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ABSTRACT

Functional Inverse Regression and Reproducing Kernel

Hilbert Space. (August 2005)

Haobo Ren, B.S., Peking University;

M.S., Peking University

Chair of Advisory Committee: Dr. Tailen Hsing

The basic philosophy of Functional Data Analysis (FDA) is tothink of the observed data

functions as elements of a possibly infinite-dimensional function space. Most of the cur-

rent research topics on FDA focus on advancing theoretical tools and extending existing

multivariate techniques to accommodate the infinite-dimensional nature of data. This dis-

sertation reports contributions on both fronts, where a unifying inverse regression theory

for both the multivariate setting (Li 1991) and functional data from a Reproducing Kernel

Hilbert Space (RKHS) prospective is developed.

We proposed a functional multiple-index model which modelsa real response vari-

able as a function of a few predictor variables called indices. These indices are random

elements of the Hilbert space spanned by a second order stochastic process and they con-

stitute the so-called Effective Dimensional Reduction Space (EDRS). To conduct inference

on the EDRS, we discovered a fundamental result which revealsthe geometrical associa-

tion between the EDRS and the RKHS of the process. Two inverse regression procedures,

a “slicing” approach and a kernel approach, were introducedto estimate the counterpart of

the EDRS in the RKHS. Further the estimate of the EDRS was achieved via the transfor-

mation from the RKHS to the original Hilbert space. To construct an asymptotic theory, we

introduced an isometric mapping from the empirical RKHS to the theoretical RKHS, which

can be used to measure the distance between the estimator andthe target. Some general



iv

computational issues of FDA were discussed, which led to thesmoothed versions of the

functional inverse regression methods. Simulation studies were performed to evaluate the

performance of the inference procedures and applications to biological and chemometrical

data analysis were illustrated.
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CHAPTER I

INTRODUCTION

Stochastic statistics, longitudinal data analysis (LDA) and functional data analysis (FDA),

are three closely related areas and comprise a trilogy in modern statistics. Stochastic statis-

tics, including time series analysis and spatial statistics, makes inference based on a long

observed trajectory of a random process. Longitudinal dataoften refer to many short series

of records, for which various parametric models combined with nonparametric smoothing

are the major approaches. Compared to stochastic statisticsand LDA, FDA is a more gen-

eral area of research which is nonparametric in nature, while parametric modeling can be

done in abstract function spaces to capture the functional features of the data.

FDA is largely motivated by the emergence of an abundance of functional data. With

the rapid development of accurate instruments, measurement could be taken continuously

over a period of time to produce data in functional form. Statisticians tend to compare

functional data with longitudinal data, and view functional data as densely observed longi-

tudinal data, similar to the generalization from repeated measurement model to longitudinal

data analysis. However, the concept of functional data has brought more profound, creative

and revolutionary ideas to statistics.

The basic philosophy of FDA is to think of each data function as a single observa-

tional unit due to the precise and frequent sampling procedure, although in reality it is only

possible to observe the function at a finite number of grid points. As a result, FDA should

This dissertation follows the style and format of theJournal of the American Statistical
Association.
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be considered in function spaces which are likely to be infinite-dimensional. This leads to

considerations which are substantially different from those of the traditional multivariate

analysis. Another aspect of FDA is to treat every observation element as a sample path

from a specific stochastic process, hence stochastic inference is relevant.

Most of the current research on FDA focuses on two directions: to create advanced

theoretical tools and to adapt existing multivariate techniques to infinite-dimensional func-

tional data. Reproducing Kernel Hilbert Space (RKHS) is an effective and profound device

for statistical analysis involving infinite dimensional data objects, while inverse regression

(IR) is a renowned and brilliant idea in multivariate analysis, both of which are recently in-

troduced to the FDA context. This research will focus on the functional inverse regression

(FIR) from the RKHS prospective.

This dissertation is organized as follows. Chapter II will give a literature review on

FDA, IR and RKHS, respectively. In Chapter III, we present a functional multiple-index

model and explore its probabilistic structure. The estimation framework within RKHS is

described and the associated asymptotic theory is constructed in Chapter IV. Chapter V

investigates the transformation from the RKHS to the Hilbertspace of the stochastic pro-

cess. Chapter VI will discuss some computational issues in FDA and propose the smoothed

versions of the estimation. Empirical studies including simulation and data analysis are re-

ported in Chapter VII. Chapter VIII gives a brief conclusion.
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CHAPTER II

LITERATURE REVIEW

This research comprises three components: Functional DataAnalysis (FDA), Inverse Re-

gression (IR) and Reproducing Kernel Hilbert Space (RKHS). In this chapter, we shall

make an overview of current research topics on FDA and IR and recall the history of RKHS.

2.1 FDA

More and more data nowadays can be easily collected in the form of curves or images.

Statistical methods for analyzing such data are termed “functional data analysis”, a term

coined by Ramsay and Dalzell (1991). The basic philosophy of FDA is to think of each

observed curve or image as a single observation rather than acollection of individual ob-

servations. In terms of the different philosophy and methodology on how to treat these

data, the current FDA research can be largely classified intothree schools: English, French

and Stochastic. The relationship among FDA, longitudinal data analysis and time series

analysis will also be discussed in this review.

2.1.1 English School

The methodologies of the English school are represented by Ramsay and Silverman (1997)

with the applications illustrated in Ramsay and Silverman (2002). Smoothing techniques

dominate this school. Each sampling element is viewed as a smooth function, and the key

step is to convert raw, discretely observed, data into genuine functional elements by various

smoothing techniques including basis function (Fourier, wavelets and B-splines), localized

smoothing (kernel and local polynomial regression) and roughness penalty or regularization

approach (smoothing splines). There is a vast literature inthe field of statistical smoothing,
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see the monographs by Eubank (1999), Green and Silverman (1994), Simonoff (1996) and

Wand and Jones (1995) for an overview of these nonparametrictechniques.

So far, considerations on processing and displaying of functional data have focused

on pattern or structure search and registration (Kneip and Gassar 1992, Gassar and Kneip

1995, Ramsay and Li 1997, Liu and Muller 2003, and Rossi, Delannay, Conan-Guez

and Verleysen 2005), the estimation of mean and covariance structure (Rice and Silver-

man 1991), principal component analysis (Silverman 1996),canonical correlation analysis

(Leugrans, Moyeed and Silverman 1993) and linear discriminant analysis (Hastie, Buja and

Tibshirani 1995).

As in multivariate data analysis, various types of linear models are the most-studied

topics. Obviously, there are many different varieties of functional linear models since we

can entertain a number of different combinations of functional and scalar components in

both the response and predictor variables. The simplest andmost-studied one has a scalar

response and functional predictor. Hall and Horowitz (2004) and Cai and Hall (2005)

discussed the large sample properties of functional linearregression. Crambes (2005) pro-

posed total least square approach for functional linear measurement error models. James

(2002) and M̈uller and Stadtm̈uller (2004) provided some extensions of generalized lin-

ear models and quasi-likelihood method to functional predictors. Escabias, Aguilear and

Valderrama (2004) introduced the functional principal component logistic regression.

Recently, James and Siverman (2005) introduced an adaptive functional model which

extends generalized linear models, generalized additive models and projection pursuit re-

gression to handle functional predictors. It takes the form

g(E(y|x)) = β0 +
r

∑
k=1

fk

(

∫

x(t)βk(t)dt

)

,

wherex is the predicting curve,y is an exponentially distributed scalar response, respec-

tively, g is the link function,βk’s are coefficient functions, andfk’s are the suitably smooth
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curves as in additive models or projection pursuit regression models. A penalized maxi-

mum likelihood estimation approach is used to fit bothfk’s andβk’s.

On the other hand, for works involving both functional response and predictors, Mal-

fait and Ramsay (2003) considered the historical linear model

y(t) = α(t)+
∫ S

0
x(s)β(s, t)ds+ ε(t),

wherex(s),s∈ [0,S] andy(t), t ∈ [0,T] are the exploratory and response curves, respec-

tively, ε is the error process andβ is the bivariate regression coefficient function. They

applied the finite element method to estimateβ.

2.1.2 French School

The name of FDA is twofold: the data is functional and the analytical method uses func-

tional analysis. The French FDA school applies functional analysis extensively. The basic

observational unit is treated more abstractly as an elementin a function space and most

functional analysis concepts and tools such as operator theory can help form the mathemat-

ical foundation of functional data analysis.

Dauxois, Pousse and Romain (1982) was one of the pioneering works in FDA which

constructed an asymptotic theory for functional principalcomponent analysis by using

pure analysis and measure-theoretic language. Fine (2003)explored the similar theory

for canonical correlation analysis in a Hilbert space usingoperator and tensor approach.

Bosq (1991) proposed a first order Hilbertian autoregressivemodel inH, whereH is a real

separable Hilbert space equipped with norm‖ · ‖ and inner product〈·, ·〉, to describe the

dynamics of a sequence{Xt} of H-valued random variables such that

Xt = ρ(Xt−1)+ εt , t ∈ Z,

where{εt} is anH-white noise, which means thatεt ’s areH-valued, identically and in-

dependently distributed (i.i.d.) random variables. It is assumed that 0< E‖εt‖2 < ∞ and



6

Eεt = 0, andρ is a symmetric compact linear operator onH with ‖ρ‖B(H) < 1, whereB(H)

is the space of linear bounded operator onH. Additionally, assume thatE‖X0‖4 < ∞.

Define the covariance operatorC of X0 by C = E(X0⊗X0), and the cross-covariance

operatorD of (X0,X1) by D = E(X0⊗X1), where⊗ is the tensor product inH, meaning for

a,b∈ H, a⊗b∈ B(H), such that

a⊗b( f ) = 〈a, f 〉b, ∀ f ∈ H.

By the strict stationarity one can derive thatD = ρC.

To estimateρ, the inverse ofC must be treated properly since it could be either non-

existing or unbounded. The following projection method wasthen developed in the paper.

Let (λk,νk),k ∈ N, be the eigenvalues and eigenfunctions ofC arranged in the order

of λ1 ≥ λ2 ≥ ·· · ≥ 0. Define the subspace ofH, VK = span(ν1, · · · ,νK), and the associated

projector by

ΠK = Pro j
VK

=
K

∑
k=1

νk⊗νk.

The projected covariance and cross-covariance areC(K) = ΠKCΠK andD(K) = ΠKDΠK,

respectively. We then consider an estimatorρK = D(K)C
−1
(K) of ρ.

This idea was borrowed directly by Cardot, Ferraty and Sarda (1999) to estimateΨ in

the functional linear model

Y = Ψ(X)+ ε,

whereY andε are real random variables,X is aH-valued random variable withE‖X‖2 < ∞,

andΨ is a real linear continuous functional onH. This approach also formed the basis

of functional principal component regression. In the follow-up studies, Cardot, Ferraty

and Sarda (2003) addressed the computational implementation by penalized B-spline, and

Cardot, Ferraty, Mas, and Sarda (2003) discussed the testingof hypothesis ofH0 : Ψ = 0
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with certain computing issues addressed in Cardot, Goia and Sarda (2004). Goia (2003)

also considered the model selection problem.

Among other topics, Cardot (2000) investigated the smoothing effect in functional

principal component analysis, Cardot, Crambes and Sarda (2004) proposed the functional

quantile regression, Cardot and Sarda (2005) studied the functional generalized linear

model, and Cueva, Febrero and Fraiman (2002) handled the functional linear model with

functional response.

2.1.3 Stochastic School

The stochastic school treats each functional sample unit asa realization from a random

process. Strictly speaking, this is different from classical stochastic statistics (Rao 2000) in

which the inference is based on only one realization of a stochastic process. In FDA, the

covariance function is crucial for many analyses, therefore the Karhunen–Lóeve expansion

(Ash and Gardner 1975) is one of the most useful tools in this approach.

Karhunen–Lóeve expansion: Let{X(t), t ∈ [a,b]} be aL2 process (E(X(t)2 < ∞ for

all t ∈ [a,b]) with zero mean and continuous covarianceK. Let {en,n = 1,2, . . .} be an

orthonormal basis for the space spanned by the eigenfunctions of the nonzero eigenvalues

of the integral operator associated withK, with en taken as an eigenvector corresponding

to the eigenvalueλn. Then

X(t) =
∞

∑
n=1

Znen(t), t ∈ [a,b],

whereZn =
∫ b

a X(t)en(t)dt, and theZn are orthogonal random variables withE(Zn) = 0 and

E(Z2
n) = λn. The series converges inL2 to X(t), uniformly in t.

Huang, Quek and Phoon (2001) studied the performance of the truncated Karhunen–

Loéve expansion method in the simulation of a stochastic process. Yao, M̈uller, Clifford,

Dueker, Follett, Lin, Buchholz and Vogel (2003) used a smoothed version of the truncated
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Karhunen–Lóeve expansion to represent each sampled curve. The functional canonical

correlation analysis was implemented by He, Müller and Wang (2002) and an application

could be found in He, M̈uller and Wang (2004). Preda and Saporta (2005a) considered

functional partial least squares and also gave an application in Preda and Saporta (2005b).

All schools focus on the adaptation of standard multivariate techniques to FDA. So far,

principal component analysis (Silverman 1996), canonicalcorrelation analysis (Leurgans,

Moyeed and Silverman 1993 and He et al. 2002), and linear model (Cardot et al. 1999)

have been successfully considered in functional data analysis context. In a nutshell, the

approach of the English school is very effective in the practical data analysis, while the

approach of the French school gives functional data analysis a sound theoretical basis. It

will be beneficial to study FDA from all three perspectives.

2.1.4 A Trilogy in Modern Statistics

FDA, LDA and time series analysis (TSA, or more generally, the stochastic statistics, which

includes spatial statistics) constitute a trilogy of modern statistics. In terms of data struc-

ture, time series data are collected usually as a long seriesof observations, longitudinal data

are measured repeatedly over time giving rise to many short time series, while functional

data have more general forms. Theoretically, LDA and TSA arein the field of parametric

statistics, while the essence of functional data is infinite-dimensional and hence nonpara-

metric statistics has a large role in FDA.

TSA focuses on modeling the dependence and prediction usingmainly parametric

approaches; an example is the classical autoregressive moving average (ARMA) model. In

LDA, the challenge is the apparent nonstationarity of the repeated measurements for each

subject. With the assumption of independence among the subjects, the inferences about the

common covariance matrix can be achieved by borrowing strength across many subjects,

which is the idea of pooled TSA.
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A heuristic and insightful comparison on LDA and FDA from thesmoothing perspec-

tive could be seen in Rice (2004). Many FDA studies are longitudinal-data driven. This is

analogous to the relation between repeated measures model and LDA. The typical linear

model in LDA could be viewed as a functional linear model withboth functional response

and covariates,

Y(t) = β(t)TX(t)+ ε(t),

which has been studied extensively in FDA. Specifically, themixed effects model from

LDA is transplanted to functional linear model and combinedwith smoothing or basis

splines from the FDA side, which generates a powerful tool for both LDA and FDA. Brum-

back and Rice (1998) and Rice and Wu (2001) made contribution inthis direction, Chiou,

Müller and Wang (2003) and Guo (2002) studied the functional mixed effect models in

more depth. It becomes a trend that more FDA techniques are introduced to LDA, for ex-

ample, functional principal component analysis has been applied to LDA (Besse, Cardot

and Ferraty 1997, James, Hastie and Sugar 2000 and Yao, Müller and Wang 2005) and a

functional multiplicative effects model was proposed to study longitudinal behavior in bi-

ology science (Chiou, M̈uller, Wang and Carey 2003). Between TSA and FDA, the works

in Bosq (1991, 2000) introduced some advanced techniques in TSA to FDA. Laukaitis and

Rǎckauskas (2002) illustrated an application of functional autoregressive model in financial

time series data.

2.2 IR

IR has been an active research topic for about fifteen years since its introduction in Li

(1991). Recently, functional data analysts started workingon it. In this section, the research

of both multivariate and functional IR will be reviewed.
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2.2.1 Multivariate Multiple-Index Model and IR

The seminal paper Li (1991) proposed the following multiple-index model which is a

regression-type semiparametric model,

y = f (β′
1x,β′

2x, . . .,β′
px,ε)

wherex and βi ’s belong toRd, ε and x are independent of each other, 1≤ p ≤ d and

f : Rp+1 7→ R. Call eachβ′
ix an index,βi the index coefficient vector, andf the link

function. The number of indices, coefficient vectors and thelink function are all unknown.

One important implication of the model is that the projection of thed-dim explanatory

variable onto thep-dim subspace

B = span(β′
1x,β′

2x, . . . ,β′
px),

captures all we need to know abouty, or, in probability language,y andx are independent

of each other given(β′
1x,β′

2x, . . .,β′
px). The central goal of the model is to estimate the

so-called effective dimension-reduction (EDR) space, span(β1,β2, . . .,βp).

There are many papers on multiple-index type models. Härdle and Stocker (1989)

investigated the method of average derivative estimate (ADE), which has been developed

in a series of works; for example, Donkers and Schafgans (2003) used outer product of

derivatives, and Hristache, Juditsky, Polzehl and Spokoiny (2001) proposed an iterative

improvement. The single-index model (p = 1) attracted the most attention. Among many

works Hristache, Juditsky and Spokoiny (2001) developed ADE for single-index model,

Naik and Tsai (2000) studied the performance of partial least square method, and Yu and

Ruppert (2002) used penalized splines for partially linear single-index model.

On the other hand, to extend the idea of EDR space, Cook (1998) definedB as the

dimension-reduction subspace, and then further developedthe concept of central subspace

in theoretical and graphical tools.
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To explore the geometrical structure of the multiple-indexmodel, Li (1991) added a

crucial condition,

E(b′x|β′
1x,β′

2x, . . .,β′
px) ∈ span{β′

1x,β′
2x, . . .,β′

px}, for ∀b ∈ Rd.

See Hall and Li (1993) for more detailed discussion of the condition. For a model satisfying

this condition, the space span(Σβ1,Σβ2,Σ. . .,βp) contains the centered IR curve E(x|y)−

E(x), whereΣ = Cov(x). This implies that the principal component analysis or eigen-

decomposition of∆ can achieve the estimation of the EDR space. Then how to estimate∆

or Σ−∆ becomes the central problem, where∆ = Cov[E(x|y)].

Li (1991) proposed the now well-known sliced IR (SIR) which can be proceeded by

five steps based on data(xi ,yi), i = 1, · · · ,n,

1. Center and standardizex, zi = Σ̂−1/2
n (xi − x̄), i = 1, · · · ,n, whereΣ̂n is the estimate of

Σ.

2. Divide the range ofy into Sslices,I1, · · · , IS.

3. EstimateE(z|y) by sliced mean,̄zs = 1
ns

∑n
i=1ziI(yi ∈ Is), s = 1, · · · ,S, wherens =

∑n
i=1 I(yi ∈ Is),

4. EstimateCov(E(z|y)) by the weighted covariance matrix,V̂ = 1
n ∑S

s=1nsz̄sz̄′s.

5. Implement the principal component analysis ofV̂.

Duan and Li (1991) and Li (1997) presented more delicate results for analyzing single-

index regression by SIR, Hsing and Carroll (1992) and Zhu and Ng(1995) derived the

large sample properties of SIR based onΣ−∆, Chen and Li (1998) illustrated the features

of SIR. Schott (1994), Ferré(1997 and 1998) discussed the determination of the number

of indices in SIR. Carroll and Li (1992) applied SIR to measurement error models, and

Becker and Fried (2002) made a direct use of SIR in high-dimensional time series analysis.
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For data analysis, He, Fang and Xu (2003) analyzed mass spectra data by combining SIR

and classification tree, Gannoun, Girard, Guinot and Saracco (2004) combined SIR and a

kernel estimation of conditional quantile to estimate reference curves in clinical studies.

For other IR approaches, Zhu and Fang (1996) proposed a kernel regression to estimate

E(x|y) and also gave an asymptotic result. Gather, Hilker and Becker(2002) evaluated

the sensitivity of SIR to outliers and Gather, Hilker and Becker (2001) provided a robust

version of SIR. Fung, He, Liu and Shi (2002) implemented SIR byB-spline and canonical

correlation to estimate∆. Bura and Cook (2001) introduced a parametric IR which fitted

E(x|y) via a multivariate linear regression. Naik and Tsai (2005) proposed the constrained

IR in the presence of linear constraints on parameters. A more innovative idea based on

SIR was in Xia, Tong, Li and Zhu (2002) which generated a minimum average conditional

variance estimation inspired by the SIR, ADE and local linearsmoothers.

A complementary method of SIR termed sliced average variance estimates (SAVE)

was introduced in Cook and Weisberg (1991). Its asymptotic theory was provided in Gan-

noun and Saracco (2003) and an application to microarray data was reported in Bura and

Pfeiffer (2003).

2.2.2 Functional Inverse Regression

In the functional SIR proposed in Ferré and Yao (2003) under setting of the French school,

the model, assumption and procedures were all parallel to Li(1991) by translating the terms

from the linear algebra to functional analysis. The model is

Y = f (〈β1,X〉H ,〈β2,X〉H , . . . ,〈βp,X〉H ,ε) ,

whereβ’s andX belong toH = L2([a,b]) with E(‖X‖2) < ∞. With the assumption

E(〈β,X〉H |〈β1,X〉H , . . . ,〈βp,X〉H ∈ span{〈β1,X〉H , . . . ,〈βp,X〉H} for ∀β ∈ H,
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the spectral decomposition ofΓ−1
X ΓE(X|Y) can estimate span{β1, . . . ,βp}, whereΓZ is the

covariance operator of a stochastic processZ ∈ H . The SIR procedure can be imple-

mented in a way that is similar to the multivariate case to estimateΓE(X|Y). However,Γ−1
X

is problematic due to its unboundedness. The projection technique in Bosq (1991) was then

applied here.

Another functional IR method under the same setting as abovewas considered by

Amato, Antoniadis and Feis (2004), in which E(X|Y) was estimated by wavelet smoothing.

Both Li, Aragon, Shedden and Agnan (2003) and Setodji and Cook (2004) applied IR

to the functional response and multivariate input model:

y(t) = g(β1(t)
′x, . . . ,βp(t)

′x)+ ε(t).

The former used basis presentation and the latter usedk-means approach for slicing. These

two papers originally intended to extend the univariate IR to multivariate response data,

which had been done in Hsing (1999) by nearest neighbor IR.

2.3 RKHS with Applications in Probability and Statistics

RKHS methods have been employed by probabilists and statisticians for at least fifty-five

years. With the applications done by of the machine learningcommunity, it has become

an active topic of research in statistics. Recent works also bring strong evidences of its

promising role in FDA.

The theory of RKHS was originated from complex analysis, developed in integral

equations and bounded-value problems, and matured into thepresent form in the landmark

paper Aronszajn (1950). It was introduced into the probability world by Loéve (1948),

which built the famous Lóeve’s isometry. Parzen (1959) introduced RKHS to statisticians;

Parzen (1961a, 1961b) solved several crucial problems in signal analysis using this power-

ful tool, providing a convincing evidence of the relevance of RKHS in time series analysis
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and general stochastic inference. See Weinert (1982) for a collection of these papers. Bar-

ton and Poor (1990) and Nuzman and Poor (2001) gave two applications to robust signal

analysis and self-similar processes, respectively. Wahba’s well-known work in the 1970’s

formulated the mathematical foundation of the nonparametric smoothing with spline func-

tions using RKHS (Wahba 1990). Gu (2002) developed tensor product smoothing splines

by further application of RKHS. Vapnik’s statistical learning theory (Vapnik 1995) includ-

ing the support vector machine revitalized the interest of RKHS in nonparametric statistics;

the kernel-based algorithms are among the most exciting research topics in both signal anal-

ysis and statistics today. For other application of RKHS, seeBerlinet and Thomas–Agnan

(2004).

In FDA context, the use of RKHS can be seen throughout Ramsay andDalzell (1991).

The function spaceH is partitioned into a direct sum of subspacesH1 and H2 for two

linear operators,L andB, such thatH1 = ker(L), H2 = ker(B) andH = H1⊕H2, where

H1 contains the structural components and is usually of finite dimension,H2 contains the

residual components and is usually infinite dimensional. Based on this partitioning, further

analyses including the representation of the discrete observation by a function inH was

accomplished by RKHS or Wahba’s spline theory.

Eubank and Hsing (2005) brought RKHS to FDA under the setting of the stochas-

tic school. By Lóeve’s isometry and tensor product of RKHS, both the concept and the

computations of canonical correlations were extended to general stochastic processes.

In the remainder of the dissertation, we will present a new functional multiple-index

model and propose inverse regression approaches from the RKHS perspective. This method-

ology is closer in spirit to the practice of the stochastic school, and at the same time it uses

the functional analysis language from the French school, and incorporates smoothing tech-

niques from the English school.
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CHAPTER III

A FUNCTIONAL MULTIPLE-INDEX MODEL

In this chapter, a multiple-index model related to a second order stochastic process will be

proposed in the first section. To explore the geometrical structure of the model, we will

give some basic facts of the reproducing kernel Hilbert space (RKHS) in Section 3.2. Then

Section 3.3 provides the relationship between the RKHS and inverse regression.

3.1 A Second Order Multiple-Index Model

Let {Xt , t ∈ T} be a real-valued zero-mean, second order stochastic process defined on

some probability space(Ω,F ,P), where the index setT is assumed to be a separable metric

space. Here and elsewhere, a second-order process orL2 process refers to a process such

that E(|Xt |2) < ∞ for all t ∈ T. See Ash and Gardner (1975) for background knowledge on

second-order stochastic processes.

Define the Hilbert spaceL2
X generated by the process in the following way. First let

span{Xt , t ∈ T}, be the set of finite linear combinations of random variablesof the form

Xti for ti ∈ T. Further letspan{Xt , t ∈ T} be the closure of span{Xt , t ∈ T} in L2(Ω,F ,P).

ThenL2
X is defined to be the space containing elements inspan{Xt , t ∈ T} and equipped

with the inner product

〈U,V〉L2
X

= E(UV).

Thus,L2
X contains the random variables attainable by linear operations onXt and theirL2

limits.

Let us now define the following conditions in whichξ1, . . . ,ξp are elements inL2
X and

Y is a real random variable.
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(IR1) Y andX are conditionally independent of each other givenξ1, . . . ,ξp.

(IR2) For anyξ ∈ L2
X,

E(ξ|ξ1, . . . ,ξp) ∈ span{ξ1, . . . ,ξp} a.s..

A particularly relevant situation for which (IR1) holds is the multiple-index model

Y = f (ξ1, . . . ,ξp,ε), (3.1)

whereε is a random error independent of the process{Xt}, eachξ′ix is called an index and

f the link function. The number of indices, indices and the link function are all unknown.

Condition (IR2) holds if the joint distribution of any finite collection of elements from

L2
X is spherically symmetric, which would be the case if, for instance,{Xt} is a Gaussian

process.

The goal of the model is to estimate the so-called effective dimension-reduction (EDR)

space, a subspace ofL2
X,

L2
X,e = span{ξ1, . . . ,ξp} ⊂ L2

X,

which is equipped with the inner products ofL2
X.

So far, the set-up is analogous to Li (1991), however, we needmore advanced theory

for the RKHS to explore the structure of this model. Before doing so, we will briefly review

the notion of RKHS.

3.2 Some Facts of RKHS

The general definition and common properties of an RKHS will bepresented in this section,

which could also be found in Aronszajn (1950), Pazern (1959), Kailath (1971), Wahba

(1990), Lukíc and Beden (2001) (henceforth LB).
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Definition III.1.A Hilbert spaceH is said to be a RKHS with reproducing kernel K, if

each element ofH is a function defined on some setT, and there is a bivariate functionK

onT ×T, having the following two properties:

(1) For allt ∈ T, K(·, t) ∈ H

(2) For allt ∈ T and f ∈ H, f (t) = 〈 f ,K(·, t)〉H

There are three components of a RKHS: the index setT, the Hilbert spaceH of func-

tions, i.e. H ⊂ RT , and the kernel function with the specific reproducing property in (2).

We use the triple notation(T,H,K) or H(K,T) to denote a RKHS.

There are many nice properties of RKHS, mostly due to the existence of kernel. The

first two properties are related to the alternative characterization and denseness of RKHS.

Property III.1.(Alternative Characterization)

In the RKHS,H(K,T), every evaluation functional is continuous, which means that

for all t ∈ T, the functionalet with et( f ) = f (t) for all f ∈ H(K,T), satisfies|et( f )| ≤

Mt‖ f‖H for someMt ∈ [0,∞).

Property III.2.(Denseness)

H(K,T) = span{K(·, t), t ∈ T}.

The following properties are related to the continuity and smoothness of the function.

Property III.3.(Pointwise Continuity)

If { fn,n∈ N, f} ⊂ H(K,T), then

‖ fn− f‖H −−−→
n→∞

0 =⇒ fn → f for each point ofT, asn→ ∞.

〈 fn,a〉H −−−→
n→∞

〈 f ,a〉H , ∀a∈ H =⇒ fn → f for each point ofT, asn→ ∞.
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Property III.4.(Smoothness)

If K is a continuous bivariate function onT ×T, then anyf ∈ H(K,T) is continuous

onT.

The following properties are related to the kernel.

Property III.5.(Uniqueness)

If K is the reproducing kernel of a RKHS, thenK is non-negative definite and unique.

Conversely, ifK is a non-negative definite bivariate function onT ×T, a unique RKHS of

real-valued function onT with K as its reproducing kernel can be constructed.

Definition III.2. (Non-negative and Positive Definite Functions)

A symmetric real-valued bivariate functionK defined onT is said to be non-negative

definite if for∀n∈ N, {a1, . . . ,an} ⊂ R, {t1, . . . , tn} ∈ T,

n

∑
i, j=1

aia jK(ti , t j) ≥ 0,

and positive definite if the equality holds only whena1 = a2 = . . . = an = 0. We shall use

K ≥ 0 andK > 0 to denote thatK is non-negative and positive definite, respectively.

Property III.6.(Sum of Reproducing Kernels)

The direct sum of two spaces(T,H1,K1) and(T,H2,K2) is also a RKHS. Denote it as

(T,H,K), whereH = { f = f1 + f2, fi ∈ Hi, i = 1,2} andK = K1 + K2 with norm defined

by

∀ f ∈ H,‖ f‖2
H = min

f= f1+ f2
f1∈H1, f2∈H2

(‖ f1‖2
H1

+‖ f2‖2
H2

).

Property III.7.(Difference of Reproducing Kernels)

For two spaces(T,H1,K1) and(T,H2,K2), assume thatK2−K1 ≥ 0, thenH2 ⊃ H1

and there exists a unique linear operatorL : H2 7→ H1 such that for∀ f ∈ H2 andg∈ H1,

〈 f ,g〉H2
= 〈L f ,g〉H1

,
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L satisfies

LK2(·, t) = K1(·, t), ∀t ∈ T,

andL is a bounded self-adjoint and positive operator.

Definition III.3. (Dominance and nuclear dominance) Under the assumption of Prop-

erty III.7, we say thatK2 dominatesK1 if K2−K1 ≥ 0, and denote it byK2 ≥ K1. The

operatorL is called the dominance operator. IfL is nuclear, i.e., it is trace-class operator,

we sayK2 n-dominatesK1, denote this byK2 ≫ K1 andL is called the nuclear dominance.

The following properties are related to the index setT.

Property III.8.

f ∈ H(K,T) ⇐⇒ sup
S

sup
ai

|∑i ai f (ti)|2
∑i ∑ j aia jK(ti, t j)

< ∞, (3.2)

where the suprema are taken over allS= {t1, . . . , tn} ∈ F = {S⊂ T : S is finite} and all real

a1, . . . ,an, with n arbitrary, such that the denominator in (3.2) is not zero.

Property III.9.Let T be finite, and let the matrix determined by kernelK is nonsingu-

lar. Then∀ f ,g∈ H(K,T):

‖ f‖2
K = ∑

t,s∈T
f (t) f (s)K−1(t,s),

〈 f ,g〉K = ∑
t,s∈T

f (t)g(s)K−1(t,s),

whereK−1 is the inverse of the matrixK.

Let T be an index set andT1 ⊂ T. For any f defined onT, let f |T1 stand for the

restriction of f to the subset ofT1.

Property III.10.(Restriction of Index Set)

SupposeT1 ⊂ T, let H1 = { f1 = f |T1 : f ∈ H} andK1 = K|T1×T1, thenH1 = H(K1,T1)

is a RKHS and

‖ f1‖H1 = min
f∈H

f |T1= f1

‖ f‖H , for all f1 ∈ H1.
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Property III.11.(Approximation) LetT be either a countable or separable metric space,

H(K,T) be a RKHS withK > 0 and{Tn,n∈N} be a sequence of subsets ofT that is mono-

tone increasing and∪∞
i=1Tn = T, we can define a sequence of spacesHn = H(Kn,Tn) with

reproducing kernelsKn = K|Tn×Tn, then

(1) For any functionf defined onT,

‖ fn‖Hn ≤ ‖ fn+1‖Hn+1,

where fn = f |Tn;

(2) For anyf ∈ H(K,T),

‖ f‖H = lim
n→∞

‖ fn‖Hn;

(3) For anyf which is continuous onT, then

lim
n→∞

‖ fn‖Hn < ∞ =⇒ f ∈ H(K,T).

Property III.12.(Separability)

A topological structure of the index set could be induced by the kernel. For the RKHS

(T,H,K), denoteKs = K(·,s), thendK(s, t) = ‖Ks−Kt‖ defines a pseudo-metric onT, and

we have

(1) K > 0 implies thatdK is a metric onT.

(2) If dK is a metric onT, then

(a)∀ f ∈ H(K,T) is dK-continuous.

(b) (T,dK) is separable iffH(K,T) is separable.

The last result concerns with the situation where both kernel and index set are varying.

The following definition and property are excerpted form LB.



21

Definition III.4. (Hamel Basis and Hamel Set)

A setvα of linearly independent vectors in a vector spaceV is called a Hamel basis in

V if {vα} spansV. LetV be the vector space spanned by{Kt , t ∈ T}, a setT0 ⊆ T such that

{Kt , t ∈ T0} is a Hamel basis ofV will be called anK-Hamel subset ofT.

Property III.13.Let H(R,T) be separable and let the kernelK be such thatR≫K with

dominance operatorL. Let T0 be anR-Hamel subset ofT andS0 = {s1, . . .} be adK-dense

subset ofT0. Denote byKn andRn the matrices obtained by restricting the kernelsK andR

to the set{s1, . . . ,sn} ⊂ S0. Then

Tr(L) = Tr(KnR−1
n ),

where Tr(L) is the trace of operator ofL.

The proofs of above properties could be found in Aronszajn (1950), Pazern (1959) and

LB.

3.3 Probabilistic Substructure—Between IR and RKHS

The method of embedding of an abstract space into some RKHS is used extensively to

stochastic processes. The central result is Loéve’s isometry. Consider a real-valued zero-

meanL2 process{Xt , t ∈ T} with

R(s, t) = E(XsXt) and Rt(·) = R(t, ·), s, t ∈ T.

Then we can define the RKHS generated by{Xt , t ∈ T}, which is just the RKHS with

reproducing kernelR:

HX = span{Rt , t ∈ T} = the RKHS of{Xt , t ∈ T} = H(R,T).

The inner product ofH(R,T) is

〈 f ,g〉HX
=

∞

∑
i, j=1

aib jR(si, t j), for f =
∞

∑
i=1

aiRsi andg =
∞

∑
j=1

b jRt j ∈ HX,
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which, by the reproducing property, satisfies

〈 f ,Rt〉HX
= f (t), t ∈ T.

Comparing this to the Hilbert space generated by the process,L2
X, defined in Section 3.1,

we see thatL2
X is isometrically isomorphic toHX, that is, there exists a one-to-one corre-

spondence between the two spaces that preserves the inner products of the two spaces. Let

Ψ be the corresponding isometry that mapsL2
X to HX with

Ψ(Xt) = Rt , t ∈ T.

It follows that Ψ(η)(t) = E(ηXt), for η ∈ L2
X andt ∈ T. This mapping is called Lóeve’s

isometry, which provides a duality between a stochastic process and its RKHS (Wahba

1990).

By this mapping, define the counterpart of EDRS inHX, a subspace ofHX,

HX,e = ΨX(L2
X,e) = span{Ψ(ξ1), . . . ,Ψ(ξp)} ⊂ HX,

which is equipped with the inner products ofHX and we simply call it the EDRS in RKHS.

Motivated by the main theorem in Li (1991), we propose the following conjecture:

The sample paths of conditional process, E(X|Y) ∈ HX,e a.s.

At first glance, this may be proved using the same type of arguments as those in Li (1991) or

Ferŕe and Yao (2003). However, we do not believe that this is the case. It turns that a more

thorough study of the relationship between a RKHS and the sample paths of a stochastic

process is required in the proof.

Parzen (1963) observed that almost all the sample paths ofX lie outsideHX if T

is an infinite separable metric space and the R is continuous on T ×T. Driscoll (1973)

was the first paper to investigate the RKHS structure of the sample paths of a Gaussian

process and gave sufficient conditions for the sample paths falling into a RKHS. Nearly
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thirty years later, LB summarized and generalized this category of problems. The following

development is inspired by their results.

Defining the following conditions,

(P1) LetR be a continuous positive kernel onT ×T;

(P2) The sample paths of E(X|Y) are continuous with probability one.

we have,

Theorem III.1.Assume that (P1), (P2), (IR1), and (IR2) hold. Then

E(X|Y) ∈ HX,e a.s.

Proof. To prove the theorem, a lemma is first stated.

Lemma III.1.Let S be a separable metric space. Let{Us,s∈ S} be aL2-process on

probability space(Ω,F ,P) with mean functionu and continuous covariance kernelK1.

Assume that almost all the sample paths ofU are continuous onS. Let K2 be a continuous

positive kernel onS×Ssuch that withK2 ≫ K1 andu∈ H(K2). ThenP[U ∈ H(K2)] = 1.

Proof of Lemma. Denote the metric ofS by d and letS0 be a countable dense

subset ofS in d. Define

dK2(s, t) = ‖K2(s, ·)−K2(t, ·)‖K2.

SinceK2 > 0, it follows from Property III.12(1) thatdK2 is a metric onS. For anys∈ S, let

sn be a sequence of elements inS0 which converges tos in S in the metricd. Then, by the

reproducing property,

d2
K2

(sn,s) = ‖K2(sn, ·)−K2(s, ·)‖2
K2

= K2(sn,sn)−2K2(sn,s)+Ks(s,s) → 0

by the continuity ofK2. This shows thatS0 is also dense in the metricdK2 so thatS is also

dK2-separable. Thus, by Property III.12(2b),H (K2) is separable.
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Now enumerate the elements ofS0 and letSn be the collections of the firstn elements

according to the enumeration. ThenSn is monotone increasing and limn→∞ Sn = S0. Define

f = U −u, K1,n = K1|Sn×Sn, K2,n = K2|Sn×Sn, fn = f |Sn, andUn = U |Sn. Observe that

E[‖ fn‖2
K2,n

] = E( f ′nK−1
2,n fn) = E(tr( f ′nK−1

2,n fn)) = E(tr( fn f ′nK−1
2,n))

= tr[E( fn f ′n)K
−1
2,n] = tr[cov( fn)K

−1
2,n] = tr(K1,nK−1

2,n).

Since‖ fn‖K2,n is monotone by (1) of Property III.11, it follows from the monotone conver-

gence theorem that

E[ lim
n→∞

‖ fn‖2
K2,n

] = lim
n→∞

tr(K1,nK−1
2,n). (3.3)

Note that sinceK2 is nonsingular,T itself is anK2-Hamel subset ofT. Let L be the dom-

inance operator forH (K2) overH (K1). By Property III.13 and the assumptionK2 ≫ K1,

we have

lim
n→∞

tr(K1,nK−1
2,n) = tr(L) < ∞.

It then follows from (3.3) that

lim
n→∞

‖ fn‖2
K2,n

< ∞ a.s.

By (3) of Property III.11, this implies thatf ∈ H (K2) a.s., and completes the proof.

The proof of III.1 is accomplished in five steps as

1. LetHE(X|Y) denote the RKHS of the process{E(Xt |Y), t ∈ T}, which is well-defined.

Since

E[E(Xt |Y)] = E(Xt) = 0,

and

Var(E(Xt |Y)) ≤ Var(Xt) < ∞, t ∈ T,
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it follows that{E(X(t)|Y), t ∈ T} is also a zero-mean, second order stochastic pro-

cess, with covariance function

K(s, t) := Cov(E(Xs|Y),E(Xt |Y)) , s, t ∈ T.

Thus, defineL2
E(X|Y) and the RKHSHE(X|Y) in the usual way.

2. Verify that dim(HE(X|Y)) ≤ p.

By definition

L2
E(X|Y) = span{E(Xt |Y), t ∈ T},

and by (IR1) and (IR2),

E(Xt |Y) = E(E(Xt |Y,ξ1, . . . ,ξp)|Y)

= E(E(Xt |ξ1, . . . ,ξp)|Y)

=
p

∑
i=1

ci,tE(ξi|Y) a.s.

for some constantsci,t . It follows that

E(Xt |Y) ∈ span{E(ξi|Y), i = 1, . . . , p}.

Consequently,

L2
E(X|Y) ⊆ span{E(ξi|Y), i = 1, . . . , p},

and hence

dim(L2
E(X|Y)) = dim(HE(X|Y)) ≤ p.

3. Verify that there exists a dominance operator ofHX overHE(X|Y).
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Let ttt = (t1, . . . , tm)′ ∈ Tm and aaa = (a1, . . . ,am) ∈ Rm,m = 1,2, . . .. Writing XXX =

(Xt1, . . . ,Xtm)′, we have

var(aaa′XXX) = var(E(aaa′XXX|Y))+E(var(aaa′XXX|Y)).

Thus,

aaa′(Rm−Km)aaa= E(var(aaa′XXX|Y)) ≥ 0,

where

Rm = {R(ti , t j)}i, j=1,m andKm = {K(ti , t j)}i, j=1,m.

This implies thatR−K ≥ 0, and we conclude that

HX ⊇ HE(X|Y).

Further, by Definition III.3, there exists a dominance operator

L : HX → HE(X|Y)

such that

〈 f ,g〉HX
= 〈L f ,g〉HE(X|Y)

for all f ∈ HX andg∈ HE(X|Y).

4. Verify that E(X|Y) ∈ HX a.s.

Combining steps 2 and 3, we can conclude that the dominance operatorL is a finite

rank operator, henceL is a nuclear operator with tr(L) < ∞. SinceT is separable, and

the continuity ofR implies theL2-continuity of{Xt , t ∈ T}, by theL2 convergence

property of conditional expectation,{E(X(t)|Y), t ∈ T} is alsoL2-continuous and so

K is continuous. It then follows from Lemma III.1 that

E(X|Y) ∈ HX.
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5. Finally, prove that E(X|Y) ∈ HX,e a.s..

We will show that

〈E(X|Y),h〉HX
= 0

for anyh∈ HX such that

〈h,Ψ(ξi)〉HX
= 0, 1≤ i ≤ p. (3.4)

Let ξ = Ψ−1(h) ∈ L2
X. If h = Rt , thenΨ−1(h) = Xt . By the reproducing kernel

property,

〈E(X|Y),h〉HX
= E(X|Y)(t) = E(Xt |Y) = E(ξ|Y).

In general ifh = ∑∞
i=1diRti , thenξ = ∑∞

i=1diXti and

〈E(X|Y),h〉HX
=

∞

∑
i=1

di〈E(X|Y),Rti〉HX
=

∞

∑
i=1

diE(Xti |Y) = E(ξ|Y).

By the properties of conditional expectation and (IR1),

E(ξ|Y) = E(E(ξ|ξ1, . . . ,ξp,Y)|Y) = E(E(ξ|ξ1, . . . ,ξp)|Y) .

It suffices to show that the above righthand side equals 0, which we now do. Since

by (IR2),

E(ξ|ξ1, . . . ,ξp) =
p

∑
i=1

ciξi

for someci,1≤ i ≤ p, we have

E
(

E2(ξ|ξ1, . . . ,ξp)
)

= E

(

p

∑
i=1

ciξiE(ξ|ξ1, . . . ,ξp)

)

= E

(

p

∑
i=1

ciE(ξξi|ξ1, . . . ,ξp)

)

=
p

∑
i=1

ciE(ξξi),
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which is equal to

p

∑
i=1

ci〈Ψ(ξi),Ψ(ξ)〉HX
=

p

∑
i=1

ci〈Ψ(ξi),h〉HX
= 0

by (3.4). Then

E(ξ|ξ1, . . . ,ξp) = 0

which implies

E(E(ξ|ξ1, . . . ,ξp)|Y) = 0.

Hence the proof is complete.

♦

To apply the theorem to estimate the EDRS in RKHS,HX,e, we need to derive some

corollaries from the theorem. By Theorem 3.1 of LB, since the sample paths of E(X|Y)

belong toHX, thenR≥ K implies that the covariance operator of E(X|Y) is well-defined

and just equals to the dominance operatorL, i.e.,

L = E
(

E(X|Y)⊗HX
E(X|Y)

)

,

which is defined by

L f = E(〈E(X|Y), f 〉HX
E(X|Y)), for f ∈ HX.

SinceR≫ K, L is a nuclear operator meaning a trace-class, symmetric and anon-negative

operator. There are more properties ofL:

Corollary III.1. L is degenerate in any direction orthogonal toHX,e.

Proof. It follows from the theorem that

〈s,E(X|Y)〉HX
= 0
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for all s∈ HX such that

〈s,ΨX(ξi)〉HX
= 0,1≤ i ≤ p.

Hence

0 = E(〈s,E(X|Y)〉2
HX

)

= E(〈s,E(X|Y)〉HX
〈s,E(X|Y)〉HX

)

= E(〈s,〈s,E(X|Y)〉HX
E(X|Y)〉HX

)

= 〈s,E(〈s,E(X|Y)〉HX
E(X|Y))〉HX

= 〈s,Ls〉HX
.

♦

Corollary III.2. For the range ofL, we have

Im(L) ⊂ HX,e,

whereIm(L) is the range ofL.

Proof. For any f ∈ HX andh⊥HX,e,

〈L f ,h〉HX
= E

(

〈E(X|Y), f 〉HX
〈E(X|Y),h〉HX

)

= E
(

〈E(X|Y), f 〉HX
·0

)

= 0.

♦

In order to introduce functional sliced inverse regressionin HX, we need another op-

erator,

L̃ =
S

∑
s=1

psE(X|Y ∈ Is)⊗HX
E(X|Y ∈ Is),

whereIm(Y) = ⊕S
s=1Is andps = Pr(Y ∈ Is),s= 1, · · · ,S.
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Corollary III.3. For the sliced conditional sample path, if the sample paths of E(X|Y ∈

Is) are continuous with probability one, we have

E(X|Y ∈ Is) ∈ HX, a.s.

Proof. Let K and J be the kernels ofE(X|Y) and E(X|Y ∈ Is), respectively. Note that

E(X|Y ∈ Is) = E[E(X|Y)|Y ∈ Is]. ThenK − J ≥ 0, which impliesH(K) ⊃ H(J). Since

dim(H(J)) ≤ dim(H(K)) ≤ p, the dominance mapping fromH(K) to H(J) is nuclear, by

Lemma III.1,

E(X|Y ∈ Is) ∈ H(K) ⊂ HX.

♦

Corollary III.4. L̃ is degenerated in any direction orthogonal toHX,e.

Proof. Since

〈s,E(X|Y)〉HX
= 0

for all s∈ HX such that

〈s,ΨX(ξi)〉HX
= 0,1≤ i ≤ p.

〈L̃s,s〉HX
=

S

∑
s=1

ps〈E(X|Y ∈ Is),s〉2
HX

=
S

∑
s=1

ps〈E[E(X|Y)|Y ∈ Is],s〉2
HX

=
S

∑
s=1

psE
2(〈E(X|Y),s〉HX

|Y ∈ Is)

= 0.

♦
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Corollary III.5. For the range of̃L,

Im(L̃) ⊂ HX,e.

Proof. For any f ∈ HX andh⊥HX,e,

〈L̃ f ,h〉HX
=

S

∑
s=1

ps〈E(X|Y ∈ Is), f 〉HX
〈E(X|Y ∈ Is),h〉HX

=
S

∑
s=1

ps〈E(X|Y ∈ Is), f 〉HX
E(〈E(X|Y),h〉HX

|Y ∈ Is)

= 0.

♦
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CHAPTER IV

STATISTICAL FRAMEWORK IN RKHS

Theorem III.1 reveals the geometrical or probabilistic structure of the functional multiple-

index model and facilitates the statistical inference based on inverse regression in the RKHS

of the process. We will give the matrix version and computation related to the covariance

operator in Section 4.1, two estimation procedures in Section 4.2, and the asymptotic results

in Section 4.3.

4.1 Discretization

There are two reasons to consider discretization. Firstly,the covariance operators defined

in most Hilbert spaces cannot be calculated directly. Secondly, in functional data analysis

it is always the case that{X(t), t ∈ T} is observed only on a discrete set of values of

T, sayTq = {t1, . . . , tq}. To apply the matrix language, we simply consider the rectangle

design, which means observingX = (X(t1), . . . ,X(tq))′ wheret1 < .. . < tq, and|ti+1− ti|,

i = 1, . . . ,q− 1, might be unequal but the same for all curves. This rectangle sampling

scheme can be achieved by any representation method of the original sampling functional

units. Then the following computation gives the matrix version for L. For f ∈ H(Rq,Tq),

Lqf = E
(

E(X|Y)⊗Rq E(X|Y)
)

f

= E
(

E(X|Y)〈E(X|Y), f〉Rq

)

= E
(

E(X|Y)E(X|Y)′R−1
q f

)

= [Cov(E(X|Y))R−1
q ]f.

HenceLq = Cov(E(X|Y))R−1
q , whereRq = {cov(X(ti),X(t j))}i, j=1,...,q.
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Spectral decomposition in the discrete setting can be carried on by applying matrix

optimization:

max
‖f‖Rq=1

〈E
(

E(X|Y)⊗Rq E(X|Y)
)

f, f〉Rq

= max
〈Cov(E(X|Y))R−1

q f, f〉Rq

f′R−1
q f

= max
f′R−1

q Cov(E(X|Y))R−1
q f

f′R−1
q f

= max
g′Cov(E(X|Y))R−1

q g

g′g

= max
‖g‖=1

g′Cov(E(X|Y))R−1
q g.

Thus, the spectral decomposition ofLq can be achieved by the eigen-decomposition for the

matrix Cov(E(X|Y))R−1
q . The above calculation also implies

argmax
‖f‖Rq=1

〈E
(

E(X|Y)⊗Rq E(X|Y)
)

f, f〉Rq
= R1/2

q argmax
‖g‖=1

g′Cov(E(X|Y))R−1
q g. (4.1)

In data analysis, we will also encounter the problem that thecovariance kernel is unknown,

so that we have to estimate it in some way.

4.2 IR Procedures in RKHS

We have two approaches to estimateHX,e:

If Im(L̃) = HX,e, the functional sliced inverse regression (FSIR) which generalizes Li

(1991) can be used to estimateL̃.

If Im(L) = HX,e, we can implement the functional kernel inverse regression(FKIR), the

extension of Zhu and Fang (1996) to estimateL.

Then the spectral decomposition of the estimated operatorsgives an estimate of the EDR

space in RKHS.
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Let (X i ,Yi), i = 1, . . . ,n, be a discrete sample of(X,Y). Estimate the covariance matrix

of X by R̂q,n. Then the FSIR algorithm is

Step 0. CenteringX i ’s.

Step 1. S-partition the range ofY to form{Is,s= 1, . . . ,S}.

Step 2.ns = ∑n
i=1 I(Yi ∈ Is), p̂s,n = ns

n , andµ̂s,q,n = 1
ns

∑n
i=1X i I(Yi ∈ Is), s= 1, . . . ,S.

Step 3.ˆ̃Lq,n = ∑S
s=1 p̂s,n

(

µ̂s,q,n⊗R̂q,n
µ̂s,q,n

)

. Wherea⊗R̂q,n
a = aa′R̂−1

q,n.

Step 4. Implement the eigen-decomposition ofˆ̃Lq,n.

As the FSIR directly estimates the operatorL̃, the FKIR algorithm first estimates the

conditional expectationE(X|Y) by kernel smoothing then the covariance of it:

Step 0. CenteringX i ’s.

Step 1. Choose a kernel function and calculate

ĝq,n(y) =
1
nh

n

∑
i=1

X iK

(

Yi −y
h

)

and

f̂ (y) =
1
nh

n

∑
i=1

K

(

Yi −y
h

)

.

Step 2. Choose a small positive numberb and compute

f̂b(y) = max(b, f̂ (y)).

Step 3. Implement the Waston-Nadaraya type kernel estimation

m̂b,q,n(y) =
ĝq,n(y)

f̂b(y)
,

where the bandwidth could be selected by cross-validation procedure.

Step 4.L̂q,n = 1
n ∑n

i=1m̂b,q,n(Yi)⊗R̂q,n
m̂b,q,n(Yi).

Step 5. Implement the eigen-decomposition ofL̂q,n.
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4.3 Asymptotic Studies in RKHS

To prove the consistency of the estimators introduced in theprevious section is a chal-

lenging task. In the literature of functional data analysis, asymptotic results based on

partially observed functional data have been rarely considered. For the present topic, un-

der the assumption that each curve or sample unit is observedcompletely, in papers from

the French school a number of asymptotic results were provedas the sample sizen goes

to infinity. We cannot try this approach, since even if observing the whole curves, i.e.,

the complete sample,{(Xi,Yi), i = 1, . . . ,n}, we cannot prove that the estimator function,

µ̂s,n = 1
n ∑n

i=1XiI(Yi ∈ Is) from FSIR orĝn(y) = 1
nh ∑n

i=1XiK
(

Yi−y
h

)

from FKIR falls into

the RKHS ofX. Actually, we have the following more general result.

Proposition IV.1.Let X1, · · · ,Xn be a sample from a zero-mean Gaussian process on a

real intervalT, with a continuous positive covariance kernelR. The sample paths ofX are

continuous onT, a.s. DefineY = ∑n
i=1ciXi, where∑n

i=1c2
i > 0. ThenY 6∈ H(R) a.s.

Proof. Obviously,Y is a Gaussian process with continuous sample paths, and it istrivial to

know that its covariance kernel isK = ∑n
i=1c2

i R. To apply Theorem 3 in Driscoll (1973),

let Tq = {t1, · · · , tq} be a increasing series satisfying∪Tq = T. Define the restrictionsKq =

K|Tq×Tq andRq = R|Tq×Tq, then

lim
q→∞

tr(KqR−1
q ) = lim

q→∞
tr(

n

∑
i=1

c2
i RqR−1

q )

= lim
q→∞

q
n

∑
i=1

c2
i

= ∞.

This completes the proof. ♦

On the other hand, in most classical works on application of RKHS in statistics,

asymptotic results are about the limiting behavior when number of observational points,
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q, tends to infinity, for just one curve and with the known covariance kernel. In the fol-

lowing, we will attempt to handle these two problems. We willintroduce a very useful

mapping,Aq, and by using it, we can project the estimator into the RKHS to study the

distance between the estimator and the target.

In the following, we will use the symbolsH(R) = H(R,T) = HX interchangeably. Let

Tq = {t1, · · · , tq} ⊂ T be the observation locations. DenotefS = f |S = the restriction of

f on S⊂ T for a function f defined onT, and for convenience, definefq = fTq and the

corresponding restriction of the RKHS,Hq = H(Rq,Tq).

In the following we will prove the consistency of both FSIR and FKIR in the RKHS.

We first provide some lemmas on some basic properties for Hilbert spaces and more results

of RKHS. The first two lemmas are two general results from Hilbert space theory.

Lemma IV.1.In a Hilbert spaceH, a,b∈ H, then‖a⊗b‖B(H) = ‖a‖‖b‖.

Proof.

‖a⊗b‖B(H) = sup
‖x‖=1

‖a⊗b(x)‖

= sup
‖x‖=1

‖〈a,x〉b‖

= ( sup
‖x‖=1

|〈a,x〉|)‖b‖

= ‖a‖‖b‖.

♦

Lemma IV.2.In a Hilbert spaceH, {xn},{yn} ⊂ H and x,y ∈ H, then we have the

following results:

1. xn ⇀ x⇐⇒

(1) ‖xn‖ is bounded;

(2) ∃M ⊂ H,M = H,∀m∈ M,〈xn,m〉 → 〈x,m〉.
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2. xn → x⇐⇒

(1) xn ⇀ x;

(2)‖xn‖→ ‖x‖.

3. xn → x,yn → y =⇒‖xn⊗yn−x⊗y‖B(H) → 0.

Proof. 1. See Zhang and Lin (1987).

2. See Parzen (1959).

3. By Lemma IV.1 and the fact that‖xn‖ is uniformly bounded, hence

‖xn⊗yn−x⊗y‖B(H)

= ‖xn⊗ (yn−y)+(xn−x)⊗y‖B(H)

≤ ‖xn⊗ (yn−y)‖B(H) +‖(xn−x)⊗y‖B(H)

= ‖xn‖‖yn−y‖+‖xn−x‖‖y‖→ 0.

♦

The next two lemmas state two useful results for the RKHS. The first is for continuous

kernels and another is about discrete kernels.

Lemma IV.3.If R is a continuous non-negative kernel onT ×T andT0 = T then

H(R,T) = span{Rt , t ∈ T0}.

Proof. By Lemma 1 in Driscoll (1973), sinceR is a continuous, every function inH(R,T)

is continuous onT. If a functiong∈ H(R,T) satisfies the condition〈g,Rt〉 = 0 for ∀t ∈ T0,

which impliesg(t) = 0, for ∀t ∈ T0, then due to continuity and dense property, we know

g(t) = 0 for ∀t ∈ T, this completes the proof by Lemma 1a in Parzen (1959). ♦
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Lemma IV.4.If T is finite with q elements andR a positive kernel onT × T, i.e.,

R∈ Rq×q, thenH(R,T) = Rq.

Proof. First, we will prove the following result of matrix computation. Let A = {ai j} ∈

Rn×n, A > 0, T = {t1, . . . , tq} ⊂ {1, . . . ,n}, b = (b1, . . . ,bn)
′ ∈ Rn. DefineAT = A|T =

{ati ,t j , i, j ∈ {1, . . . ,q}} and bT = b|T = (bt1, . . . ,btq)
′, for any T1 ⊂ T2 ⊂ {1, . . . ,n}, we

have

bT1
′AT1

−1bT1 ≤ bT2
′AT2

−1bT2

The following facts will be useful. Let

A =







A11 A12

A21 A22






,

assume thatA11 is nonsingular, we can defineA22.1 = (A/A11) = A22−A21A11
−1A12. It

is easy to show that

(1) If A is symmetric, thenA > 0 is equivalent to thatA11 > 0 and(A/A11) > 0.

(2) If A is symmetric andA11 > 0, thenA ≥ 0 is equivalent to(A/A11) > 0.

Let bi = bT i , A i = AT i , i = 1,2. After appropriate arrangement,b2 =







b1

c






and

A2 =







A1 B

B′ 0






, then

A2
−1 =







A1
−1 +FE−1F′ −FE−1

−E−1F′ E−1







=







A1
−1 0

0 0






+







FE−1F′ −FE−1

−E−1F′ E−1






,
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whereE = D−B′A1
−1B, F = A1

−1B.

A2 > 0 implies thatE = (A2/A1) > 0. Defining

G =







FE−1F′ −FE−1

−E−1F′ E−1






=







G11 G12

G21 G22






,

G11 > 0 and(G/G11) = G22−G21G11
−1G12 = FE−1F′−FE−1EE−1F′ = 0 implies that

G ≥ 0.

b2
′A2

−1b2 = ( b1
′ c′ )+













A1
−1 0

0 0






+G













b1

c







= b1
′A1

−1b1 +( b1
′ c )G







b1

c






,

Hence,b2
′A2

−1b2−b1
′A1

−1b1 = ( b1
′ c )G







b1

c






≥ 0.

Now we can use Property III.8. LetF = {S⊂ T}, (a1, . . . ,an) ∈ Rn, and

∑i ∑ j aia jR(ti, t j) 6= 0.

∀ f ∈ Rn, T = {1, . . . ,n}, andS⊂ T,

sup
{a1,...,an}

(∑i∈Sai fi)2

∑i, j∈Saia jR(i, j)
=

(a′f|S)2

a′R|Sa
= f|′SR|−1

S f|S,

Hence,

sup
S∈F

f|′SR|−1
S f|S = f′R−1f < ∞.

♦

Lemma IV.4 implies that the RKHS defined on finite index set is the whole Euclidean

space but with possibly different topological structure. In the following three statements

we will introduce a useful isometric mapping and give some properties.
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Lemma IV.5.Let R be a kernel onT ×T. Given Tq = {t1, · · · , tq} ⊂ T, the restric-

tions onR is Rq = R|Tq×Tq. DenoteĤq = H(Rq,Tq), andH̃q = span{Rt = R(t, ·), t ∈ Tq} ⊂

H(R,T). ThenĤq andH̃q are isometric isomorphic. LetAq be the isometric isomorphism

from Ĥq to H̃q, if R> 0, Aq can be expressed explicitly.

Proof. See Theorem 6C in Parzen (1959) for proof of the congruence. For ∀f ∈ Ĥq, f ∈

span{Rt , t ∈ Tq}, whereRt = (R(t, t1), · · · ,R(t, tq))′, t ∈ Tq, sof can be represented asf =

∑q
i=1Rti ci. SinceR> 0 impliesRq > 0, we can solve that

c = (c1, · · · ,cq)
′ = R−1

q f,

Hence it is easy to show that

Ag(f) =
q

∑
i=1

Rti ci = (R(t1, ·), · · · ,R(tq, ·))R−1
q f.

♦

An interesting fact can be derived from the proof of Lemma IV.5. Sincef = RqR−1
q f,

we know (R(t1, t), · · · ,R(tq, t))R−1
q f = f (t), if t ∈ Tq. This implies the trivial property,

Aq( f |Tq)|Tq = f |Tq for any f ∈ H(R,T). Now we prove an important proposition.

Proposition IV.2.Let Rbe a continuous positive kernel onT ×T, which generates the

RKHS, H = H(R,T). GivenTq = {t1, · · · , tq} ⊂ T, the restrictions onR is Rq = R|Tq×Tq,

with Ĥq = H(Rq,Tq), H̃q = span{Rt = R(t, ·), t ∈ Tq} ⊂ H. Let Aq be the isometric isomor-

phism fromĤq to H̃q. If Tq ր T0 andT0 = T. Fora∈ H anda is continuous onT, defining

aq := a|Tq, we have

Aq(aq) → a in H asq→ ∞.

Proof. By Lemma IV.3,H(R,T) = span{Rt , t ∈ T0}. For∀t ∈ T0, ∃Q and∀q > Q, t ∈ Tq.

Then

〈Aq(aq)−a,Rt〉R = Aa(aq)(t)−a(t) = 0,
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which impliesAq(aq) ⇀ a in span{Rt , t ∈ T0}. By Property III.11,

‖Aq(aq)‖R = ‖aq‖Rq ≤ ‖a‖R,

so by Lemma IV.2, we knowAq(aq) ⇀ a in H. Refer to Theorem 6E in Parzen (1959),

‖Aq(aq)‖R = ‖aq‖Rq ր‖a‖R.

We complete the proof. ♦

A more insightful proposition is about the eigen-analysis properties ofAq. In the

following, let λ(L) and Λ(L) denote respectively, one representative eigenvalue and the

corresponding eigenvector (or eigenfunction) of the operator (or matrix)L. And let(λ,Λ) =

eigen(L) be the paired eigen-decomposition.

Proposition IV.3.Under the same conditions as Proposition IV.2.

(1) Let S be an index set,{cs,s∈ S} is a real consequence,{as,s∈ S},{bs,s∈ S} ⊂

H(R,T) andas,q,bs,q are the restrictions ofas,bs onTq, respectively, then we have

(λ,Λ) ∈ eigen
(

∑csAq(as,q)⊗RAq(bs,q)
)

=⇒ (λ,Λq) ∈ eigen
(

∑csas,q⊗Rq bs,q
)

=⇒ (λ,Aq(Λq)) ∈ eigen
(

∑csAq(as,q)⊗RAq(bs,q)
)

.

(2) LetW andZ be twoH(R,T)− valued random variables, then under the existence of

expectation, we have,

(λ,Λq) ∈ eigen(E(Wq⊗Rq Zq))

=⇒ (λ,Aq(Λq)) ∈ eigen(E(Aq(Wq)⊗RAq(Zq))).

Proof. (1)Proof of Proposition IV.3 (1).

(∑csAq(as,q)⊗RAq(bs,q))(Λ) = λΛ
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=⇒ ∑cs〈Aq(as,q),Λ〉RAq(bs,q) = λΛ

=⇒ ∑cs〈(R(t1, ·), · · · ,R(tq, ·))R−1
q as,q,Λ〉RAq(bs,q) = λΛ

=⇒ ∑cs(Λ(t1), · · · ,Λ(tq))R
−1
q as,qAq(bs,q) = λΛ

=⇒ ∑cs〈as,q,Λq〉Rq
Aq(bs,q) = λΛ

=⇒ ∑cs〈as,q,Λq〉Rq
Aq(bs,q)|Tq = λΛ|Tq

=⇒ ∑cs〈as,q,Λq〉Rq
bs,q = λΛq

=⇒ (∑csas,q⊗Rq bs,q)(Λq) = λΛq.

Similarly,

(∑csas,q⊗Rq bs,q)(Λq) = λΛq

=⇒ ∑cs〈Aq(as,q),Aq(Λq)〉Rbs,q = λΛq

=⇒ (R(t1, ·), · · · ,R(tq, ·))R−1
q ∑cs〈Aq(as,q),Aq(Λq)〉Rbs,q

= λ(R(t1, ·), · · · ,R(tq, ·))R−1
q Λq

=⇒ ∑cs〈Aq(as,q),Aq(Λq)〉RAq(bs,q) = λAq(Λq).

(2) Proof of Proposition IV.3 (2).

E(〈Wq,Λq〉Rq
)(Zq) = λΛq

=⇒ E(〈Wq,Λq〉Rq
Zq) = λΛq

=⇒ (R(t1, ·), · · · ,R(tq, ·))R−1
q E(〈Wq,Λq〉Rq

Zq) = λ(R(t1, ·), · · · ,R(tq, ·))R−1
q Λq

=⇒ E(〈Aq(Wq),Aq(Λq)〉R)(Aq(Zq)) = λAq(Λq)

=⇒ E(Aq(Wq)⊗RAq(Zq))(Aq(Λq)) = λAq(Λq).

♦

The next lemma is an extended version of dominated convergence theorem in a Hilbert

space.
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Lemma IV.6.In a Hilbert spaceH, Zm → Z a.s., and‖Zm‖ ≤Y a.s., whereY is a real

random variable withE(Y2) < ∞, then

lim
m→∞

E‖Zm⊗Zm−Z⊗Z‖B(H) = 0,

hence,

lim
m→∞

‖E(Zm⊗Zm)−E(Z⊗Z)‖B(H) = 0.

Proof. By Lemma IV.2,Zm⊗Zm→ Z⊗Z a.s. inB(H). By Lemma IV.1,‖Zm⊗Zm‖B(H) ≤

Y2, and‖Z⊗Z‖B(H) ≤ Y2, so E(Zm⊗Zm) ∈ B(H) andE(Z⊗Z) ∈ B(H). By applying

dominated convergence theorem (Bosq, 2000) inB(H), we have limm→∞ E‖Zm⊗Zm−Z⊗

Z‖B(H) = 0, and by the triangle inequality (Bosq, 2000),

‖E(Zm⊗Zm)−E(Z⊗Z)‖B(H) ≤ E‖Zm⊗Zm−Z⊗Z‖B(H).

♦

The last Lemma is a simple result about the convergence of a double sequence.

Lemma IV.7.Let (M,d) be a metric space,{aq,n} ⊂ M anda∈ M, if

lim
q→∞

lim
n→∞

aq,n = a,

then there existsn = n(q) → ∞, asq→ ∞, such that

lim
q→∞

aq,n(q) = a.

Proof. It is easy to verify by the definition of the repeated limit of double sequences. ♦

Now back to our estimation. Finishing the eigen-analysis ofthe estimated operator,

ˆ̃Lq,n in FSIR, orL̂q,n from the FKIR, we intend to compare them with the eigen-elements

from the true operator,̃L in FSIR, orL from the FKIR. Since the eigenvectors from the
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estimated operators are in the discrete RKHS,H(Rq,Tq), by Lemma IV.5 the following two

main theorems show howAq works.

The first theorem reveals the strong consistency of the FSIR algorithm.

Theorem IV.1.Under the same notation and assumptions in Proposition IV.2, for fixed

number of slices, assume that{λ(L̃)} are distinct and positive, then there existsn= n(q)→

∞ asq→ ∞ such that

lim
q→∞

|λ( ˆ̃Lq,n)−λ(L̃)| = 0 a.s.,

lim
q→∞

‖Aq(Λ( ˆ̃Lq,n))−Λ(L̃)‖R = 0 a.s..

Proof. Defineµs,q = E(Xq|Y ∈ Is) andµs = E(X|Y ∈ Is), so L̃ = ∑S
s=1 psµs⊗R µs and let

˜̃L = ∑S
s=1 psµs,q⊗Rq µs,q.

|λ( ˆ̃Lq,n)−λ(L̃)|

≤ |λ( ˆ̃Lq,n)−λ( ˜̃L)|+ |λ( ˜̃L)−λ(L̃)|

=: (1)+(2).

Due to Proposition IV.2, IV.3 and Lemma 3.1 in Bosq (1991),

(2) = |λ(
S

∑
s=1

psAq(µs,q)⊗RAq(µs,q))−λ(L̃)|

≤ ‖
S

∑
s=1

psAq(µs,q)⊗RAq(µs,q)−
S

∑
s=1

psµs⊗Rµs‖B(H(R))

≤
S

∑
s=1

ps‖Aq(µs,q)⊗RAq(µs,q)−µs⊗Rµs‖B(H(R))

→ 0, as q→ ∞,

by Proposition IV.2.

For eachq, (1) → 0, asn = n(q) → ∞, which is the result from multivariate SIR (Li,

1991). Hence,

lim
q→∞

lim
n→∞

|λ( ˆ̃Lq,n)−λ(L̃)| = 0 a.s.,
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and by Lemma IV.7 the convergence of the eigenvalues is verified.

‖Aq(Λ( ˆ̃Lq,n))−Λ(L̃)‖R

≤ ‖Aq(Λ( ˆ̃Lq,n))−Λ( ˜̃L)‖R+‖Λ( ˜̃L)−Λ(L̃)‖R

=: (3)+(4).

Also due to Proposition IV.2, IV.3 and Lemma 3.1 in Bosq (1991), there exists a

constantc, such that,

(4) = ‖Λ(
S

∑
s=1

psAq(µs,q)⊗RAq(µs,q))−Λ(L̃)‖R

≤ c‖
S

∑
s=1

psAq(µs,q)⊗RAq(µs,q)−
S

∑
s=1

psµs⊗Rµs‖B(H(R))

→ 0, as q→ ∞.

For eachq,

(3) = ‖Λ( ˆ̃Lq,n)−Λ( ˜̃L)‖Rq

≤ |R− 1
2

q (Λ( ˆ̃Lq,n)−Λ( ˜̃L))|Eq

→ 0, a.s., as n = n(q) → ∞,

which is the result from multivariate SIR (Li, 1991). Hence,

lim
q→∞

lim
n→∞

‖Aq(Λ( ˆ̃Lq,n))−Λ(L̃)‖R = 0 a.s..

and by Lemma IV.7 the convergence of the eigenfunctions is verified. ♦

The second main theorem reveals the weak consistency of the FKIR estimation.

Theorem IV.2.Under the same notation and assumptions in Proposition IV.2, for fixed

number of slices, assume that{λ(L)} are distinct and positive, then there existsn= n(q)→

∞ asq→ ∞ such that

lim
q→∞

|λ(L̂q,n)−λ(L)| = 0 in probability,
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lim
q→∞

‖Aq(Λ(L̂q,n))−Λ(L)‖R = 0 in probability.

Proof. Defineµ= E(X|Y) andµq = E(Xq|Y), soL = E(µ⊗Rµ) and letLq = E(µq⊗Rq µq).

|λ(L̂q,n)−λ(L)|

≤ |λ(L̂q,n)−λ(Lq)|+ |λ(Lq)−λ(L)|

=: (1)+(2).

Due to Proposition IV.2, IV.3 and Lemma 3.1 in Bosq (1991),

(2) = |λ(E(Aq(µq)⊗RAq(µq))−λ(E(µ⊗Rµ))|

≤ ‖E(Aq(µq)⊗RAq(µq))−E(µ⊗Rµ)‖B(H(R))

→ 0, as q→ ∞.

For eachq, (1) → 0, in probability, asn = n(q) → ∞, which is the result from multivariate

KIR (Zhu and Fang, 1996). Hence,

lim
q→∞

lim
n→∞

|λ(L̂q,n)−λ(L)| = 0 in probability,

and by IV.7 the convergence of the eigenvalues is verified.

‖Aq(Λ(L̂q,n))−Λ(L)‖R

≤ ‖Aq(Λ(L̂q,n))−Aq(Λ(Lq))‖R+‖Aq(Λ(Lq))−Λ(L)‖R

=: (3)+(4).

Also due to Proposition IV.2, IV.3 and Lemma 3.1 in Bosq (1991), there exists a

constantc, such that,

(4) = ‖Λ(E(Aq(µq)⊗RAq(µq)))−Λ(L)‖R

≤ c‖E(Aq(µq)⊗RAq(µq))−E(µ⊗Rµ)‖B(H(R))
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→ 0, as q→ ∞.

For eachq,

(3) = ‖Λ(L̂q,n)−Λ(Lq)‖Rq

≤ |R− 1
2

q (Λ(L̂q,n)−Λ(L))|Eq

→ 0, in probability, as n = n(q) → ∞,

which is the result from multivariate KIR (Zhu and Fang, 1996). Hence,

lim
q→∞

lim
n→∞

‖Aq(Λ(L̂q,n))−Λ(L)‖R = 0 in probability.

and by Lemma IV.7 the convergence of the eigenfunctions is verified. ♦

The major problem in asymptotic theory of estimators in RKHS is the space sensi-

tivity, which means that the RKHS inner products depend on thekernel. The isometric

isomorphismAq we explored is very helpful in this situation.
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CHAPTER V

INVERSE OF LÓEVE’S ISOMETRY – TRANSFORMATION FROM RKHS TOL2

SPACE

After the EDRS in RKHS is estimated, we need to transform it to the original EDRS in

L2
X. This relates to a fundamental problem of how to numericallycompute the inverse of

the Lóeve’s isometry, or the back-transformation,Ψ−1, from H(R) to L2
X. Parzen (1961)

proposed an approximation and an iterative algorithm to derive the uniformly minimum

variance unbiased linear estimate of functional of the meanfor a process. Weiner (1965)

improved Parzen’s algorithm by gradient method. Both approaches assumed, as in the

classical application of RKHS theory, that the kernel is known and the whole curve in

RKHS is observed. We will describe their methods and provide amore convenient and

direct approach for handling both the discrete observations and the empirical kernels.

5.1 Parzen’s Methods

Let L2
X andHX = H(R,T) be the Hilbert space and RKHS generated byL2 process{Xt , t ∈

T} with EXt = 0 andR(t,s) = E(XtXs) for all t,s∈ T = [a,b], with R being a known

continuous positive definite function. LetΨ be Lóeve’s isometry fromL2
X to HX. Forh∈

HX, to calculate〈h,h〉R andΨ−1(h)∈ L2
X, Parzen (1961) gave the following approximation

by truncation.

Let C(a,b) be the space of continuous function on[a,b] and let{(λn,φn),n∈ N} be

the eigenvalues and eigenfunctions of the kernelRarranged in decreasing orderλ1 ≥ λ2 ≥

. . . ≥ 0. By defining

Hn(·) =
n

∑
k=1

φk(·)
1
λk

∫ b

a
h(s)φk(s)ds∈C(a,b),
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one can verify that

∫ b

a

∫ b

a
Hn(s)R(s, t)Hn(t)dsdt =

n

∑
k=1

1
λk

∣

∣

∣

∣

∫ b

a
h(t)φk(t)dt

∣

∣

∣

∣

2

, (5.1)

∫ b

a
Hn(t)X(t)dt =

n

∑
k=1

1
λk

∫ b

a
h(s)φk(s)ds

∫ b

a
X(t)φk(t)dt, (5.2)

and further

lim
n→∞

E

[

∣

∣

∣

∣

Ψ−1(h)−
∫ b

a
Hn(t)X(t)dt

∣

∣

∣

∣

2
]

= 0,

and

〈h,h〉R = lim
n→∞

∫ b

a

∫ b

a
Hn(s)R(s, t)Hn(t)dsdt.

Hence, the right-hand sides of (5.1) and (5.2) can approximate 〈h,h〉R andΨ−1(h), respec-

tively.

Parzen (1961) also provided an iterative algorithm to calculateHn.














H0(t) = 1

Hn+1 = Hn−α(LHn−h), n≥ 1,

whereα is a constant such asα ∈ (0, 2
M ] with M > λ1 andL is the transformation

L f (·) =
∫ b

a
f (s)R(s, ·)ds, f ∈C[a,b].

By the reproducing property,

Ψ−1(L f ) =
∫ b

a
f (t)X(t)dt

and

〈L f ,L f 〉R =
∫ b

a

∫ b

a
f (s)R(s, t) f (t)dsdt.
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It could be verified

E(|Ψ−1(h)−Ψ−1(LHn)|2) = ‖h−LHn‖2
R → 0, asn→ ∞,

hence

〈h,h〉R = lim
n→∞

〈LHn,LHn〉R.

5.2 Weiner’s Improved Iteration

Another approximation was proposed by Weiner (1965) which improved the iterative algo-

rithm described in Section 5.1 by gradient method. LetG be a Hilbert space of functions

defined onT with a computationally convenient inner product. Forg∈ G, define the trans-

formation

Ag(t) = 〈g(·),R(·, t)〉G.

Choose an arbitraryH0 ∈ H(R), then iterate the following starting fromn = 0:

rn = h−AHn,

an =
〈rn, rn〉G

〈rn,Arn〉G
,

Hn+1 = Hn +anrn.

Weiner (1965) proved, under mild conditions, that‖rn‖2
R ց 0, which implies that

lim
n→∞

E|Ψ−1(h)−〈Hn,X〉G| → 0,

and

〈h,h〉R = lim
n→∞

〈Hn,AHn〉G.

The drawback of this algorithm is that there is no clear stopping rule because the norm

of H(R) is unknown.
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5.3 Direct Approach

Both Parzen (1961) and Weiner (1965) assumed that the covariance functionR is known.

WhenR is unknown but could be estimated from the data, it seems plausible to use the

estimated covariance in the procedures above. In the following, we address this problem.

We provide here, under the discrete setting, a simpler way considering both discretization

of the sample and estimation of the unknown kernel, then the consistence results will be

verified.

Under the same setting as Section 4.1,{X(t), t ∈ T} is observed only on a discrete

set of values ofT, sayTq = {t1, . . . , tq}. Let ξ be an element inL2
X, and correspondingly,

η = Ψ(ξ) ∈ HX. Under the same conditions in Proposition IV.2, we observeη atTq, hence

ηq = η|Tq ∈ H(Rq,Tq), whereRq = R|Tq×Tq.

If R is given, define the approximation of the back-transformation atTq,

Ψ−1
q (·) = R−1

q ·,

and the corresponding back-transformed element,

ξ̂q = Ψ−1
q (ηq).

Under a typical FDA setting, let{X i , i = 1, . . . ,n}, be a discrete sample ofX. Based

on the discrete sample, suppose thatηq could be estimated bŷηq,n from the sample, which

satisfies for eachq, limn→∞ η̂q,n = ηq, in probability, andRq is estimated bŷRq,n, satisfying

that

lim
n→∞

R̂q,n = Rq, in probability.

Defining, respectively,

Ψ̂−1
q,n(·) = R̂−1

q,n·,
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and

ξ̂q,n = Ψ̂−1
q,n(η̂q,n),

we have,

Theorem V.1.Under the above conditions,

lim
q→∞

‖ξ̂′q(X(t1), · · · ,X(tq))
′−ξ‖L2

X
= 0 (5.3)

and there existsn = n(q) → ∞ asq→ ∞ such that

lim
q→∞

‖ξ̂′q,n(X(t1), · · · ,X(tq))
′−ξ‖L2

X
= 0 in probability. (5.4)

Proof. By Proposition IV.2,

‖(X(t1), · · · ,X(tq))Ψ−1
q (ηq)−ξ‖L2

X

= ‖(R(t1, ·), · · · ,R(tq, ·))R−1
q (ηq)−Ψ(ξ)‖R

= ‖Aq(ηq)−η‖R

→ 0, as q→ ∞,

which verifies (5.3).

‖(X(t1), · · · ,X(tq))ξ̂q,n−ξ‖L2
X

≤ ‖(X(t1), · · · ,X(tq))ξ̂q,n− (X(t1), · · · ,X(tq))ξ̂q‖L2
X

+‖(X(t1), · · · ,X(tq))ξ̂q−ξ‖L2
X

=: (1)+(2).

For eachq,

(1) = ‖(X(t1), · · · ,X(tq))(R̂
−1
q,nη̂q,n−R−1

q ηq)‖L2
X

≤ ‖
q

∑
k=1

ak
q,nX(tk)‖L2

X
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≤
q

∑
k=1

|ak
q,n|‖X(tk)‖L2

X

→ 0, as n→ ∞,

where

(ak
q,n,k = 1, · · · ,q)′ = R̂−1

q,nη̂q,n−R−1
q ηq → 0 in probability.

And (2) → 0 is just verified by (5.3), which completes the proof of (5.4). ♦

With this transformation, the whole inverse regression approach is the same as the

multivariate case in Li (1991). Considering the norms, since‖ηq‖2
Rq

= η′
qR−1

q ηq and

‖η̂q,n‖2
R̂q,n

= η̂′
q,nR̂−1

q,nη̂q,n, by properties of RKHS and similar arguments to the above theo-

rems, we have

∣

∣

∣‖ηq‖2
Rq
−‖η‖R

∣

∣

∣ → 0, asq→ ∞,

and there existsn = n(q) → ∞ asq→ ∞ such that

∣

∣

∣‖η̂q,n‖2
R̂q,n

−‖η‖R

∣

∣

∣ → 0, asq→ ∞.
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CHAPTER VI

COMPUTATIONAL ISSUES IN FDA

Computational statistics is as equally important as theoretical and applied statistics since

the implementation of modern data analytic tools is heavilydependent on computing. In

this chapter, two general computational issues will be discussed in FDA setting. In the first

section, smoothing will be reviewed and the smoothed versions of FSIR and FKIR will be

proposed. Section 7.2 is about the use of generalized inverse in FDA.

6.1 Smoothing

Smoothing is an important issue in FDA. Most FDA is carried out in infinite-dimensional

function spaces, hence the nature of FDA is nonparametric. As a result, nonparametric

smoothing techniques are highly relevant for a successful FDA procedure.

Even in the French school, Cardot (2000) incorporated smoothing in the functional

principal component analysis using B-spline, and verified the benefit of smoothing. A

more general functional regression model called functional nonparametric regression with

application to TSA was presented in Ferraty and Vieu (2004).This model is defined as

Yi = r(Xi)+ εi , i = 1, · · · ,n;

whereYi is the real response, the explanatory variableXi belongs an abstract space with

semi-metricd(·, ·). The nonparametric estimate is then defined by

r̂(x) =
∑YiK(d(x,Xi)/h)

∑K(d(x,Xi)/h)
,

with smoothing kernel functionK and smoothing parameterh. Ferraty and Vieu (2002)

proposed the algorithms with applications in spectrometric data.
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When it comes to smoothing functional data, the following considerations are im-

portant. The first is whether the smoothing procedure is carried out based on data from

individual curve or all curves. The second is whether the smoothing is done before, during,

or after the formal analysis. Ramsay and Silverman (1997) followed a more traditional ap-

proach to smooth each curve individually as a part of the pre-processing, while some other

works, for example, Rice and Silverman (1991), simultaneously implemented smoothing

and analysis. Rice and Silverman (1991) estimated the mean curve using penalized least

squares, where the amount of smoothing was determined by a cross validation criterion

leaving out a whole individual curve at a time. Rice (2004) also discussed this issue for

smoothing multiple curves.

A functional dataset could be observed in the following three formats:

(Format 1.) Rectangle with equal-space design:{xi(t j), j = 1, . . . ,m, i = 1, . . . ,n}, where

|t j+1− t j | are equal forj = 1, . . . ,m−1.

(Format 2.) Rectangle with general-space design:{xi(t j), j = 1, . . . ,m, i = 1, . . . ,n}.

(Format 3.) General design:{xi(ti j ), j = 1, . . . ,mi, i = 1, . . . ,n}.

Format 1 gives the data a matrix-structure, Format 2 a table-structure, and Format 3 a

list-structure. Multivariate data analysis can be appliedto Format 1 directly, but smoothing

is useful for all three situations, such as for interpolation of data at unobserved points.

An effective nonparametric estimate of the covariance function is of prime interest.

Both Diggle and Verbyla (1998) and Staniswalis and Lee (1998)used two-dimensional

smoothing techniques, Fan and Zhang (2002) proposed a two-step procedure containing

a raw estimation by standard linear model followed by a refinement by smoothing. This

idea was borrowed by Lee et al. (2002) and Wu and Pourahmad (2003). The former

implemented a usual principal component analysis based on data of Format 1 to get the raw
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estimates of eigenvalues and eigenfunctions, then polished the estimates by smoothing and

finally estimated the covariance by spectral decomposition. The latter used autoregression

techniques to guarantee that the estimated covariance matrix is positive definite.

Below we consider smoothing issues in inverse regression. The basic idea is to plug

in the smoothed estimation of covariance into the FSIR and FKIR procedures.

In the following, we usesmooth1d andsmooth2d to denote the one-dimensional and

two-dimensional local linear smoothing procedures (Bowmanand Azzalini 1997), respec-

tively. Let X = {xi j = xi(ti j ), j = 1, . . . ,mi, i = 1, . . . ,n}, whereti j ’s are in an intervalT.

The smoothing operations for mean and covariance functionsare described as follows:

OperationSM(X) —- Smoothed estimation of the mean

µ̂= smooth1d
(

{(ti j ,xi j ), j = 1, . . . ,mi, i = 1, . . . ,n}
)

.

This operation includes cross-validation (CV) procedure inwhich one minimizes the

CV score with respect to the bandwidthb given by

CV(b) =
n

∑
i=1

mi

∑
j=1

{Xi j − µ̂(−i)(ti j ;b)}2/N,

whereµ̂(−i) is the estimate after removing theith curve.

OperationDM(X) —- CenteringX after SM(X), that is, performing the calculation,

{x̂i j = x̂i(ti j ) = xi j − µ̂(ti j ), j = 1, . . . ,mi, i = 1, . . . ,n}

OperationSC(X) —- Smoothed estimation of the covariance, which includes two parts.

Variance:

R̂(t, t) = smooth1d
(

{(ti j , x̂2
i j ), j = 1, . . . ,mi, i = 1, . . . ,n}

)

;
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Covariance: Let

û(t,s) = smooth2d

(

{(ti j , tik,
1
2
(x̂i j − x̂ik)

2),1≤ j < k≤ mi, i = 1, . . . ,n}
)

,

then

R̂(t,s) =
1
2
{R̂(t, t)+ R̂(s,s)}− û(t,s),

or directly

R̂(t,s) = smooth2d
(

{(ti j , tik, x̂i j x̂ik),1≤ j < k≤ mi, i = 1, . . . ,n}
)

,

The CV procedures similar to that inSM(X) are also included inSC(X).

Then we can design the smoothing versions of FSIR and FKIR algorithms. LetTq =

{t1, . . . , tq}.

Smoothed FSIR

Step 0. ApplySM(X), X̂ = DM(X) andR̂q,n = SC(X) atTq×Tq.

Step 1. S-partition the range ofY to form{Is,s= 1, . . . ,S}.

Step 2.ns = ∑n
i=1 I(Yi ∈ Is), p̂s,n = ns

n , X̂s = {X̂i j |Yi ∈ Is} andµ̂s,q,n = SM(X̂s) at Tq,

s= 1, . . . ,S.

Step 3.ˆ̃Lq,n = ∑S
s=1 p̂s,n

(

µ̂s,q,n⊗R̂q,n
µ̂s,q,n

)

.

Step 4. Implement the eigen-decomposition ofˆ̃Lq,n.

Smoothed FKIR

Step 0. ApplySM(X), X̂ = DM(X), R̂q,n = SC(X) at Tq×Tq, andX̂i,q = smooth

eachX̂i based on individual or all curves and output atTq.
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Step 1. Choose a kernel function and calculate

ĝq,n(y) =
1
nh

n

∑
i=1

X̂i,qK

(

Yi −y
h

)

and

f̂ (y) =
1
nh

n

∑
i=1

K

(

Yi −y
h

)

.

Step 2. Choose a small positive numberb and compute

f̂b(y) = max(b, f̂ (y)).

Step 3. Implement the Waston-Nadaraya type kernel estimation

m̂b,q,n(y) =
ĝq,n(y)

f̂b(y)
,

where the bandwidth could be selected by cross-validation procedure.

Step 4. LetM̂q,n = SC({m̂b,q,n(Yi), i = 1, . . . ,n}), L̂q,n = M̂q,nR̂q,n.

Step 5. Implement the eigen-decomposition ofL̂q,n.

The smoothed estimation of covariance function could also be plugged in the stage of

performing the back-transformation stage to provide additional smoothing to the procedure.

6.2 Inverse of Covariance Operator

Let X be anH-valued random variable, whereH is a Hilbert space with inner product〈·, ·〉

and the induced norm‖ · ‖. If E‖X‖2 < ∞, we can define the covariance operatorΓ =

E(X ⊗X) which belongs to the trace-class operators (Zhang and Guo 1990), this implies

its compactness, and hence if dim(H) = ∞ then the inverse ofΓ either does not exist or is

unbounded. As a result, the behavior of the estimated inverse covariance matrix would be

unstable with the size getting large.
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The projection method proposed by Bosq (1991) and described in Chapter II is a nice

solution to handle the inverse. Let{(λi ,vi), i ∈ N} be the eigenvalues and corresponding

eigenfunctions ofΓ, whereλ1 ≥ λ2 ≥ . . . ≥ 0 (sinceΓ is a positive operator) andvi ’s

comprise an orthonormal basis ofH. Supposeλ1 ≥ λ2 ≥ . . . ≥ λK > 0, then defineΠK =

∑K
k=1vk⊗vk, the projector operator onVK = span{v1, . . . ,vK}.

Consider the operatorΓ+
K = (ΠKΓΠK)−1, which has the following two properties:

(1) Γ+
K = ∑K

k=1
1
λk

vk⊗vk.

Proof. By the spectral decomposition ofΓ and properties of tensor product,

ΠKΓΠK = ΠK

∞

∑
i=1

λi(vi ⊗vi)ΠK

=
∞

∑
i=1

λi(ΠKvi)⊗ (ΠKvi)

=
K

∑
i=1

λi(vi ⊗vi).

Hence(ΠKΓΠK)−1 = ∑K
k=1

1
λk

vk⊗vk. ♦

Where∑K
i=1λi(vi ⊗vi) is called a partial spectral decomposition.

(2) Γ+
K ΓΓ+

K = Γ+
K .

Proof. Plugging in the result of (1),

Γ+
K ΓΓ+

K = Γ+
K Γ

(

K

∑
k=1

1
λk

vk⊗vk

)

= Γ+
K

(

K

∑
k=1

1
λk

vk⊗Γvk

)

=

(

K

∑
k=1

1
λk

vk⊗vk

)(

K

∑
k=1

vk⊗vk

)

=
K

∑
k=1

1
λk

vk⊗vk.
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♦

This implies thatΓ+
K is a generalized inverse ofΓ.

The counterpart of the above is easier to understand for covariance matrix. LetΣ

be a p× p non-negative definite matrix. By the Cholesky’s decomposition, Σ = VΛV ′,

whereΛ = diag(λ1, . . . ,λp), V = (ν1, . . . ,νp), λ1 ≥ λ2 ≥ . . . ≥ 0 are the eigenvalues, and

ν1, . . . ,νp are corresponding orthonormal eigenvectors. For somek < p, a partial spectral

decomposition is defined asV(k)Λ(k)V
′
(k), whereΛ(k) = diag(λ1, . . . ,λk), V(k) = (ν1, . . . ,νk),

andλ1 ≥ λ2 ≥ . . .λk > 0. And define

Σ+
k = V(k)(V(k)Λ(k)V

′
(k))

−1V ′
(k),

which impliesΣ+
k = ∑k

i=1
1
λi

νiν′i andΣ+
k ΣΣ+

k = Σ+
k .

The partial spectral decomposition and the projected inverse are used extensively in

the practice of our methods, both in RKHS and the back-transformation.
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CHAPTER VII

EMPIRICAL STUDIES

Empirical studies of the FSIR, the FKIR, the back-transformation, and their smoothed ver-

sions will be reported in this chapter. Section 7.1 lists some simulation results, two exam-

ples of data analysis are described in Section 7.2. IR for hybrid data is developed in Section

7.3, which also includes some simulations and an application.

7.1 Monte Carlo Experiments

We will consider a specific type of the stochastic multiple-index model (3.1) based on aL2

process{Xt , t ∈ [a,b]}, the functional additive model

y =
p

∑
i=1

fi(ξi)+ ε,

whereξi =
∫ b

a βi(t)X(t)dt, i = 1, . . . , p, which areL2-integrable (Ash and Gardner 1975).

We intend to estimate span(β1, . . . βp).

Three processes are included in the simulation studies: a simple three-component

process, the standard Brownian motion and the fractional Brownian motion. The three-

component process is defined as

S(t) =
√

2[2sin(3πt)U1 +1.5sin(5πt)U2 +0.8cos(7πt)U3],

whereU1, U2 andU3 are i.i.d. standard normal variables. Its covariance function is

cov(S(t),S(s)) = 8sin(3πs)sin(3πt)+4.5sin(5πs)sin(5πt)+1.28sin(7πs)sin(7πt).

Brownian motion is one of the most important stochastic processes. The definition of

a Brownian motion is:
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Definition VII.1.(Brownian Motion)

A Gaussian process{B(t), t ∈ R} is called a Brownian motion (Bm), if it satisfies that

(1)B(0) = 0 a.s. andB(t) is a continuous function oft;

(2)B(t +h)−B(t) is distributed asN(0,σ2|h|),

whereσ is a positive constant. It is called a standard Bm whenσ = 1.

Properties of Bm could be referred to Ash and Gardner (1975). One of the generaliza-

tions of Bm is the following.

Definition VII.2.(Fractional Brownian Motion)

A Gaussian process{BH(t), t ∈ R} is called a fractional Brownian motion (fBm) of

Hurst indexH ∈ (0,1) such that

(1)BH(0) = 0 a.s. andBH(t) is a continuous function oft;

(2)BH(t +h)−BH(t) is distributed asN(0,σ2|h|2H),

Nuzman and Poor (2001) applied the RKHS methods to fBm. The caseH = 1/2

reduces to Bm, and a fBm can be presented as an integral of Bm with the following version

from Mandelbrot and Van Ness (1968)

BH(t) =































1
Γ(H+ 1

2)

∫ t
−∞

(

|t −s|H−1/2−|s|H−1/2
)

dB(s) t < 0

0 t = 0

1
Γ(H+ 1

2)

(

∫ 0
−∞

(

|t −s|H−1/2−|s|H−1/2
)

dB(s)+
∫ t

0 |t −s|H−1/2dB(s)
)

t > 0

(7.1)

whereB(s) is a standard BM andΓ(r) =
∫ ∞

0 xr−1e−xdx, r > 0.

The covariance function of a fBm is derived from the definition

cov(BH(t),BH(s)) =
σ2

2

(

|t|2H + |s|2H −|t −s|2H)

.
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As a direct consequence, the covariance of BM is cov(B(t),B(s)) = σ2

2 min(t,s).

Without loss of generality, the index setT will be restricted to[0,1]. Two trajectories

of S and Bm are illustrated in Figure 1, and two trajectories of fBm (H = 0.25) and fBm

(H = 0.75) in Figure 2 , respectively.

We firstly consider the single-index model

y = f (ξ)+ ε,

whereξ =
∫ 1

0 β(t)x(t)dt, β(t) is the index coefficient function andε ∼ N(0,σ2).

Experiment 1. Let{x(t), t ∈ [0,1]} be a standard Bm,ε ∼ N(0,σ2 = 0.1), f (t) = exp(t)

andβ(t) = t. Let h(t) = Ψ(ξ)(t), which can be calculated as

h(t) =
∫ 1

0
t(s)min(s, t)ds=

t
2
− t3

6
.

We generaten = 500 data points and each trajectory has been sampled atq = 101

equally spaced time points in[0,1]. By FSIR in the RKHS, the first eigenvalue takes

96% of the total which detects a single-index model significantly. The normalized

estimation in RKHS is shown in the upper panel of Figure 3. We then transform it

to theL2 space and equivalently get the normalized estimate ofβ, which is shown

in the lower panel of Figure 3. Both estimates are compared to the target functions

normalized in the corresponding spaces, respectively.

Experiment 2. Let{x(t), t ∈ [0,1]} be a standard Bm,ε∼N(0,σ2 = 0.01), f (t) = tan−1(t)

andβ(t) = t.

We intend to see the performance of smoothed FSIR. We generatea relatively small

sample withn= 10 curves. For each curve, we calculatey throughoutq= 51 equally

spaced time points. Then we follow Hsing (2004) to generate asampling scheme of

Format 3 introduced in Section 6.1. Suppose that we get a dataset following sampling
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Figure 1. Illustrations of the Three-Component Process and Brownian Motion. The
upper and lower panels correspond to trajectories of two-component process and Bm, re-
spectively.
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Figure 2. Illustrations of Fractional Brownian Motions. Theupper and lower panels
correspond to trajectories of fBm (H= 0.25) and fBm (H= 0.75), respectively.
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Figure 3. FSIR Estimation for Experiment 1. The upper and lower panels correspond
to the Functions in RKHS and L2 , respectively. In each panel, the solid line stands for the
target function and the circled line is the estimation.
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Format 2 in Section 6.1, that is,{xi(t j), j = 1, . . . ,M, i = 1, . . . ,n}. Further assume

that eachxi(t j) can be observed according to whether a random variablebi j is 1 or

0, wherebi j are i.i.d. Bernoulli(p) distributed. We chooseM = 25 andp = 0.8. The

sampled data is shown in Figure 4.

Smoothed FSIR is applied for this data. The normalized estimation in RKHS is

shown in the upper panel of Figure 5. We then transform it to the L2 space and

equivalently get the normalized estimate ofβ, which is shown in the lower panel

of Figure 5. Both estimates are compared to the target functions normalized in the

corresponding spaces, respectively.

Experiment 3. Let{x(t), t ∈ [0,1]} be the three-component processS(t), ε ∼ N(0,σ2 =

0.01), f (t) = exp(t) andβ(t) = t, hence

h(t) = 0.848826sin(3πt)+0.286479sin(5πt)+0.0582052sin(7πt).

We generaten = 100 data points and each trajectory has been sampled atq = 51

equally spaced time points in[0,1]. By FSIR the normalized estimation in RKHS is

compared with the normalized target function and shown in Figure 6. However, all

three transformation methods mentioned in Chapter 5 fail forthis case.

Experiment 4. Let{x(t), t ∈ [0,1]} be a fBm (H = 0.75), ε ∼ N(0,σ2 = 0.01), f (t) =

tan−1(t) andβ(t) = sin(3πt/2).

We generaten = 30 paths and observing atq = 25 locations randomly by the same

way as in Experiment 2. Figure 7 shows the result from smoothed FKIR.

Throughout the above numerical experiments, the methods ofpartial spectral decom-

position and generalized inverse of covariance matrix mentioned in Chapter VI are exten-

sively applied to the principal component analysis (see formula (4.1)) and the transforma-

tion stages.
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Figure 4. The Randomly Sampled Bm Trajectories in Experiment 2. The circles rep-
resent the sampled points.
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Figure 5. Smoothed FSIR Estimation for Experiment 2. The upper and lower panels
correspond to the Functions in RKHS and L2 , respectively. In each panel, the solid line
stands for the target function and the dotted line is the estimation.
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Figure 6. FSIR Estimation for Experiment 3. The solid line stands for the target
function and the dotted line is the estimation.
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Figure 7. Smoothed FKIR Estimation for Experiment 4. The solid line stands for the
target function and the dotted line is the estimation.
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For two-index model, we consider

Y = exp(
∫ 1

0
sin(3πt/2)x(t)dt)+exp(|

∫ 1

0
sin(5πt/2)x(t)dt|)+ ε,

where{x(t), t ∈ [0,1]} is a standard Bm andε ∼ N(0,σ2 = 0.1). Generatingn = 500 paths

and sampling atq = 100 same locations for each path. The FSIR detects two indices since

the first two eigenvalues from the principal component analysis take 98% of the sum of all

eigenvalues. Figure 8 shows The estimated functions with the target functions, which are

all normalized.

7.2 Data Analysis

The stochastic multiple-index model with IR could be extensively applied to many areas.

Here we illustrate two examples, one is in biological science, another is from spectroscopic

chemistry.

7.2.1 Application in Biology — Analysis of Medfly Data

A series of papers including Chiou et al. (2003) and Müller and Stadtm̈uller (2005) were

analyzing the medfly data via a various of FDA approaches. Oneof the purposes of the

medfly studies is to investigate the relationship of longevity and reproduction. There were

hundreds of female medflies in the experiment. For each medfly, the reproduction trajectory

was collected by counting the daily eggs it laid, and the lifetime was also recorded.

In the first analysis, we want to model the relationship between the lifetime in days

(y) and the reproduction trajectory (x) by a functional multiple-index model based on the

sample{(xi ,yi), i = 1, . . . ,534}, wherexi(t)=number of eggs laid on thetth day by theith

medfly,t = [0,30]. To illustrate the data curves, we randomly selected 30 paths from 534

medflies and show them in Figure 9, where the circled line indicates one typical path.

FKIR is implemented and two indices are detected. The first two eigenvalues take
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Figure 8. Estimated Index Coefficient Functions for a Two-Index Model. The upper
and lower panels correspond to two indices, respectively. In each panel, the solid line is
the true function and the dotted line is the estimation.
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Figure 9. The Reproductive Trajectories of30Medflies. The circled line indicates one
path.



75

85% of the total. Two coefficient functions are illustrated in Figure 10. We then estimate

the link function by two-dimensional local linear regression and it is shown in Figure 11.

In the second analysis, following the approach of Müller and Stadtm̈uller (2005), we

define the following long- or short- lived indicator

z= I(y≥ 44 days) =















1, long− lived

0, short− lived

.

Sincez is binary, FSIR with two slices would be a direct approach. The principal com-

ponent analysis shows that the first eigenvalue takes 98% of the sum of all eigenvalues,

which indicates a significant single-index model. The indexcoefficient function is drawn

in Figure 12.

7.2.2 Application in Chemometrics—Analysis of Tecator Data

Goutist (1998) and Ferraty and Vieu (2002) introduced FDA tostudy Spectrometric data.

Spectrometrics is an important branch in Chemometrics, which uses infrared spectroscopy

for the structural analysis of organic and inorganic compounds by assigning absorption

bands to fundamental vibrations of the investigated molecule.

The Tecator data are recorded by the Tecator Infratec food and feed analyzer which is a

near-infrared spectrometer. Each food sample contains finely minced pure pork meat with

different contents of fat, protein and moisture. During theexperiment, the spectrometer

measured the spectrum of light transmitted through the sample in the region 850−1050

nanometers (nm). For each meat sample, the data consists of a100 channel spectrum of

absorbances and the contents of fat, protein and moisture. The absorbance is transformed

to−log10 of its original value. Since the contents of fat, protein andmoisture are recorded

in percentages, we take the normalized transformationlog( a
1−a) for all of these contents,

and still call them the contents in the following context. The sample size in this analysis is

172.
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Figure 10. The Index Coefficient Functions in Modeling the Lifetime of Medflies. The
upper and lower panels correspond to the first and second indices, respectively.
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Let x = the trajectory of channel spectrum of absorbance, we randomly selected 30

paths from all 172 paths and show them in Figure 13. In this subsection we intend to model

y = content of moisture withx by the functional multiple-index model

y = f (
∫

β1(t)x(t)dt, · · · ,
∫

βk(t)x(t)dt,ε).

The principal component analysis in FSIR detects a two-index model with the eigen-

values take 69.5% and 26.4% of sum of all eigenvalues, respectively. The first and second

index coefficient function are displayed on Figure 14. We estimate the response by fitting a

two-dimensional local linear regression. The comparison of the estimated and the observed

response values is presented in the left panel of Figure 15 with correlation coefficient 0.83.

The boxplot of the error is displayed in the right panel, which passes the Shapiro-Wilk

normality test withp-value 0.14.

7.3 IR of Hybrid Data

In Chapter 8 of Ramsay and Silverman (1997), the principal component analysis was de-

veloped to access the mixed data or hybrid data which includes both a vector and a curve

observed on each individual. In functional regression-type studies, this hybrid data anal-

ysis problem is motivated by the situation where the exploratory variables contain both

functional curves and multivariate covariates. Hence the following hybrid multiple-index

model is proposed:

y = f (a1
′z+

∫ 1

0
β1(t)x(t)dt, . . . ,ap

′z+
∫ 1

0
βp(t)x(t)dt,ε), (7.2)

wherex is aL2 Gaussian process on[0,1], z is d-dim normally distributed variable,

{a1, . . . ,ap} ⊂ Rd and{β1, . . . ,βp} are functions on[0,1].

It is interesting that by re-defining the index set,T = [0,1]∪{2, . . . ,d+1}, associated

with the extended process,x(i) = zi, i = 2, . . . ,d+1, model (7.2) is not new, but a special
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Figure 13. The Spectra of30Selected Samples.
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Figure 14. The Index Coefficient Functions in Modeling the Tecator Data. The upper
and lower panels correspond to the first and second indices, respectively.
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case of the general stochastic multiple-index model (3.1).This makes IR work directly for

hybrid data.

Assuming that the hybrid data are collected as

D =
{(

{zi1, . . . ,zid},{xi j , j = 1, . . . ,mi},yi
)

, i = 1, . . . ,n
}

,

we can propose the following IR algorithm:

Step 1. Smooth each curve based on{xi j , j = 1, . . . ,m, i = 1, . . . ,n} to get

D′ =
{(

{zi1, . . . ,zid},{x̂i j , j = 1, . . . ,m},yi
)

, i = 1, . . . ,n
}

,

and denote it as

D′ = {({sik,k = 1, . . . ,m+d},yi) , i = 1, . . . ,n} ,

where

sik =















zik, if k = 1, . . . ,d

x̂i,k−d, if k = d+1, . . . ,d+m.

Step 2. Implement FSIR or FKIR with the back-transformationon D′, get the estimated

number of indices ˆp and the estimated eigenvectors

b̂i = (bi,1, . . . ,bi,m+d)
′, for i = 1, . . . , p̂.

Step 3. Normalize(bi,1, . . . ,bi,d)
′ and(bi,d+1, . . . ,bi,m+d)

′ to estimate the coefficients vec-

tor and the coefficient functions, respectively, fori = 1, . . . , p̂.

To demonstrate how IR works for hybrid data, we consider the single-index model

y = f (a′z+
∫ 1

0
β(t)x(t)dt)+ ε,
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wherea′ = (2,1), z is a standard two dimensional normal vector,x is a standard Bm,

β(t) = t, f = tan−1 andε ∼ N(0,0.1).

We generaten = 1000 data points and each trajectory has been sampled atq = 101

equally spaced time points in[0,1]. We randomly selected half of the data (n = 500)

as the training set to estimatea and β, â and β̂, respectively, then we use the rest half

of the data to validate the estimation by comparing the true index ξ = a′z+
∫ 1

0 β(t)x(t)

and the predicted index̂ξ = â′z+
∫ 1

0 β̂(t)x(t). Among 100 replicates, there are 36 times

that corr(ξ, ξ̂) > 0.95, we illustrate one plot ofξ versusξ̂ in Figure 16, in this case,

corr(ξ, ξ̂) = 0.9989850 and̂a′ = (0.9140922,0.4055063), which is close to the normal-

ized target(0.8944272,0.4472136).

As an application of this hybrid IR, we continue analyze the Tecator data. Denote

z1 = content of fat andz2 = content of protein, we expect to find the relationship between

y=content of moisture andx = the trajectory of channel spectrum of absorbance with co-

variatesz1 andz2 by the functional multiple-index model

y = f (a(1)
1 z1 +a(1)

2 z2 +
∫

β1(t)x(t), · · · ,a(k)
1 z1 +a(k)

2 z2 +
∫

βk(t)x(t),ε).

We find a significant single-index model by FSIR, as the first eigenvalue takes 93% of

the summation. The estimation of(a1,a2) is (0.9788277−0.2046861), and the estimated

β is shown in Figure 17. We estimate the link function and response by fitting a one-

dimensional local linear regression. We show the estimatedlink function in Figure 18

which is a nonlinear function. The comparison of the estimated and the observed response

values is presented in the left panel of Figure 19 with correlation coefficient 0.99. The

boxplot of the error is displayed in the right panel.
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Figure 18. The Estimated Link Function in Modeling the Hybrid Tecator Data. The
points are the observations and the solid is the estimated function.
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CHAPTER VIII

CONCLUSIONS

FDA is still a relatively unexplored and hence exciting area. It brings the traditional statis-

tics to a new era. Theoretically, FDA makes statistics work under infinite-dimensional

spaces and unifies stochastic statistics and longitudinal data analysis.

Within the trend of implementation of more statistical techniques to FDA, our research

generalizes the seminal inverse regression to a functionalsetting. We proposed a semipara-

metric model with multiple indices via an unknown link function related to a second order

stochastic process, and a RKHS approach is developed to estimate the EDRS.

Due to the isometric isomorphism between the Hilbert space spanned by the pro-

cess and the RKHS generated by the covariance function of the process, we discovered

and proved Theorem III.1, which reveals the probabilistic or geometrical structure of the

multiple-index model. This key result decomposes the estimation of the EDRS into two

stages. During the first stage, the EDRS in RKHS is estimated by IR. We proposed FSIR

and FKIR procedures implemented in the empirical RKHS. The asymptotic theory asso-

ciated with these approaches will provide more possible applications of RKHS methods

in FDA. The second stage is the back-transformation where wetransform the estimated

EDRS in RKHS back to the Hilbert space of the space, that is, the original EDRS. Hence,

we complete the estimation.

The following comparisons with Li (1991) and Ferré and Yao (2003) are given:

(a) Suppose thatX is finite dimensional, recalling the proof of Theorem III.1,the result

E(X|Y) ∈ HX a.s. naturally holds without conditions (P1)-(P2). Hence under (IR1)

and (IR2), we haveE(X|Y) ∈ HX,e a.s.. Further with the discussion of the back-

transformation in Section 5.3, our approach therefore coincides with Li’s approach
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in that setting, which implies that a generalization from multivariate IR to general

IR.

(b) Ferŕe and Yao (2000) redefines Li’s problem in the FDA setting. They considered a

special case of ours by assuming that the sample paths ofXt are elements ofL2[a,b]

with inner product〈 f ,g〉 =
∫ b

a f (t)g(t)dt, and that the elementsξi are of the form

ξi = 〈βi ,X〉, 1≤ i ≤ p.

(c) The separability of index set,T, is much more general than the settings in both works.

In the data analysis, we showed a case study with hybrid data.Since in a metric

space compactness implies separability, we can consider the cases whereT has more

complicated structures.

The determination of number of indices or EDRS dimensions is not included in this

research, which remains for future studies. Ferré (1998) is a possible approach, but the

computational cost is high. Other issues including the model specification and diagnostics

are also valuable topics. With the RKHS approach proposed in this thesis, the multiple-

index model can be effectively used to further the study of FDA.
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Ferŕe, L. (1998), “Determining the Dimension in Sliced Inverse Regression and Related

Methods,”Journal of the American Statistical Association, 93, 132–140.
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Luckić, M. N., and Beder, J. H. (2001), “Stochastic Process with Sample Paths in Produc-

ing Kernel Hilbert Spaces,”Transactions of the American Mathematical Society, 353,

3945–3969.

Malfait, N., and Ramsay, J. O. (2003), “The Historical Functional Linear Model,”The

Canadian Journal of Statistics, 31, 115–128.

Mandelbrot, B. B., and Van Ness, W. N. (1968), “Fractional Brownian Motions, Fractional

Noises, and Applications,”SIAM, 10, 423–437.

Müller, H.–G., and Stadtm̈uller, U. (2005), “Generalized Functional Linear Models,”The

Annals of Statistics, 33, 774–805.

Naik, P., and Tsai C.–L. (2000), “Partial Least Squares Estimator for Single-Index Models,”

Journal of the Royal Statistical Society, Ser. B, 62, 763–771.

——– (2005), “Constrained Inverse Regression for Incorporating Prior Information,”Jour-

nal of the American Statistical Association, 100, 204–211.

Nuzman, C. J., and Poor, H. V. (2001), “RKHS Methods for Wide-Sense Self-Similar Pro-

cesses,”The Annals of Applied Probability, 11, 1199–1219.

Parzen, E. (1959), “Statistical Inference on Time Series byHilbert Space Methods I,”Tech-

nical Report, No. 23, Department of Statistics, Stanford University, CA.

——– (1961a), “An Approach to Time Series Analysis,”The Annal of Mathematical Statis-

tics, 32, 951–989.

——– (1961b), “Regression Analysis of Continuous Parameter Time Series,”Proceedings



99

of the Fourth Berkerly Symposium on Mathematical Statistics and Probability, Berke-

ley, CA, 1, 469–489.

——– (1963), “Probability Density Functionals and Reproducing Kernel Hilbert Spaces,”

Time Series Analysis,155–169.

Preda, C., and Saporta, G. (2005a), “PLS Regression on an Stochastic Process,”Computa-

tional Statistics and Data Analysis, 48, 149–158.

——– (2005b), “Clusterwise PLS Regression on an Stochastic Process,”Computational

Statistics and Data Analysis, 49, 99–108.

Ramosay, J. O., and Dalzell, C. J. (1991), “Some Tools for Functional Data Analysis (with

Discussion),”Journal of the Royal Statistical Society, Ser. B, 53, 539–572.

Ramosay, J. O., and Li, X. (1996), “Curve Registration,”Journal of the Royal Statistical

Society, Ser. B, 60, 351–363.

Ramosay, J. O., and Silverman, B. W. (1997),Functional Data Analysis, New York:

Springer.

——– (2002),Applied Functional Data Analysis, New York: Springer.

Rao, M. M. (2000),Stochastic Process: Inference Theory, Boston: Kluwer Academic Pub-

lishers.

Rice, J. A. (2004), “Functional and Longitudinal Data Analysis: Perspecptives on Smooth-

ing,” Statistica Sinica, 14, 613–629.

Rice, J. A., and Silverman, B. W. (1991), “Estimating the Mean and Covariance Struc-

ture Nonparametrically When the Data Are Curves,”Journal of the Royal Statistical

Society, Ser. B, 53, 233–243.

Rice, J. A., and Wu, C. (2001), “Nonparametric Mixed Effects Models for Unequally Sam-

pled Noisy Curves,”Biometrics, 57, 253–259.

Rossi, F., Delannay, N., Conan–Guez, B., and Verleysen, M. (2005), “Representation of

Functional Data in Neural Networks,”Neurocomputing, 64, 183–210.



100

Schott, J. R. (1994), “Determining the Dimensionality in Sliced Inverse Regression,”Jour-

nal of the American Statistical Association, 89, 141–148.

Setodji, C. M., and Cook, R. D. (2004), “K-Means Inverse Regression,” Technometrics, 46,

421–429.

Silverman, B. W. (1996), “Smoothed Functional Principal Components Analysis by Choice

of Norm,” The Annals of Statistics, 24, 1–24.

Simonoff, J. S. (1996),Smoothing Methods in Statistics, New York: Springer.

Staniswallis, J. G., and Lee, J. J. (1998), “Nonparametric Regression Analysis of Longitu-

dinal Data,”Journal of the American Statistical Association, 93, 1403–1418.

Wahba, G. (1990),Spline Models for Observational Data, CBMS 59, Philadelphia: SIAM.

Wand, M. P., and Jones, M. C. (1995),Kernel Smoothing, London: Chapman and Hall.

Weinert, H. L. (1982),Reproducing Kernel Hilbert Spaces: Applications in Statistical Sig-

nal Processing, New York: Hutchinson Ross Publishing Company.

Wu, W. B., and Pourahmadi, M. (2003), “Nonparametric Estimation of Large Covariance

Matrices of Longitudinal Data,”Biometrika, 90, 831–844.

Xia, Y., Tong, H., Li, W. K., and Zhu, L.–X. (2002), “An Adaptive Estimation of Dimension

Reduction Space,”Journal of the Royal Statistical Society, Ser. B, 64, 363–410.

Yao, F., Müller, H.–G., Clifford, A. J., Dueker, S. R., Follett, J., Lin,Y., Buchholz, B. A.,

and Vogel, J. S. (2003), “Shiringkage Estimation for Functional Principal Component

Scores with Application to the Population Kinetics of Plasma Folate,”Biometrics, 59,

676–685.

Yao, F., Müller, H.–G., and Wang, J.–L. (2005), “Functional Data Analysis for Sparse

Longitudinal Data,”Journal of the American Statistical Association, 100, 577–590.

Yu, Y., and Ruppert, D. (2002), “Penalized Spline Estimationfor Partially Linear Single-

Index Models,”Journal of the American Statistical Association, 97, 1042–1054.

Zhang, G., and Guo, M. (1990),Lecture Notes of Functional Analysis, II, Department of



101

Mathematics, Peking University.

Zhang, G., and Lin, Y. (1987),Lecture Notes of Functional Analysis, I, Department of

Mathematics, Peking University.

Zhu, L.–X., and Fang, K.–K. (1996), “Asymptotics for KernelEstimate of Sliced Inverse

Regression,”The Annals of Statistics, 24, 1053–1068.

Zhu, L.–X., and Ng, K. W. (1995), “Asymptotics of Sliced Inverse Regression,”Statistica

Sinica, 5, 727–736.



102

VITA

Haobo Ren was born in Beijing, China. He received a Bachelor of Science degree in

Statistics in June 1994 and a Master of Science degree in Statistics in June 1997 from

Peking University, Beijing, China. He came to the United States to pursue his Ph.D. in

August of 1999 in the Department of Statistics, Texas A&M University. He received his

Ph.D. under the direction of Dr. Tailen Hsing in August 2005.His permanent address is

17 Zhixing Garden #0101, Haidian District

Beijing, China


