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ABSTRACT 

 
       Dynamics and Real-Time Optimal Control of Satellite 

    Attitude and Satellite Formation Systems. (August 2006) 

Hui Yan, B.Eng., Beijing Institute of Technology; 

M.Eng., Northwestern Polytechnical University; 

D.Eng, Northwestern Polytechnical University 

Chair of Advisory Committee: Dr. Kyle T. Alfriend 

  

      In this dissertation the solutions of the dynamics and real-time optimal control of 

magnetic attitude control and formation flying systems are presented. In magnetic 

attitude control, magnetic actuators for the time-optimal rest-to-rest maneuver with a 

pseudospectral algorithm are examined. The time-optimal magnetic control is bang-bang 

and the optimal slew time is about 232.7 seconds. The start time occurs when the 

maneuver is symmetric about the maximum field strength. For real-time computations, 

all the tested samples converge to optimal solutions or feasible solutions. We find the 

average computation time is about 0.45 seconds with the warm start and 19 seconds with 

the cold start, which is a great potential for real-time computations. Three-axis magnetic 

attitude stabilization is achieved by using a pseudospectral control law via the receding 

horizon control for satellites in eccentric low Earth orbits. The solutions from the 

pseudospectral control law are in excellent agreement with those obtained from the 

Riccati equation, but the computation speed improves by one order of magnitude. 



 iv 

Numerical solutions show state responses quickly tend to the region where the attitude 

motion is in the steady state.  

      Approximate models are often used for the study of relative motion of formation 

flying satellites. A modeling error index is introduced for evaluating and comparing the 

accuracy of various theories of the relative motion of satellites in order to determine the 

effect of modeling errors on the various theories. The numerical results show the 

sequence of the index from high to low should be Hill’s equation, non- J2, small 

eccentricity, Gim-Alfriend state transition matrix index, with the unit sphere approach 

and the Yan-Alfriend nonlinear method having the lowest index and equivalent 

performance. A higher order state transition matrix is developed using unit sphere 

approach in the mean elements space. Based on the state transition matrix analytical 

control laws for formation flying maintenance and reconfiguration are proposed using 

low-thrust and impulsive scheme. The control laws are easily derived with high 

accuracy. Numerical solutions show the control law works well in real-time 

computations.         
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CHAPTER I 
 

 INTRODUCTION 
 

      Optimal control of nonlinear systems is currently one of the most active research 

subjects in control theory. Although there has been considerable research in this area for 

many years, efficiently solving optimal control problems remains a challenge. In 

particular, obtaining optimal solutions in real time is a major challenge. The objective of 

this dissertation is the solution of the dynamics and real-time optimal control of some 

important nonlinear aerospace systems. 

 

1.1 Numerical Solutions of Optimal Control 

      Optimal control establishes a general theory to the minimization of a performance 

index and the satisfaction of constraints, which is capable of dealing with a large class of 

nonlinear control problems. There are two methods, direct and indirect, for numerically 

solving optimal control problems. The indirect method is based on the calculus of 

variations and Pontryagin’s minimum principle, and leads to a two point boundary value 

problem (TPBVP). The TPBVP occurs during the process of solving a single or a set of 

differential equations whose solution has to satisfy both the given initial and final 

boundary conditions. Shooting methods play a significant role in solving the TPBVP1. 

Shooting methods use Newton’s method to adjust variables to satisfy the boundary 

________________________ 

      This dissertation follows the style of Journal of Guidance, Control, and Dynamics.   
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conditions. Obtaining solutions using shooting methods strongly depends on the initial  

guess of the costates, especially for optimal control problems, since the sensitivity of the 

Euler-Lagrange equation is inherent. Moreover it is extremely difficult to guess the 

initial costates that generally have no obvious physical meanings.        

      Direct methods for solving optimal control problems are based on discretizing the 

infinite dimensional optimization problem and transforming it to a finite-dimensional 

nonlinear programming (NLP) problem1,2. Our approach to discretization is achieved by 

dividing the time interval into subintervals whose endpoints are called nodes.  The NLP 

variables are the values of the states and controls at these nodes.  In the standard 

collocation techniques that use piecewise polynomials, the state equations are replaced 

by a set of difference constraints. In this manner the original optimal control problem is 

transcribed to an NLP which can then be solved by a variety of solvers. These methods 

provide solutions to a vast class of complex problems with a relatively wide radius of 

convergence and no reliance on satisfying the calculus of variation necessary conditions.  

In these two aspects, the direct methods avoid some of the pitfalls of the indirect 

methods, which are based on solving the necessary conditions derived from Pontryagin’s 

minimum principle.  The solution of the resulting TPBVP is not easy to obtain for all 

problems, for instance, for bounded controls with switches, it requires an a priori guess 

for the bang-bang control structure. In addition, the indirect methods suffer from a small 

radius of convergence: for most complex problems convergence to the optimal solution 

is obtained only with excellent initial guesses for the states and costates. Except for some 

simple dynamical models, finding an accurate guess for the costates that have no 
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physical interpretation is a hard task.  Consequently, direct methods are often the choice 

for solving complex trajectory optimization problems. 

      Although the direct methods, in particular direct transcription methods, offer the 

aforementioned advantages over indirect methods, it is well known1 that the direct 

solutions may not be as accurate as those obtained from the indirect methods, since we 

use a finite parametric representation to approximate continuous systems. From a 

practical point of view one is willing to forgo some level of accuracy. However, if the 

direct solutions yield feasible solutions that are far from optimal, it is often advantageous 

to determine the optimal solution, since the direct solutions can provide a good initial 

guess for the indirect methods. But the question remains: How does one know whether a 

direct solution is indeed sufficiently accurate?  One possible answer would be to increase 

the number of nodes, but this approach can be flawed since it presumes convergence of 

the discretization scheme and convergence of the NLP solver.  By the convergence of 

the discretization scheme we mean the convergence of the discretized problem to the 

optimal control problem as the number of nodes tends to infinity.  The convergence of 

the NLP solver on the other hand, refers to the convergence of the NLP algorithm for a 

fixed number of nodes.   In view of these two fundamentally distinct convergence issues, 

it is apparent that the NLP algorithm may fail due to possible ill-conditioning of the 

computed matrices and other challenges associated with iteration when there are a large 

number of variables.  Thus, alternative approaches must be adopted to validate the 

accuracy of the direct solution. Yan, Fahroo and Ross3and Williams4 have provided 

accuracy and computation efficiency comparisons of direct transcription methods.   
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1.2 Pseudospectral Methods 

      For a given problem, the accuracy of the direct solutions is dependent on several 

factors: the type and accuracy of the discretization scheme, the number and choice of the 

nodes, and the NLP solver.  Further, the approximation of the original optimal control 

problem is achieved at two levels: one is the approximation of the continuous problem 

by the transcription method, and the other are the approximations performed by the NLP 

solver itself.  In order to ensure convergence with a high degree of accuracy at both these 

levels one need to use an accurate discretization scheme, as well as a reliable, robust and 

accurate NLP solver. Convergence at both of these levels is dependent on the dimension 

of the NLP variable vector. Higher order discretization schemes, such as the Hermite-

Simpson, offer a 4th order local error as opposed to the trapezoidal rule which has a 2nd 

order local error5. The use of higher order schemes allows using fewer NLP nodes for 

the same degree of accuracy.  A smaller size NLP problem results in a more efficient and 

more robust solution. Herman and Conway6 developed higher-order Gauss-Lobatto 

quadrature rules for use with collocation to get a higher order of accuracy.  Elnagar et al 

7,8 and Ross and Fahroo 9-13 employed the Legendre spectral collocation method for 

solving a variety of optimal control problems, and showed that highly accurate results 

can be obtained with a low degree of discretization. Qong, et al14 showed pseudospectral 

methods offer Eulerian-like simplicity while providing very fast convergence rates 

known as spectral accuracy. The Legendre spectral collocation method is a 

fundamentally different transcription method where the nodes are fixed to be the 
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Legendre-Gauss-Lobatto (LGL) points. The LGL points offer the “best” discretization in 

the sense of minimal least-square error.  The time derivative of the state vector is 

expressed in terms of the state vector at the collocation points by the use of a 

differentiation matrix. In this dissertation, we use a pseudospectral method to solve 

nonlinear optimal control problems, which has been implemented in the DIDO (Direct 

and Indirect Dynamic Optimization) 15 software. Over the last few years, DIDO has 

emerged as a new commercial software package for numerically solving optimal control 

problems.9-13, 16-17 The software can be purchased from the website www.tomlab.biz.       

 

1.3 Real-Time Optimal Control 

     Recently there has been significant interest in real-time optimal control due to its 

feedback property. From optimal control theory, the solved control is an open-loop 

function of time history. With no errors, the effect of the open loop optimal control is 

equivalent to a feedback control. Sometimes we may not need real-time optimization 

since we can schedule optimal control in advance or on the ground for aerospace 

applications. However, disturbances always exist and measurements are not perfect, so 

we should apply a receding horizon control (RHC) or model predictive control (MPC) to 

obtain real-time optimal control to reject disturbances. RHC is a form of control in 

which the current control sequence is obtained by solving a real-time optimal control 

with a finite horizon based on the current measurements, and the first control in the 

sequence is applied and the optimization is repeated at each subsequent time step to get a 

feedback control.18 RHC and MPC have witnessed many successful applications in the 
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process industries where the plants controlled are sufficiently ‘slow’ to permit its 

implementation. Due to the complexity of solving the nonlinear optimal control problem 

in real-time, the computational time delay cannot be ignored. This is particularly 

important in aerospace applications, where the time scales of the spacecraft dynamics 

can be very short and comparable to the time required to solve a finite-horizon 

optimization problem.19 However, it is not trivial to efficiently solve the optimal control 

problem, especially in a real-time manner.  Junkins and Carrington in their pioneering 

work20 developed time-optimal attitude maneuver formulations leading to a simple one-

dimensional two-point boundary-value problem. In May 1981, the NOVA-1 spacecraft 

was launched, and several large-angle, minimum time maneuvers were carried out by 

using ground-based computers to generate the commands for the first near real-time 

implementation of an optimal control derived from indirect methods21. These seven to 

ten hour maneuver solution curve recomputed is about five minutes on the ground and 

uploaded to the spacecraft. It has been shown that direct methods can numerically solve 

optimal control problems efficiently and accurately, but solving the real-time optimal 

control problem has made little progress until recently because of the difficulties arising. 

Computing speed and the assurance of a reliable solution in real-time have been the 

major limiting factors in applying real-time optimal control.22 Recent advancements in 

computational power and algorithms have made possible the exploitation of 

pseudospectral methods for real-time optimal control. What distinguishes pseudospectral 

methods from the other direct methods is the use of global orthogonal polynomials as the 

trial functions, such as Legendre and Chebyshev polynomials. This global orthogonality 
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and the use of Gaussian quadrature rules create simple rules for transferring an original 

underlying infinite dimension problem into a low finite dimension system of algebraic 

equations with spectral convergence rates. Recent developments have shown that 

pseudospectral methods have become a promising tool for performing real-time 

computations of optimal control problems.23-29  

 

 1.4 Pseudospectral Control Law     

      Orthogonal polynomials have been used extensively in solving optimal control 

problems. In particular, their use in solving linear time-varying (LTV) optimal problems 

has been widespread. Hwang and Chang30 used shifted Legendre polynomials, whereas 

Chou and Horng31 used Chebyshev polynomials for solving LTV problems. More 

recently, Razzaghi32 employed a Fourier series method for solving this class of 

problems. The common approach in these papers is to first expand the state and control 

variables as a generalized Fourier series with the appropriate orthogonal functions as the 

basis functions. Then the orthogonality of these functions is used to arrive at simplified 

expressions for forward and backward integration matrices. These matrices, in turn, are 

used to express the state transition matrices in the optimal law in terms of unknown 

coefficients of expansion. 

      Another approach has been to use orthogonal polynomials in the context of 

pseudospectral methods.7-17, 33 Through the use of a spectral differentiation matrix, the 

optimal control problem is transformed into a nonlinear programming problem. Thus, it 

is apparent that for linear systems with quadratic cost criteria, the optimal control 
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problem can easily be transformed to a quadratic programming (QP) problem (a 

quadratic cost function subject to linear algebraic constraints).8 This method is in sharp 

contrast to prior work using orthogonal polynomials that rely on approximating the two 

point boundary value problem derived from the necessary conditions. Recently, Lu34 

approximated the related receding horizon problem for LTV systems to a QP problem. 

Based on Simpson –trapezoid approximations for the integral and Euler type 

approximations for the derivatives he approximated the LTV systems to a QP and then 

derived analytical control laws. Whereas Elnager et al8 and Williams35-36 chose to solve 

their QP problem numerically, Lu used the analytical solution. In both methods, by using 

a direct approach (avoiding the solution of the necessary conditions), one avoids the 

pitfalls of the indirect methods such as integrating the Riccati equation. However in 

Elnager’s approach, the solution maybe not be as accurate as the indirect methods, and 

in Lu’s method, finding higher order control laws for step by step replacements for the 

states can be too tedious. 

      Recently, Fahoo and Ross37 proposed the indirect pseudospectral method for solving 

optimal control problems. In this method, the two point boundary value problem 

(TPBVP) arising from the necessary conditions is solved by spectral collocation. For 

general nonlinear problems the resulting set of algebraic equations that approximate the 

boundary-value problem are nonlinear and an iterative technique is necessary. However, 

for LTV systems with a quadratic cost function the algebra is linear. Thus, well-known 

methods from linear algebra can be used to solve the TPBVP. Ref. 38 compared 

pseudospectral techniques to Ricatti methods in solving LQR problems and showed that 
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there is a huge reduction in the number of equations to be solved and the required 

computer memory storage. Here we will show that this linear transformation is 

numerically very efficient and hence can be computed on-line. This generates a linear 

feedback law for the controls when the “initial” time t0 is replaced by the current time 

t.24,39-41  

 

1.5 Optimal Magnetic Attitude Control 

      Magnetic actuators have been used for momentum dumping of both low and high 

altitude satellites, and for the attitude control of momentum biased spacecraft, primarily 

those in low Earth orbit.  Of late, magnetic actuators have also been proposed as a sole 

means for attitude control, particularly for small inexpensive spacecraft.  Here we 

investigate the use of magnetic actuators for the time-optimal slew maneuver towards 

the goal of conducting a flight test for NPSAT142, an experimental satellite being built at 

the Naval Postgraduate School (NPS). We use pseudospectral methods with the aid of 

the reusable software package, DIDO, to solve the time-optimal slew maneuver using 

magnetic actuators in a real-time manner.25 After the final attitude is reached, we apply 

the pseudospectral control law to also stabilize the attitude using magnetic torque.    

 

1.6 Reconfiguration and Maintenance of Formation Flying 

      Formation flying control includes reconfiguration and maintenance. Reconfiguration 

means transferring from one formation configuration to another one. Usually formation 

configurations are designed to be stable or bounded, which can be done through the 
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choice of the formation initial conditions. The objective of maintenance is to maintain 

the formation configuration in the presence of measurement errors and perturbations, 

such as the Earth’s gravitational field, atmospheric drag, etc. We choose projected 

circular orbits (PCO)43 as examples and use the pseudospectral control law based on the 

state transition matrix (STM) to control the reconfiguration and reject disturbances. 

 

1.7 Outline 

     Chapter II provides the basic mathematics background and procedure of using 

pseudospectral methods to solve real-time optimal control problems. For linear time-

varying systems, the analytical pseudospectral control laws are derived for real-time 

implementation. The control laws can be used for tracking, targeting and rendezvous 

problems. In this chapter, several methods are introduced to reduce computation time for 

solving nonlinear optimal control problems, including warm start techniques, use of an 

analytical Jacobian matrix, model reductions and compensation techniques for time 

delay. RHC or MPC are described to implement real-time optimal control. An inverted 

pendulum problem is used to demonstrate real-time applications.   

      In Chapter III nonlinear magnetic attitude motion is set up and analyzed using a 

rotating Earth magnetic field. Based on the dynamic model, we investigate the use of 

magnetic actuators for the time-optimal slew maneuver using a pseudospectral algorithm 

implemented in the reusable software package, DIDO. After the final attitude is reached, 

we apply the pseudospectral control law to stabilize the attitude also using magnetic 

torque in circular and eccentric orbits. The parameters of the example problem 
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correspond to that of NPSAT1, a small satellite being built at the Naval Postgraduate 

School.  Numerical experiments reveal that real-time optimal magnetic maneuvers and 

three-axis magnetic attitude stabilizations can be easily obtained.      

      Chapter IV focuses on the dynamics and control of formation flying. The dynamics 

models are described and propagated in the mean elements space to accommodate higher 

order gravity perturbations. Three kinds of periodic matching conditions are introduced 

in the chapter. The model index concept is proposed to compare and evaluate relative 

motion theories. The higher order state transition matrix is developed using unit sphere 

approach in the mean elements space. Based on the state transition, we propose 

analytical control laws for formation flying maintenance and reconfiguration.   

      Finally the conclusion remarks are in Chapter V. 
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CHAPTER II 

 SOLVING REAL-TIME OPTIMAL CONTROL  

USING PSEUDOSPECTRAL METHODS 

       

      The main feature of the direct methods is to use finite basis functions, which can be 

denoted by parameter variables, to approximate continuous systems. The major direct 

methods include pseudospectral methods7-17, Hermite collocation44,5-6, B-spline 

approximation19 and Euler discretization45-47. We require the basis functions to be easily 

and efficiently operated for differentiation and integration. In this chapter we investigate 

pseudospectral methods, derive analytical feedback control laws for linear time-varying 

systems, and discuss real-time applications of pseudospectral methods. An inverted 

pendulum problem is used to demonstrate real-time implementation26.   

 

2.1 Solving Optimal Control Using Pseudospectral Methods 

 

2.1.1 Pseudospectral Methods 

      Spectral methods, expansions based on global functions, are usually used to 

numerically approximate the solutions to partial or ordinary differential equations. 

Assume a general differential equation 

( )( )ttXfX ,=�                                  (2.1) 

The solution is then approximated using spectral methods48 
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where the basis functions, ( )tkφ , are smooth global functions. The function class that has 

proven to be the most successful by far is orthogonal polynomials of Jacobi type, with 

Legendre or Chebyshev orthogonal polynomials as the most important special cases. The 

polynomials have the following characteristics48: 

• Gaussian integration formulas achieve a high accuracy by using zeros of 

orthogonal polynomials as nodes. 

• Singular Sturm-Liouville eigensystems are well known to offer excellent bases 

for approximation. The Jacobi polynomials are the only polynomials that arise in 

this way. 

• Truncated expansions in Legendre polynomials are optimal in the L2 norm. 

 

      Using the approximation, the residual of the differential equation is 

( ) ( ) ( )( )ttXftXtR NN
N ,−= �                      (2.3) 

The three most common types of spectral methods are Galerkin, tau, and collocation. 

The spectral collocation is also considered to be a pseudospectral method. The 

pseudospectral methods require that the coefficients ka  be selected so that the boundary 

conditions are satisfied, and also make the residual zero at the collocation points. In this 

dissertation, we use pseudospectral methods to numerically solve optimal control 

problems, where the basis functions consist of Legendre polynomials. In the 

pseudospectral methods, the values of ( )tX N  are given exactly by the coefficients ka  at 
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the collocation points. This is helpful in the discretization of continuous systems and 

coding of the optimization problems.  

 

2.1.2 Optimal Control Model   

    Consider the following optimal control problem. Determine the control function 

mRtU ∈)( , and the corresponding state trajectory nRtX ∈)( , that minimize the Bolza 

cost function: 

dtUXLTtTtXMJ
Tt

t

),(]),([
0

0

001 �
+

+++=                                                      (2.4) 

subject to the nonlinear state dynamics 

],[               )),(),(()( 00 TttttUtXftX +∈=�                                                    (2.5) 

and boundary conditions 

0]),([ 000 =ttXψ ,                                                                                              (2.6) 

,0]),([ 001 =++ TtTtXψ                                                                                   (2.7) 

where pR∈0ψ  with np ≤  and qR∈1ψ with nq ≤ , 0t  is initial time and T  is the 

simulation time. Possible control inequality constraints are formulated as 

rRgttUg ∈≤            ,0]),([                                                                               (2.8) 

 

2.1.3 Numerical Solutions of Optimal Control Using DIDO  

      Since direct methods are used to solve optimal control problems, we need to 

discretize the continuous model system. We use the Legendre pseudospectral method 
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which has been implemented in DIDO. The basic idea of this method is to seek 

polynomial approximations for the state, costate and control functions in terms of their 

values at the Legendre-Gauss-Lobatto (LGL) points. The LGL points offer the “best” 

discretization in the sense of minimal least-square error. The time derivative of the state 

vector is expressed in terms of the state vector at the collocation points by the use of a 

differentiation matrix. The NLP formulation for the spectral method is as follows. Set 

)(:     ),(: llll UbXa ττ ==                                                                                  (2.9) 

where lτ  are the LGL points, l=0,1,…N. 

Let )(τNL be the Legendre polynomial of degree N on the interval [-1, 1]. In the 

Legendre collocation approximation of Eq. (2.5), we use the LGL points, Nll ,,0 , �=τ  

which are given by 

,1         ,10 =−= Nττ                                  (2.10) 

and for ,11 −≤≤ Nl  the lτ  are the zeros of  NL� , the derivative of the Legendre 

polynomial NL . For approximating the continuous equations, we seek a polynomial 

approximation of the form 

�
=

=
N

l
ll

N XX
0

)()()( τφττ                                                                                   (2.11) 

where for Nl ,,1,0 �=  

l

N

lN
l

L
LNN ττ

ττ
τ

τφ
−

−
+

=
)()1(

)()1(
1

)(
2 �

                                                          (2.12) 

are the Lagrange polynomials of order N . It can be shown that 
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�
�
�

≠
=

==
  if      0

 if       1
)(

kl

kl
lkkl δτφ                                                                           (2.13) 

From this property of lφ  it follows that 

)()( ll
N XX ττ =                                                                                              (2.14) 

Generally the approximations are expressed as 

NXX ≈)(τ                                                                                                      (2.15) 

but in this collocation method, as stated in the Eq. (2.14), the values of the approximate 

state are given exactly by the value of the continuous functions at these points. 

    To express the derivative NX�  in terms of )(τNX at the collocation points lτ , we 

differentiate Eq. (2.11), which results in a matrix multiplication of the following forms: 

�
=

==
N

l
lklk

N
k aDXc

0

)(τ�                                                                                  (2.16) 

where the klD  are entries of the )1()1( +×+ NN differentiation matrix D  

�
�
�
�

�

�
�
�
�

�

�

==+

==+−

≠
−

==

otherwise                          0

             
4

)1(

0           
4

)1(

      
1

)(
)(

][

Nlk
NN

lk
NN

lk
L
L

DD

lklN

kN

kl

τττ
τ

                                                       (2.17)           

    The optimal control problem is discretized by the following NLP: Find the 

coefficients 

),,,(  ),,,,( 1010 NN bbbbaaaa �� ==                                                            (2.18) 

and possibly the final time Tt +0  to minimize 
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�
=

+=
N

k
fNkkk

N aMwbaL
T

baJ
0

),(),(
2

),( τ                                                      (2.19) 

subject to 

Ncbaf
T

kkk ,0,...k       ,0),(
2

==−                                                                (2.20) 

,,0                  ,0),( Nkbag kk �=≤                                                               (2.21) 

,0),( 000 =τψ a                                                                                                 (2.22) 

.0),(1 =NN taψ                                                                                                 (2.23)                                                                          

where kw  are the weights given by 

( ) ( )[ ] Nk
tLNN

w
kN

k ,...1,0      
1

1
2

2 =
+

=  (2.24) 

The above NLP model can be efficiently solved by DIDO.   

 

2.2 Pseudospectral Control Laws 

 

2.2.1 Linear Time-Varying Systems with Quadratic Criteria 

      Consider the linear time-varying system 

)()()()( tUtBtXtAX +=�                                                                                   (2.25) 

with the initial conditions 

00 )( XtX =                                                                                                         (2.26) 

Here  )(tX and  )(tU  are 1×n  and 1×m  state and control vectors respectively. )(tA and 

)(tB are nn ×  and mn × matrices respectively. 
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      The problem is to determine the optimal control )(tU and the corresponding state 

vector )(tX satisfying Eqs. (2.25-2.26) while minimizing  

[ ]� ++=
ft

t

TT
fff

T dttUtRtUtXtQtXtXPtXJ
0

)()()()()()(
2
1

)()(
2
1

                    (2.27) 

where fP and )(tQ are  nn × weight symmetric semidefinite matrices, and )(tR is a 

mm ×  weight symmetric positive definite matrix. This is the well known linear 

quadratic regulator (LQR) problem. The Hamiltonian for this system is 

)]()()()()[()]()()()()()([
2
1

tUtBtXtAttUtRtUtXtQtXH TTT +++= λ            (2.28) 

where )(tλ  are costate vectors. 

According to the calculus of variations, we have the costate equations 

)]()()()([ ttAtXtQ
X
H T λλ +−=

∂
∂−=�                                                                 (2.29) 

and the necessary optimality conditions 

    0=
∂
∂
U
H

or        )()()( ttFtU λ=                                                                      (2.30) 

where )()()( 1 tBtRtF T−−=  

The transversality conditions are 

)()( fff tXPt =λ                                                                                                 (2.31) 

Substituting Eq. (2.30) into Eq. (2.25), we have the following linear state and costate 

systems 

�
�

	


�

�
�
�

	


�

�

−−
=�

�

	


�

�

λλ
X

tAtQ

tFtBtAX
T )()(

)()()(
�

�

                                                                         (2.32) 
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Analytical control laws will be obtained with the Legendre pseudospectral method by 

solving Eq. (2.32) with the conditions Eq. (2.26) and Eq. (2.31) . 

 

2.2.2 Discretization of Linear Time-Varying Systems Using Pseudospectral 

Methods 

      The basic idea of this method is to seek polynomial approximations for the state, 

costate and control functions in terms of their values at the Legendre-Gauss-Lobatto 

(LGL) points. Then the linear time-varying systems with quadratic criteria are reduced to 

solving a system of algebraic equations. Based on the algebraic equations, the analytical 

control laws can be derived. 

   Since the problem presented in the previous section is formulated over the time 

interval ],[ 0 ftt , and the LGL points lie in the interval [-1, 1], we use the following 

transformation to express the problem for 1] ,1[],[ 0 −=∈ Nτττ : 

( )
0

02

tt

ttt

f

f

−
+−

=τ                                                                                               (2.33) 

The use of the symbol Nτ  (which maps ft ) will be apparent shortly. It follows that Eq. 

(2.32),  Eq. (2.26) and Eq. (2.31) can be replaced by 

0( ) [ ( ) ( ) ( ) ( ) ( )]
2

ft t
X A X B Fτ τ τ τ τ λ τ

−
= +�                                                       (2.34) 

0( ) [ ( ) ( ) ( ) ( )]
2

f Tt t
Q X Aλ τ τ τ τ λ τ

−
= − +�                                                           (2.35) 

0)1( XX =−                                                                                                        (2.36) 
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)1()1( SX=λ                                                                                                        (2.37) 

Let )(τNL be the Legendre polynomial of degree N on the interval [-1, 1]. In the 

Legendre collocation approximation of Eqs. (2.34-37), we use the LGL points, 

Nll ,,0 , �=τ  which are given by 

,1         ,10 =−= Nττ                                                                                           (2.38)                                            

and for ,11 −≤≤ Nl  the lτ  are the zeros of  NL� , the derivative of the Legendre 

polynomial NL . There are no closed form expressions for these nodes, and they have to 

be computed numerically.  For approximating the continuous equations, we seek a 

polynomial approximation of the form 

�=
=

N

l
ll

N XX
0

)()()( τφττ                                                                                       (2.39) 

�=
=

N

l
ll

N UU
0

)()()( τφττ                                                                                     (2.40) 

�=
=

N

l
ll

N

0
)()()( τφτλτλ                                                                                         (2.41) 

where for Nl ,,1,0 �=  

2( 1) ( )1
( )

( 1) ( )
N

l
N l l

L
N N L

τ τφ τ
τ τ τ

−=
+ −

�

                                                             (2.42) 

are the Lagrange polynomials of order N . It can be shown that 

�
�
�

≠
=

==
  if      0

 if       1
)(

kl

kl
lkkl δτφ                                                                              (2.43) 

From this property of lφ  it follows that 
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),()(   ),()(  ),()( ll
N

ll
N

ll
N UUXX τλτλττττ ===                                         (2.44) 

Generally the approximations are expressed as 

,)(     ,)(     ,)( NNN UUXX λτλττ ≈≈≈                                                          (2.45) 

but in this collocation method, as stated in Eq. (2.44), the values of the approximate 

state, control and costate functions are given exactly by the value of the continuous 

functions at these points. 

    To express the derivatives NX�  and Nλ� in terms of )(τNX and )(τλN at the collocation 

points lτ  respectively, we differentiate Eq. (2.39) and Eq. (2.41), which results in a 

matrix multiplication of the following forms: 

0

( ) ( )
N

N
k kl l

l

X D Xτ τ
=

=��                                                                                        (2.46) 

�=
=

N

l
lklk

N D
0

)()( τλτλ�                                                                                          (2.47) 

where the klD  are entries of the )1()1( +×+ NN differentiation matrix D  

�
�
�
�

�

�
�
�
�

�

�

==+

==+−

≠
−

==

otherwise                          0

             
4

)1(

0           
4

)1(

      
1

)(
)(

][

Nlk
NN

lk
NN

lk
L
L

DD

lklN

kN

kl

τττ
τ

                                                          (2.48)           

 

2.2.3 Analytical Feedback Control Law 

      We set 
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),,,( 10 Naaaa �=                                                                                              (2.49) 

),,,( 10 Nbbbb �=                                                                                               (2.50) 

),,,( 10 Ncccc �=                                                                                               (2.51) 

and use the notation 

)(:   ),(:   ),(: llllll cUbXa τλττ === ,                                                               (2.52) 

to rewrite Eqs. (2.32-2.34) in the form: 

�=
=

N

l
ll

N aX
0

)()( τφτ                                                                                             (2.53) 

�=
=

N

l
ll

N bU
0

)()( τφτ                                                                                           (2.54) 

�=
=

N

l
ll

N c
0

)()( τφτλ                                                                                               (2.55) 

Eqs. (2.34-2.35) and Eq. (2.30) are discretized and transformed into the following 

algebraic equations in terms of the coefficients a ,b and c at the LGL nodes, kt : 

0)(
2

0

0

=+
−

−�
=

kkkkk
f

N

l
lkl cFBaAaD

ττ
                                                            (2.56) 

0)(
2

0

0

=+
−

+�
=

k
T
kkk

f
N

l
lkl cAaQcD

ττ
                                                               (2.57) 

0=− kkk cFb                                                                                                      (2.58) 

                                              ,,,1,0 Nk �=  

or 

0
~

2
~ 0 =

−
−− cGaA f ττ

                                                                                         (2.59) 
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0
~~

2
0 =+

−
+cAaQf ττ

                                                                                         (2.60) 

0=− Mcb                                                                                                          (2.61) 

where 

QGAA
~

,
~

,
~

,
~

+− and M are )]1([)]1([ +××+× NnNn  matrices whose )(ij th blocks are 

nn ×  matrices of the following form 

�
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�
�

�

=
−

−

≠
=−

jiAID

jiID
A

i
f

nii

nij

ij
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]

~
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0ττ                                                                   (2.62) 
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jiAID

jiID
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f
nii

nij
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]

~
[

0ττ                                                       (2.63) 
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jiFB

ji
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ii
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ij                 

                   0
]

~
[                                                                               (2.64) 

�
�
�

=
≠

=
jiQ

ji
Q

i

n
ij                  

                  0
]

~
[                                                                                (2.65) 

�
�
�

=
≠

=
jiF

ji
M

i
ij               

                 0
][ n                                                                                (2.66) 

In the above, nI is a nn ×  unity matrix and n0 is a nn ×  zero matrix. 

The initial conditions are 

0)0( aa =                                                                                                             (2.67) 

The terminal constraints are forced for the stabilization of the receding horizon control49.  

0)( =Na                                                                                                             (2.68) 
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0)( =Nc                                                                                                             (2.69) 

The goal is to solve Eqs. (2.59-2.61) subject to the transversality conditions, Eqs. (2.67-

2.69). Therefore, first we write the equations for the state and costate vectors a  and c  in 

block form to have the block matrix form 
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Vz
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PP

AQ

GA

f

f

ττ

ττ

                                                         (2.70) 

In these equations, 

TT
N

TT aaaa ],,,[ 10 �= ,    TT
N

TT cccc ],,,[ 10 �= ,   ],[ TTT caz =                            (2.71) 

and 1
~
P  and 2

~
P  are the following matrices 
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�
=

n

n

O

IO
P

0
~
1                                                                                                     (2.72) 
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�

	


�

�
=

n

n

IO

O
P

0~
2                                                                                                     (2.73) 

where O  is a nNn ×  zero matrix. The matrix V in Eq. (2.70) is of dimension 

)1(2)32( +×+ NnNn . We partition V  as ]  [ 0 eVVV =  such that 

000 =+ eVaV e                                                                                                     (2.74) 

where vector e  is of dimension 1)12( ×+Nn  and defined as 

TT
N

TT
N

TT ccaaae ],,,,,,[ 021 ��=                                                                           (2.75) 
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Thus, 0V  and eV  are ])32([ nNn ×+ , )]12()32([ +×+ NnNn  block matrices of V , 

respectively. We can solve Eq. (2.74) for e  using the method of least squares 

000\ WaaVVe e =−=                                                                                           (2.76) 

where the \ operator denotes the least-squares solution in MATLAB. As indicated in Eq. 

(2.76), 0\ VVW e−≡  is a matrix of dimension nnnN ×+ )2( . Since �
�
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e

a
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�

�
=                                                                            (2.77) 

where 1W  and 2W  are partitions of the [ ]WI n    matrix, each of dimension nNn ×+ )1(  so 

that we have, 

01aWa =                                                                                                              (2.78) 

02aWc =                                                                                                             (2.79) 

From Eq. (2.61) we have 

0302 aWaMWMcb ≡==                                                                                    (2.80) 

where 3W  is a matrix of dimension nNn ×+ )1( . 

      If the initial states are known, the states, costates and controls at the LGL points can 

be solved from Eqs. (2.78-2.80) in the given horizon. It should be noticed that we 

obtained these solutions without any integrations. Regarding the current states as the 

new initial states, Eq. (2.80) constitutes a closed loop control law that can be rapidly 

performed in the receding horizon control manner. 

 



 26 

2.3 Real-Time Optimal Control Planning 

 

2.3.1 Receding Horizon Control (RHC) 

    With no errors the effect of open loop optimal control is equivalent to a feedback 

control. We may not need real-time optimization since we can schedule optimal control 

in advance or on the ground for aerospace applications. However, disturbances exist 

everywhere, so we try to obtain a numerical optimal control sequence at each sampling 

time, and just take the first control of the sequence to form a feedback control. This is 

done by RHC. At the current sampling time 0t , the state is estimated from the 

measurements,  

0/0
ˆ)0( XX =                                                                                                     (2.81) 

Based on this initial condition we use the DIDO to numerically solve the optimal control 

model, Eqs. (2.4-2.8), to get the control sequence at the LGL points over the horizon T  

( )( )T
kNkkkkk UUUU //1/ ,, ++= �                                                                        (2.82) 

Apply the first control of U to the system and repeat the procedure until the final time is 

reached.  

 

2.3.2 Outer and Inner Loop Control  

      To enhance the robustness of real-time optimal control, we use two levels of the 

optimal control structure, outer loop and inner loop control. The outer loop control is 

defined by the model Eqs. (2.4-2.8). It is used to generate real-time trajectories to adapt 

to a large perturbation or varying mission goals. Since the model is nonlinear, it usually 
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takes significant CPU time to finish it. Also, it is more difficult to get convergent 

solutions when compared with linear optimal control. Adding inner loop control can 

alleviate the dependence of the system reliability on the outer loop. The inner optimal 

loop control is described as follows. If we just use the inner loop, then the model 

becomes a tracking problem using the LQR technique. When there is a large 

perturbation, it is difficult to track the original reference trajectory with the LQR. In case 

an immediate maneuver is required, the LQR tracking will not be able to track the 

reference trajectory. Using outer loop control, we can deal with the mentioned problems 

by updating the reference trajectory and tracking the new one. In each loop we use 

DIDO to solve the receding horizon control to obtain the control law. Also “warm start” 

approaches50 are used in the numerical optimizations. One can see the challenge is how 

to obtain the real-time optimizations. Our effort is towards this direction. 

      To track the nonlinear optimal model, we linearize Eq. (2.5) and design the 

constrained linear time-varying system 

)()()()( tUtBtXtAX δδδ +=�                                                                            (2.83) 

which satisfies 

 ( ) 00 XtX δδ =                                                                                                    (2.84) 

 UUUUU −≤≤− maxmin δ                                                                              (2.85) 

)(tA and )(tB are nn ×  and mn × matrices respectively, and 

 refXXX −=δ                                                                                                  (2.86)                                                     
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where refX  is the solution from the nonlinear model. Then determine the optimal control 

)(tUδ and corresponding state vector δ X τ( )satisfying Eqs. (2.83-2.85) while 

minimizing  

[ ]dttURtUtXQtXJ
Tt

t

TT
�
+

+=
0

0

)()()()(
2
1

2 δδδδ                                                 (2.87) 

where Q and R are weight matrices and  

( )
X
f

tA
∂
∂=    ( )

X
f

tA
∂
∂=                                                                                   (2.88) 

Notice Eq. (2.85) ensures the total control applied to the system is within the limits. If 

the constraint Eq. (2.85) is absent, the inner control becomes the well known linear 

quadratic regulator, which can be solved by the pseudospectral control law. The major 

function of the inner loop is to track the outer loop trajectory. In case the outer loop 

control fails, the inner loop will track previous trajectories.      

     In the DIDO, we use SNOPT/TOMLAB50 to solve the nonlinear programming 

problem in the outer loop and SQOPT/TOMLAB to obtain the solutions from the 

optimal tracking system in the inner loop. Fig. 2.1 shows the outer and inner control 

structure. The computational procedure is illustrated in Fig.2.2. 
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Fig. 2.1 Outer and Inner Loop Control 

 

 

2.3.3 Speed Up Computations 

     Ways to improve the numerical optimization speed include a warm start technique, 

use of the analytical Jacobian matrix and scaling or balancing. 

 

2.3.3.1 Warm Start  

    A warm start is a technique that starts codes based on the past history of iterations and 

function evaluations in the previous optimizations instead of arbitrary initial guesses or a 

cold start. Quite often an engineer needs to solve a slightly-altered version of the same 

base model. It makes sense in this scenario that the optimal solution of a previous 

version ought to serve as an excellent starting point for the current version of the model, 
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if the two versions of the model are similar. This is a warm start. In DIDO/TOMLAB, 

the warm start can be completed as described in Fig. 2.3: 
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Outer Loop Period
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=
=
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0 0, tx

int T≥

outt t T= +

 

 

Fig. 2.2 Computational Procedure 
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Fig. 2.3  Warm Start 

 

 

2.3.3.2 Use of the Analytical Jacobian Matrix 

      The Jacobian matrix defines the search directions in the numerical optimizations. 

Use of the analytical Jacobian matrix greatly improves the computational speed of the 

numerical optimizations when compared with the numerically estimated Jacobian. The 

numerical accuracy is much less in the latter. Also it takes much more time to 

numerically estimate the Jacobian, since a lot of calls to the constraint function are 

required to estimate this Jacobian in numerical optimizations. 

 

Step 1: Define the first problem, call tomlab to solve the problem 

            Result = tomRun (‘snopt’, Prob);  

Step 2: Use the warm start to solve similar problems 

            Set  Result_previous = Result and revise the problem;    

            Prob   = WarmDefSOL (‘snopt’, Prob_revised, Result_previous); 

            Result = tomRun ( ‘snopt’, Prob); 
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2.3.3.3 Scaling or Balancing Problems 

      Scaling plays an important role in numerical optimizations. It is necessary to scale 

models to make sure each variable weighs evenly. Here we suggest using the following 

procedure to scale models.  

    (1) Choose the basic units to assure the other units can be derived from the basic units.      

    (2) Scale the basic units to get the normalized model. 

    (3) Use the scale option in the DIDO/TOMLAB. 

 

2.3.4 Time-Delay Considerations 

      Real-time optimal control means instantaneous control should be obtained once the 

measurement is received. Unfortunately, some time is required to solve for the optimal 

control. So there is a time delay in applying the optimal control to the system. A possible 

choice would be to use the previously optimized controls in an open loop manner, when 

the current optimal control is being solved. Obviously there exists a discontinuity at the 

conjunction of the previous and the current control. Also this does not make sense if the 

computational time is comparable with the horizon of the control. In our planning, we 

define the sampling period to be δ  and the current time δktk = . Suppose the 

computational time for the optimal control takes less than n steps or δn  and  

nkXnkX −=− )(                                                                                               (2.89) 

is known from the measurement. Use Eq. (2.89) as the initial condition to integrate Eq. 

(2.5) to time kt  to get the predicted state nkkX −/ . The control U can be set as the 

reference control in the first horizon. Then use the predicted state nkkX −/  as the initial 
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condition and solve the outer loop optimal control with DIDO, and get the control 

sequence 

( )( )T
nkTknkknkkouterloop UUUU −+−+−= ///1/ ,, δ�                                                    (2.90) 

If n is equal to zero, we have exact real-time optimal control. If solving the outer loop 

optimal control fails, we need to activate an alternative control.  As the time arrives at kt  

and the measurement at kt  is received, the estimated kkX /
ˆ  is obtained from filtering 

theories. The inner loop control sequence is assumed to be solved in real-time 

( )( )T
kTkkkkkinnerloop UUUU ///1/ ,, δδδδδ ++= �                                                    (2.91) 

The updated control is 

innerloopouterloop UUU δ+=                                                                                  (2.92) 

Apply the first control of U to the system and repeat the procedure until the final time is 

reached.  

      It is important to know the influence of all the perturbations before nkt −  is involved 

or reflected in the states nkX −  from the measurements in Eq. (2.89). The real-time open 

optimal control could reject the influence of the perturbations before nkt − . This is much 

better than the reference control scheduled before missions, since it knows nothing about 

the perturbations. The disturbances between the time nkt −  and kt  can be rejected by the 

inner loop control in real-time.        
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2.4 Demonstrated Example: An Inverted Pendulum Problem 

 
2.4.1 Description of the Inverted Pendulum Problem 
 
      The problem consists of designing the real-time numerical optimal control that 

provides the desired performance for an inverted pendulum attached on the top of a cart, 

as shown in Figure 2.4. The cart is only allowed to move in the positive and negative x-

direction through the use of a linear actuator applying a force )(tU . The inverted 

pendulum is attached to the cart through a frictionless hinge joint. Furthermore, the cart 

position, )(tx , cart velocity )(tx� , pendulum angle, )(tθ , and pendulum angular, )(tθ� , 

can all be sensed for feedback. 

u M

θ
m

x
 

Figure 2.4  A Schematic of the Inverted Pendulum Attached on a Cart 
 
 

The system dynamic equations of motion are  

 

 x v=�                                                                                                                    (2.93) 
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 21 1 3
sin( ) cos( )sin( )

2 4
v U bv mL mg

c
ω θ θ θ
 �= − − +� �

� �
�                                         (2.94) 

θ ω=�                                                                                                                  (2.95) 

23 cos( ) 1 3
sin( ) cos( )sin( ) sin( )

2 2 4
U bv mL mg g

L c
θω ω θ θ θ θ� �
 �= − − + +� �� �
� �� �

�      (2.96) 

 

where                   23
cos( )

4
c M m m θ= + −  

                            M    mass of the cart                  0.5 kg 

                            m     mass of the pendulum        0.5 kg 

                            b      friction of the cart               0.1 N/m/sec 

                            L       length of the pendulum       0.6 m 

                            g      the acceleration of gravity   9.8m/sec/sec 

                            U     applied force                       [-3,3] N 

Obviously the inverted pendulum can be considered as a simple attitude control problem. 

A more complicated case that is considered in this section is the attitude of the inverted 

pendulum when the pendulum is attached to a translating cart. In addition we address the 

constrained inverted pendulum, which means the control is subject to saturation. It is 

obvious that open loop optimal control does not work since any perturbations will cause 

the unstable pendulum to fall down. We implement the optimal control with receding 

horizon control so that closed loop optimal control is obtained. The inverted pendulum 

belongs to an infinite time problem, and we have no way to numerically solve infinite 

optimal control. So we need to use sequence finite horizon control to approximate the 
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infinite optimal control. To ensure the stability caused by the finite horizon 

approximation, we force terminal constraints at the end of each horizon.  

 

2.4.2 Outer and Inner Loop Optimal Control 
 
      In this problem, assume the constraint  

33 ≤≤− U                                                                                                         (2.97)  

set in the outer loop. Once the optimal control U is determined, we force the 

33 ≤+≤− UUδ  constraint in the inner loop to make sure the total control is bounded 

before applied to the system. The sampling period for the outer loop is 0.5 seconds while 

0.05 seconds for the inner loop. The number of LGL points is 32. The length of the fixed 

receding horizon is 10 seconds. The simulation time or the final time is also set as 10 

seconds. So we have 20 updates for the outer loop and 200 updates for the inner loop. 

The initial pendulum angle is set as 15 degrees. The initial condition is 

0] degree, 15  0,  ,0[)0( =X                                                                                 (2.98) 

For the inverted pendulum, ]   ,  ,  ,[ θθ ��xxX = . We want to minimize 

[ ] τττττττ dURUXQXJ
Tt

t

TT
�
+

+=
0

0

)()()()()()(
2
1

                                               (2.99) 

satisfying Eqs. (2.93-2.98) where )(τQ is an  nn × symmetric semidefinite matrix, 

)(τR is a mm ×  symmetric positive definite matrix and T is the horizon. Obviously, the 

set point or equilibrium point is zero, which means we want the inverted pendulum and 

car to be static and the pendulum to be in the vertical direction.  
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    The process noise for the dynamic model errors needs to be added to the acceleration 

terms in the state equations.  The process noise matrix of the value dynQ   takes the form 

2 2([0 0.1( / ) 0 0.01( / ) ])dyn diag m s rad s=Q                                             (2.100) 

where the units are meters and radians. The following measurement errors were used  

2 7 2 2 6 2([0.0005( ) 10 ( / ) 0.06(deg ) 3 10 (deg/ ) ])measure diag m m s s− −= ×R   (2.101) 

An extended Kalman filter is used to estimate states to simulate real-time optimal 

control51.  

 

2.4.3 Numerical Results 

      Figs. 2.5-2.8 illustrate the numerical results. 

 

Fig. 2.5   Outer Loop Control 
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Fig. 2.6 Verify Outer Loop Control 

 

Fig. 2.7   Outer Loop States 
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Fig. 2.8   Inner Loop States 

 

      The results show all the solutions are near optimal. In Fig. 2.5, the solid lines 

represent the total control UU +δ  while the dot lines stand for the outer loop or 

reference control U  from SNOPT. The control reaches the lower limit at the first stage 

in Fig. 2.5. This is because the maximum force should be applied in the reverse direction 

as soon as possible to prevent the pendulum from falling down. The solid lines represent 

the states obtained by integrating Eqs. (2.93-2.96) under the process noise and 

measurement error while the dot lines stand for the reference states from the outer loop 

in Fig. 2.7. The results show the actual trajectories (solid lines) follow the outer loop 

trajectories (dot lines) very well and the difference is illustrated in Fig. 2.8. Notice the 

outer loop trajectories in Fig. 2.7 are scheduled and updated in real-time when the new 
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measurements are received. Fig. 2.7 illustrates the inverted pendulum and cart are almost 

still and return to the zero position after 3 and 6 seconds, respectively. 

      We use the costate estimation9 to verify the outer loop control. From optimal control 

theory, it can be shown that 

3                3

               3 3
3              -3

U

Λ ≥�
�= Λ − < Λ <�
�− Λ ≤�

                                                                           (2.102) 

( ) ( )1.5 cos /v L Rcωλ θλΛ = − +                                                                         (2.103)     

where R is a weighing factor and the value is one. vλ  and ωλ are the costates 

corresponding to Eqs. (2.94) and (2.96), respectively. In Fig. 2.6, the solid line 

represents the outer loop control while the circles stand for the values of Λ . One can see 

that agreement between the outer loop control and Eqs. (2.102-2.103) is excellent.  

 

2.4.3.1 Computation Speed 

Table 2.1 lists CPU comparisons for the warm and cold start.  

  

Table 2.1: CPU for Warm and Cold Start 

Algorithm Warm Start (sec) Cold Start (sec) 

Inner loop 0.0348 0.172 

Outer loop 0.4366 1.016 
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In Table 2.1 all the initial guesses in the cold start are zeros.  

 

2.4.3.2 Use of Analytical Jacobian Matrix 

      Our results indicate there is about a factor of 10 improvement when using the 

analytical Jacobian matrix instead of the numerical one, as shown in Table 2.2.   

 

Table 2.2: CPU for Analytical and Numerical Jacobian Matrix 

Jacobian Matrix Average CPU Used for Solving Outer Loop 

(second)  

Analytical 0.425 

Numerical 4.570 

                                                                                   

 

2.4.3.3 Scaling or Balancing Problems 

    Scaling plays an important role in numerical optimizations. It is necessary to scale 

models to make sure each variable weighs evenly. Here we suggest using the following 

procedure to scale models.  

    (1) Choose the basic units to assure the other units can be derived from the basic units.      

    (2) Scale the basic units to get the normalized model. 

    (3) Use the scale option in the DIDO/TOMLAB. 
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2.4.3.4 Model Reductions 

     Simplify models: for instance, it is obvious that the computation speed of the linear 

model is much faster than that of nonlinear models. In our example, the CPU of the 

linear model is 0.0348 seconds, compared with 0.4366 seconds for the nonlinear model, 

as shown in Table 2.1.  

 

2.4.3.5 Discretization Selection and Size 

       The use of higher order schemes allows using fewer discretization nodes for the 

same degree of accuracy.  A smaller size discretization problem results in a more 

efficient and more robust solution.  Recently Refs 7-17 employed the Legendre spectral 

collocation method for solving a variety of optimal control problems, and showed that 

highly accurate results can be obtained with a low degree of discretization.  

 

Table 2.3:  Effect of LGL Points on CPU 

LGL Points Average CPU Used for 

Solving Out Loop (second)  

Average CPU Used for 

Solving Inner Loop (second)  

16 0.115 0.011 

24 0.241 0.016 

32 0.425 0.031 

 

      

      Table 2.3 shows that as the number of LGL points is reduced the speed improves.  
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2.4.3.6 Computation Time Delay 

     To compute the effect of the time delay on the system, we input ( )δττ −U  into the 

system instead of ( )τU  at the time τ  

( ) ( )
0                    

     

τ δτ
τ

τ δτ τ δτ
≤��= � − >��

U
U

                                                                            (2.104) 

 where δτ  is the computational time delay. In this case, set 12.01 =δτ and 012.02 =δτ  

seconds for the outer loop control and inner loop control. Choose 16 LGL points so that 

the computations are able to be completed in 1δτ  and 2δτ . 

 

Fig. 2.9 Control Including Computational Delay Effects 
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Fig. 2.10 States with Delay Effects 

 

Fig. 2.11 Inner Loop Control Including Delay Effects 
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Fig. 2.12 Inner Loop States with Delay Effects 

 

    All the simulations were performed on a 1.7 GHz PENTIUM 4.  The simulation 

results show the inverted pendulum can still be stabilized with the delay effects, which 

means we are able to control the inverted pendulum in real-time using a commercial 

computer to complete the computations. In Fig. 2.9, the solid lines represent the total 

control UU +δ  while the dot lines stand for the outer loop or reference control U  from 

SNOPT. In Fig. 2.10, the solid lines represent the states obtained by integrating Eqs. 

(2.93-2.96) with the process noise and measurement error while the dot lines stand for 

the states from the outer loop. Comparing Fig. 2.12 with Fig. 2.8, the time delay causes 

large perturbations in the states in the initial stages since the time delay has significant 

effects on the initial stages with fast dynamic response. The perturbations are rejected as 
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time increases. In Fig. 2.11, the dot lines represent the inner loop control while the solid 

lines stand for the control limits defined by Eq. (2.85). The figure shows the initial 

control of the inner loop is almost zero due to the Eq. (2.85) constraint since the lower 

limit is already reached in Fig. 2.9. From Figs. 2.9-2.12, one can see that the time delay 

in the system influences the fast dynamic part significantly, while it has little effect on 

the slow dynamic part. 

 

2.4.4 Summary of the Demonstrated Example 

    We introduce a design structure for two levels of control, an outer loop and inner loop 

control, to implement real-time optimal control. The outer and inner loop optimal control 

problem is efficiently solved by DIDO.  An extended Kalman filter is used to estimate 

states to simulate real-time optimal control. Several ways to improve computation speed 

were considered, including the analytical Jacobian matrix, warm start and algorithm 

selections. We used a classic constrained inverted pendulum problem to demonstrate our 

control approach.  The results show the inverted pendulum can be stabilized very well in 

a real time manner.     
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CHAPTER III 

 OPTIMAL MAGNETIC ATTITUDE CONTROL  

 
      This chapter investigates the use of magnetic actuators for the time-optimal rest-to-

rest maneuver using a pseudospectral algorithm implemented in the reusable software 

package, DIDO. The nonlinear attitude equations of motion are used. After the final 

attitude is reached in the orbit frame, the pseudospectral control law is applied to 

stabilize the attitude also using magnetic torque in circular and eccentric orbits. The 

parameters of the example problem correspond to that of NPSAT1, a small satellite 

being built at the Naval Postgraduate School.  Numerical experiments reveal that real-

time optimal magnetic maneuvers and three-axis magnetic attitude stabilizations can be 

easily obtained with onboard computation. 

 
3.1 Coordinate Frames 

 

3.1.1 Inertial Frame 

      The Xe axis points to the vernal point in the equatorial plane of the Earth. The Ze axis 

is the axis of rotation of the Earth in a positive direction and Ye is defined by the right-

hand rule. 
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3.1.2 Magnetic Equator Frame 

      Assume the xm axis is along the line of nodes between the magnetic equator plane 

and orbit plane, the zm axis is perpendicular to the magnetic equator plane and points 

toward the northern hemisphere of the earth, and ym is defined by the right-hand rule. 

 

3.1.3 Orbit Frame 

      The origin is attached to the spacecraft. The z axis points from the spacecraft to the 

earth center, the y axis follows the negative normal direction the orbit plane and the x 

axis is defined by the right-hand rule, and points approximately along the velocity 

vector. We use this frame as the reference frame in spacecraft attitude control.  

 

3.1.4 Body Frame 

      The attitude coordinates are chosen to be the (3-2-1) Euler angles: the body frame is 

first rotated about the 1z  axis by yaw angle ψ  then about the rotated 1y  axis by pitch 

angle θ  and finally about the rotated 1x  axis by roll angleφ . The 1x , 1y  and 1z  axis are 

chosen such that they are aligned with the principal body axes in a right-handed unit 

vectors.  

 

3.2 Earth Magnetic Field Model and Magnetic Torque 

  

3.2.1 Earth Magnetic Model    

      The magnetic field approximated by a dipole model is60 
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( )[ ]pRRp
R

B f ˆˆˆˆ33 −⋅=
µ

                                                                                      (3.1) 

where R is the position vector of the point at which the field is desired, R̂  is the unit 

position vector. p̂  is the vector dipole of the Earth’s magnetic field, and the field’s 

dipole strength is 1510943.7 ×=fµ  Wb-m. Notice this equation can be resolved in any 

coordinate system. The dipole vector, expressed in the geocentric inertial frame, is 
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 m
G

Gm t
dt

d φααα ′++= 0                                                                                      (3.3) 

where mθ ′  is the coelevation of the dipole, mφ ′  is the East longitude of the dipole, 0Gα  is 

the right ascension of the Greenwich meridian at some reference time (here we define 

the reference time 0=t  as the time when the satellite is at the ascending node of the 

satellite orbit), and 
dt

d Gα
 is the average rotation rate of the Earth.  

 

      Eq. (3.1) can be simplified if we express the equation in the orbit frame in the 

absence of the Earth rotation. First we set up the transformation matrix from the 

magnetic equator frame to the orbit frame 
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where mη  is a phase angle measured from the ascending node of the orbit relative to the 

Earth equator to the ascending node of the orbit relative to the magnetic equator. The 

unit dipole vector in the magnetic equator frame is 

( )Tp 1,0,0ˆ −=                                                                                                     (3.5) 

Express it in the orbit frame  

( ) ( )( )T
mmmm ititp  sinsin ,icos ,sincosˆ 0m0 ηωηω −−−=                                  (3.6) 

The unit vector to the satellite in the orbit frame is 

( )TR 1,0,0ˆ −=                                                                                                      (3.7) 

Substituting Eqs. (3.6-3.7) into Eq. (3.1) gives the magnetic field in the orbit frame, 
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                                                               (3.8) 

where xB , yB and zB are the components of the magnetic field B.  

 

3.2.2 Magnetic Torque 

     A magnetic torque is caused by the interaction between the satellite magnetic field 

and the Earth magnetic field. The satellite magnetic field is produced by coils, rods and 

permanent magnets mounted on the satellite. The applied magnetic torque 

M = m × B                                                                                                                   (3.9) 

 where m  is the magnetic dipole moment of the torque rods and B  is the Earth’s magnetic field. 

In the body frame ( )Tmmmm 321 ,,=  and ( )TBBBB 321 ,,= . From Eq. (3.9), one can see 
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the magnetic moments are orthogonal to the Earth magnetic field B, and no moments can 

be achieved along the direction of the field.  

 

3.3 Time-Optimal Magnetic Attitude Control and Real-Time Computations 

 

3.3.1 Introduction 

      Magnetic actuators have been used for momentum dumping of both low and high 

altitude satellites, and for the attitude control of momentum biased spacecraft, primarily 

those in low Earth orbit52-53.  Of late, magnetic actuators have also been proposed as the 

sole means for attitude control54,55,42, particularly for small inexpensive spacecraft.  In 

this section, we investigate the use of magnetic actuators for the time-optimal slew 

maneuver towards the goal of conducting a flight test for NPSAT142, an experimental 

satellite being built at the Naval Postgraduate School (NPS). The minimum time 

required for a given spacecraft to perform a slew maneuver depends on the spacecraft 

orbital elements, its position in orbit as well as the actuator strength. Since the Earth’s 

magnetic field is time-varying, the dynamical system is not autonomous. Junkins and 

Turner21 developed time-optimal formulations leading to a simple one-dimensional two 

point boundary-value problem. Their numerical results suggested that the control 

structure was bang-bang. In May 1981, the NOVA-1 spacecraft was launched, and 

several large angle, minimum time maneuvers were carried out by using ground-based 

computers to generate the commands.  In their pioneering work, Bilimoria and Wie56 

showed that eigenaxis maneuvers were not time-optimal.  Further, they suggested that 
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significant improvements can be obtained by solving the full time optimal maneuver 

problem.  

          Recently, direct methods for solving optimal control problems have been 

successfully utilized. Shen and Tsiotras57 and Yan, Fahroo and Ross3 used direct 

methods to solve the time-optimal rigid spacecraft reorientation problem. Liang, Fuller 

and Chen applied RIOTS, a numerical optimal control software package, based on spline 

functions to approximate controls and Runge-Kutta methods to integrate state equations, 

to solve time-optimal magnetic attitude control problems58. They claimed the optimal 

control is bang-bang, and a computation time of 5 minutes on a Pentium 4 was required 

to solve the optimal control problem. In this section, we use the direct Legendre 

pseudospectral method and the corresponding software, DIDO developed by Ross and 

Fahroo, to numerically solve the time-optimal slew maneuver using magnetic torque. 

The basic idea of this method is to seek polynomial approximations for the state, costate 

and control functions in terms of their values at the Legendre-Gauss-Lobatto points, then 

solve the resulting parameter optimization problem. The parameters of the numerical 

example correspond to that of NPSAT1, a small satellite being built at the Naval 

Postgraduate School. For a benchmark 180-degree rest-to-rest maneuver, the minimum 

maneuver time was found to be 232.7 (sec). On a Pentium 4 the total computation time 

to obtain this solution was 7.2 (sec). Recent advancements in computational power and 

algorithms have made possible the exploitation of pseudospectral methods for real-time 

optimal control. What distinguishes pseudospectral methods from the other direct 

methods is the use of global orthogonal polynomials, such as Legendre and Chebyshev 
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polynomials, as the trial functions. This global orthogonality and the use of Gaussian 

quadrature rules create simple rules for transferring an original underlying infinite 

dimension problem into a low finite dimension system of algebraic equations with 

spectral convergence rates. Recent developments have shown that pseudospectral 

methods have become a promising tool to perform real-time computations of optimal 

control problems. In this chapter we use a warm start technique to test real-time 

computations. The numerical experiments reveal that real-time optimal solutions can be 

obtained.   

 

3.3.2 Time-Optimal Magnetic Attitude Control 

 

3.3.2.1 Equations of motion     

      The dynamic equations of angular motion are  
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The kinematic equations of angular motion are 

2332411 (5.0 qqqq OOO ωωω +−=� )                                                                  (3.13) 

)(5.0 1342312 qqqq OOO ωωω −+=�                                                                  (3.14) 
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)(5.0 4312213 qqqq OOO ωωω ++−=�                                                                (3.15) 

)(5.0 3322114 qqqq OOO ωωω −−−=�                                                                (3.16) 

where ( )T
321 ,, ωωω  is the rotation rate of the body frame with respect to the inertial 

frame, expressed in the body frame, ( )T
OOO 321 ,, ωωω  is the rotation rate of the body 

frame with respect to the orbit frame, expressed in the body frame, and 1 2 3, ,I I I  are the 

moments of inertia of the satellite about its principal axes, respectively.  4321  , , , qqqq are 

the quaternion used to describe the orientation of the spacecraft in the orbit frame.  

 

3.3.2.2 Rest-to-Rest Reorientation 

      We define rest-to-rest reorientation in the orbit frame. The rotational transformation 

from the orbit frame to the body frame is referred to as the direction cosine matrix 

(DCM).  It is defined in terms of the quaternion vector as, 
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The DCM from the inertial frame to orbit frame is 
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where u  is the argument of latitude, Ω  the longitude of the ascending node, and i  the 

inclination of the orbit. Then the magnetic field components in the body frame are given 

by, 
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The rest-to-rest orientation is relative to the orbit frame, which is 

0)(  ,0)(  ,0)( 030201 === ttt OOO ωωω                                                           (3.20) 

 1)t(q  tq tqtq ==== 04030201 ,0)()()(                                                            (3.21) 

and  

0)()()( 321 === fOfOfO ttt ωωω                                                                  (3.22) 
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The angle β  is the principal rotation angle56. 0t  is the initial time and ft  the final time.  

      The initial and final body angular velocities relative to the inertial frame are 
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where  ωO is the magnitude of the orbital angular velocity.   
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3.3.2.3 Time-Optimal Rest-to-Rest Reorientation 

The problem addressed here is to find the optimal control vector for a spacecraft 

undergoing a rest-to-rest reorientation that minimizes the maneuver time using magnetic 

torques. 

�=
ft

t

dtJ
0

                                                                                                           (3.26) 

subject to the state equations 

( ) ( )( )ttmtXfX ,,=�                                                                                          (3.27)  

or Eqs. (3.10-3.16) and the control constraints  

u
i

l mmm ≤≤            3,2,1=i                                                                          (3.28)  

satisfying the initial and final conditions Eq (3.24)-Eq(3.25) 

where   

( )TqqqqX 4321321 ,,,,,, ωωω=                                                                        (3.29) 

and lm  and um  are the lower and upper limits, respectively. Notice the initial time 0t  

and final time ft  are free in the formulation. The problem addressed here is a 

reorientation of an angle β  about the yaw axis. This does not mean the rotation is 

necessarily about the yaw axis, but that the final orientation is equivalent to the angle β  

rotation. 

 The first step in solving the optimal control problem is to form the Hamiltonian.  

From optimal control theory, the Hamiltonian can be written as, 

fH Tλ+= 1                                                                                                     (3.30) 
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where the costates 

 ( )T
qqqq 4321321

,,,,,, λλλλλλλλ ωωω=                                                                (3.31) 

Expressing the Hamiltonian, we have 
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where the switching functions si are 
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According to Pontryagin’s Minimum Principle61, the optimal control must minimize the 

Hamiltonian. The optimal control is  

0 if           <= i
u

i smm                                                                                   (3.36) 

0 if           >= i
l

i smm                                                                                    (3.37) 

0 if           ≡= i
s
ii smm                                                                                   (3.38) 

where  s
im  are the singular controls.  
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3.3.3 The DIDO Discretization 

     Since direct methods are used to solve optimal control problems, we need to 

discretize the continuous model system. We use the DIDO discretization or Legendre 

pseudospectral method. Assume there are N LGL points. The NLP formulation for the 

spectral method is as follows. Set 

)(:     ),(: llll mbXa ττ ==                                                                                (3.39) 

where lτ  are the LGL points, l=0,1,…N.  Using DIDO, the optimal control problem is 

discretized by the following NLP: Find the coefficients 

),,,(  ),,,,( 1010 NN bbbbaaaa �� ==                                                            (3.40) 

and the initial time 0t  and final time ft  to minimize 

0),( ttbaJ f
N −=                                                                                             (3.41) 

subject to 

Ncbaf
tt

kkk
f ,0,...k       ,0),(

2
0 ==−

−
                                                       (3.42) 

( )  ,...,0       3,2,1       Nkimtmm u
ki

l ==≤≤                                                 (3.43)  

,0),( 000 =taψ                                                                                                  (3.44) 

.0),( =NNf taψ                                                                                                (3.45)                                                                          

where the iw  are the LGL weights, 0ψ  are the functions in terms of the initial states and 

initial time as shown in Eq. (3.24) and fψ  are the functions in terms of the final states 

and final time as shown in Eq. (3.25).  
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3.3.4 Numerical Results 

      We consider a magnetically controlled small satellite as the simulation model. The 

satellite (NPSAT1) is being built by students and staff at the Naval Postgraduate 

School5.  There are three rods, one along each axis in the satellite. 

 

Table 3.1: Data for NPSAT1 
 
 

Parameter & units                                                    Value 

Altitude ~km                                                              560 

Inclination ~deg                                                         35.4 

Right ascension ~deg                                                 0 

I1 ~kg.m^2                                                                 5 

I2 ~kg.m^2                                                                 5.1 

I3 ~kg.m^2                                                                 2 

I12=I13=I23                                                                  0 

Magnetic Torque Rod Saturation ~A.m^2                30 
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3.3.4.1 Earth Magnetic Field 

      The strength of the Earth magnetic field as observed by the satellite over one orbit is 

shown in Fig. 3.1. The figure is generated from the model Eqs. (3.1-3.3) and the values 

of mθ ′ , mφ′  and 0Gα  are from the Appendix H of Ref. 60. 

 

Fig. 3.1 Earth Magnetic Field 

 

      Fig. 3.1 indicates the Earth magnetic field is time-varying and there is little effect of 

the Earth rotation on the magnetic strength. Since we know the optimal slew maneuver 

times are about hundreds of seconds for the time-optimal magnetic maneuver of small 

satellites, as shown in Refs. 58 and 25, the starting maneuver times have a significant 

role in the fast maneuver.     
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3.3.4.2 Rest-to-Rest Time-Optimal Maneuver 

    Use DIDO to discretize Eqs. (3.10-16) to transfer the optimal control problem into a 

parameter optimization. Choose 32 LGL points. Given that the maximum possible 

rotation is 180 degrees, we consider this case for benchmarking the computational time.  

In addition, we consider rest-to-rest maneuvers as this is the only situation anticipated 

for NPSAT1.  Maneuvers with an initial or final angular velocity could be solved with 

the same approach. The parameters of NPSAT1 are listed in Table 3.1. We claim that the 

bang-bang solution shown in Fig. 3.2 is time-optimal. Since the Legendre 

Pseudospectral Method, through its Covector Mapping Theorem11, provides costate 

information at the nodes, we can evaluate the switching functions to check optimality 

according to Eqs. (3.36-38), as shown in Fig. 3.3 where the circles stand for the scaled 

switching functions and solid lines represent the optimal control results. From Fig. 3.3, 

we claim that the bang-bang control solution is time-optimal. The computation results 

demonstrate that there are no singular arcs.  
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Fig. 3.2 Optimal Control 

 

Fig. 3.3 Optimal Control and Switching Functions 
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      As suggested in Ref. 15, the control solution is propagated through a separate ODE 

45 dynamics simulator to verify that the candidate solution drives the dynamic system 

from the initial state to the final state. Figs. 3.4-3.5 illustrate the angular velocity relative 

to the orbit frame and quaternion time histories. In these figures, the circles represent the 

optimal solutions at the node points while the solid lines are the solutions obtained from 

integrating Eqs. (3.10-16) with the control from DIDO. Clearly, the solutions from 

DIDO are agreeable with the integration results and Eqs. (3.20-23) are satisfied. The 

Euler angle time history is shown in Fig. 3.6.  

 

Fig. 3.4 Angular Velocity Time History 
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Fig. 3.5  Quaternion Time History 

 

Fig. 3.6 Euler Angle Time History 
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      Fig. 3.6 indicates there is a net angle change of 180 degree about the yaw axis. The 

minimum time is found to be 232.7 seconds while the computation time on a PENTIUM 

4 was about 9 seconds. The maneuver is clearly not an eigenaxis slew.  This is evident 

from both the variation in the quaternions 1q  and 2q  and the non-zero angular rates of  

01ω  and 02ω .  

      The starting time of the minimum slew maneuver time is about 1098.4 seconds. 

From Fig. 3.1 the starting time corresponds to the maximum strength of the Earth 

magnetic field. The strength of the Earth magnetic field can be described from Eq. (3.8) 

( ) mm
f it

R
B 2

0
2

3 sinsin31 ηω
µ

−+=                                                             (3.46) 

 Given the orbital elements, the first maximum strength time should be from t = 0 

00
1 2 ω

η
ω
π mt +=                                                                                                 (3.47) 

The phase angle mη  can be solved using spherical geometry 
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m iii

a
ctgsincoscos

sin
tan

α
αη                                                     (3.48) 

where mei  is the angle between the Earth equator and magnetic equator. Then we obtain 

1t  is about 1211.2 seconds. One can see the optimal slew maneuver period is almost 

symmetric to 1t . This is easy to understand since the stronger the Earth magnetic field, 

the more powerful the magnetic torques. Thus, the start time occurs when the maneuver 
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is symmetric about the maximum field strength and this takes maximum advantage of 

the magnetic field.   

 

3.3.4.3 Extreme Field Map    

      The magnetic torque equals the dipole moment crossed by the magnetic field, as 

shown in Eq. (3.9).  We investigate if the direction of the control vector, the dipole 

moment m, should be perpendicular to the magnetic filed B to take the maximum 

advantage of the magnetic torque. For the full dimension rotations, it is difficult to find a 

simple extreme field map. Fig. 3.7 shows the time history of the angle between the 

control vector and the local magnetic field for the minimum slew maneuver time. 

 

Fig. 3.7 Angle Between Control Vector and Magnetic Field 
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      Fig. 3.7 shows there are several sharp changes at the control switching point in the 

angle time history since the control values are switched from one bound to another one. 

The average value of the angle is about 95 deg. 

 

3.3.4.4 Local Minimums 

     We always wonder if the numerical solutions from direct methods converge to 

optimal control solutions. Actually, there are two fundamentally distinct convergence 

issues. One is the convergence of the discretization scheme and the other is nonlinear 

programming (NLP) convergence. The former means the convergence of the discretized 

problem to the optimal control problem as the number of nodes tends to infinity.  The 

convergence of the NLP solver on the other hand, refers to the convergence of the NLP 

algorithm for a fixed number of nodes. The convergence of pseudospectral 

discretizations has been verified by Dr. Ross’s research group11,14. The convergence of 

the NLP solver in fact belongs to applied mathematics problems.  

     Usually NLP problems are specified by a set of constraints. Any solutions satisfied 

with the constraints are called the feasible solutions. A feasible solution that minimizes 

object functions is called an optimal solution. In general, there will be several local 

minima and maxima, where a local minimum x* is defined as a point such that for some 

� > 0 and all x around x* such that all of the objective function value are less than or 

equal to the value at that point.  It is easy to find local minima — additional facts about 

the problem (e.g. the function being convex) are required to ensure that the solution 

found is a global minimum. 
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     Many popular NLP solvers use a sequential quadratic programming (SQP) method, 

such as NPSOL, FMINCOM, SNOPT. While they reportedly provide “accurate” results 

for most problems, the resulting solutions should be thoroughly checked.  The need for 

this check arises from the fact that the NLP solutions satisfy the Karush-Kuhn-Tucker 

(KKT) conditions up to a prescribed degree of computational tolerance. Even for an 

accurate discretization scheme, these conditions converge to the first order necessary 

conditions of Pontryagin only in the limit. This convergence is not always uniform with 

respect to the degree of discretization and the choice of initial guesses.  Therefore, the 

optimality of these solutions is dependent on the prescribed tolerance, the initial guesses 

for the NLP variable and the size of the NLP variables. In most cases, the SQP algorithm 

can only guarantee convergence to a local minimum, and several different initial guesses 

should be chosen to ensure that the obtained solution is indeed the “optimal” one.  In 

some problems, different initial guesses may results in different optimal solutions (with 

the same value for the cost function).  

     Now we assume the starting time is 1098.4 seconds, arbitrarily choose 100 sets of 

initial guesses (cold starts). The optimal slew times are shown in Fig. 3.8. 
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Fig. 3.8  Optimal Slew Times 

      From Fig. 3.8 we conclude the global optimal time should be about 232.7 seconds. 

The optimal values 293.7 seconds in Fig. 3.8 could be claimed as local minimums. Figs. 

3.9-3.12 illustrate the solutions of the local minimum. 
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Fig. 3.9 Optimal Control Solutions (Local Minimum) 

 

Fig. 3.10 Angular Velocity Time History (Local Minimum) 
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Fig. 3.11  Quaternion Time History (Local Minimum) 

 

Fig. 3.12 Euler Angle Time History (Local Minimum) 
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      In the Figs. 3.10-3.11, the circles represent the optimal solutions at the node points 

while the solid lines are the solutions obtained from integrating the state equations with 

the control from the pseudospectral methods. Obviously, the solutions from 

pseudospectral methods are in agreement with the integration results. Compared with 

Fig. 3.2, the different control switching structure is founded in the Fig. 3.9 for the local 

minimum solution. The similar situation is also shown in Ref. 56 where it was called as 

multiple minima.  Fig. 3.6 and Fig. 3.12 indicate the rotations about the roll and pitch 

axis are in the inverse directions for two cases, respectively. 

   

3.3.4.5 Real-Time Computation Considerations 

            First we test the DIDO convergence or robustness. We still use the 180 degree 

time-optimal rest-to-rest reorientation with 32 LGL points as an example, but the initial 

time is not a variable in the optimization. We choose 1000 starting times of the optimal 

slew evenly along about one orbit period, or we select sample starting points separated 

by about five seconds. We use cold starts to start the optimizations and all the initial 

guesses are evenly selected between 0 and 1 for the scaled optimal model. The results 

are shown in Fig. 3.13. Almost all the solutions are optimal, except about 1.1 percent of 

the 1000 samples are feasible solutions, which satisfy all the constraints but may not be 

optimal. The average computation time is about 19 seconds. As expected from the earlier 

discussion the optimal slew maneuver times do vary with the starting slew times because 

the magnetic field strength varies around the orbit. Fig. 3.13 shows the change of the 
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optimal slew times is unsmooth along the orbit, since the cold starts may lead to local 

minimums and we did not use any global optimization algorithms. However, the results 

do show the better solutions should be a smooth curve osculating to the lower limits of 

the optimal results from the cold starts.  

 

Fig. 3.13 Optimal Slew Times with Cold Starts 

 

      Although direct methods may not require good initial guesses for convergence, an 

educated initial guess does improve convergence rates and reliability. A warm start is a 

technique that starts codes based on the past history of iterations and function 

evaluations in the previous optimizations instead of arbitrary initial guesses or cold start. 

Quite often we need to solve many slightly-changed versions of the same base model. It 
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makes sense in this situation that the optimal solution of a previous version ought to 

serve as an excellent warm start starting point for the current version of the model, if the 

two versions of the model are similar. We solve the same problem but the warm start 

technique is used for initial guesses. Our solutions indicate all the solutions are optimal 

ones except about 0.8 percent which are feasible solutions. The average computation 

time is about 0.45 seconds. The results show there is a big computation time reduction 

using a warm start technique, which is a great potential for real-time computations. The 

optimal solutions with the warm start are illustrated in Fig. 3.14. In the figure, one can 

see the optimal slew maneuver times vary from as low as 232 seconds to as high as 450 

seconds, dependent on different starting times. Comparing Fig. 3.14 with Fig. 3.1, there 

is an inverse relationship between the Earth magnetic strength and optimal slew times.  

 

Fig. 3.14 Optimal Slew Times with Warm Start  
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      Fig. 3.15 shows the optimal solutions with the warm start technique and optimal 

results using the cold starts. In the figure the circles represent the solutions from the 

warm start while the solid lines stand for the ones from the cold starts.  

 

Fig. 3.15 Comparisons for Optimal Slew Time  

 

      The comparison results in Fig. 3.15 suggest the solutions from the warm start are 

tangential to the lower limits of the optimal results from the cold starts, which means the 

former solutions are better than the latter ones. As warm start techniques offer a faster 

convergence rate and better solutions compared with bad initial guesses, we would like 

to note warm start techniques should be used for slightly-altered version situations.    
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3.3.5 Remarks 

      The time optimal attitude rest-to-rest attitude maneuver for a satellite in low Earth 

orbit with magnetic control has been solved.  The feasibility of the solutions has been 

verified by numerical integration while the necessary conditions resulting from the 

Minimum Principle are checked for optimality.  The time-optimal magnetic control is 

bang-bang.  The optimal maneuver is not an eigenaxis slew. The optimal slew time is 

about 232.7 seconds. The start time occurs when the maneuver is symmetric about the 

maximum field strength. For real-time computations, all the tested samples converge to 

optimal solutions or feasible solutions. We find the average computation time is about 

0.45 seconds with the warm start and 19 seconds with the bad initial guess, which is a 

great potential for real-time computations. The optimal solutions from the warm start are 

better than those from the bad initial guess. The results show that DIDO is a very robust 

algorithm in solving optimal control problems. 

 

3.4 Three-Axis Magnetic Attitude Control Using Pseudospectral Control Law in 

Eccentric Orbits  

 

3.4.1 Introduction 
      
     Attitude stabilization systems play an important role in spacecraft attitude control. In 

general, they are classified as active and passive. The simplicity and low cost of active 

magnetic control make it an attractive option for small satellites in low Earth orbit 

(LEO) when precise attitude control is not a requirement.  
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     There are many published papers concerned with active magnetic attitude 

stabilization55,62-65. Both linear and nonlinear methods have been investigated. For 

linearized magnetic systems most of the models can be formulated as linear quadratic 

regulators (LQR). A key challenge is the fact that the magnetic torque can only be 

produced in a plane perpendicular to the local Earth field vector, therefore the satellite is 

not controllable when considered at a fixed time62. However, for orbits which are 

inclined to the Earth’s magnetic equator the direction of the field vector changes and it is 

possible to use this changing direction to stabilize motion over the entire orbit65. Solving 

the LQR with linear time varying (LTV) systems requires an efficient solution of the 

Ricatti equation. Solving Ricatti equations is time expensive in real-time. To reduce this 

computational burden, the steady-state periodic solutions were obtained by averaging the 

periodic matrix in the Riccati equations55,62. The difference caused by using the average 

is considered an additional external disturbance torque acting on the satellite.  

      In general the operating orbits for Earth pointing satellites in low earth orbit (LEO) 

are restricted to near circular orbits. However, there are some missions in which an 

eccentric orbit is desirable. Since the angular velocity and hence, angular momentum, 

are time-varying in eccentric orbits there is a time varying gravity gradient pitch torque 

that is proportional to the eccentricity. Thus, to maintain the satellite attitude, which is 

usually nadir pointing, some kind of passive or active control is required. As we know, 

the gravity gradient torque can be used to passively stabilize the attitude of a satellite. 

However, even if the gravity gradient torque stabilizes the spacecraft some active control 

may still be required. For this stabilization to be effective the main requirement is a 
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favorable inertia distribution. There are two stable satellite’s inertia distributions for the 

case of a circular orbit. One is a satellite’s minor axis is vertical and the major axis is 

normal to the orbit. In this case the Hamiltonian is positive definite at the nadir pointing 

equilibrium point. Hence, it is Liapunov stable66. In the second case the intermediate 

axis is aligned with the local vertical, and the minor axis is normal to the orbit. In this 

case the system is being stabilized by the gyroscopic forces and the Hamiltonian is 

indefinite at the equilibrium point. Since the rotation is about the minor axis, any slight 

damping or disturbance will result in instability and drift away from the equilibrium 

point. Consequently, the second case is impractical for passive attitude control. In 

eccentric orbits the gravity gradient disturbance due to the eccentricity can make a 

satellite that is in the circular orbit gravity gradient stable configuration tumble. The 

orbit eccentricity at which the satellite begins to tumble varies with the spacecraft shape, 

but is generally between 0.05 and 0.267.     

     Active attitude stabilization in eccentric orbits was widely investigated in the 60-

70’s68-71. The control methods focused on momentum exchange devices and cold gas 

plants. Magnetic attitude control has been utilized extensively since the 70’s for 

momentum bias LEO satellites72-73. Seldom were only magnetic torques proposed until 

the 1990’s when several papers appeared that proposed three-axis magnetic attitude 

stabilization for non-momentum bias satellites in circular orbits55,62-65. Each of these was 

for a small satellite. 

     One challenge of magnetic attitude stabilizations in eccentric orbits is the Earth 

magnetic field and gravity gradient torque are time-varying since they are related to the 



 79 

orbital elements of the eccentric orbits. Another problem comes from the specific 

direction of the magnetic torque, which is perpendicular to the Earth magnetic field. 

Consequently, there is no way to totally reject the attitude librations due to the 

eccentricity using only magnetic torques.  

       We apply the pseudospectral control law to magnetic attitude control in eccentric 

orbits. Pseudospectral methods have been used very effectively in solving a wide variety 

of nonlinear optimal control problems as illustrated in Refs. 11-12, 7. The basic idea of 

this method is to seek polynomial approximations for the state, costate and control 

functions in terms of their values at the Legendre-Gauss-Lobatto (LGL) points. Thus it is 

apparent that the LQR problems can easily be transformed to a quadratic programming 

(QP) problem (a quadratic cost function subject to linear algebraic constraints)8. Ref. 38 

compared pseudospectral techniques to Ricatti methods in solving LQR problems and 

showed that there is a huge reduction in the number of equations to be solved and the 

required computer memory storage. While Refs. 8, 35-36 and 38 solved their QP 

numerically, we derived the analytical solutions as shown in Ref. 39. Compared with 

another analytical control law using step by step replacements for the states in Ref. 34, 

our approach is easy to derive and implement.  

      Based on the analytical solutions we propose a closed form control law to apply to 

receding horizon control problems. In the receding horizon control, an optimal control is 

determined on-line over a finite horizon in terms of current time and states. The first 

move of the optimal control sequence is then implemented until the next measurements 

of the states are available. Repeating this procedure, the receding horizon control can be 
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considered as a feedback control. Our results show three-axis magnetic attitude 

stabilization is achieved by using the pseudospectral control law via the receding horizon 

control in eccentric orbits. The residual librations errors are within 1 degree for an 

eccentricity of 0.1.       

 

3.4.2 Magnetic Attitude Dynamic Model 

 

    The dynamic equations of angular motion are  
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where 1 2 3, ,I I I  are the moments of inertia of the satellite about its principal axes, respectively. 

ω1,ω2 ,ω 3( )T
 is the rotation rate of the body frame with respect to the inertial frame, expressed 

in the body frame. The gravity gradient moments are74 
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and [ ]TGGGG 321= .  

The body angular velocity relative to the orbit frame expressed in the body frame is 
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We have 
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where 0ω  is the orbital velocity and the transformation matrix is 
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Linearizing for small angles and rates gives, 
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Differentiating gives 
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Substituting Eqs. (3.56-57) into Eqs. (3.49-51)  and linearizing again gives  

 dFGmAXX ++=�                                                                                          (3.58)  

 [ ]TX ψθφψθφ ���      =                                                                                           (3.59)                                                                                          

where  
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              ( ) 1321 III −=σ ,  ( )  2132 III −=σ , ( )    3213 III −=σ                           (3.63) 

Note that the gravity gradient torque is included in Eq. (3.61).  

 

3.4.3 Control Law Design 

     We can see there is a forced term in Eq. (3.58). The term can be expressed as 

 02ω�ITd =                                                                                                        (3.64)                                                                             

where 
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and 
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where f is the true anomaly and e is the eccentricity. dT  can be considered as a known 

disturbance. A standard way of minimizing the effect of a known disturbance torque is to 

feed forward the estimate of the torque to the control system so that the system does not 

have to wait to respond to the effect of the torque. Since a feed forward is an open loop, 

a linear quadratic regulator (LQR) is used coincidently together with the feed forward 

control to compensate for the latter’s inaccuracies and track reference trajectories. 

 

3.4.3.1 Feed Forward Control Design 

     Magnetic torques are used to reject the known disturbance. The magnetic control 

torques are 

23321 BmBmT f −=                                                                                          (3.67)                                                                                                          

31132 BmBmT f −=                                                                                           (3.68)                                                                                                          

12213 BmBmT f −=                                                                                           (3.69)                                                                                                          

where 321 ,, mmm  are the components of the dipole vector m  in the body frame. Since 

the known disturbance is along the pitch direction, Eqs. (3.67-69) indicate we can’t 

totally reject the disturbance due to magnetic interaction. To minimize the known 

disturbance effects, we introduce the following performance index 
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The magnetic control torque  
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BmT f ×=                                                                                                       (3.71) 

One can see from Eq. (3.71) that the minimum m  occurs when75 

0=⋅ Bm                                                                                                          (3.72)                                                                            

since a magnetic moment generated in the direction parallel to the magnetic field has no 

influence on the attitude control. The augmented performance after adding Eq. (3.72) to 

Eq. (3.70) and substituting for the control torques gives  
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where ξ  is a Lagrange multiplier. Taking the partials for optimal solutions gives 
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2
1112 =+−++− BmBBmBBmBB ξ                                               (3.75)                                                                                                 

( ) 02sin 313
2
2

2
1232131 =+−++−− BfKBmBBmBBmBB ξ                            (3.76)                                                                                      

Solving Eqs. (3.74-76) with Eq. (3.72) gives 

fK
B
B

m sin2
3

1 −=                                                                                           (3.77)                                                                                

02 =m                                                                                                              (3.78)                                                                                                 

fK
B
B

m sin2
1

3 =                                                                                              (3.79)                                                                                                 

where 2
3

2
2

2
1

2 BBBB ++= . Substituting Eqs. (3.77-79) into Eq. (3.70), we have 

( )2
2

2
2 sin fK

B
B

J f =                                                                                          (3.80)                                                                                            

which is much less than one would have if there was no feed forward control. 
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3.4.3.2 LQR Control Design 

     Considering the feed forward control term, Eq. (3.58) becomes 

( ) dFmmGAXX +−+=�                                                                                (3.81)                                                                      

with the initial conditions 

00 )( XtX =                                                                                                        (3.82) 

      The problem is to determine the optimal control )(tm and the corresponding state 

vector )(tX satisfying Eqs. (3.81-82) while minimizing  

[ ]� ++=
ft

t

TT
fff

T dttmtRtmtXtQtXtXPtXJ
0

)()()()()()(
2
1

)()(
2
1

                   (3.83) 

where fP and )(tQ are  nn × weight symmetric semidefinite matrices, and )(tR is a 

mm ×  weight symmetric positive definite matrix. The matrices are set as unit ones.  

      The Hamiltonian for this system is 

( )d
TTT FmGGmAXttmtRtmtXtQtXH +−+++= )()]()()()()()([

2
1 λ        (3.84)                                   

where )(tλ  are costate vectors. According to the calculus of variations, we have the 

costate equations 

( ) )]()()()([
.

ttAtXtQ
X
H

t T λλ +−=
∂
∂−=                                                              (3.85) 

and the necessary optimality conditions 

    0=
∂
∂

m
H

or        )()()( ttFtm λ=                                                                      (3.86) 

where )()()( 1 tGtRtF T−−=  
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The transversality conditions are 

)()( fff tXPt =λ                                                                                                 (3.87) 

Substituting Eq. (3.86) into Eq. (3.81), we have the following linear TPBVP. 

( )
�
�

	


�
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+�

�

	


�

�
�
�

	


�

�

−−
=

�
�

�

	






�

�

n

d
T O

FmtGX

tAtQ

tFtGtAX
λλ )()(

)()()(
.

.

                                             (3.88) 

where nO  is a 1×n  zero vector. Analytical control laws will be obtained with the 

Legendre pseudospectral method by solving Eq. (3.88) with the conditions Eq. (3.82) 

and Eq. (3.87) . 

 

3.4.4 Pseudospectral Method with the Known Disturbance 

      The basic idea of this method is to seek polynomial approximations for the state, 

costate and control functions in terms of their values at the Legendre-Gauss-Lobatto 

(LGL) points. Then the LTV systems with quadratic criteria are reduced to solving a 

system of algebraic equations. Based on the algebraic equations, the analytical control 

laws can be derived. 

      Since the problem presented in the previous section is formulated over the time 

interval ],[ 0 ftt , and the LGL points lie in the interval [-1, 1], we use the following 

transformation to express the problem for 1] ,1[],[ 0 −=∈ Nτττ :  

2

)()( 00 tttt
t ff ++−

=
τ

                                                                                     (3.89) 

The use of the symbol Nτ  (which maps to ft ) will be apparent shortly. It follows that 

Eq. (3.88),  Eq. (3.82) and Eq. (3.87) can be replaced by  
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( )0( ) [ ( ) ( ) ( ) ( ) ( ) ]
2

f
d

t t
X A X G F G m Fτ τ τ τ τ λ τ τ

−
= + − +�                                 (3.90) 

0( ) [ ( ) ( ) ( ) ( )]
2

f Tt t
Q X Aλ τ τ τ τ λ τ

−
= − +�                                                           (3.91) 

0)1( XX =−                                                                                                        (3.92) 

)1()1( SX=λ                                                                                                        (3.93) 

Let )(τNL be the Legendre polynomial of degree N on the interval [-1, 1]. In the 

Legendre collocation approximation of Eqs. (3.90-93), we use the LGL points, 

Nll ,,0 , �=τ  which are given by 

,1         ,10 =−= Nττ                                                                                           (3.94)                                          

and for ,11 −≤≤ Nl  lτ  are the zeros of  NL� , the derivative of the Legendre polynomial 

NL . There are no closed form expressions for these nodes, and they have to be computed 

numerically.  For approximating the continuous equations, we seek a polynomial 

approximation of the form 

�=
=

N

l
ll

N XX
0

)()()( τφττ                                                                                       (3.95) 

�
=

=
N

l
ll

N mm
0

)()()( τφττ                                                                                    (3.96) 

�=
=

N

l
ll

N

0
)()()( τφτλτλ                                                                                         (3.97) 

where for Nl ,,1,0 �=  

2( 1) ( )1
( )

( 1) ( )
N

l
N l l

L
N N L

τ τφ τ
τ τ τ

−=
+ −

�

                                                             (3.98) 
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are the Lagrange polynomials of order N . It can be shown that 

�
�
�

≠
=

==
  if      0

 if       1
)(

kl

kl
lkkl δτφ                                                                              (3.99) 

From this property of φl  it follows that 

),()(   ),()(  ),()( ll
N

ll
N

ll
N mmXX τλτλττττ ===                                        (3.100) 

Generally the approximations are expressed as 

,)(     ,)(     ,)( NNN mmXX λτλττ ≈≈≈                                                         (3.101) 

but in this collocation method, as stated in Eq. (3.100), the values of the approximate 

state, control and costate functions are given exactly by the value of the continuous 

functions at these points. 

    To express the derivatives NX�  and Nλ� in terms of )(τNX and )(τλN at the 

collocation points lτ  respectively, we differentiate Eq. (3.95) and Eq. (3.97), which 

results in a matrix multiplication of the following forms: 

�
=

=
N

l
lklk

N XDX
0

)()( ττ�                                                                                    (3.102) 

�=
=

N

l
lklk

N D
0

)()( τλτλ�                                                                                      (3.103) 

where the klD  are the entries of the )1()1( +×+ NN differentiation matrix D  
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                                                        (3.104)           

 

3.4.5 Analytical Feedback Control Law for the Known Disturbance 

      We set 

),,,( 10 Naaaa �=                                                                                            (3.105) 

),,,( 10 Nbbbb �=                                                                                             (3.106) 

),,,( 10 Ncccc �=                                                                                            (3.107) 

and use the notation 

)(:   ),(:   ),(: llllll cmbXa τλττ === ,                                                             (3.108) 

to rewrite Eqs. (3.95-97) in the form: 

�=
=

N

l
ll

N aX
0

)()( τφτ                                                                                           (3.109) 

�
=

=
N

l
ll

N bm
0

)()( τφτ                                                                                        (3.110) 

�=
=

N

l
ll

N c
0

)()( τφτλ                                                                                             (3.111) 

Eqs. (3.90-91) and Eq. (3.86) are discretized and transformed into the following 

algebraic equations in terms of the coefficients a ,b and c at the LGL nodes, kt : 
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( )kkdk
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0)(
2

0

0

=+
−
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T
kkk

f
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l
lkl cAaQcD

ττ
                                                             (3.113) 

0=− kkk cFb                                                                                                    (3.114) 

                                              ,,,1,0 Nk �=  

or 

f
f VcGaA =

−
−−

~
2

~ 0ττ
                                                                                     (3.115) 

0
~~

2
0 =+

−
+cAaQf ττ

                                                                                       (3.116) 

0=− Pcb                                                                                                         (3.117) 

where 

QGAA
~

,
~

,
~

,
~

+− and P are )]1([)]1([ +××+× NnNn  matrices whose )(ij th blocks are 

nn ×  matrices of the following form 
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jiF
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                 0
][ n                                                                                (3.122) 

In the above, nI is the nn ×  unity matrix and n0 is the nn ×  zero matrix. fV  is a 

]1)]1([ ×+× Nn vector and 

[ ] ( )iidi
f

if mGFV −
−

=
2

0ττ
                                                                             (3.123) 

The initial conditions are 

0)0( aa =                                                                                                           (3.124) 

The terminal constraints are forced for the stabilization of the receding horizon control49.  

0)( =Na                                                                                                           (3.125) 

0)( =Nc                                                                                                           (3.126) 

The goal is to solve Eqs. (3.115-117) subject to the transversality conditions Eqs. (3.124-

126). Therefore, first we write the equations for the state and costate vectors a  and c  in 

block form to have the block matrix form 
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In these equations, 

TT
N

TT aaaa ],,,[ 10 �= ,    TT
N

TT cccc ],,,[ 10 �= ,   ],[ TTT caz =                          (3.128) 
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and 1
~
P  and 2

~
P  are the following matrices 
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where O  is a nNn ×  zero matrix. The matrix V in Eq. (3.127) is of dimension 

)1(2)32( +×+ NnNn . We partition V  as ]  [ 0 dVVV =  such that 

wd VdVaV =+00                                                                                                (3.131) 

where vector d  is of dimension 1)12( ×+Nn  and defined as  

TT
N

TT
N

TT ccaaad ],,,,,,[ 021 ��=                                                                        (3.132) 

Thus, 0V  and eV  are ])32([ nNn ×+ , )]12()32([ +×+ NnNn  block matrices of V , 

respectively. We can solve Eq. (3.131) for d  using the method of least squares 

( ) ( ) wvw
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d VWWaVaVVVVe +=−−= −
000

1
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where 1W  and 2W  are partitions of the [ ]T
n WI  matrix, each of dimension 

nNn ×+ )1( , 3W  and 4W  are partitions of the [ ]T
wvn VWO  matrix, each of dimension 

nNn ×+ )1(  so that we have, 

301 WaWa +=                                                                                                   (3.135) 
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402 WaWc +=                                                                                                   (3.136) 

From Eq. (3.117), we have 

405402 PWaWPWaPWPcb +≡+==                                                            (3.137) 

where 5W  is a matrix of dimension nNn ×+ )1( . 

      If the initial states and disturbances are known, the states, costates and controls at the 

LGL points can be solved from Eqs. (3.135-137) in the given horizon. It should be 

noticed that we obtained these solutions without any integrations. As shown in Eq. 

(3.135) and Eq. (3.137), the solutions of the states consist of a natural response and 

forced response. One can see the states and control are not zeros even if the initial 

conditions are zeros due to the forced term or the known disturbance. Regarding the 

current states as the new initial states, Eq. (3.137) constitutes a hybrid close loop control 

law that can be rapidly performed in the receding horizon control manner. 

 

3.4.6 Simulation Results 

      We consider a magnetically controlled small satellite as the simulation model. The 

satellite (NPSAT1) is being built by students and staff at the Naval Postgraduate School5. 

There are three rods, one along each axis. Table 3.2 lists the simulation parameters for 

eccentric orbits.  
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Table 3.2: Simulation Parameters 
 

 

Parameter & units                                                    Value 

Eccentricity                                                                 0.1 

Semimajor axis ~km                                                    560 

Inclination ~deg                                                          35.4 

Inertia ~kg.m^2                                                            5.1, 5, 2 

Magnetic Torque Rod Saturation ~A.m^2                   30 

 

 

 

3.4.6.1 Compare Pseudospectral Control Law with Riccati Solutions 

     Here we take a circular orbit with a 560 km  radius as an example. Assume the initial 

Euler angles errors are about 30 deg and angular velocities 0.03 deg/s on all three axes. 

Obtaining control laws using the Riccati equation involves: (1) integrating the Riccati 

equation backward in time, (2) storing this solution, and then (3) integrating the state 

equations in forward.  

      Fig. 3.16 shows comparisons between the pseudospectral solutions and the Riccati 

solutions. 
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Fig. 3.16 Pseudospectral Control Law vs. Riccati Solutions 

 

      In the figure, the solid lines represent the solutions from the Riccati equation while 

the circles stand for those from the pseudospectral control law. The number of LGL 

points used is 30. From this figure one can see that the comparison between the 

pseudospectral and Riccati solutions is excellent. The computation time for the 

pseudospectral control law is about 0.3 seconds, while obtaining the control law and 

gains from the Riccati solutions takes about 4 seconds. There is one order of magnitude 

improvement in the computation time using the pseudospectral control law and the 

results are the same as those from the Riccati equations. The elliptic orbit introduces 

parametric excitations and forced terms not present in circular orbits. As shown in Ref. 

40, the initial conditions have no effect on the long-term behavior of the solutions, the 
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first terms in the right sides of Eqs. (3.135-137) will tend to zero and the solutions 

approaches the forced response as time increases.  

 

3.4.6.2 Magnetic Attitude Control in Eccentric Orbits  

 

3.4.6.2.1 Feed Forward Control 

     The known torque disturbance can be found in Eq. (3.64). Using the feed forward 

control, Eq. (3.80) stands for the total torque of the remaining torque disturbance and 

undesired magnetic torque. Fig. 3.17 shows the total torque of the remaining disturbance 

and undesired magnetic torque is much less than the torque disturbance if there was no 

feed forward control. 

 

Fig. 3.17 Disturbance Comparison 
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3.4.6.2.2 Pseudospectral Control Law via Receding Horizon Control 

Implementation      

     Choose 30 LGL points. The horizon is selected as one orbit period. Starting at the 

initial time, we take the sampling for the current states every 50 seconds. The total 

samples are 1000. Once the control law, Eq. (3.137), is obtained with the initial 

conditions over the given horizon, the actual trajectory is then computed with the 

nonlinear dynamics governed by the system Eqs. (3.49-51, 3.53-54) plus the feed 

forward control. The next state conditions Xδ  are generated from *XXX −=δ , where 

X  is the state response from system Eqs. (3.49-51, 3.53-54) and the asterisk denotes the 

reference value, which should be zero for stabilization. In other words, the Xδ are the 

actual values, not those generated from the linear equations, Eqs. (3.81). Repeat this 

procedure to form the receding horizon control.  

      Assume all the initial conditions are zeros. Considering the following inertia 

distributions:  

Case 1 

312 III >>                                                            

Case 2 

231 III >>                                                            

In  Case 1, I1=5 kgm2,  I2=5.1 kgm2, I3=2 kgm2 while in Case 2 I1=5.1 kgm2,  I2=2 kgm2, 

I3=5 kgm2. Figs. (3.18-3.21) show the magnetic control and Euler angle time histories 

for the two cases. 
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Fig. 3.18 Case 1: Magnetic Dipole Moments 

 

Fig. 3.19 Case 1: Euler Angles 
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Fig. 3.20 Case 2: Magnetic Dipole Moments 

 

Fig. 3.21 Case 2: Euler Angles 
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      Case 1 represents static stabilization while Case 2 is statically unstable66. In general 

the stable gravity gradient attitude system works better than the unstable system in the 

circular orbit. But comparing Fig. 3.19 with Fig. 3.21, the Euler angles in Case 2 are 

much smaller than those in Case 1. A comparison of Fig. 3.18 and Fig. 3.20 shows that 

the magnetic control effort is also less in Case 2. This result is caused by the different 

disturbance angular accelerations due to different inertia ratios while the unstable gravity 

gradient torque is a trivial matter in the forced steady state. Substituting Eqs. (3.77-79) 

into Eqs. (3.67-69), we obtain the undesired torques or disturbance. 

fK
B

BB
Td sin2

21
1 −=                                                                                      (3.138)                                                                                                          

fK
B
B

Td sin2

2
2

2 −=                                                                                        (3.139)                                                                                                          

fK
B

BB
Td sin2

32
3 −=                                                                                     (3.140)                                                                                                          

The disturbance angular accelerations in the roll, pitch and yaw axes after substituting 

Eq. (3.66) into Eqs. (3.138-140) are 
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where 
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1

2
1 I

I
k =                                                                                                           (3.144)                                                                                                          

3

2
3 I

I
k =                                                                                                          (3.145)                                                                                                          

From Eqs. (3.141-145), one can see there is a big difference in the disturbance angular 

accelerations due to the different inertia ratios for Cases 1 and 2. For example, k3 = 2.55 

in Case 1 while k3 = 0.4 in Case 2, which means the disturbance acceleration of Case 1 is 

6.375 times more than that of Case 2 in the yaw axis and 2.601 times in the roll axis.  

 

3.4.6.2.3 Effects of Inertia Distributions 

     As we observe there is a significant effect of the inertia distributions on the 

performance of magnetic attitude control. Fig. 3.22 illustrates the simulation results from 

random inertia distribution samples. In the figure the circles represent the solutions 

where the maximum Euler angles are less than 1 degree at the final stage. The stars stand 

for the ones where the maximum Euler angles are over 1 degree. 
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Fig. 3.22 Effects of Inertia Distributions 

  

      From Fig. 3.22 one can see most of the solutions satisfy the 1-degree accuracy 

requirement if k1 and k3 are less than 0.5. Another possible choice is k1 or k3 less than 

0.2. According to Fig. 3.22 we need to set the maximum inertia axis as the roll or yaw 

axis instead of the pitch axis to reduce effects of the disturbance from eccentric orbits as 

show in Eq. (3.144) and Eq. (3.145). Fig. 3.22 shows that in this case the effects of the 

disturbance torque are minimized when the maximum inertia matrix is either the roll or 

yaw axis.  

 

3.4.6.2.4 Consider Initial Perturbations 

          Assume the initial Euler angles errors are about 30 deg and the angular velocities 

are zero on all three axes. The simulations were performed using the nonlinear dynamic 

model input with the pseudospectral control laws. The results show that the 
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pseudospectral control law works well for the magnetic attitude stabilization in eccentric 

orbits. Figs. 3.23-3.24 show Euler angles time histories for Cases 1 and 2.  

 

Fig. 3.23 Euler Angles (Case 1) 
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Fig. 3.24 Euler Angles (Case 2) 

      

      The initial errors are rejected and the attitude is stabilized in less than one orbit 

period, as shown in Figs. 3.23-3.24. The transient responses demonstrate good 

performance and fast decays with one or two oscillations to the equilibrium where the 

magnetic torques and the disturbance torques balance. The transient responses of Case 1 

are much better than that of Case 2, as a result of the stable gravity gradient torque in 

Case 1. In the initial phase the gravity gradient torque plays a major rule and dominates 

the known disturbance. As the initial large angle error is nullified the gravity gradient 

torque becomes small and the primary torque is the pitch disturbance torque that is 

proportional to eccentricity. For the best magnetic attitude control in eccentric orbits, 
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favorable inertial distributions should be static gravity gradient stabilization in the initial 

phase, then satellites make 90 degree fast slew maneuver as illustrated in Ref. 25. It is 

better to have the roll or yaw axis as the maximum inertia to minimize the angular 

disturbance accelerations caused by the eccentricity in steady phase.    

 

3.4.6.2.5 Use LQR Only 

     Here we just apply the LQR to reject the known disturbances61. We set in Eq. (3.81) 

0=m                                                                                                             (3.146)                                                                                                          

The reason for using the feed forward control is to reduce the larger known disturbance 

so that the LQR could work better for the smaller known disturbance. Figs. 3.25-3.26 

illustrate the magnetic dipole moments and Euler time histories without the feed forward 

control for the Case 2.  
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Fig. 3.25  Magnetic Dipole Moments (Without Feed Forward Control) 

   

Fig. 3.26 Euler Angle (Without Feed Forward Control) 
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      Fig. 3.21 and Fig. 3.26 show there is little difference in the Euler angle residual 

errors   with the feed forward control and without it. Comparing Fig. 3.20 with Fig. 3.25, 

we find the dipole moments with the feed forward control are less than the moments 

without the feed forward control. This is because the disturbance in the former is 

reduced by the feed forward control, as shown in Fig. 3.17. But if adding the dipole 

moment m  from the feed forward control to the moments m  from the LQR in Fig. 3.20, 

we have 

 

Fig. 3.27 Total Magnetic Dipole Moments (Case2) 

   

      Fig. 3.27 indicates the total control effort is almost the same as the magnetic dipole 

moments in Fig. 3.25.  
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3.4.7 Remarks 

      Three-axis magnetic attitude stabilization is achieved by using a pseudospectral 

control law via the receding horizon control for satellites in eccentric low Earth orbits. 

The solutions from the pseudospectral control law are in excellent agreement with those 

obtained from the Riccati equation, but the computation speed improves by one order of 

magnitude. The control law indicates the solutions consist of natural and forced 

responses. The known disturbance is greatly rejected by using a feed forward control. 

Numerical solutions show natural responses quickly tend to the region where the attitude 

motion is in the steady state. It is better to set the maximum inertia axis as roll or yaw 

axis and the residual librations errors are within 1 degree for the eccentricity 0.1.  
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CHAPTER IV 

FORMATION FLYING DYNAMICS AND REAL-TIME OPTIMAL 

CONTROL* 

        In recent years, the concept of using a group of spacecraft flying in a close, precise 

formation has been considered for various missions. Since the missions generally last a 

long time, the main interest is how to maintain and reconfigure the relative motion orbits 

of the satellite formations with various perturbations. This chapter focuses on the 

dynamics and control of formation flying. The dynamic models are described and 

propagated in the mean elements space to accommodate higher order gravity 

perturbations. Three kinds of periodic matching conditions for minimizing secular drift 

are introduced in the chapter. The model error index concept is proposed to compare and 

evaluate relative motion theories. A higher order state transition matrix is developed 

using the unit sphere approach108 in the mean elements space. Based on the state 

transition, we propose analytical control laws for formation maintenance and 

reconfiguration.  

   

4.1 Approximate Theories of Relative Motion  

      Since relative motion of formation flying is very complicated, much effort has been 

devoted to simplifying the dynamic models of formation flying to better understand and 

                                                 
* Part of the data reported in this chapter is reprinted with permission from “Evaluation  and Comparison 
of  Relative Motion Theories” by Kyle T. Alfriend and Hui Yan, 2005. Journal of Guidance, Control, and 
Dynamics, Volume 28, Pages 254-261. Copyright © 2004 by Texas A&M University. 
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control relative motion. The first published study in the US for the relative motion of 

close or neighboring satellites was performed by Clohessy and Wiltshire76, hence the 

often used name, the Clohessy-Wiltshire (C-W) equations. However, the approach of 

using the rotating reference frame for relative motion dates back to the 1800’s to the 

work by Hill77 in his development of the lunar theory, hence the other name of Hill’s 

equations that is often used. These equations assume that motion is about a spherical 

Earth, the reference orbit or target is in a circular orbit and the distance between the 

satellites is small compared to the orbit radius so that the equations of motion can be 

linearized.  Since the C-W equations were derived for rendezvous, which is a short-term 

process with intermittent thrusting, these assumptions are valid for rendezvous.  They 

also provide a good basis for identifying potential relative motion orbits for satellites in 

near-circular orbits.  However, the modeling errors introduced by these assumptions can 

have a significant effect on fuel consumption if they are used for determining the initial 

conditions for bounded or periodic relative motion orbits.  Thus, better models for the 

motion of the reference point and the relative motion are needed. Tschauner and 

Hempel79 obtained a solution for the relative motion that included the reference orbit 

eccentricity. Incorporation of the eccentricity for the reference orbit was also obtained by 

Lawden78. Improved forms of the Lawden solution with the reference orbit eccentricity 

are also found in Carter93. How88 investigated the effects of neglecting the reference 

orbit eccentricity when establishing the relative motion initial conditions. References 94-

95 and 80 were attempts to obtain corrections to the initial conditions to account for the 

nonlinear terms for the periodic relative motion orbits. They did not consider the general 
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solution to the nonlinear equations. Alfriend91,92  developed a new approach to the 

nonlinear problem using differential orbital elements. As a first step to including the 

non-spherical Earth effects Gim and Alfriend86 obtained the state transition matrix for 

the relative motion that includes the absolute and differential J2 effects.  For 02 =J  this 

solution reduces to another form for the state transition matrix for eccentric orbits. A 

different approach was used in that the solution was obtained by considering differential 

orbital elements and then transforming into the Cartesian relative motion frame. Thus, 

the differential relative equations of motion did not have to be solved.  

 4.1.1 Approximate Equations 

4.1.1.1 Hill’s Equations 

 We investigate the relative motion of two or more satellites, and one satellite is 

defined as the Chief, the others are called Deputies. In the relative motion, the Deputy is 

with respect to the Chief. Hill’s equations are established in the Chief centered local 

vertical local horizontal (LVLH) frame by making the assumptions of a circular Chief 

orbit, spherical Earth, linearizing the differential gravity accelerations and neglecting all 

other perturbations76-77. The LVLH frame is based on the orbit plane and attached to the 

spacecraft. The axis x  points from the Earth center to the spacecraft, the axis z follows 

the normal direction to the orbit plane, and the axis y is defined by the right-hand rule 

and points approximately along the velocity vector. Hill’s equations are  

22 3 0x ny n x− − =�� �  (4.1) 

2 0y nx+ =�� �  (4.2) 
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��z + n2z = 0  (4.3) 

where x , y  and z  are the LVLH Cartesian coordinates, and �x , �y  and �z  are the relative 

velocity components in the rotating LVLH frame. The mean motion n is given by 

3n
a

µ= , µ  is the gravitational parameter and  a  is the semi-major axis. Hill’s 

equations have an analytical solution, so it can easily be used to approximate relative 

motions.  It is 

( ) ( ) ( ) ( )0 0 0 0 0sin 2 3 cos 2 4= − + + +� � �x t x n nt y n x nt y n x  (4.4) 

( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 02 cos 4 6 sin 2 3 6= + + + − − +� � � �y t x n nt y n x nt y x n y nx t  (4.5) 

( ) ( )0 0cos sin= + �z t z nt z n nt  (4.6) 

Eq. (4.5) shows there is a secular drift in the in-track y direction which will grow 

infinitely large as t → ∞ . All other terms are either periodic terms or constant biases. If 

we set the drift term 063 00 =+ nxy� , the periodic in-plane motion reduces to a 2-1 

ellipse with the long axis in the y direction.   

 

4.1.1.2 Lawden’s Equations 

    The equations of motion that include the effect of the eccentricity on Hill’s equations 

derived by Lawden and other people are.                                  

( )2 32 2 0θ θ µ− − − =� ���� � cx y x r x  (4.7) 

( )2 32 0θ θ θ µ+ + − + =� �� ��� � cy x x y r y  (4.8) 

( )3 0µ+ =�� cz r z  (4.9) 
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where θ  is the argument of latitude and cr  is the orbit radius of the Chief. Eqs. (4.7-9) 

can be solved analytically, see Refs. 78-79.  

 

4.1.1.3 Vaddi, Vadali and Alfriend’s Equations  

 Vaddi, Vadali and Alfriend developed a method to accommodate nonlinearity and 

eccentricity perturbations in Hill’s equations80. They first derived equations with 

nonlinearity (consider quadratic term) without eccentricity, then combined with Lawden 

or Melton’s solutions using perturbation methods to include the effect of the nonlinearity 

and eccentricity on Hill’s equations.  

 

4.1.1.4 Schweighart and Sedwick’s Equations 

    Schweighart and Sedwick obtained equations of motion that incorporate the effect of 

the 1st order gravitational perturbation 2J  for circular orbits on Hill’s equations81. 

( )2 2 23 2 1 3sin sin θ− − = − −�� �x n x ny k i  (4.10) 

22 2 sin sin cosθ θ+ = −�� �y nx k i  (4.11) 

2 2 sin cos sinθ+ = −��z n z k i i  (4.12) 

where 
2

2
4

3
2

µ= EJ R
k

r
, i  is the inclination , ER  is the Earth radius, r  is the position 

vector. The analytical solutions can be found in Ref. 81. 
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4.1.1.5 Orbital Elements Approach  

    The characteristic of the above approaches is to linearize the nonlinear equations of 

motion in the Cartesian frame in order to obtain an approximate analytical solution. 

Garrison et al82  used a novel method to relate the states in the Cartesian LVLH frame to 

orbital element differences.  The linear approximation using the differential orbital 

elements is more accurate than that using the Cartesian or curvilinear coordinates as 

shown in Ref. 83. Moreover, using the differential orbital elements automatically 

includes the reference or Chief orbit eccentricity, which is not included in Hill’s 

equations. Notice this method does not require the solution of differential equations. In 

mean space, we have84 

( ) ( ) 2
3 7 4

1 3
1 5 3 cos

4
i

L L
ελ η η
η

� 	= + + − +� �
�  (4.13) 

( )2
7 4

3
1 5cos

4
i

L
εω
η

= −�  (4.14) 

i
L

cos
2

3
47η

ε=Ω�  (4.15) 

where  L = µa , 21η = − e .  ω  is the argument of perigee and Ω  is the longitude of 

ascending node. The mean argument of latitude  λ = l + ω  and l  is the mean anomaly. 

Then   
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                                                                               (4.16) 

    Using differential orbital elements, Alfriend et al85 described relative motion in terms 

of mean elements, incorporating 1st order 2J  and eccentricity effects in the equations. 

Gim and Alfriend86 developed an accurate state transition matrix for the perturbed non-

circular reference orbit using a geometrical method. Realizing the Deputy relative 

motion is a result of small changes in the orbital elements of the Chief, they used 

differential orbital elements and then transformed into the LVLH coordinates. Notice 

this method does not require the solution of differential equations. The state transition 

matrix is 

( ) ( ) ( ){ }X t A t B t eα δ= +   (4.17) 

or 

( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ){ } ( )11
e 0 0 0 0 0X t A t B t D t t,t D t A t B t X tα φ α −−= + +   (4.18) 

where [ ]X x x y y z z= � � �  is the relative motion coordinate vector, 2
23 eJ Rα = . The matrix 

( )B t  contains only the terms perturbed by 2J . ( )tφe  is the state transition matrix for the 

relative mean elements, and ( )D t  is the Jacobian of the mean to osculating element 

transformation. 
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    A modeling error index is introduced for evaluating and comparing the accuracy of 

various theories of the relative motion of satellites in order to determine the effect of 

modeling errors on the various theories by Alfriend and Yan87.  

 

4.1.2 Analytical Periodic Matching Conditions 

    If we set  

00 2nxy −=�  (4.19) 

periodic motions in the relative motion will be identified in Hill’s eqs. (4.1-6). These 

periodic motions include in-plane, out-of-plane, and combinations of these two motion 

types. The ideal in formation flying is that the satellites will remain close over a long 

period of time without using any control effort. Inspired by designing bounded relative 

motion, Inalhan and How88 derived the periodic matching conditions for an eccentric 

chief orbit based on Eqs. (4.7-9), 

   
( )

( ) ( ) 0
2

3
2

10
11

2
x

ee

en
y

−+

+−=�  (4.20) 

The periodic matching conditions considering 2J  perturbations in circular orbits are81 

    00 12 sxny +−=�   
( )

s

sn
x

+
−=

12

1
0�  (4.21) 

where ( )i
a
R

Js 2cos31
8
3

2

2 +�
�

�
�
�


= . Using these conditions does not eliminate the secular 

growth experienced in the cross-track direction due to 2J . To consider nonlinearity and 
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eccentricity effects on the Hill’s bounded conditions, Vaddi, Vadali and Alfriend80 

obtained the following periodic matching conditions 

( )
( ) ( )

( )0

2

4
2

3
2

1
0

0 2cos612
48

3

112

2sin αρµαρ
+��

�

�
��
�



�
�

�
�
�


−
−+

+
−=

naee

en
y�  (4.22) 

where ρ  is the relative orbit size and 0α  is the initial phase angle. 

    As we mentioned above, use of differential orbital elements has the unique advantage 

of incorporating eccentricity and 2J  perturbations. Without 2J  perturbations, the 

bounded condition can be simply expressed in the nonlinear sense as 

0=aδ  (4.23) 

which means the orbital periods of Chief and Deputy are the same. 

   Schaub and Alfriend89 proposed 2J  invariant relative orbits for formation flying. In  

Ref. 89, two drift rate constraints were applied among spacecraft in mean space    

0δλ δω+ =� �  (4.24) 

0δΩ =�  (4.25) 

The first constrains secular drift in the in-track direction and the 2nd constrains drift in 

the out-of-plane direction. With these constraints the spacecraft will not drift apart over 

time under the influence of  2J  in mean space. Since the difference of semi-major axis, 

eccentricity and inclination should satisfy Eqs. (4.24-25), one of them can be 

independently chosen. This greatly limits formation flying mission designs. Based on 

Gim and Alfriend STM, Ref. 90 presented an in-track constraint periodic matching 

condition 
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cos 0iδλ δ+ Ω =� �  (4.26) 

If the out-of-plane constraint, Eq. (4-25) is not satisfied the in-plane constraint, Eq. (4-

24) is replaced with Eq. (4-26). To accommodate nonlinearity in this condition, Refs. 91-

92 expanded Eq. (4.26) to the second order and included a term 2
2J .  

 
 
4.1.3 Generalized Periodic Matching Conditions 
 
Considering all the perturbations the constraint is 
 

0XX T =                                                                                                          (4.27)  
 

where ( )TzzyyxxX ���=  is the relative motion coordinate vector. X0 and XT are 

the initial state and state after one orbit period. Eq. (4.27) only has numerical solutions 

for periodic matching conditions and may need control effort.  

 

4.2 An Orbital Elements Approach to the Nonlinear Formation Flying Problems 
 

4.2.1 Introduction 
 
      In this section a new approach is presented. We begin with the differential orbital 

elements rather than the C-W equations. This is done for several reasons.  First, the 

linear approximation using differential orbital elements is more accurate than the 

Cartesian or curvilinear coordinates with the C-W equations as was shown in Ref. 83.  

Secondly, using differential orbital elements automatically includes the eccentric 

reference orbit, which is not available using the C-W equations.  Also, relative motion 
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periodic orbits are well defined using differential orbital elements and the first order 

solutions have been obtained.   

 First we start with a discussion of the nonlinear effects and their magnitude in 

relation to the other modeling errors. We then develop the approach for including the 

nonlinear terms when using differential orbital elements. The condition for suppressing 

the secular drift in the in-track direction, called the period matching condition, is 

discussed and the constraints for satisfying this constraint are developed. Finally, results 

are presented. 

  

4.2.2 Formations and Orbital Elements 

      Before proceeding to the nonlinear theory consider the design of relative motion 

orbits in orbital element space.  From Ref. 86, we have 

 

    

x = R
δa
a

+ R
p


 
� � 

� 
� � 

q1 sinθ − q2 cosθ( )δθ − 2
a
p


 
� � 

� 
� � 

q1δq1 + q2δq2( )− R
p


 
� � 

� 
� � 

δq1 cosθ + δq2 sinθ( )
� 

� 

 

 

	 

� 
� 
� 

y = R δθ +δΩcos i( )
z = R δisinθ −δΩsin icosθ( )

 (4.28) 

where θ  is the true argument of latitude, q1 = ecosω ,q2 = esinω , and the orbital 

elements are those of the chief or reference satellite and δ represents the difference in the 

elements between the two satellites. First consider     J2 = 0 and     δa = 0  so that there are no 

secular terms. We are not restricting the chief orbit to be circular.  From the last of Eq. 

(4.28)  
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zmax ≤ Ra δi( )2

+ δΩsin i( )2� 
� 
 

	 
� � 

1/ 2

, Ra = a 1+ e( ) (4.29) 

When     δi = 0  the maximum out-of-plane separation occurs at the equator, when   δΩ = 0  

the maximum occurs at the anti-node. We will adopt the quantity in Eq. (4.29) as a 

measure of the maximum out-of-plane separation, realizing that the maximum will 

probably be less than this depending on the location of perigee.  

 Now consider the in-plane motion and two scenarios. The first is a constant in-track 

separation angle that is accomplished by an argument of perigee difference and     δe = 0 . In 

this case the maximum separation is 

    ymax ≤ Ra δθ +δΩcos i  (4.30) 

The other scenario is periodic in-plane motion that reduces to the 2-1 ellipse when the 

chief eccentricity is zero. In this case with δa = 0  δθ  is periodic and to the 1st 

approximation     δθmax = 2δe . Since δΩ is constant the maximum amplitude of the in-plane 

oscillation is 

    ymax ≤ 2Ra δe  (4.31) 

Thus, the relative motion orbits are easily designed with orbital element differences and 

these differences help provide a visualization of the relative motion orbit.  These 

measures were developed from the linear theory, but they still provide a good 

approximation when the relative motion orbits are large and the nonlinear terms need to 

be included. When J2 is considered differential nodal precession, differential perigee 

rotation and a differential mean motion can occur. Each of these will cause the formation 

to drift and/or the size of the formation to grow. The types of orbits that occur in the 
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presence of differential gravitational perturbations have been classified by Alfriend43. 

The J2 effects will be considered with the nonlinear effects in the following sections. 

 

4.2.3 Nonlinear Effects 

      Consider the dimensionless C-W equations with the true anomaly as the independent 

variable. That is, the motion is referenced to the standard rotating reference frame whose 

origin is at the target of the Chief and the x-axis is in the radial direction, the y-axis is in 

the in-track direction and the z-axis in along the orbit normal.  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2

2

2

2 3 /

2 /

/

/ , / , /

u v u O e O J O L R

v u O e O J O L R

w w O e O J O L R

u x L v y L w z L

′′ ′− − = + +
′′ ′+ = + +

′′ + = + +
= = =

 (4.32) 

where L is a distance representative of the maximum expected separation distance 

between the two satellites. The problem with developing perturbation or successive 

approximation solutions to these equations is the secular term in the in-track direction. 

The higher order terms in the approximation have tn  terms.  For the solution to be 

uniformly valid it is necessary that 

( )1 1lim n

t n

x
O

x
+

→∞


 �
=� �

� �
  (4.33) 

where xn  represents the nth order term in the perturbation solution. The tn  terms appear 

in the solutions in Refs. 95 and 97, thus, the solutions are not uniformly valid. The tn  

terms are not a problem in Refs. 95 and 80 as they are looking for the initial conditions 
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for periodic relative orbits. Karlgard and Lutz94 avoid this problem with a novel 

technique of expressing the relative motion in the rotating frame of the deputy, not the 

chief. However, when transforming back to the chief rotating frame it appears these 

secular terms will appear. Consider the in-track secular term; it results from the two 

satellites having different periods, and as shown by Bond97 the in-track growth is 

��

in - track growth =
sin ∆nt( )

∆n
= t −

∆n( )2

6
t3 +�  (4.34) 

where n∆  is the difference in the mean motions. A similar ( )nt∆cos  term exists and 

these two terms lead to t2 and t3 terms in the higher order approximations. Since these tn 

terms arise naturally from the expansion process we conclude that the standard 

approaches of developing a perturbation solution will not produce a uniformly valid 

solution.  

 The nonlinear effects cannot be considered in isolation, the other modeling errors 

must also be considered.  There are no circular orbits.  Although the mean eccentricity 

can be zero the osculating eccentricity will be ( ) ( )3
2 10−= OJO . Assuming R = 7000km  

for satellites in low earth orbit (LEO) for 310−<RL  or kmL 7<  developing a solution 

that includes the nonlinear terms without including the effects of J2 or the eccentricity 

has little validity since terms of the same order of magnitude have been ignored. Only 

when the maximum separation distance is much larger, say 100 km, are the effects of the 

eccentricity and differential J2 small enough in relation to the nonlinear terms that they 

can be neglected. Also, carrying the perturbation solution to more than 2nd order is 

neglecting terms larger than those that have been included. 
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4.2.4 Nonlinear Theory 

      The general relative equations of motion in the rotating Hill reference frame that 

include the reference orbit eccentricity, J2 and nonlinear effects have been obtained by 

Kechichian98. Developing a perturbation solution to these equations that starts with the 

C-W equations and contains the reference orbit eccentricity, J2 and nonlinear effects is a 

formidable task. This led us to consider a different approach. 

 The primary criteria for selecting the approach for describing the relative motion in 

this effort are to have a formulation a) that includes reference orbit eccentricity and J2 

effects, b) which directly describes the relative motion, c) in which the initial conditions 

that result in bounded relative motion can be determined, d) in which the control of the 

relative motion can be determined, and e) that minimizes the number of terms required 

to include the non-linear effects.  These criteria led us to use mean orbit elements. From 

the mean elements the osculating elements are obtained for each satellite and then 

transformed to the rotating reference frame centered at the Chief to view the relative 

motion. This approach was used to identify the J2 invariant orbits89 and control using 

orbital elements has been demonstrated in Ref. 99.  

 We start with the Hamiltonian in mean elements.  In normalized Delaunay variables 

with µ = 1,Re =1 the averaged Hamiltonian to the second order is84 

 2
2

10 5.0 MMMM εε ++=                                                                             (4.35) 

20 2
1
L

M −=                                                                                                     (4.36) 
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where 2Jε = −  and 2J  is the gravitational perturbation, 

 

L = µa ,G = L 1− e2 = Lη,H = Gcos i

l = mean anomaly
g = ω = argument of perigee

h = Ω = right ascension

  

Mean elements are used because the angle rates are constant, which means the 

constraints to minimize or prevent drift between the satellites are a function of only the 

momenta L ,G,H( ) or a,e,i( ).  If the starting point is the Hamiltonian in osculating space 

the constraints would also be a function of the angles and the relative motion orbit more 

difficult to design. Using the mean argument of latitude λ = l + g the angle rates are 
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Eqs (4.39-41) are the mean angle rates with J2 and 2
2J . We can see from Eq. (4.34), and 

it was shown in Ref. 89, that there will be secular growth in the relative angles if the 

momenta L ,G,H( ) or a,e,i( ) of the two satellites are not equal, except for special orbits 

such as the critical inclination. Since relative orbit design is more direct in terms of e,i( ) 

instead of G,H( ) we use L ,e,i( )as the momenta variables.  

 Now consider the differential rates between the satellites. To obtain the differential 

rates expand in a Taylor series about the Chief satellite. 
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      The partial derivatives are given in the Appendix A. Now consider the size of the 

relative motion orbit. If δi = O ε( ) and /or δe = O ε( ) then the size of the relative motion 

orbit can be several hundred kilometers. Therefore, assume δi = O ε( ) and δe = O ε( ). If 

they are smaller that is no problem. Since ηδη = −eδe  the order of magnitude of δη  

depends on the value of e  and δe .  We will assume that δη = O ε( ). Again, if it is smaller 
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there is no problem. With these assumptions, and from Ref. 95 and Eqs. (4.43-44) we 

see that δL = O ε2( ).  Set 

δL = ε 2δL2 + ε3δL3

δη = εδη1 +ε 2δη 2

δi = εδi1 +ε 2δi2

 (4.51) 

Now substitute Eqs. (4.45-51) into Eqs. (4.43) and (4.44) and equate terms of like order.  

( )
.
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(4.53) 

Setting the O ε2( ) terms in Eqs. (4.52) and (4.53) to zero gives the conditions for the J2 

Invariant Orbits89.  The condition for no drift at 1st order is90 

cos 0iδλ δ+ Ω =� �  (4.54) 

which leads to 

( ) ( ) �
�
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� −−+−= 1
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432 2sincos31
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iii

L
L δ

η
δη

η
εηδ  (4.55) 

To prevent drift out-of-plane drift 

    δη1 = −0.25η tan iδi1 (4.56) 
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As shown in Ref. 89 for orbits with a specified δi Eq. (4.56) leads to large values for δe 

for near-polar and near-circular orbits.  Thus, invoking the constraint to prevent out-of-

plane growth may lead to impractical relative motion orbits.  If the desired relative 

motion orbit only allows one constraint, that constraint should be preventing the in-plane 

drift. This is called the period matching constraint and to 1st order it is given by Eq. 

(4.54) with the resulting change in semi-major axis for the deputy given by Eq. (4.55).  

 The equations for the 2nd order corrections δL3, δη2 and δi2 depend on which of these 

are independent and whether there are one or two constraints.  Consequently, they are 

not provided and can be derived easily.  

 An alternative is to use the exact equations for the angle rates and numerically solve 

using an equation solver, such as exists in Matlab, for the differential elements that 

satisfy the constraints, e.g., the period matching condition. We have done this and the 

comparison is provided in the Results Section.  

    Note that Eq. (4.54) is a necessary condition to suppress the in-track secular growth. 

To set up bounded relative motions, we still need other initial conditions.  

 

4.2.5 Initial Conditions in Orbital Elements 

 Our goal is to set up a projected circular orbit (PCO) with the motion projected in the 

local horizontal plane is a circle. In a chief centered local vertical local horizontal 

(LVLH) frame, the PCO can be described by 
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+=
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+=
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x

                                                                          (4.57) 
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where ρ  is the relative orbit size and 0α  is the initial phase angle. We want to express 

Eq. (4.57) in terms of the orbital elements in the mean space. To avoid the singularity at 

small eccentricity they should be a set of non-singular orbital elements. We have 

selected the following 

[ ]1 2, , , , ,a q q i λ= Ωe  (4.58) 

1

2

cos

sin

q e

q e

g l M

ω
ω

λ ω

=
=

= + = +
 (4.59) 

Using Eq.(4.28), the initial conditions are100 

  
δq1 = −

ρsinα0

2a
 (4.60) 

  
δq2 = −

ρcosα0

2a
 (4.61) 

  
δ i =

ρcosα0

a
 (4.62) 

  
δΩ = −

ρ sinα0

asin i
 (4.63) 

cos iδλ δ= − Ω  (4.64) 

 

From Eq. (4.55) the difference in the semi-major axis is 
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As mentioned earlier, it is easy to obtain the second order approximation to aδ  with 2
2J  

and without 2
2J . In the Results section, we will compare the accuracy of the first and 

second order approximation. 

 

4.2.6 Bounded Conditions in Cartesian Frames 

    It is well known for the Hill’s equations 

032 2 =−− xnnyx��                                                                                           (4.66) 

02
.

=+ xny��                                                                                                     (4.67) 

02 =+ znz��                                                                                                        (4.68) 

that the condition for no secular terms is  

0 02y nx= −�   (4.69) 

This is equivalent to requiring that the semi-major axes be equal. Vaddi, et al80 obtained 

bounded solutions for the relative motion problem accommodating the effects of 

eccentricity and quadratic terms. The modified bounded condition for the PCO is  
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n e
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e e
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In the Results section, we will investigate the effects of the bounded conditions Eq. 

(4.65), Eq. (4.69) and Eq. (4.70) on suppressing the secular drift in the in-track direction. 
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 4.2.7 Results 

 

4.2.7.1 Chief Orbit and Size of Relative Orbit  

 The mean elements of the Chief orbit are 

8000a = (km), 50i = (deg), 

0Ω = (deg), 0ω =  (deg), 0 0M =  (deg) 

1 4,0.001,0.01,0.1e e= −  

    We use these elements and Eqs. (4.60-65) to establish the projected circular orbit 

(PCO) for a circular Chief orbit. When the Chief orbit is not circular they establish a 

relative motion orbit that is close to a PCO. Because the period matching condition is 

used there is very little in-track drift. The radius of the PCO ρ  is chosen as 0.16, 0.80, 

1.6, 4, 8, 12, 16, 40, 80, 120 and 160 km. The initial phase angle 0α  is set to zero. In 

each of these cases the out-of-plane motion is created by an inclination change which 

maximizes the differential nodal precession and out-of-plane drift. Note that they are  

essentially the same relative motion orbit of increasing size. 

 

4.2.7.2 Accuracy of the First and Second Approximation  

    Assuming 0.01e = , we vary the PCO radius to investigate the accuracy of the 

approximation of aδ .  Table 4.1 shows the δa  correction for each case from the 1st and 

2nd order correction and the δa  obtained numerically to satisfy the matching conditions 

Eq. (4.54). We conclude from Table 4.1:  
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Table 4.1: aδ  (m) 

ρ (km) 1st Order 2nd Order 

without 2
2J  

2nd Order 

including 2
2J  

Numerical 

Solutions 

    0.1600 

    0.8000 

    1.6000 

    4.0000 

    8.0000 

   12.0000 

   16.0000 

   40.0000 

   80.0000 

  120.0000 

  160.0000 

-0.3796 

   -1.8979 

   -3.7958 

   -9.4895 

  -18.9790 

  -28.4685 

  -37.9580 

  -94.8950 

 -189.7901 

 -284.6851 

 -379.5801 

   -0.3794 

   -1.8968 

   -3.7934 

   -9.4828 

  -18.9632 

  -28.4412 

  -37.9167 

  -94.7189 

 -189.1948 

 -283.4278 

 -377.4179 

  -0.3790 

   -1.8948 

   -3.7895 

   -9.4730 

  -18.9435 

  -28.4117 

  -37.8775 

  -94.6218 

 -189.0039 

 -283.1462 

 -377.0487 

   -0.3790 

   -1.8948 

   -3.7895 

   -9.4730 

  -18.9435 

  -28.4117 

  -37.8774 

  -94.6199 

 -188.9892 

 -283.0974 

 -376.9339 

 

 

• As expected the 2nd order is better than the 1st order. 

• Inclusion of 2
2J  terms improves the solution. 

• As expected the change in semi-major axis to suppress the secular drift is 

essentially linear with the formation size. 
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4.2.7.3 Suppression of the In-Track Secular Drift  

    Orbital elements approach: We use Eqs. (4.60-65) to obtain the mean elements of the 

Deputy, one of which is the bounded condition Eq. (4.65). Then the mean elements are 

transformed into the osculating elements for both the Chief and Deputy, and then the 

initial coordinates in the ECI frame are obtained. The equations of motion 

 r
..

= −φr                                                                                                             (4.71) 

are then integrated numerically for both the Chief and Deputy where r  is the inertial 

position vector, and rφ  is the gravitational potential gradient. The coordinates in the ECI 

frame are then transformed into the Chief LVLH frame and differenced to obtain the 

relative orbits. 

    Hill’s approach: The initial conditions for the PCO are 

0sin5.0 αρ=x                                                                           (4.72) 

0cosαρ=y                                                                           (4.73) 

0sinαρ=z                                                                           (4.74) 

0cos5.0 αρnx =�                                                                           (4.75) 

0sinαρny −=�                                                                           (4.76) 

0cosαρnz =�                                                                           (4.77) 

Notice Eq. (4.72) and Eq. (4.76) are satisfied with the bounded condition Eq. (4.69). 

Using the coordinate transformations, it is easy to get the initial conditions of the Deputy 

in the ECI frame. Then integrate Eq. (4.71) and transfer the coordinates in the ECI frame 

into ones in the LVLH frame and obtain the relative orbits. 
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    Vaddi’s approach: Substituting Eq. (4.70) for Eq. (4.76) and performing the same 

procedure as with Hill’s approach, the relative orbit is obtained. 

    Assume 0.01e =  and 160ρ =  km. Fig. 4.1 illustrates the relative orbits set up by 

three approaches. The number of the orbits is 10.  

 

 

Fig. 4.1 Relative Orbits 

   

 

      Fig. 4.1 shows the bounded relative motion breaks down along the in-track direction 

using Hill’s approach due to the nonlinearity, eccentricity and 2J  perturbations.  Vaddi’s 

approach demonstrates the effect of the nonlinearity and eccentricity correction in 
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suppressing the secular growth in the along track direction, but there is still a significant 

secular growth caused by 2J  perturbations. The orbital elements approach automatically 

incorporates the reference or Chief orbit eccentricity and includes 1st and 2nd order 2J  

effects, and nonlinearity effects of the transformation can be eliminated by using 

numerical coordinate transformations. The secular growth is almost removed and the 

relative orbit is shown in Fig. 4.1. 

      To investigate the effects of  e  and ρ  on the relative motions, we compute the 

secular growth at the end of the 10th orbit for each case as shown in Fig.4.2. In the 

figure, the solid lines represent the solutions from the orbital elements approach, the 

dotted lines stand for the solutions from Vaddi’s approach and “:” lines represent the 

ones from Hill’s approach. Fig. 4.2 shows that the nonlinearity or the relative orbit size 

ρ  has a bigger effect on the secular growth than the eccentricity for Hill’s approach. 

When the eccentricity of the Chief orbit is small Vaddi’s approach is close to the orbital 

elements approach. In any case, the orbital elements approach has a strong effect on 

suppressing the secular growth.  
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Fig. 4.2 Comparison of Secular Growth for Each Case 

 

4.2.8 Remarks 

• A procedure for designing relative motion orbits using orbital element differences 

has been presented. 

• A 2nd order theory including the  J2
2  term for the relative motion of two satellites has 

been derived using orbital elements. This theory is valid for any eccentricity and 

contains 1st and 2nd order J2 effects. It has been shown that for consistency a 

nonlinear theory for relative motion must also consider eccentricity and gravitational 

perturbations. Other higher order geopotential terms could easily be included. 
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• A relative motion theory using orbital elements is more accurate than one using the 

relative Cartesian or curvilinear coordinates. 

• The period matching or bounded condition in the orbital elements has been proposed 

for the nonlinear problem and compared with the conditions in the Cartesian frame. 

The results show the orbital elements approach has a strong effect on suppressing the 

secular growth.  

 

4.3 Development of State Transition Matrix Using Unit Sphere Approach 

 

4.3.1 Introduction 
 
      In this section, we use the unit sphere approach, proposed by Vadali102, to establish a 

state transition matrix for the perturbed non-circular reference orbit problem. In the unit 

sphere approach, the relative motion problem is studied by projecting the relative motion 

of the two satellites onto a unit sphere. This is achieved by normalizing the position 

vector of each satellite with respect to its radius. This process allows one to study the 

relative motion using spherical trigonometry so that a kinematically exact description is 

obtained for the relative positions in terms of the differential orbital elements, without 

recourse to linearization. In order to obtain time-explicit expressions, the method 

requires the solution of Kepler’s equation or eccentricity expansions to obtain the radial 

distance and argument of latitude. Taking time derivatives for the relative positions, we 

obtain analytical expressions for the relative velocities with the help of Gauss’ 

variational equations. However, we do not find the linearly inverse analytical 
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expressions for the relative motion. This is why we develop the linear STM based on the 

unit sphere approach. Our numerical evaluations show that the first order STM can be an 

alternative method to obtain the STM with the same accuracy as the Gim-Alfriend STM. 

The second order correction developed from the unit sphere approach works well to 

reduce major errors from the first order STM. 

 

4.3.2 Unit Sphere Approach 

      The relative position on the unit sphere is given by 
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                                                                                (4.78) 

where ∆x,  ∆y,  and ∆z , are respectively, the radial, along-track, and cross-track relative 

positions on the unit sphere, Cc  and CD are the direction cosine matrices of the Chief 

and Deputy with respect to the inertial frame, and the subscripts C and D represent the 

Chief and Deputy, respectively. This results in analytical expressions for the so-called 

“sub-satellite” points that are functions of the angles only (right ascension Ω, inclination 

i, and argument of latitude �).  Eq. (4.78) can be expanded as 
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                                      (4.79) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )C D C D C D D C C D Dz s i s c s i c i c c i s i sθ θ∆ = − Ω − Ω − Ω − Ω −� 	� �        (4.81)                        

The actual relative positions between the two satellites are   

δ x = rD 1+ ∆x( )− rC                                                                                         (4.82) 

δ y = rD∆y                                                                                                        (4.83)                                                                                                     

δ z = rD∆z                                                                                                         (4.84)                                                                                                     

Taking time derivatives, we have 

( )1D D Cx r x r x rδ = + ∆ + ∆ −� � � �                                                                              (4.85) 

D Dy r y r yδ = ∆ + ∆� � �                                                                                             (4.86)                                                                                           

D Dz r z r zδ = ∆ + ∆�� �                                                                                              (4.87)                                                                                           

 

4.3.3 A New State Transformation Matrix 

      In this section, we derive the transformation matrix using the unit sphere approach. 

Gauss’ variational equations in terms of the nonsingular elements with the perturbing 

accelerations in the Local-Vertical Local-Horizontal (LVLH) frame are   

�a =
2a2

h
q1 sinθ − q2 cosθ( )ur +

p
r

uθ

�

�



	

�
�                                                            (4.88) 
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�θ =
h
r 2

−
r sinθ cos i

hsin i
uh                                                                                     (4.89)   

�i =
r cosθ

h
uh                                                                                                     (4.90) 

�q1 =
psinθ

h
ur +

p + r( )cosθ + q1r

h
uθ +

q2r sinθ cos i

hsin i
uh                                   (4.91) 

�q2 = −
pcosθ

h
ur +

p + r( )sinθ + q2r

h
uθ −

q1r sinθ cos i

hsin i
uh                                (4.92) 

�Ω =
r sinθ
hsin i

uh                                                                                                    (4.93) 

where 

p = a 1− q1
2 − q2

2( )                                                                                           (4.94) 

h = µ p                                                                                                          (4.95) 

r =
p

1+ q1 cosθ + q2 sinθ
                                                                                 (4.96) 

Considering the gravity perturbation J2 , the accelerations are 

ur = −1.5
J2µRe

2

r 4
1− 3sin2 isin2 θ( )                                                                  (4.97)  

uθ = −1.5
J2µRe

2 sin2 isin 2θ
r 4

                                                                           (4.98)  

uh = −1.5
J2µRe

2 sin2isinθ
r 4

                                                                             (4.99)  

From Eqs. (4.79-81), we have 
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Since eD = eC + ∆e  
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From Eqs. (4.94-96), we have 
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Now we obtain the transformation matrix 

� t( )=
∂δ x
∂∆e
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where 

∂δ x
∂∆e

=
∂rD

∂∆e
1+ ∆x( )+ rD

∂∆x
∂∆e

                                                                        (4.109) 
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4.3.4 Results 

      To evaluate the proposed method, the predicted relative motion by the unit sphere 

STM is compared with that by the Gim-Alfriend STM. 

 

4.3.4.1 Chief and Deputy Orbits  

 The mean elements of the Chief orbit are 

a = 8000 (km), i = 50 (deg), e = 0.01 

Ω = 0 (deg), ω = 0  (deg), M0 = 0  (deg) 

     The Deputy orbit can be obtained100 from Eqs. (4.60-65) for the PCO. When the 

Chief orbit is not circular they establish a relative motion orbit that is close to a PCO. 

Because the period matching condition is used there is very little in-track drift. The 

radius of the PCO ρ  is chosen as 40 km. The initial phase angle α0  is set to zero. 

 

4.3.4.2 Comparisons 

      Figs. 4.3-4.6 compare the position and velocity errors using the unit sphere STM to 

the Gim-Alfriend STM. The errors are obtained by comparing the solutions from the 

STMs with the numerical integrations, respectively. The solutions of the numerical 

integrations are obtained by numerically integrating the equations of motion of both 

satellites in the ECI frame with a 2J  gravity field, differencing them and transforming to 

the LVLH frame.  
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Fig. 4.3 Position Errors by Unit Sphere STM 

 

 
Fig.4.4 Position Errors by Gim-Alfriend STM  
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Fig. 4.5 Velocity Errors by Unit Sphere STM 

 

 
Fig. 4.6 Velocity Errors by Gim-Alfriend STM 
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      The results indicate the STMs are very accurate for describing the relative motion. 

The STM from the unit sphere has the same accuracy as Gim-Alfriend’s STM, which 

provides an alternative approach for representing relative motion.    

      One can see there are initial biases in the x and z directions and small drift in the y 

direction in Figs. 4.3-4.4. The initial bias means the PCO is not centered. The small 

secular drifts are caused by neglecting J2
2  in the mean elements propagation and using 

the linear periodic matching condition Eq. (4.65). To reject these errors, we introduce the 

second order correction using the unit sphere approach. Expanding Eqs. (4.79-81) in 

terms of the second order, we have 
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where e = a,θ , i,q1,q2 ,Ω( ). The Hessian matrix is 
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  Introducing the second order term, Fig. 4.3 becomes 
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Fig.4.7 Position Errors by Unit Sphere STM Including Second Order 

 
 
      Fig. 4.7 illustrates the biases are removed by the second order term. The amplitudes 

are greatly reduced when compared with Fig. 4.3. Also one can see the major errors in 

the state transition matrix come from the second order term of ( )� t . The other sources 

include the J2
2  term and numerical integration errors.       

 

4.3.5 Remarks 

   We develop an alternative STM for describing the relative motion using the unit 

sphere approach with the same accuracy as Gim-Alfriend’s STM. The major errors from 

the first order STM can be rejected by the second order correction for relative motion.  
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4.4 An Evaluation and Comparison of Relative Motion Theories 

4.4.1 Introduction 

      The various theories of relative motion are presented in Section 4.1. The complexity 

of these theories increases as the accuracy improves. Thus, an important question is 

which theory is needed for a given problem or what needs to be included in the reference 

orbit model. Since the accuracy is a function of the initial conditions a methodology is 

needed for comparing the accuracy of the theories for a class of problems. Such a 

methodology was developed by Junkins, et. al.83 for comparing linear theories. In Ref. 

83 a nonlinear index was introduced for comparing the accuracy of various linearized 

solutions for the propagation of a debris cloud resulting from a collision or break-up.  

The analysis showed that when using the linearized equations of motion the most 

accurate solution is obtained by using differential orbital elements. Recently, Junkins105 

in his tutorial on nonlinearity of orbit and attitude dynamics discussed problems on how 

to measure nonlinearity and used the nonlinearity index to evaluate several coordinate 

choices.  

 In this section we compare various theories for relative motion orbits. The purpose in 

this research was not just to compare theories, but to provide results that would aid 

mission designers in deciding what effects need to be included in the reference orbit 

model for their particular formation. Consequently, we selected theories that include the 

different effects. The theories selected for comparison are the CW solution76, the Gim-

Alfriend86 state transition matrix, a small eccentricity state transition matrix, a non-  J2  
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state transition matrix derived from the Gim-Alfriend state transition matrix, a unit 

sphere approach proposed by Vadali102,107 and the Alfriend-Yan nonlinear theory91,92. 

There are numerous other theories in the literature. A new modeling error index derived 

from the Junkins nonlinearity index is used to compare the theories. The Junkins index 

cannot be used because it is restricted to linear theories. Comparisons are performed for 

a spherical Earth and an oblate earth. When   J2 = 0  the Gim-Alfriend theory is 

numerically identical to the Lawden78 and Tschauner-Hempel79 theories so their 

accuracy is captured in these comparisons.   The relative motion orbit selected for 

comparison is the projected circular orbit90 (PCO) or its equivalent when the reference 

orbit is not circular. This relative motion orbit was selected because the evaluation of the 

relative motion theories should include some out-of-plane motion. The two key 

parameters in the evaluation are the eccentricity of the reference orbit and the relative 

motion orbit size, e.g., the projected circular orbit radius.  

 

4.4.2 Modeling Error Index 

 Consider the nonlinear differential equations with the initial conditions 

   
x
.

= f t, x( ),  x t0( )= x0  (4.121) 

In Refs. 83 and 105 the nonlinearity index used was 

 

  

v(t,t0 ) = sup
i=1...N

Φi t,t0( )− Φ t,t0( )
Φ t,t0( )  (4.122) 
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where 
  
Φ t,t0( ) is the state transition matrix that is obtained from Eq. (4.121) with the 

expected initial conditions 
   
x t0( ). 

  
Φ t,t0( ) is a state transition matrix that is obtained 

from Eq. (4.121) with a worst-case distribution of initial conditions neighboring the 

expected initial conditions. In Ref. 83 this index was used to compare the accuracy of 

three linear theories for a circular reference orbit, the CW equations, the linear theory 

using polar coordinates and one obtained from differential orbital elements. The 

objective was to determine which theory best captured the nonlinear effects. The 

comparison showed that differential orbital elements were the most accurate. 

 The nonlinearity index should evaluate modeling error, not just nonlinearity. Since 

the index in Eq. (4.122) cannot be used with a nonlinear theory a new index is needed. In 

addition, our objective is to compare the accuracy of the theories for specific types of 

orbits.  For comparison in this paper the projected circular orbit (or its equivalent for a 

non-circular reference orbit) is used as the baseline orbit.  Let 
  
xi t( ) be the solution for 

the initial condition 
   
xi t0( ) at the corresponding points and let 

  
xi t( ) be the solutions for 

the proposed models. These need not be linearized solutions. It is important that the 

states be in dimensionless variables or a weighting matrix used. Let  W  be a weighting 

matrix that non-dimensionalizes  y , that is 

  y = Wx  (4.123) 

We now propose the following modeling error index 
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v t( )= max

i=1...N
ν i  (4.124) 

   
vi =

yi
T yi

yi
T yi

− 1                                                                                                 (4.125) 

 Note that if there is only one state and we let 
  
yi = y 1+ γ( ) then the index becomes 

 
ν = 2 γ . Therefore, the index is proportional to the percentage error. 

 

4.4.3 Reference Orbits  

 We use differential orbital elements to set up a reference relative motion orbit or 

projected circular orbit. Then take many points on the orbit as initial conditions, and 

propagate them to obtain the model error index as a function of time. The period 

matching condition for the relative motion at first order is90 

δ �λ + δ �Ωcos i = 0  (4.126) 

 In this section we have selected the projected circular relative motion orbit (PCO) 

for comparing the relative motion theories. In a Chief centered Local Vertical Local 

Horizontal (LVLH) frame, the PCO can be described by90 

 
  
x = 0.5ρ sin θ + α0( ) (4.127) 

  
y = ρcos θ + α0( )                                                                                          (4.128) 

  
z = ρsin θ + α0( )                                                                                           (4.129) 

where ρ  is the relative orbit radius,  α0  is the initial phase angle and θ  is the latitude 

angle of the Chief satellite. We want to express Eqs. (4.127-129) in terms of the orbital 
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elements in the mean space. To avoid the singularity at small eccentricity they should be 

a set of non-singular orbital elements. The differential orbital elements are determined 

from the selected relative motion orbit, as shown in Eqs. (4.60-65).  

      By choosing values of  α0  between 0 and 360 degree, we obtain a distribution of the 

initial conditions. Starting with these initial conditions, we evaluate the modeling error 

index of the approximate methods.   

 

4.4.4 Approximate Methods for Relative Motion 

4.4.4.1 Hill’s Equations 

 Hill’s equations are established in the LVLH frame by making the assumptions of a 

circular Chief orbit, spherical Earth, linearizing the differential gravity accelerations and 

neglecting all other perturbations. Hill’s equations are shown in Eqs. (4.1-3). 

4.4.4.2 Gim-Alfriend State Transition Matrix 

 Since Hill’s equations have considerable errors and are insufficient for the long term 

prediction, Alfriend and Gim86 developed an accurate state transition matrix for the 

perturbed non-circular reference orbit using a geometrical method, please see Eq. (4.17-

18). Realizing the Deputy relative motion is a result of small changes in the orbital 

elements of the Chief, they used differential orbital elements and then transformed into 

the LVLH coordinates. The linear approximation using the differential orbital elements 

is more accurate than that using the Cartesian or curvilinear coordinates as shown in 

Refs. 83 and 105. Moreover, using the differential orbital elements automatically 
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includes the reference or Chief orbit eccentricity, which is not included in Hill’s 

equations. Notice this method does not require the solution of differential equations.  

 

4.4.4.3 Small Eccentricity State Transition Matrix 

The Gim-Alfriend state transition matrix is valid for any eccentricity. A simpler version 

for small eccentricity can be derived. The small eccentricity state transition matrix is 

obtained from the Gim-Alfriend state transition matrix by retaining 
 
O e( ) terms for the 

non-  J2  portion and only 
  
O e0( ) for the   J2  portion. See Appendix B for the state 

transition matrix. 

 

4.4.4.4 Non-  J2  state transition matrix 

    The matrix is obtained from Eq. (4.140) by setting   J2 = 0 . Its accuracy is numerically 

identical to those in the Lawden78 and Tschauner-Hempel79 theories.  Therefore, its 

evaluation is equally applicable to evaluating either Lawden or Tschauner-Hempel. 

 

4.4.4.5 Unit Sphere Approach 

    In the unit sphere approach102,107, the relative motion problem is studied by projecting 

the motion of the two satellites onto a unit sphere. This is achieved by normalizing the 

position vector of each satellite with respect to its radius. See Section 4.3 for detail.  
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4.4.4.6 Yan-Alfriend Nonlinear Method 

 The geometrical method by Alfriend and Gim is just a transformation from a 

nonlinear algebra into a linear one. It results in not only a daunting task, but also a 

nonlinear error. The Yan-Alfriend method extends the earlier work of Schaub and 

Alfriend89 in that the Taylor series expansion of the deputy mean orbital elements about 

the chief is carried to 2nd order. The matching condition to suppress the in-track drift is 

then determined and the time history of the differential mean elements determined. Since 

the expansion is carried to 2nd order the J2
2  terms are included. This constitutes a very 

simple method for a long term prediction for nonlinear relative motion, that is, we 

predict mean orbital elements at the given time for the non-circular reference orbit 

including nonlinear   J2  effects, then transform them into the LVLH coordinates.  Details 

are provided in Refs 91-92.  

 

4.4.5 Numerical Results 

 Let us define several test cases for which we can evaluate the modeling error index 

for each approximate method. Let the mean orbital elements of the Chief take on the 

following values: 

  a = 8000 (km),   i = 50 (deg), 

 Ω = 0 (deg),  ω = 0  (deg),   M0 = 0  (deg) 

  e = 1e − 4,5e − 4,0.001,0.005,0.01,0.05,0.1  

We use these elements and Eqs. (4.60-65) to establish the PCO for a circular Chief orbit. 

When the Chief orbit is not circular they establish a relative motion orbit that is close to 
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a PCO. Because the period matching condition is used there is very little in-track drift. 

The radius ρ  of the PCO is chosen as 0.16, 0.80, 1.6, 4, 8, 12, 16, 40, 80, 120 and 160 

km. See Fig. 4.8 for the PCO when   e = 0.001and  ρ = 12  km. The objective is to 

evaluate the index of the approximate methods by varying the eccentricity of the Chief 

orbit and the PCO radius. For each case (specific value of  e  and ρ ) 100 equally spaced 

values of the phase angle  α0  between 0 and 360 degree are used. A test was made to 

calculate the Gim-Alfriend index when the samples are 20, 50, 100, 200 and 500, and 

100 samples are enough to get convergence. In Eq. (4.123), [ ]x x y y z z= � � �x      , and select 

W in terms of the Earth-value units so that y has canonical units. We used for W 

0 3
0 0 0

1 1 1 1 1 1
, , , , ,  , 

e e e e e e e

diag n
R R R R n R n R n R

µ
 �
= =� �

� �
W  (4.130) 

Using Eqs. (4.124-125) the index  ν i  is obtained for each of the initial phase angles. 

Notice  yi  in Eq. (4.125) is obtained by numerically integrating the equations of motion 

of both the Chief and Deputy in the ECI reference frame with a   J2  gravity field, and 

then transforming the position and velocity vectors from the ECI frame to the Chief 

frame.               
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Fig. 4.8  Projected Circular Orbit 

 

    Fig. 4.8 illustrates a PCO with the radius of 12 km, as defined in the along-

track/cross-track plane. Figs. 4.9-4.16 show the index comparisons as a function of the 

eccentricity of the Chief orbit and the PCO radius.   
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Fig. 4.9 Index Comparison for e = 0.0001 

 

Fig. 4.10 Index Comparison for e = 0.001 
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Fig. 4.11 Index Comparison for e = 0.01 

 

Fig. 4.12 Index Comparison for e = 0.1 



 159 

 

Fig. 4.13 Index Comparison for ρ = 0.16  km 

 

Fig. 4.14 Index Comparison for ρ = 12  km 
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Fig. 4.15 Index Comparison for ρ = 40  km 

 

Fig. 4.16 Index Comparison for ρ = 160  km 

 



 161 

      Figs. 4.9-4.16 show the modeling error index at the end of one day for the six 

theories; Hill’s equation, small eccentricity, non-J2, Gim-Alfriend, unit sphere approach 

and Yan-Alfriend nonlinear method. Figs. 4.9-4.12 show the effect of the index as a 

function of the size of the orbit for various eccentricities. Figs. 4.13-4.16 show the effect 

of the index as a function of eccentricity for various size orbits. The index provides a 

method for comparing the accuracy of various theories. As shown earlier in the one-

dimensional case the index is representative of twice the percentage error. In the n-

dimensional case the acceptable value for an index can only be determined by what size 

errors are acceptable for the mission. Also, keep in mind that the index represents the 

maximum error over all the initial conditions for the PCO. There are initial conditions 

for which the modeling errors are minimal. For example, because the differential J2 

effects are caused primarily by the inclination difference the effect of not modeling J2 is 

very small if the out of plane motion is created by only a right ascension difference. For 

a specific set of initial conditions the user would have to compute the index for just those 

initial conditions. 

      In Figures 4.9-4.12 the index for Hill’s equation and the non-J2 theory are almost 

constant. The non-J2 index is also constant with PCO size as shown in Figs. 4.13-4.16.  

Since the non-J2 theory has no eccentricity approximation its index shows the effect of 

not modeling J2 for small relative motion orbits. Since it is constant this means the J2 

effects are much larger than the nonlinear effects even for orbits as large as 160 km. The 

difference between the non-J2 theory and the Gim-Alfriend index represents the effect of 
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not modeling J2; it is significant. Even for 001.0=e , there is a factor of four difference 

between the two indices. 

 The difference between the Hill index and the non-J2 index represents the effect of 

not modeling the eccentricity. Even for 001.0=e , it is substantial. Fig. 4.13 shows how 

it grows with increasing eccentricity.  

 In Fig. 4.13 the Small e index and non-J2 index are equal at about e=0.08.  This is the 

point where neglecting 2nd order eccentricity effects is about equal to neglecting the J2 

effects. 

 For both the Vadali unit sphere and Yan-Alfriend methods, the index is essentially 

constant for all cases and approximately equal to 10-3.  This means they provide an 

accurate representation of the motion for all eccentricities and relative motion orbits as 

large as 160 km. As expected the index for the Gim-Alfriend theory is constant with 

eccentricity since it has no eccentricity approximation.  Its sensitivity to the orbit size is 

evident, but even for PCOs as large as 40 km it is still less than 0.01. 

 In comparing the Small e and the Gim-Alfriend indices one can see the difference 

even for e=0.001, even though the index is small.  Fig. 4.12 shows that the difference is 

two orders of magnitude at e=0.01 meaning the Small e theory may not provide 

sufficient accuracy for e=0.01 

 

4.4.6 Remarks 

 The modeling error index presented in this paper is an effective tool for evaluating 

the accuracy of approximate methods of relative motions and should aid designers in 
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determining what effects need to be included in the reference orbit model. The sequence 

of the index from high to low is Hill’s equation, non-  J2 , small eccentricity, Gim-

Alfriend index. The unit sphere method and the Yan-Alfriend nonlinear method indices 

are the lowest, and essentially equal. The numerical results show that a) In general, 

neglecting J2 effects is significant even though there are initial conditions for which the 

effect will be minimal, b) Neglecting eccentricity effects, even for e<0.001 can be 

significant, c) The Small e theory, which includes the first order eccentricity effects for 

the non-J2 terms and 0th order eccentricity for the J2 terms, provides reasonable results 

for   e < 0.01, and d) The unit sphere approach and Yan-Alfriend nonlinear theory are 

accurate for all eccentricities and relative motion orbits as large as 160 km in low Earth 

orbit. These results should be valid for any relative motion orbit with out-of-plane 

motion, such as the circular relative motion orbit. Since the differential J2 effects are 

primarily caused by a differential inclination different results would occur for in-plane 

relative motion orbits. 

 

4.5 Numerical Searches and Real-Time Optimal Control of J2 Invariant Orbits 
 

4.5.1 Introduction 
    
    The   J2  invariant type orbits are relative orbits defined in mean elements that 

minimize the amount of fuel to maintain89. These invariant orbits identify initial 

conditions that minimize the drift from the desired relative motion orbit, and 

consequently, reduce the amount of fuel required to maintain the orbit. Using the local 
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vertical local horizontal LVLH frame there is potentially drift in the in-track, radial and 

cross-track, or out-of-plane directions. We define drift as secular motion from the 

desired orbit. This secular motion is actually periodic with a long period, but will appear 

as secular over a few orbits or days, and this periodic motion will have an amplitude that 

is much larger than any tolerance on the desired motion. For example, the radial drift is 

obviously bounded by the maximum distance between the apogees and perigees of the 

two orbits and its period will be T = 2π / n1 − n2 . We work in mean elements because 

in mean elements the Hamiltonian is a function of only the momenta, hence the 

momenta are constant and the coordinates (angles) are linear with time. This means the 

differential angular rates or differential momenta define the drift, the initial values of the 

angles have no effect on the drift.  

     Numerical optimization methods, such as the pseudospectral methods11, should 

provide a more accurate value of the initial conditions to minimize drift, but the 

disadvantage is they do not provide the functional relationships, only a numerical result. 

For example, a small differential semi-major axis will negate the in-track drift caused by 

an inclination difference.  If the numerical optimization was performed in the relative 

Cartesian coordinates then the fact that the initial Cartesian conditions were equivalent 

to a semi-major axis error would likely not be evident for two reasons: a) in osculating 

elements the relationship between differential orbital elements and the differential mean 

semi-major axis is very complex, and b) one would have to make many runs with the 

correct parameter variations to even potentially find the numerical relationships. 

Consequently, a secondary objective is to show that the advantage of the numerical 



 165 

optimization methods is significantly enhanced when combined with the knowledge of 

the physics of the problem.  

    Since the   J2  invariant orbit is unable to exactly cancel relative secular drifts, some 

active control is needed to maintain the invariant orbit. The formation flying 

maintenance methods can be classified as nonlinear and linear. An excellent survey can 

be found in Ref. 109. The nonlinear maintenance methods include the Lyapunov 

method110,111, feedback linearization112,113, and state-dependent Riccati equation114. 

Linear quadratic regulators (LQR) have been widely proposed for satellite formation 

keeping111,115-116. The controller is designed to minimize the fuel consumption and reject 

state errors. In this section we propose an analytical optimal control based on the state 

transition matrix. We use pseudospectral methods or the Legendre-Gauss-Lobatto (LGL) 

integration rule to approximate integrals in the state equation and performance index, 

which transforms the optimal control problem into a parameter optimization which has 

an analytical solution.   

 

4.5.2 Numerical Searches for Passive 2J  Invariant Orbits  

      Notice the solutions of Eqs. (4.8-9) and Eq. (4.10) are from the periodic matching 

conditions and do not provide solutions of the other differential orbit elements. The other 

elements define the relative motion orbit. In this section, we numerically search all the 

initial conditions that result in 2J  invariant orbits without using the matching conditions.        

      For this analysis we will assume that the desired relative motion orbit (RMO) is the 

projected circular orbit given by 
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( )2 2 2y z ρ+ =  (4.131) 

Due to the gravitational perturbations and the orbit eccentricity the RMO will not be a 

circle so our constraint should be 

( ) ( ) ( )1/ 22 2
1 21 1y zρ ε ρ ε− < + < +  (4.132)  

where 1ρε  and 2ρε are the lower and upper limits, respectively.  We want to find the 

initial conditions that minimize the fuel consumption (L1 norm) required to maintain this 

RMO. 

      Our searches try to find the minimum 21 εε +  that satisfy Eq. (4.132) in a given 

number of orbits. The goal is to determine the accuracy of the invariant orbits in the 

given number of orbits. We want to compare the initial conditions from the numerical 

searches to the periodic matching conditions.  

      We selected the projected circular relative motion orbit (PCO) for reconfiguration. 

Use Eqs. (4.60-65) to set up a PCO. But we use Eq. (4.132) instead of Eq. (4.65) as the 

numerical periodic search constraints and set up the following search model: 

    Find aδ to minimize  

 21min εε +=J                                                                                              (4.133)                                                                                                                 

and satisfy  

( ) ( ) ( )1/ 22 2
1 21 1y zρ ε ρ ε− < + < +  (4.134) 

where y, z( ) are obtained by the unit sphere STM.   
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    We transfer the orbital elements of the Chief and Deputy into ECI coordinates, and 

integrate them in the ECI frame using the following nonlinear model to verify the linear 

solutions:  

 

XX V=�  (4.135) 

YY V=�  (4.136) 

ZZ V=�  (4.137) 
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2 2

23 21 1.5 5 3e
z

RZ Z
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µ � 	
 �
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� �
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where µ  is the gravitational constant, X, Y and Z are the coordinates in the ECI frame, 

and 222 ZYXr ++=  For the passive 2J  invariant orbits, we assume control 

accelerations 0=== zYX uuu . Eqs (4.141-146) are used to transfer ECI coordinates to 

LVLH coordinates90: 
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T
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H H
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where H r v= ×  is the angular momentum.   

 

4.5.3 Analytical Optimal Control Law Based on STM 

     In the LVLH frame, the linear model of the relative motion can be set up as 

( ) ( )UtGXtFX +=�  (4.147) 

where  

( )T
zyx uuuU =  (4.148) 
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Using the STM the solutions are 
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( ) ( ) ( ) ( )dttUttXtttX
ft

t fUff � Φ+Φ=
0

,, 00  (4.150) 

where  

( ) ( ) ( )tGtttt ffU ,, Φ=Φ  (4.151) 

Consider the following optimal control problem. Determine the control function to 

minimize  

�= ft

t

TUdtUJ
02

1
 (4.152) 

subject to the final constraints  

( ) ff XtX =  (4.153) 

The integral terms can be calculated by the Legendre-Gauss-Lobatto (LGL) integration 

rule11. Assume the number of the LGL points is N+1. Eq. (4.150) and Eq. (4.152) 

become 

( ) ( ) ( ) kk

N

k
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f
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XtttX �

=

Φ
−

+Φ=
0

0
00 ,

2
,  (4.154) 
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where kw  are the weights given by 

( ) ( )[ ] Nk
tLNN

w
kN

k ,...1,0      
1

1
2

2 =
+

=  (4.156) 

( )tLN  is the Legendre polynomial of degree N on the interval [-1,1]. Notice the 

continuous controls are equivalent to N+1 impulses applied at the LGL time points in 

Eq. (4.154). Substituting Eq. (4.154) into Eq. (4.153) gives 
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Now the optimal control is changed into a parameter optimization problem. Find the 

NkU k ,...1,0   =  that minimize the performance index in Eq. (4.155) and satisfy the 

equality constraints, Eq. (4.157). Adjoin the constraints Eq. (4.157) to Eq. (4.155) by 

Lagrange multipliers ξ   
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Taking the partial derivatives of Eq. (4.158) with respect to NkU k ,...1,0   = , and setting 

equal to zero gives for optimality   

( )ξkf
T
UK ttU ,Φ−=  (4.159) 

Substituting Eq. (4.159) into Eq. (4.157), we obtain 
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Substituting into Eq. (4.159) gives 
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Nk ,...1,0=  

or 

( ) ( )[ ]ffK XXttNKU −Φ−= 00,  (4.162) 

where the gain is 
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  The values of the control law between the LGL points can be obtained by interpolation. 

It should be stressed that the gain expression in Eq. (4.163) only depends on the number 

of the LGL points N+1.  As the current states are available, the control law in Eq. 

(4.162) can be solved analytically. The procedure to derive the control law is similar to 

the one in the Ref. 34, but here we use the state transition matrix method while the 

Taylor series expansion was used in Ref. 34. The Gauss quadrature formula is with the 

maximum degree of precision, compared with the standard trapezoidal formula in Ref. 

34. Here we focus on targeting problems while Ref. 34 addressed tracking problems.   

 

4.5.4 Optimal Impulsive Control 

   Assuming the number of impulsive controls is n, we have 

( ) ( ) ( ) i

n

i
ifUff VttXtttX ∆Φ+Φ= �

=1
00 ,,  (4.164) 

We want to minimize 
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subject to 

( ) ff XtX =  (4.166) 

The optimal solutions can be solved by the previous approach, giving 
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where Ri  are the weights.  

     If the maneuver times are fixed there are six unknowns. Consequently, there is at 

most one solution for two impulsive controls. Depending on the maneuver times there 

may be no solution. Consequently, the number of impulsive controls should be greater 

than two for an optimal solution. For two impulsive controls, we are able to directly get 

solutions from Eq. (4.164) 

( ) ( )[ ] ( )( )fUU XXtttttt
V

V
−ΦΦΦ−=��

�

�
��
�




∆
∆ −

002
1

2212
2

1 ,,,  (4.168) 

where t1 and t2 are the times of applying the first and second impulsive controls, 

respectively. 

   

4.5.5 Numerical Results 

 

4.5.5.1 Numerical Searches for J2 Invariant Orbit 

      The orbital elements of the Chief are 

7100=a  (km)  005.0=e   70=i  (deg)  0=Ω=ω  .0=M  

The relative orbit is characterized by two quantities: its radius ρ  and initial phase angle 

0α . We choose ( )1, 2,5,10, 20 kmρ =  and take every 30 degree separation in the 0~360 

degree range for the initial phase angle. For each combination of the radius and initial 

phase angle, we compute an optimal 2J  invariant orbit.  The number of the relative 

orbits is set as 10. Fig. 4.17 illustrates the relationship among the radius, initial phase 

angle and minimum 1 2ε ε ε= + .    Fig. 4.17 indicates the accuracy is the best when the 
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initial phase angles are 90 or 270 degrees and the accuracy is about 2.5%. The peak is at 

α=0. This is expected because at α=0 the out-of-plane motion is created by an 

inclination change, which causes both in-track and out-of-plane drift, in contrast to 

α=90, 270 which results in a right ascension difference that causes no drift. 

    Fig.4.18 shows comparisons between aδ from the numerical searches and aδ from 

the periodic matching conditions. From this figure, one can see numerical searches 

identify the 2J  invariant orbit.   

  

 

Fig. 4.17 Radius, Initial Phase Angle and Optimal Accuracy  
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Fig. 4.18 Comparisons 

 

      To verify the linear solutions we transfer the orbital elements of Chief and Deputy 

into ECI coordinates, and integrate them in the ECI frame using the nonlinear model 

with   J2  perturbations. Select ρ =5 km and 0α =0 degree. The results are shown in Fig. 

4.19. 
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Fig.4.19 Numerical Searches for J2 Invariant Orbit Keeping 

 

4.5.5.2 J2 Invariant Orbit Keeping 

    Fig. 4.19 shows that there is still some drift after the numerical searches. Here we 

apply optimal control to reset the periodic matching conditions. To do so we force    

0XX f =  (4.169) 

We use the unit sphere STM to propagate the states, 

 ( ) ( ) ( ) ( ) ( ) ( ) 1
00

1
00 ,, −− ��=Φ ttDtttDttt eφ  (4.170) 

Set ρ =5 km and 0α =0 degrees then Ωδδδδδλδ ,,,,, 21 qqia  are obtained from Eqs. 

(4.60-65). The initial conditions, which satisfy the periodic matching conditions, are 

solved by  
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 ( ) ( ) ( )ttt eX δ�=  (4.171) 

 Choose the LGL points to be 64. The simulation time is 10 orbits. The results are 

illustrated in Figs. (4.20-4.21). Comparing Fig. 4.20 with Fig. 4.19, the drift in Fig. 4.19 

is perfectly rejected.  Fig. 4.21 shows the optimal control time histories. The computing 

time is about 1 second using MATLAB software on a 2.8 GHz PENTIUM 4 computer. 

The cost is about 1.83e-7 m2/s3 according to Eq. (4.152). The control is primarily 

correcting for two effects; the out-of-plane drift caused by the inclination difference and 

the rotation of perigee. The rotation of perigee causes there to be a difference in the in-

plane and out-of-plane frequencies causing the relative motion orbit to slowly transition 

from a PCO to a straight line in the yz plane and back to a PCO. This is not the 

differential perigee rotation, but the absolute rotation of the Chief perigee. 

 

Fig. 4.20 J2 Invariant Orbit Keeping  
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Fig. 4.21 Continuous Control for Keeping  

 

4.5.5.3 J2 Invariant Orbit Reconfiguration 

 

4.5.5.3.1 Continuous Control 

     Since the relative orbit is characterized by two quantities ρ  and 0α , here we calculate 

the optimal reconfiguration from �900 =α  and 20 =ρ  km to �90=fα  and 20=fρ  

km. Figs. 4.22-4.23 illustrate the reconfiguration and continuous control time histories. 

The transfer time is given as 5 orbits. In Fig. 4.22 the dot lines represent transfer 

trajectories while the solid lines stand for the initial and final orbits. The reconfiguration 

is completed through a spiral transfer trajectory. The cost is about 0.0127m2/s3.  
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Fig. 4.22 Reconfiguration Using Continuous Control 

 

Fig. 4.23 Optimal Control Time Histories for Reconfiguration 
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4.5.5.3.2 Two Impulsive Controls      

     Use parameter optimization methods to choose t1 and t2 to minimize the cost 

2211 VVVVJ TT
V ∆∆+∆∆=  (4.172) 

where 1V∆  and 2V∆  are obtained from Eq. (4.168). We calculate the same 

reconfiguration as that in the continuous control case. The optimal impulsive controls are 

 ( )TV 03.1990.066.71 −−=∆  m/s (4.173) 

( )TV 56.086.059.12 −−=∆  m/s (4.174) 

The maneuver times are 1454.86 seconds or 0.24 orbits and 5901.58 seconds 0.99 orbits. 

The cost is 22.43 m/s. The reconfiguration is shown in Fig. 4.24 where the dot lines 

stand for the transfer orbit. 

 

Fig. 4.24  Reconfiguration Using Two Impulsive Controls 
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4.5.5.4 Numerical Searches for Initial Conditions  

    The initial conditions X0 in Eq. (4.169) are determined by Ωδδδδδλδ ,,,,, 21 qqia  

where aδ  is calculated from the periodic matching conditions Eq. (4.65). Now we set 

aδ  as a variable and want to search this variable with the optimal model that consists of 

Eq. (4.154), Eq. (4.155) and Eq. (4.169). Since the optimal control has an analytical 

solution, the search is just a one dimensional optimization problem. We choose km5=ρ  

and take every 30 degree separation in the 0~360 degree range for the initial phase angle. 

For each combination of the radius and initial phase angle, we perform a one 

dimensional optimization to determine the optimal aδ . All the initial guesses of aδ are 

zero. The solutions are shown in Fig. 4.25 where the solid lines represent the search 

solutions while the dot lines stand for the analytical periodic conditions. The agreement 

shown in Fig. 4.25 is not as good as that in Fig. 4.18, since the constraint Eq. (4.132) is 

much better than the hard constraint Eq. (4.169) to capture the characteristics of the 

periodic matching condition Eq. (4.132). Fig. 4.25 indicates the “soft” periodic matching 

conditions Eq. (4.132) are close to the “hard” periodic matching constraints Eq. (4.169). 
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Fig. 4.25 Searches for Periodic Matching Conditions 

 

4.5.5 Remarks 

      In this section we investigate numerical searches and optimal control of J2 invariant 

orbits. For passive J2 invariant orbits we use linear and nonlinear searches to find the 

optimal differential elements that minimize the secular drifts. This result agrees with the 

solution from the periodic matching conditions. We propose an analytical optimal 

control law based on the state transition matrix for maintenance and reconfiguration of J2 

invariant orbits. Numerical solutions show the control law works well. Based on the 

control law the initial conditions were searched for hybrid optimality, and the results 

show the fuel optimal control corresponds to J2 invariant orbits.   
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CHAPTER V 

CONCLUSIONS 

 

      The solutions of the dynamics and real-time optimal control of magnetic attitude 

control and formation flying system are studied in this dissertation. The dissertation 

investigates pseudospectral methods for the real-time numerical solution of optimal 

control problems. Analytical control laws for linear time-varying systems are derived for 

tracking and targeting problems.  

      The time optimal attitude rest-to-rest attitude maneuver for a satellite in low Earth 

orbit with magnetic control is solved. The feasibility of the solutions is verified by 

numerical integration while the necessary conditions resulting from the Minimum 

Principle are checked for optimality.  The time-optimal magnetic control is bang-bang 

and the optimal maneuver is not an eigenaxis slew. The minimum slew time is about 

232.7 seconds, and it occurs when the maneuver is symmetric about the maximum field 

strength. For real-time computations, all the tested samples converge to optimal 

solutions or feasible solutions. We find the average computation time is about 0.45 

seconds with the warm start and 19 seconds with the bad initial guess, which means 

there is great potential for real-time computations. The optimal solutions from the warm 

start are better than those from the cold start with a bad initial guess. The results show 

that pseudospectral methods are an excellent method for solving optimal control 

problems in near real-time.  
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      Three-axis magnetic attitude stabilization is achieved by using a pseudospectral 

control law via the receding horizon control for satellites in eccentric low Earth orbits. 

The solutions from the pseudospectral control law are in excellent agreement with those 

obtained from the Riccati equation, but their computation speed is better by an order of 

magnitude. The control law indicates the solutions consist of natural and forced 

responses. The known disturbance is greatly rejected by using a feed forward control. 

Numerical solutions show natural responses quickly tend to the region where the attitude 

motion is in the steady state. When the eccentricity is 0.1 the residual librations errors 

are within 1 degree of nadir pointing. For the problem solved with an eccentricity of 0.1 

an interesting result occurs. Less fuel is required for stabilization when the satellite is in 

an unstable configuration, i.e., when the maximum inertia is along the yaw or roll axis, 

than when it is in the stable configuration with the maximum inertia along the pitch axis. 

This occurs because the gravity gradient disturbance torque, which is proportional to 

eccentricity, is more detrimental in the dynamic stable configuration that the unstable 

configuration  

      The dissertation studies formation flying dynamics and real-time optimal control 

problems. A procedure for designing relative motion orbits using orbital element 

differences has been presented. A 2nd order theory including the  J2
2  term for the relative 

motion of two satellites has been derived using orbital elements. This theory is valid for 

any eccentricity and contains 1st and 2nd order J2 effects. It has been shown that for 

consistency a nonlinear theory for relative motion must also consider eccentricity and 
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gravitational perturbations. Other higher order geopotential terms could easily be 

included. A relative motion theory using orbital elements is more accurate than one 

using the relative Cartesian or curvilinear coordinates. The period matching or bounded 

condition in the orbital elements has been proposed for the nonlinear problem and 

compared with the conditions in the Cartesian frame. The results show the orbital 

elements approach has a strong effect on suppressing the secular growth.  

      The dissertation develops an alternative state transition matrix (STM) to describe 

relative motion using the unit sphere approach with the same accuracy as the Gim-

Alfriend STM. The major errors from the first order STM can be rejected by the second 

order correction for relative motion.  

      The modeling error index presented in this dissertation is an effective tool for 

evaluating the accuracy of approximate methods of relative motions. The sequence of 

the index from high to low is Hill’s equation, non- J2 , small eccentricity, Gim-Alfriend 

index. The unit sphere method and the Yan-Alfriend nonlinear method indices are the 

lowest, and essentially equal. The numerical results show that a) In general, neglecting 

J2 effects is significant even though there are initial conditions for which the effect will 

be minimal, b) Neglecting eccentricity effects, even for e<0.001 can be significant, c) 

The Small e theory, which includes the first order eccentricity effects for the non-J2 

terms and 0th order eccentricity for the J2 terms, provides reasonable results for 

e < 0.01, and d) The unit sphere approach and Yan-Alfriend nonlinear theory are 

accurate for all eccentricities and relative motion orbits as large as 160 km in low Earth 

orbit. The results presented in this paper should be valid for any relative motion orbit 
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with out-of-plane motion, such as the circular relative motion orbit. Since the differential 

J2 effects are primarily caused by a differential inclination different results would occur 

for in-plane relative motion orbits. 

       Numerical searches and optimal control of J2 invariant orbits are studied in the 

dissertation. For passive J2 invariant orbits linear and nonlinear searches are used to find 

the optimal differential elements that minimize the secular drifts. This result agrees with 

the solution from the periodic matching conditions. The dissertation proposes an 

analytical optimal control law based on the state transition matrix for maintenance and 

reconfiguration of J2 invariant orbits. Numerical solutions show the control law works 

well. Based on the control law the initial conditions were searched for hybrid optimality, 

and the results show the fuel optimal control corresponds to J2 invariant orbits.   
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APPENDIX B 

 SMALL ECCENTRICITY STATE TRANSITION MATRIX 

 

 In this Appendix the relative motion state transition matrix (STM) for small eccentric 

Chief orbits is derived. This STM will include O e( ) terms for the non-J2 portion and 

only ( )0O e  for the J2 portion. The STM is obtained from8 by setting q1 = q2 = 0   in all 

the terms multiplied by J2 and retaining only the first order terms in q1  and q2  in the 

non-J2 terms. The notation of Ref. 86 will be used. Assume Σ = A t( )+ α B t( ), R is 

radius of the Chief orbit, p is a semi-parameter, Vr  and Vt  are the radial and transversal 

velocity of the Chief, respectively.    

Σ and Σ−1  

 

Σ  Matrix (refer to APPENDIX A of Ref. 86) 

The matrices as they are. O e( ) approximations for R, Vr, Vt and p could be made but this 

does not shorten the calculations so they are not changed. 

 

Mean to Osculating (refer to APPENDIX E of Ref.86) 

 Since no eccentricity terms are retained the mean to osculating transformation for 

zero eccentricity is;  
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 �
= −� �
� �


 �Ω = −� �
� �

 (4) 

 

D Matrix (refer to APPENDIX E of Ref. 86)  



 203 

 Only the non-zero terms are presented. Assume Θ =
1

1− 5cos2 i
. 

 

 ( ) ( ) ( )1 2
2

lp sp sposc

m

e
D I J D D D

e
∂
∂

� 	= = − + +� �  (5) 

 

 ( ) ( ) ( ) ( )
2 2

2 2
24 252 2

sin sin
1 10 cos sin , 1 10 cos cos

8 8
lp lpi i

D i D i
a a

θ θ= − − Θ = − − Θ  (6a) 

 ( ) ( ) ( )
2

12 2
44 2

sin
1 10 cos , 1 5cos

16
lp i

D i i
a

−
= − − Θ Θ = −  (6b) 

 ( ) ( )
2

2
55 2

sin
1 10 cos

16
lp i

D i
a

= − Θ  (6c) 

 ( ) ( ) ( ) ( )2 2
1 1

14 15

3 1 3cos 3 1 3cos
cos , sin

2 2
e esp spR i R i

D D
a a

θ θ
− −

= =  (7a) 

 ( ) ( ) ( ) ( )1 12 2
24 252 2

9 9
1 5cos sin , 1 5cos cos

4 4
sp spD i D i

a a
θ θ= − = − −  (7b) 

 ( ) ( ) ( ) ( ) ( )
2 2

1 1 1
41 42 433 2 2

3 1 3cos 3 1 3cos 9sin 2
cos , sin , cos

2 4 4
sp sp sp

e

i i i
D D D

R a a a
θ θ θ

− −
= − − =  (7c) 

 ( ) ( ) ( ) ( ) ( )2 2
1 1

44 452 2

3 1 3cos 3 1 3cos
2 cos 2 , sin 2

8 8
sp spi i

D D
a a

θ θ
− −

= + =  (7d) 

 ( ) ( ) ( ) ( ) ( )
2 2

1 1 1
51 52 533 2 2

3 1 3cos 3 1 3cos 9sin 2
sin , cos , cos

2 4 4
sp sp sp

e

i i i
D D D

R a a a
θ θ θ

− −
= − = =  (7e) 

 ( ) ( ) ( ) ( ) ( )
2 2

1 1
54 552 2

3 1 3cos 3 1 3cos
sin 2 , 2 cos 2

8 8
sp spi i

D D
a a

θ θ
− −

= = −  (7f) 
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 ( ) ( )1 1
64 652 2

9cos 9cos
sin , cos

2 2
sp spi i

D D
a a

θ θ= = −  (7g) 

 

 ( ) ( ) ( )
22

2 2 2
11 12 132

3 sin 3 sin 23sin
cos 2 , sin 2 , cos 2

2 2
sp sp spe eR i R ii

D D D
a a a

θ θ θ

 �
 � 
 �= = = −� �� � � �

� �� � � �
 (8a) 

 ( ) ( ) ( ) ( )
2 2

2 2
14 15

9 sin 9 sin
cos cos3 , sin sin 3

4 4
sp spe eR i R i

D D
a a

θ θ θ θ

 � 
 �

= − + = −� � � �
� � � �

 (8b) 

 ( ) ( ) ( )
2 2

2 2 2
21 22 233 2 2

6 7sin 6 7sin 7sin 2
sin 2 , cos 2 , sin 2

4 4 8
sp sp sp

e

i i i
D D D

R a a a
θ θ θ


 � 
 �− − 
 �= − = = −� � � � � �
� �� �� �

(8c) 

 

( ) ( )
2 2 2 2

2 2
24 252 2 2 2

24 47sin cos 24 47sin cos
sin sin 3 , cos cos3

32 4 32 4
sp spi i i i

D D
a a a a

θ θ θ θ
 � 
 �− −= + = −� � � �
� � � �

(8d) 

 ( ) ( ) ( )2 2 2
31 32 333 2 2

3sin 2 3sin 2 3cos 2
cos 2 , sin 2 , cos 2

4 4 4
sp sp sp

e

i i i
D D D

R a a a
θ θ θ


 � 
 � 
 �= = = −� � � � � �
� � � �� �

  (8e) 

 ( ) ( ) ( ) ( )2 2
34 352 2

sin 2 sin 2
3cos cos3 , 3sin sin 3

8 8
sp spi i

D D
a a

θ θ θ θ
 � 
 �= − + = −� � � �
� � � �

 (8f) 

 ( ) ( ) ( ) ( )
2 2

2 2
41 423 2

sin 3sin
3cos 7cos3 , sin 7sin 3

4 8
sp sp

e

i i
D D

R a a
θ θ θ θ


 � 
 �
= + = +� � � �

� �� �
 (8g) 

 ( ) ( )2
43 2

sin 2
3cos 7cos3

8
sp i

D
a

θ θ
 �= − +� �
� �

 (8h) 

     

( ) ( )

( ) ( )

2
2

44 2

2 2
2

45 2 2

3sin
3 10cos 2 3cos 4

16

3 3 5cos 9sin
sin 2 sin 4

8 16

sp

sp

i
D

a

i i
D

a a

θ θ

θ θ


 �
= − + +� �

� �

− 
 �
= − � �

� �

                                                         (8i) 
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 ( ) ( ) ( ) ( )
2 2

2 2
51 523 2

sin 3sin
3sin 7sin 3 , cos 7 cos3

4 8
sp sp

e

i i
D D

R a a
θ θ θ θ


 � 
 �
= − − = −� � � �

� �� �
 (8j) 

 ( ) ( )2
53 2

sin 2
3sin 7sin 3

8
sp i

D
a

θ θ
 �= −� �
� �

 (8k) 

 

( ) ( ) ( ) ( )
2 2 2

2 2
54 552 2 2

3 3 5cos 9sin 3sin
sin 2 sin 4 , 3 10cos 2 3cos 4

8 16 16
sp spi i i

D D
a a a

θ θ θ θ
− 
 � 
 �

= − − = − +� � � �
� � � �

 (8l) 

 ( ) ( ) ( )2 2 2
61 62 633 2 2

3cos 3cos 3sin
sin 2 , cos 2 , sin 2

2 2 4
sp sp sp

e

i i i
D D D

R a a a
θ θ θ


 � 
 � 
 �= = − =� � � � � �
� � � �� �

 (8m) 

 ( ) ( ) ( ) ( )2 2
64 652 2

cos cos
3sin sin 3 , 3cos cos3

4 4
sp spi i

D D
a a

θ θ θ θ
 � 
 �= − + = − −� � � �
� � � �

 (8n) 

 

φe  Matrix (refer to APPENDIX D of Ref. 86) 

 Again, only the non-zero terms are supplied. 

 

 

( )

( )

( )

0

1 10 1

1 10 1

2
2

0

0

0

3

,

1 sin ,

1 cos ,

e

t

q q q

q q q

J R

nR
G G G t t

V

R R
G G G t t

a a

R R
G G G t t

a a

θ θ θ

α

θ

θ

=

= = − =


 �
 �= − + = − =� �� �
� �� �


 �
 �= + = − =� �� �
� �� �

 (9) 

 

 11 1eφ =  (10) 
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( ) ( ) 00 0 2

21 0 222
0 0

3 7
1 4cos 1 ,

2 6e e

Gn t t
i

a G a G
θ

θ θ

αφ φ
� 	− 
 �

= − + − = −
 �� �
� �� �

 (11a) 

 
( )0 0 0

23 2
0

2 sin 2
e

n t t i

a Gθ

α
φ

−
= −  (11b) 

 ( ) ( ) ( ) ( )
10 1 224 0

1
cos sin , s

e q q qG G G t t
Gθ

φ ω ω ω ω� 	= − + ∆ + ∆ ∆ = −� � �  (11c) 

 ( ) ( )
20 1 225

1
sin cose q q qG G G

Gθ

φ ω ω� 	= − − ∆ + ∆� �  (11d) 

 33 1eφ =  (12) 

 ( ) ( )44 45cos , sine eφ ω φ ω= ∆ = − ∆  (13a) 

 ( ) ( )54 55sin , cose eφ ω φ ω= ∆ = ∆  (13b) 

 ( ) ( )( )0 0
61 0 63 0 0 0 662 2

0 0 0

cos7
, sin , 1

4 2e e e

n i
t t n i t t

a a a
α αφ φ φ


 �
 � 
 �
= − = − =� �� � � �
� �� � � �

 (13c) 
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