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ABSTRACT

Applications of Slattery - Lagoudas’ Theory for the Stress Deformation Behavior.

(August 2005)

Yongzhe Tian, B.En., Dalian University of Technology

Chair of Advisory Committee: Dr. John C. Slattery

The thermodynamics of three-dimensional, single-component elastic crystalline

solids was developed by Slattery and Lagoudas (2005). Considering the infinitesimal

deformations, the stress can be expressed as a function of the lattice vectors and

density in the reference configuration and µ(I,mn), which is defined as the derivative of

specific Helmoholtz free energy with respect to the I(mn). Using the Cauchy - Born rule

to connect the interatomic potential energy and the specific Helmholtz free energy, it is

possible to calculate the elastic properties of both nano-scale materials such as carbon

nanotubes and macro-scale materials such as diamond and silicon. In this study, we

used Tersoff (1988a) - Brenner (1990b) Potential, Tersoff (1988b) potential and Finnis

and Sinclair (1984) potential for carbon, silicon, and vanadium systems respectively.

Using the interatomic potentials to describe the specific Helmholtz free energy, the

elastic properties of graphite, diamond, silicon and vanadium were calculated. This

method was also extended to the calculation of Young’s modulus of single-walled

carbon nanotubes (SWCNTs), which are composed of a two dimensional array of

carbon atoms. For SWCNT, we get good agreement with the available experimental

data. For diamond and silicon, C11 and C12 were consistent with both the superelastic

model and the experimental data. The difference of C44 between the calculation and

experimental data was due to accuracy of the potential functions.
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CHAPTER I

INTRODUCTION AND RESEARCH BACKGROUND

A. Stress at equilibrium state

Slattery and Lagoudas (2005) developed a new stress deformation behavior at equi-

librium state. The natural configuration was chosen consistent with the following:

• The reference configuration is a stress free configuration.

• The reference configuration of each phase has the same mass as the current

configuration of the phase.

• The boundary or a portion of boundary of the reference configuration moves as

the phase transition progresses.

For each solid phase j, they assumed

Â(j) = Â(j)(T, ρ, ω1, ..., ωN−1,E
(0)
(1),E

(0)
(2),E

(0)
(3), ..., e

(j)
(1), e

(j)
(2), e

(j)
(3)...) (1.1)

Where Â is the Helmholtz free energy per unit mass, E(i) and e(i) are the lattice vector

in the reference and current configuration respectively. A general form according to

Truesdell and Noll (1965, p.29) is that the Helmholtz free energy is a function of all

possible scalar products of the lattice vectors. Scalar products between the lattice

vectors in reference and current configuration of different phases were eliminated since

these would lead to non-symmetric stress tensor at equilibrium.

Â(j) = Â(j)(T, ρ, ω1, ..., ωN−1, e
(j)
(1) · e

(j)
(1), e

(j)
(2) · e

(j)
(2), ..., e

(j)
(3) · e

(j)
(3)) (1.2)

This thesis follows the style and format of Mechanics of Materials.
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where Â is the Helmholtz free energy per unit mass, T the temperature, ρ the density,

and

e(i) = FE(i) (1.3)

the current lattice vector, which is based on the Cauchy - Born rule(see more details

in the next section).

It is more convenient to express the Helmholtz free energy as a function of six

invariants:

I
(j)
(mn) ≡ e

(j)
(m) · e

(j)
(n) − E

(j)
(m) · E

(j)
(n) (1.4)

Note that ρ and I(11), I(22) and I(33) are not independent.

In Slattery and Lagoudas (2005), they assumed that the Helmholtz free energy is

a function of temperature (T), density (ρ) and five other invariants. The Helmholtz

free energy can be expressed as

Â(j) = Â(j)(T, ρ, ω(1), ..., ω(N−1), I
(j)
(11), I

(j)
(22), I

(j)
(12), I

(j)
(13), I

(j)
(23)) (1.5)

Ǎ(j) = Ǎ(j)(T, V̂ , ρ(1), ..., ρ(N−1), I
(j)
(11), I

(j)
(22), I

(j)
(12), I

(j)
(13), I

(j)
(23)) (1.6)

According to the differential entropy inequality (Slattery, 1999, p.438), they con-

cluded

Ŝ = −
(

∂Â

∂T

)

ρ,ω(B)(B 6=1,...,N−1),I(mn)

(1.7)

Thermodynamic pressure (P ) is defined as

P ≡ −
(

∂Â

∂V̂

)

T,ωB(B 6=N),I(mn)

(1.8)
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µ(I,mn) is defined in the similar way as the chemical potential

µ(I,mn) ≡ −
(

∂Â

∂I(mn)

)

T,ρ,ω(B)(B 6=N),I(rs)(rs6=mn)

(1.9)

Based on the above definitions, they concluded that Euler’s equation is

Â = −P V̂ +
N
∑

B=1

µ(B)ω(B) (1.10)

where µB is the chemical potential of specie B.

The modified Gibbs equation is given by

dÂ = −PdV̂ − ŜdT +
N−1
∑

B=1

(µ(B) − µ(N))dω(B) +
3
∑

m=1

2
∑

n=1

µ(I,mn)dI(mn) (1.11)

as well as the modified Gibbs-Duhem equation

−V̂ dP + ŜdT +
N
∑

B=1

ω(B)dµ(B) −
3
∑

m=1

2
∑

n=1

µ(I,mn)dI(mn) = 0 (1.12)

Based on the above definitions and assumptions, they have (see Slattery and

Lagoudas, 2005, eq.50)

∫

R

{

ρ

(

1

T
+ λe

)

d(v)Û

dt
+ ......

+
1

T
tr

[(

− TλeT + PI− ρ

3
∑

m=1

2
∑

n=1

µ(I,mn)

(

e(m) ⊗ e(n) + e(n) ⊗ e(m)
)

)

(∇v)T
]

}

dV

+

∫

Σ

{

[[[

(. . .)(v − u) · ξ

]]]

−
K
∑

k=1

N
∑

A=1

(...)

(

∂ψ
(σ)
(k)

∂t
−∇(σ)ψ

(σ)
(k) · u

)

}

dA ≥ 0

(1.13)
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The transport theorem for a region containing a dividing surface was used in the

derivation of equation (1.13). The general form was given in Slattery (1999), as

shown in the following equation.

d

dt

∫

R(v)

ΨdV =

∫

R(v)

(

d(v)Ψ

dt
+Ψdivv

)

dV +

∫

Σ

[Ψ(v − u) · ξ]dA (1.14)

where Ψ denotes a scalar, vector, or tensor. Σ indicates the dividing surface, and ξ

is the normal of the dividing surface.

One condition that equation (1.13) must satisfy for equilibrium is

T = −P I + ρ
3
∑

m=1

2
∑

n=1

µ(I,mn)

(

e(m) ⊗ e(n) + e(n) ⊗ e(m)
)

(1.15)

where T is the stress deformation behavior of elastic solids at equilibrium. In the

appendix of Slattery and Lagoudas (2005), they introduced another form to use in

the case of infinitesimal deformations. As a special case, Â can be expressed as a

quadratic function of I(11), ..., I(33) (Truesdell and Noll, 1965).

Â = c(0) +
3
∑

i=1

2
∑

j=1

c(ij)I(ij) +
1

2

3
∑

i=1

2
∑

j=1

3
∑

m=1

2
∑

n=1

a(ijmn)I(ij)I(mn) + ... (1.16)

For this special case, the stress expression has the following form

T = −P I+2ρ0

3
∑

m=1

2
∑

n=1

3
∑

i=1

2
∑

j=1

a(ijmn)

(

E(i) · eE(j)

)

(E(m)⊗E(n)+E(n)⊗E(m)) (1.17)

where

e =
1

2
(∇u + (∇u)T ) (1.18)

is the infinitesimal strain tensor, and u is the displacement vector.
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B. The history of interatomic potentials

Many problems in materials science and chemistry, such as surface reconstruction

and mechanical properties, require a solution as a function of atomic position while

including the information of total energy of the system of atoms. The quantum me-

chanical approach is quite accurate in this field. However, this method is not feasible

for large systems due to intensive numerical calculations. Another approach is to

construct an empirical interatomic potential, which is a function of atomic positions.

There are two kinds of interatomic potentials. One is the pair potential, such as

the most commonly used Lennard-Jones potential (Hirschfelder et al., 1954, pg.22).

φ(A,B) = 4ε(A,B)

[

(

σ(A,B)

r

)12

−
(

σ(A,B)

r

)6
]

(1.19)

where φ(A,B) is the potential of atoms A and B separated by a distance r. The r−6

term describes attractive force, while the r−12 term represents repulsive force.

Lennard-Jones potential is limited to rare gases, where atoms are connected only

through van der Waals forces. The pair potential gives C12 = C44, which is called the

Cauchy relation.

The other kind is the many body potential for metals and semiconductors. Many

body potentials had great success in predicting a wide range of properties accurately

during the 80’s (Catlow and Mackrodt, 1982; Daw and Baskes, 1984). The key point

of this model is that the bonds become weaker with increasing coordination, which is

also the consequence of the Pauli principle. The energy is proportional to the square

root of the coordination, rather than to the coordination in the pair potential. Most

many body potentials for metals have the general form as
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V =
1

2

N
∑

i,j=1;j 6=i
φ(rij) +

N
∑

i=1

U(ni) (1.20)

where φ is the two body part, and Un is a function of generalized coordination. How-

ever, these kinds of potentials are not applicable to the metals with strong covalent

effects or semiconductors due to the lack of true angular forces.

For semiconductors, the most stable phase has the diamond structure, i.e., the

coordination number is 4. The Stillinger - Weber potential (Stillinger and Weber,

1985) is one of the most widely used potentials for semiconductors. It has the form

V =
1

2

∑

ij

φ(rij) +
∑

ijk

g(rij)g(rik)(cos θjik +
1

3
)2 (1.21)

where θjik is the angle between the i − j bond and the i − k bond, and g(rij) is a

cutoff function. The last part obviously favors the configuration with θjik = 1
3
, i.e.,

the angles close to those in diamond structure.

Abell (1985) derived a general form for potential energy, which is the sum of near

neighbor pair interaction while considering the local atomic bonding environment.

Tersoff (1988b) introduced an analytical expression based on Abell’s form for silicon.

The key point of this potential is that the strength of the bond is not only determined

by two atoms, but also by the local environment included by bond order term. Brenner

(1990b) gave two sets of parameters for carbon - carbon systems (Brenner, 1990a;

Yin and Cohen, 1983a,b), which was used in this study for the calculation of elastic

properties of graphite and diamond. The details of the Tersoff - Brenner potential

will be given in chapter II.

We recommend two review papers for readers who might be interested in inter-

atomic potentials. (Balamane et al. (1992) and Kane (1952))
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C. Tersoff - Brenner potential

Tersoff (1988a) and Brenner (1990b) determined the interatomic potential for carbon

as

Φ(rij) = ΦR(rij)−BijΦA(rij) (1.22)

for atoms i and j, where rij is the distance between atoms i and j, ΦR and ΦA are

the repulsive and attractive pair terms given by

ΦR(rij) =
De

S − 1
e−
√
2Sβ(r−Re)fc(rij)

ΦA(rij) =
DeS

S − 1
e−
√
2/Sβ(r−Re)fc(rij) (1.23)

The parameters De, S,β and Re are determined from the known physical properties.

The function fc(r) is merely a smooth cutoff function to limit the range of the potential

fc(rij) =























1, rij < R(1)

1/2(1 + cos[ π(r−R
(1))

R(2)−R(1) ]), R(1) < rij < R(2)

0, rij > R(2)

(1.24)

which restricts the potential to the first-neighbor shell.

The parameter Bij in (1.22) represents a multi-body coupling between the bond

from atom i to atom j and the local environment of atom i, and is given by

Bij =



1 +
∑

k(6=i,j)

G(θijk)fc(rik)





−δ

(1.25)

where rik is the distance between atoms i and k, θijk is the angle between i− j bond

and j − k bond, and the function G is given by
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Table I. Two sets of parameters of Tersoff - Brenner potential

Coef1(a) Coef2(b)

De 6.325 eV 6.000 eV

S 1.29 1.22

β 15 nm−1 21 nm−1

Re 0.1315 nm 0.1390 nm

δ 0.80469 0.50000

a0 0.011304 0.00021

c0 19 330

d0 2.8 3.5

(a) fit to Brenner (1990a)

(b) fit to Yin and Cohen (1983b,a)

G(θijk) = a0

[

1 +
c20
d20
− c20
d20 + (1 + cos θ)2

]

(1.26)

For atoms i and j having different local environment, Brenner (1990b) suggested

replacing coefficient Bij in (1.26) by

B̄ij =
Bij +Bji

2
(1.27)

The parameters De, S, β and Re in (1.23) and (1.24), δ in (1.26), and a0, c0 and d0

in (1.27) have been determined by Brenner (1990b). In fact, Brenner (1990b) gave

two sets of parameters for carbon as shown in Table I.

The equilibrium bond length, donated by l0 is determined by minimizing the

interatomic potential

∂Φ

∂rij
= 0 (1.28)

This gives the equilibrium bond length as l0 = 0.142nm and l0 = 0.145nm for the
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Fig. 1. Potential energy vs. bond length with coef1 - graphite

two sets of parameters, as shown in fig. 1 and fig. 2, respectively. Both results

are consistent with the well known bond length of graphite (0.144nm). It should be

noted that all the results given in this study were calculated by the second set of

parameters.

D. Cauchy - Born rule

The Cauchy - Born rule is an assumption made in the analysis of Slattery and

Lagoudas (2005), as given in (1.3). The objective of the Cauchy - Born rule is to

set up a connection between the elastic theory and molecular theory (molecular de-

scription of crystalline configuration). This assumption goes back to Cauchy (1828),

who assumed that the atomic motion agrees with the gross deformation. Born (1915)
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11

concluded that this is not always true and made another assumption that only the

skeletal structure of crystalline lattices is embedded in the macroscopic deformation,

which is referred as the Cauchy-Born rule (see also Born and Huang (1954)). Skele-

tal lattices are analogs to the external lattices in Oh et al. (2005). Ericksen (1984)

pointed out that the Cauchy Born rule is equivalent to the assumption of homo-

geneous deformation. Zanzotto (1996) concluded that the Born rule always holds

for crystals whose structure can be described by a simple Bravais lattice and shape

memory alloys.

The Born rule states that the skeletal lattice vectors deform as material vectors,

which indicates that they are embedded in the macroscopic deformation. The de-

formed skeletal lattice vectors e(i), i = 1...3 are defined by (1.3), which allows one to

go back and forth between the current lattices and macroscopic deformation.

E. Crystal elasticity

1. Lattice configuration

Most solids have the configuration of a periodic array of atoms, which are called

lattice vectors. The simplest repeating unit is called a unit cell. In 1850, Auguste

Bravais showed that crystals can be divided into 14 unit cells. 3 - D Bravais lattices

consisted of all points with position vector R defined as

R ≡ n1a1 + n2a2 + n3a3 (1.29)

where ai(i = 1, 2, 3) are primitive lattice vectors. A primitive unit cell is the smallest

parallelepiped with an atom at each corner, i.e., only one atom per primitive cell.

Any lattice structures more complicated than 14 Bravais lattices can be consid-

ered as a number of interpenetrating simple Bravais lattices. The position vectors



12

given by

x =
∑

a

Mae(a) + pk (1.30)

where Ma are integers (a=1,2,3), e(a) are skeletal lattice vectors, and pk are shift

vectors. Shift vectors are also interpreted as structure motif (Zanzotto, 1996).

2. Lattice energy

The Helmholtz free energy density per unit mass Â in the isothermal condition is a

function of lattice vectors e(a) and pk

Â = Â(e(a),pk) (1.31)

pk can be eliminated from the energy function by minimization of Â (Parry,

1981; Zanzotto, 1996).

According to the Cauchy - Born rule, the energy density becomes

Â = Â(e(a)) (1.32)

This approach was also used by Ericksen (1980) and James (1987). It is also consistent

with Barron et al. (1971) and Keating (1968).

This assumption is also used in this study to calculate the elastic properties of

graphite, SWCNT, diamond and silicon.
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CHAPTER II

ANOTHER FORM OF STRESS EXPRESSION

A. Modified Gibbs and Gibbs-Duhem equations

The thermodynamic pressure was introduced (Slattery and Lagoudas, 2005) in order

to be consistent with the standard development of the Gibbs Phase rule (Denbigh,

1963). However, it is more convenient to eliminate pressure terms in the stress expres-

sion for applications in this study. The independent variables of a specific Helmoholtz

free energy are invariants, temperature and mass fractions. Equations (1.5) and (1.6)

become

Â(j) = Â(j)(T, ω(1), ..., ω(N−1), I
(j)
(11), I

(j)
(22), I

(j)
(12), I

(j)
(13), I

(j)
(23), I

(j)
(33)) (2.1)

Ǎ(j) = Ǎ(j)(T, ρ(1), ..., ρ(N−1), I
(j)
(11), I

(j)
(22), I

(j)
(12), I

(j)
(13), I

(j)
(23), I

(j)
(33)) (2.2)

With the above assumptions, the differentials of (2.1) and (2.2) can be expressed

as

dÂ = −ŜdT +
N−1
∑

B=1

(

∂Â

∂ω(B)

)

T,ω(C)(C 6=B,N),I(mn)

dω(B)

+
3
∑

m=1

3
∑

n≥m
µ(I,mn)dI(mn) (2.3)

dǍ = − Š
V̂
dT +

N−1
∑

B=1

µ(B)dρ(B) +
1

V̂

3
∑

m=1

3
∑

n≥m
µ(I,mn)dI(mn) (2.4)

Equation (2.4) may be rearranged to read



14

d

(

Â

V̂

)

= − Ŝ
V̂
dT +

N−1
∑

B=1

µ(B)d

(

ω(B)

V̂

)

+
1

V̂

3
∑

m=1

3
∑

n≥m
µ(I,mn)dI(mn) (2.5)

dÂ =

(

Â

V̂
−

N−1
∑

B=1

µ(B)ρ(B)

)

dV̂ − ŜdT

+
N−1
∑

B=1

µ(B)dω(B) +
3
∑

m=1

3
∑

n≥m
µ(I,mn)dI(mn) (2.6)

Comparison of the coefficients in (2.3) and (2.6) gives Euler’s equation

Â =
N−1
∑

B=1

µ(B)ω(B) (2.7)

Equation (2.7) gives the modified Gibbs equation

dÂ = −ŜdT +
N−1
∑

B=1

µ(B)dω(B) +
3
∑

m=1

3
∑

n≥m
µ(I,mn)dI(mn) (2.8)

The modified Gibbs - Duhem equation can be obtained by subtracting (2.8) from

the differential of (2.7):

ŜdT +
N−1
∑

B=1

ω(B)dµ(B) −
3
∑

m=1

3
∑

n≥m
µ(I,mn)dI(mn) = 0 (2.9)

In this study, we focused on the static crystalline solid with single component.

We assumed that the Helmholtz free energy is only a function of temperature and six

invariants.
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B. Mass balance

The mass balance requires that the time rate change of the mass is zero without

chemical reactions (Slattery, 1999, pg.679)

d

dt

∫

R

ρω(A)dV = 0 (2.10)

where R means the region occupied by the body. Using the transport theorem (1.14),

Z(A) was defined as

Z(A) ≡
∫

R

ρ
d(v)ω(A)
dt

dV +

∫

Σ

[

ρω(A)(v − u) · ξ
]

dA = 0 (2.11)

where Σ means the internal phase interface.

C. Momentum balance

The momentum balance requires (Slattery, 1999, pg. 709)

d

dt

∫

R

ρvdV =

∫

S

TndA+

∫

R

ρfdV (2.12)

Apply the transport theorem and define Zm as

Zm ≡
∫

R

[

ρ
d(v)v

dt
− divT− ρf

]

dV +

∫

Σ

[[[

ρv(v − u) · ξ −Tξ
]]]

dA

= 0 (2.13)

D. Energy balance

For the static isolated body, the energy balance (Slattery, 1990, pg. 716) requires

that
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d

dt

∫

R

ρ

(

Û +
1

2
v2
)

dV =

∫

S

v ·TndA

=

∫

R

[v · divT + tr(T∇v)] dV +

∫

Σ

[[[

v ·Tξ
]]]

dA (2.14)

The left hand side of the above equation can be expressed as

d

dt

∫

R

ρ

(

Û +
1

2
v2
)

dV =

∫

R

[

ρ
d(v)
dt

(

Û +
1

2
v2
)

dV +

∫

Σ

ρ

(

Û +
1

2
v2
)

(v − u) · ξ
]

dA

(2.15)

Define Ze as

Ze ≡
∫

R

{

ρ
d(v)Ê

dt
− v · (divT + ρ)− tr(T∇v)

}

dV

+

∫

Σ

[

ρÊ(v − u) · ξ − v ·Tξ
]

dA

= 0 (2.16)

where Ê is total energy per unit mass

Ê ≡ Û +
1

2
v2 (2.17)

E. Entropy inequality

For the isolated body, the entropy inequality (Truesdell and Toupin, 1960, pg.644),

i.e., the second law of thermodynamics, requires that the time rate change of entropy

must be greater than or equal to zero:

d

dt

∫

R

ρŜdV ≥ 0 (2.18)
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Applying the transport theorem again, (2.18) may be written as

∫

R

ρ
d(v)Ŝ

dt
dV +

∫

Σ

[

ρŜ(v − u) · ξ
]

dA ≥ 0 (2.19)

F. Implication of equilibrium

If equilibrium is to be achieved, the left hand side of (2.18) must be minimized with

the constraints imposed by conservation of mass (2.11), the momentum balance (2.13),

and the energy balance (2.16).

∫

R

d(v)Ŝ

dt
dV +

∫

Σ

[

ρŜ(v − u) · ξ
]

dA+ λAZA + λm · Zm + λeZe ≥ 0 (2.20)

where λA, λm and λe are lagrangian multipliers.

From (2.8) and the definition of Â (Slattery, 1999, pg. 446)

d(v)Ŝ

dt
=

1

T

d(v)Û

dt
− 1

T

N−1
∑

A=1

µ(A)
d(v)ω(A)
dt

− 1

T

3
∑

m=1

3
∑

n≥m
µ(I,mn)

d(v)I(mn)

dt
(2.21)

The last term in equation (2.21) is derived from definition of I(mn)

d(v)I(mn)

dt
= ∇v e(m) · e(n) + e(m) · ∇ve(n)

= tr
[(

e(m) ⊗ e(n) + e(n) ⊗ e(m)
)

∇v
]

(2.22)

After rearranging (2.20) by means of (2.22), (2.21) and (2.17), we have
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∫

R

{

ρ

(

1

T
+ λe

)

d(v)Û

dt
+ ......

+
1

T
tr

[(

− TλeT− ρ
3
∑

m=1

3
∑

n≥m

µ(I,mn)

(

e(m) ⊗ e(n) + e(n) ⊗ e(m)
)

)

(∇v)T
]

}

dV

+

∫

Σ

[(. . .)(v − u) · ξ] dA ≥ 0

(2.23)

At equilibrium, we have a different stress expression

T = ρ
3
∑

m=1

3
∑

n≥m

µ(I,mn)

(

e(m) ⊗ e(n) + e(n) ⊗ e(m)
)

(2.24)

In the limit of infinitesimal deformations, we have

T = 2ρ0

3
∑

m=1

3
∑

n≥m

3
∑

i=1

3
∑

j≥i
a(ijmn)

(

E(i) · eE(j)

)

(E(m) ⊗ E(n) + E(n) ⊗ E(m)) (2.25)

The difference between the two is the elimination of the pressure term and the range

of the summation term.

Now the stress expression is only a function of density and lattice vectors in the

reference configuration. The unknowns are coefficients in the quadratic state function.

In this study, the coefficients were determined by the second derivative of interatomic

potentials with respect to the invariants.

We also recognized that for the system without a dividing surface, the integration

Σ will disappear. The stress expression comes from the balance of energy and entropy

inequality.

The same result can be derived only through the entropy inequality and differ-

ential energy balance for an isothermal system.
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The differential entropy inequality is given by

ρT
d(v)Ŝ

dt
≥ −Tdiv( e

T
) + ρQ (2.26)

where e is the thermal energy flux vector.

Now subtract (2.26) from the differential energy balance (Slattery, 1999, p.255)

ρ
d(v)Û

dt
= div(q) + tr(T · ∇v) + ρQ (2.27)

where q is energy flux vector.

We have

ρ
d(v)Û

dt
− ρT

d(v)Ŝ

dt
− tr(T · ∇v) + div(q− e) +

1

T
e · ∇T ≤ 0 (2.28)

It more convenient to write (2.28) in terms of the Helmholtz free energy per unit mass

ρ
d(v)Â

dt
+ ρŜ

d(v)T̂

dt
− tr(T · ∇v) + div(q− e) +

1

T
e · ∇T ≤ 0 (2.29)

Here we only consider the single component system for simplicity.

Â = Â(T, I(11), I(22), I(33), I(23), I(13), I(12)) (2.30)

The differential of (2.30) may consequently be expressed as

dÂ = −ŜdT +
3
∑

m=1

3
∑

n≥m
µ(I,mn)dI(mn) (2.31)

d(v)Â

dt
= −Ŝ d(v)T̂

dt
+

3
∑

m=1

3
∑

n≥m
µ(I,mn)

d(v)I(mn)

dt
(2.32)

Now rearrange (2.29) for an isothermal system
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ρ
3
∑

m=1

3
∑

n≥m

d(v)I(mn)

dt
− tr(T · ∇v) ≤ 0 (2.33)

where d(v)I(mn)/dt is given by

d(v)I(mn)

dt
= tr[(e(m) ⊗ e(n) + e(n) ⊗ e(m))∇v] (2.34)

Entropy inequality becomes equality at the equilibrium state. It is clear from the

above two equations that

T = ρ
3
∑

m=1

3
∑

n≥m
(e(m) ⊗ e(n) + e(n) ⊗ e(m)) (2.35)

(2.35) is the same as equation (1.15) for infinitesimal deformations. It’s just the

simplified derivation for the special case, rather than the substitution of the result

from Slattery and Lagoudas (2005).

The objective in what follows is to use this stress expression to calculate the

elastic properties of graphite, single-walled carbon nanotubes, diamond, silicon and

vanadium by using the Tersoff - Brenner potential (Tersoff, 1988a; Brenner, 1990b),

Tersoff potential (Tersoff, 1988b) and Finnis - Sinclair potential (Finnis and Sinclair,

1984) respectively.

In Chapter III, I calculated the elastic properties of graphite and compared the

results with the superelastic model and the experimental data. In this study, super-

elastic was used in order to be consistent with literature, such as Zhang et al. (2002).

In Chapter IV and Chapter V, the elastic properties of diamond, silicon and vana-

dium were calculated. The results are consistent with the superelastic model. For

diamond and silicon, the difference of C44 between the calculation and the experimen-

tal data was due to the accuracy of the potential function. With several applications

of this new stress expression we could visualize more prospects for further application.
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CHAPTER III

ELASTIC PROPERTIES OF GRAPHITE

A. Introduction

It is commonly accepted that continuum mechanics is not applicable to the atomic

scale materials because the scales fall far beyond the frames of continuum mechanics.

However, the confidence comes from the incorporation of interatomic potentials.

The first attempt to derive elastic constants from the potential energy of a crystal

system were made by Born and Huang (1954). Based on Brugger’s thermodynamic

definition of elastic constants (Brugger, 1964, eq.2), Martin (1975a,b,c) derived elastic

constants for a crystal system in which the energy density is a sum of bonds. Zhang

et al. (2002) and Belytschko et al. (2002) incorporated interatomic potentials into

a continuum theory. In the calculation, the interatomic potential and stored strain

energy density on a continuum level is evaluated by the bond energy on the atomic

level through the Tersoff - Brenner potential for all bonds in the unit cell while using

the Cauchy - Born rule (Tadmor et al., 1996; James and Hane, 2000), as shown in fig.

3. As a brief summary, if the energy density,W , of the material is known, the relation

e(1) e(2)

e(3) e(i)=FE(i)

x1

x2

Λ
molecular

Λ
continuum

Fig. 3. Connection between Interatomic Potential Energy and Strain Energy through

Cauchy - Born rule
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between the stress (T) and the deformation gradient (F) is given by Belytschko et al.

(2000)

Pij =
∂W

∂Fij
(3.1)

In (3.1), Fij = ∂xi/∂Xj, in which x and X are the spatial and material coordinates,

respectively. An equivalent form is to express this in terms of the second Piola-

Kirchhoff stress S and the Lagrangian strain E

Sij =
∂W

∂Eij

(3.2)

The corresponding stiffness tensor is

Cijkl =
∂2W

∂Eij∂Ekl

(3.3)

To apply superelasticity to the crystal system, the Cauchy - Born rule must be im-

posed. This rule assumes that the local crystal structure deforms homogenously. Us-

ing these assumptions, the stiffness tensor defined above can be used in atomic-scale

systems.

B. Helmholtz free energy and interatomic potential energy

The specific Helmholtz free energy is defined as (3.4)

Â ≡ Û − T Ŝ (3.4)

dÂ = dÛ − TdŜ − ŜdT (3.5)

Considering an isothermal equilibrium state, in which the entropy can be ex-
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pressed only as the function of temperature (Hill, 1962), the last two terms in equation

(3.5) are zero.

The internal energy is composed of the kinetic energy and the potential energy.

For an isothermal system, the kinetic energy is a constant.

dÛ = dΦ (3.6)

where Φ is the interatomic potential energy.

We can use (3.6) to rewrite (3.5)

dÂ = dΦ (3.7)

Equation (3.7) means that the change of Helmholtz free energy due to the macro-

scopic deformation is the same as the change of interatomic potential energy.

C. Relationship between the stiffness tensor and the coefficients in the state function

For linear elastic solids, Hooke’s law gives

T = Cε (3.8)

where C is elastic stiffness tensor. Using Einstein index notation, it can be expressed

as

Tpq = Cpqrsεrs (3.9)

Now express new stress using index notation:
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Tpq = 2ρ0

3
∑

m=1

3
∑

n≥m

3
∑

i=1

3
∑

j≥i
a(ijkl)(E(i)rE(j)s)(E(k)pE(l)q + E(l)pE(k)q)εrs (3.10)

Comparing the above two equations, the relationship is given in the following:

Cpqrs = 2ρ0

3
∑

m=1

3
∑

n≥m

3
∑

i=1

3
∑

j≥i
a(ijkl)(E(i)rE(j)s)(E(k)pE(l)q + E(l)pE(k)q) (3.11)

D. Structure and elastic properties of graphite

In graphite, sp2 hybridization occurs, which means one s-orbital and two p-orbitals

combine to form three sp2 orbitals at 120o from each other within a plane. This kind

of bond is also called a σ bond. A σ bond is a strong covalent bond which results in

the high stiffness and high strength in the graphite plane. The remaining p-orbital

is perpendicular to the σ bond plane which is called the π bond. This interlayer π

bond is much weaker than the σ bond. The bond structure is shown in fig. 4.

1. Superelastic model

Using the Cauchy - Born rule to connect the interatomic potential energy and strain

energy requires the centrosymmetry structure (Zhang et al., 2002), i.e. , each atom

can be viewed as the center of structure, or each of them has the same bonding

environment (Oh et al., 2005). It is obvious that the graphite structure, which is

composed of hexagonal lattices, is not centrosymmetric. As shown in fig. 5, A

and B indicate two sublattices. Both of them have the triangular structure or can

be viewed as a hexagon with one atom in the center. In this case, Cousins (1978)

and Martin (1975a,b,c) pointed out that the inner displacement between the two

sublattices should be considered. The continuum model that accounts for this effect
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σ Bond

π Bond

Fig. 4. Hexagonal bonding structure, π bond and σ bond.

was introduced by Zhang et al. (2002).

As a summary, an arbitrary vector R0
ij from point i in sublattice A to j under

the uniform deformation F becomes F ·R0
ij. Besides the homogeneous deformation,

sublattice B may have a relative displacement with respect to sublattice A. In his

paper, the distance between i and j becomes

rij =
√

(R0
ij + x) · FT · F · (R0

ij + x)

=
√

(R0
ij + x) · (I + 2E) · (R0

ij + x) (3.12)

where E is the Lagrangian strain tensor.

The modified Cauchy - Born rule is expressed as:

C =
∂2Φ

∂E2
+

∂2Φ

∂E∂x

∂x

∂E
(3.13)
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BA

l0

A

A

A

A

AA

A

B

B

B

B

B

B

B

Fig. 5. A schematic diagram of structure of graphite.

where x is the inner displacement between the sublattices. It can be determined by

the minimization of the interatomic potential energy with respect to x, i.e.,

∂Φ

∂x
= 0 (3.14)

the term ∂x/∂E is given

∂x

∂E
= −

(

∂2Φ

∂x2

)−1
∂2Φ

∂x∂E
(3.15)

Zhang et al. (2002) concluded that the elastic modulus is

C =

[

∂2Φ

∂E2
− ∂2Φ

∂E∂x
·
(

∂2Φ

∂x2

)−1
∂2Φ

∂x∂E

]

E=0,x=0

(3.16)

In the following, both cases will be calculated in order to show the effect of inner

displacement on the elastic constants at zero strain condition.
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Table II. Comparison of calculation and experimental data of C11 for graphite

Methods Results(GPa) Young’s Modulus(GPa)

HomogeneousIa 1078 1051

HomogeneousIIb 1086 1058

InhomogeneousIc 837 705

Experiment 1060d 1020e

a) Calculated by (3.3)

b) Calculated by (3.11)

c) Reported by Zhang et al. (2002)

d) Measured by Fitzer (1989)

e) Measured by Blakslee et al. (1970)

Table II summarized the results of C11 and Young’s modulus and the comparison

with the experimental data. Young’s modulus is calculated as the inverse of the (1, 1)

component of the compliance matrix. (a) is the result corresponding to (3.3), which

is reasonable because the inner displacement at zero strain is zero. The value is

consistent with experimental data. (c) is the result corresponding to (3.16). It is

obvious that Zhang’s model is not comparable with experimental data. He extended

the same methodology to calculate Young’s modulus of SWNT, and the result is

about 705 GPa (no dependence on radius was given in his paper).

The C11 and Young’s modulus at different strain conditions were also calculated.

In these cases, the inner displacement can not be neglected. The inner displacement

in the x2 direction is significant (the value of x1 is negligible and not given in table

III).

The inner displacement is determined by the minimization of potential energy,

and potential energy is only the function of strain components. The results of the

last two columns in table III were calculated by equation (3.3). It is obvious that

the influence of inner displacement on the C11 and Young’s modulus increases with
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Table III. C11 and Young’s modulus considering the inner displacement and compari-

son with results from homogeneous deformation

Strain x2 C11 Ey Ca
11 Ea

y

0 1.1375 ∗ 10−10 1078 1051 1078 1051

0.001 0.000576 1070 1044 1069 1042

0.005 0.002861 1038 1014 1030 1006

0.01 0.00566 999 978 984 962

a) calculated by equation (3.3)

increasing strain.

It is clear from the above calculation that at zero strain both C11 and Young’s

modulus are consistent with experimental data. In the following calculation, we only

considered the homogeneous deformation at zero strain condition.

2. New stress deformation behavior

For graphite, at least three lattice vectors e(i)(i = 1, 2, 3) are needed to describe the

whole structure (fig. 6).

The lattice vectors e(1) and e(2) determine the external structure of the unit cell

while e(3) determines the internal structure.

As introduced in chapter I, the specific Helmholtz free energy Â can be expressed

as a function of temperature and five invariants.

Â = Â(T, I(11), I(22), I(12), I(13), I(23)) (3.17)

The position of e(3) is determined by the minimization of potential energy. So the

Helmholtz free energy can be expressed only as the function of temperature and three

independent invariants.



29

E(1)

E(3)

E(2)

a

b c
l e(1)

e(3)

e(2)

a

b c

l

F

(a) (b)

x1

x2

Fig. 6. Schematic of (a) a undeformed and (b) a deformed graphite layer by a homoge-

nous deformation F.

Â = Â(T, I(11), I(12), I(22)) (3.18)

For an infinitesimal deformation, all distances between atoms which are not covalently

bonded are greater than the cutoff distance for the Tersoff - Brenner potential. It

means that the strain energy is just the sum of all covalent bond energies. In view of

equation (3.4), the Helmholtz free energy in the representative triangle cell a− b− c

in fig. 6 becomes

Φ = Φal + Φbl + Φcl

= Φ(I(11), I(12), I(22)) (3.19)

The coefficients in the quadratic state function can be calculated by the second deriv-
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ative of total interatomic potential energy with respect to the invariants.

a(ijmn) = a(mnij)

=
∂2Φ

∂I(ij)∂I(mn)

(3.20)

As mentioned in the above section, the equilibrium bond lengths for two sets of

parameters are 0.142nm(Coef1) and 0.145nm(Coef2) respectively by minimizing

the potential energy.

The components of the stiffness tensor can be evaluated by the coefficients

through equation (3.11). During the calculation, notice that the theory is based

on the assumption of specific energy per unit mass, while the interatomic potential

gives the energy per unit cell or per unit atom. The results of C11 and Young’s

modulus are 1086 GPa and 1058 GPa respectively.

E. Single-walled carbon nanotubes

Interest in carbon nanotubes continues to grow since their first discovery (Iijima,

1991). An ideal nanotube can be thought of as a hexagonal network of carbon atoms

that has been rolled up to make a seamless cylinder. Three types of nanotubes are

possible, and these are called armchair, zigzag and chiral nanotubes, depending on

how the two-dimensional graphene sheet is rolled up. If the CNT is free from defects,

the elastic properties should be the same as the graphene sheet. However, as shown

in the following, the difference is due to the curvature. The properties are the same

as the graphene sheet in the limit of a large radius.

There are different ways to define the structure of carbon nanotubes. The most

common way is to think of CNT as a result of rolling a graphene sheet, by specifying

the direction of rolling and the circumference of the cross section, as shown in fig.7.
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(0,0) (1,0) (2,0) (3,0) (4,0) Zigzag

Armchair

(1,1)

(2,2)

(3,3)

a1

a2

Fig. 7. Definition of roll-up vector as linear combination of base vector a1 and a2

The so-called chiral vector, Ch, is defined by

Ch ≡ nā1 +mā2 (3.21)

where ā1 and ā2 are unit vectors in 2-D hexagonal lattice, and n and m are integers.

Armchair nanotubes are formed when n = m and Zigzag means either one of them

is zero. All others are known as Chiral nanotubes. Another important parameter is

chiral angle, which is defined as the angle between Ch and ā1. Chiral angle is 0o and

30o for Zigzag and Armchair, respectively.

The equilibrium energy and position of atoms will change due to rolling. The

strain energy relative to the graphite was given in fig. 8. The change of position of

zigzag nanotubes was shown in fig. 9.

Carbon nanotubes may be used as potential reinforcements in nanocomposite

materials and other applications due to their superior mechanical properties (Ruoff

and Lorents, 1995; Srivastava et al., 2001; Yakobson and Avouris, 2001; Odegard

et al., 2002, 2003, 2005a,b). The deformation of Single-Walled Carbon Nanotubes



32

Energy relative to graphite vs. Radius of CNT
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Fig. 8. The strain energy relative to the graphite vs. the radius of SWCNT. Zero

energy corresponds to the equilibrium graphite energy of -7.3756 eV/atom

Graphite

(6,0)

E(1) E(2)

x1

x2

Fig. 9. The equilibrium position of zigzag nanotubes and comparison with graphite

(SWNT) is reversible up to strains of more than 4 percent (Iijima et al., 1996; Wong

et al., 1997; Lourie and Wagner, 1998; Wagner et al., 1998; Tombler et al., 2000; Yu

et al., 2000a).

The reported elastic modulus of carbon nanotubes from experiments and calcu-

lations are summarized in table IV and table V separately.

In the case of SWCNT, the lattice vectors are actually the cords between two

atoms on the curved surface. The surface lattice vector is defined as
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e(i) ≡ Pe
p
(i), i = 1, 2, ..., k (3.22)

where P is the projection vector (Slattery, 1990, pg.1085) and e
p
(i) is the primitive

lattice vector.

The extended Cauchy - Born rule to the curved surface proposed by Arroyo and

Belytschko (2002) is as follows

e(i) ≡ FE(i) (3.23)

where F is surface deformation gradient.

Oh et al. (2005) assumed the surface Helmholtz free energy is the function of

temperature and surface lattice vectors, with the assumption that ep(i) ≈ e(i). They

obtained the stress deformation behavior in the limit of infinitesimal deformation at

equilibrium state.

T(σ) = 2ρ(σ)κ

2
∑

m=1

2
∑

n≥m

2
∑

i=1

2
∑

j≥i
a(ijmn) (E(i) · ε

(σ)E(j))
(

E(m)⊗E(n)+E(n)⊗E(m)

)

(3.24)

where superscript σ donates a quantity defined on a surface. Actually, it can be

regarded as a special case of equation (2.25).

However, during the calculation of elastic properties of CNT, the same mistake

was made as Zhang et al. (2002). The result is around 800GPa in the limit of a large

radius, which is not consistent with the experimental data of graphite.

Here, the Young’s modulus of CNT was calculated with the assumption of ho-

mogeneous deformation. The C11 and Young’s modulus of both Zigzag and Armchair

carbon nanotubes were calculated using equation (3.24). The results are shown in

figures 10, 11, 12, which fall in the range of previous reports by most experimental
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Table IV. Reported elastic modulus of SWNT from experiment

Author(Year) Method Result(TPa)

Treacy et al. (1996) TEM 0.4–4.15

Wong et al. (1997) AFM 0.69–1.87

Krishnan et al. (1998) TEM 0.9–1.7

Muster et al. (1998) SFM 1

Pan et al. (1999) Nanoscale tensile test 0.22–0.68

Yu et al. (2000b) Nanoscale tensile test 0.32–1.47

Salvetat et al. (1999) AFM 0.6

Tombler et al. (2000) AFM 1.2

Table V. Reported elastic modulus of SWNT from calculation

Author(Year) Method Result(TPa)

Yakobson et al. (1996) Molecular Dynamics 1.07

Cornwell and Wille (1997) TB Potential 0.8

Overney et al. (1993) Keating Potential 1.5

Lu (1997) Keating Potential 0.97

Hernandez et al. (1998) Tight Binding 1.2

Yao and Lordi (1998) Molecular Dynamics 1

Yu et al. (2000a) Keating Potential 1.1–1.2

Popov et al. (2000) Lattice Dynamics 1

Zhou et al. (2001) Electronic Band Theory 0.76

Zhang et al. (2002) TB Potential 0.7

Oh et al. (2005) TB Potential 0.8
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Fig. 10. The relationship between the radius of CNT and C11, Young’s modulus of

zigzag CNT

and calculation studies of SWCNTs (Hernandez et al. (1998); Krishnan et al. (1998);

Wong et al. (1997); Tombler et al. (2000); Overney et al. (1993); Yu et al. (2000a,b);

Popov et al. (2000)).

Yao and Lordi (1998) used MD simulation and showed the same trend (fig. 11)

of dependence of Young’s modulus on the radius. Fig. 12 showed that chirality has

little effect on Young’s modulus especially for the CNT with a radius over 5 Å (Lu,

1997). Oh et al. (2005) showed a different trend for armchair nanotubes.

Table VI showed the results corresponding to different conditions.

F. Discussion

From the above calculations, we concluded that homogeneous deformation is a good

assumption at zero strain, considering the inner displacement at zero strain condition

will lead to incorrect results. In the case of non-zero strain condition, the inner dis-

placement can not be neglected, but should be minimized out of the energy function.
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Radius vs. C11 & Young's Modulus - Armchair
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Fig. 11. The relationship between the radius of CNT and C11, Young’s modulus of

armchair SWCNT
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Fig. 12. The relationship between the radius of CNT and Young’s modulus
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Table VI. Comparison of C11 and Young’s modulus at different strain conditions -

zigzag

Zigzag Ca
11 Ea

y Cb
11 Eb

y Cc
11 Ec

y

(6, 0) 1127 1092 1124 1092 1110 1078

(8, 0) 1106 1074 1114 1076 1101 1063

(10, 0) 1097 1068 1099 1068 1094 1065

(12, 0) 1093 1064 1094 1065 1081 1051

(24, 0) 1088 1060 1073 1042 1055 1028

a) zero strain homogeneous deformation

b) 0.005 homogeneous deformation

c) 0.005 considering inner displacement

The problem with Zhang’s methodology is taking the inner displacement into account

at zero strain, while considering energy as a function of the shift vector. The lattice

vectors in equation (1.1) are skeletal lattice vectors.

This method also can be extended to calculate Young’s modulus of multi-walled

carbon nanotubes. Kiang et al. (1998) have shown the interspacing for MWCNTs

changes from 3.4 Å to 3.75 Å. Using this information, we can visualize that Young’s

modulus might be lower than that of SWCNTs (Wagner et al., 1998; Yu et al., 2000b).
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CHAPTER IV

ELASTIC PROPERTIES OF DIAMOND AND SILICON

A. Structure of diamond and silicon

The electronic configuration of carbon is 1s22s22p2, i.e., four valence electrons spread

in the s and p orbitals. In order to create covalent bonds in a diamond, the s

orbital mixes with the three p orbitals to form sp3 hybridization. The four valence

electrons are distributed equally among the sp3 orbitals. The tetrahedral structure

gives strength and stability to the bonds. Consequently, all the bonds in diamonds

are of the same length (1.54 Å), as shown in fig. 13, with the same bond angle of

109.47o.

The structure of a diamond unit cell is given in fig. 14. It can be viewed as the

interpenetration of two fcc lattices, each displaced 1/4 of a lattice constant in each

direction from the other. Let A donate the sublattice corresponding to the green

circles and B represent the sublattice with purple circles. As shown in fig.14, the

atom l belonging to the B sublattice connected with four atoms in the A sublattice.

Examples of materials with the diamond crystal structure are diamond, silicon and

germanium.

In the case of diamonds, whose structure can not be fully described only by

basis lattice vectors, a shift vector pk defined in chapter III was needed to interpret

the configuration of crystal structure. However, according to the discussion above,

in the case of graphite and SWCNT, pk is not included in the energy function and

the equilibrium condition was used to determine this shift vector (Ericksen, 1984;

Zanzotto, 1996).

As shown in the following section, the potential energy is only the function of
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Fig. 14. Structure of diamond unit cell. The green and purple circles represent the

atoms on the two different sublattices
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six invariants (without the Cauchy - Born rule , the energy should be the function

of ten invariants,i.e., six invariants plus I(14),I(24),I(34),I(44)). The result of energy

minimization is consistent with the assumption of homogenous deformation. The

relative position of the shift vector does not change during the deformation, which

means there is no relative shift during the deformation.

In order to use the Tersoff - Brenner potential to describe the potential energy in

the representative cell, the distances between atoms during the deformation should

be expressed as a function of deformed lattice vectors e(1),e(2) and e(3).

|ab| = |e(1) + e(2)|

|ac| = |e(2) + e(3)|

|ad| = |e(3) + e(1)|

|al| = |1
2
(e(1) + e(2) + e(3))|

...

|bc| = |~ac− ~ab|

... (4.1)

B. Elastic properties of diamond

In the superelastic model, the strain energy is given

φ =
1

2
Tijεij

=
1

2
Cijklεijεkl (4.2)

For cubic systems, the stress in terms of stiffness tensor and strain is given
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T11 = C11ε11 + C12ε22 + C12ε33

T22 = C12ε11 + C11ε22 + C12ε33

T33 = C12ε11 + C12ε22 + C11ε33

T23 = 2C44ε23

T13 = 2C44ε13

T12 = 2C44ε12 (4.3)

There are two ways to calculate the stiffness tensor. One is given by

Cijkl =
∂2φ

∂εij∂εkl
(4.4)

The other is to introduce three kinds of deformation for each component. For

C11, we assume a strain with only one non zero component ε11 = ε.

C11 = 2
∆φ

ε2
(4.5)

Similarly C44 can be determined by applying a strain with only one non zero compo-

nent ε23 = ε.

C44 =
∆φ

ε2
(4.6)

C12 can be calculated by

Ey =
(C11 + 2C12) · (C11 − C12)

C11 + C12
(4.7)

or we can assume another form of strain. For example, ε11 = −ε22 6= 0 for C11−C12.

We can obtain C12 with C11 from equation (4.5).

Young’s modulus is the slope of the linear part of stress vs. strain curve. The
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Fig. 15. Young’s modulus of diamond determined through stress strain curve

Table VII. Inter displacement between two fcc sublattices under different axial strain

conditions - diamond

Strain x y z

Zerostrain −5.368 ∗ 10−11 −5.368 ∗ 10−11 −5.368 ∗ 10−11
0.001 −3.857 ∗ 10−11 −9.983 ∗ 10−11 −9.983 ∗ 10−11
0.005 1.534 ∗ 10−9 −8.610 ∗ 10−10 −8.610 ∗ 10−10
0.01 5.619 ∗ 10−9 −2.987 ∗ 10−9 −2.987 ∗ 10−9
0.02 −7.475 ∗ 10−14 −6.604 ∗ 10−13 −6.604 ∗ 10−13

result is shown in fig. 15.

Table VII shows the inner displacement between the two fcc sublattices. It

is obvious that homogeneous deformation is a good assumption even at non-zero

strain conditions. The position of L was determined by the minimization of potential

energy. The density of diamond in the reference configuration used in the calculation

is 3.544g/cm3 corresponding to the equilibrium bond length 1.54Å.

In this study, we calculated stiffness tensor according to equation (4.5) while

choosing ε = 0.03. The results are given in table VIII.
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In order to calculate the coefficients in the quadratic state function, the scalar

product of deformed lattice vectors were expressed in terms of invariants.

e(1) · e(1) = I(11) + E(1) · E(1)

e(2) · e(2) = I(22) + E(2) · E(2)

e(3) · e(3) = I(33) + E(3) · E(3)

e(1) · e(2) = I(12) + E(1) · E(2)

e(2) · e(3) = I(23) + E(2) · E(3)

e(3) · e(1) = I(31) + E(3) · E(1) (4.8)

Using the second cosine law (4.9), the bond angles can be expressed in terms of bond

lengths, which is also a function of invariants. Now all terms in the Tersoff - Brenner

potential are represented in terms of invariants and parameters.

θlab = arccos(
r2al + r2bl − r2ab

2ralrbl
) (4.9)

The unit of coefficients in the quadratic state function a(ijmn) is eV/g ·Å4 (1eV =

1.6 ∗ 10−19N ·m)

The stored energy in the diamond cell is just the sum of all covalent bond energies.

The Helmholtz free energy in the representative cell is

Â = Φal + Φbl + Φcl + constant

≡ Φ(I(11), I(22), I(33), I(12), I(13), I(23)) + constant (4.10)

The results of coefficients in the state function for diamond are
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Table VIII. Elastic properties of diamond(GPa)

Our model Superelastic Experiment(a)

C11 1071 1061 1015± 65

C12 223 229 225± 100

C44 603 638 500± 75

(a) measured by Ownby and Stewart (1991)

a(1111) = a(2222) = a(3333) = 7560

a(1122) = a(2233) = a(3311) = 1274

a(1212) = a(2323) = a(1313) = 4141 (4.11)

Table VIII summarized the results from calculations and experiments.

C. Elastic properties of silicon

1. Potential function for silicon bond

Tersoff (1988b) gave an interatomic potential form for silicon systems, which is basi-

cally the same form as the Tersoff - Brenner potential for carbon-carbon bonds(Tersoff,

1988a; Brenner, 1990b).

Φij = fc(rij)[aijfR(rij) + bijfA(rij)] (4.12)

where fR(rij) and fA(rij) are the repulsive and attractive terms

fR(rij) = Aexp[−λ1rij]

fA(rij) = −Bexp[−λ2rij] (4.13)
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and fc(rij) is the cutoff function

fc(rij) =























1, rij < R−D;

1
2
− 1

2
(cos[π

2
(r −R)/D]), R−D < rij < R +D;

0, rij > R +D.

(4.14)

Bond order factor bij is given by

bij = (1 + βnξnij)
−1/2n (4.15)

where

ξij =
∑

k(6=i,j)

fc(rik)g(θijk)exp[λ
3
3(rij − rik)

3]

g(θ) = 1 + c2/d2 − c2/[d2 + (h− cos[θ]2)]

aij = (1 + αnηn)−1/2n

ηij =
∑

k 6=i,j
exp[λ33(rij − rik)

3] (4.16)

All parameters in the above equations are given in table IX.

It is obvious that the coefficient aij is zero. The relationship between the potential

energy and bond length was given in fig. 16.

2. Elastic properties of silicon

Silicon has the same structure as diamond. Table X shows the inner displacement

between two fcc sublattices under different axial strain conditions.

The results of coefficients in the state function (1.16) of silicon are
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Table IX. Parameters of Tersoff potential for silicon bonds

Coef

A(eV ) 1.8308× 103

B(eV ) 4.7118× 102

λ1(Å−1) 2.4799

λ2(Å−1) 1.7322

α 0

β 1.0999× 10−6

n 7.8734× 10−1

c 1.0039× 105

d 1.6218× 101

h −5.9826× 10−1

λ3(Å
−1) 1.7322

R(Å) 2.85

D(Å) 0.15
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Bond length

20

40
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80

Energy (eV)

(A)
o

Fig. 16. Potential energy vs. bond length - silicon

Table X. Inner displacement between two fcc sublattices under different axial strain

conditions - silicon

Strain x1 x2 x3

Zerostrain −1.064 ∗ 10−11 −1.064 ∗ 10−11 −1.064 ∗ 10−11
0.001 −2.920 ∗ 10−8 9.010 ∗ 10−8 9.010 ∗ 10−8
0.005 8.335 ∗ 10−10 −4.382 ∗ 10−10 −4.382 ∗ 10−10
0.01 2.975 ∗ 10−9 −1.540 ∗ 10−9 −1.540 ∗ 10−9
0.02 −8.584 ∗ 10−14 −7.758 ∗ 10−14 −7.758 ∗ 10−14
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Table XI. Elastic properties of silicon(GPa)

Our model Superelastic(a) Experiment(b)

C11 142 142 166.6

C12 66.3 67.6 64

C44 59 59 79.6

(a) calculated by Balamane et al. (1992)

(b) measured by Simmons and Wang (1971)

a(1111) = a(2222) = a(3333) = 2762

a(1122) = a(2233) = a(3311) = 1451

a(1212) = a(2323) = a(1313) = 1359 (4.17)

The density of silicon in the reference configuration is 2.3322g/cm3, correspond-

ing to equilibrium bond length 2.35212Å, as shown in fig.16.

Table XI summarized the results from calculation and the comparison with ex-

periment results. The calculated result of C44 is not consistent with experimental

data even though this Tersoff potential was supposed to give a better description of

elastic properties than the old version (Tersoff, 1988a). It is obvious that the differ-

ence between the calculated results and experimental data is due to the accuracy of

the potential function rather than this new stress deformation behavior.
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CHAPTER V

ELASTIC PROPERTIES OF VANADIUM

Finnis and Sinclair (1984) potential (hereafter referred to as FS) is a short range,

many body empirical potential. The corresponding long range form was given by

Sutton and Chen (1990).

The FS potential has the following form

Φ = Φ1 + Φ2 =
1

2

N
∑

i,j:i6=j
V1(rij) +

N
∑

i=1

V2(ni) (5.1)

where

V1(rij) =

(

a

rij

)n

(5.2)

V2(ni) = −A
√
ni (5.3)

ni is the local electronic charge density.

ni =
N
∑

i:i6=j
Φ(rij) (5.4)

The function Φ(rij) is given by:

Φ(rij) =











(rij − d)2, rij < d;

0, rij > d.
(5.5)

V1(rij) is a pairwise potential representing repulsive interactions.

Φ(rij) =











(rij − c)2(c0 + c1rij + c2r
2
ij), rij ≤ c;

0, rij > c.
(5.6)
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Table XII. Parameters of FS potential of vanadium

Parameters V alue(a)

A 2.010637 eV

d 3.692767 Å

c 3.8 Å

c0 -0.8816318

c1 1.4907756

c2 -0.397637

(a) fit to Finnis and Sinclair (1984)

Table XIII. Elastic constants of vanadium by FS potential

Experiment Superelastic This study

C11 2.279 2.27607 2.27565

C12 1.187 1.18548 1.18546

C44 0.426 0.42545 0.42542

A, d, c, c0, c1 and c2 are the fitting parameters.

For Vanadium, which has a bcc structure, the values of those six parameters were

given in table XII.

All parameters were fitted with the lattice constant, bulk modulus, cohesive

energy and three elastic constants. It’s not surprising that this potential is capable

of reproducing the elastic constants correctly.

We used this potential to calculate the elastic constants. The results are almost

exactly the same as the superelastic model and the experimental data (Table XIII).
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CHAPTER VI

CONCLUSIONS

One of the most importants new implication of equilibrium is the stress–deformation

behavior in the equilibrium state. This new stress expression is an explicit function

of the deformed lattice vectors.

In the limit of infinitesimal deformations, the specific Helmholtz free energy can

be represented as a quadratic function of the invariants I(mn). The coefficients in this

quadratic function can be determined for a given interatomic potential. The elastic

properties of graphite, single wall carbon nanotubes, diamond, silicon and vanadium

were calculated. A few successful applications of the new stress deformation behavior

were shown in this thesis:

1. We calculated the Young’s modulus of graphite and the results are consistent

with the experimental data. We have shown that homogeneous deformation is a

good assumption at zero strain. Inappropriate consideration of inner displacement

will lead to incorrect results. For non zero strain, the inner displacement should be

determined by minimization of potential energy. The chirality has little effect on the

Young’s modulus of SWCNT.

2. The stiffness tensor and Young’s modulus of diamond and silicon were calcu-

lated with the Tersoff - Brenner potential and the Tersoff potential respectively. The

results are consistent with the superelastic model. The difference of C44 between the

calculated results and the experimental data was due to the accuracy of the potential

energy function.

3. Using FS potential for metals, the stiffness tensor of vanadium was calculated,

and the result was almost the same as the experimental data since the parameters of

this potential were fitted to elastic constants.
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From this study, we have shown that one effective approach is to use this new

stress expression in the limit of infinitesimal deformations. This study can be regarded

as a support for the theory introduced in Slattery and Lagoudas (2005).

We also recognized the limitation of this approach in using the new stress ex-

pression. It is apparently dependent on the available potential functions.
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NOTATION

Roman Symbols

a0 parameter in Tersoff - Brenner potential

a(ijmn) defined by equation (1.9)

Â Helmholtz free energy per unit mass

Ǎ Helmholtz free energy per unit volume

b body force per unit mass

c0 parameter in Tersoff - Brenner potential

C right Cauchy–Green strain tensor

c0 parameter in Tersoff - Brenner potential

Ch chiral vector given by (3.21)

Cijmn Stiffness component

d0 cut off distance in Tersoff - Brenner potential

De parameter in Tersoff - Brenner potential

e(i) surface lattice vectors in the deformed configuration

E the lagrangian strain tensor

Ê sum of internal energy and kinetic energy per unit mass

as defined by (2.17)

E(i) surface lattice vectors in the reference configuration

F deformation gradient

I(mn) scalar invariants defined by equation (1.5)

l0 equilibrium bond length

P thermodynamic pressure

pk shift vector given by equation (1.30)
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Re parameter in Tersoff - Brenner potential

S parameter in Tersoff - Brenner potential

Ŝ entropy per unit mass

t time

T Stress tensor

Û internal energy per unit mass

V̂ volume per unit mass

ZA defined by (2.11)

Ze defined by (2.16)

Zm defined by (2.13)

Greek letters

β parameter in Tersoff - Brenner potential

δ parameter in Tersoff - Brenner potential

ε Strain tensor

λA Lagrangian multiplier

λe Lagrangian multiplier

λm Lagrangian multiplier

µ(I,mn) defined by equation (1.18)

ξ unit normal to phase interface

σ phase interface

ρ overall mass density

Φ interatomic potential energy

ω(A) mass fraction of species A or ρ(A)/ρ
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Other

dA indicates that an area integration should be performed

dV indicates that a volume integration should be performed.

The integrand will be discontinuous generally at phase

interfaces.

d(v)
dt

derivative following a particle that moves with the mass-

averaged velocity v

d(s)
dt

derivative following a surface material particle that moves

with the surface velocity v(σ)
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