
ON THE RELATIONSHIP BETWEEN MOMENT AND CURVATURE

FOR AN OVINE ARTERY

A Thesis

by

GABRIEL ALEJANDRO REZA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2006

Major Subject: Biomedical Engineering



ON THE RELATIONSHIP BETWEEN MOMENT AND CURVATURE

FOR AN OVINE ARTERY

A Thesis

by

GABRIEL ALEJANDRO REZA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Co-Chairs of Committee, John C. Criscione
K.R. Rajagopal

Committee Member, William H. Hyman

Head of Department, Gerard Cote

August 2006

Major Subject: Biomedical Engineering



iii

ABSTRACT

On the Relationship Between Moment and Curvature

for an Ovine Artery. (August 2006)

Gabriel Alejandro Reza, B.S., Arizona State University

Co–Chairs of Advisory Committee: Dr. John C. Criscione
Dr. K.R. Rajagopal

To find a relationship between moment versus curvature in a traction-free ovine

artery, a pure moment was applied to a radially cut ovine artery (length 50.23 mm).

The curvature of the segment opposite the cut was calculatedand used to calculate

the pre-stresses using a Fung type model. The pre-stresses were then used to cal-

culate the moment. The moment applied during the experimentwas calculated by

recording the twist applied and the stiffness of the wire applying the moment. The

artery was sutured symmetrically with a custom jig, and thensutured to two blocks,

one fixed and one subject to the pure moment. The axial strain was assumed unity.

The Fung model yielded a linear moment versus curvature relationship, as well as

the moment versus curvature relationship for the experiment. Despite both small

and large stretches, the strains felt by the artery were not influential enough to

display a non-linear correlation for moment vs curvature.
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CHAPTER I

INTRODUCTION

All arteries posses some pre-stress. Even from the early stages of development as

a fetus, arteries are continually deforming, growing, and adapting. However, to

account for the growth and adaptation is beyond the scope of this work. Hence,

it is assumed the artery is obtained in a given state, with a particular amount of

pre-stress. A radial cut in a segmented artery with no external loads is referred

to as the traction-free state. The traction-free state of tissues provides meaningful

information which enables a better understanding of the growth and remodeling of

vascular systems at the tissue level. For arteries, the opening angle or curvature

of a radially cut artery enables the pre-stresses in the traction-free state to be cal-

culated. The goals of this experiment are to 1. apply a pure moment to a radially

cut ovine artery, 2. calculate the curvature of the artery segment opposite the cut,

and 3. calculate the correlated pre-stresses. The pre-stresses are calculated using a

Fung type model, and the pre-stresses are used to approximate the moments. Plots

of global moment versus curvature are depicted to show the relationship for this

experiment and for a Fung type model. The arteries will be tested in a passive

saline solution.

A. Specific Aims

Specific Aim 1: Obtain publishable results on the curvature and pre-stresses of a

traction-free state ovine artery. A designed apparatus capable of creating only a

pure moment will be used to test the suspended artery. The radially cut artery will

The journal model is the Journal of Biomechanical Engineering.
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be loaded until they achieve a ring configuration (when the artery appears to be

intact). The device enables the angle of twist to be recorded. The angle of twist

allows one to solve for the moment. With the moment known, we can solve for the

pre-stress in the circumferential direction.

Problem with Aim 1: The experiment will employ only one radial cut; hence the

traction-free state is not truly stress free. Studies have shown that radial cuts fol-

lowed by circumferential cuts release more residual stress[1, 2].

Specific Aim 2: Create publishable figures for the moment versus curvature of the

tested arteries and compare the calculated stresses with data using a Fung model.
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CHAPTER II

BACKGROUND

Residual stress is the stress left in an artery when all external forces are removed.

The zero-stress state is achieved when all residual stresses are relieved via a ra-

dial and/or circumferential cut(s). It has been shown [3, 4,5, 6] that the zero-state

stresses strongly relate to the homeostatic stress distributions in arteries. Chuong

and Fung [3] proposed the study of residual stresses as an indicator of vascular

remodeling. They believed the changes in the zero-stress state of arteries may be a

useful way to better understand the growth and remodeling ofarteries [3].

For arteries, transverse cuts relieve longitudinal stress, and then a radial cut releases

circumferential stress, bending moment, and transverse shear at the cut section[7].

In a study of the zero-stress state Fung and Liu [8] concludedthat the opening angle

varies greatly along the aorta, and a single cut of a short segment yields a unique

zero-stress configuration. However, other experimentalists [9, 10]suggested that

multiple cuts were needed to achieve the stress-free state.To better understand the

need for multiple or single cuts to achieve a stress-free state, [4] studied the residual

stresses of arteries in several configurations neglecting smooth muscle tone. The

configurations were 1) an unloaded intact artery, 2) an artery after a single trans-

mural cut, and 3) the inner and outer rings of an artery created by combined radial

and circumferential cuts. They found that the opening angledepends strongly on

the material properties of the constituents in an artery andnoticed several cuts may

be needed to reach the zero-stress state.

The main tool to find the residual stresses is the opening angle. The opening angle
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can be defined as the angle subtended at the midpoint of the inner circumference by

its two ends[3]. However, in a recent study Criscione et al. [2] observed the curva-

ture across from a radial cut may be a better tool to find residual stress. They claim

the opening angle is a property of the entire cut artery with all of its circumferen-

tial and radial heterogeneities while the curvature opposite the cut has properties

without the edge effects, meaning the radial segments in theregion opposite the

cut remain straight [2]. The proposed experiment will use the curvature across

from a radially cut artery to calculate the pre-stresses andmoment applied to the

artery. The caclulations will be made assuming the artery isa fung elastic and the

calculated global moment versus curvature will be comparedto the experimental

relation of global moment versus curvature.

Fung postulated his model after an experiment in 1967. Awareof the non-linear

stress-strain relation in soft tissues, Fung decided to plot stiffness versus stress

in search of an explaining the non-linear relation [1]. Plotting stiffness versus

stress showed a linear relation, and led to a first order ordinary differential equa-

tion (ODE). The solution to this ODE gave rise to an exponential relation of stress

and strain. However, the conclusion of an exponential relation was based on an

experiment solely on uniaxial extension, and not on three-dimensional data, which

is ideal since soft tissues are anisotropic [1]. In good faith, Fung proposed his ex-

ponential as a three dimensional stress-strain relation, and is highly used today. It

should be noted that there are serious problems with the Fungmodel. The model

is a function of the principal invariants. Criscione [11] has shown the principal in-

variants are highly co-variant, hence, proving they are nota wise choice as a basis.

Also, Walton [12]has shown the Fung model to be unstable unless all coefficients

are unity.
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To the best of my knowledge, there has not been a relation for moment versus

curvature in the literature. However, Yu and Fung [13] conducted a bending exper-

iment to try to find the load-deflection relationship by assuming the arteries (pig

aortas) could be modeled as a simple beam with a force acting in the horizontal

direction perpendicular to the beam. The experiment enforced three point bend-

ing to the artery, two ends were fixed and a suspended wire between the fixtures

created the force. They found the neutral axis of the arteries to be one-third of the

wall thickness from the endothelial. and the stress-strainrelation was fit well by a

linear correlation [13]. Xie and Fung [14] conducted another bending experiment

on aortic strips from rats. They treated the artery as a curved beam, clamped at

one end and free at the other. The free end was attached to a suspended wire and

the deflection was measured. They, again, found the stress-strain correlation best

fit by a linear model, and that large errors in the values of residual strain (up to 50

percent)occur when the wall is treated as homogeneous [14].

In conducting the experiment, it is important to control theenvironmental settings

such as temperature and the physiological salt solution. Due to its viscoelastic

properties, when an artery is cut, it springs open rapidly adcontinues to open

slowly until reaching a constant angle after 20-30 minutes [15, 16]. Therefore, all

measurements should be made after this time interval. Also,the effect of temper-

ature needs to be monitored. Liu and Fung [7] observed no significant change of

residual strain in the range of 25-40◦ Celsius. However,[17] confirmed the result

but in the range of 10-37◦ Celsius. For this experiment, the physiological salt

solution will be held at room temperature (20-25◦ C). In the literature, many ex-

periments on residual stress used different solutions. Hence, there is not a solution



6

agreed upon in the field. Therefore, a phosphate buffered calcium and magnesium

free saline solution will be used for the proposed experiment.
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CHAPTER III

MATERIALS AND METHODS

A. Physiological Salt Solution

A phosphate buffered calcium and magnesium free saline solution was used to

keep the artery passive. 500 mL were used to bathe the artery.

B. Equipment

Dr. Criscione has built an apparatus that applies a pure moment to an artery or any

soft tissue attached to the torque transducer. The device suspends a thin cylindrical

steel wire into a bath filled with a physiological salt solution. An artery is tied to

the torque transducer so that any moment applied to the wire is also applied to the

artery. The angle of twist was recorded.

A Sony digital camera was used with IC Capture(imaging software) to photograph

the arteries prior to and during the experiment.

A jig built by Dr. Criscione and myself was used to symmetrically suture the artery.

C. Artery Preparation

The artery was donated by the College of Veterinary Medicineat Texas A&M Uni-

versity. The artery was handled following Texas A&Ms Laboratory Practices. It

was stored at 5-10◦ Celsius and tested at room temperature (20-25◦C). The speci-

men was an ovine thoracic artery.
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Fig. 1. Bottom view of the artery.

Fig. 2. Side view of the artery. The artery was approximately50.23 mm long.

Before cutting the arteries, a picture was taken of the bottom and side view of the

artery(Fig 1 and 2, respectively). The artery was cut to a length of approximately

50.23 mm using a sharp blade. Blunt dissection of the artery was done using

forceps/tweezers to remove fat and connective tissues. Theartery was kept moist

during dissection.
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Fig. 3. Align the artery in the jig such that a small portion overlaps the front edge

D. Procedure

First, the artery is aligned in the jig (Fig 3). The jig is tightened so the artery can’t

move around, but not tight enough that the edge of the jig willpuncture the artery

(Fig 4). 8 regular sewing needles and a 5 inch string of suture(.5mm diameter)

were threaded through each needle. Using forceps and tweezers, the needles were

then inserted into the 8 holes beneath the artery (Fig 5). Theneedles were carefully

pushed through the artery, one at a time, until the tip of the needle emerged out of

the adventitia (Fig 6). On each artery, the tweezers and forceps were used to pull

on the suture at the tip of the needle. The suture should be pulled until a small

loop forms (Fig 8). 2 5 inch strings were threaded halfway through the loop,and

then the needle was pulled with the forceps (Fig 9). After pulling all the needles

out, the artery should appear as in Fig 10. The strings were pushed aside and the

artery was cut length-wise with a sharp blade on the right side of the needles, with

respect to Figure 7.
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Fig. 4. Tighten the jig by gently pushing the lower half of thejig upwards. Pinch

the artery shut, but not tight enough to puncture the artery.

Fig. 5. Puncture through one side of the artery with a needle,such that the tip

slightly punctures through the lumen. Repeat for all 8 holes.
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Fig. 6. With forceps and tweezers, gently force each needle through the other half

of the artery.

Fig. 7. A side view after all needles are pushed through the artery.
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Fig. 8. Pull on suture at tip of needle until a small loop forms. Thread 2 4 inch

strings halfway through loop.

Fig. 9. Pull needle out and leave a small loop beneath the artery. Do not pull the

strings all the way out.



13

Fig. 10. Picture after all the needles have been pulled out with forceps.

When the artery is taken out of the jig, one side of the adventitia will have four

string ends coming out and the opposite side of the adventitia will have two loops.

Two ends of the same string were pulled through its corresponding hole so that the

loop is now on the lumen side and the other loop remains outside the adventitia, as

in Figure 9. Repeat this for all 8 holes. When done, the arteryshould open up like

a rectangle with 8 loops in the lumen and 8 loops outside the adventitia. For every

other loop on the lumen side, the loop was dismantled by pulling one end of the

loop through the hole. Next, the string was threaded into theloop and the loop was

pulled through. This was repeated for the other 3 sets of loops and strings on the

lumen side. For the other side, the loops needed to be on the lumen side. This was

achieved by threading a 5 inch string of suture through everyother loop. The loops

with the sting were pulled through to create a loop on the lumen side. From here,

the same steps were repeated as the other side. The end resultcan be seen in Fig 11.
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Fig. 11. Picture of artery ready to be attached to the apparatus.

The apparatus was aligned on a flat smooth surface, such that the suspended wire

hung perpendicular to the ground.

The fixed brass block was unscrewed from the apparatus and the8 holes on the

fixed block were aligned with the 8 strings of the artery. The brass block was

placed so the adventitia of the artery was adjacent to the side with countersunk

holes. The artery was secured to the brass block with surgeonknots.

In the experiment, 3 steel reference pins (7mm long) were inserted transmurally

at the bottom of the artery. The reference pins allowed the same points to be ana-

lyzed for curvature andθc calculations. Using forceps and tweezers, the pins were

pushed through the artery when it was upright. This was made easier by standing

the brass block up once the artery is attached. The pins were assured to be approx-

imately the same height by placing the pins in the same threadof the forceps when

placing them through the artery.
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The brass block, with the artery sewn to it, was re-attached to the apparatus. The

8 pieces of suture were aligned into the corresponding 8 holes on the torque block

hanging from the suspended wire, and surgeon knots were tiedto secure the artery

to the torque block. Once completed, the artery was bathed in500 mL of physio-

logical salt solution.

The top of the apparatus has a knob with 24 etchings. The etchings represent a

15 ± 1.5 ◦ change in angle. Once connected, the knob was turned clockwise to

open the artery. The artery was opened until the torque blockand brass block were

almost touching (See Fig 12). This was the starting point of the experiment and

denoted as a configuration of zero degrees. The zero angle wasmarked with a

string taped to the etching, signifying the zero degree angle. Before starting the

experiment, the number of turns of the knob was counted to identify the required

twist to close the artery. Since the artery was thick, a picture was taken every60◦

for analysis (every four turns of the knob). The procedure was done twice, once

for the artery un-halved and when the artery was cut in half (from transverse cut).

The angles ranged from−60◦ to 660◦. It went to−60◦ after the artery was cut in

half and the knob was turned back passed the initial position.

All data analysis was done using Matlab. Programs were written to analyze the

photos and conduct numerical analysis. The code’s explanations are below.

The code entitled ’intact’ was written to solve for the intact inner and outer radius.

The code brings up the image of the intact artery and asks the user to choose three

points on the artery, with the second point being the middle point. From these three

points, the code creates a circle and calculates, after scaling from the magnifica-
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Fig. 12. Starting configuration of the experiment.

tion factor, the radius and center of that circle based on the3 points. However, the

intact radius was not used in the experiment but the inner andouter intact radius

were found to be approximately 6.14±.62 mm and 8.48±.62 mm, respectively.

The code entitled ’thick’ was used to calculate the thickness of the artery. The

code brings up the image of the artery and asks the user to choose 4 points on the

artery. The goal is to create two vectors, one representing the inner radius and

one the outer radius. The starting point of the vectors are indifferent, however,

both vectors need to share the same starting point. The othertwo points should be

placed on the inner and outer edge of the artery. The magnitudes of the vectors are

calculated and the difference multiplied by the scaling factor equates the thickness.

The thickness was calculated on the artery opposite the cut when it was cut free

and traction-free. Thickness was found to be 0.24± 0.1 mm.

The code entitled ’fung stress and JCCfung’ use the method explained in chapter

V to calculate for the pre-stresses. The codes were used to check the sum of the
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Fig. 13. Image in Matlab after all points have been selected.

circumferential stresses were approximately zero and thatthe radial stresses were

almost null at the inner and outer radius, which is expected since the artery is trac-

tion free.

The code entitled ’ image analysis’ was used to analyze the experiment, and to

calculate the curvature,θc, and the top and bottom angle of the torque block. The

code first asks to input (in degrees) the angle which the top isbeing displaced. It

then asks for 2 reference points, followed by two points on the torque block. The

points are made to vectors and then the angle of the torque block is calculated with

respect to the reference vector. The reference pins in the artery are then used to

calculate the angle between the pins. The code asks for four points, two on each

pin, to create vectors so that a subroutine in Matlab can calculate the angle between

the pin vectors. Fig 13 depicts the image in Matlab after all the points have been

selected. The radius of the artery in the configuration is found using code that is

similar to that of the code ’intact’. The curvature is calculated by the relationship

1/r.
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CHAPTER IV

CONSTITUTIVE ASSUMPTIONS AND KINEMATICS

Let X denote a material point on the artery opposite the radial cutin the traction-

free reference configuration. Letx denote a material point on the artery opposite

the radial cut in the current configuration. By a motion, letχ be a one-to-one

mapping that assigns to eachX a pointx in euclidean space:

x = χ(X, t). (4.1)

The deformation gradient (F),right Cauchy-Green tensor (C), and Green-St. Venant

strain tensor (E) are defined as:

F =
∂χ

∂X
, (4.2)

C = FT F, (4.3)

E =
1

2
(C − I). (4.4)

, respectively, where the superscriptT denotes the transpose of the linear trans-

formation. A Fung-type stored energy function was assumed to characterize the

response of the passive ovine artery. Fung proposed the function in 1979 to bet-

ter fit the data, in lieu of a polynomial stored energy function, for iliacs, carotids,

thoracic and abdominal aortas in rabbit arteries. Fung’s stored energy function is

defined as:

W =
1

2
c(eQ

− 1). (4.5)
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whereQ is defined as:

Q =c1E
2

RR + c2E
2

θθ + c3E
2

ZZ + 2c4(ERREθθ) + 2c5(EθθEZZ) + 2c6EZZERR

(4.6)

+ c7(E
2

Rθ + E2

θR) + c8(E
2

θZ + E2

Zθ) + c9(E
2

ZR + E2

RZ).

whereci are material parameters. For this model of our experiment, the mate-

rial constants are taken from values published by Chuong andFung [3] and are:

c = 22.4kPa, c1 = 0.0499, c2 = 1.0672, c3 = 0.4775, c4 = 0.0042, c5 = 0.0903,

c6 = 0.0585. The axial strain,EZZ is assumed unity, henceλz = 1, and theEZZ

component of the Green-Strain is zero. Therefore,c7, c8, andc9 are not needed.

By the same argument,c3, c5, andc6 are extraneous.

For this problem, the artery is assumed to be hyperelastic, homogeneous, incom-

pressible, and anisotropic. The residual stresses were calculated using a Cauchy

stress relation prescribed as:

T = −pI + F
∂W
∂E

FT (4.7)

wherep is the Lagrange multiplier that enforces the constraint of incompressibility,

andI is the identity. Since the deformation will only contain diagonal terms, the

Cauchy stress relation can be written as:

T = −pI + F2
∂W
∂E

(4.8)
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CHAPTER V

MODELING THE EXPERIMENT

The first part of the experiment is to theoretically model andcalculate the radial

and circumferential pre-stresses in an artery; beginning when the radially cut artery

is in a traction-free reference configuration and ending when the artery is closed

to a ring configuration. The model employs a semi-inverse approach to solve for

the radial and circumferential pre-stresses using a cylindrical coordinate system to

seek a mapping(R, Θ, Z) 7→ (r, θ, z) such that the artery undergoes the motion:

r = r(R),

θ =
θcΘ

Θo

, (5.1)

z = ΛZ,

whereθc is the angle in the configuration, andΛ = 1. Figure 14 depicts the

orientation of the cut artery. The outward unit normal is ’a’, the radial axis is ’b’,

the circumferential axis is ’c’ and the z axis is out of the page. The artery will be

considered to be axis-symmetric and have the following configuration:

For this mapping in cylindrical coordinates the deformation gradient is:

a

b

c

Fig. 14. Depiction of radially cut artery in cylindrical coordinates and outward nor-

mal vector. The outward unit normal of cut edge is (a), the radial axis (b),

and the circumferential axis(c)The z-axis is coming out of the page.
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[F] =













∂r
∂R

0 0

0 θcr
ΘoR

0

0 0 1













(5.2)

From the incompressibility assumption,

det[F] = 1 (5.3)

and
∂r

∂R
=

ΘoR

θc.r
(5.4)

The reference volume is

V olref = (R2

o − R2

i )ΘoL, (5.5)

and the current volume is

V olcur = (r2

o − r2

i )θcL, (5.6)

wherero is obtained by setting the volume of the artery in the reference equal to

the volume in the current configuration.

ro =

√

θc(θcr
2
i + ΘoR2

o − ΘoR
2
i )

θc

(5.7)

MeasuringRo, Ri, andri will allow ro to be calculated.

The right Cauchy-Green stretch tensor and Green strain tensor have the following

representations:
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(5.8)

The equations for the radial and circumferential residual stresses take the form,

respectively:

Trr = −p + (
ΘoR

θcr
)2

∂W

∂ERR

, Tθθ = −p + (
θcr

ΘoR
)2

∂W

∂EΘΘ

(5.9)

The radial component of the equilibrium equation in cylindrical coordinates re-

duces to:
∂Trr

∂r
+

Trr − Tθθ

r
= 0 (5.10)

Integrating equation(5.10) and remembering the artery is traction-free, shows the

stress in the radial direction is:

Trr(r) =

∫ ro

ri

(Tθθ − Trr)
1

r
dr (5.11)

Now thatTrr(r) is known, as well as∂W
∂ERR

and(ΘoR
θcr

)2, the Lagrange multiplier

can be solved. The Lagrange multiplier takes the form:

p(r) = (
ΘoR

θcr
)2

∂W

∂ERR

− Trr(r) (5.12)

With the Lagrange multiplier known, it is now possible to solve for the residual

stresses. The code titled Fung Stress in the Appendix followed this method to solve

for the radial and circumferential residual stresses. Oncethe residual stresses are

calculated, the next step is to calculate for the moment. Thetraction vector is the



23

stress transposed operating on the outward unit normal.

t = TT n (5.13)

In my case,the traction takes the form

t =













Trr Trθ Trz

Tθr Tθθ Tθz

Tzr Tzθ Tzz
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

















0

−eθ

0













= −













Trθ

Tθθ

Tzθ













(5.14)

Since the experiment is traction-free, it implies

∫

Trθda = 0,

∫

Tθθda = 0,

∫

Tzθda = 0 (5.15)

The sum of the moments is zero since the the artery is in equilibrium, hence

∑

M = Medge + Mapplied = 0 (5.16)

From the general moment equation, we findMedge to be

Medge =

∫

rer × tda =

∫

rer × (−Trθ(r)er − Tθθ(r)eθ − Tzθ(r)ez)da (5.17)

= −

∫ ∫

rTθθ(r)drdzez +

∫ ∫

rTzθ(r)drdzeθ.

Since the device is weighted by a torque transducer, the stress in theTzθ will be

assumed negligible and thus I have an equation that will correlate moment to cir-

cumferential residual stress, and, hence, by equation 5.16the moment applied is

Mapplied = L

∫ ro

ri

rTθθ(r)dr. (5.18)

In the experiment, the angle of twist will be recorded. The moment is related
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to the angle of twist by the general relation:

M = κ△θ, (5.19)

where△θ is the twist and is defined as

△θ = θtop − θbottom, (5.20)

andκ is the stiffness of the wire. The stiffness of the wire was found experimen-

tally. The stiffness of the wire can be found by the correlation:

ω =

√

κ

Izz

(5.21)

whereω is the natural frequency andIzz is the second moment of inertia about the

z-axis. The equation forIzz is

Izz = m
r2

2
(5.22)

where m is the mass of the solid cylinder and r is the radius of the cylinder. Izz

was found simply by weighing the solid cylinder and the screwfixing the wire

to the cylinder, and by measuring the radius of the cylinder.ω was found using

IC capture. A video was created in order to count how many times a marker on

the cylinder crossed a referential axis after a twist was applied to the cylinder.

The number of times it crossed the referential axis was divided by 2 times the

duration of the mini-experiment(in seconds).Izz andκ were then plugged back

into equation (5.19) to for the moment.
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CHAPTER VI

RESULTS

All the results are from a single thoracic ovine artery. The intact artery had an

inner and outer intact radius of 6.14± .62 mm and 8.48± .62 mm, respectively.

The accuracy of measurements were found by analyzing the cut-free traction-free

artery a total of six times. From this analysis, the standarddeviation of the mea-

sured curvature is± 0.001 1/mm, bottom angle± .0088 rad, top angle± .026 rad,

θ± 0.99◦, △θ± .088 rad, thickness± .1, and moment± .025 mN·mm.

Solving equations 5.21 and 5.22 yielded the values ofκ to be 2.83 mN·mm, and

IZZ to be 4.36353e-06, wherer=.0126 m andm=54.65 g.

Table I is the data measured for the artery before the transverse cut. The first row

contains the measured values for the artery when it was cut free and traction-free,

and is denoted as the reference configuration. Hence,Θo is fixed constant at 30◦ in

the calculations. The top and bottom angle are equal since the artery is cut free and

there is no counter moment applied. The artery was cut free after the experiment

was completed and the knob at the top of the apparatus was turned approximately

660◦ for the experiment. Note, the moment is zero in the referenceconfiguration

and should be zero again between 300 and 360◦. The measurements at 300 and

360◦ are probably off due to human error.

Table II is the data measured for the artery after a transverse cut. The first row

indicates all the values for the reference configuration;Θo was fixed at 31◦ for all

calculations. The zero moment occurred between 240 and 300◦.
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Table I. Data for the un-halved artery.
Angle ◦ Curvature (1/m) Top displacement (rad) θ◦ Bottom displacement (rad)△θ (rad) Moment (mN· mm)

660 0.043 11.51 31 11.516 0 0

0 -0.042 0 52 2.364 -2.364 -6.69

60 -0.024 1.04 38 2.756 -1.708 -4.83

120 -0.019 2.09 26 3.388 -1.288 -3.65

180 0.016 3.14 7 4.408 -1.264 -3.57

240 0.030 4.18 19 4.764 -0.572 -1.62

300 0.023 5.23 22 5.124 0.108 0.31

360 0.053 6.28 41 5.556 0.732 2.07

420 0.079 7.33 61 6.026 1.308 3.70

480 0.098 8.37 71 6.572 1.808 5.11

540 0.123 9.42 87 7.056 2.364 6.70

600 0.148 10.47 76 7.624 2.848 8.06

660 0.171 11.51 65 8.224 3.288 9.32

Table II. Data for the halved artery.
Angle ◦ Curvature (1/m) Top displacement (rad) θ◦ Bottom displacement (rad)△θ (rad) Moment (mN· mm)

660 0.044 11.51 30 11.516 0 0

-60 -0.063 -1.04 66 2.064 -3.116 -8.82

0 -0.045 0 50 2.464 -2.464 -6.98

60 -0.030 1.04 37 3.016 -1.964 -5.57

120 0.001 2.09 3. 4.110 -2.016 -5.71

180 0.015 3.14 9 4.616 -1.472 -4.16

240 0.027 4.18 19 5.008 -0.816 -2.31

300 0.045 5.23 34 5.400 -0.164 -0.47

360 0.043 6.28 30 5.308 0.972 2.75

420 0.066 7.33 53 5.864 1.472 4.16

480 0.094 8.37 71 6.472 1.908 5.39

540 0.120 9.42 89 7.096 2.332 6.59

600 0.150 10.47 74 7.696 2.772 7.85

660 0.170 11.51 62 8.200 3.316 9.39

Table III has the calculated values for the curvature and moment of the artery. The

input to the calculations were taken from the measured data.The reference and

inner radius were found using the reciprocal of the reference and configuration

curvature. Configuration curvature refers to the curvatureat a specific angle (the
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column) from table I and II. The outer reference and configuration radius were

found using by adding the thickness of the artery in the cut-free, traction-free con-

figuration to the reference and inner radius. The code ”thick” found the thickness

to be 2.4± .1 mm. The calculations for the theoretical model revealed to be equiv-

alent (after accounting for significant figures) before and after the transverse cut.

Note, the data had to be scaled in order for the moments to be onthe same or-

der. Thec in fung’s model was multiplied by 10 since the coefficients found by

Chuong and Fung [3] were determined from data of a rabbit’s thoracic aorta, a

much smaller and thinner specimen.

Figs 15 and 16 depict the experimental data on the relationship between moment

and curvature for the artery un-halved and halved, respectively. Figs 17 and 19,

show the net circumferential stresses are approximately zero when the artery is un-

halved and halved, respectively. Figs 18 and 20 show the calculated relationship

for moment vs curvature. The calculated values did not yieldthe same moment

as the experiment, but this is likely due to using constants that were found for a

smaller artery.
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Fig. 15. Experimental moment vs curvature relationship of the un-halved artery.
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Fig. 16. Experimental moment vs curvature relationship of the halved artery.
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Fig. 17. Sum of the circumferential force× thickness in the un-halved artery. No-

tice the sum is nearly null, which is expected since the artery is trac-

tion-free.
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Fig. 18. Theoretical moment vs curvature relationship of the un-halved artery.



30

0.994 0.996 0.998 1 1.002 1.004 1.006 1.008 1.01
−12

−10

−8

−6

−4

−2

0

2

4

6
x 10

−3

su
m

 o
f h

oo
p 

st
re

ss
*t

hi
ck

ne
ss

hoop stretch of middle

Fig. 19. Sum of the circumferential force× thickness in the halved artery. Notice

the sum is nearly null, which is expected since the artery is traction-free.
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Fig. 20. Theoretical moment vs curvature relationship of the halved artery.
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Table III. Theoretical data for halved and un-halved artery. The transverse cut did

not significantly change the moment or curvature.
Curvature (1/mm) Moment (mN· mm)

-.090 -4.25

-.082 -3.93

-.073 -3.61

-.065 -3.30

-.056 -2.99

-.047 -2.69

-.038 -2.39

-.029 -2.09

-.019 -1.80

-.099 -1.51

0 -1.22

.010 -.930

.020 -.642

.031 -.354

.042 -.067

.053 .220

.064 .507

.076 .795

.088 1.08

.100 1.37

.113 1.66

.126 1.95

.140 2.25

.154 2.55

.169 2.85

.184 3.15
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CHAPTER VII

DISCUSSION AND CONCLUSION

The experimental moment versus curvature and the Fung moment versus curva-

ture both displayed a linear relation to the applied deformation. Even after the

transverse cut, the moment did not change significantly fromconfiguration to con-

figuration. In the Fung model, the moment versus curvature relation was the same

before and after the cut. However, note that in the experimental data, after the

transverse cut a rotation between 300 and 360◦ was needed to pass the zero mo-

ment while a rotation between 240 and 300◦ was needed to pass the zero moment

when the artery was intact. This observation is counter intuitive, however, it is

feasible that the transverse cut did not alleviate the axialload since the artery is

sutured to two blocks, or it could be due to human error.

The transverse cut introduced new edges in the artery, however, edge effects did

not influence the outcome. The moment remained the same before and after the

transverse cut. Hence, the plane strain was the same before and after the cut, and

the new edges introduced had the same effect as the initial edges.

A radial cut along the artery should relieve most of the circumferential stress. If

completely relieved and no load is applied in theθ direction, then the sum of the

stresses in theθ direction should equate to zero. Fig 17 and 19 show the sum of the

stresses to be zero. The× on the plot indicate where the circumferential stretch

is unity. The o are the initial calculated points through thethickness at where the

neutral axis is located and the• is where the code converged as the neutral axis.

The plots imply that the neutral axis is closer to the inner wall since the initial cal-
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culated points are approximately the same as the neutral axis when in compression.

The plots infer that the neutral axis is close to the calculated point when the artery

is in compression and farther away when the artery is in tension. This idea supports

Yu and Fung [13] whom found the neutral axis of the arteries tobe one-third of the

wall thickness from the endothelial. It is known that in physiological conditions,

the lumen is in compression and the adventitia is in tension.Also, it is interesting

to note that Fig 17 and 19 have relatively the same linear slope, indicating a linear

stress-strain relation.

The artery was assumed to be hyperelastic, homogeneous, incompressible, and

isotropic for the experiment. It is important to realize these assumptions are not

realistic, but are used to simplify the problem, and to get initial data. It is well

known that the artery is inhomogeneous. The three distinct layers known are the

intima, media, and adventitia. The hyperelastic assumption assumes the stress can

be derived from a potential. However, the potential being used is postulated and

not actually derived, hence the uniqueness is hard to verify. In general, soft tis-

sues are anisotropic, displaying different material responses along different fiber

directions when subject to a perturbation. Better assumption will be made once

material laws are discovered for different types of soft tissues, but until then, these

types of assumption aid to gain insight on the mechanical properties of soft tissues.

This experiment has potential to be expanded upon. In this study, the artery was

held fixed at an axial stretch of unity. It would be interesting to make adjustments

to the apparatus so axial stretch can be incorporated into the experiment. It would

be ideal to conduct the experiment at an axial stretch closerto a physiological pa-

rameter, such as an axial stretch of 1.6. Also, this experiment dealt with relatively
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small strains. If possible, it would be interesting to applybigger strains, and see if

the global moment versus curvature is non-linear. Lastly, in order to see a trend,

more arteries need to be tested to validate the linear trend observed.

In conclusion, the Fung model yielded a linear global momentversus curvature

relationship, as well as the global moment versus curvaturerelationship for the ex-

periment. Despite both small and large stretches, the strains felt by the artery were

not influential enough to display a non-linear correlation for moment vs curva-

ture. These results support [13, 14] in which they observed that linear constitutive

equations govern the mechanical properties of the vessel wall in the small strain

region.
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APPENDIX A

PICTURES OF EXPERIMENT

The following pictures show the process of the experiment, starting from the zero

degree configuration all the way to 660 degrees with 60 degreeincrements. The

very last picture is the artery in the cut free traction-freestate. The first several pic-

tures are for the artery before the transverse cut. Once the pictures show the artery

close, the next picture is when it is in the initial configuration after the transverse

cut. Note the initial position after the transverse cut is at-60 degrees. The last

picture is the reference configuration.

Fig. 21. Un-halved artery at 0◦.

Fig. 22. Un-halved artery at 60◦.
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Fig. 23. Un-halved artery at 120◦.

Fig. 24. Un-halved artery at 180◦.

Fig. 25. Un-halved artery at 240◦.

Fig. 26. Un-halved artery at 300◦.
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Fig. 27. Un-halved artery at 360◦.

Fig. 28. Un-halved artery at 420◦.

Fig. 29. Un-halved artery at 480◦.

Fig. 30. Un-halved artery at 540◦.
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Fig. 31. Un-halved artery at 600◦.

Fig. 32. Un-halved artery at 660◦.

Fig. 33. Halved artery at 0◦.

Fig. 34. Halved artery at 60◦.
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Fig. 35. Halved artery at 120◦.

Fig. 36. Halved artery at 180◦.

Fig. 37. Halved artery at 240◦.

Fig. 38. Halved artery at 300◦.
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Fig. 39. Halved artery at 360◦.

Fig. 40. Halved artery at 420◦.

Fig. 41. Halved artery at 480◦.
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Fig. 42. Halved artery at 540◦.

Fig. 43. Halved artery at 600◦.

Fig. 44. Halved artery at 660◦.

Fig. 45. Halved artery at reference configuration◦.
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APPENDIX B

CODES

<div class="moz-text-flowed" style="font-family: -moz-fixed">% function fung = 

fungstress2(ri)

close all; 

clear all; 

clc;

syms rho ri ra 

global r_nuet theta theta0 Ri Ra 

%List of given constants 

c = 22.4; % in kPa 

c1= 0.0499; 

c2= 1.0672; 

c3= 0.4775; 

c4= 0.0042; 

c5= 0.0903; 

c6= 0.0585; 

%List of defined variables 

% Ri=22.4215e-3; %in meters for cut artery 

Ri = 22.9885e-3; %in meters for uncut artery 

% ra=4.98e-3; %in meters 

% Ra = 24.8215e-3; % in meters for cut artery 

Ra = 25.3885e-3; % in meters for uncut artery 

% ri=1.39e-3; %in meters 

lambda=1; 

theta = (114.6*pi/180); 

theta0=30.9487*pi/180;

format long 

% R = sqrt(theta0*(theta0*Ri^2 + theta*rho^2-theta*ri^2)) / theta0; 

% Ra = subs(R,'rho',ra) 

% rmid = (theta0*Ra) / theta; 

TH = Ra - Ri 

% r_mid = [rmid+.1*th rmid rmid-.1*th] 

% r = sqrt(theta*(theta0*Ra^2 - theta0*Ri^2 + theta*ri^2)) / theta 

ri = (1 / .1717)*1e-3 % in meters 

ra = sqrt(theta*(theta0*Ra^2 - theta0*Ri^2 + theta*ri^2)) / theta 

th = ra-ri 

mid = (ra+ri)/2 

r_mid = [mid+.1*th mid mid-.1*th] 

for i= 1:length(r_mid) 

ri(i) = sqrt(theta*(theta0*Ri^2 - theta0*Ra^2 + theta*r_mid(i)^2)) / theta; 

end

% ri = eval(ri) 
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for i = 1:3 

     ra(i) = sqrt(theta*(theta0*Ra^2 - theta0*Ri^2 + theta*r_mid(i)^2)) /

theta; 

end

% ra = eval(ra) 

for j = 1:3 

% Using the given variables, the deformation gradient is calculated as 

% follows: 

% F = [(theta0*R)/(theta*rho) 0 0; 0 (theta*rho)/(theta0*R) 0; 0 0 1]; 

F11 = (theta0*Ra)/(theta*rho); 

F22 = (theta*rho)/(theta0*Ra); 

F33 = lambda; 

% Green Strain 

Err = 0.5*[F11^2- 1]; 

Ett = 0.5*[F22^2- 1]; 

Ezz = 0.5*[F33^2- 1]; 

Q =c1*(Err^2)+c2*(Ett^2)+c3*(Ezz^2)+2*c4*Err*Ett+2*c5*Ett*Ezz+2*c6*Ezz*Err; 

% W= c(exp(Q)-1); 

dWrr= [c*(exp(Q)*(2*c1*Err+2*c4*Ett+2*c6*Ezz))];

dWtt= [c*(exp(Q)*(2*c2*Ett+2*c4*Err+2*c5*Ezz))];

dWzz= [c*(exp(Q)*(2*c3*Ezz+2*c5*Ett+2*c6*Err))]; 

%

rhoint(j,:)=linspace(ri(j),ra(j),100); 

int1=vpa((F22^2*dWtt-F11^2*dWrr)*(rho)^(-1),10); 

int2=vectorize(int1); 

for i=1:length(rhoint) 

Trr(j,i)=quadl(int2,ri(j),rhoint(j,i)); 

end

Trr_x = F11^2*dWrr; 

Trrx(j,:) = subs(Trr_x,'rho',rhoint(j,:)); 

lm(j,:) = -Trr(j,:) + Trrx(j,:); 

Ttt_x = F22^2*dWtt; 

Tttx(j,:) = subs(Ttt_x,'rho',rhoint(j,:)); 

Ttt(j,:) = -lm(j,:) + Tttx(j,:); 

Trr(j,:) = -lm(j,:) + Trrx(j,:); 

end

for j = 1:3 

figure

plot(rhoint(j,:),Trr(j,:),'k') 
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hold on 

plot(rhoint(j,:),Ttt(j,:),'m') 

y(j,:)= (rhoint(j,:)-r_mid(j)).*(Ttt(j,:)); 

Moment(j) = trapz(rhoint(j,:),y(j,:)) 

Force(j)=trapz(rhoint(j,:),Ttt(j,:)) 

end

eps = .02 * theta0 

%for j = 1:length(ri) 

%    for k = 1:length(rhoint) 

%        error(j,k) = abs(Ttt(j,k) - 0); 

%        if error(j,k) < eps 

%            r_zero(j) = rhoint(j,k) 

%           break 

%        end 

%    end 

%end

if Force(2) > 0 

    coefs=polyfit(r_mid(2:3),Force(2:3),1); 

    r_nuet=-coefs(2)/coefs(1) 

end

if Force(2) < 0 

    coefs=polyfit(r_mid(1:2),Force(1:2),1); 

    r_nuet=-coefs(2)/coefs(1) 

end

if Force(2) == 0; 

    r_nuet=r_mid(2) 

end

r_mid=r_nuet; 

th = Ra - Ri 

r_mid = [r_mid+.01*th r_mid r_mid-.01*th] 

% r = sqrt(theta*(theta0*Ra^2 - theta0*Ri^2 + theta*ri^2)) / theta 

for i= 1:3 

ri(i) = sqrt(theta*(theta0*Ri^2 - theta0*Ra^2 + theta*r_mid(i)^2)) / theta; 

end

%ri = eval(ri) 

for i = 1:3 

     ra(i) = sqrt(theta*(theta0*Ra^2 - theta0*Ri^2 + theta*r_mid(i)^2)) /

theta; 

end

for j = 1:length(ri) 
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% Using the given variables, the deformation gradient is calculated as 

% follows: 

% F = [(theta0*R)/(theta*rho) 0 0; 0 (theta*rho)/(theta0*R) 0; 0 0 1]; 

F11 = (theta0*Ra)/(theta*rho); 

F22 = (theta*rho)/(theta0*Ra); 

F33 = lambda; 

% Green Strain 

Err = 0.5*[F11^2- 1]; 

Ett = 0.5*[F22^2- 1]; 

Ezz = 0.5*[F33^2- 1]; 

Q =c1*(Err^2)+c2*(Ett^2)+c3*(Ezz^2)+2*c4*Err*Ett+2*c5*Ett*Ezz+2*c6*Ezz*Err; 

% W= c(exp(Q)-1); 

dWrr= [c*(exp(Q)*(2*c1*Err+2*c4*Ett+2*c6*Ezz))];

dWtt= [c*(exp(Q)*(2*c2*Ett+2*c4*Err+2*c5*Ezz))];

dWzz= [c*(exp(Q)*(2*c3*Ezz+2*c5*Ett+2*c6*Err))]; 

%

rhoint(j,:)=linspace(ri(j),ra(j),100); 

int1=vpa((F22^2*dWtt-F11^2*dWrr)*(rho)^(-1),10); 

int2=vectorize(int1); 

for i=1:length(rhoint) 

Trr(j,i)=quadl(int2,ri(j),rhoint(j,i)); 

end

Trr_x = F11^2*dWrr; 

Trrx(j,:) = subs(Trr_x,'rho',rhoint(j,:)); 

lm(j,:) = -Trr(j,:) + Trrx(j,:); 

Ttt_x = F22^2*dWtt; 

Tttx(j,:) = subs(Ttt_x,'rho',rhoint(j,:)); 

Ttt(j,:) = -lm(j,:) + Tttx(j,:); 

Trr(j,:) = -lm(j,:) + Trrx(j,:); 

end

for j = 1:length(ri) 

figure

plot(rhoint(j,:),Trr(j,:),'k') 

hold on 

plot(rhoint(j,:),Ttt(j,:),'m') 

y(j,:)= (rhoint(j,:)-r_mid(j)).*(Ttt(j,:)); 

Moment(j) = trapz(rhoint(j,:),y(j,:)) 

Force(j)=trapz(rhoint(j,:),Ttt(j,:)) 

end

eps = .02 * theta0 

%for j = 1:length(ri) 
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%    for k = 1:length(rhoint) 

%        error(j,k) = abs(Ttt(j,k) - 0); 

%        if error(j,k) < eps 

%            r_zero(j) = rhoint(j,k) 

%           break 

%        end 

%    end 

%end

figure

if Force(2) > 0 

    coefs=polyfit(r_mid(2:3),Force(2:3),1); 

    r_nuet=-coefs(2)/coefs(1) 

end

if Force(2) < 0 

    coefs=polyfit(r_mid(1:2),Force(1:2),1); 

    r_nuet=-coefs(2)/coefs(1) 

end

if Force(2) == 0; 

    r_nuet=r_mid(2) 

end

plot(r_mid,Force);hold on; plot(r_nuet,0,'x') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%

if exist('5_29momcurv_uncut.mat') 

    load 5_29momcurv_uncut 

    config=size(data_struct,1)+1; 

else

    config=1; 

    data_struct=[]; 

end

ri = sqrt(theta*(theta0*Ri^2 - theta0*Ra^2 + theta*r_nuet^2)) / theta; 

ra = sqrt(theta*(theta0*Ra^2 - theta0*Ri^2 + theta*r_nuet^2)) / theta; 

% Using the given variables, the deformation gradient is calculated as 

% follows: 

% F = [(theta0*R)/(theta*rho) 0 0; 0 (theta*rho)/(theta0*R) 0; 0 0 1]; 

F11_n = (theta0*Ra)/(theta*rho); 

F22_n = (theta*rho)/(theta0*Ra); 

F33_n = lambda; 

% Green Strain 

Err_n = 0.5*[F11_n^2- 1]; 
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Ett_n = 0.5*[F22_n^2- 1]; 

Ezz_n = 0.5*[F33_n^2- 1]; 

Q_n

=c1*(Err_n^2)+c2*(Ett_n^2)+c3*(Ezz_n^2)+2*c4*Err_n*Ett_n+2*c5*Ett_n*Ezz_n+2*

c6*Ezz_n*Err_n;

% W= c(exp(Q)-1); 

dWrr_n= [c*(exp(Q)*(2*c1*Err_n+2*c4*Ett_n+2*c6*Ezz_n))]; 

dWtt_n= [c*(exp(Q)*(2*c2*Ett_n+2*c4*Err_n+2*c5*Ezz_n))];

dWzz_n= [c*(exp(Q)*(2*c3*Ezz_n+2*c5*Ett_n+2*c6*Err_n))]; 

rhoint=linspace(ri,ra,100); 

int1_n=vpa((F22_n^2*dWtt_n-F11_n^2*dWrr_n)*(rho)^(-1),10); 

int2_n=vectorize(int1_n);

for i=1:length(rhoint) 

Trr_n(i) =quadl(int2_n,ri,rhoint(i)); 

end

Trr_xn = F11_n^2*dWrr_n; 

Trrx_n = subs(Trr_xn,'rho',rhoint); 

lm_n = -Trr_n + Trrx_n; 

Ttt_xn = F22_n^2*dWtt_n; 

Tttx_n = subs(Ttt_xn,'rho',rhoint); 

Ttt_n = -lm_n + Tttx_n; 

Trr_n = -lm_n + Trrx_n; 

figure

plot(rhoint,Trr_n,'k') 

hold on 

plot(rhoint,Ttt_n,'m') 

y_n= (rhoint-r_nuet).*(Ttt_n); 

Moment = trapz(rhoint,y_n) 

curvature = 1/ r_nuet 

Force=trapz(rhoint,Ttt_n)

temp = input('save?? Y or N') 

if strcmp(temp,'Y') 

data_struct=[data_struct; curvature Moment Force] 

save 5_29momcurv_uncut data_struct 

save 5_29momcurv_uncut.txt data_struct -ascii 

elseif strcmp(temp,'N') 

    data_struct=[data_struct] 
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end

C = data_struct(:,1); 

M = data_struct(:,2); 

F = data_struct(:,3); 

% figure 

% plot(curvature, moment,'c') 

</div>



52

<div class="moz-text-flowed" style="font-family: -moz-fixed">clear all 

close all 

%List of given constants for Fung model 

c = 22.4; % in kPa 

c1= 0.0499; 

c2= 1.0672; 

c3= 0.4775; 

c4= 0.0042; 

c5= 0.0903; 

c6= 0.0585; 

%List of defined variables 

Ri=22.4215e-3; %Inner ref radius in meters for cut artery (intact Ri =

22.9885e-3)

Ra = 24.8215e-3; % Outer ref radius in meters for cut artery (intact Ra =

25.3885e-3)

% Ri =  22.9885e-3 

% Ra = 25.3885e-3 

Lngth=50.23e-3;      %1.6*(0.0254); % 1.6 inches times 0.0254 m per inch 

lamz=1; %axial stretch set to unity 

Q_tot=30.9487*pi/180; %total ref angel 

H_tot=Ra-Ri; %total thickness 

R_mid=0.5*(Ra+Ri); %ref radius of mid 

A_mid=Q_tot*R_mid; %ref arc length of mid 

kap_mid_vec=(-0.1:0.01:0.15)*1000; %curvature of mid shell (units of m^-1)  

for differenct configs 

q_tot_vec=kap_mid_vec*A_mid; %total angle of the configs 

%this program models the wall as 100 thin shells with i indicating nodes 

%between the shells (goes from i=1 on inner to i=101 on outer boundary). 

%The shells themselves are indicated by j with j=1 the inner shell and 

%j=100 as the outer shell. 

R_i=(0:100)*H_tot/100+Ri; %ref radius between the shells 

A_i=Q_tot*R_i; %ref arc length between the shells 

R_j=0.5*(R_i(1:100)+R_i(2:101)); %ref radius of shells 

H_j=-R_i(1:100)+R_i(2:101); % ref thickness of shells 

A_j=Q_tot*R_j; % ref arc length of shells 

kap_in=0*q_tot_vec; %initialize curvature data vector 

M=0*q_tot_vec; %initialize Moment data vector 

%loop over the configurations given by the q_tot_vec 
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for i_cnfg = 1:max(size(M)) 

    i_cnfg %displays i_cnfg value on command window line 

    figure(1);plot(1,0,'+');hold on %place a plus symbol at the point  

indicating

    %unit hoop stretch for middle and zero net hoop stress 

    %this figure will be used to visualize convergenge on a config with the 

    %correct q_tot and nearly zero net hoop stress 

    ylabel('sum of hoop stress*thickness') 

    xlabel('hoop stretch of middle') 

    q_tot=q_tot_vec(i_cnfg); %the total angle of current config 

    lamq_mid=1; % start with hoop stretch of 1 for middle 

    a_mid=lamq_mid*A_mid; %arc length of middle 

    lamq_mid_1=lamq_mid; %save value of first guess for lamq_mid in the  

variable lamq_mid_1 

        a_i=sqrt(a_mid^2-(A_mid^2-A_i.^2)*q_tot/Q_tot); %arc length between

the shells 

        a_j=0.5*(a_i(1:100)+a_i(2:101)); %arc length at center of shells 

        kap_i=q_tot./a_i; %curvature between the shells 

        kap_j=q_tot./a_j; %curvature at center of shells 

        h_j=A_j.*H_j./a_j; %thickness of shells 

        lamq_i=a_i./A_i; %hoop stretch between the shells 

        lamq_j=a_j./A_j; %hoop stretch at the center of shells 

        %calculate strain components at nodes between shells 

        Err = 0.5*[lamq_i.^(-2)/lamz^2- 1]; 

        Eqq = 0.5*[lamq_i.^2- 1]; 

        Ezz = 0.5*[lamz^2- 1]; 

        %calculate derivatives of W at nodes between shells 

        Q

=c1*(Err.^2)+c2*(Eqq.^2)+c3*(Ezz.^2)+2*c4*Err.*Eqq+2*c5*Eqq.*Ezz+2*c6*Ezz.*Er

r;

        % W= c(exp(Q)-1); 

        dWrr_i= [c*(exp(Q).*(2*c1*Err+2*c4*Eqq+2*c6*Ezz))]; 

        dWqq_i= [c*(exp(Q).*(2*c2*Eqq+2*c4*Err+2*c5*Ezz))]; 

        dWzz_i= [c*(exp(Q).*(2*c3*Ezz+2*c5*Eqq+2*c6*Err))]; 

        %calculate the components of extra stress at the nodes between 

        %shells (i) and at the center of shells (j) 

        Trr_ie=dWrr_i./(lamz^2*lamq_i.^2); 

        Tqq_ie=dWqq_i.*lamq_i.^2; 

        Tzz_ie=dWzz_i*lamz^2; 

        Trr_je=0.5*(Trr_ie(1:100)+Trr_ie(2:101)); 
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Tqq_je=0.5*(Tqq_ie(1:100)+Tqq_ie(2:101));

        Tzz_je=0.5*(Tzz_ie(1:100)+Tzz_ie(2:101)); 

        %get dTrr/dr for each shell 

        dTrrdr_j=kap_j.*(Tqq_je-Trr_je); 

        Trr_i=0*Trr_ie; 

        %get Trr for node (si+1) based on Trr for node (si) and the 

        %dTrr/dr for the shell between node (si) and node (si+1) 

        for si=1:100 

            Trr_i(si+1)=dTrrdr_j(si)*h_j(si)+Trr_i(si); 

        end 

        %get pressure like Lagrange multiplier ppress 

        ppres=Trr_ie-Trr_i; 

        %calculate the stresses 

        Tqq_i=-ppres+Tqq_ie; 

        Tzz_i=-ppres+Tzz_ie; 

        Trr_j=0.5*(Trr_i(1:100)+Trr_i(2:101)); 

        Tqq_j=0.5*(Tqq_i(1:100)+Tqq_i(2:101)); 

        Tzz_j=0.5*(Tzz_i(1:100)+Tzz_i(2:101));

        %sum the hoop stress times the shell thickness 

        sTqq=sum(Tqq_j.*h_j) 

        sTqq_1=sTqq; 

        plot(lamq_mid,sTqq_1,'x');hold on 

    % while loop to converge on config with correct q_tot but with a net 

    % hoop stress that is nearly null 

    while abs(sTqq) > 0.00001 

        lamq_mid_1=lamq_mid; %save prior value of lamq_mid 

        sTqq_1=sTqq; %save prior value of sTqq 

        y_shift=-sTqq_1/100; %divide the net by the number of shells to get  

shift 

        % of each shell to yield null net hoop stress then find the lamq 

        % shift that would give the y-shift assuming Tqq versus shell 

        % number was a linear relation with slope given by the values of 

        % the 50 and 51st shells 

lamq_shift=y_shift*(lamq_j(51)-lamq_j(50))/(Tqq_j(51)*h_j(51)-Tqq_j(50)*h_j(50));

        lamq_mid=lamq_mid+lamq_shift; %shift lamq of middle 

        a_mid=lamq_mid*A_mid; %recalculate arc length of middle 

        lamq_mid_2=lamq_mid; %save this new value of arc length 
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a_i=sqrt(a_mid^2-(A_mid^2-A_i.^2)*q_tot/Q_tot); %arc length between

the shells 

        a_j=0.5*(a_i(1:100)+a_i(2:101)); %arc length at center of shells 

        kap_i=q_tot./a_i; %curvature between the shells 

        kap_j=q_tot./a_j; %curvature at center of shells 

        h_j=A_j.*H_j./a_j; %thickness of shells 

        lamq_i=a_i./A_i; %hoop stretch between the shells 

        lamq_j=a_j./A_j; %hoop stretch at the center of shells 

        %calculate strain components at nodes between shells 

        Err = 0.5*[lamq_i.^(-2)/lamz^2- 1]; 

        Eqq = 0.5*[lamq_i.^2- 1]; 

        Ezz = 0.5*[lamz^2- 1]; 

        %calculate derivatives of W at nodes between shells 

        Q

=c1*(Err.^2)+c2*(Eqq.^2)+c3*(Ezz.^2)+2*c4*Err.*Eqq+2*c5*Eqq.*Ezz+2*c6*Ezz.*Er

r;

        % W= c(exp(Q)-1); 

        dWrr_i= [c*(exp(Q).*(2*c1*Err+2*c4*Eqq+2*c6*Ezz))]; 

        dWqq_i= [c*(exp(Q).*(2*c2*Eqq+2*c4*Err+2*c5*Ezz))]; 

        dWzz_i= [c*(exp(Q).*(2*c3*Ezz+2*c5*Eqq+2*c6*Err))]; 

        %calculate the components of extra stress at the nodes between 

        %shells (i) and at the center of shells (j) 

        Trr_ie=dWrr_i./(lamz^2*lamq_i.^2); 

        Tqq_ie=dWqq_i.*lamq_i.^2; 

        Tzz_ie=dWzz_i*lamz^2; 

        Trr_je=0.5*(Trr_ie(1:100)+Trr_ie(2:101)); 

        Tqq_je=0.5*(Tqq_ie(1:100)+Tqq_ie(2:101)); 

        Tzz_je=0.5*(Tzz_ie(1:100)+Tzz_ie(2:101)); 

        %get dTrr/dr for each shell 

        dTrrdr_j=kap_j.*(Tqq_je-Trr_je); 

        Trr_i=0*Trr_ie; 

        %get Trr for node (si+1) based on Trr for node (si) and the 

        %dTrr/dr for the shell between node (si) and node (si+1) 

        for si=1:100 

            Trr_i(si+1)=dTrrdr_j(si)*h_j(si)+Trr_i(si); 

        end 

        %get pressure like Lagrange multiplier ppress 

        ppres=Trr_ie-Trr_i; 

        %calculate the stresses 

        Tqq_i=-ppres+Tqq_ie; 
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Tzz_i=-ppres+Tzz_ie; 

        Trr_j=0.5*(Trr_i(1:100)+Trr_i(2:101)); 

        Tqq_j=0.5*(Tqq_i(1:100)+Tqq_i(2:101)); 

        Tzz_j=0.5*(Tzz_i(1:100)+Tzz_i(2:101));

        %sum the hoop stress times the shell thickness 

        sTqq=sum(Tqq_j.*h_j) 

        sTqq_2=sTqq; 

        plot(lamq_mid,sTqq_2,'o');hold on 

        %hoop stretch at the middle which will hopefully yeild sTqq as zero 

        %is calculated by interpolating from prior two guesses 

        lamq_mid=(sTqq_2*lamq_mid_1-sTqq_1*lamq_mid_2)/(sTqq_2-sTqq_1); 

        a_mid=lamq_mid*A_mid; %arc length at the middle 

        lamq_mid_3=lamq_mid; 

        a_i=sqrt(a_mid^2-(A_mid^2-A_i.^2)*q_tot/Q_tot); %arc length between

the shells 

        a_j=0.5*(a_i(1:100)+a_i(2:101)); %arc length at center of shells 

        kap_i=q_tot./a_i; %curvature between the shells 

        kap_j=q_tot./a_j; %curvature at center of shells 

        h_j=A_j.*H_j./a_j; %thickness of shells 

        lamq_i=a_i./A_i; %hoop stretch between the shells 

        lamq_j=a_j./A_j; %hoop stretch at the center of shells 

        %calculate strain components at nodes between shells 

        Err = 0.5*[lamq_i.^(-2)/lamz^2- 1]; 

        Eqq = 0.5*[lamq_i.^2- 1]; 

        Ezz = 0.5*[lamz^2- 1]; 

        %calculate derivatives of W at nodes between shells 

        Q

=c1*(Err.^2)+c2*(Eqq.^2)+c3*(Ezz.^2)+2*c4*Err.*Eqq+2*c5*Eqq.*Ezz+2*c6*Ezz.*Er

r;

        % W= c(exp(Q)-1); 

        dWrr_i= [c*(exp(Q).*(2*c1*Err+2*c4*Eqq+2*c6*Ezz))]; 

        dWqq_i= [c*(exp(Q).*(2*c2*Eqq+2*c4*Err+2*c5*Ezz))]; 

        dWzz_i= [c*(exp(Q).*(2*c3*Ezz+2*c5*Eqq+2*c6*Err))]; 

        %calculate the components of extra stress at the nodes between 

        %shells (i) and at the center of shells (j) 

        Trr_ie=dWrr_i./(lamz^2*lamq_i.^2); 

        Tqq_ie=dWqq_i.*lamq_i.^2; 

        Tzz_ie=dWzz_i*lamz^2; 

        Trr_je=0.5*(Trr_ie(1:100)+Trr_ie(2:101)); 

        Tqq_je=0.5*(Tqq_ie(1:100)+Tqq_ie(2:101)); 
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    Tzz_je=0.5*(Tzz_ie(1:100)+Tzz_ie(2:101));

        %get dTrr/dr for each shell 

        dTrrdr_j=kap_j.*(Tqq_je-Trr_je); 

        Trr_i=0*Trr_ie; 

        %get Trr for node (si+1) based on Trr for node (si) and the 

        %dTrr/dr for the shell between node (si) and node (si+1) 

        for si=1:100 

            Trr_i(si+1)=dTrrdr_j(si)*h_j(si)+Trr_i(si); 

        end 

        %get pressure like Lagrange multiplier ppress 

        ppres=Trr_ie-Trr_i; 

        %calculate the stresses 

        Tqq_i=-ppres+Tqq_ie; 

        Tzz_i=-ppres+Tzz_ie; 

        Trr_j=0.5*(Trr_i(1:100)+Trr_i(2:101)); 

        Tqq_j=0.5*(Tqq_i(1:100)+Tqq_i(2:101)); 

        Tzz_j=0.5*(Tzz_i(1:100)+Tzz_i(2:101));

        %sum the hoop stress times the shell thickness 

        sTqq=sum(Tqq_j.*h_j) 

        sTqq_3=sTqq; 

        plot(lamq_mid,sTqq_3,'.');hold on 

        %connect the dots on the last three calculations of sTqq to 

        %visualize the convergence 

        plot([lamq_mid_1 lamq_mid_2 lamq_mid],[sTqq_1 sTqq_2 sTqq_3]) 

    end % end while loop for reducing abs(sTqq) to below the set level 

    dtmp=0*a_i; % temporary distance vector that will be zero on inner wall  

and increases to outer 

    for sj=1:100 

        dtmp(sj+1)=sum(h_j(1:sj)); 

    end 

    % l_arm_j is vector of lever arm of moment of each shell with center 

    % being zero (i.e. zero is between shells 50 and 51) 

    l_arm_j=0.5*(dtmp(1:100)+dtmp(2:101))-dtmp(51); 

    % calculate Moment M for the config associated with i_cnfg value 

    M(i_cnfg)=lamz*Lngth*sum(Tqq_j.*h_j.*l_arm_j); 

    % calculate curvature of inner wall for the config associated with

i_cnfg value 

    kap_in(i_cnfg)=q_tot/a_i(1); 

end % end loop for i_cnfg 
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figure;

%plot the moment versus curvature of inner wall 

%the division by 1000 makes curvature in 1/mm instead of 1/m 

%the mulitiplication by 1000000 makes M in mN*mm instead of N*m 

plot(kap_in/1000,M*1000000,'o'); 

hold on; 

plot(kap_in/1000,M*1000000)

hold on; 

errorbar(kap_in/1000,M*1000000,.025*ones(size(kap_in)));

ylabel('Moment (mN*mm)') 

xlabel('Curvature of Luminal Wall (1/mm)') 

</div>
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<div class="moz-text-flowed" style="font-family: -moz-fixed"> 

clear all 

close all 

%Allows user to input image filename. 

%filename = input('Input image filename now.') 

filename = ['H:\4_18_06_ovine\artery360_cut.bmp']; 

I = imread(filename); 

imagesc(I); hold on 

if exist('error1.mat') 

    load error1 

    image_num=size(data_struct,1)+1; 

else

    image_num=1; 

    data_struct=[]; 

end

xdcr_top_displacement=input('input the displacment of top of transducer in  

degrees')*pi/180; 

%Allows user to pick points on boundary of cell. 

junk_input=input('zoom image to pick the points on reference object then

press enter'); 

ref_pts_in=[]; 

for i=1:2 

    in_pt = round(ginput(1))'; 

    if isempty(in_pt) == 0 

        plot(in_pt(1),in_pt(2),'r+'); 

        ref_pts_in=[ref_pts_in in_pt]; 

    else 

        error('two references points are needed') 

    end 

end

junk_input=input('zoom image to pick the points on torque transducer then

press enter'); 

xdcr_pts_in=[];

for i=1:2 

    in_pt = round(ginput(1))'; 

    if isempty(in_pt) == 0 

        plot(in_pt(1),in_pt(2),'g+'); 

        xdcr_pts_in=[xdcr_pts_in in_pt]; 

    else 

        error('two references points are needed') 

    end 
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end

junk_input=input('zoom image to pick the points on reference pins then press

enter'); 

pin_pts_in=[];

for i=1:4 

    in_pt = round(ginput(1))'; 

    if isempty(in_pt) == 0 

        plot(in_pt(1),in_pt(2),'c+'); 

        pin_pts_in=[pin_pts_in in_pt]; 

    else 

        error('two references points are needed') 

    end 

end

pin1 = pin_pts_in(:,2) - pin_pts_in(:,1) ; 

pin2 = pin_pts_in(:,4) - pin_pts_in(:,3) ; 

theta = subspace(pin1,pin2) * 180/pi 

junk_input=input('zoom image to pick the points on artery then press

enter'); 

'click on points in figure and press enter when done' 

ring_pts_in=[];

in_pt=[4; 0]; 

pts_in=[]; 

while isempty(in_pt) == 0 

    in_pt = round(ginput(1))'; 

    if isempty(in_pt) == 0 

        plot(in_pt(1),in_pt(2),'b.'); 

        ring_pts_in=[ring_pts_in in_pt]; 

    end 

end

ring_pts_in

ref_pts_in = [ref_pts_in(1,1) ref_pts_in(1,2);ref_pts_in(2,1)*-1

ref_pts_in(2,2)*-1];

ref_vec=ref_pts_in(:,2)-ref_pts_in(:,1) 

ref_vec_lngth=sqrt(ref_vec'*ref_vec) 

mag_factor=6/ref_vec_lngth 

lab_ref_angle=atan2(ref_vec(2),ref_vec(1)) 

xdcr_pts_in = [xdcr_pts_in(1,1) xdcr_pts_in(1,2);xdcr_pts_in(2,1)*-1

xdcr_pts_in(2,2)*-1];

xdcr_vec=xdcr_pts_in(:,2)-xdcr_pts_in(:,1)

xdcr_bottom_angle=atan2(xdcr_vec(2),xdcr_vec(1))-lab_ref_angle

% start_up=input('label three points on artery p1 p2 p3 with p2 as the

middle point') 
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p1=ring_pts_in(:,1);

p2=ring_pts_in(:,2);

p3=ring_pts_in(:,3);

% we now think of two lines from p1 to p2 and from p2 to p3...we want the 

% slope of those lines 

m1=(p2(2,1)-p1(2,1))/(p2(1,1)-p1(1,1));

m2=(p3(2,1)-p2(2,1))/(p3(1,1)-p2(1,1));

% once you have the slopes of the line, you solve for equations of the 

% perpindicular lines that would intersect eachother at the center of the 

% circle.  The perpindicular lines should start from the midpoint of the 

% vector p2-p1 and the vector p3-p2.  Once you have the equations of the 

% perpendicular lines, set them equal to each other and solve for x.  Once 

%x is known, plug back into the perpinducular lines and solve for y.  This 

%is the center of the circle. 

%

warning off MATLAB:dividebyzero 

xc=

(m1*m2*(p1(2,1)-p3(2,1))+m2*(p1(1,1)+p2(1,1))-m1*(p2(1,1)+p3(1,1)))/(2*(m2-m1)); 

yc= -1/m1*(xc-((p2(1,1)+p1(1,1))/2))+((p2(2,1)+p1(2,1))/2); 

center=[xc;yc] 

%now pick any point to solve for the radius of the circle (as is p1 is 

%used)

r=sqrt((p1(1,1)-center(1,1))^2+(p1(2,1)-center(2,1))^2)*mag_factor 

curvature= 1/r 

temp=input('to save type Y or to not save type N') 

if strcmp(temp,'Y') 

data_struct=[data_struct; curvature xdcr_bottom_angle xdcr_top_displacement  

theta]

save error1 data_struct 

save error1 data_struct -ascii 

elseif strcmp(temp,'N') 

    data_struct=[data_struct] 

end

</div>
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<div class="moz-text-flowed" style="font-family: -moz-fixed">%%%%%%%%%%%

THICKNESS

clear all 

clc

filename = ['H:\4_18_06_ovine\reference.bmp']; 

I = imread(filename); 

imagesc(I); hold on 

% if exist('thickness.mat') 

%     load thickness 

%     image_num=size(data_struct,1)+1; 

% else 

%     image_num=1; 

%     data_struct=[]; 

% end 

junk_input=input('zoom image to pick the points on reference ruler then

press enter'); 

ref_pts_in=[]; 

for i=1:2 

    in_pt = round(ginput(1))'; 

    if isempty(in_pt) == 0 

        plot(in_pt(1),in_pt(2),'r+'); 

        ref_pts_in=[ref_pts_in in_pt]; 

    else 

        error('two references points are needed') 

    end 

end

ref_vec=ref_pts_in(:,2)-ref_pts_in(:,1); 

ref_vec_lngth=sqrt(ref_vec'*ref_vec); 

mag_factor=6/ref_vec_lngth; 

junk_input=input('zoom image to pick the points for Rin and Ra vector'); 

pin_pts_in=[];

for i=1:4 

    in_pt = round(ginput(1))'; 

    if isempty(in_pt) == 0 

        plot(in_pt(1),in_pt(2),'c+'); 

        pin_pts_in=[pin_pts_in in_pt]; 

    else 

        error('two references points are needed') 

    end 

end

Rin_vec = pin_pts_in(:,2) - pin_pts_in(:,1) ; 
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Ra_vec = pin_pts_in(:,4) - pin_pts_in(:,3) ; 

Rin_len = sqrt(Rin_vec'*Rin_vec); 

Ra_len = sqrt(Ra_vec'*Ra_vec); 

Thickness = (Ra_len - Rin_len)* mag_factor 

</div>
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