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ABSTRACT

Cylinder Kernel Expansion of Casimir Energy

with a Robin Boundary. (August 2006)

Zhonghai Liu, B.S., University of Science and Technology of China

Chair of Advisory Committee: Dr. Stephen A. Fulling

We compute the Casimir energy of a massless scalar field obeying the Robin

boundary condition ( ∂
∂x

ϕ = βϕ) on one plate and the Dirichlet boundary condition

(ϕ = 0) on another plate for two parallel plates with a separation of a. The Casimir

energy densities for general dimensions (D = d + 1) are obtained as functions of a

and β by studying the cylinder kernel. We construct an infinite-series solution as

a sum over classical paths. The multiple-reflection analysis continues to apply. We

show that finite Casimir energy can be obtained by subtracting from the total vacuum

energy of a single plate the vacuum energy in the region (0,∞)×Rd−1. In comparison

with the work of Romeo and Saharian(2002), the relation between Casimir energy and

the coefficient β agrees well.
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CHAPTER I

INTRODUCTION

A. Zero-point oscillations and their manifestation

In 1948, Casimir and Polder [1] computed for the first time the retarded interac-

tion energy between a neutral but polarizable atom and a perfectly conducting wall.

At the same year, Casimir [2] predicted the well-known Casimir effect, that is, two

extremely clean, neutral, parallel, microflat conducting surfaces, in a vacuum envi-

ronment, attract one another by a very weak force that varies inversely as the fourth

power of the distance between them [3].

F (a) = − π2

240

~c
a4

S (1.1)

where a is the separation between the plates, S À a2 is their area and c is the speed

of light.

The Casimir force is widely regarded as rising from the zero-point fluctuations

intrinsic to any quantum system. A harmonic oscillator has correspondingly a ground-

state energy which is nonzero

En = ~ω(n +
1

2
) (1.2)

The vacuum of quantum field theory may similarly be regarded as an enormously

large collection of harmonic oscillators, representing the fluctuation of, for quantum

electrodynamics, the electric and magnetic fields at each point in space. Put other-

wise, the QED vacuum is a sea of virtual photons. Thus the zero-point energy density

The journal model is Physical Review A.
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of the vacuum is

U =
∑

J

1

2
~ωJ = 2

∫
dk

(2π)3

1

2
~c|k| (1.3)

where k is the wavevector of the photon, and the factor of 2 reflects the two polar-

ization states of the photon.

In quantum field theory one is faced with the problem of ultraviolet divergences

which come into play when one tries to assign a ground state energy to each mode

of the field. Sum (1.3) is clearly infinite. To yield finite expressions for measurable

quantities, Casimir had subtracted away from the infinite vacuum energy of (1.3) in

the presence of plates, the infinite vacuum energy of quantized electromagnetic field in

free Minkowski space. Both infinite quantities were regularized and after subtraction,

the regularization was removed leaving the finite result. Boundaries can be consid-

ered as a concentrated external field. The vacuum energy in restricted quantization

volumes is the vacuum polarization by an external field imposing Dirichlet bound-

ary conditions. We can then say that material boundaries polarize the vacuum of a

quantized field, and the force acting on the boundary is a result of this polarization.

The Casimir force has a very strong dependence on the geometry. It was a sur-

prise that the zero-point force was repulsive for the case of a sphere [4]. The attraction

between parallel uncharged conducting plates has been convincingly demonstrated by

many experiments in the last few years [5]. A statistical precision of 1% was achieved

with the use of the Atomic Force Microscope (AFM) [6].

B. Various approaches to Casimir effect

Various methods have been developed to evaluate Casimir energy (for review see

[5, 7]) since H.B.G. Casimir published his famous paper [2] in 1948. The Casimir

energy can be defined directly as the sum of half-frequencies that is interpreted via
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ζ-function regularization [8]. The Green function formalism [9], multiple scattering

expansion [10] and heat kernel expansion [11] are proposed in different approaches

to calculating the Casimir energy. Recently, optical approximation is proposed as a

new approach based on classical ray optics in [12]. In this paper, we follow a multiple

scattering expansion approach based on the cylinder kernel [13, 14, 15]. We start our

discussion by comparing cylinder kernel and heat kernel due to their similarity.

The local heat kernel is defined by

K(t, x, y) =
∞∑

n=1

φn(x)φ∗n(y)e−tω2
n , (1.4)

here ω2
n and φn(x) are the corresponding discrete spectrum and eigenfunctions of the

problem ∂2u
∂t2

+ ∇2u = 0. The global heat kernel can be obtained formally as trace

over the local one

K(t) = Tr(K(t, x, x)) =
∞∑

n=1

e−tω2
n (1.5)

The less known local cylinder kernel is defined by

T (t, x, y) =
∞∑

n=1

φn(x)φ∗n(y)e−tωn (1.6)

Then the global cylinder kernel can be written as

T (t) = Tr(T (t, x, x)) =
∞∑

n=1

e−tωn (1.7)

Actually, the heat kernel and the cylinder kernel can be viewed as the Green

functions of the corresponding problems: the heat kernel, K(t, x, y), solves the heat

equation in the sense that

u(t, x) =

∫
K(t, x, y)f(y)dy (1.8)
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is the unique solution of the initial-value problem

∂u

∂t
−∇2u = 0; u(0, x) = f(x) (1.9)

The well known asymptotic expansion of heat kernel is

K(t) =
∞∑

s=0

bst
− d

2
+ s

2 (1.10)

Here d is the spatial dimension. The cylinder kernel, T (t, x, y), can be defined similarly

u(t, x) =

∫
T (t, x, y)f(y)dy (1.11)

is the unique bounded solution of the initial-value problem

∂2u

∂t2
+∇2u = 0; u(0, x) = f(x), u(0,∞) → 0 (1.12)

And the counterpart of (1.10) for cylinder is [10]

T (t) =
∞∑

s=0

est
−d+s +

∞∑

s=d+1
s−d odd

fst
−d+slnt (1.13)

Heat kernel expansion turns out to be a powerful tool to investigate the diver-

gence structure of the vacuum energy, but it doesn’t contain nonlocal geometrical

information. Casimir energy is a nonlocal effect; its magnitude cannot be deduced

from heat kernel expansions, even those including the integrated boundary terms.

On the contrary the cylinder kernel coefficients incorporate nonlocal geometrical in-

formation. Formally, we can relate Casimir energy to the global cylinder kernel by

taking the t-derivative

E =
1

2

∞∑
n=1

ωn = −1

2
lim
t→0

∂

∂t
TrT (t, x, x) = −1

2
lim
t→0

∂

∂t

∫
T (t, x, x) (1.14)
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and the simplest definition of the vacuum energy density is

T00(t, x) =
1

2

∞∑
n=1

ωnφn(x)φ∗n(x) = −1

2
lim
t→0

∂

∂t
T (t, x, x) (1.15)

In reality, the definitions of Casimir energy and vacuum energy density in (1.14)

and (1.15) contain divergent terms. But as we have seen in (1.13), the coefficients of

the divergent terms are simple, local objects that can be absorbed by renormalization,

only the term of order t in (1.13) contributes to Casimir energy. So when we consider

Casimir energy as the coefficients in the short-time asymptotics of the cylinder kernel,

the universal, x-independent divergent terms should be discarded in renormalization,

then the finite Casimir energy is given by

E = −1

2
ed+1 (1.16)

We will discuss the structure of the divergent terms in detail in Chapter IV since it

depends on the dimension.

C. Why Robin boundary?

The Casimir effect, a prediction of quantum electrodynamics, can be understood as

resulting from the modification of the zero point vacuum fluctuations of the electro-

magnetic field by the presence of boundaries [16]. Since the electromagnetic field

can be separately studied as transverse electric (TE) and transverse magnetic (TM)

modes, one can always reduce the electromagnetic field problem to two correspond-

ing scalar field problems [17]. For example, for two parallel plates, one can study the

Casimir energy of the electromagnetic field by using the Casimir energy of a scalar

field satisfying Dirichlet boundary conditions (TE modes) and a scalar field satisfy-

ing Neumann boundaries (TM modes) [18]. That’s why the existing literature paid
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more attention to Dirichlet and Neumann boundary other than the less known Robin

boundary. Actually, Robin boundary condition can be made conformally invariant

while purely-Neumann boundary condition cannot. The importance of conformal

invariance is discussed in [19].

Robin boundary condition has been studied in many different contexts. The

Robin boundary condition can be expressed as

∂

∂x
ϕ(x) = βϕ(x) (1.17)

A phenomenological model for a penetrable surface was considered in for 2-D massless

scalar field with β−1 representing the finite penetration depth [20]. One also encoun-

ters Robin boundary condition when dealing with the Dynamical Casimir effect [21].

For a D-dimensional sphere, the TM modes satisfy Robin boundary conditions on

the surface and the TE modes still satisfy Dirichlet boundary conditions [22]. A very

detailed calculation of the static Casimir effect with Robin boundary condition was

made by Romeo and Saharian [19]. Heat kernel coefficients associated with Robin

boundary were studied by Bordag et al [23].

D. The structure of this thesis

The present thesis is organized as follows: in Chapter II, we set up the notation and

show how to construct the cylinder kernel for a slab; in Chapter III we’ll reproduce

the results for two parallel plates with Dirichlet or Neumann boundary; Chapter IV

is the main part of this thesis, it concentrates on the case of two parallel plates with

Robin boundary condition; Chapter V is conclusion.
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CHAPTER II

NOTATION AND MAIN THEOREM

A. How to construct the Green function for a single boundary condition

The cylinder kernel of the free massless scalar field in Rd is

T (t, x, y) = C(d)t(t2 + |−→x −−→y |2)− d+1
2 (2.1)

where

C(d) = π−
d+1
2 Γ(

d + 1

2
) (2.2)

The cylinder kernel (2.1) is actually the Green function of cylinder equation

(1.12) for free space Rd with no boundary. We know from the method of images that

the Green function associated with a Dirichlet problem (u(t, 0) = 0) in a half space

(0,∞)×Rd−1 is

GD(t, x,−→x⊥, y,−→y⊥) = G(t, x,−→x⊥, y,−→y⊥)−G(t,−x,−→x⊥, y,−→y⊥) (2.3)

and the Green function associated with a Neumann problem ( ∂
∂x

u(t, 0) = 0) in a half

space (0,∞)×Rd−1 is

GN(t, x,−→x⊥, y,−→y⊥) = G(t, x,−→x⊥, y,−→y⊥) + G(t,−x,−→x⊥, y,−→y⊥) (2.4)

But when it comes to Robin problem

∂

∂x
u(t, 0) = βu(t, 0) (β > 0), (2.5)

the elementary method of images doesn’t apply any more.

Here we develop a technique for constructing a solution to a differential equation

with a Robin boundary condition when a solution to the same or a related equation
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with the Dirichlet boundary condition is available [24]. We define an operator T as

Tf =
∂f

∂x
− βf, (2.6)

then if Tf satisfies the Dirichlet condition Tf(x) = 0 at x = 0, f(x) will satisfy the

Robin boundary condition at x = 0 correspondingly.

The Green functions in (2.3) and (2.4) represent operators that are functions of

∇2 and hence commute with T . Therefore, in operator notation,

GR = T−1GDT (2.7)

should be the corresponding operator for the Robin problem. It is understood that

the action of a Green function on a function is

Gf(x,x⊥) =

∫ ∞

0

dy

∫

rd−1

dx⊥G(x,x⊥, y,y⊥)f(y,y⊥) (2.8)

Finally, we get that the Green function for the corresponding Robin problem is

GR(t, x,−→x⊥, y,−→y⊥) = G(t, x,−→x⊥, y,−→y⊥) + G(t,−x,−→x⊥, y,−→y⊥)

− 2β

∫ ∞

0

e−βεG(t,−x− ε,−→x⊥, y,−→y⊥)dε
(2.9)

All these lead us to the more general problem, how to construct the Green

function for a slab (0, a) × Rd−1 with any kind of boundary conditions. It is helpful

if we define three operators D, N and R and R̃ as below

DaG(t, x,−→x⊥, y,−→y⊥) = −G(t, 2a− x,−→x⊥, y,−→y⊥) (2.10)

NaG(t, x,−→x⊥, y,−→y⊥) = G(t, 2a− x,−→x⊥, y,−→y⊥) (2.11)



9

RaG(t, x,−→x⊥, y,−→y⊥) = G(t, 2a− x,−→x⊥,y,−→y⊥)

− 2β

∫ ∞

0

e−βεG(t, 2a− x− ε,−→x⊥, y,−→y⊥)dε

(2.12)

R̃aG(t, x,x⊥, y,y⊥)G(t, 2a− x,−→x⊥,y,−→y⊥)

+ 2γ

∫ ∞

0

e−γεG(t, 2a− x + ε,−→x⊥, y,−→y⊥)dε

(2.13)

The corresponding Green functions

GD(t, x,−→x⊥, y,−→y⊥) = (1 + Da)G(t, x,−→x⊥, y,−→y⊥) (2.14)

GN(t, x,−→x⊥, y,−→y⊥) = (1 + Na)G(t, x,−→x⊥, y,−→y⊥) (2.15)

GR(t, x,−→x⊥, y,−→y⊥) = (1 + Ra)G(t, x,−→x⊥, y,−→y⊥) (2.16)

will satisfy Dirichlet, Neumann and Robin boundary condition at x = a respectively.

Furthermore, GD and GN are Green functions (in particular, they have the correct

Dirac-delta boundary behavior as t → 0) both in the region to the left of a and in

the region to the right of a, whereas GR has that property to the right of a.

A Robin condition at a right-hand boundary, to be physically similar to (2.5),

must be of the form

∂

∂x
u(t, 0) = −γu(t, 0) (γ > 0). (2.17)

(The inward normal derivative must have the positive sign.) Then

GR̃(t, x,x⊥, y,y⊥) = (1 + R̃a)G(t, x,x⊥, y,y⊥) (2.18)

is the correct Green function for the region left of a.
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B. How to construct the Green function for a slab

Theorem 2.1 Let T (t, x,−→x⊥, y,−→y⊥) be the cylinder kernel on all of Rd. Then the

corresponding cylinder kernel of the slab (0, a)×Rd−1with Robin boundary condition

at x=0 and Dirichlet boundary condition at x=L is

TRD(t, x,−→x⊥, y,−→y⊥) =
∞∑

n=0

(DaR0)
nT +

∞∑
n=1

(R0Da)
nT

+
∞∑

n=0

(DaR0)
nDaT +

∞∑
n=1

(R0Da)
n−1R0T.

(2.19)

Here

(DaR0)
nT (x, y) =(−1)nT (x− 2na, y)

+ (−1)n+1(2β)

∫ ∞

0

L1
n−1(2βε)e−βεT (x− ε− 2na, y)dε

(2.20)

(R0Da)
nT (x, y) =(−1)nT (x + 2na, y)

+ (−1)n+1(2β)

∫ ∞

0

L1
n−1(2βε)e−βεT (x + ε + 2na, y)dε

(2.21)

(DaR0)
nDaT (x, y) = (−1)n+1T (−x + 2(n + 1)a, y)

+ (−1)n(2β)

∫ ∞

0

L1
n−1(2βε)e−βεT (−x + ε + 2(n + 1)a, y)dε

(2.22)

(R0Da)
n−1R0T (x, y) = (−1)n+1T (−x− 2(n− 1)a, y)

+ (−1)n(2β)

∫ ∞

0

L1
n−1(2βε)e−βεT (−x− ε− 2(n− 1)a, y)dε

(2.23)

where

L1
n−1(x) =

n∑
j=1

n!

j!(n− j)!

(−x)j−1

(j − 1)!
(2.24)

is a Laguerre Polynomial. Two notational abbreviations have been adopted: The
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variables(t,−→x⊥,−→y⊥) are suppressed because they undergo no alteration, and it is un-

derstood that the integral terms are to be omitted whenever n=0.

We provide the proof of Theorem 2.1 in Appendix A. We now comment on the

structure of the formula, which is a sum over classical paths from (y,−→y⊥) to (x,−→x⊥),

including integrations over time delays at the Robin boundary. The terms can be

thought of as wave pulses in a generalized sense. Terms (2.20), experience an even

number of reflections, starting at the left; terms (2.21), experience an even number of

reflections, starting at the right. When y = x these terms are constant and are equal

in pairs; these classical paths are periodic orbits (at least when −→y⊥ = −→x⊥) and will

contribute the spatially uniform Casimir energy associated with the finiteness of L.

Terms (2.22), experience an odd number of reflections, starting at the right; Terms

(2.23), experience an odd number of reflections, starting at the left. When (y,−→y⊥) =

(x,−→x⊥) these paths are bounce orbits (closed but not periodic) that contribute the

localized vacuum energy of interaction of a quantum field with the boundaries.

Actually, based on theorem 2.1, we can deal with any kind of boundary condition

by replacing R0 or Da by corresponding operator, for instance, for the case with

Neumann boundary condition at x = 0 and Dirichlet boundary condition at x = a,

the corresponding cylinder kernel satisfying both boundary conditions is just

TND(t, x,−→x⊥, y,−→y⊥) =
∞∑

n=0

(DaN0)
nT +

∞∑
n=1

(N0Da)
nT

+
∞∑

n=0

(DaN0)
nDaT +

∞∑
n=1

(N0Da)
n−1N0T

(2.25)

Because of the simplicity of the slab geometry, the series solution (2.19) is exact,

in principle; no stationary-phase approximations, for instance, have been needed. In

practice, it may become necessary to truncate the sum, considering only short paths.
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CHAPTER III

CASIMIR ENERGY OF A SLAB WITH DIRICHLET OR NEUMANN

BOUNDARY CONDITIONS

A. Both Dirichlet boundary conditions

In Theorem 2.1, we replace R0 with D0, then the cylinder kernel satisfying both

Dirichlet boundary conditions at x = 0 and x = a is

TDD(t, x,−→x⊥, y,−→y⊥) =
∞∑

n=0

(DaD0)
nT +

∞∑
n=1

(D0Da)
nT

+
∞∑

n=0

(DaD0)
nDaT +

∞∑
n=1

(D0Da)
n−1D0T

(3.1)

it can be divided into four parts

(DaD0)
nT =

C(d)t

(t2 + (2na)2)
d+1
2

, n ≥ 0

(D0Da)
nT =

C(d)t

(t2 + (2na)2)
d+1
2

, n ≥ 1

(DaD0)
nDaT =− C(d)t

(t2 + (2na + 2a− 2x)2)
d+1
2

, n ≥ 0

(D0Da)
n−1D0T =− C(d)t

(t2 + (2na− 2a + 2x)2)
d+1
2

, n ≥ 1

(3.2)

In the view of sum over classical paths that experience a number of reflections on the

boundary, the cylinder kernel in (2.19) can be reorganized by number of reflections

TDD(t, x,−→x⊥, y,−→y⊥) = T + (D0T + DaT ) + (D0DaT + DaD0T ) + . . . (3.3)

The first term T experiences no reflection; the contribution of this term to vacuum

energy density is

−1

2
lim
t→0

∂

∂t
T = −1

2
lim
t→0

∂

∂t

C(d)

td
=

C(d)

2

d

td+1
|t→0 (3.4)
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This is the anticipated leading divergent term. It is the universal, x-independent

formal vacuum energy of infinite empty flat space; it should be discarded in renor-

malization. The second term DaT experiences only one reflection on the boundary,

it contributes

−1

2
lim
t→0

∂

∂t
DaT =

C(d)

2

1

(2a− 2x)d+1
(3.5)

The third term D0T experiences one reflection on the boundary too, it contributes

−1

2
lim
t→0

∂

∂t
D0T =

C(d)

2

1

(2x)d+1
(3.6)

These two terms are dangerous since we can see that the energy density contributed

by DaT is divergent near the Dirichlet boundary (x → a) and the energy density

contributed by D0T is divergent near the Dirichlet boundary (x → 0). Next we write

down the subcontributions to vacuum energy density for general n terms which are

reflected at least twice on the boundary.

(DaD0)
nT : − C(d)

2(2na)d+1
, n ≥ 1 (3.7)

(D0Da)
nT : − C(d)

2(2na)d+1
, n ≥ 1 (3.8)

(DaD0)
nDaT :

C(d)

2(2na + 2a− 2x)d+1
, n ≥ 1 (3.9)

(D0Da)
n−1D0T :

C(d)

2(2na− 2a + 2x)d+1
, n ≥ 2 (3.10)

The subcontributions from (DaD0)
nT and (D0Da)

nT are constant terms and

independent of x, they correspond to the periodic orbits. The subcontributions from

(DaD0)
nDaT and (D0Da)

n−1D0T are dependent of x, they correspond to the bounce

orbits. All terms with at least twice reflections are finite; so after we discard the
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universal divergent term T itself, the dangerous terms with only one reflection, DaT

and D0T , are the only two terms which contain divergence. They can be related to

the situation of a single plate. We consider a single plate with Dirichlet boundary

condition at x = a and a single plate with Dirichlet boundary condition at x = 0

respectively. The corresponding cylinder kernel can be constructed based on (2.19).

The cylinder kernel satisfying Dirichlet boundary condition for a single plate

placed at x = a is

TD(t, x,−→x⊥, y,−→y⊥) = T + DaT (3.11)

and cylinder kernel satisfying Dirichlet boundary condition for a single plate placed

at x = 0 is

TD(t, x,−→x⊥, y,−→y⊥) = T + D0T (3.12)

Each cylinder kernel contains the trivial term T ; it’s the universal divergent term too

so we discard it. The corresponding vacuum energy densities are

−1

2
lim
t→0

∂

∂t
DaT =

C(d)

2

1

(2a− 2x)d+1
(3.13)

−1

2
lim
t→0

∂

∂t
D0T =

C(d)

2

1

(2x)d+1
(3.14)

They are precisely the dangerous terms of the slab case. We conclude that the

dangerous terms can be removed by renormalization and thus finite Casimir energy

can be obtained.

Integrating the corresponding energy densities for the total energy in the region

(0, a)× Rd−1 we obtain that the contributions of the two dangerous terms DaT and
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D0T are

−1

2
lim
t→0

∂

∂t

∫ a

0

DaT =

∫ a

0

C(d)

2

1

(2a− 2x)d+1
dx =

C(d)

4d

1

(2a− 2x)d
|a0 (3.15)

−1

2
lim
t→0

∂

∂t

∫ a

0

D0T =

∫ a

0

C(d)

2

1

(2x)d+1
dx = −C(d)

4d

1

(2x)d
|a0 (3.16)

They still contain divergent terms, but we can get the renormalized total energy by

subtracting the vacuum energy of a single plate. For the Dirichlet plate at x = a, we

subtract the vacuum energy of a single plate in the region (−∞, a)×Rd−1

−1

2
lim
t→0

∂

∂t
(

∫ a

0

DaTdx−
∫ a

−∞
DaTdx) =

1

2
lim
t→0

∂

∂t

∫ 0

−∞
DaTdx =

C(d)

4d

1

(2a)d
(3.17)

The same way, for the Dirichlet plate at x = 0, we subtract the vacuum energy of a

single plate in the region (0,∞)×Rd−1

−1

2
lim
t→0

∂

∂t
(

∫ a

0

D0Tdx−
∫ ∞

0

D0Tdx) =
1

2
lim
t→0

∂

∂t

∫ ∞

a

D0Tdx =
C(d)

4d

1

(2a)d
(3.18)

For general n ≥ 1, no divergent terms are involved. (DaD0)
nT and (D0Da)

nT each

contribute to the total energy

− C(d)

(2)d+2nd+1ad
(3.19)

(DaD0)
nDaT contributes

−C(d)

4d
[

1

(2na)d
− 1

(2na + 2a)d
] (3.20)

For general n ≥ 2, (D0Da)
n−1D0T contributes

−C(d)

4d
[

1

(2na− 2a)d
− 1

(2na)d
] (3.21)
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Now we sum up all terms after renormalization to obtain the finite total energy

EDD = − C(d)

2d+1ad

∞∑
n=1

1

nd+1
= − C(d)

2d+1ad
ζ(d + 1) (3.22)

Then we reproduce the known results EDD = − π
24a

for d=1 and EDD = − π2

1440a3 for

d=3.

B. One Dirichlet and one Neumann boundary conditions

In Theorem 2.1, we replace R0 with N0, then the cylinder kernel satisfying Neumann

boundary condition at x = 0 and Dirichlet boundary condition at x = a is

TND(t, x,−→x⊥, y,−→y⊥) =
∞∑

n=0

(DaN0)
nT +

∞∑
n=1

(N0Da)
nT

+
∞∑

n=0

(DaN0)
nDaT +

∞∑
n=1

(N0Da)
n−1N0T

(3.23)

It can be divided into four parts

(DaN0)
nT = (−1)n C(d)t

(t2 + (2na)2)
d+1
2

, n ≥ 0 (3.24)

(N0Da)
nT = (−1)n C(d)t

(t2 + (2na)2)
d+1
2

, n ≥ 1 (3.25)

(DaN0)
nDaT = (−1)n+1 C(d)t

(t2 + (2na + 2a− 2x)2)
d+1
2

, n ≥ 0 (3.26)

(N0Da)
n−1N0T = (−1)n+1 C(d)t

(t2 + (2na− 2a + 2x)2)
d+1
2

, n ≥ 1 (3.27)

In the view of sum over classical paths that experience a number of reflections on the

boundary, the cylinder kernel in (2.25) can be reorganized by number of reflection

TND(t, x,−→x⊥, y,−→y⊥) = T + (N0T + DaT ) + (N0DaT + DaN0T ) + . . . (3.28)

The first term T experiences no reflection; the contribution of this term to vacuum
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energy density is

−1

2
lim
t→0

∂

∂t
T = −1

2
lim
t→0

∂

∂t

C(d)

td
=

C(d)

2

d

td+1
|t→0 (3.29)

This is the anticipated leading divergent term. It is the universal, x-independent

formal vacuum energy of infinite empty flat space; it should be discarded in renor-

malization. The second term DaT experiences only one reflection on the boundary,

it contributes

−1

2
lim
t→0

∂

∂t
DaT =

C(d)

2

1

(2a− 2x)d+1
(3.30)

The third term N0T experiences one reflection on the boundary too, it contributes

−1

2
lim
t→0

∂

∂t
N0T = −C(d)

2

1

(2x)d+1
(3.31)

These two terms are dangerous since we can see that the energy density contributed

by DaT is divergent near the Dirichlet boundary (x → a) and the energy density

contributed by N0T is divergent near the Neumann boundary (x → 0). Next we

write down the subcontributions to vacuum energy density for general n terms which

are reflected at least twice on the boundary.

(DaN0)
nT : (−1)n C(d)

2(2na)d+1
, n ≥ 1 (3.32)

(N0Da)
nT : (−1)n C(d)

2(2na)d+1
, n ≥ 1 (3.33)

(DaN0)
nDaT : (−1)n+1 C(d)

2(2na+2a−2x)d+1 , n ≥ 1 (3.34)

(N0Da)
n−1N0T : (−1)n C(d)

2(2na−2a+2x)d+1 , n ≥ 2 (3.35)

The subcontributions from (DaN0)
nT and (N0Da)

nT are constant terms and
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independent of x, they correspond to the periodic orbits. The subcontributions from

(DaN0)
nDaT and (N0Da)

n−1N0T are dependent of x, they correspond to the bounce

orbits. All terms with at least twice reflections are finite; so after we discard the

universal divergent term T itself, the dangerous terms with only one reflection, DaT

and N0T , are the only two terms which contain divergences. They can be related to

the situation of a single plate.

We consider a single plate with Dirichlet boundary condition at x = a and a single

plate with Neumann boundary condition at x = 0 respectively. The corresponding

cylinder kernels can be constructed based on (2.19).

The cylinder kernel satisfying Dirichlet boundary condition for a single plate

placed at x = a is

TD(t, x,−→x⊥, y,−→y⊥) = T + DaT (3.36)

and cylinder kernel satisfying Neumann boundary condition for a single plate placed

at x = 0 is

TN(t, x,−→x⊥, y,−→y⊥) = T + N0T (3.37)

Each cylinder kernel contains the trivial term T ; it’s the universal divergent term too

so we discard it. The corresponding vacuum energy densities are

−1

2
lim
t→0

∂

∂t
DaT =

C(d)

2

1

(2a− 2x)d+1
(3.38)

−1

2
lim
t→0

∂

∂t
N0T = −C(d)

2

1

(2x)d+1
(3.39)

They are precisely the dangerous terms of the slab case. We conclude that the

dangerous terms can be removed by renormalization then finite Casimir energy can
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be obtained.

Integrating the corresponding energy densities for the total energy in the region

(0, a)× Rd−1 we obtain the contributions of the two dangerous terms DaT and N0T

are

−1

2
lim
t→0

∂

∂t

∫ a

0

DaT =

∫ a

0

C(d)

2

1

(2a− 2x)d+1
dx =

C(d)

4d

1

(2a− 2x)d
|a0 (3.40)

−1

2
lim
t→0

∂

∂t

∫ a

0

N0T =

∫ a

0

−C(d)

2

1

(2x)d+1
dx =

C(d)

4d

1

(2x)d
|a0 (3.41)

They still contain divergent terms, but we can get the renormalized total energy by

subtracting the vacuum energy of a single plate. For the Dirichlet plate at x = a, we

subtract the vacuum energy of a single plate in the region (−∞, a)×Rd−1

−1

2
lim
t→0

∂

∂t
(

∫ a

0

DaTdx−
∫ a

−∞
DaTdx) =

1

2
lim
t→0

∂

∂t

∫ 0

−∞
DaTdx = −C(d)

4d

1

(2a)d
(3.42)

The same way, for the Neumann plate at x = 0, we subtract the vacuum energy of a

single plate in the region (0,∞)×Rd−1

−1

2
lim
t→0

∂

∂t
(

∫ a

0

N0Tdx−
∫ ∞

0

N0Tdx) =
1

2
lim
t→0

∂

∂t

∫ ∞

a

N0Tdx =
C(d)

4d

1

(2a)d
(3.43)

For general n ≥ 1, no divergent terms are involved. (DaN0)
nT and (N0Da)

nT each

contribute to the total energy

(−1)n+1 C(d)

(2)d+2nd+1ad
(3.44)

(DaN0)
nDaT contributes

(−1)n+1C(d)

4d
[

1

(2na)d
− 1

(2na + 2a)d
] (3.45)
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For general n ≥ 2, (N0Da)
n−1N0T contributes

(−1)n+1C(d)

4d
[

1

(2na− 2a)d
− 1

(2na)d
] (3.46)

Now we sum up all terms after renormalization to obtain the finite total energy

END =
C(d)

2d+1ad

∞∑
n=1

(−1)n+1

nd+1
=

C(d)

2d+1ad
η(d + 1) (3.47)

Again we reproduce the result END = π
48a

for d=1 and E = 7π2

11520a3 for d=3.
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CHAPTER IV

VACUUM ENERGY DENSITIES OF A SLAB WITH ROBIN OR DIRICHLET

BOUNDARY CONDITIONS

In this section we calculate vacuum energy density of a slab with Robin boundary

at x = 0 and Dirichlet boundary at x = a for general spatial dimension d. We’ll

discuss the divergent structure of the vacuum energy density. We also consider scalar

field satisfying Robin boundary condition or Dirichlet boundary condition for a single

plate geometry. In Theorem 2.1 we have constructed the corresponding cylinder

kernel; with the definition of vacuum energy density in (1.15), vacuum energy density

can be obtained as an infinite summation too.

A. Vacuum energy density for two parallel plates

In Theorem 2.1, we replace T with the expression in (2.1), then the cylinder kernel

as a summation can be viewed as four parts

(DaR0)
nT =

(−1)nC(d)t

(t2 + (2na)2)
d+1
2

+

∫ ∞

0

L1
n−1(2βε)e−βε (−1)n+1(2β)C(d)t

(t2 + (2na + ε)2)
d+1
2

dε, n ≥ 0

(4.1)

(R0Da)
nT =

(−1)nC(d)t

(t2 + (2na)2)
d+1
2

+

∫ ∞

0

L1
n−1(2βε)e−βε (−1)n+1(2β)C(d)t

(t2 + (2na + ε)2)
d+1
2

dε, n ≥ 1

(4.2)

(DaR0)
nDaT =

(−1)n+1C(d)t

(t2 + (2na + 2a− 2x)2)
d+1
2

+

∫ ∞

0

L1
n−1(2βε)e−βε (−1)n(2β)C(d)t

(t2 + (2na + 2a + ε− 2x)2)
d+1
2

dε, n ≥ 0

(4.3)
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(R0Da)
n−1R0T =

(−1)n+1C(d)t

(t2 + (2na− 2a + 2x)2)
d+1
2

+

∫ ∞

0

L1
n−1(2βε)e−βε (−1)n(2β)C(d)t

(t2 + (2na− 2a + ε + 2x)2)
d+1
2

dε, n ≥ 1

(4.4)

In the view of sum over classical paths that experience a number of reflections on

the boundary, the cylinder kernel in (2.19) can be reorganized by number of reflection

TRD(t, x,−→x⊥, y,−→y⊥) = T + (R0T + DaT ) + (R0DaT + DaR0T ) + . . . (4.5)

The first term T experiences no reflection; the contribution of this term to vacuum

energy density is

−1

2
lim
t→0

∂

∂t
T = −1

2
lim
t→0

∂

∂t

C(d)

td
=

C(d)

2

d

td+1
|t→0 (4.6)

This is the anticipated leading divergent term. It is the universal, x-independent

formal vacuum energy of infinite empty flat space; it should be discarded in renor-

malization. The second term DaT experiences only one reflection on the boundary,

it contributes

−1

2
lim
t→0

∂

∂t
DaT =

C(d)

2

1

(2a− 2x)d+1
(4.7)

The third term R0T experiences one reflection on the boundary too, it contributes

−1

2
lim
t→0

∂

∂t
R0T = −C(d)

2

1

(2x)d+1
+

∫ ∞

0

e−βε βC(d)

(ε + 2x)d+1
dε (4.8)

These two terms are dangerous since we can see that the energy density contributed

by DaT is divergent near the Dirichlet boundary (x → a) and the energy density

contributed by R0T is divergent near the Robin boundary (x → 0). Next we write

down the subcontributions to vacuum energy density for general n terms which are
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reflected at least twice on the boundary.

(DaR0)
nT :

(−1)n+1C(d)

2(2na)d+1
+ (−1)n

∫ ∞

0

L1
n−1(βε)e−βε (2β)C(d)

(2na + ε)d+1
dε, n ≥ 1 (4.9)

(R0Da)
nT :

(−1)n+1C(d)

2(2na)d+1
+ (−1)n

∫ ∞

0

L1
n−1(βε)e−βε (2β)C(d)

(2na + ε)d+1
dε, n ≥ 1 (4.10)

(DaR0)
nDaT :(−1)n C(d)

2(2na + 2a− 2x)d+1

+ (−1)n+1

∫ ∞

0

L1
n−1(βε)e−βε 2βC(d)

(2na + 2a + ε− 2x)d+1
dε, n ≥ 1

(4.11)

(R0Da)
n−1R0T :

(−1)nC(d)

2(2na− 2a + 2x)d+1

+ (−1)n+1

∫ ∞

0

L1
n−1(βε)e−βε 2βC(d)

(2na− 2a + ε + 2x)d+1
dε, n ≥ 2

(4.12)

The subcontributions from (DaR0)
nT and (R0Da)

nT are constant terms and

independent of x, they correspond to the periodic orbits. The subcontributions from

(DaR0)
nDaT and (R0Da)

n−1R0T are dependent of x, they correspond to the bounce

orbits. All terms with at least twice reflections are finite; so after we discard the

universal divergent term T itself, the dangerous terms with only one reflection, DaT

and R0T , are the only two terms which contain divergence. They can be related to

the situation of a single plate.

B. Vacuum energy density for a single plate

We consider a single plate with Dirichlet boundary condition at x = a and a sin-

gle plate with Robin boundary condition at x = 0 respectively. The corresponding

cylinder kernel can be constructed based on (2.19).

The cylinder kernel satisfying Dirichlet boundary condition for a single plate
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placed at x = a is

TD(t, x,−→x⊥, y,−→y⊥) = T + DaT (4.13)

and cylinder kernel satisfying Robin boundary condition for a single plate placed at

x = 0 is

TR(t, x,−→x⊥, y,−→y⊥) = T + R0T (4.14)

Each cylinder kernel contains the trivial term T ; it’s the universal divergent term too

so we discard it. The corresponding vacuum energy densities are

−1

2
lim
t→0

∂

∂t
DaT =

C(d)

2

1

(2a− 2x)d+1
(4.15)

−1

2
lim
t→0

∂

∂t
R0T = −C(d)

2

1

(2x)d+1
+

∫ ∞

0

e−βε βC(d)

(ε + 2x)d+1
dε (4.16)

They are precisely the dangerous terms of the slab case. We conclude that the

dangerous terms can be removed by renormalization then finite Casimir energy can

be obtained.

C. Total vacuum energy of a slab with Robin or Dirichlet boundary conditions

In this section we will consider the total vacuum energy of a slab with Robin boundary

at x = 0 and Dirichlet boundary at x = a for general spatial dimension d. Integrating

the corresponding energy densities for the total energy in the region (0, a)×Rd−1 we

obtain the contributions of the two dangerous terms DaT and R0T as

−1

2
lim
t→0

∂

∂t

∫ a

0

DaT =

∫ a

0

C(d)

2

1

(2a− 2x)d+1
dx =

C(d)

4d

1

(2a− 2x)d
|a0 (4.17)

−1

2
lim
t→0

∂

∂t

∫ a

0

R0T =

∫ a

0

[−C(d)

2

1

(2x)d+1
+

∫ ∞

0

e−βε βC(d)

(ε + 2x)d+1
dε]dx (4.18)
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They still contain divergent terms, but we can get the renormalized total energy by

subtracting the vacuum energy of a single plate. For the Dirichlet plate at x = a, we

subtract the vacuum energy of a single plate in the region (−∞, a)×Rd−1

−1

2
lim
t→0

∂

∂t
(

∫ a

0

DaTdx−
∫ a

−∞
DaTdx) =

1

2
lim
t→0

∂

∂t

∫ 0

−∞
DaTdx = −C(d)

4d

1

(2a)d
(4.19)

The same way, for the Robin plate at x = 0, we subtract the vacuum energy of a

single plate in the region (0,∞)×Rd−1

−1

2
lim
t→0

∂

∂t
(

∫ a

0

R0Tdx−
∫ ∞

0

R0Tdx) =
1

2
lim
t→0

∂

∂t

∫ ∞

a

R0Tdx

=
C(d)

4d

1

(2a)d
−

∫ ∞

0

e−βε βC(d)

2d(ε + 2a)d
dε

(4.20)

For general n ≥ 1, no divergent terms are involved. (DaR0)
nT and (R0Da)

nT each

contribute to the total energy

(−1)n+1 C(d)

(2)d+2nd+1ad
+ (−1)n

∫ ∞

0

L1
n−1(2βε)e−βε βaC(d)

(2na + ε)d+1
dε (4.21)

(DaR0)
nDaT contributes

(−1)n+1C(d)

4d
[

1

(2na)d
− 1

(2na + 2a)d
]

+ (−1)n+1βC(d)

2d

∫ ∞

0

L1
n−1(2βε)e−βε[

1

(ε + 2na)d
− 1

(ε + 2na + 2a)d
]dε

(4.22)

For general n ≥ 2, (R0Da)
n−1R0T contributes

(−1)n+1C(d)

4d
[

1

(2na− 2a)d
− 1

(2na)d
]

+ (−1)n+1βC(d)

2d

∫ ∞

0

L1
n−1(2βε)e−βε[

1

(ε + 2na− 2a)d
− 1

(ε + 2na)d
]dε

(4.23)
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Now we sum up all terms after renormalization to obtain the finite total energy

E =
∞∑

n=1

(−1)n+1C(d)

2d+1nd+1ad
−

∫ ∞

0

e−βε 2βaC(d)

(ε + 2a)d+1
dε−

∫ ∞

0

e−βε βC(d)

2d(ε + 4a)d
dε−

∞∑
n=2

∫ ∞

0

L1
n−1(2βε)e−βε[

(−1)nβC(d)

2d(ε + 2na− 2a)d
− (−1)nβC(d)

2d(ε + 2na + 2a)d
− (−1)n2βaC(d)

(2na + ε)d+1
]dε

(4.24)

The first term in E can be expressed by the Riemann η-function:

END =
C(d)

2d+1ad
η(d + 1) ; (4.25)

it is the known result for one Neumann and one Dirichlet plate. The integrals in (4.24)

can be evaluated in terms of the incomplete gamma function [25, 26]. The resulting

infinite summation presumably can’t be converted to a closed form. However, the

terms starting with n = 4 are relatively small and almost cancel each other, so the

expression truncated to n ≤ 3 is a good approximation for the total energy. (The

proof of this assertion is in Appendix C.) Explicitly, the total energy for d = 3 as a

function of b = βa (through order n = 3) is

ERD =
7π2

11520a3
+

1

π2a3
[−b3e2bΓ(−2, 2b) + 3b3e4bΓ(−2, 4b) + b3e6bΓ(−2, 6b)

− (19b3/6)e8bΓ(−2, 8b)− 12b4e4bΓ(−3, 4b)− 72b4e6bΓ(−3, 6b)

+ 56b4e8bΓ(−3, 8b) + 864b5e6bΓ(−4, 6b)− 256b5e8bΓ(−4, 8b)

− 2880b6e6bΓ(−5, 6b)].

(4.26)

(The b of Romeo and Saharian [19] is the negative reciprocal of our b.)

Note that at β = 0 the Robin boundary becomes a Neumann boundary and one

recovers

a3ERD

∣∣
β→0

= a3END =
7π2

11520
= 0.00599. (4.27)

When β → ∞, the Robin boundary becomes a Dirichlet boundary, so we expect to
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Fig. 1. Total integrated Casimir energy per unit area multiplied by a3, for d = 3 and

0 ≤ b = βa ≤ 5. The graph of E(a) itself for fixed β 6= 0 or +∞ would have

a minimum somewhere to the right of a = 1.237/β and a singularity at the

origin.

recover the familiar result

a3ERD

∣∣
β→∞ = a3EDD = − π2

1440
= −0.00685. (4.28)

The graph of a3ERD as a function of b = βa is given in Fig. 1, which (together with

numerical calculations for larger b) confirms ND and DD cases. The crossover from

positive to negative energy occurs near b = 1.237, or −1
b
≈ −0.81, in agreement with

[19]. That reference states that this value marks a change from repulsive to attractive

Casimir force, but that is incorrect: The zero of the force function − ∂
∂a

ERD occurs at

some larger value of a. Our numerical results agree with those of Romeo and Saharian

[19] to the extent that they have been compared. Because we use different notations

to express the Robin boundary condition, the counterpart of b2 in their notation is

our −1/b. For a more direct comparison, we plot in Fig. 2 the total energy ERD with

respect to −1/b. The result matches [19, Fig. 3] very well, including the location of
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Fig. 2. Total integrated Casimir energy per unit area multiplied by a3, for d = 3 and

−10 ≤ −1/b = −1/βa ≤ 0. Our −1/b here is the counterpart of b2 in [19].

The zero of the total energy is −1/b ≈ −0.81.

the zero.
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CHAPTER V

CONCLUSION

In Casimir theory — and in the general study of partial differential equations and

the spectral theory of differential operators — the Robin boundary condition is of

theoretical interest as the simplest step beyond the standard Dirichlet and Neumann

problems for any particular geometrical configuration. The Robin condition also has

physical applications: it arises naturally in place of the Neumann condition for half

of the modes of the electromagnetic field in the presence of a curved boundary, it

mocks up in a simple way the effect of a boundary between two media, and it may

have cosmological significance in the brane-world scenario [27].

Their formula in [19] for the total energy is a rather complicated integral. Ours

is an infinite sum whose terms fall off fairly rapidly, so reasonable accuracy can be

attained by truncating the series. At least in the case where only one of the boundaries

is Robin, the individual terms in the series can be evaluated in terms of known special

functions, the Laguerre polynomials. The scope of this paper has not allowed us to

tackle the case of two Robin boundaries in such detail, nor to study in much depth

the questions of how the signs of the energy and the force depend on the parameters.

Finally, we have restricted attention to positive Robin constants; the negative case is

of more dubious physical significance, and the construction of the cylinder kernel in

that case requires different mathematics.

We have taken pains to calculate the local energy density (albeit for only the

easiest choice of the conformal coupling parameter, ξ = 1
4
) and to conduct the calcu-

lation of the total energy in the same framework. It has been known for many years

[28] that vacuum energy densities in flat space are pointwise finite (apart from the

ubiquitous zero-point energy of every quantized field) but nonintegrable near bound-
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aries. The Robin condition introduces a new (less singular) divergent term in addition

to those familiar from the more elementary conditions. Direct calculations of total

energy lead immediately to formal divergences. When an ultraviolet cutoff (in partic-

ular, the cylinder-kernel approach) is used, the divergent terms depend on the cutoff

parameter t polynomially or logarithmically, and these terms have a close relation

to the divergent integrals of the energy density [14]. The divergence associated with

the Robin constant is of the logarithmic class when d = 1. “Analytic” regulariza-

tion schemes (dimensional and zeta functions) automatically remove the polynomial

terms. However, it is not clear that this nonchalance is physically justified. The

energy density serves as a source in the gravitational field equation, so its singular

behavior at boundaries cannot just be ignored [28, 29]. Also, the traditional approach

to Casimir forces, while plausible for predicting attractions between rigid bodies, has

been strongly criticized when applied to deformations of bodies [30, 31, 32, 33]. It

may be that the divergent terms in the vacuum energy (or the related divergent in-

tegrals of the energy density) can be absorbed into terms in the equations of motion

representing the mechanical response of the materials in the bodies, but there is gen-

erally no justification for simply setting those terms to zero. In the end a successful

physical analysis of a particular system of experimental relevance must be based on

a more realistic and complete model, but in the meantime a clear understanding of

the (relatively tractable) vacuum-energy calculations is needed in order to diagnose

the problems and to determine the limits of validity of the theory.

In the parallel-plate problem we have shown that the only divergent terms are

directly associated with the individual plates. Therefore, they are not functions of the

plate separation and do not contribute to the force between the plates. (This was, of

course, known already, but our treatment of the total energy in the same framework

as the energy density removes a certain mysticism from the renormalization and
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promises to elucidate the physics in more complicated situations in the future.) The

remaining finite energy and force are Casimir quantities in the strictest sense; they are

associated with the discretization of modes and with periodic orbits of the underlying

classical system (not short nonperiodic orbits that bounce off the boundary).

The construction of the cylinder kernel as a multiple-scattering expansion is a

powerful method for calculating local spectral and vacuum effects, which demands

further development.
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APPENDIX A

PROOF OF THEOREM 2.1

After rearrangement the proposed series in (2.19) is

TRD(x, y) = T +
∞∑

n=0

(R0Da)
nR0T +

∞∑
n=0

(DaR0)
nDaT +

∞∑
n=0

(DaR0)
nDaR0T

+
∞∑

n=1

(R0Da)
n−1R0DaT

= (1 + R0)
∞∑

n=0

(DaR0)
nT + (1 + R0)

∞∑
n=0

(DaR0)
nDaT

= (1 + Da)
∞∑

n=0

(R0Da)
nT + (1 + Da)

∞∑
n=0

(R0Da)
nR0T.

(A.1)

Because of the falloff of T as a function of x (see (2.1)) the series converges (abso-

lutely). Therefore, it is easy to see that it satisfies the cylinder equation (1.12) inside

the slab and the proper boundary condition at t = 0. Finally, by virtue of (2.10) and

(2.12), it satisfies both the Dirichlet condition at x = L and the Robin condition at

x = 0.

When n = 1,

DaR0T (x, y) = −T (x− 2a, y) + (2β)

∫ ∞

0

e−βεT (x− ε− 2a, y) dε, (A.2)

so (2.20) is satisfied when n = 1. Suppose that when n = m (2.20) is satisfied:

(DaR0)
mT (x, y) =(−1)mT (x− 2ma, y)

+ (−1)m+1(2β)

∫ ∞

0

L1
m−1(2βε)e−βεT (x− ε− 2ma, y) dε.

(A.3)
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Then when n = m + 1,

(DaR0)
m+1T (x, y) = (−1)m+1T (x− 2ma− 2a, y)

+ (−1)m+2(2β)

[∫ ∞

0

(1 + L1
m−1(2βε))e−βεT (x− ε− 2ma− 2a, y) dε

−
∫ ∞

0

L1
m−1(2βε)e−βε dε

∫ ∞

0

e−βηT (x− ε− η − 2ma− 2a, y) dη

]
.

(A.4)

Let θ = ε + η; then

∫ ∞

0

L1
m−1(2βε)e−βε dε

∫ ∞

0

e−βηT (x− ε− η − 2ma− 2a, y) dη

=

∫ ∞

0

L1
m−1(2βε) dε

∫ ∞

0

e−βθT (x− θ − 2ma− 2a, y) dθ

≡ −
∫ ∞

0

m∑
j=1




m

j


 (−2βθ)j−1

j!
e−βθT (x− θ − 2ma− 2a, y) dθ.

(A.5)

Thus

(DaR0)
m+1T (x, y) = (−1)m+1T (x− 2ma− 2a, y)

+ (−1)m+2(2β)

∫ ∞

0


1 + L1

m−1(2βε) +
m∑

j=1




m

j


 (−2βθ)j−1

j!




× e−βεT (x− ε− 2ma− 2a, y) dε

= (−1)m+1T (x− 2ma− 2a, y)

+ (−1)m+2(2β)

∫ ∞

0

L1
m+1−1(2βε)e−βεT (x− ε− 2ma− 2a, y) dε.

(A.6)

That means that (2.20) is satisfied also when n = m + 1. The formulas (2.21)–(2.23)

can be proved by induction in the same way.
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APPENDIX B

BOUNDARY DIVERGENCES IN THE TOTAL ENERGY

Here we analyze the total energy by the global approach. That is, we integrate

TRD(t, x, x) to get the global cylinder kernel TRD(t) before taking its t derivative and

examining the limit t → 0. We concentrate on the case d = 3 (hence C(d) = π−2),

and we discard from the outset the universal divergent term T of (4.5).

For the infinite space to the right of a Robin plate at x = 0 the integrated cylinder

kernel is, from (3.12),

R0T (t) =

∫ ∞

0

R0T (t, x, x) dx

=

∫ ∞

0

1

π2

t

(t2 + (2x)2)2
dx−

∫ ∞

0

e−βεdε

∫ ∞

0

2β

π2

t

(t2 + (2x + ε)2)2
dx

=
1

4π2t2

[
2tx

t2 + 4x2
+ arctan

2x

t

]∞

0

− β

2π2t2

∫ ∞

0

e−βεdε

[
t(2x + ε)

t2 + (2x + ε)2
+ arctan

2x + ε

t

]∞

0

.

(B.1)

For later comparison with the case of two plates, it is convenient to keep the lower-

limit and upper-limit contributions separate.

From the upper limit at ∞ one gets (for β 6= 0)

1

4π2t2
π

2
− β

2π2t2

∫ ∞

0

e−βε π

2
dε = +

1

8πt2
− 1

4πt2
= − 1

8πt2
. (B.2)

The discontinuity at β = 0 is only apparent, because we shall now see that the

contribution from the ε integral is cancelled by a like term from the lower limit.
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From the lower limit 0 one gets

β

2π2t2

∫ ∞

0

e−βεdε

[
tε

t2 + ε2
+ arctan

ε

t

]

=
β

2π2t
[sin βt (π

2
− Si βt)− cos βt Ci βt] +

1

2π2t2
[cos βt (π

2
− Si βt) + sin βt Ci βt].

(B.3)

The sine integral function Si and cosine integral function Ci have Taylor expansions

Si(z) =
∞∑

k=0

(−1)kz2k+1

(2k + 1)!(2k + 1)
, (B.4)

Ci(z) = γ + ln z +
∞∑

k=1

(−1)kz2k

(2k)!(2k)
, (B.5)

where γ is Euler’s constant. Therefore, the expansion of (B.3) at small t is

1

4πt2
− β

2π2t
+

β2

8π2
+

β3

6π2
t ln(βt) +

(3γ − 4)β3

18π2
t + O(t2). (B.6)

The total regularized energy from (B.2) and (B.6) is

ER(t) = +
1

8πt3
− β

4π2t2
− β3

12π2
ln(βt)− (3γ − 1)β3

36π2
+ O(t1). (B.7)

Similarly, the integrated cylinder kernel to the left of an isolated Dirichlet plate

at x = a is

DaT (t) =

∫ a

−∞
DaT (t, x, x) dx

= − t

π2

∫ a

−∞

dx

(t2 + (2a− 2x)2)2
= − t

π2

∫ ∞

0

du

(t2 + 4u2)2

= − 1

4π2t2

[
2tu

(t2 + 4u2)
+ arctan

2u

t

]∞

0

= − 1

8πt2
,

(B.8)

which corresponds to a regularized energy

ED(t) = − 1

8πt3
. (B.9)
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We must integrate the terms (4.1)–4.4 from 0 to a. Recall that only the terms

DaT and R0T contain divergences. In all the other terms the denominator of the

integrand remains nonzero even when both t and ε are zero, and therefore one can

differentiate and pass to the limit t → 0 before integrating; that is, their contributions

are precisely those already presented in (4.21)–(4.23).

For the divergent terms we could recycle the calculations (B.1) and (B.8), replac-

ing the upper limit ∞ with a. However, the difference would be the negatives of the

integrals from a to ∞, and to them the same argument as above applies: these are

perfectly finite contributions to the energy, even when t = 0, and they have already

been computed in (4.19)–(4.20).

All that remains to be considered is the sum of the regularized energies (B.7) and

(B.9). (Recall that we have already discarded the ubiquitous t−4 term.) The terms

of order t−3 cancel, but this is an artifact of our model, since Dirichlet and Neumann

plates have divergent surface energies that are equal and opposite. According to the

prescription (1.16) we should discard all the terms in the series that diverge as t → 0.

In the present case, because there is a logarithmic term in (B.7), we encounter the

well known scale ambiguity: because the numerical factor inside the argument of the

logarithm is arbitrary, the “finite part” of ER , hence that of ERD , is defined only

up to an arbitrary numerical multiple of β3. Ignoring ER entirely in calculating ERD

yields the prescription of SecIV. The ambiguous β3 term does not depend on a and

hence does not affect the force between the plates. It does, of course, depend on β;

one must feel some trepidation in ignoring it (or even the power-law divergent terms)

in situations where β is allowed to vary.
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APPENDIX C

WHY WE CAN DISCARD TERMS WITH N ≥ 4

The expression of the total energy in (4.24) is an infinite summation, but we

shall prove for d = 3 case that all terms after n = 3 are quite small, so it’s reasonable

to discard them. Note that when d = 3, C(d) = 1/π2 and hence the β-dependent

part of the remainder is

∞∑
n=4

(−1)n

π2

∫ ∞

0

L1
n−1(2βε)e−βεfn(2βε) d(βε) (C.1)

where

fn(2βε) =
(2β)3

6(2βε + 4(n− 1)βa)3
− (2β)3

6(2βε + 4(n + 1)βa)3
− 2a(2β)4

(2βε + 4nβa)4
. (C.2)

Let 2βε = x; then the summation can be written as

∞∑
n=4

(−1)n

2π2

∫ ∞

0

L1
n−1(x)e−

x
2 fn(x) dx (C.3)

and

fn(x) =
(2β)3

6(x + 4(n− 1)βa)3
− (2β)3

6(x + 4(n + 1)βa)3
− 2a(2β)4

(x + 4nβa)4
. (C.4)

It’s easy to show in Mathematica that fn(x) is a decreasing function and fn(x) ≥ 0

for any x ≥ 0, so

fn(x) ≤ fn(0) =
1

a3
(

1

6(2n− 2)3
− 1

6(2n + 2)3
− 2

(2n)4
) . (C.5)

It follows that
∣∣∣∣∣
∞∑

n=4

(−1)n

2π2

∫ ∞

0

L1
n−1(x)e−

x
2 fn(x) dx

∣∣∣∣∣ ≤
1

2π2

∞∑
n=4

∣∣∣∣
∫ ∞

0

L1
n−1(x)e−

x
2 fn(x) dx

∣∣∣∣ (C.6)
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From the mean value theorem for integrals,

∫ ∞

0

L1
n−1(x)e−

x
2 fn(x) dx = fn(0)

∫ η

0

L1
n−1(x)e−

x
2 dx, where 0 < η < ∞ (C.7)

then
∣∣∣∣∣
∞∑

n=4

(−1)n

2π2

∫ ∞

0

L1
n−1(x)e−

x
2 fn(x) dx

∣∣∣∣∣ ≤
1

2π2

∞∑
n=4

fn(0)

∣∣∣∣
∫ ∞

0

L1
n−1(x)e−

x
2 dx

∣∣∣∣ (C.8)

From (8.971.2) and (8.971.5) in [25] we get the integral

∫ η

0

L1
n−1(x)e−

x
2 dx +

∫ η

0

L1
n−2(x)e−

x
2 dx = −2e−

x
2 L0

n−1(x)|η0 (C.9)

For our purpose we calculate

∫ η

0

L1
n−1(x)e−

x
2 dx + (−1)n−2

∫ η

0

L1
0(x)e−

x
2 dx

=
n∑

m=2

(−1)n−m(

∫ η

0

L1
m−1(x)e−

x
2 dx +

∫ η

0

L1
m−2(x)e−

x
2 dx)

=
n∑

m=2

(−1)n−m(−2e−
x
2 L0

m−1(x)|η0)

(C.10)

Note that L1
0(x) = 1, then

∫ η

0

L1
0(x)e−

x
2 dx = −2e−

x
2 |η0

∫ η

0

L1
n−1(x)e−

x
2 dx =

n∑
m=2

(−1)n−m(−2e−
x
2 L0

m−1(x)|η0) + (−1)n−22e−
x
2 |η0

∣∣∣∣
∫ η

0

L1
n−1(x)e−

x
2 dx

∣∣∣∣ ≤ 2
n∑

m=1

∣∣(e−x
2 L0

m−1(x)|η0)
∣∣ ≤ 2

n∑
m=1

(
∣∣∣e− η

2 L0
m−1(η)

∣∣∣ +
∣∣L0

m−1(0)
∣∣)

(C.11)

From([26],(2.14.13))
∣∣∣e− η

2 L0
m−1(η)

∣∣∣ ≤ 1 (C.12)

then

∣∣∣∣
∫ η

0

L1
n−1(x)e−

x
2 dx

∣∣∣∣ ≤ 4n (C.13)
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Now we continue (C.8)

∣∣∣∣∣
∞∑

n=4

(−1)n

2π2

∫ ∞

0

L1
n−1(x)e−

x
2 fn(x) dx

∣∣∣∣∣ ≤
1

2π2

∞∑
n=4

4nfn(0) (C.14)

1

2π2

∞∑
n=4

4nfn(0)

=
2

π2a3

∞∑
n=4

n(
1

6(2n− 2)3
− 1

6(2n + 2)3
− 2

(2n)4
)

=
1

4π2a3

∞∑
n=4

n
10n4 − 9n2 + 3

3n4(n− 1)3(n + 1)3

≤ 1

4π2a3

∞∑
n=4

10n

3(n− 1)3(n + 1)3
= 1.5× 10−4 1

a3

(C.15)

which is roughly 2 percent of |EDD| = π2/1440a3. (The actual error in our numerical

calculations is at most 0.1%.)
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