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ABSTRACT

Design of Fuel Optimal Maneuvers for

Multi-Spacecraft Interferometric Imaging Systems. (August 2006)

Jaime Luis Ramirez Riberos, B.S., Universidad de los Andes;

B.S., Universidad de los Andes

Chair of Advisory Committee: Dr. Suman Chakravorty

Multi-spacecraft interferometry imaging is an innovative concept intended to

apply formations of satellites to obtain high resolution images allowing for the syn-

thesis of a large size aperture through the combination of the signal from several

sub-apertures. The design of such systems requires the design of trajectories that

cover a specified region of the observation plane to obtain appropriate information to

reconstruct an image of the source. A proposed configuration consists of symmetrical

formations which use control thrust to actively follow spiral trajectories that would

appropriately cover the specified regions. An optimization problem has to be solved

to design the optimal trajectories with minimum fuel consumption. The present

work introduces an algorithm to obtain near optimal maneuvers for multi-spacecraft

interferometric imaging systems. Solutions to the optimization problem are obtained

assuming the optimality of spiral coverage of the spatial frequency plane. The rela-

tionship between the error in the frequency content and the reliability of the image

is studied to make a connection to the dynamics of the maneuver and define the pa-

rameters of the optimization problem. The solution to the problem under deep space

dynamics is shown to be convex and is solved by discretization into a non-linear pro-

graming problem. Further, the problem is extended to include the effects of dynamical

constraints and the effect of time varying relative position from the imaging system
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to the target. For the calculation of the optimal trajectories, a two-stage hierarchical

controller is proposed that obtains acceleration requirements of near minimum fuel

maneuvers for different target-system configurations. Several cases are simulated to

apply the algorithm. From the obtained results some conclusions about the feasibility

and dynamical requirements of these systems are described.
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CHAPTER I

INTRODUCTION

The motivation for this research is the design of multi-spacecraft interferometric imag-

ing systems (MSIIS) for the high resolution imaging of earth and space based targets.

The main purpose of the present work is the design of near minimum fuel trajectories

to study the relationship between the quality of a picture obtained by interferometric

imaging using multiple spacecrafts and the dynamic requirements of the system.

An interferometric imaging system is a sparse aperture interferometric system

that allows for the synthesis of a large size aperture through the combination of the

signal from several sub-apertures, allowing for the formation of images with a resolu-

tion which is orders of magnitude better than that of a single telescope. [1]

Interferometric imaging falls under the category of long baseline interferometry,

[2] that was first developed in the context of synthetic aperture radars (SAR), and

has been successfully used in earth based astronomy [3]. The use of spacecraft for-

mations for this purpose has been proposed and previous literature has dealt with

the definition of the optical requirements and capacities of interferometric imaging

systems aiming to obtain astronomical images, specifically, the imaging of extraso-

lar planets [4, 5, 6, 7]. Different techniques of interferometry using formations of

separated spacecraft have been proposed, and their application to space-based tar-

gets have been studied. [8, 9]. The technological shortcomings of the optics of such

systems are being overcome thanks to the improvement of computational systems

and development of technologies which allow for better signal reception (resulting

in higher Signal to Noise Ratios) and less stringent requirements on position control

The journal model is IEEE Transactions on Automatic Control.
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and telemetry[10]. The dynamics and control of multi-spacecraft systems in orbital

configurations has been a topic of considerable research, allowing for the design of

robust and accurate trajectory control systems.[11, 12] Furthermore, the development

of high specific impulse thrust systems has reduced the technological difficulties for

satellite formations performing active tasks. However, the relationship between the

dynamic requirements of the spacecraft in a formation and the image quality in active

interferometric imaging tasks is far from being well studied.

Previous formation designs optimize the locations of the constituent telescopes

such that some metric of image quality is optimized.[13, 14] These correspond to

static optimization problems. However, for an MSIIS, due to the higher resolution

requirements, the design variables are the trajectories of the constituent spacecraft.

In order to assess the minimum requirements of these trajectories, a suitable opti-

mization problem has to be posed. In previous work in this regard the dynamics

of the spacecraft have been related to the Modulation Transfer Function (MTF) of

the optical system and time/fuel optimal problems have been posed[15, 16, 17]. In

[18], a heuristic approach considered the design of minimum fuel trajectories in the

subset of spirals, subject to deep space dynamics, i.e. perturbation free dynamics,

for distant planet imaging applications. However, when the corresponding problem

is posed for formations in near-earth orbit the symmetry and other desirable features

of the optimization problem in the case of deep space, such as convexity, disappear,

and the structure of the problem does not allow for the design of a computationally

efficient optimization method for the exact problem. Additionally, new optical and

kinematic constraints arise, different from those studied in previous research.

This document contains some developments made on optimization algorithms

for the computation of near minimum fuel maneuvers for multi-spacecraft imaging

systems. The essence of this investigation is an optimization methodology for the de-
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sign of near optimal trajectories that minimize fuel consumption for multi-spacecraft

interferometric imaging systems for any number of spacecraft under dynamical con-

straints.

Solutions for the optimization problem are initially proposed considering quasi-

static targets with the system subject to deep space dynamics, i.e. double integrator

perturbation free dynamics. This kind of systems addresses applications where grav-

itational forces are negligible and the target is located at a far distance. A case of

such a system is an extra-solar planet imager located at a Lagrange point.

The solution is then extended to the case when the system is subject to gravi-

tational dynamical constraints. This is the case when differential gravitational forces

are included assuming Clohessy-Wiltshire dynamic equations of motion for an imag-

ing system located in a near earth orbit. The particular application studied is a GEO

located system imaging earth based objects.

There are other scenarios that cannot be considered in the cases mentioned above

because the relative position of the system to the target varies significantly over the

time of the maneuver. Thus, the methodology is further extended to consider cases

where the relative position of the target to the imaging system is varying in time.

Particular cases in this category include a LEO located system imaging a GEO based

target, or earth based targets being imaged from a non GEO location. The various

particular applications are considered.

The outline of the document is as follows:

The second chapter of the document examines the principle of synthetic aper-

ture imaging, and the relationship of the trajectories to the error in the process. The

optimization problem to be solved for the design of multi-spacecraft imaging systems

is stated at the end of the chapter. In the third chapter, the error in the frequency

content of the image is related to the error in the reconstructed image in order to



4

define a metric of reliability of the final estimate and set limits in the frequency er-

ror second moment. Thus, a direct connection between the reliability of the image

and the trajectories of the spacecraft is found. Two different metric of the reliability

are considered. First, the pixelwise probability of bounded error, and second, the

probability of a bounded total picture error. For the calculations, two types of inter-

ferometry are considered: direct interferometry and entry pupil interferometry. In the

fourth chapter, the design of the systems under deep space dynamics is considered,

and a direct optimization method is proposed, given the desirable characteristics of

the dynamic system. As an application, the algorithm is applied to design systems for

extrasolar planet imaging. The characteristics of the solutions are examined and the

feasibility of such missions analyzed. In the fifth chapter, the optimization problem is

considered with linear dynamics, specifically, the case of Clohessy-Wiltshire dynamic

equations. In this case a direct optimization is not feasible, and a new solution algo-

rithm consisting of a two stage hierarchical controller is proposed. In this algorithm,

an outer loop finds solutions under deep space dynamics, and an inner LQ controller

loop tracks the trajectories found in the first stage to satisfy the coverage constraints.

The solutions using the algorithm are applied for a particular application, an IR earth

imager located in GEO, and the solutions and some characteristics of the results are

displayed. In the sixth chapter, the problem is extended to the case when the dis-

tance and the direction to the target are time-varying. A new cost function has to be

defined and terms that had been initially neglected in the approximation to the cost

function for deep space in the second chapter, have to be considered. The effect of

the change of direction of the optical axis is considered, as well as the effects caused

by the time varying relative distance from the imaging system to the target. In this

case, the main interests is the study of the dynamics of the maneuver for different

combinations of orbits and targets. In this tool Lagrange Generating Functions are
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used to define the positions for any time in the maneuver and calculate the relative

distance and rotation angles of the relative frames, as well as their rates, as functions

of time which are then given as an input to the design algorithm. Different cases are

simulated and their results are shown: an imaging system located in LEO obtaining

images from targets in different LEO orbits, MEO and GEO orbits as well as a case

when imaging an earth based target.
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CHAPTER II

MULTI-SPACECRAFT IMAGING

In this chapter the development of the equations defining the multi-spacecraft process

is briefly described. These results are more extensively developed in Refs.[5, 6, 2], with

slightly differences in the development. In this document a more general approach is

presented and the spiral trajectories optimization problem is extended to any number

of spacecraft.

A. Basics of Interferometric Imaging

Interferometric imaging consists of reconstructing an image from measurements of

light interference[2]. An imaging process consists essentially of reconstructing the

intensity of a source at a different location. One common way to do this imaging

process is using lenses or analog optical instruments. The lenses converge the signal

from the source at a given plane, and the record of the signal intensity at every point

of that plane is what is seen as an image. Fig 1, shows an illustration of this process.

However, the development of digital systems allows for the reproduction of this

process without the need of lenses. The physics of the lenses can be essentially

simulated through a computer and the image reconstructed. If instead of a lens,

a collection of devices being able to record the information of the electric field at

different points of a surface is used, the configuration of a source that causes such

pattern in the electric field could then be calculated.

The electromagnetic field transports the information of the source in the form

of electromagnetic waves. The electromagnetic waves are a solution to the Maxwell
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Fig. 1. Image formation process

equations [19]:

∇2E =
1

c2
∂2E

∂t2
(2.1)

∇ · E = 0 (2.2)

where c is the speed of the wave.

A solution to this equation, is a plane wave along the x direction:

E(x, t) = ŝEo exp(i(−ωt± k · x + φ)) (2.3)

where ω
k

= c.

The polarization of the light is not taken into account for the analysis. The

analysis will hold for any transversal component of the wave, i.e. any vector ŝ,

and therefore, we can define a scalar component of the field U(x, t) that defines the

behavior of the field along the x axis:

U(x, t) = Eoe
−iφ exp(i(−ωt± k · x)), (2.4)
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whose fourier transform is:

Û(x, ω) =

∫ ∞

−∞
U(x, t) exp(−iωt)dt, (2.5)

if a narrow bandwidth of detection ∆ω is assumed, U can be described by the average

value of the field over a very small variation of the frequency around the average

frequency ∆ω, such that

U(x) = Ū(x, ω̄). (2.6)

Then, the fourier transform of the spatial distribution of this time independent func-

tion:

Û(u) =

∫ ∞

−∞

∫ ∞

−∞
E(x) exp(−i2πu · x)dxdy (2.7)

is a solution to Helmholtz equation.

By superposition of the solutions to the Helmholtz equation assuming a point

source, the field at a point r can be written as caused by a distribution of sources

located over the z = 0 plane as:

Û(r, ω̄) =
−ik̄
2π

∫ ∞

∞
σ(r′)ŝ · ẑ exp(ik̄r)

r
dr′ (2.8)

where σ(x) is the distribution function of the sources.

1. The Huygens Fresnel Principle

The equation 2.8 can be used to calculate the field at any point P as a combination

of the distributions on an infinite surface ΣI , called the image plane, propagating the

light waves forward in time. This is known as the Huygens-Fresnel Principle (HFP)
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and the a more general derivation can be written as:

U(P, ω̄) ∼= −ik̄
2π

∫

ΣI

(n̂Q · ŝQ)
eik̄r

r
U(Q)dQ (2.9)

where n̂Q is a vector perpendicular to the surface ΣI , and ŝQ is the vector from the

source to the point Q.

Correspondingly the Inverse HFP, allows for the calculation of the distribution

of the field at a point Q as a function of the field distribution on a different surface,

Σo (the observation surface), by propagating the light waves backward in time:

U(Q, ω̄) ∼= −ik̄
2π

∫

Σo

(n̂P · ŝP )
e−ik̄r

r
U(P)dP (2.10)

The fourier transforms of these equations are:

U(P, t) =

∫ ∞

−∞
U(P, ω̄)e−iωtdt (2.11)

=
−ik
2π

∫

ΣI

(n̂Q · ŝQ)
1

r
U(Q, t− r/c)dQ, (2.12)

and, conversely, for the Inverse FHP:

U(Q, t) =
ik

2π

∫

Σo

(n̂P · ŝP )
1

r
U(P, t+ r/c)dP (2.13)

B. Mutual Coherence

It is now useful to define the concept of mutual coherence and complex degree of

coherence. The mutual coherence function of a field u(x, t) is defined as [2]:

Γ12(τ) = 〈u(P1, t+ τ), u∗(P2, t)〉 , (2.14)

and represents the spatial-temporal cross-correlation function of the light from two

points, P1, P2. When dealing with a quasi-monochromatic signal, the coherence can
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be approximated as [2]:

Γ12(τ) ∼= J12e
−2πiν̄τ , (2.15)

where:

J12 = Γ12(0) = 〈u(P1, t), u
∗(P2, t)〉 (2.16)

is the mutual intensity.

Now, if the mutual coherence of the field is calculated for two points in the

observation surface Q1, Q2:

Γ(Q1,Q2; τ) = 〈u(Q1, t+ τ), u∗(Q2, t)〉 (2.17)

where, from the FHP:

u(Q1, t+ τ) =
1

iλ̄

∫∫

ΣI

1

r1
u
(

P1, t+ τ − r1
c

)

χ(θ1)dQ1 (2.18)

u(Q1, t) =
−1

iλ̄

∫∫

ΣI

1

r2
u∗
(

P2, t−
r2
c

)

χ(θ2)dQ2 (2.19)

and χ(θi) = n̂Pi
· ŝPi

is:

Γ(Q1,Q2; τ) =

∫∫

ΣI

∫∫

ΣI

1

λ2r1r2
Γ

(

P1,P2; τ +
r2 − r1

c

)

χ(θ1)χ(θ2)dQ1dQ2

(2.20)

then, the mutual intensity is:

J(Q1,Q2) = Γ(Q1,Q2; 0) (2.21)

=

∫∫

ΣI

∫∫

ΣI

1

λ2r1r2
Γ

(

P1,P2;
r2 − r1
c

)

χ(θ1)χ(θ2)dQ1dQ2

(2.22)
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Fig. 2. Optical transfer function for a pair of circular telescopes

and the intensity at the point Q:

I(Q) =

∫∫

ΣI

∫∫

ΣI

1

λ2r1r2
J(P1,P2)e

−ik(r2−r1)χ(θ1)χ(θ2)dQ1dQ2

(2.23)

Given the geometry shown in Fig. 2, and the fact that z >> x, z >> y, the

following approximations are valid:

r =
√

z2 + x2
Q + y2

Q − 2x
Q
x

P
− 2y

Q
y

P
(2.24)

∼= z

[

1 +
x2
Q + y2

Q

2z2
+
x

Q
x

P
+ y

Q
y

P

z2

]

(2.25)

χ(θ1) ∼= χ(θ1) ∼= 1 (2.26)

λ̄r1 = λ̄r2 = λ̄z̄ (2.27)
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Thus, the intensity at Q can be written as:

I(Q) =
1

(λ̄z̄)2

∫∫

ΣI

∫∫

ΣI

J(x1, y1;x2, y2)e
2πı
λ̄z̄

[(x2−x1)xQ
+(y2−y1)yQ

]
dx1dy1dx2dy2

(2.28)

C. Sparse Aperture Systems

In a sparse aperture system, the observation surface is composed of several sub-

apertures. The final image is formed by the addition of the signals from every pair of

singular apertures, at every infinitesimal instant of time:

I =

∫ T

0

∑

n

∑

m

Inm(t)dt (2.29)

The intensity at a point Q = (u, v) of the image formed from a pair of receivers

located at Pn, Pm, following the equations in the previous section is:

Inm(xQ, yQ; t) =
1

λ2z̄2

∫∫∫∫

J′(σn, ςn;σm, ςm)e
2πı
λ̄z̄

((σn−σm)yQ+(ςn−ςm)yQ)dσndςndσmdςm

(2.30)

where xn, yn are the coordinates in the entrance pupil plane for the nth spacecraft.

The collectors have a finite extent and are not perfect transmitters of the signal,

such that the actual detected mutual coherence is:

J′(σn, ςn, σm, ςm) = Pnm(rn, rm; σn, ςn)P
nm∗(rn, rm; σm, ςm)J(σn, ςn, σm, ςm)

(2.31)

where Pnm(rn, rm; x, y) is the point spread function of the collector pair nm. For

simplicity of notation it will be written as P nm, being implicit that it depends on the

positions of the spacecraft (rn, rm). This function accounts for the aberration and the
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finite extension of the collectors.

The spatial fourier transform of the expression in eq. 1.45 is [2]:

Inm(ν; t) =
1

λ2z̄2

∫∫∫∫

ΣI

dσndςndσmdςmJ′(σn, ςn; σm, ςm) (2.32)

×
∫∫

dxQdyQe
2πı[(νu+ σm−σn

λz )xQ+(νv+ ςm−ςn
λz )yQ]

=
1

λ2z̄2

∫

ΣI

dσndςndσmdςmJ′(σn, ςn; σm, ςm)

× δ

[(

νu +
σm − σn
λz

)

;

(

νv +
ςm − ςn
λz

)]

(2.33)

=

∫

ΣI

J′ (σn, ςn; σn − λzνu, ςn − λzνv) dσndςn (2.34)

=

∫

ΣI

J′(rn; rn − λzν)dSn (2.35)

=

∫

ΣI

Pnm (rn)Pnm∗ (rn − λzν) J (rn; rn − λzν) dSn

(2.36)

where ν is the frequency vector (νu, νv).

Now we make use of the Fresnel-Huygens Principle to relate the measurements

in the observation plane to the actual intensity of the source. Due to the fact that

the source is conformed by incoherent sources of light ( J(Pn, Pm) = I(Pn)δnm ),

the mutual coherence is only a function of the separation of the observation points

(VanCittern-Zernike Theorem), and thus (see ref. [2]):

J(∆x,∆y) =
eiψ

(λ̄z̄)2

∫∫ ∞

−∞
I(ξ, η)e

2πi
λz

(∆xξ+∆yη)dξdη

ψ =
π

λz

(

x2
1 + y2

1 − x2
2 + y2

2

)

(2.37)

Replacing into Eq. 2.36:
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Inm(ν, t) =

∫

ΣI

Pnm (rn)P
nm∗ (rn − λzν)

eiψ

(λ̄z̄)2

∫∫ ∞

−∞
I(ξ, η)e

2πi
λz

(λzνuξ+λzνvη)dξdηdSn

= I(ν, t)

∫

ΣI

Pnm (rn)P
nm∗ (rn − λzν)

eiψ

(λ̄z̄)2
dSn (2.38)

(2.39)

When, taking care of the normalization factor, and noticing that for the cases of

interest when z >> D eiψ ≈ 1, we find that:

Inm(ν; t) = Inm(ν; t)
Acol
(λ̄z̄)2

∫

ΣI
Pnm

(

rn(t)
λz

)

Pnm∗
(

rn(t)
λz

; rn(t)
λz

− ν
)

dSn

∫

ΣI
|Pnm

(

rn(t)
λz

)

|2dSn
(2.40)

= I(ν; t)Anm(ν, t) (2.41)

where Acol is the area of collection, that in the case of non-abberrated aperture has

the same value as the integral denominator in the above equation.

1. Noise in the Interferometric Process

The mutual coherence is an electromagnetic effect, and by nature is random due

to the photogeneration process. Photons from an incoherent source are generated

randomly following a Poisson distribution. The measuring process also inputs errors

and uncertainties in the signal such that[5]:

Jnm(Q; t) = J̄(Q) + δJnm(t) (2.42)

where J̄ is the expected value over time of the mutual coherence, and δJnm is a

position independent, time-dependent random variable that accounts for the random

variations and the noise in the measurements of the pair nm. Then, the measured
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intensity is:

Inm(ν; t) = Ī(ν)Anm(ν, t) + δJnm(t)Anm(t) (2.43)

where Anm(ν, t) is the time-dependent Optical Transfer Function:

Anm(ν, t) =
Acol
(λ̄z̄)2

∫

ΣI
Pnm

(

rn(t)
λz

)

Pnm∗
(

rn(t)
λz

; rn(t)
λz

− ν
)

dSn

∫

ΣI
|Pnm

(

rn(t)
λz

)

|2dSn
(2.44)

and thus, the final image intensity at the end of the maneuver, given the measurements

of each pair of spacecraft is:

I (ν) =

∫ T

0

∑

n

∑

m

Inm(ν, t)dt (2.45)

= Ī(νu, νv)

∫ T

0

∑

n

∑

m

Anm(ν, t)dt+

∫ T

0

∑

n

∑

m

δJnm(t)Anm(ν, t)dt

(2.46)

In order to have a normalized value for I (ν), we define the normalized intensity

i(ν) = I (ν)
Iest

, where I(0) = Iest is the mean intensity of radiation ns∆νeν .

Then, the expression for the reconstructed frequency plane content for a given

imaging maneuver:

i(ν) = M(ν)I(ν) +N(ν) (2.47)

being:

M(ν) =

∫ T

0

∑

n

∑

m

Anm(ν, t)dt (2.48)

N(ν) =
1

Iest

∫ T

0

∑

n

∑

m

δJnm(t)Anm(ν, t)dt (2.49)

and ν is the frequency vector, (νu, νv).
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2. The Aperture Function

As mentioned, the aperture function identifies the aberrations and finiteness of

the pupil in the observation plane. For our purposes it is assumed that the telescopes

have very low aberration, i.e. their pupil functions are real non-negative, and thus

that the Optical Transfer Function is defined by its modulus, the pairwise time de-

pendent Modulation Transfer Function. In this case, the aperture function is just the

geometrical autocorrelation function given by the integral:

Anm(ν, t) =
1

(λ̄z̄)2

∫

ΣI

Pnm

(

rn(t)

λz

)

Pnm∗
(

rn(t)

λz
;
rn(t)

λz
− ν

)

dxndyn

(2.50)

The autocorrelation function for a single circular pupil function is the function known

as witch hat, and is shown in Fig. 3.

For a pair of circular telescopes, located at a relative distance ∆rmn, the optical

transfer function is given by:

Anm(ν) =











D2
T

2λ2z2
(cos−1(1 − ρ) − (1 − ρ)

√

2ρ− ρ2) if ρ ≥ 0

0 otherwise.
(2.51)

ρ = 1 −
(

λz

DT

) ∣

∣

∣

∣

ν − (∆rnm)

λz

∣

∣

∣

∣

(2.52)

The case for the Total Modulation Transfer Function for a pair of telescopes, taking

into account the contributions of the pair nm and the pair mn is illustrated in Fig. 4.

When we integrate this function over time accounting for the relative trajec-

tories of the telescopes, we have the Modulation Transfer Function (MTF), of the

synthesized instrument, as is shown in Fig. 5.
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Fig. 3. Witch hat function - OPT for a unaberrated circular aperture
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Fig. 4. Optical transfer function for a pair of circular telescopes
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Fig. 5. Modulation transfer function for a moving pair of circular telescopes
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D. Relationship Error - Kinematics

Using telemetric measurements of the positions of the spacecraft for any time it

is possible reconstruct the MTF function given by Eq. 2.48, such that an (scaled)

reconstruction of the frequency content is estimated:

î(ν) = M(ν)−1i(ν) (2.53)

= Ī(ν) +M(ν)−1N(ν) (2.54)

= Ī(ν) + e(ν) (2.55)

where the error is given by:

e(ν) =
N(ν)

M(ν)
(2.56)

such that the covariance of the error is given by [5]:

E|e(ν)|2 = E

∣

∣

∣

∣

N(ν)

M(ν)

∣

∣

∣

∣

2

(2.57)

=
E|
∫ T

0

∑

n

∑

m δJnm(t)Anm(t)dt|2

I2
est|
∫ T

0

∑

n

∑

mAnm(t)dt|2
(2.58)

where the value of δJnm(t) depends on the interferometric process. Considering

δJnm(t) a random process with mean 0 and variance σ2
J(t) and given the fact that

δkmn(t) and δlmn(t) are independent if k 6= l, and δkmn and δkpq, are independent too

unless m = p and n = q or m = q and n = p, and:

AnmAmn ≈ 0 (2.59)
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we have that N is a summation of approximately independent random variables with

variance σ2
J(t), and given the central limit theorem [5]:

var[N(ν)] =
σ2
JdT

I2
est

L
∑

k=1

∑

n

∑

m

|Anm(t)|2dt (2.60)

where dT is an infinitesimal time of collection.

Then

var[N(ν)] =
σ2
JdT

I2
est

∫ T

0

∑

n

∑

m

|Anm(t)|2dt. (2.61)

For the pupil function assumed, the following approximation is valid:

|Anm(t)|2 ≈ |Anm(t)| (2.62)

such that the relationship between the error in the frequency plane and the dynamics

of the spacecraft is given by:

E|e(ν)|2 =
σ2
JdT

I2
est

∫ T

0

∑

n

∑

m Anm(t)dt
(2.63)

E. Error Variance for Different Interferometric Methods

The relationship between the error in the frequency content and the trajectories of

the spacecraft can be defined given the distribution of δJmn, whose variance depends

on the type of interferometric process. The relationship is calculated for different

techniques that could be used in these systems.
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1. Direct Interferometry

In a direct interferometer, the light from the two spacecraft is directed to a combiner

and interfered, and the amplitude and phase of the peak in the interfered signal is

measured, giving the information of amplitude and phase of the mutual coherence at

the relative positions of the spacecraft.

The variance of the real and imaginary components of the error of the mutual

coherence measurement, δJ , are affected by the inherent stochastical behavior of the

electromagnetic process and the noise caused by the thermal effects in the optics:

[4, 3]:

σ2[δJnm(t)] =

(

1 +
κo

τoptns

)

τopteνIest
AcoldT

(2.64)

where

κo =
1 − ǫ

(ehν/kTopt − 1)
(2.65)

is the factor that accounts for the thermal noise of the detectors, ǫ is the fractional

transmition of thermal energy, Topt is the temperature of the optics, τopt is the optical

efficiency, ns is the density number of photons, eν is the energy of photons at frequency

ν, Atot is the area of collection and dT is the time of collection.

In direct interferometry, the signal cannot be amplified or manipulated in order

to compensate for the optical effects of the mirrors that affect the total signal for the

process. It has to be divided to interfere with the light of every other telescope so the

final signal is divided by (M-1) and a term accounting for the optical efficiency ς has

also to be included in the pupil function[7]. The actual MTF for a pair of spacecraft

is multiplied by a factor
√
ς

(M−1)
.
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Then, following from Eq. 2.63 the variance of the error is:

σ2[e(ν)] =

(

1 +
κo

τoptns

)

(M − 1)2

τoptςµtot
∫ T

0

∑

n

∑

mAnm(ν, t)dt
(2.66)

where µtot is the total rate of photons per second acquired by the system.

2. Entry Pupil Interferometry

In entry pupil interferometry methods like heterodyne interferometry or intensity

interferometry the measurements of the signal are made at the observation plane,

and these measurements are later interfered offline[7, 3]. In heterodyne interferometry,

the acquired signal is first interfered with a coherent signal from the local oscillator

(LO) that allows reproducing a downlinked version of the acquired signal in the radio

frequency wavelength. A signal in the radio frequency band can be transmitted,

manipulated and later interfered, and so there is no need to have a combiner to

directly interfere the light from the source and the signal can be compensated by

the losses in the optics. Intensity Interferometry uses the method developed by the

Hanbury-Brown-Twiss, obtaining the mutual coherence intensity from the second

order variations of the signal. In this case measurements of the Intensity are used

to calculate the amplitude, but the phase is not directly measured and require the

implementation of phase reconstruction methods, that require apriori knowledge of

certain characteristics of the image.

These two methods introduce uncertainty noise on the signal[7]. For practical

purposes, the noise and signal of the Intensity Interferometry behave similarly to the

heterodyne interferometric process. The variance in error of the mutual coherence,

δJ , for this technique [7] is:

σ2[δJnm] =

(

1 +
1

ns
+
κo
ns

)

eνIest
AcoldT

(2.67)
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Then, from Eq. 2.63, it is found that the variance of the error in the frequency plane

is:

σ2[e(ν)] =

(

1 +
1

ns
+
κo
ns

)

1

µtot
∫ T

0

∑

n

∑

mAnm(ν, t)dt

(2.68)

F. The Fuel Optimization Problem

When the purpose is to obtain knowledge of the minimum fuel consumption of this

type of systems, it is necessary to formulate an optimization problem. The cost

function of such optimization problem minimize a quantity proportional to the control

required to follow the trajectories, and the solution is subject to the constraints of the

problem given the dynamics, and the time and image requirements of the problem.

When constraining the minimum value of the error in the frequency plane derived

from (2.66) or (2.68), we define a coverage constraint. That constraint defines the

fact that the time spent covering a given area of the u-v plane has to be greater that

a given lower bound in order to have appropriate coverage. So, given a bound for the

maximum value of σ2[e], we can define a ∆̄ such that:

∫ T

0

∑

n

∑

m

Anm(ν, t)dt ≥ ∆̄ (2.69)

The coverage of the witch hat functions, as shown in Fig. 6, can be approximated to

a top hat function:

Anm(ν, t) ≈ Âp

(

ν − ∆rnm(t)

λz

)

, (2.70)

Âp(x) =











1 if ||x|| ≤ ρ

0 otherwise.
(2.71)
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Fig. 6. Approximation of the witch hat function to a cylindrical function

In figure 6, the validity of the approximation is illustrated. The coverage of the

unitary discs with a diameter at least of the hat define an appropriate lower bound

for the addition of witch hats. Notice that both functions approximate to a delta

function as the radius becomes smaller.

Then the coverage problem can be seen as a painting problem, where the discs

are paintbrushes painting the uv plane, leaving a layer of paint proportional to the

time spent on a given location [4]. This process is illustrated in Fig. 7. The size of

the brushes is given by the size of the transform in the u-v plane of the telescope

aperture, and the positions of the discs correspond to the relative distances of every

pair of telescopes. A pair of telescopes has a footprint in the u-v plane, as shown in

Fig. 7. Then the imaging problem consists of finding the trajectories of the spacecraft

such that the discs defined by the u-v support function cover each point on the u-v

plane for a minimum given amount of time.

The importance of a good coverage is presented in Fig. 8, where the reconstruc-
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Fig. 7. Relationship between spacecraft positions and the spatial frequency coverage

tion of image is simulated for two different cases. In the first one, every region of the

support in the u-v plane is covered long enough such that the error is low for every

point. In the other case, all the support of the frequency plane is also covered, but

in this case some regions are appropriately covered, whereas others are covered for a

shorter amount of time, the error is greater, and hence, the image is not reconstructed

with the required accuracy. Notice that in the second picture even if the noise in the

inner and outer regions is much smaller than in the first picture, having a poorly cov-

ered region reduces the quality. Thus, active control is required for a complete and

appropriate coverage of the u-v plane when time and image quality are constrains.

1. Spiral Maneuvers

In order to define trajectories that achieve appropriate trajectories in the u-v plane, it

is necessary to resort to heuristics. It has been shown [18] that due to the complexity

of the general optimization problem is required to reduce the search set. The subset
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Fig. 8. Reconstructed images for different noise level in the u-v plane
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of spiral maneuvers is a convenient choice. Spiral coverage maneuver have been

shown to be time optimal [15], they define an optimization problem for the spacecraft

trajectories, and allow for rotation of the optical axis to aim at different targets

and reorganization in the case of the failure of an individual or a subcollection of

spacecraft. The coverage of the u-v plane by a spiral maneuver is shown in Fig. 9.

When defining the problem as a “painting problem” with spiral trajectories the

coverage constraints can be described as following: The first coverage constraint is

defined by requirement that the total time spent over a given area is greater that the

required to have appropriate coverage, that is:

NR
∑

n=1

∆n(r) ≥ ∆̄ (2.72)

The maneuvers for the systems studied in this work are considered to be performed

by a symmetrical configuration of spacecraft such that a ring structures arises. This

configuration of rings is due to the possible combinations of spacecraft pairs for which

the mutual coherence can be measured as shown in Fig. 10
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Fig. 10. Ring structure of the spatial frequency coverage of circular arrangement of

spacecraft

Following the geometry of the structure it is possible to define ∆NR(r) such that

such that[5]:

2πrCdr = CM(πρ2) (2.73)

2πr∆NR(r)vr(r) = Mπρ2 (2.74)

and then:

∆NR(r) =
ρ2M

2vr(r)r
(2.75)

And also from the geometry:

∆NR−n(r) = α2
nβn∆

NR(αnr) (2.76)

(2.77)
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Then:

NR
∑

n=1

α2
nβn

ρ2M

2αnrvr(αnr)
≥ ∆̄ (2.78)

NR
∑

n=1

αnβn
1

vr(αnr)
≥ 2r∆̄

ρ2M
(2.79)

It is also necessary to guarantee that there are no gaps between turns of the spiral.

As the spiral of coverage expands, the coverage disc of one spacecraft must match to

the coverage of the next one without leaving any gaps. Then the maximum value of

the expansion rate, k, when the size of the discs is constant is given by:

k =
dr

dθ
≤ 2ρβNR

ns
2π

(2.80)

Notice that for configurations with an odd number of spacecraft, βNR
= 2, and so

this limit is higher, leading to looser spirals.

2. Fuel Optimization Problem for Spiral Maneuvers

Given the coverage constraints and the dynamics of the system, the spiral trajectory

fuel optimization problem can be posed as:

min
ār ,āt

∫ Rf

0

√

ā2
r + ā2

tdr, subject to (2.81)
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NR
∑

i

αiβi
1

vr(
αir
αNR

)
≥ r ¯̄∆, ∀r ∈ [0, Rf ], (2.82)

rvr(r)

vt(r)
≤ K, (2.83)

a′r = fr(r, vr, vt), (2.84)

a′t = ft(r, vr, vt), (2.85)

a2
r + a2

t ≤ A2
max (2.86)

∫ Rf

0

dr

vr(r)
≤ Tmax. (2.87)

where ¯̄∆ = 2∆̄
ρ2M

. Notice that constraints on 2.82 and 2.83 are coverage constraints,

eq. 2.84 and eq. 2.85 are dynamic constraints, eq. 2.86 is the acceleration constraint

and eq. 2.87 is the time constraint.
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CHAPTER III

QUALITY OF THE IMAGE

In order to calculate the required minimum time of frequency coverage in the maneu-

vers, it is required to define criteria in the quality of the image, and relate them to

the variance of the error in the u-v plane.

It is possible to define different requirements for the quality of the picture. One

way is to specify a pixelwise reliability, which limits the error in the value of a every

pixel of the image. The other way is to specify the requirement of quality of the

picture as a probability of total error of the picture (summation of the squared errors

of each pixel).

A. Pixelwise Bound

A requirement of a bound in the error of every point j ∈ F̃j(i) ≥ Ipth in the image is:

Prob
{∣

∣

∣
F̃j(i(ν)) − F̃j (̂i(ν))

∣

∣

∣
≥ kIpth

}

≤ pmax (3.1)

for any F̃j , where:

F̃j = vTj H
∗ i (3.2)

being H∗ the inverse Fourier transform, a linear operator that in the discrete case

can be defined by the matrix:

H∗ = h∗i,j =
1√
n
ω(i−1)(j−1), (3.3)

ω = eı2π∆r/(λz), (3.4)
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and

vTj = (0, 0, ..., 1, ..., 0, 0), (3.5)

a vector that extracts the value of the jth pixel. kIpth is a maximum value for the

error pixelwise, such that every pixel in the actual image with an intensity greater

than Ipth will have a bounded error. For any point j:

|F̃j(i(ν)) − F̃j (̂i(ν))|2 = |vTj H∗(i− î(ν))|2 (3.6)

= |(i(ν) − î(ν))∗Hvjv
T
j H

∗(i(ν) − î(ν))|, (3.7)

and:

vTj H
∗ = H∗

j , (3.8)

Hvj = Hj, (3.9)

so:

E|F̃j(i(ν)) − F̃j (̂i(ν))|2 = |(i(ν) − î(ν))∗HjH
∗
j (i(ν) − î(ν))| (3.10)

= E|H∗
j (i(ν) − î(ν))(i(ν) − î(ν))∗Hj | (3.11)

= H∗
jE|(i(ν) − î(ν))(i(ν) − î(ν))∗|Hj (3.12)

=

N
∑

1

h∗ijE|(i(ν) − î(ν))|2hij (3.13)

=
N
∑

1

h∗ijRehij , (3.14)

Re being the covariance matrix for the error on the image in the frequency plane,

which can be considered diagonal since the measurements in the frequency plane are
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uncorrelated. And so

E|F̃j(i) − F̃j (̂i)|2 =

N
∑

1

h∗ijhijE|e(ν)|2 (3.15)

And because of the symmetry of the operator H, since h∗ij = (hij)
∗, it follows from

Eq.3.3 that h∗ijhij = 1
N

and then:

E|F̃j(i) − F̃j (̂i)|2 = 1
N
||e||22, (3.16)

where ||e||22 is the euclidean norm of E|e(ν)|. This is an exact relation for the value

of the variance of the feature.

Since the function F̃ is a linear transformation of e(ν), and e(ν) is a gaussian

distributed variable, F̃ (e) is a zero mean gaussian distributed variable, with standard

deviation given by Eq. 3.16. An exact bound for ||e||22, such that Eq. 3.1 is satisfied

is:

||e||22 ≤ σ2
p , (3.17)

where σp is the solution to the equation:

pmax = 1 − erf

(√
NkIpth√

2σp

)

. (3.18)

Correspondingly, this condition is fulfilled if ||e||2∞ = min{E|ei|2} ≤ ||e||22
N

, so that

Eq. 3.1 is satisfied if

σ2[e(ν)]2 ≤ 1

Q
, (3.19)

where

Q =
2(erf−1(1 − pmax))

2

k2I2
pth

. (3.20)
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B. Chi Squared - Total Error Bound

A bound for the total error in the image can be defined by:

Prob
{

||i(x) − î(x)||22 ≥ K
}

≤ pmax (3.21)

Given Parseval’s Theorem[1], the above condition becomes:

Prob{||i(ν) − î(ν)||22 ≥ K} ≤ pmax (3.22)

Now let’s define the complex normal distributed variable:

x =
Re(ij − îj)

√

E|Re(ij − îj)|2
+ i

Im(ij − îj)
√

E|Im(ij − îj)|2
∼ N(0, 1) + iN(0, 1) (3.23)

And given the acquisition process, the real and imaginary parts are identically dis-

tributed random variables. Then:

x =
Re(ij − îj) + iIm(ij − îj)

√

E|Re(ij − îj)|2
∼ N(0, 1) + iN(0, 1) (3.24)

such that:

χ2 =
r−1
∑

i=0

x2 (3.25)

is a Chi square distributed variable with r = 2N . Then, if σp is the solution to the

equation:

1 − Gr

(

K

σ2
p

)

= pmax, (3.26)

where,

Gr(y) =
γ(r/2, y/2)

Γ(r/2)
, (3.27)
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and γ, Γ are incomplete and complete gamma functions respectively, Then

Prob

{

χ2 ≤
(

K

σ2
p

)}

= pmax, (3.28)

and

||i− î||2 ≤ σ2
pχ

2, (3.29)

||i− î||2 ≤ σ2
p

r−1
∑

j=0

|ij − îj |2
E|Re(ij − îj)|2

, (3.30)

i.e:

r−1
∑

j=0

|ij − îj |2
σ2
p

≤
r−1
∑

j=0

|ij − îj|2
E|Re(e(νj))|2

, (3.31)

then

Prob{||i− î||2 ≥ K} ≤ pmax (3.32)

The quality condition is then given by Eq.3.31 that describes the hypercone defined

by intersection of an hyperellipsoid with the hypersphere given by the left side of

the Eq. 3.31. If all the axes of the hyperellipsoid are restricted to be inside the

hypersphere, the quality of the image is guaranteed. Then, a solution of Eq. 3.31

that satisfies the error requirement is:

σ2[e(ν)] ≤ 1

Q
, (3.33)

where

Q =
G −1
r (1 − pmax)

K
. (3.34)

Thus, a parameter Q has been defined, that is directly related to the quality of the

picture. Fig. 11 shows the same picture for different levels of quality, Q, along with
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Fig. 11. Quality index of the image. The right side plot displays the error distribution

of the pixels and the K value is the total error value K

its total error K and pixel wise error distribution k.

A relationship between, k (the quality), pmax (the probability of getting an error

worse than that), and the trajectories of the spacecraft has been thus defined. Fig. 12

shows Q as a function of the Error Probability for different k (the pixelwise quality)

for different probabilities, and Fig. 13a shows Q as a function of K (the total error

quality) for different values of pmax (notice that it is basically constant). Fig. 13b

shows the quality index Q as the value of K is increased.
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CHAPTER IV

DEEP SPACE SOLUTION: THE PANTOGRAPHIC PROBLEM

In this chapter a solution to the Optimization process posed in Eqs.(2.81)-(2.87) under

deep space dynamics, i.e. double integrator, non-perturbed dynamics is described.

For a satellite describing a spiral in deep space, the dynamic equations can be

written in the form [16]:

ār(r) =
ar(r)

vr(r)
=

(

dvr
dr

− vt
k

)

, (4.1)

āt(r) =
at(r)

vr(r)
=

(

dvt
dr

+
vr
k

)

. (4.2)

The optimization problem under these conditions is solved, for the constrained case

and for large times of maneuver (i.e unconstrained or weakly constrained cases) and

4 satellites. The numerical solution was obtained for 2 cases. First, a sub-optimal

solution was obtained using k constant, with vr as the optimization variable. In the

second approach, an optimal solution was obtained with both vr and vt both as op-

timization variables.

Solutions were found for different values of number of intervals and different

mission quality constraint. It was found in all the cases that the optimal solution

corresponds to the loosest spiral, i.e the spiral with the maximum possible spiraling

rate.

Since the cost function is monotonically decreasing for any k ≥ 0 it is expected

that the value of k, which minimizes J , is attained at the constraint boundary; nu-

merical solutions to the problem seem to corroborate these observations. Fig. 14a

and 14b compare the solutions to the sub-optimal problem with fixed radial rate (i.e.

k fixed) and the true optimal (i.e. vr and vt as optimization variables) problem. The
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Fig. 14. Comparison of solutions for the fixed expansion rate and the optimal ex-

pansion rate cases for: a. Active constraints case (left), and b. Not active

constraints(right)

solution on the left shows the velocities of a trajectory for a case where constraints

are active, it clearly displays the discontinuity of the solution caused by the character

of the constraint which acts only on part of the total radial distance. The plot on

the right side shows the solution obtained for a case where the time of maneuver is

higher and the constraints are not active. In both cases the value of k lays at the

constraint boundary. The small difference in the solution may be attributed to the

discretization of the problem since in the optimal expansion rate case the solution

converges to a value of k for every r, that is close to the limit value up to the tolerance

of the solving algorithm.

Hence, in accordance with the observations above, the following approximation

is made:

For a fixed time, the optimal fuel maneuver is obtained when k is the

maximum value allowed by the radial expansion limit, and the problem is

thus reduced to the MFKD problem.
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The dynamics of the system in deep space can then be written as:

ār(r) =
ar(r)

vr(r)
=

(

dvr
dr

− vt
k

)

, (4.3)

āt(r) =
at(r)

vr(r)
=

(

r

k

dvr
dr

+ 2
vr
k

)

. (4.4)

and, for the cases under consideration, since the rate of change of velocity with

respect to the radial distance is small, the contribution of dvr

dr
can be assumed to be

negligible. Figure 15 shows the small difference in the calculation of the acceleration

when including the term. In the total cost function the contributions of these terms

can be neglected and under the above approximations, Eq.(2.81) can be written as:

J =

∫ Rmax

0

vr(r)

k2

√
r2 + 4k2dr (4.5)
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Fig. 15. Small influence of rate terms in total cost
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A. Solution for the Constrained Fuel Optimal Problem with n Spacecraft

In order to obtain a solution to the minimum fuel spiral maneuver problem, the

problem is discretized as follows:

Φi = Φ(ri) i = 1, ...ns (4.6)

Φ(r) =
1

vr(αmr)
(4.7)

where m is the number of rings in the configuration, namely m = 2 for 4 and 5

spacecrafts, m = 3 for 6 and 7, and so on. The constants αi (see sec. 4) are

proportionality constants for each ring, (e.g. α2 =
√

2 for 4 spacecraft) and αM is the

value for the smallest ring in a given configuration.

Following this discretization, the constraints can be written as linear inequality

constraints Eqs.() and (), The constraints become:

1. FPC Constraint

The Full Paint Coverage constraint, Eq. 2.82, can be written for the general case with

n spacecraft and m rings as:

NR
∑

i

αiβi
1

vr(
αir
αNR

)
≥ r ¯̄∆, ∀r ∈ [0, Rf ] (4.8)

where ¯̄∆ is a constant proportional to the image quality. Given the optimization

variable the constraints can be written into the following pantographic constraint

(pantographic constraints are equivalent to time delayed constraints):

NR
∑

i

αiβiΦ(αir) ≥ r ¯̄∆, r ∈ (Rmin, Rmax). (4.9)
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When the problem is discretized, the FPC pantographic constraints can be written

as following linear constraint:

Γ · Φ(r) ≥ r ¯̄∆, (4.10)

where Γ is a matrix given by:

Γ =

m
∑

1

αiβiW(αi/αm). (4.11)

Here α1 = 1, β1 = 1, m is the number of rings, and the matrix Wα is the approximation

in discrete space of the operator:

Fα(Φ(r)) = Φ(αr), (4.12)

which has the form:

Φ(αr) = Wα · Φ(r) (4.13)

=







































1 0 ... 0 0 ... 0 0
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, (4.14)

where p is a proportionality constant that calculates the value of Φ at the point αr,

as the linear interpolant of Φ(ri−1) and Φ(ri). As a particular case, W1 is the identity

matrix.

The importance of defining the discretized optimization variable as done in 4.7,

i.e. the inverse of the velocity of the smallest ring, is illustrated in Fig. 16.
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Fig. 16. Pantographic constraints

f(xi, αxi) ≤ K ∀xo ≤ xi ≤ xf (4.15)

when α > 1, does not constraint the function f(x) at every point inside its range.

In such a case the number of constraints is less than discrete points of the variable.

However, when 0 < α ≤ 1, the variable is constrained at every point inside its validity

range, and the discrete optimization can be properly posed.

2. Time Constraint

The time constraint is given by the integral in Eq.(36):

∫ Rf

0

dr

vr(r)
≤ Tmax, (4.16)
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which after discretization, using a zero hold integration scheme, can be written as the

vector product:

V · Φ ≤ Tmax (4.17)

where V = α
M
δr[0.5 1 1...1 0.5], and δr is the distance between two contiguous

discrete radial points.

Then, an optimization for the trajectories subject to deep space dynamics can

be obtained for the discretized optimization variable Φ(r) defined in Eq. 4.7:

Min J =
N
∑

i=1

1

Φi

·
√

r2
i + 4k2

i

k2
i

, subject to : (4.18)

Γ · Φ ≥ r∆, (4.19)

α
N
1̄TΦ = α

N
||Φ|| ≤ Tmax, (4.20)

Φ2
i ≥

√

r2
i + 4k2

i

k2
iAmax

(4.21)

B. The Optimal Solution

The necessary condition of the solution to the discretized problem in Eq. 4.21 can be

obtained when defining the Hamiltonian:

H = CT · 1

Φ
− λT (ΓΦ − r∆) − µ(Tmax − αN 1̄TΦ) + ηT (Amax1̄ − diag[C]

1

Φ2
)

(4.22)

Here:

Ci =

√

r2
i + 4k2

i

k2
i

, (4.23)
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λ and η vectors and the scalar µ are Lagrange multiplier for the constraints, and

diag[x] is a square diagonal matrix with the elements in the diagonal being the element

in the vector x.

These multipliers, given Poyntriagin’s principle ( and a small rearranging), must

satisfy:

λi











= 0 if ΓiΦ ≤ ri∆

> 0 if otherwise
(4.24)

ηi











= 0 if Φi ≤
√

Ci

Amax

> 0 if otherwise
(4.25)

µ











= 0 if ||Φ||1 ≥ Tmax

> 0 if otherwise
(4.26)

Being || · ||1, the one-norm of a vector.

The Lagrange Necessary conditions for optimality give us:

0 = ∇ΦH (4.27)

= −diag
[

1

Φ2

]

C − ΓTλ+ αN 1̄ − diag[C]diag

[

2

Φ3

]

η (4.28)

And thus we have a system of 2N+M+1 equations, and 2N+M+1 unknowns that can

be solved numerically.

Concerning the convexity of this optimization space notice the following facts:

• We defined our system to be confined to only the positive subspace.

• Therefore, the cost function is a weighted summation of convex hyperbolas,

therefore, the Cost function is convex.
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• The time constraint is a plane that define the one norm

• The acceleration constraints are hypercubes limiting the minimum value of Φ

• The FPC Constraint is a simplex surface conformed by linear combinations of

the optimization variables

The previous remarks are explained in the diagram in Fig. 17, where the problem is

shown for ℜ2.

0
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Fig. 17. Convexity of the optimization problem

C. Deep Space Solutions for Planet Imaging

Given the convexity of the optimization space, as seen above, a solution to the Non-

Linear Programming problem can be formed using a Sequential Quadratic Programing

algorithm like fmincon or SNOPT in MATLAB.

Minimum fuel cost trajectories for MSIIS comprising 4 to 14 spacecraft were
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calculated using the method described above for different maximum times of ma-

neuver. The parameters used correspond to imaging mission to detect the banded-

ness of a Jupiter sized planet at a distance of 25 light years, provided in previous

reference.[15].50x50 pixel images of the planet are considered. These parameters are:

• R = 100 kilometers,

• ρ = 0.02,

• C = 2.5,

• B = 2×10−4,

• µ = 1000 photons/s,

are used to calculate ¯̄∆ and run the optimization algorithm.

The results are displayed in Table I. From them, insight into the cost of MSIIS

missions can be obtained, the order of magnitude of the required accelerations, and

the general behavior of a maneuver covering the frequency plane. The results show

that as the number of satellites is increased, a shorter time of maneuver is feasible,

and the total fuel cost of an imaging maneuver is reduced. The maximum thrust

required (TMAX) is calculated per 100 kg mass of the constituent spacecraft

Some plots of the obtained solutions are shown in Figs. 18-21. The plots show

the time history of the acceleration and the values of the corresponding velocities.

The lower plot in these figures describes the fulfillment of the constraint, displaying

the ratio of the time of light collection with respect to its requirement. The space

trajectories of each of the maneuvers only depend on the value of k (fixed for a given

number of spacecraft). Figure 9 shows the maneuver for 6 spacecraft. In Fig. 18

the results for a non-constrained case are shown, i.e., a case in which the FPC are

not active. The time of maneuver in this case is high. As the time of maneuver is
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Table I. Cost for different number of satellite (ns) and different time of maneuver

(time)

ns time ∆V TMAX

[hours] [m/s] [mN]/100 Kg

4 80 339 344

4 60 947 438

4 46 1337 2367

5 80 104 3574

6 60 207 487

6 30 1138 2846

7 80 27 19

7 30 175 812

8 80 209 69

8 30 556 495

8 24 696 774

8 20 836 1128

9 80 16 28

9 24 171 826

10 80 135 45

10 24 510 453

10 12 971 7463

11 30 82 75

11 24 104 139

12 24 361 363

12 12 770 1749

13 24 91 104

13 18 122 189
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reduced to the minimum feasible time, the optimal velocities increase and the FPC

becomes active. Figs. 19, 20 and 21 show the solutions obtained for constrained

low-time cases. In Fig. 19, a near-minimum time maneuver of 45 hours is shown for a

10 spacecraft system, and in Figs. 20 and 21, maneuvers are shown for 10 spacecraft

in 12 hours and for 12 satellites in 8 hours respectively.

From the above mentioned results the actual cost of the imaging maneuver is

calculated and the maximum acceleration required for such high resolution imaging

missions. Maneuvers achievable in reasonable times are found to require reasonable

fuel to total mass ratio. As an example, for a hundred of such maneuvers, with

Isp = 7000 s, using 8 spacecraft in 24 hour missions, a spacecraft would require a

ratio of fuel mass to total mass of [20]:

Mf

Mt

= 1 − e−∆V/I·g = 0.63 (4.29)

Figure 22 shows the results for the fuel to total mass ratio for one hundred
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M
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m
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) 

Fig. 22. Mf/Mt ratio for different number of spacecraft and different times of maneuver
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maneuvers, as a function of the number of spacecraft and for different times of ma-

neuver. The particular imaging mission considered requires a very high level of light

collection due to the feature selected as the criterion for classification[6]. Other mis-

sions would require much lower levels which would lead to less stringent time and fuel

requirements.

Maneuvers lasting 24 hours comprising 13 spacecraft, require a maximum thrust

of 100 mN (per 100 Kg of mass) and a total ∆V of the order of 0.09 km/s. 24-hour

maneuvers with fewer than 9 satellites show a maximum required thrust of the or-

der of 1 N (per 100 kg of total mass). Such high impulses are however practically

infeasible using current electrical propulsion technologies due to the power supply

constraints.
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CHAPTER V

NEAR-MINIMUM FUEL MANEUVERS IN NEAR EARTH-ORBIT

In this chapter the design of multi-spacecraft interferometric imaging systems (MSIIS)

located in a near earth orbit is studied.

In the previous chapters the dynamics of the spacecraft have been related to

the Modulation Transfer Function (MTF) of the optical system and a time/fuel op-

timal problems have been posed. In this section, a solution algorithm is proposed to

calculate near-minimum fuel trajectories in near earth orbit. It is intended to find

solutions to the optimization problem Eqs.(2.81)-(2.87) subject to Clohessy-Wiltshire

(CW) dynamical equations.

The problem was solved for deep space dynamics in the previous chapter, but

the symmetry utilized to solve the problem for that case is lost for the case of CW

dynamics [21]:

ẍ− 2nẏ − 3n2x = ux (5.1)

ÿ + 2nẋ = uy (5.2)

z̈ + n2z = uz (5.3)

and therefore, the cost function J , not only depends on the radial and tangential

components of the velocities in the spiral but is also dependent on the trajectory

of each individual. Solving this optimization problem requires the solution of the

trajectories of the spacecraft in three-dimensional space subject to asymmetric dy-

namics. When the problem is posed for formations in near-earth orbit the symmetry

and other desirable features of the optimization problem in the case of deep space,

such as convexity, disappear, and the structure of the problem does not allow for the

design of a computationally efficient optimization method for the exact problem.
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A near minimum fuel solution of the problem is proposed assuming that the to-

tal cost of the maneuver for n spacecraft is optimized by dividing the problem into

two subproblems: First, the spacecraft maneuvers are optimized assuming deep space

dynamics , i.e. non-perturbed double integrator. Next, the resulting trajectories are

tracked under C-W dynamics using a Linear Quadratic Regulator optimal control.

In the previous chapter, the process where the optimization problem is converted

to a Non Linear System that can be solved by a SQP algorithm for deep space dy-

namics has been considered.

Using that algorithm, the first stage of the problem is solved for the parameters

of the imaging system and the obtained trajectories are an input for an LQR tracker

controller.

For the LQR problem, the dynamical system is:
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(5.4)

and the trajectory to be tracked is:

r(t) =



















yt(t)

zt(t)

ẏt(t)

żt(t)



















=



















r cos(θ)

r sin(θ)

kω(cos(θ) − kr sin(θ))

kω(sin(θ) + kr cos(θ))



















(5.5)
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where k is the expansion rate of the spiral and ω, r, and θ are defined from the

solution of the NLP solution in the first stage.

Then, the cost function of the LQR optimal problem is [22]:

J =
1

2
(Cx(T ) − r(T ))TP(Cx(T ) − r(T )) +

1

2

∫

t
oT (Cx − r)TQ(Cx − r) + uTRudt (5.6)

with,

C =



















0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1



















(5.7)

Note, that the x direction (optical axis direction) is free, and the spiral is projected

on the y-z directions of the local vertical, local horizontal (LVLH) coordinate system.

Then, the controller

u(t) = −R−1BTS(t)x+R−1BTv (5.8)

is an optimal control for the desired trajectory, with:

−Ṡ = ATS + SA− SBR−1BTS + CTQC, (5.9)

−v̇ = (A−BK)T v + CQr(t). (5.10)

This algorithm accounts for the orbital dynamics of small displacements about a

near circular orbit and the requirements on acceleration and required thrust, describ-

ing the imaging spirals in the desired plane.

Fig. 23 shows the results for one of these maneuvers. The trajectory shown is

the trajectory of 1 of the spacecraft, of a 13 spacecraft maneuver, projected in the
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Fig. 23. 11 spacecraft 2 hour maneuver, resolution on target = 1 m

the LHLV plane.

Fig. 24 displays the trajectories of 5 out of 13 spacecraft in a 2 hour maneu-

ver, and the three-dimensional paths described. These trajectories obviously do not

intersect, and although they are not confined to a plane, they do project the optimal

trajectories in the perpendicular plane to the optical axis.
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Fig. 24. 13 spacecraft 3 hour maneuver, 100 × 100pix. Left: Projected path in the yz

plane of the 13 spacecraft. Right: 3D trajectories of 5 of the spacecraft in the

LHLV reference frame

A. Results for the Algorithm - Application to a Mid-IR Imaging System in GEO

Orbit

In this section, the results for the solutions of the optimization problem posed above

are described, and the behavior for selected parameters and different configurations

are displayed, in order to describe the relation between the fuel consumption and the

quality of the reconstructed images.[2]

The diameter of the maneuver is defined by the desired resolution of the image,

by the position of the first zero in the interferometric pattern of Airy disc, that is

approximately[1]:

D = 1.22
λz̄

δ
, (5.11)

where δ is the resolution of the picture. If the design is calculated for λ = 10µm and

an approximate resolution of 1 m in the target, the diameter of the optical aperture

has to be about 500m.
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The minimum size of the collecting telescopes required to acquire the light from

the prescribed area of the target is given by the same criteria[1], and is inversely

proportional to the resolution dpix and the number of pixels in the picture, npix:

Dmtel = 1.22
λz̄

npixdpix
. (5.12)

The rate of arrival of photons for imaging an thermally radiating object on earth can

be calculated as [23]:

µtot =
2c

λ4(ehc/λkT − 1)

ηξ(∆λ)2Atel(dpixnpix)
2

z̄2
[ph/s], (5.13)

where ξ is the emissivity coefficient of the radiating body, that can be as low as 0.1,

η is the absorption coefficient of the atmosphere at the given wavelength, and Atel is

the area of the telescopes. The bandwidth ∆λ is a parameter limited by the desired

resolution and the measuring system. In the case of heterodyne interferometry, it is of

the order of 2nm[3], and can be greater in the case of direct interferometric methods.

The factor ∆̄ in Eq.(7), in the optimization problem previously mentioned, can

be expressed for the direct detection as(Ref. Eq.(20)):

∆̄ =

(

1 +
1 − ǫ

τoptns(ehν/kTopt − 1)

)

(M − 1)2Qd

τoptςµtot
, (5.14)

such that in the case of the thermal source, the term ¯̄∆ in the spiral trajectory

optimization (Eq.12) is:

¯̄∆ =

(

1 +
1 − ǫ

τoptns(ehν/kTopt − 1)

)

(M − 1)2λ4z̄(ehc/λkT − 1)

2τoptςηξcM(∆λ)Ateld2
pix

Qd. (5.15)

And replacing the minimum size of the telescope:

¯̄∆ =

(

1 +
1 − ǫ

τoptns(ehν/kTopt − 1)

)

2n2
pix(M − 1)2λ2(ehc/λkT − 1)

ςηξcM(∆λ)(1.5π)
Qd. (5.16)
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Similarly, for heterodyne detection, from Eq.(22)∆̄ can be written as:

∆̄ =

(

1 +
1

ns
+

1 − ǫ

ns(ehν/kTopt − 1)

)

Qh

µtot
, (5.17)

such that in this case

¯̄∆ =

(

1 +
1

ns
+

1 − ǫ

ns(ehν/kTopt − 1)

)

2n2
pixλ

2(ehc/λkT − 1)

cMηξ(∆λ)1.5π
Qh, (5.18)

where Q is the image Quality factor mentioned in the previous section, npix is the

number of pixels in the image, and M is the number of spacecraft.

Simulations and calculation of fuel consumption for different maneuver were per-

formed. Figs. 23 and 24 show the features of these type of maneuvers. In Fig. 23, the

plots show the values for the accelerations in all the three axes, as well as the tracking

of the trajectories by the inner loop controller. Notice that the level of acceleration in

the x direction is orders of magnitude smaller that in the other directions. Notice as

well that the major discrepancies are at the beginning of the tracking. This behavior

can be improved by adjusting the weighting parameters in the LQR controller. In

Fig. 24 four of the thirteen constituent trajectories are shown to illustrate how the

3D trajectories can differ in the x−yz plane, but their projection onto the y−z plane

follows the desired trajectory.

To condense the results for the cost of different maneuvers, Figs. 26-28 display,

for different configurations, the number of missions realizable with the calculated ∆V ,

assuming an electric propulsion system with specific impulse of 3500 s, and fixing the

maximum ratio of fuel to total mass at 0.3. The number of maneuvers is increased

as relax the quality parameter is relaxed.

Notice however, that there are two unachievable zones. The first one is due to the

fact that there is a limitation in the minimum time of the maneuvers given the avail-

able thrust of electric propulsion systems. Given the requirements of power of electric
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propulsion systems, (in the most recent prototypes the efficiency is 70-80mN/KW,[24]

and the presently available power sources with specific power of 200kW/Kg[20]), the

max acceleration of the system is limited by the fraction of the mass of the power

source relative to the mass of the spacecraft. Assuming a value of 25% of the mass

to be power generation, the limit in the accelerations of the spacecraft are about

4.5 mm/s2. Given this limiting value the minimum time of maneuver as well as the

minimum value for ¯̄∆, and Q, can be calculated from Eq.(9) and (14), assuming con-

tinuous maximum thrust during the whole maneuver, for deep space dynamics ( as a

lower boundary ):

T =

∫ Rmax

Rmin

dr

vr(r)
(5.19)

=

∫ Rmax

Rmin

dr
√

a2
maxk

2/
√
r2 + 4k2

, (5.20)

and

¯̄∆min =

NR
∑

i=1

αiβi
1

√

a2
maxk

2/
√

1 + 4k2

(5.21)

The results are shown in table II. Notice how the minimum time reduces with the

reduction of the resolution requirements, and increase in the number of spacecraft. If

the acceleration constraint is relaxed, solutions for faster maneuvers are found, but

the system is not able to follow them. Fig. 25 shows the effect of the saturation of

the control in the trajectories for a 45 minutes, 11 spacecraft maneuver.

On the other side, the maximum value of Q, i.e. highest quality achievable, is

also constrained by the time of the maneuver, for a given time of maneuver, there is a

limit in the minimum velocity, and so, this limits the quality achievable. The two un-

achievable regions are clearly depicted in Figs. 26-28. The optimization problem and

the LQR are normalized, such that the total cost obtained is directly proportional to
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Table II. Minimum time and minimum quality given acceleration constraints

amax = 4.5mm/s2

50 pix 100 pix

ns min time min Qd min Qh min time min Qd min Qh

[h] ×105 ×105 [h] ×105 ×105

9 0.51 7.77 7.54 0.97 3.78 3.67

11 0.42 6.08 9.21 0.80 2.96 4.49

13 0.37 4.99 10.9 0.68 2.43 5.30
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Fig. 25. Control saturation effect in the trajectory tracking, 45 minutes maneuver, 11

spacecraft Left: amax = 4.7mm/s2, Right: amax = 6.5mm/s2
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Fig. 26. 11 spacecraft maneuver, 100 × 100 pix. Number of pictures vs. quality

(Qd = direct interferometry, Qh = heterodyne interferometry)

the radius of maneuver, and therefore the number of missions is directly proportional

to the resolution on earth. The number of pixels in the image is also an important

factor in the fuel cost. The number of pictures in Figs. 26-28, are given per meter of

resolution desired on the target. The reduction of the number of pixels per picture,

means a less tight spiral maneuver and consequently less consumption of fuel. This

can be noticed in Fig. 28 that is calculated for a 50 × 50pix images.



64

Fig. 27. 13 spacecraft maneuver, 100 × 100 pix. Number of pictures vs. quality

(Qd = direct interferometry, Qh = heterodyne interferometry)



65

Fig. 28. 11 spacecraft maneuver, 50 × 50 pix. Number of pictures vs. quality

(Qd = direct interferometry, Qh = heterodyne interferometry)
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CHAPTER VI

NON-STATIC TARGET LOCATION

In the solution stated in the previous chapter, the proposed algorithm assumes that

the distance, as well as the relative direction to the target is non varying. Such as-

sumptions are appropriate in the case for example of static objects on earth imaged

from a formation in GEO orbit, or the imaging of a distant planet from an orbital

location.

However, when the relative position of the target to the formation is varying;

as for example in the imaging of an earth based target from a non-GEO location,

imaging a near earth object from another near earth orbit, or a moving object on

earth; new challenges in the solution of the problem arise. The two stage controller

presented in the previous section is extended for this case in the development below.

A. Time-Varying Direction

When the distance vector to the target is changing direction with time, the actual

trajectories of the spacecraft have to be such that they project the trajectories found

by the higher level controller, in a plane perpendicular to the optical axis. This plane

is changing direction as the relative position changes.

The solution to this problem is achieved defining a time varying observation

matrix C that projects the trajectories in the rotating observation plane, and allows

for the LQR controller to track the optimal solution found from the first stage. Thus
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the LQR controller, is designed for the state space system:

ẋ = Ax +Bx (6.1)

y = C(t)x (6.2)

being x the position-velocity vector defined in the local horizontal local vertical

(LHLV) reference frame of the system reference circular trajectory, denoted by {N},

and in the observation equation, C(t) is a time varying matrix that is assumed known

from the system and target location. This observation equation defines the yz pro-

jection of the trajectories in a rotating coordinate frame.

The reference frame configuration for a general case is shown in Figure 29. The

reference frame {A} is defined with the Ax axis in the direction of the optical axis.

That is, it is defined by a rotation of an angle θ3 about the Nz axis, and an angle θ2

about the Ay axis of the N reference frame.

The velocities are defined in the new coordinate frame using the transport the-

orem:

Ndx

dt
=

Adx

dt
+ (ωA/N × x) (6.3)

Thus:

C(t) = [Pzy]
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Fig. 29. Coordinate frames

where 3I and 30 are the identity and zeros three dimensional matrices respectively,

R2(t) and R3(t) are three dimensional rotation matrices that define the rotation of

the optical axis with respect to the x direction of the coordinate frame fixed in the

LHLV reference frame, Pyz is the projector matrix and
[

ω×
N/A

]

is the skew symmetric

matrix for the angular velocity of the frame A relative to N defined in the N frame.

This way, the LQR is actively controlling four constraints in the six dimensional

state space x = [x, y, z, ẋ, ẏ, ż]. These constraints are defined by the tracking of the

reference solution by the projection of the trajectories in the yz plane of the {A}

frame. The tracking of these constraints attains the satisfaction of the kinematic

requirements in the u-v plane that define a bound in the image error content.

Figure 30 shows an example of trajectories found using this algorithm for a simple

case where the optical axis is rotating about the z axis. The top figure shows the
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trajectories as seen in the LHLV frame. The second plot shows the trajectories in the

rotating frame, while the projections of these trajectories on the yz plane are shown

in the third figure. The dotted lines are the desired trajectories tracked by the outer

loop. The accelerations and the tracking of the reference are shown in the bottom.

B. Time-Varying Relative Distance

When the relative distance to the target is changing, the footprints of the telescopes

in the u-v plane, are time varying. In this case, the solution for the higher level

controller loses validity, and a new solution to the problem has to be formulated. In

Fig. 31, the situation is shown for a case where the target is going away from the

imaging system.

The distance from the footprint disc on the u-v plane to the origin, as seen in

Fig. 31 is given by:

u =
∆rnm
λz

, (6.6)

z being the magnitude of the distance from the target to the system. So as z varies

with time, the relative distances of the spacecraft should compensate for the variations

in order to maintain adequate coverage in the u-v plane. Additionally, the size of the

discs is also inversely proportional to the distance of the observation plane to the

target, such that the expansion rate constraint takes a new form.

In order to formulate a new solution to the problem that accounts for the effects

of a time varying z process, the influence of these two effects in the optimal problem

formulation has to be studied.
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Physical plane trajectories Frequency coverage 

r(t) 

∆r=αr(t) 

∆r(t)/(λz(t)) 

R
tel

/(λz(t)) 

Fig. 31. Relation between the physical plane and the coverage of the u-v plane.

1. Time -Varying Distance in the u-v Plane

In order to comply with the FPC it is necessary to describe a spiral in the u-v plane,

defined by the parameters vν = drν
dt

, kν = drν
dθ

that satisfies the imaging constraints.

The transformation between the relative positions in the physical plane and the po-

sition of the discs in the u-v plane is given by:

|∆r| = λz(t)rν (6.7)

∠∆r = ∠rν (6.8)

where rν = |ν|. Then:

k = α
dr

dθ
(6.9)

= α
dλz(t)ν

dθ
(6.10)

= αλz(t)
dν

dθ
(6.11)

= αλz(t)kν (6.12)
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where |∆r| = αr, kν is the rate of expansion of the spiral in the u-v plane, and k is

the expansion rate for the trajectory in the physical space. And:

vr =
dλz(t)ν

dt
(6.13)

=
dλz(t)

dt
ν + λz(t)

dν

dt
(6.14)

vr = λż(t)ν + λz(t)vν (6.15)

where vν is the radial velocity of the spiral in the u-v plane, and vr is the radial

velocity of the trajectory in the physical space.

The cost function is then given by:

J =

∫ Rmax

Rmin

|a|dt (6.16)

=

∫ Rmax

Rmin

|a| 1

vν
drν (6.17)

=

∫ Rνmax

Rνmin

|āν |drν , (6.18)

where,

|āν | = |aν
vν

| (6.19)

=

√

(

dvr
drν

− vrr

k2

)2

+

(

d

drν

(vrr

k

)

+
vr
k

)2

, (6.20)

such that the cost function can be written as a function only of the elements kν ,

rν , vν describing the motion in the u-v plane, and the prescribed functions of time

Z(t) = λz(t) and Ż(t) = λdz(t)
dt

. This allows to define the optimization problem such

that it constraints on the spiral are defined in the u-v plane, but the cost function

calculates the acceleration in the physical plane.

When the system is discretized, as a function of the radial distance in the u-v
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plane r
(i)
ν , i = 1, . . . , N the cost can be calculated as:

J =

i=N−1
∑

i=1

√

√

√

√

√

√







Z(i+1)v
(i+1)
ν − Z(i)v

(i)
ν + Ż(i+1)r

(i+1)
ν − Ż(i)r

(i)
ν

Z(i)δrν
− Z(i)v

(i)
ν ν(i)+Ż(i)r

(i)
ν

Z(i)
(

k
(i)
ν

)2







2

+

+

(

(Z(i+1)v
(i+1)
ν + Ż(i+1)r

(i+1)
ν )r

(i+1)
ν

Z(i)δrk
(i+1)
ν

− (Z(i)v
(i)
ν + Ż(i)r

(i)
ν )rν (i)

Z(i)δrνk
(i)
ν

+
Z(i)v

(i)
ν Ż(i)r

(i)
ν

Z(i)k
(i)
ν

)2

(6.21)

where Z(i) = z(t(r
(i)
ν )), v

(i)
ν = vν(r

(i)
ν ). Defining Φ = 1

vν

�
rν
αN

� , the constraints remain

the same as stated for the static target problem, in Equations 4.19-4.21

When including these terms, the convexity of the optimization function and the

convergence to a global minimum is not guaranteed. However, Z(t) is a well behaved

function, at least L2, and for different initial conditions and different parameters, the

optimization converged.

2. Change in the Footprint Size

When the variation of the distance to the object is negligible as assumed in the

previous sections, the footprint of the telescopes in the u-v plane is a disc of constant

radius:

ρ =
Rtel

λz̄
(6.22)

where Rtel is the radius of the telescope. Then, the maximum value of the spiraling

rate k can be calculated such that the size of the discs just overlap while the spiral is

expanding.

In the case where z is not a constant, the size of the discs will be time varying,

and the above mentioned definition of kmax is not valid.

A calculation in the limiting value of k, such that there are no gaps in the coverage



74

is defined by the constraint:

∫ θ+∆θ

θ

kdθ′ = ρ(θ) + ρ(θ + ∆θ) (6.23)

This constraint assures that the disc of the spacecraft at θ will arrive just at the

border of the coverage of the previous spacecraft at radius r = r1 that is shifted an

angular distance ∆θ.

When differentiating with respect to θ:

d

dθ

(
∫ θ+∆θ

θ

kdθ′
)

=
d

dθ
(ρ(t(θ)) + ρ(t(θ + ∆θ))) (6.24)

k(θ + ∆θ) − k(θ) =
dρ(t(θ))

dr

dr

dθ
+
dρ(t(θ + ∆θ))

dr

dr

dθ

= ρ̇(t(θ))
dt

dr
k(θ) + ρ̇(t(θ + ∆θ))

dt

dr
k(θ)

(6.25)

That is:

dθ

dr
(θ + ∆θ) − dθ

dr
(θ) =

ρ̇(t(θ))

vr(r(θ))
k(θ) +

ρ̇(t(θ + ∆θ))

vr(r(θ))
k(θ) (6.26)

dθ

dr
(θ + ∆θ) =

dθ

dr
(θ)

(

1 +
ρ̇(r(θ)) + ρ̇(r(θ + ∆θ))

vr(r(θ))

)

(6.27)

where ρ̇(r) and vr(r) are know functions for a given iteration of vr(r) in the nonlinear

programming problem.

Solving this delay differential equation would require the definition of a compu-

tationally expensive solution method.

However, a conservative solution that will guarantee the satisfactory coverage

can be defined as follows:

kmax = min {κn, κn+1, ...} , ∀i = 1, 2, . . . 0 ≤ κ (6.28)
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where:

κn =
δrn

(δθ)n
(6.29)

defining:

δrn = ρ(r) + ρmin − ndr (6.30)

δθn = ∆θ − dr
∑ 1

k(i−n)
(6.31)

being ∆θ the angular separation between spacecraft, which is constants during the

maneuver, δr is the discretization size of r, ρ(r) is the radius of the coverage disc at

the radial distance r, and ρmin is the smallest value of ρ throughout the maneuver.

When defining kmax using this criterium, it is guaranteed that the mth spacecraft

will arrive to the ri radial position just ρmin distance outside of the coverage disc of

the m+1thspacecraft, thus allowing for the coverage of the u-v plane without leaving

any gaps. Figure 32 shows a plot of r as a function of θ describing the calculation of

k
(i)
max.

C. Application: Orbit to Orbit Imaging

To apply this methodology to the case of moving targets, the relative orientation of

the spacecraft formation with respect to the target, for different orbital parameters,

was computed using Lagrange Generating Functions[25]

The value of z is calculated as the distance from the near-circular reference orbit

of the formation to the orbital location of the target:

∆r = ertg − erff (6.32)

= (extg,
eytg,

oztg) − (exff ,
eyff ,

ezff ) (6.33)
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Fig. 32. Definition of kmax = min{κi}

where rtg is the location of the target, and rff is the location of the reference origin of

the spacecraft formation in the Center of Earth (COE) reference frame e, as shown

in fig. 29. The angles of the rotation matrix are obtained by the rotation of the x

axis toward the location of the target:

θ2 = − sin−1

(

∆z

|∆r|

)

(6.34)

θ3 = θ∆ − θff (6.35)

= tan−1

(

∆y

∆x

)

− tan−1

(

yff
xff

)

; (6.36)
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Differentiation the above equations

θ̇2 =
˙|∆r|∆z − ∆vz|∆r|

∆r2 cos θ2
(6.37)

θ̇3 =
cos2 θ∆(∆vx∆y − ∆vy∆x)

∆y2

−cos2 θff(vxffyff − vyffxff)

y2
ff

; (6.38)

where

|∆r| =
√

∆x2 + ∆y2 + ∆z2, (6.39)

˙|∆r| =
1

∆r
(∆x∆vx + ∆y∆vy + ∆z∆vz) (6.40)

And the angular velocity of the rotation of the frame is given by:

ω = θ̇2Nẑ + θ̇3Aŷ (6.41)

= θ̇2Nẑ + cos θ3θ̇3Nŷ − sin θ3θ̇3Nx̂ (6.42)

D. Simulations and Results

Different cases for the application of this design methodology were simulated, and the

cost of the near fuel optimal maneuver and the magnitude of the controls required

were obtained. An arbitrary image quality factor was chosen for the simulations in

order to make the imaging constraint active, and the maximum time of maneuver

was selected to be 1 hour, using 7 spacecraft and 11 spacecraft. The nominal angular

resolution of the optical system used is R = λ/200m. The cost of the maneuver is

inversely proportional to this parameter and can be estimated for other values.

As a first example, the image of a GEO located spacecraft from a LEO located

system is calculated. As a second example, the system is simulated to image a LEO

located target from another LEO location. As a third case a similar maneuver but
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using 11 spacecraft is shown. As a fourth case, an imaging maneuver from LEO to an

earth based target is calculated. And, the last case, assumes an imaging maneuver

from LEO located system to a target in a HEO orbit at 12500 km. The arbitrary

selected orbital parameters for the system reference orbit are: a = 7800 m., e= 0.01.

The inclination of the different orbits were arbitrary selected for each case.

Figures 33 to 37, display the results. For the different cases the top-left figure

shows the configuration of system and target in the maneuver. The top-right figure

shows the value for the distance of the system to the target (z), and the relative

angles for the rotation from the optical axis to the x direction in the LHLV , (θ2, θ3),

as functions of time. In the second row, the left figure show the trajectories as seen in

the LHLV reference frame of the system {N} and the right side shows the projection

of the trajectories in the Nyz axis as seen in the optical axis frame {A}. Notice

the expanding rate of the spiral trajectories compensating for the variations of the

distance of the target to the system. In cases like the one shown in Fig. 36, it can

be seen that the spiral contracts to compensate when the system approaches to the

target and then quickly expands to compensate for the increase of this distance. As

the distance change over time is smaller, the spiral expansion rate seem more uniform,

as is seen in the case of GEO target imaging (see fig.35), where the relative variation

is not as large as in the other cases. In the bottom row, the left side shows the total

acceleration for all of the spacecraft as a function of time in order to display the

required acceleration levels for the system, and in the right side the performance of

the tracker is shown following the y and z reference trajectories.

In order to consider the probability of collision, a minimum value for the distance

between spacecraft is the distance in the yz plane projection in the A frame. When

the spacecraft are following the required trajectories, at any single time, since they

will not necessarily lay in the same yz plane, they will be at a relative distance at
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least the one defined in the projection. If this fact is considered, it can be noted that

the distance between spacecraft has a minimum bound given by the relative distance

in the projected spiral.

Since the angular distance between spacecraft in the projected trajectories is a

constant, the distance between spacecraft is only proportional to the radial distance.

Then, the maximum bound for the probability of collision is proportional to the

instant radius of the projected trajectories. By this criteria, the probability of collision

is larger at the smallest radius of maneuver, and this happens at the beginning of

the maneuver. Thus, controlling the distances at the smallest radial distance of

the maneuver is the main concern in the control of collision probability bettween

spacecraft.
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Fig. 33. LEO to LEO imaging maneuver with 7 spacecraft , 1 h,
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Fig. 35. LEO to GEO imaging maneuver with 7 spacecraft , 1 h,
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Fig. 36. LEO to HEO imaging maneuver with 7 spacecraft , 1 h,
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Fig. 37. LEO to EARTH imaging maneuver with 7 spacecraft , 1 h,
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CHAPTER VII

CONCLUSIONS

In this research work, a methodology to design optimal trajectories for Multi-Spacecraft

Interferometric Imaging Missions has been proposed and using this methodology, the

features of such systems have been studied.

The optimization problem can be posed and extended to any number of space-

craft, making use of previous developments and assuming optimality of spiral cover-

age.

In order to relate the reliability of an image obtained by a given trajectory, re-

lationships between the error in the frequency image and the reliability of the actual

image can be defined. Two different measurements of reliability can be considered.

First, the probability that any pixel of the image has bounded error, or second, the

probability that the total error in the image is bounded. These relationships allow

for the definition of the coverage requirement in the maneuver given a requirement

in the reliability of the final image.

The optimization problem in the case of deep space dynamics can be converted,

under some approximations, to a convex programming problem whose solutions, for

different times of maneuver and number of spacecraft, can then be easily obtained.

Further, the problem can be extended to the case with dynamical constraints,

like the case of Clohessy-Wiltshire equations of motion for perturbations about a cir-

cular orbit. However, the complexity of the problem does not allow for the design of

an efficient direct optimization method, and thus, a methodology to find near optimal

solutions has been proposed.

An algorithm to calculate near minimum fuel trajectories, consisting of a Sequen-

tial Quadratic Programming and a Linear Quadratic Tracker can be used to calculate
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near minimum fuel consumption and feasibility of these systems.

As an application, a night IR imager located in GEO was considered. The tra-

jectory design method was used to compute the fuel consumption for various cases,

and to relate the fuel requirements to the quality of the pictures.

A two stage hierarchical controller was designed to obtain near fuel optimal tra-

jectories for missions with system-target relative position varying in time. In these

missions, many parameters are involved and a tool to design near minimum fuel ma-

neuvers for various different selection of parameters allows for the analysis of the

feasibility of such missions. The methodology described in this document allows for

the calculation of the dynamic requirements and fuel consumption of near optimal

trajectories, accounting for orbital dynamics and the motion of the target, and can

be used as such a design tool. The solutions obtained suggest the feasibility of these

maneuvers using low thrust engines. These types of maneuvers are flexible enough

to image moving targets, different from systems that rely only on passive coverage of

the u-v plane. A specific effect that has not yet been acknowledged in this section is

the relative attitude change of the target with time. For longer times of maneuver

this effect can be a notorious distortion effect in the final picture.

The implementation of these systems in a hybrid multi-satellite system that com-

bines passive and active coverage of the frequency plane could be a further topic of

research.

Further considerations that are out of the scope of this work include the attitude

control requirement of these systems, the effect of optical aberration, thermal control

and higher order gravitational effects not included in the Clohessy-Wiltshire model.
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