including cell interior, governed by the rate-

limiting mechanism- cell permeation or enzymatic transformation. Conversely, the 

spectrophotometric assay recorded kinetics of PHE disappearance from the aqueous 

phase, which is governed by biosorption and cell permeation. Assuming that cell 

permeation is the rate-limiting step in PHE degradation, as discussed in Chapter IV, the 

difference between qmax and qe for PHE must be attributed to biosorption. Despite the 

difference in the governing processes, and assuming that biosorption is invariable, qe is 

an adequate indicator of biomass activity. As discussed by Button (1985), the transport 

capacity of microorganisms is inducible and it is a reflection of the physiological state. 

 

Time (min)
0 2 4 6 8 10

A
25

0
0.00

0.22

0.24

0.26

0.28



 
53

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
AP

1M
N

AP

2M
N

AP

15
D

M
N

AP

16
D

M
N

AP

23
D

M
N

AP

26
D

M
N

AP

23
5T

M
N

AP

AC
E

AC
Y

FL
E

1M
FL

E

AN
T

1M
AN

T

9M
AN

T

PH
E

1M
PH

E

2M
PH

E

36
D

M
PH

E

FL
A

PY
R

1M
PY

R

C
O

N
TR

O
L

Δ(
ne

t A
45

0)

 
 
Fig. 3.5. Quantification of growth of strain EPA505 on 22 PAHs using the respiration 
indicator WST-1. Δ(net A450) denotes the difference in net absorbance of WST-1 
formazan at 6 h. Black columns show positive growth, while grey columns negative 
growth, based on one-tail t-test. The error bars represent the margins of error at the 95% 
confidence level.  
 
 
 
Growth experiment  

Of the 22 PAHs tested, 9 supported growth as determined by the WST-1 assay 

(Fig. 3.5). These included NAP and the two monomethylated homologues, PHE and two 

monomethylated homologues, ACY, FLE, and FLA. Based on these results, 13 PAHs in 

this study were degraded cometabolically. The fact that FLA, a four-ring PAH, can 

support growth of strain EPA505 was verified. It was also found that NAP supported the 

highest growth and that methylation inhibited or prevented growth. For instance, none of 

the di- or trimethylnaphthalenes supported growth and the same was found for the 

dimethylphenanthrene. The results of this study agree with the results of Johnsen et al. 

(2002) for ANT and PYR; however, it was found that PHE supported higher growth than 

FLA and not the opposite. This is consistent with the findings of Ho et al. (2000) who 

used visible color change and changes in absorbance as a measure of growth. The results 

of this study are also in agreement with the results of Story et al. (2004) for five PAHs 

(PHE, NAP, FLA, ACE, and PYR), but not for ANT and FLE. Differences between the 
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results of this study and the results of Johnsen et al. (2002) and Story et al. (2004) is 

possibly attributed to the induction of strain EPA505 by FLA in consistency with the 

biokinetic experiments. No significant correlations were found between Δ(net A450) and 

any of the biokinetic parameters, which means that the ability of PAHs to support 

growth of strain EPA505 is not related to biodegradation kinetics. 

 This study reports reliable experimental coefficients describing biodegradability 

of unsubstituted and methylated PAHs by Sphingomonas paucimobilis strain EPA505. 

The strain was able to degrade all PAHs of interest. The considerable variability in the 

observed kinetic and growth parameters signifies the influence of chemical structure on 

PAH biodegradability. The data can be used in modeling biodegradability of simple 

PAH mixtures (Chapter V) and as the training set for the development of QSBRs 

(Chapter IV). QSBRs can give insight into the fundamental molecular properties and 

processes that govern biodegradation and reduce the need for experimental 

biodegradability studies. 
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CHAPTER IV 

DEVELOPMENT OF QUANTITATIVE STRUCTURE-BIODEGRADABILITY 

RELATIONSHIPS FOR UNSUBSTITUTED AND METHYLATED 

POLYCYCLIC AROMATIC HYDROCARBONS 

 

OVERVIEW 

Quantitative structure-biodegradability relationships (QSBRs) were developed 

for parameters describing biodegradability of polycyclic aromatic hydrocarbons (PAHs) 

by Sphingomonas paucimobilis strain EPA505. The training dataset contained values of 

the following Monod-type kinetic parameters: the maximal specific biodegradation rate, 

qmax, the affinity coefficient, KS, and the specific affinity, qmax/KS, as well as values of 

Δ(net A450), a measure of microbial growth on individual PAHs. The Cerius2 modeling 

environment was used to develop the QSBRs. A genetic function approximation (GFA) 

algorithm generated a set of regression equations between a series of molecular 

descriptors and a biodegradability parameter. Statistical analysis and validation testing 

confirmed the validity and predictive power of the final QSBRs. Molecular descriptors 

related to spatial and topological features were essential in explaining biodegradability. 

Evaluation of the biodegradability data showed that qmax correlated well with 

transmembrane flux as theoretically estimated by a simple partitioning model, pointing 

to membrane transport as the rate-determining process in the biodegradation of the 

majority of tested PAHs. A kinetic experiment in the presence of azide, a membrane 

protein inhibitor, suggested that the transport mechanism can be either simple or 

facilitated diffusion, depending on the PAH. A mechanistic interpretation of the 

developed QSBRs and analogies drawn between the QSBRs and binding and solvation 

models also suggested membrane binding-and-transport as the limiting process. This 

study demonstrates the value of QSBR not only as a predictive tool, but also as a method 

to understand the basic properties and processes that govern biodegradation at the 

molecular level. 
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INTRODUCTION 

Quantitative structure-activity relationships (QSARs) and other similar models 

express the effects of molecular structure and properties on the behavior of chemical 

compounds. As such, they are important in assessing the environmental distribution, 

fate, and harmfulness of pollutants. The predictive value of QSARs is evident for large 

and diverse classes of chemicals for which experimental data is limited. In the case of 

PAHs, models are available for PAH toxicity (Govers et al., 1984; Braga et al., 2000; 

Marino et al., 2002) and physicochemical properties (Ferreira, 2001; de Lima Ribeiro 

and Ferreira, 2003; Abraham et al., 2005), but not for biodegradability. The need for 

QSBRs is apparent considering the importance of microbial degradation in PAH fate in 

the environment (NRC, 2003). 

Attempts to model the biodegradability of a group of homologues based on 

molecular structure have been made as early as 1966 (Alexander and Lustigman, 1966). 

However, the number of available QSBRs is low compared to that of other QSARs. 

Reluctance in developing QSBRs is related to our limited understanding and complexity 

of the biodegradation process (Damborsky and Schultz, 1997), as well as the variability 

and inconsistencies in biodegradation data. Advances in molecular simulation, molecular 

descriptors, and statistical algorithms, and their incorporation in user-friendly software 

packages has encouraged the development of QSBRs not only as predictive tools, but as 

a method to understand the basic properties and processes that govern biodegradation at 

the molecular level. Certainly, biodegradability of pollutants in the environment is not 

only dependent on chemical structure, but also on environmental conditions, including 

the presence of microorganisms capable of degrading the pollutants. 

The objective of this study was to develop QSBRs describing biodegradability of 

common PAHs consisting of low-molecular-weight, unsubstituted, and methyl-

substituted homologues. Development was based on the dataset generated in Chapter III 

on the biodegradability of select PAHs by Sphingomonas paucimobilis strain EPA505. 

The dataset contains values of three Monod-type kinetic parameters: the maximal 

specific degradation rate, qmax, the affinity coefficient, KS, and the specific affinity, 
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qmax/KS, as well as values of the change in net absorbance at 450 nm due to the reduction 

of a formazan salt, Δ(net A450), a measure of bacterial growth on individual PAHs. 

Standard biological equilibrium constants and standard rate coefficients are appropriate 

for QSAR analysis because they relate to free energy changes of biochemical reactions 

(Selassie, 2003). Δ(net A450) is also appropriate because it is pertinent to a quantifiable 

feature of a biochemical reaction, e.g. a stoichiometric coefficient. While QSAR 

development for Michaelis-type coefficients of enzymatic reactions is common (Carotti 

et al., 1988; Compadre et al., 1990; Lewis et al., 1998; Ekins et al., 1999; Bundy et al., 

2000), the great majority of QSBRs in the literature were built for first-order degradation 

coefficients. In fact, there is only one study that developed QSBRs for Monod 

coefficients (Pitter, 1985). Apart from that, QSBRs are often trained on data compiled 

from different studies, introducing considerable uncertainty due to inherent 

inconsistencies that greatly reduce the interpretive and predictive power of the models. 

In this work, a consistent dataset was used to develop four individual QSBRs 

corresponding to the biodegradability parameters qmax, KS, qmax/KS, and Δ(net A450). The 

generated models were evaluated on a statistical and mechanistic basis to reveal specific 

processes governing the biodegradability of PAHs by strain EPA505. 

METHODS AND MATERIALS 

Development and evaluation of QSBRs 

The dataset generated in Chapter III contains values of three Monod-type kinetic 

coefficients for 20 PAHs. It also contains Δ(net A450) values for 22 PAHs. Explanation of 

biodegradability parameters and compound abbreviations can be found in Chapter III. 

The first step in the development of QSBRs involved statistical evaluation and 

preparation of the data with SPSS 12.0 (Chicago, IL, USA). Structure-activity 

relationships are more meaningful when built on normally distributed data. Skewness 

and kurtosis values of the data distributions showed that qmax, Ks, and qmax/KS were 

skewed, which is usual for biological data. Logarithmic transformation was used to 

normalize the data. Nonzero values of Δ(net A450) were nearly normally distributed 
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making transformation unnecessary. Standard z-score values of logqmax detected 1MPYR 

as a univariate outlier (z < 2.5). 

The Cerius2 4.9 molecular simulation package (Accelrys Inc., San Diego, CA) 

was used for QSBR development. Molecules were imported to Cerius2 as structure SD 

files. The energy of molecules was minimized using a CFF91 open forcefield that is 

suitable for aromatic hydrocarbons (Maple et al., 1994). A training set was created by 

entering the molecular structures and the corresponding biodegradability data to a table. 

Addition of molecular descriptors to the table involved simultaneous calculation of the 

descriptor values for each molecule. Quantum mechanical descriptors were calculated by 

MOPAC7, built in Cerius2, using the PM3 semi-empirical Hamiltonian (Stewart, 1989). 

All meaningful descriptors from Descriptor+, a module in Cerius2, were added to the 

study table. Descriptor values calculated by Cerius2 were in agreement with standard 

values for PAHs from Mackay et al. (1992), Mallard and Linstrom (2000), Jinno Lab 

(1996), Bjørstedth (1983), and Karcher (1985). Also, when comparison was possible, 

values coincided with those reported by de Lima Ribeiro and Ferreira (2003). It was 

found that descriptors calculated by MOPAC7 were more accurate than those calculated 

by other methods in Cerius2, e.g., CNDO/2 (Pople and Segal, 1966) for the energy of the 

highest occupied molecular orbital, and MNDO (Dewar and Thiel, 1977) for the heat of 

formation. Therefore, descriptor values calculated by an algorithm in addition to 

MOPAC7 were discarded from the training set. Experimental values of the octanol/water 

partition coefficient, logKow, from Howard and Meylan (1997) were used instead of the 

values calculated by Cerius2. The final training set contained 41 descriptors from the 

following categories: conformational, electronic, informational, quantum mechanical, 

spatial, structural, thermodynamic, and topological. Definitions of these categories and 

individual descriptors are provided in the manual of Cerius2 and the references therein 

(Accelrys Inc., 2004). To create QSBRs, a biodegradability parameter was set as the 

dependent variable and the 41 molecular descriptors as the independent variables. 

QSBRs were created by the GFA algorithm, a genetic function approximation 

algorithm (Rogers and Hopfinger, 1994) built in the QSAR+ module of Cerius2. In 
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principle, the algorithm generated 100 parent equations, containing randomly-chosen 

descriptors. Regressions were performed on the generated equations and equations were 

ordered according to their lack-of-fit (LOF) score (Friedman, 1991). Crossover 

operations randomly mixed descriptors from random pairs of parent equations to 

produce progeny equations. A progeny equation substituted the equation with the highest 

LOF if its LOF score was in the top 100, otherwise it was discarded. Crossovers were 

repeated 20,000 times. Recombination of terms resulted in an improved final population 

of 100 equations, ordered according to their LOF scores. LOF of an equation is defined 

as: 

                                               2/[1 ( ) / ]LOF LSE c d p n= − + ⋅                                      (4.1) 

where LSE is the least square error, c is the number of basis functions (linear, quadratic, 

or spline), d is the smoothing parameter, p is the number of descriptors in the QSBR, and 

n is the number of observations in the training set. LOF is a measure of statistical fit and 

an indicator of overfitting. The GFA algorithm was preferred over more traditional 

regression methods because it generates superior equations and reveals relationships that 

are not directly obvious when descriptors must be pre-selected (Rogers and Hopfinger, 

1994). Another advantage of the GFA algorithm is that it permits regression with 

splines. 

Splines are useful when the activity data does not have a linear effect over its 

entire range or when the data reflects more than one process. Use of spline regression 

with the Δ(net A450) data is beneficial because it allows use of the whole dataset and not 

just nonzero values. To develop a QSBR for Δ(net A450), truncated power splines of the 

form <D – a> were used, where D is the value of a descriptor for a specific molecule and 

a, a constant, is the knot of the spline. The spline equals zero if the value of (D – a) is 

negative; otherwise it equals (D – a). 

Preliminary runs of the GFA algorithm were performed to identify multivariate 

outliers. It was found that for logqmax, 1MFLE and 1MPYR were outliers based on their 

absolute studentized residual values of greater than 3.0 and their Cook’s distance of 

greater than 0.27, resulting from 4/(n – p). 1MFLE, with a standardized residual of less 
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than -2.5, was also identified as a potential outlier for log(1/KS). 1MPYR was also a 

univariate outlier as discussed above. Based on these findings, 1MFLE and 1MPYR 

were removed from all models except the Δ(net A450) model. In the latter, the leverage 

value for NAP was high (0.72), but the values of the studentized residual and Cook’s 

distance were normal (0.22 and 0.03, respectively). 

The final 100 equations generated by the GFA for each parameter were further 

evaluated on a statistical basis. Despite the satisfactory statistical capabilities of QSAR+, 

statistical analyses were performed with SPSS 12.0 except validation. Calculated 

parameters included the correlation coefficient, R, the coefficient of determination, R2, 

and its adjusted value, R2-adj. The significance of regression equations was tested by the 

F-test. Overfitting was prevented by satisfying the relationship 5n p≥  (Okey and 

Stensel, 1996). Multicollinearity was diagnosed using the variance inflation factor, VIF, 

and condition indices, with a cutoff value of 4 and 30, respectively. For condition indices 

above 30, multicollinearity was spotted by finding two or more descriptors with 

proportion of variance of 0.5 or higher. The significance of the unstandardized 

coefficients was tested by the t-test at the 0.05 significance level, and coefficients not 

statistically different than zero were removed from the equations. Relative explanatory 

importance of each descriptor in a model was determined by the beta weights and 

semipartial correlations. Standardized residuals were analyzed for normality using 

normal probability plots, and for homoscedasticity using residual plots. Residual plots 

were also used to evaluate the linearity assumption for the models.  Influential data 

points were identified by a series of diagnostic tests, including the studentized residuals, 

Cook’s distances, leverage, and the chi-square statistic of the Mahalanobis distances. 

QSBRs were tested for their uncertainties and predictive power using a bootstrap 

validation test and a randomization test, respectively. The bootstrap test calculated the 

coefficient of determination, 2
bootstrapR , and its uncertainty by repeatedly analyzing random 

samples of the dataset with resampling. Fisher’s randomization method tested the 

assumption that adequate random regressions exist for a parameter. Biodegradability 

values were randomly re-assigned 19 times (0.05 significance level) and statistical 
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parameters were calculated each time and compared to the parameters of the nonrandom 

QSBR. This method tested the validity of both a model and the data on which the model 

was built. 

Investigation of the cell penetration mechanism  

A kinetic experiment was conducted to investigate the potential influence of 

facilitated transport on biodegradation kinetics. The same experimental procedure 

described in Chapter III was followed. Five PAHs were tested (NAP, 26DMNAP, ANT, 

2MPHE, and PYR), representing the whole range of logKow values observed in Chapter 

III. PAHs were degraded by Sphingomonas paucimobilis strain EPA505 in the presence 

and absence azide, a membrane protein inhibitor. Duplicate reactors were used for each 

treatment. Azide was added as sodium salt to a final concentration of 30 mM. At this 

concentration azide sufficiently inhibits mediated membrane transport but is unlikely to 

affect short-term enzyme activity (Bugg et al., 2000). 

 
 
 

Table 4.1 
Statistic and validation parameters of final QSBRs. 

        Validation test results 

QSBR R2 R2-adj F Sig. F n p 2
bootstrapR  

randR Rn <
a 

randR Rs −
b

logqmax  0.843 0.809 25.0 0.000 18 3 0.84 ± 0.01 19 2.51 

log(1/Ks)  0.821 0.797 34.4 0.000 18 2 0.82 ± 0.00 19 2.99 

log(qmax/Ks)  0.878 0.852 33.6 0.000 18 3 0.88 ± 0.01 19 2.35 

Δ(net A450) 0.976 0.970 164.4 0.000 22 4 0.98 ± 0.00 19 1.63 
a Number of R values from 19 random trials that are less than the R value for the nonrandom trial. 
b Number of standard deviations of the mean R of all random trials to the nonrandom R value. 

 
 
 
RESULTS 

Final QSBRs are represented by Eq. 4.2 through 4.5 with uncertainties in the 

unstandardized coefficients representing standard errors. Selected equations were among 

the top of the GFA equation output for each parameter. For example, Eq. 4.2 had the 

second lowest LOF score among equations generated for logqmax and Eq. 4.3 the third 



 
62

lowest LOF score among equations generated for log(1/KS). In other words, the GFA 

algorithm successfully converged to valid and useful equations. Table 4.1 summarizes 

statistical parameters of the QSBRs. Equations are characterized by high coefficients of 

determination and significance of the F-statistic. In addition, equations are not overfitted 

as indicated by comparison of p to n, and R2-adj to R2. Even valid models with a large 

number of cases and a small number of independent variables can have poor explanatory 

and predictive power, especially when the observations are not sufficiently independent 

of each other. As found by bootstrap, the calculated R2 is accurate and the probability of 

it being low is small. Furthermore, the values of the randomization parameters 
randR Rn <  

and − randR Rs indicate that at the 95% confidence level there is high likelihood that QSBRs 

represent a true probability. 

 

logqmax (μmol mg-1 h-1) = 4.3057(± 1.0271) − 0.0063(± 0.0008) · PMI-mag  

                                         − 6.9874(± 1.5383) · Shadow-Yzfrac  

                                         + 0.0163(± 0.0038) · Jurs-PNSA-1                                      (4.2) 

log(1/KS) (μmol L-1) = − 11.7796(± 1.7250) + 1.9545(± 0.2602) · RadOfGyration  

                                     + 9.1430(± 1.9384) · Shadow-Yzfrac                                      (4.3) 

log(qmax/KS) (L mg-1 h-1) = 1.3605(± 0.2840) + 0.0090(± 0.0011) · Hf_MOPAC  

                                           + 0.6805(± 0.0835) · PHI  

                                           − 0.3060(± 0.0390) · Shadow-Ylength                              (4.4) 

Δ(net A450) ( ) = 0.0440(± 0.0202) + 0.3211(± 0.0497) · <Shadow-Xlength − 11.469>  

                          + 0.0089(± 0.0013) · <Jurs-PNSA-1 − 98.060>  

                          + 0.0485(± 0.0023) · <152.195 − MW>  

                          − 0.5823(± 0.0600) · <HOMO_MOPAC + 8.5464>                          (4.5) 
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Fig. 4.1. Comparison of measured biodegradability parameters with those calculated by 
the four QSBRs (Eq. 4.2 through 4.5). Diagonal lines have slope equal to 1. Error bars 
represent 95% confidence intervals for the experimental values. 
 
 
 

A comparison between the actual values of the biodegradability parameters and 

those calculated by the QSBRs is depicted in Fig. 4.1. Comparison shows good 

agreement between the experimental and calculated values. Eq. 4.2 though 4.4 

confirmed the assumption of linearity and resulted in normally distributed and 

homoscedastic residuals. Eq. 4.5 resulted in normally distributed standardized residuals 

for nonzero values of Δ(net A450) but also in heteroscedasticity. The following influential 
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observations were detected in the QSBRs: 235TMNAP and 2MPHE in the logqmax 

model; PYR in the log(1/KS) model; ACY, 36DMPHE, and FLA in the log(qmax/KS) 

model; and 1MNAP and 9MANT in the Δ(net A450). These observations indicate 

potential experimental error or peculiarity in the underlying biochemical process or 

structure-activity relationship. An attempt was made to construct a QSBR for 

log(qmax/KS) using only the descriptors found for the logqmax and log(1/KS) models (5 

descriptors). The resulting equations were satisfactory, but inferior to Eq. 4.4. To 

recapitulate, QSBRs were constructed for all four biodegradability parameters; the 

models are statistically valid and have significant predictive power. 

The following definitions apply to the molecular descriptors appearing in Eq. 4.2 

through 4.5. PMI-mag is the magnitude of the principle moments of inertia about the 

principle axes of a molecule. Shadow-Yzfrac is the fraction of the area of the projection 

of a molecule on the YZ plane divided by the area of the rectangle enclosing the 

projection of the molecule. Shadow-Xlength and Shadow-Ylength are the lengths of the 

projection of the molecular shape on the X- and Y-axis, respectively. Jurs-PNSA-1 is the 

partial negative surface area, i.e., the sum of the solvent-accessible surface areas of all 

negatively charged atoms (Stanton and Jurs, 1990). RadOfGyration is the radius of 

gyration. Hf_MOPAC is the heat of formation as calculated by MOPAC7. PHI is the 

molecular flexibility index (Hall and Kier, 1991). MW is the molecular weight. 

HOMO_MOPAC is the energy of the highest occupied molecular orbital as calculated 

by MOPAC7. 

Descriptors in the final QSBRs are organized in six categories: spatial, spatial 

and electronic, electronic, topological, structural, and thermodynamic (Table 4.2). Each 

descriptor appears in a single QSBR, except Shadow-Yzfrac and Jurs-PNSA-1 appearing 

in two QSBRs. Despite the apparent exclusivity, the following high correlations exist 

between descriptors (r > 0.80): RadOfGyration with PMI-mag, Shadow-Xlength, PHI, 

and MW; PMI-mag with Shadow-Xlength; and PMI-mag with MW. Descriptor values in 

Table 4.2 illustrate the consistent effect (increase or decrease) of methylation on 
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Table 4.2  
Values of molecular descriptors present in the final QSBRs as calculated by QSAR+ (Accelrys Inc., 2004). Compound 
abbreviations are explained in Chapter III. 

     Spatial      
Spatial/ 

Electronic  Electronic  
Topo-
logical  Structural  

Thermo-
dynamic 

Compound 
PMI-      
mag 

RadOf 
Gyration 

Shadow-
Xlength 

Shadow-
Ylength 

Shadow-
Yzfrac  

Jurs-   
PNSA-1  

HOMO_ 
MOPACa  PHI  MW  

Hf_ 
MOPACa 

 (amu·Å2) (Å) (Å) (Å)     (eV)      (kcal/mol) 
                
NAP 121.278 2.632 9.183 7.396 0.739  105.305  -8.616  1.175  128.173  35.888 
1MNAP 147.637 2.784 9.581 8.128 0.728  97.818  -8.505  1.392  142.200  31.236 
2MNAP 170.227 2.935 10.489 7.747 0.657  97.094  -8.567  1.392  142.200  30.010 
15DMNAP 182.491 2.977 10.282 8.669 0.703  85.259  -8.404  1.613  156.227  26.934 
23DMNAP 210.146 3.081 10.137 7.555 0.687  92.505  -8.532  1.613  156.227  25.094 
26DMNAP 231.400 3.261 11.469 7.844 0.671  87.916  -8.509  1.613  156.227  24.204 
235TMNAP 242.262 3.207 10.419 8.251 0.760  81.153  -8.424  1.839  170.254  20.710 
ACE 157.495 2.776 9.194 8.303 0.714  81.877  -8.401  1.092  154.211  40.802 
ACY 153.273 2.757 9.228 8.579 0.752  112.793  -8.782  0.991  152.195  78.373 
FLE 229.969 3.029 11.381 7.461 0.714  104.581  -8.572  1.307  166.222  50.299 
1MFLE 274.335 3.198 11.295 7.758 0.726  98.060  -8.564  1.513  180.249  44.968 
ANT 296.947 3.260 11.646 7.410 0.737  129.217  -7.979  1.539  178.233  56.085 
1MANT 335.705 3.375 11.847 8.291 0.727  121.246  -7.913  1.751  192.260  51.539 
9MANT 314.123 3.274 11.611 8.376 0.755  116.416  -7.906  1.751  192.260  53.755 
PHE 260.691 3.135 11.697 7.995 0.756  129.217  -8.546  1.539  178.233  50.784 
1MPHE 313.154 3.325 12.021 8.532 0.690  120.039  -8.480  1.751  192.260  46.387 
2MPHE 341.693 3.457 12.629 8.031 0.662  118.589  -8.537  1.751  192.260  45.017 
36DMPHE 383.380 3.581 11.647 9.118 0.724  107.962  -8.399  1.967  206.287  39.453 
FLA  284.509 3.122 10.341 9.039 0.757  127.043  -8.440  1.386  202.255  105.502 
PYR 290.271 3.180 11.633 9.203 0.771  128.250  -7.977  1.386  202.255  60.201 
1MPYR 347.329 3.377 12.036 9.579 0.696   118.831   -7.917   1.579   216.282   55.516 
a MOPAC descriptors are categorized as Quantum Mechanical by QSAR+. Here, they are categorized based on the molecular quantity they 
describe.  
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Table 4.3  
Relative explanatory importance of descriptors within each QSBR based on beta weights of unstandardized coefficients and 
semipartial correlations. Relative importance of “1” is higher than of “2”, etc. Correlation signs (+ or −) between the 
biodegradability parameters and descriptors are provided in parentheses. 

     Spatial      
Spatial/ 

Electronic  Electronic  
Topo-
logical  Structural  

Thermo-
dynamic 

QSBR 
PMI-      
mag 

RadOf 
Gyration 

Shadow-
Xlength 

Shadow-
Ylength 

Shadow-
Yzfrac  

Jurs-   
PNSA-1  

HOMO_ 
MOPACa  PHI  MW  

Hf_ 
MOPACa 

                

logqmax 1 (−)    2 (−)  2 (+)         
log(1/Ks)   1 (+)   2 (+)           
log(qmax/Ks)     1 (−)       1 (+)    1 (+) 
Δ(net A450)      3b        3b    2b        1b     
a MOPAC descriptors are categorized as Quantum Mechanical by QSAR+. Here, they are categorized based on the molecular quantity they describe.  
b Refers to the spline containing the corresponding descriptor. 
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descriptor values. Descriptors not conforming to this effect are Shadow-Xlength and 

Shadow-Yzfrac, signifying the importance of methyl-substituent position for the values 

of these descriptors. 

The relative explanatory importance of the descriptors in each QSBR, based on 

the values of beta weights and semipartial correlations, is presented in Table 4.3. Results 

indicate that spatial descriptors, describing the three-dimensional shape of molecules, are 

essential in explaining biodegradability. In fact, qmax and 1/KS are solely explained by 

spatial descriptors. The molecular flexibility index, PHI, and the heat of formation, 

Hf_MOPAC, were also important in describing the specific affinity, qmax/KS. Table 4.3 

includes the sign of correlation (+ or −) between a biodegradability parameter and a 

descriptor. 
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Fig. 4.2. Degradation of naphthalene (a) and 2,6-dimethylnaphthalene (b) in the presence 
and absence of sodium azide (NaN3). Azide is an inhibitor of facilitated membrane 
transport. Each data point represents the mean concentration from two independent batch 
reactors, while the error bars represent one standard deviation from the mean. Data 
indicate that facilitated transport may be the limiting mechanism in the degradation of 
26DMNAP but not NAP. 
 
 
 

(a) (b) 



 

 

68

The kinetic experiment with azide was used to gain insight into the influence of 

facilitated membrane transport on biodegradation kinetics. Data on ANT, 2MPHE, and 

PYR were inconclusive and are not discussed further. The results for NAP and 

26DMNAP are illustrated in Fig. 4.2. Each data point represents the mean concentration 

from two independent batch reactors, while error bars represent one standard deviation 

from the mean. Fig. 4.2a shows that azide did not affect the kinetics of NAP 

biodegradation in the first 108 minutes of the experiment; therefore, data beyond this 

point were excluded from further investigation for both compounds. First-order lines 

were fitted to the depletion data using least squares regression. At the 0.05 significance 

level azide caused significant reduction in the degradation coefficient for 26DMNAP but 

not for NAP. 

DISCUSSION 

A QSAR is more meaningful when used to describe how variation in chemical 

structure relates to a specific response, i.e., a chemical property or reaction coordinate. 

Eq. 4.2 through 4.4 describe the kinetics of the single initial catabolic step and may be 

considered mechanistically. Kinetics of this step depend on the kinetics of the initial 

catabolic reaction or any limiting processes preceding it. 

Catabolism of PAHs in bacteria starts with the oxygenation of an aromatic ring 

or alkyl side-chain. In most cases, these reactions are catalyzed by dioxygenases (Gibson 

and Parales, 2000). A number of studies (Jerina et al., 1984; Dutta et al., 1998; 

Pinyakong et al., 2004) propose that the initial catabolic reaction in sphingomonads is 

catalyzed by dioxygenase(s) characterized by relaxed PAH specificity. This is consistent 

with the detection of PAH dihydroxy metabolites (Ho et al., 2000; Story et al., 2001; 

Story et al., 2004). There is evidence that the hypothetical dioxygenase is related to 

naphthalene dioxygenase (NDO). For example, it has been suggested that a gene in 

Sphingomonas aromaticivorans strain F199 encodes for an oxygenase component of 

naphthalene dioxygenase (Romine et al., 1999b); its enzymatic activity has not yet been 

confirmed. Dioxygenases participating in the catabolism of aromatic compounds are 

multicomponent enzyme systems consisting of one or two electron transport proteins 
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functioning before the oxygenase component (Gibson and Parales, 2000). The electron-

transport proteins (e.g., a flavoprotein and a ferredoxin) could become rate-determining 

in diminishing quantities (Zhou et al., 2002), but in this research the variability in the 

observed kinetics and the fact that the biomass was induced do not support this 

possibility. The information presented above indicates that initial enzymatic 

transformation is uniform in strain EPA505. Is it the rate-determining process? 

In a well-mixed aqueous environment, two critical processes precede the 

biotransformation of organic compounds: cell membrane binding-and-transport, and 

degradative enzyme binding. Each of these processes could potentially determine the 

kinetics of biotransformation. For example, a two-stage substrate uptake model that 

included membrane transport followed by catabolism showed that transporter content 

can be as influential in determining biodegradation kinetics as the rates of subsequent 

enzymatic reactions (Button, 1991). There is limited information about the mechanisms 

contributing to PAH binding and transport across bacterial membranes. It has been 

traditionally assumed that aromatic compounds, including PAHs, can freely diffuse into 

bacterial cells (Bateman et al., 1986). More recently, a number of specific outer 

membrane (OM) proteins have been associated with the regulation of aromatic 

compound uptake by Gram-negative bacterial cells. Specific permeases catalyze 

transport of different classes of aromatics (Nikaido, 2003). For example, a protein 

encoded in the pWW0 TOL plasmid of Pseudomonas putida facilitates transport of m-

xylene (Kasai et al., 2001). Another permease was found to facilitate toluene transport 

into cells of Pseudomonas putida F1 (Wang et al., 1995). The pbhD gene in 

Sphingomonas paucimobilis strain EPA505, which is involved in fluoranthene 

metabolism, is homologous to pyruvate phosphate dikinase (ppdK), a gene involved in 

glucose uptake by prokaryotic and plant cells (Story et al., 2000). It was hypothesized 

that pbhD is associated to the uptake of fluoranthene metabolites released from the cells 

(Story et al., 2000). If energy expenditure is coupled to membrane transport, then 

permeases are active carriers. A study by Miyata et al. (2004) presented the first 

indications of the presence of saturable, energy-dependent transport of PAHs in 
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mycobacteria. The study concluded that membrane transport, rather than metabolism, 

was the rate-limiting process in induced cells, although contribution of metabolism could 

not be ruled-out (Miyata et al., 2004). Despite the significant differences between 

mycobacteria and sphingomonads (mycobacteria are Gram-positive), both genera are 

commonly found in PAH-contaminated soils (Mueller et al., 1997). Certain OM proteins 

function as active efflux pumps that regulate uptake of toxic compounds, including 

PAHs (Romine at al., 1999a). For instance, Bugg et al. (2000) discovered an active 

efflux mechanism regulating the uptake of phenanthrene in Pseudomonas fluorescens 

LP6a. The same study suggested that PAH uptake is dominated by simple partitioning 

and that efflux does not have a significant effect on the rate of phenanthrene 

biotransformation. This brief literature review shows that a variety of mechanisms are 

involved in membrane transport of aromatic compounds and that membrane transport 

can potentially be the rate-limiting mechanism in biodegradation. 

A recent study (Bressler and Gray, 2003) used a simple flux model to 

demonstrate the effect of membrane transport on the biotransformation rate of 

unsubstituted and alkyl PAHs. The flux equation was of the form: 

                                             ( )out in
m L LJ k C C= −                                                (4.6) 

where km denotes the permeability of the membrane per unit area, and out
LC  and in

LC the 

extra- and intracellular substrate aqueous concentrations, respectively. The permeability 

was expressed as: 

                                                        1/ 20.003
MW

ow
m

K
k =          (cm s-1)                          (4.7) 

where Kow is the octanol/water partition coefficient and MW the molecular weight 

(Stein, 1967). This equation assumes that, for small molecules, the diffusivity as 

calculated by the Einstein-Stokes equation is inversely proportional to the square root of 

molecular weight (Ohki and Spangler, 2005). Assuming that in
LC ≈ 0 due to intracellular 

biodegradation and that the maximal flux, Jmax, occurs when out
LC equals the aqueous 

solubility, S (mg cm-3), a combination of Eq. 4.5 and 4.6 results in: 
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Fig. 4.3. Regressions between theoretical transmembrane flux, as calculated by Eq. 4.8 
and 4.9, and the observed specific biodegradation rate for different PAHs. Fig. 4.3a 
refers to maximal flux and biodegradation rate, while Fig. 4.3b to initial values of the 
same quantities. 2,3,5-Trimethylnaphthalene is an outlier in (a). Four influence points 
are identified in (b). Both regressions are statistically significant and illustrative of the 
potential importance of transport as the rate-determining mechanism in the 
biotransformation of PAHs by strain EPA505. 
 
 
 

                                                       max 1/ 20.003
MW

owK S
J =        (mg cm-2 s-1)                  (4.8) 

A regression was performed between the logarithm of the maximal first-order 

degradation coefficients for seven PAHs and benzene as compiled by Aronson et al. 

(1998), and the logJmax as calculated by Eq. 4.8 (Bressler and Gray, 2003). The 

regression suggested that PAH biodegradation rates are related to transmembrane flux as 

calculated by the physicochemical properties of the PAHs. 

Following similar methodology, a regression was performed between Jmax and 

the experimental qmax and another between the specific biodegradation rate at t = 0, q0, 

and the theoretical flux at t = 0, J0, as calculated by the following equation: 

                                                        
0

0 1/ 20.003
MW

ow LK C
J =                                         (4.9) 

where 0
LC  is the experimental initial extracellular PAH concentration in the aqueous 

(a) (b) 
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phase. Inhibitory compounds, namely 1MNAP, 2MNAP, and 23DMNAP, were 

excluded from the second regression. Fig. 4.3a depicts a statistically significant relation 

between Jmax and qmax, suggesting membrane transport as the rate-limiting process. The 

obvious outlier, 235TMNAP, is located distantly below the regression line, possibly 

indicating biotransformation rather than transport as the rate-limiting mechanism for this 

compound. The regression in Fig. 4.3b is not as definitive, yet it is statistically 

significant. Using the same outlier diagnostics used for QSBR development, the 

following influence points were detected: ACY, 1MFLE, 1MPHE, and FLA, as 

identified in the figure. From these, ACY, 1MPHE, and FLA are located below the 

regression line, suggesting biotransformation as the possible rate-limiting mechanism. 

From all the influence points identified in Fig. 4.3, 235TMNAP, ACY, and FLA were 

also identified as influence points in QSBR, indicating possible common causality. 

The correlation between qmax, a measured quantity, and Jmax a theoretical 

quantity, is significant evidence that the rate-limiting step in PAH biodegradation by 

strain EPA505 is membrane transport. Given the concentration gradient dependence 

(Eq. 4.6), the transport mechanism is possibly diffusion, simple or facilitated. The 

experiment with azide showed that azide caused significant reduction in the 

biodegradation rate of 26DMNAP but not NAP. This finding suggests that facilitated 

diffusion potentially plays a role in the kinetics of 26DMNAP biodegradation but not 

NAP, implying that membrane transport is not a uniform process and that it could 

influence biotransformation kinetics to a different extent depending on the PAH. Given 

the smaller size and lower hydrophobicity of NAP compared to 26DMNAP, it is 

possible that NAP diffuses through a transmembrane channel while the larger 

26DMNAP requires a permease carrier to catalyze its transport. Both channels and 

carriers can exhibit saturation kinetics (Saier, 2000); therefore use of the Monod-type 

model is probably justifiable for both cases.   

The evidence indicates that membrane transport is the rate-limiting process in the 

degradation of PAHs by strain EPA505 and that transport is not a uniform process. In 

addition, potential outliers were found suggesting enzymatic transformation as the rate-
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limiting process. Due to the heterogeneity in the processes determining kinetics, one 

could argue that Eq. 4.2 through 4.4 are invalid. This argument is reasonable. However, 

it is not supported by the statistical significance and predictive power of the developed 

QSBRs, which may be explained by two reasons: (i) the QSBRs are flexible in reflecting 

different rate-limiting processes; or (ii) there is one common process for most PAHs, 

while PAHs not conforming or PAHs with a peculiarity appear as outliers. Interpretation 

and understanding of the molecular descriptors is critical in resolving the enigma. 

Spatial descriptors were found to be essential in explaining biodegradation 

kinetics. The magnitude of the principal moments of inertia (PMI-mag) is a spatial 

descriptor encoding information about spatial distribution of mass and its rotational 

properties. It also represents the role of molecular size and volume in occupying the 

space between water molecules. PMI-mag is negatively correlated with aqueous 

solubility. Indeed, substitution of PMI-mag by the logarithm of solubility in Eq. 4.2 

resulted in slightly better statistics. The equation with PMI-mag (Eq. 4.2) was preferred 

because experimental solubility values are not available for every possible PAH 

homologue. The negative coefficient of PMI-mag means that decreasing PMI-mag (or 

increasing solubility) results in increasing qmax, which is consistent with Eq. 4.8. PMI-

mag is also highly correlated with the molecular weight, as well as the molecular area, a 

descriptor related to binding and transport (Accelrys Inc., 2004). 

Another spatial descriptor with high explanatory value was the radius of 

gyration, RadOfGyration. Like PMI-mag, it contains information about the rotational 

properties of a molecule. It correlates well with logKow, a measure of hydrophobicity, 

and the molecular volume, a descriptor related to binding and transport (Accelrys Inc., 

2004). The positive coefficient of RadOfGyration in Eq. 4.3 suggests that binding 

affinity increases with hydrophobicity. The descriptor also correlates with the molecular 

area, a quantity related to binding (Accelrys Inc., 2004). 

Shadow-area shape indices, Shadow-Ylength and Shadow-Yzfrac, are spatial 

descriptors providing information on the size, shape, and orientation of a molecule. The 

descriptors are calculated by projecting the molecular shape on the three Cartesian 
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planes following alignment of the principle moments of inertia with the X, Y, and Z axes 

(Rohrbaugh and Jurs, 1987). The negative coefficient of Shadow-Ylength in Eq. 4.4 

suggests a negative correlation between size and qmax/KS. This observation may be 

consistent with the observation that in PAHs the percent percutaneous penetration after 

24 hours is negatively correlated with the molecular size as described by a shadow index 

(Moss et al., 2002); however, a direct analogy between the specific affinity and percent 

penetration after 24 hours cannot be drawn because it is unknown whether the percent 

penetration reflected kinetics or equilibrium. Shadow-Yzfrac is the fraction of the area of 

the projection of a molecule on the YZ plane divided by the area of the rectangle 

enclosing the projection of the molecule. Fractional shadow indices are not commonly 

used in QSAR modeling. Shadow-Yzfrac appears in both Eq. 4.2 and 4.3, signifying its 

influence on PAH binding and transport. It is unique in this study because it does not 

correlate with any other descriptors. It indicates that the position of methyl substituents 

influences biodegradability. A similar fractional shadow index was among the five 

descriptors selected to explain estrogen receptor binding for 58,000 chemicals (Hong et 

al., 2002). 

Charged partial surface area (CPSA) descriptors, called “Jurs” in QSAR+, 

encode spatial and electronic information related to the tendency of molecules to engage 

in polar interactions (Stanton and Jurs, 1990). Jurs-PNSA-1 is the partial negative 

surface area, i.e., the sum of the solvent-accessible surface areas of all negatively 

charged atoms, and it correlates negatively with the desolvation free energy. The 

positive coefficient of Jurs-PNSA-1 in Eq. 4.2 means that qmax increases with increasing 

values of this descriptor. Jurs-PNSA-1 also correlates with density, a spatial descriptor 

expressing transport behavior (Accelrys Inc., 2004). 

All descriptors analyzed in the previous paragraphs are spatial. Eq. 4.4 for 

qmax/KS also contains a topological and a thermodynamic descriptor. The molecular 

flexibility index, PHI, is a topological descriptor characterizing the conformational 

flexibility of a molecule within a given energy range (Hall and Kier, 1991). Its 

coefficient in Eq. 4.4 suggests that the specific affinity increases with PHI. Molecular 
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flexibility has a strong effect on biological activity, particularly binding affinity (Becker 

et al., 2000). Molecular flexibility, together with hydrophobicity and polar surface area, 

was important in modeling transport through the blood-brain barrier (Winkler and 

Burden, 2004). The enthalpy of formation of a molecule from its constituent atoms, Hf, 

is a thermodynamic descriptor not related to logKow. Hf positively correlates with the 

specific affinity and correlates well with density, a quantity describing transport 

behavior (Accelrys Inc., 2004). Hf was important in explaining biodegradability of 

substituted benzenes by river bacteria (Lu et al., 2003). 

The meaning of the descriptors in Eq. 4.2 through 4.4 agrees with the hypothesis 

of binding-and-transport as the rate-limiting mechanism. A number of mathematical 

expressions have been proposed for modeling binding of ligands to proteins and 

enzymes. A popular expression analyzes the free energy change upon binding, ΔGbind, as 

a sum of free energy components: 

                      ΔGbind = ΔGT+R + ΔGFLEX + ΔGHYD + ΔGPOLAR                       (4.10) 

where ΔGT+R is the reduction in translational and rotational energy, ΔGFLEX is the loss in 

bond flexibility, ΔGHYD is the hydrophobic interaction energy, and ΔGPOLAR is the polar 

energy contribution (Lewis et al., 1998). There is striking similarity between the 

components of free energy upon binding with the descriptors used in Eq. 4.2 through 

4.4. Specifically, ΔGT+R can be related to PMI-mag and RadOfGyration. These 

descriptors express rotational properties of a molecule and also translational properties, 

given their association with molecular mass. ΔGFLEX can be associated with the 

molecular flexibility index, PHI. ΔGHYD can be linked to PMI-mag, RadOfGyration, and 

to a lesser degree to PHI, as well as all the hydrophobicity measures that these 

descriptors represent. Finally, ΔGPOLAR can be related to Jurs-PNSA-1. The analogy 

between Eq. 4.2 through 4.4 and Eq. 4.10 is strong evidence that binding is associated 

with the rate-limiting process.  

Solute binding involves transfer out of the water phase. Therefore, linear 

solvation energy relationships (LSERs) could give insight into the mechanisms 

determining the observed biodegradation kinetics. The generic Abraham solvation 
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equation for a condensed system is: 

                                            K = c + eEs + sSs + aAs + bBs + vVs                                 (4.11) 

where K represents a set of solute properties, Es is the solute excess molar refractivity, Ss 

is the solute polarizability, As and Bs are the overall hydrogen bond acidity and basicity, 

respectively, Vs is the McGowan volume, and c, e, s, a, b, and v are multiple regression 

coefficients (Abraham, 1993; Abraham et al., 2004). Unsubstituted and methylated 

PAHs are weak hydrogen bond bases and tend to engage in hydrogen bonding to any 

hydrogen bond acids of a system. The values of Es, Ss, Bs, Vs for the PAHs in this study 

are provided in Table 4.4. 

 
 
 

Table 4.4 
Values of solute descriptors of the Abraham solvation equation (Eq. 
4.11) (M.H. Abraham, personal communication, April 28, 2005). 

Compound           Es  Ss  Bs           Vs 
       (0.1 L/mol)        (0.01 L/mol) 
     
NAP 1.340 0.92 0.20 1.085 
1MNAP 1.337 0.94 0.22 1.226 
2MNAP 1.304 0.81 0.25 1.226 
15DMNAP 1.402 1.05 0.18 1.367 
23DMNAP 1.402 0.85 0.28 1.367 
26DMNAP 1.347 0.82 0.25 1.367 
235TMNAP 1.470 1.00 0.25 1.508 
ACE 1.604 1.05 0.22 1.259 
ACY 1.750 1.14 0.26 1.216 
FLE 1.588 1.06 0.24 1.357 
1MFLE 1.588 1.06 0.25 1.497 
ANT 2.290 1.34 0.28 1.454 
1MANT 2.290 1.30 0.30 1.595 
PHE 2.055 1.29 0.29 1.454 
1MPHE 2.055 1.25 0.29 1.595 
2MPHE 2.055 1.25 0.29 1.595 
36DMPHE 2.050 1.29 0.29 1.736 
FLA  2.377 1.55 0.24 1.585 
PYR 2.808 1.71 0.28 1.585 
1MPYR 2.808 1.70 0.26 1.726 
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 A regression was performed between log(1/KS) and the solute descriptors of the 

Abraham equation (Table 4.4). Although KS expresses the affinity of a receptor for the 

substrate, it must also include substrate desolvation. The resulting solvation equation is 

provided below, with uncertainties in unstandardized coefficients representing standard 

errors: 

log(1/KS) (μmol L-1) = − 2.1629(± 1.1924) + 1.2388(± 1.2932) · Es  

                                    − 1.2514(± 2.2301) · Ss − 2.5393(± 5.1947) · Bs   

                                    + 1.9946(± 0.7993) · Vs                                                           (4.12) 

n = 20, R2 = 0.745, F = 11.0, Sig. F = 0.000 

For transport of a solute from the water to a lipid-like phase, the s and b coefficients are 

always negative while v is always positive, which is consistent with the signs of the 

coefficients in Eq. 4.12. Nevertheless, the regression is problematic basically due to 

multicollinearity. An alternative equation that uses fewer descriptors is: 

log(1/KS) (μmol L-1) = − 2.6886(± 0.6815) + 0.5241(± 0.2426) · Es  

                                    + 1.8084(± 0.6558) · Vs                                                           (4.13) 

n = 20, R2 = 0.740, F = 24.2, Sig. F = 0.000 

Eq. 4.13 is statistically valid and provides insight for a mechanistic understanding of the 

observed affinity coefficients. It illustrates the significance of solute molecular volume, 

and therefore, hydrophobicity, in binding of the substrate to the rate-limiting receptor. 

Two binding processes precede biotransformation: membrane binding and enzyme 

binding. Which is the limiting one? 

Absence of descriptors from Eq. 4.2 through 4.4 can be as meaningful as their 

presence. Strong evidence that substrate-degradative enzyme interaction is not the rate-

determining process is the absence of electronic descriptors related to chemical 

reactivity. Such descriptors include the energy of the highest occupied molecular orbital, 

HOMO, the difference in energy between the highest occupied and lowest unoccupied 

molecular orbitals, HOMO-LUMO gap, and superdelocalizability, Sr. The HOMO 

energy is commonly used in QSARs as a measure of nucleophilicity and ionization 

potential. A molecule with high HOMO energy donates electrons more readily than a 
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molecule with low HOMO energy. Nucloephilicity is important in the biodegradability 

of PAHs because dioxygenases function by electrophilic addition of activated oxygen. 

HOMO energy was not present in any of the generated equations sets for qmax, KS, or 

qmax/KS. In addition, HOMO energy does not correlate with any of the final descriptors 

for these parameters. Presence of HOMO in the relationship for Δ(net A450) is consistent 

with the fact that this parameter reflects more than one pathway step including 

nucleophilic attack by oxygenases at one point in the degradation pathway(s). Another 

popular electronic descriptor used in quantitative-structure models for biodegradability, 

toxicity, and physicochemical properties is the HOMO-LUMO gap (Karelson et al., 

1996), a measure of chemical stability. This descriptor was manually calculated from the 

HOMO and LUMO values generated by MOPAC7. HOMO-LUMO gap was not present 

in any of the generated equations sets for qmax, KS, qmax/KS, or Δ(net A450). Finally, Sr is 

an index of reactivity of aromatic hydrocarbons that is related to the HOMO energy 

(Fukui, 1997). Sr was present only in 3 and 5 of the 100 generated equations for qmax and 

KS, respectively. These equations had relatively high LOF scores and were not 

statistically significant. That enzyme-substrate interaction is probably not the rate-

determining step implies that the rate-limiting step is either membrane binding-and-

transport or enzyme binding and orientation of the substrate in the active site. The latter 

is possible (Polgar, 1992; Wang et al., 2001) but unlikely. For example, it was found that 

although hydroxylation rates of p-substituted toluenes by the cytochrome CYP2B4 was 

adequately described by steric properties (Lewis et al., 1995), addition of HOMO 

significantly improved the QSAR (Lewis et al., 1998). 

Interpretation of Eq. 4.5 requires separate discussion. This equation is different 

from the other QSBRs in that it does not express a single reaction mechanism but 

different degradation paths that can be convergent or divergent (Story et al., 2001). For 

this reason it can not be considered mechanistically, especially because pathways have 

not been delineated for all PAHs of interest. The fact that Eq. 4.5 cannot be considered 

mechanistically does not imply invalidity. Spline regression and other nonlinear 

modeling methods are adaptable to heterogeneities, outliers, discontinuities, and other 
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anomalies in the data (Eriksson et al., 2003). In addition, despite the fundamental 

differences between Eq. 4.5 and the other QSBRs, the main difference in descriptor use 

involves the HOMO energy. The spline containing this descriptor in Eq. 4.5 expresses 

susceptibility to nucleophilic attack subsequent to the initial oxidation step, given that all 

PAHs in the degradation study were biotransformed. This nucleophilic attack possibly 

involves ring cleavage, a prerequisite for growth support. 

In this study, QSBRs were developed describing biodegradability of PAHs by 

Sphingomonas paucimobilis strain EPA505. The QSBRs are statistically valid and have 

significant predictive power. Two approaches were followed, a simple flux model, and 

interpretation of the generated QSBRs, to investigate the processes determining 

biodegradation kinetics. Both approaches resulted in similar evidence, based on which it 

is concluded that, contrary to common belief, membrane binding-and-transport is the 

rate-determining process in the biodegradation of most of the PAHs tested. It is 

unknown to what degree PAH binding and transport are distinguishable through the 

QSBRs and which biomolecules and processes they involve. This study and others with 

similar findings initiate needed research on membrane binding-and-transport of PAHs 

that would enhance our understanding of both PAH biodegradability and toxicity 

mechanisms. 
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CHAPTER V 

MODELING BIODEGRADATION OF BINARY AND TERNARY MIXTURES 

OF POLYCYCLIC AROMATIC HYDROCARBONS 

 

OVERVIEW 

Biodegradation of mixtures of polycyclic aromatic hydrocarbons (PAHs) by 

Sphingomonas paucimobilis strain EPA505 was investigated. The investigation focused 

on three- and four-ring PAHs, specifically 2-methylphenanthrene, fluoranthene, and 

pyrene. Biodegradation rates in batch cultivations were measured for the individual 

compounds and their binary and ternary mixtures. It was observed that kinetics in a 

mixture were either similar or slower than those observed for the individual PAHs and 

that kinetics were influenced by the mixture composition and the kinetic properties of 

the components. A material balance equation containing the Monod kinetic model was 

numerically fitted to depletion data to estimate extant kinetic parameters for the 

individual compounds. Similarly, equations containing kinetic-interaction models 

derived from enzyme kinetics were fitted to the depletion data for the binary and ternary 

mixtures. Interaction types considered included no-interaction (NI or Monod), pure 

competitive interaction (CI), non-competitive or mixed-type interaction (NCI/MI), 

uncompetitive inhibition (UCI), and nonspecific interaction based on pure competition 

(SKIP). Model fit was evaluated based on statistical and probabilistic criteria and 

inferences were reached about underlying interaction mechanisms based on model fit. 

Mixture kinetics were most adequately described by the pure CI model with mutual 

substrate exclusivity. This model is fully predictive, requiring no additional parameters 

other than those estimated in the sole-PAH experiments. It was also shown that, for low 

percent inhibition values and with limited number of data points, competitive interaction 

kinetics may not be evident, resembling no-interaction kinetics.  Despite simplifications, 

the experiment described in this study is a reasonable starting point for understanding 

mixture effects and simulating engineered and natural systems. 
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INTRODUCTION 

PAHs are ubiquitous pollutants of significant environmental and toxicological 

importance (Harvey, 1991). PAHs often occur in complex mixtures containing parent 

compounds and substituted homologues. Common sources of PAH mixtures include 

petroleum and creosote. The primary mechanism of PAH removal from the environment 

is biodegradation (NRC, 2003), also used extensively as a clean-up technology. 

Therefore, knowledge of biodegradation kinetics in natural and engineered systems is 

essential in calculating risks from PAH exposure and effectively implementing removal 

practices. It has been observed that degradation of a PAH in a mixture can be 

significantly affected by interactions with other mixture components (Guha et al., 1999). 

Yet the majority of studies on PAH biodegradability have focused either on modeling 

degradation of individual PAHs or on qualitatively describing interaction effects. A 

discussion on the current state, recent advances, and potential developments in microbial 

kinetics of suspended heterotrophic cultures (Kovárová-Kovar and Egli, 1998) signifies 

the need for a systematic experimental and modeling effort to elucidate the principles of 

mixed-substrate kinetics and express them quantitatively.  

Studies modeling biodegradation of PAH mixtures are limited. Stringfellow and 

Aitken (1995) observed pure competitive inhibition kinetics in the degradation of binary 

mixtures of phenanthrene with one of naphthalene, 1-methylnaphthalene, 2-

methylnaphthalene, and fluorene by two different pseudomonads. Naphthalene, 

methylnaphthalenes, and phenanthrene were carbon sources, while fluorene was 

degraded cometabolically. Guha et al. (1999) studied degradation of binary and ternary 

mixtures of naphthalene, phenanthrene, and pyrene by an acclimated mixed culture. The 

pure competitive inhibition model adequately described biodegradation kinetics, 

especially for the ternary mixture. Knightes (2000) investigated biodegradation of two 

binary mixtures, naphthalene with 1-methylnaphthalene and naphthalene with 

phenanthrene, as well as degradation of a complex mixture of nine unsubstituted and 

methylated PAHs. Biodegradation was achieved by an enriched consortium containing at 

least two sphingomonads. Despite data scatter, the competitive inhibition model 
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adequately captured interaction effects. All the above studies assumed that deviations 

from the Monod behavior were a result of purely competitive interactions. Two of the 

three studies assumed mutual substrate exclusivity. While these assumptions are 

reasonable for degradation of mixtures of homologous carbon and energy sources by 

pure cultures, it is not always valid as shown by studies with phenol, trichlorophenol, 

and pentachlorophenol (Klečka and Maier, 1988), benzene and toluene (Oh et al., 1994), 

and benzene, toluene, and phenol (Reardon et al., 2000; Reardon et al., 2002). 

Depending on the protein(s), transporters or enzymes, determining the kinetics of 

biodegradation, different interactions may occur between the solutes and single or 

multiple binding sites.  

Biodegradation experiments in this study used pure Sphingomonas paucimobilis 

EPA505 induced with fluoranthene as described in Chapter III. A potent PAH degrader, 

this strain is commonly found in creosote- and fuel oil-contaminated soils (Mueller et al., 

1997). A limited number of studies have investigated degradation of mixtures of PAHs 

by strain EPA505. Lantz et al. (1997) examined the effects of the concentration of a 

neutral creosote fraction containing 25 PAHs on the rate and extent of fluoranthene 

mineralization in the presence of Triton X-100. Luning Prak and Pritchard (2002) 

measured degradation rates of mixtures of phenanthrene, fluoranthene, and pyrene in the 

presence of Tween 80. Daugulis and McCracken (2003) evaluated degradation of a 

mixture of phenanthrene, naphthalene, pyrene, fluoranthene, chrysene, and 

benzo[a]pyrene in the presence of dodecane. All these studies were conducted under 

batch conditions and used dispersants to test biodegradation at concentrations above 

solubility. None of these studies applied kinetic modeling to quantitatively explain 

interaction effects.  

The purpose of this study was to model biodegradation of binary and ternary 

mixtures of PAHs in batch systems, as a direct extension of the modeling conducted in 

Chapter III for individual PAHs. 2-Methylphenanthrene (2MPHE), a three-ring 

substituted PAH, fluoranthene (FLA), and pyrene (PYR), both four-ring PAHs, were 

used in the investigation. Kinetics were measured for the individual compounds and their 
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binary and ternary mixtures. The Monod and a series of interaction kinetic models were 

fitted to the data and inferences were reached about the interaction mechanisms and 

model applicability based on model fit. Despite simplifications, the experiment 

described in this study is a reasonable starting point for understanding mixture effects 

and simulating engineered and natural systems. 

METHODS AND MATERIALS 

Kinetic model formulation 

Kinetic modeling of hyperbolic substrate uptake by a pure culture as a function 

of substrate concentration is often based on the Monod model. As discussed in Chapter 

III, the Monod and Andrews models adequately described biotransformation kinetics for 

20 individual PAHs by Sphingomonas paucomobilis strain EPA505. When a substrate is 

present in a mixture of homologous compounds, biotransformation kinetics may be 

affected by interactions between the compounds and receptors, transporters or enzymes. 

The effect of interactions can be modeled on the basis of enzyme kinetics. It should be 

noted that there is no generic kinetic model that can alone describe all the possible 

protein-ligand interactions, especially when the receptor(s) are unknown or 

uncharacterized. This study attempted to cover the most common interaction types only. 

When there is no interaction, kinetics can be described by the Michaelis-Menten 

model, which is analogous to the Monod model: 

                                                           max,1 ,1
1

1 ,1

L

L

V C
v

K C
=

+
                                                    (5.1) 

where v1 (μmol substrate L-1 h-1) is the initial velocity of the enzymatic transformation of 

substrate C1, Vmax is the limiting maximal initial velocity (μmol substrate L-1 h-1), and 

CL,1 is the concentration of substrate C1 in the liquid phase. K1 (μmol/L) is the 

dissociation constant of the EC1 complex assuming rapid equilibrium, where E is the 

enzyme of interest.  

An equilibrium system describing interactions among an enzyme E, a substrate 

C1, and two alternative reversible substrates, C2 and C3, is represented in Fig. 5.1a. The 

model assumes that the alternative substrates act as inhibitors of the following types: 
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competitive, noncompetitive, or mixed-type (CI, NCI, or MI). The model also assumes 

that no direct interactions occur among C1, C2, and C3. Constants K1, K2,

 
 
 

 
 
Fig. 5.1. Equilibria among an enzyme E, a substrate C1, and two reversible inhibitors, C2 
and C3. If C2 and C3 are alternative substrates, interactions can be competitive, 
noncompetitive, or mixed (a). If C2 and C3 are not substrates, inhibition is uncompetitive 
(b). Both systems assume no independent interactions between C2 and C3. Adapted from 
Keleti and Fajszi (1971), Segel (1975), and Martinez-Irujo et al. (1998).  
 
 
 
and K3 are the dissociation constants of complexes EC1, EC2, and EC3, respectively. 

Factors α and β describe the relative change in enzyme affinity for C1 caused by C2 and 

C3, respectively, or, conversely, the relative change in affinity for C2 and C3 caused by 

C1. Factor γ describes the mutual effect of C2 and C3 on binding to E. When γ = 1, 

presence of C2 does not affect binding of C3 and vice versa, whereas when γ → ∞, 

binding is mutually exclusive. The rate constant, kp, describes the rate of dissociation of 

EC1 to the reaction product, P, and the pure enzyme. Factors x, y, and z, assuming values 

between 0 and 1, describe the relative catalytic activity of complexes EC1C2, EC1C3, and 

EC1C2C3, respectively, in yielding P. Fig. 5.1a includes numbers corresponding to each 

of the reversible and irreversible reactions for easy reference. Assuming rapid 

(a) (b) 
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equilibrium, and x = y = z = 0, a kinetic expression of the chemical system is (Martinez-

Irujo et al., 1998): 

    max,1 ,1
1

1 ,2 1 ,3 ,1 ,2 ,1 ,3 1 ,2 ,3 ,1 ,2 ,3
1 ,1

2 3 2 3 2 3 2 3

L

L L L L L L L L L L L
L

V C
v

K C K C C C C C K C C C C C
K C

K K K K K K K Kα β γ αβγ

=
+ + + + + + +

      (5.2) 

A pure competitive interaction model is described by reactions 1, 2, 3, 12, 10, 

and 13 in Fig. 5.1a. The corresponding kinetic model (Eq. 5.3) results from Eq. 5.2 when 

α, β → ∞:  

                                   max,1 ,1
1

1 ,2 1 ,3 1 ,2 ,3
1 ,1

2 3 2 3

L

L L L L
L

V C
v

K C K C K C C
K C

K K K Kγ

=
+ + + +

                         (5.3) 

When γ → ∞, the two alternative substrates are mutually exclusive and reactions 10 and 

12 of the above sequence do not occur. When CL,3 = 0, Eq. 5.3 can be used to describe 

competitive kinetics between two substrates only, i.e., C1 and C2. 

Noncompetitive and mixed-type interaction by two different mutually exclusive 

alternative substrates is described by reactions 1, 2, 3, 4, 5, 6, 11, and 13 in Fig. 5.1a. 

The kinetic equation for this system stems from Eq. 5.2 when γ → ∞: 

                           max,1 ,1
1

1 ,2 1 ,3 ,1 ,2 ,1 ,3
1 ,1

2 3 2 3

L

L L L L L L
L

V C
v

K C K C C C C C
K C

K K K Kα β

=
+ + + + +

                     (5.4) 

Interaction is purely noncompetitive when α = β = 1, partially mixed when α = 1 and β ≠ 

1 and vice versa, and completely mixed when α ≠ 1 and β ≠ 1. When CL,3 = 0 and α = 1, 

Eq. 5.4 can be used to describe noncompetitive kinetics in the case of two alternative 

substrates only, i.e., C1 and C2. When α → ∞, reactions 4 and 5 of the above sequence do 

not occur and Eq. 5.4 becomes: 

                                     max,1 ,1
1

1 ,2 1 ,3 ,1 ,3
1 ,1

2 3 3

L

L L L L
L

V C
v

K C K C C C
K C

K K Kβ

=
+ + + +

                          (5.4´) 
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In this case, C2 acts as competitive, and C3 as a noncompetitive or mixed-type alternative 

substrate with respect to C1 (Segel, 1975). If two pure noncompetitive alternative 

substrates C2 and C3 are nonexclusive, then substituting α = β = 1 in Eq. 5.2 results in: 

           max,1 ,1
1

1 ,2 1 ,3 1 ,2 ,3 ,1 ,2 ,1 ,3 ,1 ,2 ,3
1 ,1

2 3 2 3 2 3 2 3

L

L L L L L L L L L L L
L

V C
v

K C K C K C C C C C C C C C
K C

K K K K K K K Kγ γ

=
+ + + + + + +

   (5.5) 

which corresponds to all the reactions in Fig. 5.1a except reactions 1´, 1´´, and 1´´´. 

Uncompetitive inhibition differs from the cases discussed above in that C2 and C3 

are inhibitors and not alternative substrates, i.e., they do not bind directly to the free 

enzyme but to EC1 yielding inactive complexes. Uncompetitive inhibition by two 

inhibitors is represented by Fig. 5.1b. Assuming rapid equilibrium, the velocity equation 

for uncompetitive inhibition is described by (Segel, 1975): 

                              max,1 ,1
1

,1 ,2 ,1 ,3 ,1 ,2 ,3
1 ,1

2 3 2 3

L

L L L L L L L
L

V C
v

C C C C C C C
K C

K K aK K

=
+ + + +

                         (5.6) 

In the presence of one inhibitor only, the same equation applies by setting CL,3 = 0.

 Assuming that interactions are pertinent to a common rate-limiting protein, i.e., a 

degradative enzyme or a membrane transporter, Eq. 5.1 through 5.6 can be adapted to 

describe kinetics of microbial uptake of a substrate present in a mixture of homologues. 

Specifically, v1 can be substituted by q1, the specific uptake rate (μmol substrate mg 

biomass -1 h-1); analogously, Vmax can be substituted by qmax, the maximal specific uptake 

rate, whose values were estimated in Chapter III for different PAHs. If the modeled 

compounds are substrates to a rate-limiting enzyme or transporter, the dissociation 

constants can be substituted by the substrate affinity coefficients, KS, whose values were 

also estimated in Chapter III. In the case of uncompetitive inhibition the dissociation 

constants K2 and K3 cannot be substituted by the affinity coefficients because C2 and C3 

are not substrates (to be precise, substitution is possible only if the dissociation of 

inhibitor Ci from EC1Ci is the rate-limiting step in the transformation of Ci). Therefore, 

in uncompetitive inhibition K2 and K3 must be treated as fitting parameters.  
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 A material balance equation for a batch process with instantaneous partitioning to 

the biomass and first-order abiotic losses is: 

                                                ,
,

,

1
1

T i
i a i

b i

dC
q X k t

XK dt
− = +

+
                                      (5.7) 

where CT,i is the total concentration of Ci in a liquid sample containing suspended cells, 

X is the biomass concentration (mg/L), Kb,i is the equilibrium partition coefficient for the 

sorption of Ci to the biomass, ka,i (h-1) is the first-order abiotic loss coefficient for Ci, and 

t is time. In Eq. 5.7, qi is expressed in terms of CT,i according to:  

                                                          ,
,

,1  
T i

L i
b i

C
C

XK
=

+
                                                 (5.8) 

A discussion of the underlying assumptions and applicability of Eq. 5.7 and 5.8 can be 

found in Chapter III. Modified versions of Eq. 5.1 through 5.6, expressed in terms of 

microbial kinetics, can be incorporated into Eq. 5.7 yielding the following kinetic 

models: no-interaction (NI), pure competitive interaction (CI), noncompetitive or mixed-

typed interaction (NCI or MI), and uncompetitive inhibition (UCI). 

Adjustments to the classic interaction models described above have been 

proposed to explain deviations from theoretical behavior. Substituting K2/K1 with I2 and 

K3/K1 with I3 in Eq. 5.3, the microbial kinetic equivalent of pure competitive interaction 

with mutually exclusive substrates is: 

                                              max,1 ,1
1

1 ,1 2 ,2 3 ,3

L

L L L

q C
q

K C I C I C
=

+ + +
                                      (5.9) 

Despite the theoretical basis of this model, Yoon et al. (1977) suggested that I2 and I3 

should be treated as unknown parameters to account for cases in which the growth rate 

in a mixture is greater than the growth rate on either of the individual substrates. This 

unspecified interaction model, named SKIP for sum kinetics with interaction parameters 

(Reardon et al., 2000), accurately described kinetics of degradation of monoaromatic 

hydrocarbons by pure and mixed bacterial cultures (Reardon et al., 2000; Reardon et al., 

2002) and is evaluated in this study. 
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Selection of PAHs for mixture experiments 

PAHs were selected from the set of compounds examined in Chapter III for 

kinetic behavior. Selection was based on a number of considerations. PAHs causing 

substrate inhibition, namely 1-methylnaphthalene, 2-methylnaphthalene, and 2,3-

dimethylnaphthalene, were not desirable because of possible interference between 

substrate inhibition and other forms of interactions or inhibition. Given that the kinetic 

models introduced above describe simultaneous interactions, PAHs were sought that 

would be biodegraded simultaneously. At high substrate concentrations, diauxic or 

sequential utilization is often observed, although this condition should not be applicable 

to PAHs due to their low solubilities. It has been suggested that substrates exhibiting low 

to medium maximal specific uptake rates are utilized simultaneously (Kovárová-Kovar 

and Egli, 1998). In Chapter III, qmax values ranged from 0.01 ± 0.01 for 1-methylpyrene 

to 2.19 ± 0.07 for 2-methylnaphthalene, both in units of μmol mg-1 BSA h-1. To ensure 

simultaneous biodegradation, compounds were sought exhibiting low to medium qmax 

values. This criterion was also appealing because the slower kinetics would permit 

simultaneous sampling of multiple reactors, establishing a common time-step that would 

simplify numerical modeling. To satisfy the above requirements, 2-methylphenanthrene 

(2MPHE), fluoranthene (FLA), and pyrene (PYR) were selected. In the tested 

concentration ranges, the selected compounds are not inhibitory, are degraded according 

to the Monod model, and exhibit low to medium qmax (see Table 5.1 below and Table 

3.1). In addition, 2MPHE, FLA, and PYR exhibit similar physicochemical properties 

and Jmax, the theoretical maximal transmembrane flux as defined in Chapter IV, 

indicating that biodegradation kinetics for these compounds are determined by a 

common kinetic mechanism, possibly related to a permease carrier. According to 

Chapter III, 2MPHE and FLA can support growth of strain EPA505, while PYR cannot.  

Chemicals  

2-Methylphenanthrene (2MPHE) was purchased from Ultra Scientific (North 

Kingstown, RI). Fluoranthene (FLA) and pyrene (PYR) were purchased from Avocado 

Research Chemicals (Heysham, England). PAHs were of the highest purity available, 
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which was greater than 99%. The internal standard for PAH quantification via gas 

chromatography was a 1:1 mix of 20016 and GRH-IS standards purchased from 

Absolute Standards, Inc. (Hamden, CT) and AccuStandard, Inc. (New Haven, CT), 

respectively. A protein assay was used for the quantification of biomass as bovine serum 

albumin (BSA) according to the method of Bradford (1976). The protein assay kit was 

purchased from Bio-Rad (Hercules, CA). 

 
 
 

Table 5.1 
Best estimates of kinetic parameters describing the biodegradation of 2-
methylphenanthrene (2MPHE), fluoranthene (FLA), and pyrene (PYR) individually 
by strain EPA505. Uncertainty is expressed as the margin of error at the 95% 
confidence level. Values in parentheses, estimated in Chapter III, are provided for 
comparison.  

Comp. Sol.a 0
TC  qmax KS       qmax/KS 

 (μmol/L) (μmol/L) (μmol mg-1 h-1) (μmol/L)       (L mg-1 h-1) 
              
2MPHE 1.46      0.45 ± 0.00   0.42 ± 0.04   0.18 ± 0.03   2.45 ± 0.54 
      (0.61 ± 0.02)  (0.54 ± 0.10)  (0.15 ± 0.06)  (3.73 ± 1.56) 
              
FLA 1.29      0.74 ± 0.02   0.22 ± 0.03   0.07 ± 0.03   3.08 ± 1.38 
      (0.70 ± 0.02)  (0.20 ± 0.02)  (0.07 ± 0.03)  (2.96 ± 1.16) 
              
PYR 0.67      0.37 ± 0.01   0.15 ± 0.02   0.14 ± 0.03   1.08 ± 0.28 
      (0.34 ± 0.01)  (0.16 ± 0.03)  (0.15 ± 0.04)  (1.10 ± 0.31) 
a Aqueous solubility values taken from Howard and Meylan (1997) and converted into μmol/L. 

 
 
 
Pure culture  

Sphingomonas paucimobilis DSM 7526 (strain EPA505) was purchased from 

DSMZ (Braunschweig, Germany). Cells were induced on FLA as described in Chapter 

III. To grow biomass for the biokinetic experiment, cryopreserved cells were added to 

nutrient broth supplemented with 0.4 g/L glucose and incubated for 36 h at 30 ºC (Ye et 

al., 1996). Biomass was washed three times with Bushnell-Haas broth and the 

concentrated inoculum was added to batch reactors to initiate biodegradation 

immediately after measurement of its concentration.  
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Batch biokinetic experiment 

An experiment was conducted to measure biodegradation kinetics of 2MPHE, 

FLA, and PYR individually, in binary mixtures (2MPHE-FLA, 2MPHE-PYR, and FLA-

PYR), and in the ternary mixture (2MPHE-FLA-PYR). Kinetics of the individual 

compounds provided parameter estimates used to model biodegradation kinetics in the 

mixtures. Kinetics in the binary mixtures allowed inference about the interaction types 

without the complexity introduced by the larger mixture. The experiment was conducted 

under extant conditions as defined by Grady et al. (1996) and discussed in Chapter III. A 

detailed protocol for the biokinetic experiment can be found in Chapter III. In brief, 

duplicate 250 mL serum-bottle reactors containing 150 mL of a PAH solution in 

Bushnell-Haas broth, a total of 14 reactors, received approximately 1.5 mL of the 

concentrated biomass to achieve X ≈ 3.0 mg BSA/L. Ten 7-mL samples were taken from 

each reactor at designated sampling times. Sampling events coincided for all bioreactors 

establishing a common time-step and total depletion time that would simplify numerical 

modeling for parameter estimation. To accomplish that, preliminary experiments were 

conducted to determine appropriate initial concentrations for each PAH, designed to be 

the same in every treatment. In all cases, initial concentrations were below the 

corresponding aqueous solubility values (Table 5.1) and satisfied the extant-kinetic 

conditions.  

Samples collected from each batch reactor were added to 16-mL screw cap tubes 

with Teflon-coated caps containing 3 mL dichloromethane (DCM) for liquid extraction 

and then shaken on a rotary shaker for at least 4 h. One (1.0) mL of the DCM extract was 

removed with a glass pipette and added to an autosampler vial with 10 μL internal 

standard for gas chromatography/mass spectrometry (GC/MS) analysis. A 2.5-mL 

sample was taken from each reactor at the beginning and at the end of each run for 

biomass quantification as BSA. Experiments were conducted at 22 °C. As found in 

Chapter III, degradation by autoclaved cells was not appreciable for 2MPHE, FLA, and 

PYR, and every other PAH; therefore, no killed-control treatments were tested in this 

experiment. 
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Analytical procedures  

Measurements of PAH concentration were conducted with GC/MS on an HP 

5890 Series II chromatograph interfaced with a HP 5972 mass selective detector 

(Agilent Technologies Inc., Palo Alto, CA). The type of the column was HP-5MS ((5%-

Phenyl)-Methylpolysiloxane, 0.25 mm × 30 m × 0.25 μm, J&W Scientific (Palo Alto, 

CA)). The following temperature program was used: 60 ºC, 8.0ºC/min for 30 min to 300 

ºC. The mass spectrometer was operated in the selective ion mode (SIM). The 

quantitation limit of the method was 0.001 mg/L. Biomass measurements were 

conducted with an HP 8452 UV-Visible spectrophotometer (Agilent Technologies Inc., 

Palo Alto, CA) measuring the absorbance of BSA at 595 nm.  

Model fitting and evaluation of fit  

Degradation data were used as input to different interaction models to draw 

inferences about the underlying interaction mechanisms based on the model fit. The 

integrated form of Eq. 5.7 containing the microbial kinetic equivalent of one of Eq. 5.1, 

5.2, and 5.6, or Eq. 5.9 was fitted to the depletion data using nonlinear regression, 

specifically, minimizing the sum of squared errors, SSE, based on n observations: 

                                                      
1

2
, ,

0

ˆ( )
−

=

= −∑
n

j j
i T i T i

j
SSE C C                                          (5.10) 

where ,
j

T iC  is the observed total concentration of substrate i in the jth sample and ,
ˆ j

T iC  is 

the corresponding concentration predicted by the model. Simultaneous integration of the 

kinetic equation over a series of time steps corresponding to the sampling events was 

accomplished by a fourth-order Runge-Kutta numerical algorithm. In modeling 

degradation of individual PAHs, the fitting parameters were 0
TC , qmax, and KS. Best 

estimates of qmax and KS were used in modeling degradation of mixtures, when 

applicable. In modeling mixture kinetics, the fitting parameters were one or more of the 

following, depending on the model: 0
TC , α, β, γ, K2, K3, I2, and I3. Uncertainties in the 

best estimates, expressed as the margins of error at the 95% confidence level, E95%, were 

calculated using the method of Smith et al. (1998). In brief, the method used the mean 
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square fitting error, s2, and the inverse of a pp×  matrix containing sensitivity 

coefficients quantifying the sensitivity of fit to changes in the best estimate of a 

parameter. Overall, E95% depended on SSE and the total degrees of freedom, df = n – p, 

where n is the numbers of observations and p is the number of fitting parameters. The 

value of p varies depending on the interaction type. For example, for binary-mixture 

modeling with uncompetitive inhibition, the fitting parameters are 0
TC  and K2; therefore, 

p = 2. When using the microbial kinetic equivalent of Eq. 5.2, the value of p is not as 

apparent because this equation encompasses different interaction types. For example, for 

binary-mixture modeling, if interaction is purely competitive, α → ∞ and p = 1 due to 
0
TC . Similarly, if interaction is partially mixed, α = 1 and p = 1 due to 0

TC ; finally, if 

interaction is completely mixed, α is different than ∞ and 1, and p = 2 due to 0
TC  and α. 

Best estimates of qmax and KS used in modeling mixture kinetics were allowed to vary 

within their 95% confidence intervals without removing any degrees of freedom. The 

value of df was critical because it affected model fit and significance. Fit models with p 

= 1, i.e., due to 0
TC  only, were considered ideal because they were fully predictive, using 

no additional kinetic parameters except those estimated in the individual-PAH 

experiments. 

 To evaluate model fit, the adjusted pseudo-coefficient of determination was used, 

defined as (Kvålseth, 1985):  

                                                       2 1= −
−adj
n SSER

n p SST
                                             (5.11) 

where SST is the total sum of squares corrected for the mean. The overall significance of 

the model was tested by the significance of the F value, Sig. F. Homoscedasticity, an 

assumption of nonlinear regression, was evaluated using residual plots. When there was 

evidence of heteroscedasticity, H, graphical evaluation was formalized by the modified 

Park test (Park, 1966), which tests the hypothesis that b1 in the following regression 

equation is zero, i.e., there is no heteroscedasticity:  

                                              2
, , 0 1 ,

ˆ ˆln( ) lnT i T i T i iC C b b C r− = + +                                  (5.12) 
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where b0 and b1 are regression coefficients and ri is a residual term. In case the errors 

were homoscedastic for one reactor and heteroscedastic for the duplicate reactor, the 

Park test was applied to the combined errors from both reactors. Models with 2
adjR  > 

0.99 were not considered for heteroscedasticity. Models with heteroscedastic errors were 

considered non-ideal. A non-hypothesis-testing approach was implemented to compare 

the fit of different models to the same data because not all the models used were nested. 

Even when two models are nested, certain hypothesis tests are not applicable. For 

example, when comparing the fit of two models, one containing Eq. 5.5 and the other the 

nested Eq. 5.3, use of the extra-sum-of-squares F test is not possible because the null 

model and the alternative model would have the same degrees of freedom. The Akaike 

Information Criterion (AIC) (Akaike, 1973) is often used to compare the fit of multiple, 

nested or non-nested models. This technique, based on information theory rather than 

statistical significance, can reveal which model is more likely the fittest and quantify 

how much more likely. A corrected value of the criterion (AICc) is calculated as 

(Motulsky and Christopoulos, 2003): 

                                  2( 1)( 2)ln 2( 1)
2c

SSE p pAIC n p
n n p

+ +⎛ ⎞= ⋅ + + +⎜ ⎟ − −⎝ ⎠
                     (5.13) 

The model with the lowest AICc value is more likely the fittest. When comparing model 

fit on the same dataset, the order of AICc values usually coincides with the order of the 

significance values of the F-statistic. In addition, AICc allows comparison on a 

probabilistic basis. In a pair of models, the probability
cAICP of the model with the lower 

AICc being fitter than the model with the higher AICc is given by the following equation 

(adapted from Motulsky and Christopoulos, 2003): 

                                                         0.5| |

1
1c cAIC AICP

e− Δ=
+

                                           (5.14) 

where |ΔAICc| is the absolute difference in AICc values between the two models. A zero 

difference results in a probability of 0.5; absolute differences of 6 and 9 result in 

probabilities of 0.95 and 0.99, respectively. To summarize, model selection was based 
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on the values of 2
adjR , AICc, information on heteroscedasticity, and logical deductions 

from Table 5.2 as described in the following section. 

RESULTS AND DISCUSSION 

Data show that degradation of 2MPHE, FLA, and PYR in mixtures occurred 

simultaneously without the evidence of diauxic response. The effects of the presence of 

other PAHs on the degradation rates varied as shown in Fig. 5.2. For example, the rate of 

2MPHE degradation decreased considerably in the presence of FLA (Fig. 5.2a). On the 

other hand, the rate of FLA degradation did not change noticeably in the presence of 

PYR (Fig. 5.2b). 2MPHE and FLA reduced the PYR degradation rate to a different 

extent (Fig. 5.2c), presumably due to the different KS values of these compounds (Table 

5.1). Degradation of PYR in the presence of FLA proceeded at a slow rate until 

depletion of FLA (Fig. 5.2d); after that point, the rate increased to a level similar to the 

one observed for PYR alone. Exactly the same behavior has been observed elsewhere 

(Luning Prak and Pritchard, 2002). To summarize, it was observed that kinetics in a 

mixture were either similar or slower than those observed for the individual PAHs. 

Kinetics were influenced by the mixture composition and the kinetic properties of the 

components.  

The first step in explaining mixture kinetics involved estimation of Monod 

parameters for the individual 2MPHE, FLA, and PYR. Best estimates of the maximal 

specific uptake rate, qmax, the substrate affinity coefficients, KS, and the specific affinity, 

qmax/KS are presented in Table 5.1. Values were consistent with those estimated in 

Chapter III, also presented in parentheses in the table. 2MPHE exhibited a qmax of 0.42 ± 

0.04, followed by FLA and PYR, with values of 0.14 ± 0.03 and 0.07 ± 0.03, 

respectively, all expressed in μmol mg-1 BSA h-1. Statistically, 2MPHE and PYR 

exhibited the same KS of 0.18 ± 0.03 and 0.14 ± 0.03, respectively, while FLA exhibited 

a lower value, 0.07 ± 0.03, all in μmol/L. Uncertainties in the estimates are expressed as 

the margins of error at the 95% confidence level. When applicable, these estimates, 

allowed to vary within their confidence intervals, were used to model kinetics in the 

binary and ternary mixtures.  
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Table 5.2  
Evaluation of model fit in modeling biodegradation of a PAH (2MPHE, FLA, or 
PYR, underlined in the left column) in binary and ternary mixtures with the other two 
PAHs. Numbers represent mean values calculated from duplicate reactors. 

 Mixture Model     2
adjR        F     Sig. F   AICc df     H       Remarks  

NI 0.784 46.4 5.1E-04 -30.8 6 yes  

 CI 0.998 3331.7 2.5E-09 -63.1 6 no KS,1/KS,2 = 3.40 ± 2.18  
 UCI 0.996 911.9 3.9E-07 -53.4 5 no K2 = 0.10 ± 0.01  μmol/L  
 

2MPHE + FLA 

SKIP 0.997 1371.0 1.7E-07 -56.1 5 no I2 = 2.85 ± 0.25  
NI 1.000 60061.2 6.3E-09 -60.7 5 no  

 CI 0.999 5541.4 7.1E-08 -48.5 5 no KS,1/KS,2 = 0.84 ± 0.27  
 UCI 1.000 25119.1 1.1E-06 -46.1 4 no K2 = 1.00 ± 0.19  μmol/L  
 

2MPHE + PYR   

SKIP 1.000 23752.6 1.2E-06 -45.7 4 no I2 = 0 (reduces to NI)  
NI 0.998 3116.4 5.7E-08 -49.2 5 no  

 CI 0.996 1542.3 2.7E-07 -45.2 5 no KS,1/KS,2 = 0.26 ± 0.12  
 UCI 0.998 1481.5 2.4E-06 -40.2 4 no K2 = 0.95 ± 0.28  μmol/L  
 

FLA + 2MPHE   

SKIP 0.997 1246.5 3.6E-06 -39.2 4 no I2 = 0 (reduces to NI)  
NI 0.996 2446.4 7.0E-10 -63.1 8 no  

 CI 0.996 1988.4 8.0E-10 -61.6 8 no KS,1/KS,2 = 0.28 ± 0.18  
 UCI 0.996 1062.9 3.7E-08 -57.9 7 no K2  → ∞ (reduces to NI)  
 

FLA + PYR  

SKIP 0.996 1062.9 3.7E-08 -57.9 7 no I2 = 0 (reduces to NI)  
NI 0.972 319.4 1.1E-06 -62.0 8 yes  

 CIa 0.992 1758.9 2.4E-08 -74.7 8 no KS,1/KS,2 = 0.68 ± 0.26  
 UCI 0.992 854.9 5.8E-07 -70.3 7 no K2 = 0.15 ± 0.04  μmol/L  
 

PYR + 2MPHE   

SKIP 0.992 866.9 4.0E-07 -70.6 7 yes I2 = 1.10 ± 0.28  
NI 0.658 50.2 6.8E-05 -44.9 9 no  

 CI 0.989 907.1 2.9E-10 -79.2 9 no KS,1/KS,2 = 3.16 ± 2.97  
 UCI 0.986 347.2 1.7E-08 -73.5 8 no K2 = 0.06 ± 0.01  μmol/L  
 

PYR + FLA  

SKIP 0.988 404.6 1.1E-08 -75.0 8 no I2 = 3.30 ± 0.67  
 NI 0.937 146.6 6.1E-06 -43.1 7 yes   

 
CI 0.991 929.0 1.3E-08 -60.3 7 no 

γ → ∞  
KS,1/KS,2 = 2.39 ± 1.36           
KS,1/KS,3 = 0.84 ± 0.38  

 UCI - - - - - - unstable solution  
 

2MPHE + FLA + 
PYR   

SKIP 0.990 280.0 7.0E-06 -45.9 5 yes I2 = 2.20 ± 1.04; I3 = 0  
 NI 0.993 1413.3 1.8E-06 -48.8 6 no   

 
CI 0.946 109.5 2.8E-04 -34.4 6 yes 

γ → ∞  
KS,1/KS,2 = 0.23 ± 0.12           
KS,1/KS,3 = 0.35 ± 0.18  

 UCI 0.989 313.5 7.7E-04 -18.3 4 no K2, K3 → ∞ (reduces to NI)  
 

FLA + 2MPHE + 
PYR   

SKIP 0.989 314.0 7.7E-04 -18.3 4 no I2, I3 = 0 (reduces to NI)  
 NI 0.866 80.6 1.8E-05 -56.5 9 yes   

 
CI 0.985 698.4 2.9E-09 -84.7 9 no 

γ → ∞  
KS,1/KS,2 = 0.72 ± 0.27           
KS,1/KS,3 = 3.20 ± 2.63  

 UCI - - - - - - unstable solution  

 

PYR + 2MPHE + 
FLA 

SKIP 0.992 389.2 4.5E-07 -74.3 7 no I2 = 0.76 ± 0.44  
I3 = 3.34 ± 1.30  

a The algorithm containing the CI/NCI/MI model initially converged to NCI kinetics (α = 1.35 ± 0.85) 
with SSE = 6.98E-04 μmol2 L-2. However, the CI-type kinetics with SSE = 7.98E-04 μmol2 L-2 was 
preferred because it yielded a lower average AICc (-74.7 versus –70.5 for NCI ) due to the lower df. 
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Fig. 5.2. Illustration of mixture effects in the biodegradation of 2MPHE, FLA, and PYR 
by Sphingomonas paucimobilis strain EPA505. Data points represent mean 
concentrations from duplicate batch reactors. Error bars represent one standard deviation 
from the mean.  
 
 
 

Modeling degradation in the three binary mixtures provided the basis of 

understanding interaction effects. Fig. 5.3 illustrates fitting of the four models under 

investigation to the data of PYR degradation in the presence of FLA. Fit was excellent 

for the CI model, the UCI model, and the SKIP model (Fig. 5.3b through 5.3d). In 

addition, errors were homoscedastic for all models. Based on probability as calculated 

by the AICc, the correct model is CI, followed by SKIP and UCI. Specifically, there is 

(a) (b) 

(c) (d) 

no inhibition
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90% probability that the CI model (Fig. 5.3b) is the correct one over the SKIP model 

(Fig. 5.3d). Estimates for the duplicate reactor were analogous; specifically, an 89% 

probability was found by which the CI model is the right one over the SKIP model.  
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Fig. 5.3. Evaluation of model fit (⎯⎯) to data of PYR (●) biodegradation in the 
presence of FLA. Data was acquired from one of duplicate batch reactors. Each model 
describes a different interaction mechanism: no-interaction Monod (a), pure competitive 
interaction (b), uncompetitive interaction (c), and nonspecific-interaction kinetics with 
interaction parameters (d). Long dashes (⎯ ⎯) and short dashes (--) represent the 95% 
confidence and prediction bands, respectively. Based on the corrected value of the 
Akaike Information Criterion (AICc), there is 89.6% probability that the CI model (b) is 
the right one compared to the SKIP model (d).  

R2-adj = 0.712 
Sig. F = 3.5E-05 
df = 9 
AICc = -46.7 

R2-adj = 0.990 
Sig. F = 1.4E-10 
df = 9 
AICc = -80.7 
 

R2-adj = 0.987 
Sig. F = 1.4E-08 
df = 8 
AICc = -74.3 

R2-adj = 0.989 
Sig. F = 5.8E-08 
df = 8 
AICc = -76.4 

(a) (b) 

(c) (d) 
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 Simulations were also performed for the other binary cases and the results are 

presented in Table 5.2 with values representing mean values for the duplicate reactors. 

Based on the AICc scores, low being best fit, degradation of 2MPHE in the presence of 

FLA, PYR in the presence of 2MPHE, and PYR in the presence of FLA were most 

adequately explained by pure CI kinetics. This was also supported by the I2 values of the 

SKIP model being statistically equal to the KS,1/KS,2 values of the CI model (Table 5.2). 

In other words, the unspecified-interaction SKIP model also converged to CI kinetics. 

Purely competitive interaction requires that the complimentary cases also exhibit CI 

kinetics. However, for the three complimentary binary cases, i.e., FLA in the presence of 

2MPHE, 2MPHE in the presence of PYR, and FLA in the presence of PYR, the fittest 

model was the NI (Monod) with CI following (Table 5.2). This is paradoxical, 

considering that CI and NI can never be equivalent algebraically because the KS,1/KS,2 

ratio is always positive. The inconsistency can be explained in terms of the percent 

inhibition, I%, defined as the relative change in specific uptake rate due to inhibition. For 

a binary case, I% is calculated as follows: 

                                  ,21
%

1 ,1
,2 ,2

,1

100 1 100
1

inh
L

uninh
L

L S
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CqI
q C

C K
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⎛ ⎞
= − =⎜ ⎟ ⎛ ⎞⎝ ⎠ + +⎜ ⎟⎜ ⎟

⎝ ⎠

                      (5.15) 

where 1
uninhq is the initial uptake rate of substrate C1 at ,1LC , and 1

inhq is the initial uptake 

rate of substrate C1 at ,1LC  in the presence of ,2LC . An analogous relationship can be 

written for ternary cases. The percent inhibition assuming CI kinetics was computed for 

all binary and ternary cases and the results are presented in. Cases are grouped in two 

categories, one with high I% values and the other one with low. Not surprisingly, cases 

exhibiting CI kinetics also exhibited high I%, while those exhibiting lack of interaction, 

low I%. A one-tailed t-test at the 0.05 significance level showed that the average I% of the 

first group was significantly greater than that of the second group. Therefore, the data 

suggests that interactions may occur without being evident, due to low I%. According to 

Eq. 5.15, I% is low for binary cases when one or more of the following conditions occur: 

KS,2 >> CL,2, CL,1 >> CL,2, or KS,2 >> KS,1. In this study, the low I% observed in the three 
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binary cases was a combined result of the latter two conditions, especially the last. As 

can be seen in Table 5.2, the two cases with the lowest KS,1/KS,2 ratios, FLA in the 

presence of 2MPHE, and FLA in the presence of PYR, exhibited NI kinetics. On the 

contrary, the two cases with the highest KS,1/KS,2 ratios, 2MPHE in the presence of FLA, 

and PYR in the presence of FLA, exhibited CI kinetics. Given the finding of CI kinetics 

as well as the experimental design, i.e., the choice of compounds and initial 

concentrations, competitive inhibition of FLA degradation would have been more 

evident had more samples per reactor been taken. Then, the algorithm with the CI model 

would better capture the curvature in the depletion curve caused by inhibition instead of 

causing the solution curve to lay straight between data points. To summarize, it is 

proposed that the kinetics of degradation of the binary mixtures of 2MPHE, FLA, and 

PYR were determined by pure competitive interactions. 

A similar study of naphthalene, phenanthrene, and pyrene degradation found that 

kinetics observed in binary mixtures did not significantly differ from those observed for 

the individual compounds, despite the fact that competitive interactions were observed in 

the degradation of the ternary mixture (Guha et al., 1999). Given that the initial PAH 

concentrations were just below solubility, it was concluded that “if substrate interactions 

[in the binary mixtures] were operative they probably would have been evident” and that 

“substrate interactions in binary PAH mixtures are not likely to be significant in 

contamination scenarios in the environment under aerobic conditions” (Guha et al., 

1999). This proposition is not supported by the data of this dissertation, which show 

clear evidence of competitive interactions especially in cases with high I%. Using the 0
TC  

and KS values reported by Guha et al. (1999), it was found that I% was relatively low in 

their binary experiments; for example, I% for naphthalene degradation was 34% in the 

presence of phenanthrene and 27% in the presence of pyrene, without taking into 

account biosorption that would lower I% even further. I% for naphthalene in the ternary 

mixture, assuming mutually exclusive substrates, was considerably higher (48%). This 

finding is consistent with the proposition that mixtures of competitive substrates may 

show limited or no evidence of interaction at lower I% values. 
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Table 5.3 
Percent inhibition, I%, assuming pure competitive interaction 
(CI) between mutually exclusive substrates. The first group 
contains cases exhibiting pure CI according to Table 5.2. The 
second group contains the complimentary cases exhibiting 
no-interaction kinetics (NI) and not CI as expected. The 
inconsistency is attributed to the significantly lower I% values 
in the second group.  

 
Case Apparent 

interaction type 
  Mean
   I%

a 
  sb  

      
 2MPHE + FLA pure CI 71.5 1.9  
 PYR + 2MPHE pure CI 48.2 0.4  
 PYR + FLA pure CI 83.2 5.0  
 2MPHE + FLA + PYR pure CI 64.0 1.6  
 PYR + 2MPHE + FLA  pure CI 83.5 5.4  
     
 FLA + 2MPHE NI (Monod) 15.7 0.8  
 2MPHE + PYR NI (Monod) 21.3 0.4  
 FLA + PYR NI (Monod) 9.6 0.1  
 FLA + 2MPHE + PYR NI (Monod) 26.1 0.5  
a Mean calculated from the two duplicate reactors. 
b Standard deviation from the mean. 

 
 
 

The pure CI kinetics found in the degradation of the binary mixtures of 2MPHE, 

FLA, and PYR in this study pointed to CI kinetics for the ternary mixture. Indeed, 

degradation of 2MPHE in the presence of FLA and PYR, and PYR in the presence of 

2MPHE and FLA were most adequately described by the pure CI model with γ → ∞ 

(Table 5.2). Mutual substrate exclusivity (γ → ∞) is consistent with the hypothesis of a 

permease carrier as the enzyme responsible for the observed interaction kinetics and 

interactions. In the case of FLA degradation in the presence of 2MPHE and PYR, the NI 

model was apparently the best, followed by the CI model. This discrepancy is again 

attributed to the low I% value as shown in Table 5.3. Without exception, KS,1/KS,2 values 

calculated for the binary cases were verified in the ternary cases (Table 5.2). For 

example, the KS,1/KS,2 found for the degradation of PYR in the presence of 2MPHE and 

FLA was statistically equal to the KS,1/KS,2 value for the degradation of PYR in the 
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presence of 2MPHE (0.72 ± 0.27 and 0.68 ± 0.26, respectively). Similarly, the KS,1/KS,3 

for the ternary case was statistically equal to the KS,1/KS,2 for the degradation of PYR in 

the presence of FLA (and 3.20 ± 2.63 and 3.16 ± 2.97, respectively). Fitting of the CI 

model to the biodegradation data for the three binary and the single ternary mixture is
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Fig. 5.4. Fitting of the pure competitive interaction model (CI) to depletion data of 
binary (a, b, and c) and ternary (d) mixtures of 2MPHE, FLA, and PYR. In every case, 
the model describes pure competitive interactions by exclusive alternative substrates. 
From the four interaction models tested (NI, CI/NCI/MI, UCI, and SKIP), the CI model 
most adequately described biodegradation in mixtures. Presented data was acquired from 
one of duplicate batch reactors. 

(a) (b) 

(c) (d) 
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illustrated in Fig. 5.4. The agreement between the experimental and predicted curves is 

excellent except for the FLA degradation in the ternary mixture for reasons discussed 

above. Model statistics can be found in Table 5.2. To summarize, it was found that the 

kinetics of degradation of both binary and ternary mixtures of 2MPHE, FLA, and PYR 

by strain EPA505 are determined by purely competitive interactions with mutual 

substrate exclusivity. 

The occurrence of competitive interactions suggests that transformation kinetics 

are determined by a common mechanism, possibly membrane binding and transport as 

proposed in Chapter IV. In addition, mutual substrate exclusivity implies that 2MPHE, 

FLA, and PYR are alternative ligands to a common binding site. The finding of CI 

kinetics is consistent with the hypothesis that “competitive metabolism may be common 

phenomenon among PAH-degrading organisms” based on the observation of CI in 

physiologically diverse microorganisms (Stringfellow and Aitken, 1995). A pure CI 

model with mutually exclusive alternative substrates is fully predictive, requiring no 

additional parameters other than those estimated in sole-PAH experiments. From this 

perspective, the SKIP model was not useful in simulating the data other than for 

verification of pure CI kinetics. The SKIP model may also be useful in cases where 

kinetics cannot be explained mechanistically. Assuming that competitive interactions are 

common in the biodegradation of PAHs by Sphingomonas paucimobilis strain EPA505, 

then parameters calculated in Chapter III and those estimated by the qualitative 

structure-biodegradability relationships (QSBRs) of Chapter IV would be valuable in 

describing biodegradation of a wide range of PAH mixtures by the strain.  

The finding of pure CI kinetics for mixtures of 2MPHE, FLA, and PYR does not 

rule out other types of interaction for different PAH mixtures. Therefore, additional 

testing of homologous and heterologous PAH mixtures is required for determining 

occurrence and types of interactions. Testing should involve binary as well as complex 

PAH mixtures. Although derivation of the pure CI model is easy for any number of 

mutually exclusive components, derivation of models with uniform or mixed forms of 

interaction is cumbersome for large mixtures. A graphical method for analysis of 
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interactions among multiple substrates/inhibitors can be found in Asante-Appiah and 

Chan (1996). Given that the effects of an occurring interaction are not always detectable, 

as seen in this study, selection of test compounds and their initial concentrations should 

be such as to increase the degree of anticipated interactions. Finally, experiments with 

mixed cultures will indicate whether similar interactions can be expected in natural or 

engineered systems. 
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CHAPTER VI 

SUMMARY AND CONCLUSION 

 

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental 

pollutants of significant public health and environmental concern. Knowledge of 

physicochemical behavior, bioavailability, and fate of PAHs is necessary for accurate 

exposure assessment and implementation of effective detoxification strategies for wastes 

and contaminated sites. This research trained models for the physicochemical properties 

and biodegradability of common PAHs. The following paragraphs summarize the 

findings and conclusions of this research. 

Chapter II described the development of linear free energy relationships (LFERs) 

predicting physicochemical properties of PAHs based on chromatographic retention 

data. LFERs accurately estimated the liquid aqueous solubilities, Sw,L, octanol/water 

partition coefficients, Kow, liquid vapor pressures, Pv,L, and Henry’s law constants, Hc, 

for methylated naphthalenes. Given the compound diversity in the reference set, 

developed LFERs can be used to estimate properties of various PAHs, including 

unsubstituted and methylated forms with possibly up to five aromatic rings. The 

developed LFERs give an insight into how structural characteristics influence 

physicochemical properties. Results showed that Sw,L and Pv,L decrease with the number 

of methyl substituents, while Kow increases. No relation was evident between Hc and the 

number of substituents. It was determined that GC retention data is not applicable to the 

estimation of physicochemical properties involving liquid phases only, i.e., Sw,L, and Kow. 

GC column hydrophobicity did not have an apparent effect on the accuracy of Pv,L 

estimates for methylated naphthalenes. The low Sw,L and high Kow values for highly 

methylated naphthalenes suggest that these compounds occur at low concentrations in 

water and have a high bioaccumulation potential. The EPIWIN software was found 

useful in providing order-of-magnitude predictions of physicochemical properties in the 

absence of experimental data. The next logical step in this research should be the 

evaluation of the validity of the LFERs for larger unsubstituted and alkylated PAHs. 
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Validation should involve comparison with literature values, comparison with estimates 

of the Abraham equation (Abraham et al., 2005), and randomization tests. 

Chapter III discussed measurements of extant kinetic parameters describing 

degradation of individual PAHs by Sphingomonas paucimobilis strain EPA505. The 

bacterium rapidly degraded all 20 PAHs tested. The ability of strain EPA505 to 

metabolize a wide range of PAHs may be indicative of loose specificity of initial 

dioxygenases or related to the existence of glutathione-S-transferase activity. Of the 22 

PAHs tested, only 9 supported bacterial growth while the rest were degraded 

cometabolically. The potency of strain EPA505 and its ubiquity in PAH-contaminated 

environments demonstrates the need to fully delineate its PAH catabolic pathways and 

better understand its ecological role. The Monod or Andrews model successfully 

simulated the experimental kinetic data. The following parameters were generated for 

each PAH: the maximal specific uptake rate, qmax, the affinity coefficient, KS, the 

specific affinity, qmax/KS, and the difference in the net absorbance at 450 nm, Δ(net A450). 

The significant variability in the observed kinetic and growth parameters is indicative of 

the influence of substrate chemical structure on PAH biodegradability. Generated kinetic 

and growth parameters are essential for modeling biodegradability of simple PAH 

mixtures by strain EPA505 and as consistent training sets for the development of 

quantitative structure-biodegradability relationships (QSBRs). Continuation of this 

research should involve the following steps: (i) quantification of biodegradability of 

larger PAHs using dispersants or analytical techniques that can accurate determine low 

liquid-phase concentrations; (ii) comparison between the characteristic time of 

biosorption to the characteristic time of biodegradation and evaluation of the validity of 

the instantaneous-biosorption assumption; (iii) measurement of the Andrews inhibition 

coefficients using higher initial concentrations; (iv) identification of the major 

metabolites in PAH biodegradation by strain EPA505; and (v) measurement of kinetic 

parameters for microbial consortia from PAH-contaminated soils. 

Chapter IV focused on the development of QSBRs for each of the kinetic and 

growth parameters from Chapter III. Statistical analysis and validation testing confirmed 
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the explanatory and predictive power of the QSBRs. The genetic function approximation 

(GFA) algorithm was particularly useful in creating valid models and revealing 

important molecular descriptors without requiring descriptor pre-selection. Molecular 

descriptors related to spatial and topological molecular features were essential in 

explaining biodegradation kinetics. A wealth of evidence was presented suggesting 

membrane binding-and-transport as the rate-determining step in PAH biodegradation by 

strain EPA505. It included: the presence and explanatory importance of spatial 

descriptors related to binding and transport; the correlation of qmax with the theoretical 

transmembrane flux, Jmax; the absence of electronic descriptors related to reactivity from 

the QSBRs; the similarity between the components of the theoretical free energy upon 

binding, ΔGbind, with the descriptors present in the QSBRs; and the signs of the 

coefficients of the Abraham solvation equation for KS, which were consistent with the 

hypothesis of transport to a lipid-like phase. The kinetic experiment with azide indicated 

that the purported rate-limiting transport mechanism can be either simple or facilitated 

diffusion depending on the PAH. Chapter IV demonstrated the value of QSBR not only 

as a predictive tool, but also as a method to understand the basic properties and 

processes that govern biodegradation at the molecular level. Further investigation is 

needed to validate the hypothesis of the rate-determining process. Investigation should 

include kinetic experiments with whole cells, cell extracts, and permeabilized cells, and 

comparison of the kinetics from the different systems. Finally, the applicability of 

QSBRs should be tested for PAH biodegradation by mixed cultures.  

Chapter V focused on the kinetics of PAH mixture biodegradation by strain 

EPA505. Degradation of 2MPHE, FLA, and PYR in their binary and ternary mixtures 

occurred simultaneously without the evidence of diauxic effects. Extant kinetics 

observed in the binary and ternary mixtures were generally slower than those observed 

for the individual compounds, suggesting the presence of antagonistic interactions. 

Among different interaction models, the pure competitive interaction model with mutual 

substrate exclusivity most adequately simulated mixture kinetics. It was shown that 

competitive interactions may not always be detectable at low percent inhibition, I%, 
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values; therefore, it is suggested that selection of test compounds and their initial 

concentrations be such as to increase the degree of anticipated interactions as quantified 

by I%. Occurrence of competitive interactions suggested that transformation kinetics 

were determined by a common kinetic mechanism, possibly membrane binding or 

transport, as proposed in Chapter IV. Mutual substrate exclusivity implied that tested 

PAHs behaved as alternative ligands to a common binding site. Competitive interactions 

are consistent with the hypothesis that competitive metabolism is common among PAH-

degrading microorganisms. Additional testing of homologous and heterologous PAH 

mixtures is required for verification of the hypothesis. Testing should also include mixed 

microbial cultures. 

 The contribution of this research is multifaceted. Findings such as 

physicochemical property values can be directly used in the risk 

assessment/management methodology. Values of biokinetic coefficients can be directly 

used in modeling degradation of wastes containing single PAHs or simple PAH 

mixtures. They can also provide indications of relative degradation rates that are likely 

to be observed in the environment or engineered systems. The greatest contribution of 

this research is believed to be the development of models describing properties and 

behavior of PAHs on a quantitative and mechanistic basis. The approach followed in this 

research can serve as a template for the investigation of relevant processes, e.g., 

toxicokinetics, and the characterization of other complex mixtures of environmental 

importance. 
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