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ABSTRACT

On the Relationship Between Moment and Curvature
for an Ovine Artery. (August 2006)
Gabriel Alejandro Reza, B.S., Arizona State University

Co—Chairs of Advisory Committee: Dr. John C. Criscione
Dr. K.R. Rajagopal

To find a relationship between moment versus curvature iacion-free ovine
artery, a pure moment was applied to a radially cut ovinea(tength 50.23 mm).
The curvature of the segment opposite the cut was calcudatgdised to calculate
the pre-stresses using a Fung type model. The pre-stregseshen used to cal-
culate the moment. The moment applied during the experimastcalculated by
recording the twist applied and the stiffness of the wirely@pg the moment. The
artery was sutured symmetrically with a custom jig, and thénred to two blocks,
one fixed and one subject to the pure moment. The axial strasrassumed unity.
The Fung model yielded a linear moment versus curvaturéeakhip, as well as
the moment versus curvature relationship for the experim@aspite both small
and large stretches, the strains felt by the artery were nfbteintial enough to

display a non-linear correlation for moment vs curvature.
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CHAPTER |

INTRODUCTION

All arteries posses some pre-stress. Even from the eadesiaf development as
a fetus, arteries are continually deforming, growing, addpding. However, to
account for the growth and adaptation is beyond the scopei®fmork. Hence,
it is assumed the artery is obtained in a given state, withracpéar amount of
pre-stress. A radial cut in a segmented artery with no eatdoads is referred
to as the traction-free state. The traction-free statesstigs provides meaningful
information which enables a better understanding of thevtirand remodeling of
vascular systems at the tissue level. For arteries, theirmgpeamgle or curvature
of a radially cut artery enables the pre-stresses in théidrafree state to be cal-
culated. The goals of this experiment are to 1. apply a punaemb to a radially
cut ovine artery, 2. calculate the curvature of the artegnssnt opposite the cut,
and 3. calculate the correlated pre-stresses. The presstrare calculated using a
Fung type model, and the pre-stresses are used to apprexineatnoments. Plots
of global moment versus curvature are depicted to show tlagarship for this
experiment and for a Fung type model. The arteries will beetes a passive

saline solution.

A. Specific Aims

Specific Aim 1: Obtain publishable results on the curvature pre-stresses of a
traction-free state ovine artery. A designed apparatualdapof creating only a

pure moment will be used to test the suspended artery. Thedlyaclt artery will

The journal model is the Journal of Biomechanical Engimegri



be loaded until they achieve a ring configuration (when thergarappears to be
intact). The device enables the angle of twist to be recordée angle of twist
allows one to solve for the moment. With the moment known, aresolve for the

pre-stress in the circumferential direction.

Problem with Aim 1: The experiment will employ only one rddiat; hence the
traction-free state is not truly stress free. Studies haweeva that radial cuts fol-

lowed by circumferential cuts release more residual s{ie<d.

Specific Aim 2: Create publishable figures for the momentugcairvature of the

tested arteries and compare the calculated stresses wathisiag a Fung model.



CHAPTER I

BACKGROUND
Residual stress is the stress left in an artery when all extéorces are removed.
The zero-stress state is achieved when all residual sgr@gserelieved via a ra-
dial and/or circumferential cut(s). It has been shown [§,4] that the zero-state
stresses strongly relate to the homeostatic stress distnis in arteries. Chuong
and Fung [3] proposed the study of residual stresses as aaiodof vascular
remodeling. They believed the changes in the zero-stragsaftarteries may be a

useful way to better understand the growth and remodeliragtefies [3].

For arteries, transverse cuts relieve longitudinal steass$then a radial cut releases
circumferential stress, bending moment, and transvessar st the cut section[7].
In a study of the zero-stress state Fung and Liu [8] concltiiidhe opening angle
varies greatly along the aorta, and a single cut of a shorheagyields a unique
zero-stress configuration. However, other experimensalgs 10]suggested that
multiple cuts were needed to achieve the stress-free Jateetter understand the
need for multiple or single cuts to achieve a stress-frde & studied the residual
stresses of arteries in several configurations neglectmgpth muscle tone. The
configurations were 1) an unloaded intact artery, 2) anyag#er a single trans-
mural cut, and 3) the inner and outer rings of an artery cdelayecombined radial
and circumferential cuts. They found that the opening adgleends strongly on
the material properties of the constituents in an arteryrentited several cuts may

be needed to reach the zero-stress state.

The main tool to find the residual stresses is the openingearigje opening angle



can be defined as the angle subtended at the midpoint of taegmoumference by
its two ends[3]. However, in a recent study Criscione etgllopserved the curva-
ture across from a radial cut may be a better tool to find redistuess. They claim
the opening angle is a property of the entire cut artery wlitbfats circumferen-

tial and radial heterogeneities while the curvature odpdsie cut has properties
without the edge effects, meaning the radial segments imethien opposite the
cut remain straight [2]. The proposed experiment will use ¢hrvature across
from a radially cut artery to calculate the pre-stressesraathent applied to the
artery. The caclulations will be made assuming the arteayfisg elastic and the
calculated global moment versus curvature will be compéreatie experimental

relation of global moment versus curvature.

Fung postulated his model after an experiment in 1967. Awétbe non-linear
stress-strain relation in soft tissues, Fung decided to giliness versus stress
in search of an explaining the non-linear relation [1]. Bhgt stiffness versus
stress showed a linear relation, and led to a first order ardidifferential equa-
tion (ODE). The solution to this ODE gave rise to an exporaémélation of stress
and strain. However, the conclusion of an exponential ilrlatvas based on an
experiment solely on uniaxial extension, and not on thiegedsional data, which
is ideal since soft tissues are anisotropic [1]. In goodhfdfung proposed his ex-
ponential as a three dimensional stress-strain relatimhjsahighly used today. It
should be noted that there are serious problems with the Fotgl. The model
is a function of the principal invariants. Criscione [11kr&hown the principal in-
variants are highly co-variant, hence, proving they areanwsise choice as a basis.
Also, Walton [12]has shown the Fung model to be unstablessrad coefficients

are unity.



To the best of my knowledge, there has not been a relation tonemt versus
curvature in the literature. However, Yu and Fung [13] castdd a bending exper-
iment to try to find the load-deflection relationship by asswgrthe arteries (pig
aortas) could be modeled as a simple beam with a force actitigei horizontal

direction perpendicular to the beam. The experiment eatbtbree point bend-
ing to the artery, two ends were fixed and a suspended wireceetihe fixtures
created the force. They found the neutral axis of the ageédde one-third of the
wall thickness from the endothelial. and the stress-stedation was fit well by a

linear correlation [13]. Xie and Fung [14] conducted anothending experiment
on aortic strips from rats. They treated the artery as a cubeam, clamped at
one end and free at the other. The free end was attached tpensiesl wire and
the deflection was measured. They, again, found the sttess-sorrelation best
fit by a linear model, and that large errors in the values afites strain (up to 50

percent)occur when the wall is treated as homogeneous [14].

In conducting the experiment, it is important to control ém¥ironmental settings
such as temperature and the physiological salt solutione uts viscoelastic
properties, when an artery is cut, it springs open rapidlycawdtinues to open
slowly until reaching a constant angle after 20-30 minuiés L6]. Therefore, all
measurements should be made after this time interval. Meoeffect of temper-
ature needs to be monitored. Liu and Fung [7] observed ndfisignt change of
residual strain in the range of 254Qelsius. However,[17] confirmed the result
but in the range of 10-37 Celsius. For this experiment, the physiological salt
solution will be held at room temperature (20-2E). In the literature, many ex-

periments on residual stress used different solutionscélghere is not a solution



agreed upon in the field. Therefore, a phosphate buffer@iloaland magnesium

free saline solution will be used for the proposed experimen



CHAPTER III

MATERIALS AND METHODS

A. Physiological Salt Solution

A phosphate buffered calcium and magnesium free salindignlwas used to

keep the artery passive. 500 mL were used to bathe the artery.

B. Equipment

Dr. Criscione has built an apparatus that applies a pure mbto@n artery or any
soft tissue attached to the torque transducer. The devegesads a thin cylindrical
steel wire into a bath filled with a physiological salt sotuti An artery is tied to
the torque transducer so that any moment applied to the svakso applied to the

artery. The angle of twist was recorded.

A Sony digital camera was used with IC Capture(imaging safe)to photograph

the arteries prior to and during the experiment.

A jig built by Dr. Criscione and myself was used to symmetticsuture the artery.

C. Artery Preparation

The artery was donated by the College of Veterinary Mediairieexas A&M Uni-
versity. The artery was handled following Texas A&Ms Laliorg Practices. It
was stored at 5-10Celsius and tested at room temperature (20225The speci-

men was an ovine thoracic artery.



Fig. 1. Bottom view of the artery.

Fig. 2. Side view of the artery. The artery was approximads€y23 mm long.

Before cutting the arteries, a picture was taken of the botiad side view of the
artery(Fig 1 and 2, respectively). The artery was cut to gtlenf approximately
50.23 mm using a sharp blade. Blunt dissection of the artexy @one using
forceps/tweezers to remove fat and connective tissuesaftbey was kept moist

during dissection.



Fig. 3. Align the artery in the jig such that a small portioredaps the front edge
D. Procedure

First, the artery is aligned in the jig (Fig 3). The jig is ttghed so the artery can’t
move around, but not tight enough that the edge of the jigpuificture the artery
(Fig 4). 8 regular sewing needles and a 5 inch string of sutéram diameter)

were threaded through each needle. Using forceps and tvge#ze needles were
then inserted into the 8 holes beneath the artery (Fig 5) n€bédles were carefully
pushed through the artery, one at a time, until the tip of #edle emerged out of
the adventitia (Fig 6). On each artery, the tweezers aneépsrevere used to pull
on the suture at the tip of the needle. The suture should Bedouhtil a small

loop forms (Fig 8). 2 5 inch strings were threaded halfwaptlgh the loop,and
then the needle was pulled with the forceps (Fig 9). Aftetipglall the needles

out, the artery should appear as in Fig 10. The strings weshqulaside and the
artery was cut length-wise with a sharp blade on the rigtd sidhe needles, with

respect to Figure 7.
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Fig. 4. Tighten the jig by gently pushing the lower half of flgeupwards. Pinch
the artery shut, but not tight enough to puncture the artery.

Fig. 5. Puncture through one side of the artery with a neeslleh that the tip
slightly punctures through the lumen. Repeat for all 8 holes
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Fig. 6. With forceps and tweezers, gently force each neddtrigh the other half
of the artery.

Fig. 7. A side view after all needles are pushed through ttezyar
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Fig. 8. Pull on suture at tip of needle until a small loop fornThread 2 4 inch
strings halfway through loop.

Fig. 9. Pull needle out and leave a small loop beneath theyaro not pull the
strings all the way out.
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Fig. 10. Picture after all the needles have been pulled atlit farceps.

When the artery is taken out of the jig, one side of the adtiantill have four

string ends coming out and the opposite side of the advemtiti have two loops.

Two ends of the same string were pulled through its corredipgrhole so that the
loop is now on the lumen side and the other loop remains aitbeladventitia, as
in Figure 9. Repeat this for all 8 holes. When done, the agbould open up like
a rectangle with 8 loops in the lumen and 8 loops outside thergdia. For every
other loop on the lumen side, the loop was dismantled bymtine end of the
loop through the hole. Next, the string was threaded intdéadbp and the loop was
pulled through. This was repeated for the other 3 sets ofd@opl strings on the
lumen side. For the other side, the loops needed to be onrienlgide. This was
achieved by threading a 5 inch string of suture through egtrgr loop. The loops
with the sting were pulled through to create a loop on the luside. From here,

the same steps were repeated as the other side. The endaesdt seen in Fig 11.
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INFEEGT STERED!
FRIAL

Fig. 11. Picture of artery ready to be attached to the appsrat

The apparatus was aligned on a flat smooth surface, suchhthatuspended wire

hung perpendicular to the ground.

The fixed brass block was unscrewed from the apparatus arl ltleées on the
fixed block were aligned with the 8 strings of the artery. Thask block was
placed so the adventitia of the artery was adjacent to theesith countersunk

holes. The artery was secured to the brass block with surgsats.

In the experiment, 3 steel reference pins (7mm long) wereriad transmurally
at the bottom of the artery. The reference pins allowed theegaoints to be ana-
lyzed for curvature and. calculations. Using forceps and tweezers, the pins were
pushed through the artery when it was upright. This was madeeby standing
the brass block up once the artery is attached. The pins weteed to be approx-
imately the same height by placing the pins in the same thwéte forceps when

placing them through the artery.
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The brass block, with the artery sewn to it, was re-attachetlé¢ apparatus. The
8 pieces of suture were aligned into the corresponding Shaidhe torque block
hanging from the suspended wire, and surgeon knots weréotseture the artery
to the torque block. Once completed, the artery was bath&@0mmL of physio-

logical salt solution.

The top of the apparatus has a knob with 24 etchings. Thengishiepresent a
15 4+ 1.5° change in angle. Once connected, the knob was turned clsekwi
open the artery. The artery was opened until the torque t@odkorass block were
almost touching (See Fig 12). This was the starting poinhefdxperiment and
denoted as a configuration of zero degrees. The zero anglenadsed with a
string taped to the etching, signifying the zero degreeanglkefore starting the
experiment, the number of turns of the knob was counted tatiflgethe required
twist to close the artery. Since the artery was thick, a pectuas taken ever§0°
for analysis (every four turns of the knob). The procedurs d@ane twice, once
for the artery un-halved and when the artery was cut in heshfftransverse cut).
The angles ranged from60° to 660°. It went to—60° after the artery was cut in

half and the knob was turned back passed the initial position

All data analysis was done using Matlab. Programs wereewitb analyze the

photos and conduct numerical analysis. The code’s exptarsaare below.

The code entitled ’intact’ was written to solve for the irttamer and outer radius.
The code brings up the image of the intact artery and askssieto choose three
points on the artery, with the second point being the middletp From these three

points, the code creates a circle and calculates, afteingdabm the magnifica-
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Fig. 12. Starting configuration of the experiment.

tion factor, the radius and center of that circle based or3theints. However, the
intact radius was not used in the experiment but the inneroamer intact radius

were found to be approximately 6 2462 mm and 8.48-.62 mm, respectively.

The code entitled 'thick’ was used to calculate the thicknefsthe artery. The
code brings up the image of the artery and asks the user tselbpoints on the
artery. The goal is to create two vectors, one representiagnner radius and
one the outer radius. The starting point of the vectors adédf@ment, however,
both vectors need to share the same starting point. The twthgroints should be
placed on the inner and outer edge of the artery. The maggstoikthe vectors are
calculated and the difference multiplied by the scalingdaequates the thickness.
The thickness was calculated on the artery opposite the bahw was cut free

and traction-free. Thickness was found to be G2d.1 mm.

The code entitled 'fung stress and JCCfung’ use the methplthieed in chapter

V to calculate for the pre-stresses. The codes were usecetik¢the sum of the
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Fig. 13. Image in Matlab after all points have been selected.

circumferential stresses were approximately zero andttieatadial stresses were
almost null at the inner and outer radius, which is expedteceshe artery is trac-

tion free.

The code entitled ' image analysis’ was used to analyze tperexent, and to
calculate the curvaturé,, and the top and bottom angle of the torque block. The
code first asks to input (in degrees) the angle which the tbyeiisg displaced. It
then asks for 2 reference points, followed by two points anttdrque block. The
points are made to vectors and then the angle of the torqok ld@alculated with
respect to the reference vector. The reference pins in theyare then used to
calculate the angle between the pins. The code asks for fmntsp two on each
pin, to create vectors so that a subroutine in Matlab canutatkethe angle between
the pin vectors. Fig 13 depicts the image in Matlab aftertadl points have been
selected. The radius of the artery in the configuration isifbusing code that is
similar to that of the code ’intact’. The curvature is caételd by the relationship

1/r.
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CHAPTER IV

CONSTITUTIVE ASSUMPTIONS AND KINEMATICS
Let X denote a material point on the artery opposite the radiainctite traction-
free reference configuration. Lrtdenote a material point on the artery opposite
the radial cut in the current configuration. By a motion, yebe a one-to-one

mapping that assigns to eakha pointx in euclidean space:

x = x(X, t). (4.1)

The deformation gradienkj,right Cauchy-Green tensdty, and Green-St. Venant

strain tensork) are defined as:

_ 9x

F_gr (4.2)
C =F'F, (4.3)
E=ic—| 4.4
—5(—)~ (4.4)

, respectively, where the superscriptdenotes the transpose of the linear trans-
formation. A Fung-type stored energy function was assuronethéracterize the
response of the passive ovine artery. Fung proposed thédarin 1979 to bet-
ter fit the data, in lieu of a polynomial stored energy funetifor iliacs, carotids,
thoracic and abdominal aortas in rabbit arteries. Fungisedtenergy function is

defined as:

W= —c(e? —1). (4.5)
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where( is defined as:

Q =c1Exp + oy + c3E% 5 + 2¢4(ErpEgg) + 2¢5(EgoEzz) + 2c6Ez7Erp
(4.6)

+ c7(Eg + Ejr) + cs(Ejy + EZg) + co(Eyr + Efy).

wherec; are material parameters. For this model of our experiméet,mate-
rial constants are taken from values published by Chuongramgj [3] and are:
¢ = 22.4kPa, ¢; = 0.0499, c5 = 1.0672, c3 = 0.4775, ¢4 = 0.0042, ¢5 = 0.0903,
cg = 0.0585. The axial strainF;; is assumed unity, hence = 1, and theE;,
component of the Green-Strain is zero. Therefofegs, andcy are not needed.

By the same argument;, c5, andcg are extraneous.

For this problem, the artery is assumed to be hyperelasiioogeneous, incom-
pressible, and anisotropic. The residual stresses wecalatdd using a Cauchy

stress relation prescribed as:

_ 8W T

wherep is the Lagrange multiplier that enforces the constrainhobmpressibility,
andl is the identity. Since the deformation will only contain giaal terms, the
Cauchy stress relation can be written as:

oW

T=—pl+ FZa—E (4.8)
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CHAPTER V

MODELING THE EXPERIMENT
The first part of the experiment is to theoretically model aattulate the radial
and circumferential pre-stresses in an artery; beginnimgnihe radially cut artery
is in a traction-free reference configuration and endingmihe artery is closed
to a ring configuration. The model employs a semi-inverseaah to solve for
the radial and circumferential pre-stresses using a aytiabicoordinate system to

seek a mappingR, ©, Z) — (r, 0, z) such that the artery undergoes the motion:

r=r(R),
0.©
0=-"— 51
907 ( )
z=AZ,

whered. is the angle in the configuration, and = 1. Figure 14 depicts the
orientation of the cut artery. The outward unit normal is the radial axis is 'b’,

the circumferential axis is 'c’ and the z axis is out of the @aghe artery will be

considered to be axis-symmetric and have the following gondition:

For this mapping in cylindrical coordinates the deformatypadient is:

a

Fig. 14. Depiction of radially cut artery in cylindrical cabnates and outward nor-
mal vector. The outward unit normal of cut edge is (a), theéalaakis (b),
and the circumferential axis(c)The z-axis is coming oubhef page.
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20 0
Fi=]0 &5 0 52
0 0 1

From the incompressibility assumption,

defF] =1 (5.3)
and
T 59
The reference volume is
Vol,.; = (R — R?)O,L, (5.5)
and the current volume is
(5.6)

Voley = (r2 —r)0,L,
wherer, is obtained by setting the volume of the artery in the refeeeequal to

the volume in the current cor ||igU|ati0n.
60 607 i ('_')0]Z 6013'
\/ ( ] o z) (57)

To =
Oc

MeasuringR,, R;, andr; will allow r, to be calculated.

The right Cauchy-Green stretch tensor and Green straiotéase the following

representations:
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(%597 0 0 (Sefty2 1 0 0
Cl=] o (&2 o], [E= 0 (&r)?—1 0| (58)
0 0 1 0 0 0

The equations for the radial and circumferential residtr@sses take the form,

respectively:

O,R
0.r

Wb
9Epn’ g0 = —D O.R

The radial component of the equilibrium equation in cyliodl coordinates re-

ow

T = —p+ ( )2 )2 (59)

duces to:

aTrr + Trr - T@G -0 (510)
or r

Integrating equatioii5.10) and remembering the artery is traction-free, shows the

stress in the radial direction is:

To 1
Tor(r) = / (Too — To) —dr (5.11)

Now that7,,(r) is known, as well a% and ($2£)?, the Lagrange multiplier

can be solved. The Lagrange multiplier takes the form:

O,R., OW
QCT 8ERR

p(r) = ( Tyn(r) (5.12)

With the Lagrange multiplier known, it is now possible toaofor the residual
stresses. The code titled Fung Stress in the Appendix fellialis method to solve
for the radial and circumferential residual stresses. Qneeesidual stresses are

calculated, the next step is to calculate for the moment. tidwtion vector is the
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stress transposed operating on the outward unit normal.
t=T"n (5.13)

In my case,the traction takes the form

Trr Tr@ Trz 0 TT@
t=| Ty Tpo Tp. —eg | = — | Toe (5.14)
Tzr TZB Tzz 0 TZ@

Since the experiment is traction-free, it implies

/Trgda = 0, /ngda == 0,/T29da =0 (515)
The sum of the moments is zero since the the artery is in éguin, hence
Z M= Medge + Mapplied =0 (516)

From the general moment equation, we fivig,,. to be

M cdgge = /rer X tda = /rer X (=Trg(r)e. — Toe(r)ey — Too(r)e,)da (5.17)

_ / / P Ty(r)drdze. + / / P T (r)drdzey.

Since the device is weighted by a torque transducer, thessimetheT., will be
assumed negligible and thus | have an equation that wilketate moment to cir-

cumferential residual stress, and, hence, by equationtbel@®oment applied is

Mapplied = L/ TT@@(T)dT. (518)

i

In the experiment, the angle of twist will be recorded. Themmeat is related
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to the angle of twist by the general relation:
M = kN0, (5.19)
where/Ad is the twist and is defined as
A = 010p — Obottom, (5.20)

andx is the stiffness of the wire. The stiffness of the wire wasnidexperimen-

tally. The stiffness of the wire can be found by the correlati

K
=)= 5.21
=T (5.21)

wherew is the natural frequency and, is the second moment of inertia about the
z-axis. The equation faf, . is

I, =m— (5.22)

where m is the mass of the solid cylinder and r is the radius©efcylinder. 7.,
was found simply by weighing the solid cylinder and the scfeang the wire
to the cylinder, and by measuring the radius of the cylindexvas found using
IC capture. A video was created in order to count how manydimenarker on
the cylinder crossed a referential axis after a twist wadieggo the cylinder.
The number of times it crossed the referential axis was dividy 2 times the
duration of the mini-experiment(in secondd).. and x were then plugged back

into equation (5.19) to for the moment.
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CHAPTER VI

RESULTS
All the results are from a single thoracic ovine artery. Th&gt artery had an
inner and outer intact radius of 6.14.62 mm and 8.48: .62 mm, respectively.
The accuracy of measurements were found by analyzing thieeritraction-free
artery a total of six times. From this analysis, the standkndation of the mea-
sured curvature i 0.001 1/mm, bottom angle .0088 rad, top angle- .026 rad,
0+ 0.99, A6+ .088 rad, thickness .1, and moment: .025 mNmm.

Solving equations 5.21 and 5.22 yielded the values td be 2.83 mNmm, and
177 to be 4.36353e-06, where.0126 m andn=54.65 g.

Table I is the data measured for the artery before the trass\aeit. The first row
contains the measured values for the artery when it was eatand traction-free,
and is denoted as the reference configuration. Henges fixed constant at 30in
the calculations. The top and bottom angle are equal simcarthry is cut free and
there is no counter moment applied. The artery was cut friee thife experiment
was completed and the knob at the top of the apparatus wasdtapproximately
660° for the experiment. Note, the moment is zero in the refereocdiguration
and should be zero again between 300 and 36Dhe measurements at 300 and

360° are probably off due to human error.

Table Il is the data measured for the artery after a transveums The first row
indicates all the values for the reference configurat@nywas fixed at 31 for all

calculations. The zero moment occurred between 240 and 300
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Table I. Data for the un-halved artery.

Angle° | Curvature (1/m) Top displacement (rad) ¢° | Bottom displacement (rad) A¢ (rad) | Moment (mN mm)

660 0.043 11.51 31 11.516 0 0

0 -0.042 0 52 2.364 -2.364 -6.69
60 -0.024 1.04 38 2.756 -1.708 -4.83
120 -0.019 2.09 26 3.388 -1.288 -3.65
180 0.016 3.14 7 4.408 -1.264 -3.57
240 0.030 4.18 19 4.764 -0.572 -1.62
300 0.023 5.23 22 5.124 0.108 0.31
360 0.053 6.28 41 5.556 0.732 2.07
420 0.079 7.33 61 6.026 1.308 3.70
480 0.098 8.37 71 6.572 1.808 5.11
540 0.123 9.42 87 7.056 2.364 6.70
600 0.148 10.47 76 7.624 2.848 8.06
660 0.171 11.51 65 8.224 3.288 9.32

Table Il. Data for the halved artery.

Angle° | Curvature (1/m) Top displacement (rad) #° | Bottom displacement (rad) A6 (rad) | Moment (mN mm)
660 0.044 11.51 30 11.516 0 0
-60 -0.063 -1.04 66 2.064 -3.116 -8.82

0 -0.045 0 50 2.464 -2.464 -6.98
60 -0.030 1.04 37 3.016 -1.964 -5.57
120 0.001 2.09 3. 4.110 -2.016 -5.71
180 0.015 3.14 9 4.616 -1.472 -4.16
240 0.027 4.18 19 5.008 -0.816 -2.31
300 0.045 5.23 34 5.400 -0.164 -0.47
360 0.043 6.28 30 5.308 0.972 2.75
420 0.066 7.33 53 5.864 1.472 4.16
480 0.094 8.37 71 6.472 1.908 5.39
540 0.120 9.42 89 7.096 2.332 6.59
600 0.150 10.47 74 7.696 2.772 7.85
660 0.170 11.51 62 8.200 3.316 9.39

Table Il has the calculated values for the curvature and erdrof the artery. The
input to the calculations were taken from the measured dHt&. reference and
inner radius were found using the reciprocal of the refezesad configuration

curvature. Configuration curvature refers to the curvasiire specific angle (the
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column) from table | and Il. The outer reference and configomaradius were
found using by adding the thickness of the artery in the pegftraction-free con-
figuration to the reference and inner radius. The code "thimknd the thickness
to be 2.4+ .1 mm. The calculations for the theoretical model reveabdattequiv-

alent (after accounting for significant figures) before aftdrahe transverse cut.
Note, the data had to be scaled in order for the moments to liheosame or-
der. Thec in fung’s model was multiplied by 10 since the coefficientarfd by

Chuong and Fung [3] were determined from data of a rabbitisattic aorta, a

much smaller and thinner specimen.

Figs 15 and 16 depict the experimental data on the relatiprsiween moment
and curvature for the artery un-halved and halved, respeygti Figs 17 and 19,
show the net circumferential stresses are approximatebpyelken the artery is un-
halved and halved, respectively. Figs 18 and 20 show theiledéd relationship
for moment vs curvature. The calculated values did not \ileékdsame moment
as the experiment, but this is likely due to using constams were found for a

smaller artery.
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Moment (mN*mm)

_8 1 1
-0.05 0 0.05 0.1 0.15 0.2
Curvature of Luminal Wall (1/mm)

Fig. 15. Experimental moment vs curvature relationshighefun-halved artery.
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1

0 . . . . .
-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
Curvature of Luminal Wall (1/mm)

Fig. 16. Experimental moment vs curvature relationshifgheflialved artery.
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sum of hoop stress*thickness

-12
0.994 0.996 0.998 1 1.002 1.004 1.006 1.008 1.01
hoop stretch of middle

Fig. 17. Sum of the circumferential force thickness in the un-halved artery. No-
tice the sum is nearly null, which is expected since the wariertrac-
tion-free.

Moment (mN*mm)

5
-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
Curvature of Luminal Wall (1/mm)

Fig. 18. Theoretical moment vs curvature relationship efuh-halved artery.
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x107°

sum of hoop stress*thickness

~12 . . . . . .
0.994 0.996 0.998 1 1.002 1.004 1.006 1.008 1.01
hoop stretch of middle

Fig. 19. Sum of the circumferential force thickness in the halved artery. Notice
the sum is nearly null, which is expected since the artemaidion-free.

Moment (mN*mm)

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
Curvature of Luminal Wall (1/mm)

Fig. 20. Theoretical moment vs curvature relationship eflthlved artery.
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Table Ill. Theoretical data for halved and un-halved artéilye transverse cut did
not significantly change the moment or curvature.

Curvature (1/mm) Moment (mN mm)
-.090 -4.25
-.082 -3.93
-.073 -3.61
-.065 -3.30
-.056 -2.99
-.047 -2.69
-.038 -2.39
-.029 -2.09
-.019 -1.80
-.099 -1.51

0 -1.22
.010 -.930
.020 -.642
.031 -.354
.042 -.067
.053 .220
.064 .507
.076 .795
.088 1.08
.100 1.37
113 1.66
126 1.95
.140 2.25
154 2.55
.169 2.85
.184 3.15
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CHAPTER VI

DISCUSSION AND CONCLUSION

The experimental moment versus curvature and the Fung ntoreesus curva-
ture both displayed a linear relation to the applied defdiona Even after the
transverse cut, the moment did not change significantly tonfiguration to con-
figuration. In the Fung model, the moment versus curvatlatioa was the same
before and after the cut. However, note that in the experiahetata, after the
transverse cut a rotation between 300 and 3@@&s needed to pass the zero mo-
ment while a rotation between 240 and 3®&s needed to pass the zero moment
when the artery was intact. This observation is counteritia&) however, it is
feasible that the transverse cut did not alleviate the d&&d since the artery is

sutured to two blocks, or it could be due to human error.

The transverse cut introduced new edges in the artery, leweslge effects did
not influence the outcome. The moment remained the sameebaifar after the
transverse cut. Hence, the plane strain was the same beio&tar the cut, and

the new edges introduced had the same effect as the inigaked

A radial cut along the artery should relieve most of the améerential stress. If
completely relieved and no load is applied in thdirection, then the sum of the
stresses in thé direction should equate to zero. Fig 17 and 19 show the suheof t
stresses to be zero. Theon the plot indicate where the circumferential stretch
is unity. The o are the initial calculated points through tiiekness at where the
neutral axis is located and theis where the code converged as the neutral axis.

The plots imply that the neutral axis is closer to the innelt giace the initial cal-
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culated points are approximately the same as the neutsahdran in compression.
The plots infer that the neutral axis is close to the caledgtoint when the artery
is in compression and farther away when the artery is in oengihis idea supports
Yu and Fung [13] whom found the neutral axis of the arteridsstone-third of the
wall thickness from the endothelial. It is known that in pi®ysgical conditions,

the lumen is in compression and the adventitia is in tensidsn, it is interesting

to note that Fig 17 and 19 have relatively the same lineaseslioglicating a linear

stress-strain relation.

The artery was assumed to be hyperelastic, homogeneowsnmessible, and
isotropic for the experiment. It is important to realizedbeassumptions are not
realistic, but are used to simplify the problem, and to gétahdata. It is well
known that the artery is inhomogeneous. The three distayers known are the
intima, media, and adventitia. The hyperelastic assumg@tssumes the stress can
be derived from a potential. However, the potential beingdus postulated and
not actually derived, hence the uniqueness is hard to vehifygeneral, soft tis-
sues are anisotropic, displaying different material resps along different fiber
directions when subject to a perturbation. Better assunpfiill be made once
material laws are discovered for different types of sofiuss, but until then, these

types of assumption aid to gain insight on the mechanicglenaes of soft tissues.

This experiment has potential to be expanded upon. In thidysthe artery was
held fixed at an axial stretch of unity. It would be interegtio make adjustments
to the apparatus so axial stretch can be incorporated iatexperiment. It would
be ideal to conduct the experiment at an axial stretch ckosamphysiological pa-

rameter, such as an axial stretch of 1.6. Also, this experimealt with relatively
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small strains. If possible, it would be interesting to apiplyger strains, and see if
the global moment versus curvature is non-linear. Lastiyrder to see a trend,

more arteries need to be tested to validate the linear tresdroeed.

In conclusion, the Fung model yielded a linear global monwemsus curvature
relationship, as well as the global moment versus curvaalationship for the ex-
periment. Despite both small and large stretches, thenstfelt by the artery were
not influential enough to display a non-linear correlation inoment vs curva-
ture. These results support [13, 14] in which they obserkiatlinear constitutive
equations govern the mechanical properties of the vesdelnihe small strain

region.
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APPENDIX A

PICTURES OF EXPERIMENT

The following pictures show the process of the experimeattiag from the zero
degree configuration all the way to 660 degrees with 60 degarements. The
very last picture is the artery in the cut free traction-fseste. The first several pic-
tures are for the artery before the transverse cut. Oncechees show the artery
close, the next picture is when it is in the initial configimatafter the transverse
cut. Note the initial position after the transverse cut is6it degrees. The last

picture is the reference configuration.

Fig. 22. Un-halved artery at 60



Fig. 26. Un-halved artery at 300
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Fig. 30. Un-halved artery at 540
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Fig. 34. Halved artery at 60
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Fig. 38. Halved artery at 300
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Fig. 41. Halved artery at 480
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Fig. 45. Halved artery at reference configuration
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APPENDIX B

CODES

<div class="moz-text-flowed" style="font-family: -moz-fixed">% function fung =

fungstress2(ri)

close all;

clear all;

cle;

syms rho ri ra

global r_nuet theta thetaO Ri Ra
%List of given constants
¢ =22.4; % in kPa
c1=0.0499;

c2=1.0672;

¢3=0.4775;

c4=0.0042;

¢5=0.0903;

c6=0.0585;

%List of defined variables

% Ri=22.4215e-3; %in meters for cut artery
Ri = 22.9885e-3; %in meters for uncut artery
% ra=4.98e-3; %in meters

% Ra = 24.8215e-3; % in meters for cut artery
Ra =25.3885e-3; % in meters for uncut artery
% ri=1.39e-3; %in meters

lambda=1;

theta = (114.6*pi/180);
theta0=30.9487*pi/180;

format long

% R = sqrt(theta0*(theta0*Ri*2 + theta*rho2-theta*ri*2)) / thetaO;
% Ra = subs(R,'tho',ra)

% rmid = (theta0*Ra) / theta;
TH=Ra-Ri
% r_mid = [rmid+.1*th rmid rmid-.1*th]

% t = sqrt(theta*(theta0*Ra’2 - theta0*Ri*2 + theta*ri*2)) / theta
ri=(1/.1717)*1e-3 % in meters

ra = sqrt(theta*(theta0*Ra”2 - thetaO*Ri’2 + theta*ri*2)) / theta

th = ra-ri

mid = (ra+ri)/2

r_mid = [mid+.1*th mid mid-.1*th]

for i= 1:length(r_mid)

ri(i) = sqrt(theta*(thetaO*Ri*2 - theta0*Ra”2 + theta*r_mid(i)"2)) / theta;
end

% ti = eval(ri)
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fori=1:3
ra(i) = sqrt(theta*(theta0*Ra”2 - thetaO*Ri’ 2 + theta*r_mid(i)"2)) /
theta;
end
% ra = eval(ra)
forj=1:3

% Using the given variables, the deformation gradient is calculated as
% follows:

% F = [(theta0*R)/(theta*rho) 0 0; O (theta*rho)/(theta0*R) 0; 0 0 1];
F11 = (theta0*Ra)/(theta*rho);

F22 = (theta*rho)/(theta0*Ra);

F33 = lambda;

% Green Strain

Err = 0.5%[F1172- 1];
Ett = 0.5*[F22/2- 1];

Ezz = 0.5*%[F3372- 1];

Q =c1*(Err"2)+c2*(Ett"2)+c3*(Ezz"2)+2*c4*Err*Ett+2*cS*Ett*Ezz+2 *c6*Ezz*Err;
% W= c(exp(Q)-1);

dWrr= [c*(exp(Q)*(2*c1*Err+2*c4*Ett+2*c6¥Ezz))];

dWtt= [c*(exp(Q)*(2*c2*Ett+2*c4*Err+2*c5*Ezz))];

dWzz= [c*(exp(Q)*(2*c3*Ezz+2*cS*Ett+2*c6*Err))];

%

rhoint(j,:)=linspace(ri(j),ra(j),100);

intl=vpa((F22/"2*dWtt-F11°2*dWrr)*(rho)*(-1),10);
int2=vectorize(intl);

for i=1:length(rhoint)
Trr(j,i)=quadl(int2,ri(j),rhoint(j,i));

end

Trr_x = F11°2*%dWrr;

Trrx(j,:) = subs(Trr_x,'rho',rhoint(j,:));
Im@j,:) = -Trr(j,:) + Trrx(j,0);

Ttt_x = F22/"2*dWtt;

Tttx(j,:) = subs(Ttt_x,'tho',rhoint(j,:));
Ttt(,:) = -Im(j,:) + Tttx(,:);

Trr(j,:) = -Im(j,:) + Trrx(j,:);

end

forj=1:3
figure
plot(rhoint(j,:),Trr(j,:),’k")
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hold on
plot(rhoint(j,:), Ttt(j,:),'m")

¥(j,:)= (thoint(j,:)-r_mid(j)).*(TttG,:));
Moment(j) = trapz(rhoint(j,:),y(j,:))
Force(j)=trapz(rhoint(j,:), Ttt(j,:))
end

eps = .02 * theta0

Yofor j = 1:length(ri)

%  for k = 1:length(rhoint)

% error(j,k) = abs(Ttt(j,k) - 0);
% if error(j,k) < eps

% r_zero(j) = rhoint(j,k)

% break

% end

% end

Yoend

if Force(2) >0
coefs=polyfit(r_mid(2:3),Force(2:3),1);
r_nuet=-coefs(2)/coefs(1)

end

if Force(2) < 0
coefs=polyfit(r_mid(1:2),Force(1:2),1);
r_nuet=-coefs(2)/coefs(1)

end

if Force(2) == 0;
r_nuet=r_mid(2)

end

r_mid=r_nuet;

th=Ra-Ri
r_mid = [r_mid+.01%*th r_mid r_mid-.01*th]

% r = sqrt(theta*(thetaD*Ra’2 - thetaD*Ri*2 + theta*ri*2)) / theta
fori=1:3
ri(i) = sqrt(theta*(thetaO*Ri”2 - theta0*Ra’2 + theta*r_mid(i)"2)) / theta;
end
Yori = eval(ri)
fori=1:3

ra(i) = sqrt(theta*(theta0*Ra”2 - thetaO*Ri’ 2 + theta*r_mid(i)*2)) /
theta;
end

for j = 1:length(ri)



% Using the given variables, the deformation gradient is calculated as
% follows:

% F = [(thetaO*R)/(theta*rho) 0 0; O (theta*rho)/(theta0*R) 0; 0 0 1];
F11 = (thetaO*Ra)/(theta*rho);

F22 = (theta*rho)/(theta0*Ra);

F33 = lambda;

% Green Strain

Err = 0.5*%[F1172- 1];
Ett = 0.5*[F22/2- 1];

Ezz = 0.5*%[F33/2- 1];

Q =c1*(Err"2)+c2*(Ett"2)+c3*(Ezz"2)+2*c4*Err*Ett+2 *cS*Ett*Ezz+2 *c6*Ezz*Err;
% W= c(exp(Q)-1);

dWrr= [c*(exp(Q)*(2*c1*Err+2*c4*Ett+2*c6¥Ezz))];
dWtt= [c*(exp(Q)*(2*c2*Ett+2*c4*Err+2*c5*Ezz))];
dWzz= [c*(exp(Q)*(2*c3*Ezz+2*cS*Ett+2*c6*Err))];
%

rhoint(j,:)=linspace(ri(j),ra(j),100);
intl=vpa((F22/2*dWtt-F11°2*dWrr)*(rho)*(-1),10);
int2=vectorize(intl);

for i=1:length(rhoint)
Trr(j,i)=quadl(int2,ri(j),rhoint(j,i));

end

Trr_x = F1122*dWrr;

Trrx(j,:) = subs(Trr_x,'rho',rhoint(j,:));
Im(j,:) = -Trr(j,:) + Trrx(j,0);

Ttt_x = F22/2*dWtt;

Tttx(j,:) = subs(Ttt_x,'tho',rhoint(j,:));
Ttt(j,:) = -Im(j,:) + Tttx(,:);

Trr(j,:) = -Im(j,:) + Trrx(j,:);

end

for j = I:length(ri)

figure
plot(rhoint(j,:),Trr(j,:),’k")
hold on

plot(rhoint(j,:), Ttt(j,:),'m")

¥(j,:)= (thoint(j,:)-r_mid(j)).*(Ttt,:));
Moment(j) = trapz(rhoint(j,:),y(j,:))
Force(j)=trapz(rhoint(j,:), Ttt(j,:))

end

eps = .02 * thetaO

Yofor j = 1:length(ri)
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%  for k = 1:length(rhoint)
% error(j,k) = abs(Ttt(j,k) - 0);
% if error(j,k) < eps

% r_zero(j) = rhoint(j,k)
% break

% end

% end

Yoend

figure

if Force(2) >0

coefs=polyfit(r_mid(2:3),Force(2:3),1);
r_nuet=-coefs(2)/coefs(1)

end

if Force(2) < 0
coefs=polyfit(r_mid(1:2),Force(1:2),1);
r_nuet=-coefs(2)/coefs(1)

end

if Force(2) == 0;
r_nuet=r_mid(2)

end

plot(r_mid,Force);hold on; plot(r_nuet,0,'x")

%o %0 Y% %o %o %o %o To T %o To To T To To To To Yo To To Yo To To Yo Fo To To To To To Fo To Vo Fo To Yo Yo To Yo Yo To %o Yo

Y0 %0 % %o %o

if exist('5_29momcurv_uncut.mat’)
load 5_29momcurv_uncut
config=size(data_struct,1)+1;
else
config=1;
data_struct=[];
end

ri = sqrt(theta*(theta0*Ri*2 - theta0*Ra”2 + theta*r_nuet"2)) / theta;
ra = sqrt(theta*(theta0*Ra”2 - thetaO*Ri 2 + theta*r_nuet"2)) / theta;

% Using the given variables, the deformation gradient is calculated as
% follows:

% F = [(theta0*R)/(theta*rho) 0 0; O (theta*rho)/(theta0*R) 0; 0 0 1];
F11_n = (thetaO*Ra)/(theta*rho);

F22_n = (theta*rho)/(theta0*Ra);

F33_n =lambda;

% Green Strain
Err_n = 0.5*[F11_n"2- 1];
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Ett_n = 0.5*%[F22_n"2- 1];
Ezz_n =0.5*%[F33_n"2- 1];

Q.n
=c1*(Err_n"2)+c2*(Ett_n"2)+c3*(Ezz_n"2)+2*c4*Err_n*Ett_n+2*c5*Ett_n*Ezz_n+2*
c6*Ezz_n*Err_n;

% W= c(exp(Q)-1);

dWrr_n= [c*(exp(Q)*(2*c1*Err_n+2*c4*Ett_n+2*c6*Ezz_n))];

dWtt_n= [c*(exp(Q)*(2*c2*Ett_n+2*c4*Err_n+2*c5*Ezz_n))];

dWzz_n= [c*(exp(Q)*(2*c3*Ezz_n+2*c5*Ett_n+2*c6*Err_n))];

rhoint=linspace(ri,ra,100);
int]_n=vpa((F22_n"2*dWtt_n-F11_n"2*dWrr_n)*(rho)*(-1),10);
int2_n=vectorize(intl_n);

for i=1:length(rhoint)

Trr_n(i) =quadl(int2_n,ri,rhoint(i));

end

Trr_xn = F11_n"2*dWrr_n;
Trrx_n = subs(Trr_xn,'rho',rhoint);
Im_n =-Trr_n + Trrx_n;

Ttt_xn = F22_n"2*dWtt_n;
Tttx_n = subs(Ttt_xn,'rho’,rhoint);
Ttt_n = -lm_n + Tttx_n;

Trr_n =-Im_n + Trrx_n;

figure

plot(rhoint, Trr_n,'k")
hold on
plot(rhoint,Ttt_n,'m")

y_n= (rhoint-r_nuet).*(Ttt_n);
Moment = trapz(rhoint,y_n)
curvature = 1/ r_nuet
Force=trapz(rhoint,Ttt_n)

temp = input('save?? Y or N')
if stremp(temp,'Y")
data_struct=[data_struct; curvature Moment Force]
save 5_29momcurv_uncut data_struct
save 5_29momcurv_uncut.txt data_struct -ascii
elseif strcmp(temp,'N')

data_struct=[data_struct]
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end

C = data_struct(:,1);
M = data_struct(:,2);
F = data_struct(:,3);

% figure
% plot(curvature, moment,'c')

</div>
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<div class="moz-text-flowed" style="font-family: -moz-fixed">clear all
close all

%List of given constants for Fung model
¢ =22.4; % in kPa

c1=0.0499;

c2=1.0672;

¢3=0.4775;

c4=0.0042;

¢5=0.0903;

c6=0.0585;

%List of defined variables

Ri=22.4215e-3; %Inner ref radius in meters for cut artery (intact Ri =
22.9885¢e-3)

Ra =24.8215e-3; % Outer ref radius in meters for cut artery (intact Ra =
25.3885¢e-3)

% Ri = 22.9885e-3

% Ra = 25.3885e-3

Lngth=50.23e-3;  %1.6%(0.0254); % 1.6 inches times 0.0254 m per inch
lamz=1; %axial stretch set to unity
Q_tot=30.9487*pi/180; %total ref angel

H_tot=Ra-Ri; %total thickness
R_mid=0.5*(Ra+Ri); %ref radius of mid
A_mid=Q_tot*R_mid; %ref arc length of mid

kap_mid_vec=(-0.1:0.01:0.15)*1000; %curvature of mid shell (units of m”-1)
for differenct configs
q_tot_vec=kap_mid_vec*A_mid; %total angle of the configs

%this program models the wall as 100 thin shells with i indicating nodes
Jobetween the shells (goes from i=1 on inner to i=101 on outer boundary).
%The shells themselves are indicated by j with j=1 the inner shell and
%ij=100 as the outer shell.

R_i=(0:100)*H_tot/100+Ri; %ref radius between the shells
A_i=Q_tot*R_i; %ref arc length between the shells
R_j=0.5*(R_i(1:100)+R_i(2:101)); %ref radius of shells
H_j=-R_i(1:100)+R_i(2:101); % ref thickness of shells

A_j=Q_tot*R_j; % ref arc length of shells

kap_in=0*q_tot_vec; %initialize curvature data vector
M=0%q_tot_vec; %initialize Moment data vector

9loop over the configurations given by the q_tot_vec
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for i_cnfg = 1:max(size(M))
i_cnfg %displays i_cnfg value on command window line
figure(1);plot(1,0,'+");hold on %place a plus symbol at the point
indicating
ounit hoop stretch for middle and zero net hoop stress
%othis figure will be used to visualize convergenge on a config with the
9ocorrect q_tot and nearly zero net hoop stress
ylabel('sum of hoop stress*thickness')
xlabel('hoop stretch of middle')

q_tot=q_tot_vec(i_cnfg); %the total angle of current config
lamq_mid=1; % start with hoop stretch of 1 for middle

a_mid=lamq_mid*A_mid; %arc length of middle
lamq_mid_1=lamq_mid; %save value of first guess for lamq_mid in the
variable lamq_mid_1

a_i=sqrt(a_mid"2-(A_mid"2-A_i.*2)*q_tot/Q_tot); %arc length between
the shells

a_j=0.5%(a_i(1:100)+a_i(2:101)); %arc length at center of shells

kap_i=q_tot./a_i; %curvature between the shells

kap_j=q_tot./a_j; %curvature at center of shells

h_j=A_j.*H_j./a_j; %thickness of shells

lamq_i=a_i./A_i; %hoop stretch between the shells

lamq_j=a_j./A_j; %hoop stretch at the center of shells

9ocalculate strain components at nodes between shells
Err = 0.5%[lamq_i.A(-2)/lamz"2- 1];

Eqq = 0.5*%[lamq_i.A2- 1];

Ezz = 0.5*[lamz"2- 1];

%calculate derivatives of W at nodes between shells

Q
=c1*(Err.2)+c2*(Eqq."2)+c3*(Ezz."2)+2*c4*Err. *Eqq+2*c5*Eqq.*Ezz+2*c6*Ezz.*Er
I

%o W= c(exp(Q)-1);

dWrr_i= [c*(exp(Q). *(2*c1*Err+2*c4*Eqq+2*c6*Ezz))];

dWqq_i= [c*(exp(Q).*(2*c2*Eqq+2*c4*Err+2*c5*Ezz))];

dWzz_i= [c*(exp(Q).*(2*c3*Ezz+2*c5*Eqq+2*c6*Err))];

%ocalculate the components of extra stress at the nodes between
oshells (i) and at the center of shells (j)
Trr_ie=dWrr_i./(lamz"2*lamq_i."2);
Tqq_ie=dWqq_i.*lamq_i."2;

Tzz_ie=dWzz_i*lamz"2;
Trr_je=0.5%(Trr_ie(1:100)+Trr_ie(2:101));



Tqq_je=0.5*%(Tqq_ie(1:100)+Tqq_ie(2:101));
Tzz_je=0.5%(Tzz_ie(1:100)+Tzz_ie(2:101));

9oget dTrr/dr for each shell
dTrrdr_j=kap_j.*(Tqq_je-Trr_je);
Trr_i=0*Trr_ie;

Joget Trr for node (si+1) based on Trr for node (si) and the
9dTrr/dr for the shell between node (si) and node (si+1)
for si=1:100

Trr_i(si+1)=dTrrdr_j(si)*h_j(si)+Trr_i(si);
end
Joget pressure like Lagrange multiplier ppress
ppres=Trr_ie-Trr_i;

Yocalculate the stresses
Tqq_i=-ppres+Tqq_ie;
Tzz_i=-ppres+Tzz_ie;
Trr_j=0.5%(Trr_i(1:100)+Trr_i(2:101));
Tqq_j=0.5*(Tqq_i(1:100)+Tqq_i(2:101));
Tzz_j=0.5%(Tzz_i(1:100)+Tzz_i(2:101));

%osum the hoop stress times the shell thickness
sTqg=sum(Tqq_j.*h_j)

sTqq_I=sTqq;
plot(lamq_mid,sTqq_1,'x");hold on

% while loop to converge on config with correct g_tot but with a net
% hoop stress that is nearly null
while abs(sTqq) > 0.00001

lamq_mid_1=lamq_mid; %save prior value of lamq_mid

sTqq_1=sTqq; %save prior value of sTqq

y_shift=-sTqq_1/100; %divide the net by the number of shells to get
shift

% of each shell to yield null net hoop stress then find the lamq

% shift that would give the y-shift assuming Tqq versus shell

% number was a linear relation with slope given by the values of

% the 50 and 51st shells

lamgq_shift=y_shift*(lamq_j(51)-lamq_j(50))/(Tqq_j(51)*h_j(51)-Tqq_j(50)*h_j(50));
lamq_mid=lamq_mid+lamq_shift; %shift lamq of middle

a_mid=lamq_mid*A_mid; %recalculate arc length of middle
lamq_mid_2=lamq_mid; %save this new value of arc length



a_i=sqrt(a_mid"2-(A_mid"2-A_i.*2)*q_tot/Q_tot); %arc length between
the shells

=c1*(Err."2)+c2*(Eqq."2)+c3*(Ezz."2)+2*c4*Err.*Eqq+2*c5*Eqq.*Ezz+2*c6*Ezz. *Er

I

a_j=0.5*(a_i(1:100)+a_i(2:101)); %arc length at center of shells
kap_i=q_tot./a_i; %curvature between the shells
kap_j=q_tot./a_j; %curvature at center of shells
h_j=A_j.*H_j./a_j; %thickness of shells

lamq_i=a_i./A_i; %hoop stretch between the shells
lamq_j=a_j./A_j; %hoop stretch at the center of shells

9ocalculate strain components at nodes between shells
Err = 0.5%[lamq_i.~(-2)/lamz"2- 1];

Eqq = 0.5*%[lamq_i.A2- 1];

Ezz = 0.5*[lamz"2- 1];

9calculate derivatives of W at nodes between shells

Q

% W= c(exp(Q)-1);

dWrr_i= [c*(exp(Q). *(2*c1*Err+2*c4*Eqq+2*c6*Ezz))];
dWqq_i= [c*(exp(Q).*(2*c2*Eqq+2*c4*Err+2*c5*Ezz))];
dWzz_i= [c*(exp(Q).*(2*c3*Ezz+2*c5*Eqq+2*c6*Ermr))];

9calculate the components of extra stress at the nodes between
9oshells (i) and at the center of shells (j)
Trr_ie=dWrr_i./(lamz"2*lamq_i."2);
Tqq_ie=dWqq_i.*lamq_i."2;

Tzz_ie=dWzz_i*lamz"2;
Trr_je=0.5*(Trr_ie(1:100)+Trr_ie(2:101));
Tqq_je=0.5%(Tqq_ie(1:100)+Tqq_ie(2:101));
Tzz_je=0.5%(Tzz_ie(1:100)+Tzz_ie(2:101));

9oget dTrr/dr for each shell
dTrrdr_j=kap_j.*(Tqq_je-Trr_je);
Trr_i=0*Trr_ie;

Joget Trr for node (si+1) based on Trr for node (si) and the
9odTrr/dr for the shell between node (si) and node (si+1)
for si=1:100

Trr_i(si+1)=dTrrdr_j(si)*h_j(si)+Trr_i(si);
end
Joget pressure like Lagrange multiplier ppress
ppres=Trr_ie-Trr_i;

Yocalculate the stresses
Tqq_i=-ppres+Tqq_ie;
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Tzz_i=-ppres+Tzz_ie;

Trr_j=0.5%(Trr_i(1:100)+Trr_i(2:101));
Tqq_j=0.5*(Tqq_i(1:100)+Tqq_i(2:101));
Tzz_j=0.5%(Tzz_i(1:100)+Tzz_i(2:101));

%osum the hoop stress times the shell thickness
sTqq=sum(Tqq_j.*h_j)

sTqq_2=sTqgq;
plot(lamq_mid,sTqq_2,'0");hold on

9ohoop stretch at the middle which will hopefully yeild sTqq as zero

%is calculated by interpolating from prior two guesses
lamq_mid=(sTqq_2*lamq_mid_1-sTqq_1*lamq_mid_2)/(sTqq_2-sTqq_1);
a_mid=lamq_mid*A_mid; %arc length at the middle
lamq_mid_3=lamq_mid;

a_i=sqrt(a_mid"2-(A_mid"2-A_i.*2)*q_tot/Q_tot); %arc length between

the shells

Q
=c1*(Err."2)+c2*(Eqq."2)+c3*(Ezz."2)+2*c4*Err. *Eqq+2*c5*Eqq. *Ezz+2*c6*Ezz. *Er

I

a_j=0.5%(a_i(1:100)+a_i(2:101)); %arc length at center of shells
kap_i=q_tot./a_i; %curvature between the shells
kap_j=q_tot./a_j; %curvature at center of shells
h_j=A_j.*H_j./a_j; %thickness of shells

lamq_i=a_i./A_i; %hoop stretch between the shells
lamq_j=a_j./A_j; %hoop stretch at the center of shells

9ocalculate strain components at nodes between shells
Err = 0.5%[lamq_i.A(-2)/lamz"2- 1];

Eqq = 0.5*%[lamq_i.A2- 1];

Ezz = 0.5*[lamz"2- 1];

9ocalculate derivatives of W at nodes between shells

% W= c(exp(Q)-1);
dWrr_i= [c*(exp(Q). *(2*c1*Err+2*c4*Eqq+2*c6*Ezz))];
dWqq_i= [c*(exp(Q).*(2*c2*Eqq+2*c4*Err+2*c5%Ezz))];
dWzz_i= [c*(exp(Q).*(2*c3*Ezz+2*c5*Eqq+2*c6*Err))];

Ycalculate the components of extra stress at the nodes between
9oshells (i) and at the center of shells (j)
Trr_ie=dWrr_i./(lamz"2*lamq_i."2);
Tqq_ie=dWqq_i.*lamq_i."2;

Tzz_ie=dWzz_i*lamz"2;
Trr_je=0.5%(Trr_ie(1:100)+Trr_ie(2:101));
Tqq_je=0.5*(Tqq_ie(1:100)+Tqq_ie(2:101));
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Tzz_je=0.5%(Tzz_ie(1:100)+Tzz_ie(2:101));

Yoget dTrr/dr for each shell
dTrrdr_j=kap_j.*(Tqq_je-Trr_je);
Trr_i=0*Trr_ie;

Joget Trr for node (si+1) based on Trr for node (si) and the
%dTrr/dr for the shell between node (si) and node (si+1)
for si=1:100

Trr_i(si+1)=dTrrdr_j(si)*h_j(si)+Trr_i(si);
end
%oget pressure like Lagrange multiplier ppress
ppres=Trr_ie-Trr_i;

Ycalculate the stresses
Tqq_i=-ppres+Tqq_ie;
Tzz_i=-ppres+Tzz_ie;
Trr_j=0.5%(Trr_i(1:100)+Trr_i(2:101));
Tqq_j=0.5*(Tqq_i(1:100)+Tqq_i(2:101));
Tzz_j=0.5%(Tzz_i(1:100)+Tzz_i(2:101));

%osum the hoop stress times the shell thickness
sTqq=sum(Tqq_j.*h_j)

sTqq_3=sTqq;

plot(lamq_mid,sTqq_3,".");hold on

Joconnect the dots on the last three calculations of sTqq to

Jovisualize the convergence

plot([lamq_mid_1 lamq_mid_2 lamq_mid],[sTqq_1 sTqq_2 sTqq_3])
end % end while loop for reducing abs(sTqq) to below the set level

dtmp=0*a_i; % temporary distance vector that will be zero on inner wall
and increases to outer

for sj=1:100

dtmp(sj+1)=sum(h_j(1:sj));

end

% 1_arm_j is vector of lever arm of moment of each shell with center

% being zero (i.e. zero is between shells 50 and 51)

I_arm_j=0.5*(dtmp(1:100)+dtmp(2:101))-dtmp(51);

% calculate Moment M for the config associated with i_cnfg value

M(i_cnfg)=lamz*Lngth*sum(Tqq_j.*h_j.*1_arm_j);

% calculate curvature of inner wall for the config associated with
i_cnfg value

kap_in(i_cnfg)=q_tot/a_i(1);

end % end loop for i_cnfg



figure;

%oplot the moment versus curvature of inner wall

%the division by 1000 makes curvature in 1/mm instead of 1/m
%the mulitiplication by 1000000 makes M in mN*mm instead of N*m
plot(kap_in/1000,M*1000000,'0");

hold on;

plot(kap_in/1000,M*1000000)

hold on;
errorbar(kap_in/1000,M*1000000,.025*ones(size(kap_in)));
ylabel('Moment (mN*mm)')

xlabel('Curvature of Luminal Wall (1/mm)")

</div>
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<div class="moz-text-flowed" style="font-family: -moz-fixed">
clear all
close all

% Allows user to input image filename.

Yofilename = input('Input image filename now.")
filename = ['H:\4_18_06_ovine\artery360_cut.bmp'];
I = imread(filename);

imagesc(I); hold on

if exist(‘'errorl.mat’)
load errorl
image_nums=size(data_struct,1)+1;
else
image_num=1;
data_struct=[];
end

xder_top_displacement=input(‘input the displacment of top of transducer in
degrees')*pi/180;

% Allows user to pick points on boundary of cell.
junk_input=input('zoom image to pick the points on reference object then
press enter');
ref_pts_in=[];
fori=1:2
in_pt = round(ginput(1))";
if isempty(in_pt) == 0
plot(in_pt(1),in_pt(2),'r+");
ref_pts_in=[ref_pts_in in_pt];
else
error('two references points are needed')
end
end

junk_input=input('zoom image to pick the points on torque transducer then
press enter');
xdcr_pts_in=[];
fori=1:2
in_pt = round(ginput(1))";
if isempty(in_pt) == 0
plot(in_pt(1),in_pt(2),'g+");
xder_pts_in=[xdcr_pts_in in_pt];
else
error('two references points are needed")
end



end

junk_input=input('zoom image to pick the points on reference pins then press

enter');
pin_pts_in=[];
fori=1:4
in_pt = round(ginput(1))";
if isempty(in_pt) ==
plot(in_pt(1),in_pt(2),'c+");
pin_pts_in=[pin_pts_in in_pt];
else
error('two references points are needed')
end
end
pinl = pin_pts_in(:,2) - pin_pts_in(:,1) ;
pin2 = pin_pts_in(:,4) - pin_pts_in(:,3) ;
theta = subspace(pinl,pin2) * 180/pi

junk_input=input('zoom image to pick the points on artery then press
enter');
‘click on points in figure and press enter when done’'
ring_pts_in=[];
in_pt=[4; 0];
pts_in=[];
while isempty(in_pt) ==

in_pt = round(ginput(1))";

if isempty(in_pt) == 0

plot(in_pt(1),in_pt(2),'b.");
ring_pts_in=[ring_pts_in in_pt];

end
end
ring_pts_in
ref_pts_in = [ref_pts_in(1,1) ref_pts_in(1,2);ref_pts_in(2,1)*-1
ref_pts_in(2,2)*-1];
ref_vec=ref_pts_in(:,2)-ref_pts_in(:,1)
ref_vec_Ingth=sqrt(ref_vec'*ref_vec)
mag_factor=6/ref_vec_Ingth
lab_ref_angle=atan2(ref_vec(2),ref_vec(1))
xder_pts_in = [xder_pts_in(1,1) xder_pts_in(1,2);xdcr_pts_in(2,1)*-1
xder_pts_in(2,2)*-1];
xder_vec=xdcr_pts_in(:,2)-xdcr_pts_in(:,1)
xdcr_bottom_angle=atan2(xdcr_vec(2),xdcr_vec(1))-lab_ref_angle

% start_up=input('label three points on artery p1 p2 p3 with p2 as the
middle point')
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pl=ring_pts_in(:,1);
p2=ring_pts_in(:,2);
p3=ring_pts_in(:,3);

% we now think of two lines from p1 to p2 and from p2 to p3...we want the
% slope of those lines

ml=(p2(2,1)-p1(2,1))/(p2(1,1)-p1(1,1));
m2=(p3(2,1)-p2(2, 1))/ (p3(1,1)-p2(1,1));

% once you have the slopes of the line, you solve for equations of the

% perpindicular lines that would intersect eachother at the center of the

% circle. The perpindicular lines should start from the midpoint of the

% vector p2-pl and the vector p3-p2. Once you have the equations of the
% perpendicular lines, set them equal to each other and solve for x. Once
%x is known, plug back into the perpinducular lines and solve for y. This
%is the center of the circle.

%

warning off MATLAB:dividebyzero

Xc=

(mI*m2*(p1(2,1)-p3(2,1))+m2*(p1(1,1)+p2(1,1))-m1*(p2(1,1)+p3(1,1)))/(2*(m2-m1));

ye=-1/m1*(xc-((p2(1,D)+p1(1,1))/2))+((p2(2,1)+p1(2,1))/2);
center=[xc;yc]

Jonow pick any point to solve for the radius of the circle (as is pl is
Poused)

r=sqrt((p1(1,1)-center(1,1))*2+(p1(2,1)-center(2,1))"2)*mag_factor

curvature= 1/r
temp=input('to save type Y or to not save type N')
if stremp(temp,'Y")
data_struct=[data_struct; curvature xdcr_bottom_angle xdcr_top_displacement
theta]
save errorl data_struct
save errorl data_struct -ascii
elseif strcmp(temp,'N')
data_struct=[data_struct]
end

</div>



<div class="moz-text-flowed" style="font-family: -moz-fixed">% % % % % % % % % % %
THICKNESS

clear all

clc

filename = ['H:\4_18_06_ovine\reference.bmp'];
I = imread(filename);
imagesc(I); hold on

% if exist('thickness.mat')

% load thickness

% image_num=size(data_struct,1)+1;
% else

% image_num=1;

%  data_struct=[];

% end

junk_input=input('zoom image to pick the points on reference ruler then
press enter');
ref_pts_in=[];
fori=1:2
in_pt = round(ginput(1))";
if isempty(in_pt) == 0
plot(in_pt(1),in_pt(2),r+);
ref_pts_in=[ref_pts_in in_pt];
else
error('two references points are needed')
end
end

ref_vec=ref_pts_in(:,2)-ref_pts_in(:,1);
ref_vec_Ingth=sqrt(ref_vec'*ref_vec);
mag_factor=6/ref_vec_Ingth;

junk_input=input('zoom image to pick the points for Rin and Ra vector');
pin_pts_in=[];
fori=1:4
in_pt = round(ginput(1))";
if isempty(in_pt) ==
plot(in_pt(1),in_pt(2),'c+");
pin_pts_in=[pin_pts_in in_pt];
else
error('two references points are needed')
end
end
Rin_vec = pin_pts_in(:,2) - pin_pts_in(:,1) ;
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Ra_vec = pin_pts_in(:,4) - pin_pts_in(:,3) ;
Rin_len = sqrt(Rin_vec*Rin_vec);
Ra_len = sqrt(Ra_vec'*Ra_vec);

Thickness = (Ra_len - Rin_len)* mag_factor
</div>
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