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ABSTRACT 

 

Thermal and Lighting Performance of Toplighting Systems 

in the Hot and Humid Climate of Thailand. (August 2005) 

Siritip Harntaweewongsa, B. Arch., Chulalongkorn University 

Chair of Advisory Committee: Dr. Liliana Beltran 

 
 
 

This study evaluated the potential of toplighting systems in the hot and humid 

tropics by using Bangkok, Thailand (latitude 13.7°N) as a test location. The analysis 

tested both the thermal and lighting performance of three toplighting systems. 

 Toplighting, designed for use in one-story buildings or on the top floor of taller 

buildings, yields a uniformly distributed light throughout a space. However, in lower 

latitude locations, where there is no heating period, heat gain is a critical design issue 

since it significantly affects the annual energy consumption of the building. Accordingly, 

the decision to use toplighting in these locations needs to be carefully examined before 

any design considerations occur.  

 In this study, the thermal and lighting performance of three toplighting systems 

were compared. For the thermal performance, total cooling loads, heat gains and losses, 

and interior temperature were evaluated. The lighting performance parameters examined 

were daylight factor, illuminance level, light distribution, and uniformity. EnergyPlus 

was used as the thermal analysis tool, and RADIANCE, along with a physical scale 
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model, was used as the lighting performance analysis tool. The sky conditions tested 

were overcast, clear sky, and intermediate sky. 

Results have shown that, for locations with hot and humid climates with variable 

sky conditions such as Bangkok, Thailand, the roof monitors perform better than the 

other two systems in terms of the thermal and lighting performance. With similar 

cooling loads, the roof monitor provides better illuminance uniformity than the skylights 

and lightscoops, with adequate illuminance level (at mostly higher than 500 lux).  
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CHAPTER I 

INTRODUCTION 

 

1.1. Background 

 The use of daylighting in architectural design is an efficient way to create 

sustainable design, which helps to reduce both the energy consumption of a building 

and energy consumption on a national scale. This is because daylight is abundant and 

free. More importantly, it comes from a renewable resource: the sun.  

 The advantages of using daylight are more pronounced and more challenging as 

the location gets closer to the equator, mainly due to the increased availability of 

daylight. Bangkok, Thailand, which is at latitude 13.7°N, is in a hot and humid climate 

that has no heating period (Fig 1.1).  

 Two types of daylighting applications are used in introducing daylight into a 

space: sidelighting and toplighting. Sidelighting, which is more commonly seen, is an 

aperture in the wall elements of the building or, more simply, a window opening. 

Toplighting is an opening in the ceiling or roof elements of building. The most 

common application of toplighting is the skylight, lightscoop, or roof monitor. 

Toplighting is, in general, designed for used in one-storey buildings or on the 

uppermost floor in contact with the roof. It is now used in industrial building, factories, 

schools, museums, and art galleries. 

                                                 
  This thesis follows the style and format of Energy and Buildings. 

 



 

Fig. 1.1 Comparison chart between heating (H) and cooling (C) degree hours of Bangkok, Thailand 
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 While toplighting yields more uniformly distributed daylight throughout the 

space than sidelighting, the use of toplighting is avoided by many architects in 

Thailand because of the heat gain problem. The central design consideration when 

using toplighting in a hot and humid climate is the associated heat gain which is more 

significant as the location gets closer to the equator. This is one of the variables that 

makes toplighting much harder to design than sidelighting even with regards to its 

lighting performance effectiveness. 

 As a consequence, at the present time, in Thailand, the use of large area of 

sidelight glazing or curtain walls is very popular and can be found increasingly in 

newly built projects, causing even more heat gain problems than it might be with the 

use of proper design of toplighting. Frequently, however, toplighting is not used, even 

when it is applicable. The most popular type of sidelighting is designed after modern 

buildings in cold-climate countries, which, when applied to hot and humid climates, 

adds unnecessary heat gains to the interior space. An oversized air conditioning system 

then has to be designed to nullify heat gain problems, resulting in more electricity 

consumption.  

 One solution to alleviate the heat gain problem is to use dark coatings with low 

visible transmittance, which inhibit the entry of daylight. However, the building then 

has to rely solely on electric lighting. In addition, some buildings are over-shaded to 

protect them from excess heat gains, thereby reducing the amount of daylight that can 

be efficiently used to illuminate the interior space.  
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 As a result, electric energy has to be used to remove the heat gains and for 

electric lighting as well, due to the amount of daylight entering the space. This then 

increases the energy bill. 

 While studies on ways to improve the design of sidelighting for locations like 

Thailand have been done, research on integrating toplighting in hot and humid climates 

is scarce.  For this reason, this study examines toplighting in hot and humid climates in 

terms of its thermal and lighting performance. 

1.2. Research Objectives 

 The main objective of this research is to evaluate three simple toplighting 

systems in terms of their thermal and lighting performance when used in a hot and 

humid climate. Bangkok, Thailand is used as the test location. The following tasks for 

achieving this objective have been identified: 

1) Develop three simple toplighting prototypes, as single units and as a series of 

units, which introduce similar amounts of heat gain into the space. 

2) Test and evaluate the thermal performance of each toplighting system. 

3) Test and evaluate the lighting performance of each toplighting system. 

4) Summarize and provide design guidelines for using toplighting in buildings in 

hot and humid climates.    
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1.3. Significance of the Study  

 This study will be useful for designers in their decision making process when 

using toplighting in designs. It will also serve as proof that toplighting systems can be 

used in hot and humid climates without having to pay the heat penalty—if the design is 

done properly. 

1.4. Assumptions and Delimitations 

1.4.1. Assumptions 

 The first assumption is that Bangkok, Thailand (latitude 13.7°N) is 

representative of a hot and humid, low-latitude location. 

 The second assumption is that the prototypical building used in this study is 

representative of a typical building in a low-latitude location. 

1.4.2. The Delimitations 

This study will not attempt to evaluate toplighting performance in aspects other 

than lighting and thermal performance. 

This study will be limited to the study of daylight only and will not test the 

effects of the integration of daylight and electric lighting. 

 This study will be limited to the hot and humid, low-latitude locations where 

there is mostly no heating period all year. The test location used is Bangkok, Thailand. 
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1.5. Organization of the Thesis 

 This thesis is comprised of 6 chapters. Chapter I, Introduction, provides the 

research background information, research objectives, assumptions, and the 

significance of the study.  

 Chapter II discusses the related literature which is about daylighting and 

toplighting, including previous studies on toplighting performance and potential of 

toplighting use in Thailand. 

 Chapter III provides the information on a research methodology which covers 

the base case building information, thermal performance and lighting performance 

methodology, and the development of toplighting prototypes.  

Chapter IV discusses the evaluation of the thermal performance of each case. It 

comprises of the thermal performance test of single toplighting unit, the prototype 

series of 1.5 to 1 spacing-to-height ratio, and the prototype series of 1 to1 spacing-to-

height ratio. 

Chapter V discusses the evaluation of the lighting performance of each case. It 

comprises of the lighting performance test of single toplighting unit, the prototypical 

series of 1.5 to 1 spacing-to-height ratio, and the prototypical series of 1 to1 spacing-

to-height ratio. 

Chapter VI summarizes the results of the study in terms of thermal and lighting 

performance. Design recommendations are given to designers when implementing 

toplighting use for buildings in hot and humid climates. Recommendations for future 

studies relating to this research area are proposed. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

 

The literature review will examine the following two areas: 

1. Daylighting 

2. The Study of Toplighting 

2.1. Daylighting 

2.1.1. Daylighting and Architecture 

Daylighting has been an important technique for illuminating interior spaces 

since ancient Egypt. Daylight not only illuminates, but also defines the abstract qualities 

of a space, which can be seen in religious buildings [1]. It has been used in many 

building types from small residential homes to larger buildings, such as temples and 

churches. According to Moore (1985), the use of daylight has changed over time from an 

opening at the spot where light is needed to the use of abundant glazed areas. This 

modern usage, resulting from new materials and structural development, adds heat gains 

to the interior space. Moreover, for areas far from the building perimeter, electric light 

must be used, increasing the energy consumption of a building.  

At the present time, when energy is expensive and sustainable development is an 

important consideration in architectural design, daylight is once again seen as an 

important technique to help obtain energy savings. 
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2.1.2. Benefits of Daylighting  

 Daylight has many benefits and many articles have discussed the advantages of 

integrating daylight into design. The benefits of daylighting are discussed in the 

following section. 

The quality of daylight is superior to that of electric lights. Robbins (1986) stated 

that daylight has a high quality, because it is the one light source that is full-spectrum 

and that closely matches human visual perception [2]. It is also considered the best light 

source for its color rendering quality, which is also superior to electric light. It can be 

said that daylight helps create a visually comfortable space and enhances the visual 

quality of that space. 

The luminous efficacy of daylight is higher than that of electric light. The 

luminous efficacy of a light source is the ratio between light output to heat produced (in 

lumen/watt). In Lechnor, the efficacy of various light sources is compared in a chart [3]. 

Here, daylight introduces heat 6 times less than incandescent light with the same light 

level.     

Another benefit of daylighting, mentioned by Robbins, is that it connects 

occupants with the exterior environment. Building with daylight aperture provides 

occupants with views, creating visual connections between the interior and exterior, and 

satisfying the human need for contact with the outdoor environment. 

Daylight has shown to help increase sales rates, occupant productivity, and 

student attention in classes, because people prefer daylight. In a study by the Heschong 

Mahone Group on daylight and retail sales [4], it was found that the increased rate of 
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retail sales is strongly associated with increased daylight during the day. Another study 

from this group suggests that daylight can increase worker performance in the areas of 

mental function and memory recall by 10-25% [5]. When applied in schools, daylighting 

increases student attention by 21% when compared with classrooms with less access to 

daylight [6].  

One of the most pronounced benefits of daylight is that it helps save energy by 

reducing the use of electric lighting. Since energy crisis of the early 1970’s, people have 

begun to realize the significance of energy savings found in the use of renewable energy 

resources. In the United States alone, lighting energy consumes about 30% of electricity 

use in commercial buildings [7]. According to the Illuminating Engineering Society of 

North America (IESNA), the use of daylight can reduce by 30% the amount of 

electricity used for interior lighting [8].  In Thailand, according to the study by Busch et 

al., has referred to the paper of the National Energy Administration in 1990 that, in 

Thailand in 1987, the energy used for lighting accounts for 31% of electricity use for 

commercial buildings [9]. 

Given these benefits, it is apparent that daylight should be utilized to its full 

potential to help create a visually pleasant environment and a sustainable architecture.  

2.1.3. Daylighting Design Strategies 

In this section, two simple daylighting design strategies (i.e., sidelighting and 

toplighting) will be discussed according to the definition of Ander [10]. 

Sidelighting uses the walls of a building to admit daylight into interior spaces. It 

is a convenient strategy for building and provides both views and options for ventilation. 
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It gives light with a strong directionality, but which diminishes as the distance from the 

aperture increases. In addition, it is good for horizontal work plane surfaces. The 

disadvantage of sidelighting is that it may cause glare, as the illuminating area is in the 

field of view of the occupants, and there are often high contrast ratios between the 

aperture and the surrounding surfaces.  

Toplighting uses the upper part of the building element: the roof or another 

element above the ceiling line. The advantage of toplighting is that it gives designers 

flexibility in arranging the geometry and orientation of daylight apertures according to 

the lighting needs of the occupants and is not limited to wall orientations like 

sidelighting [11]. As a result, the uniformity of light distribution is more easily achieved 

with toplighting. In addition, large quantities of light can be provided through relatively 

small openings.  

While toplighting can help reduce the electric energy used in artificial lighting, at the 

same time, potential heat gains from inappropriate design have to be avoided. This 

challenge in designing with toplighting has to be closely examined, especially in 

buildings in low-latitude, hot and humid climates without a heating period [12]. 

2.2. The Study of Toplighting 

2.2.1. Previous Studies 

There have been only a few studies of toplighting design that treat both thermal 

and lighting performance.  

One study, conducted in 1984, tested three toplighting systems using a simulation 

and concluded that the skylight is the most efficient system in terms of lighting and 
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thermal performance. A study by S. Treado, G. Gillette, and T. Kusada (1984) examined 

the impact of window, skylight, and clerestory daylighting systems on the annual energy 

performance of buildings [13]. The authors concluded that the skylight is the most 

efficient system in terms of minimizing the overall energy used for the heating, cooling, 

and lighting of a building. This study, however, tested the efficiency of each system for 

latitude 38ºN (i.e., Washington DC), and the results could be different if tested in other 

latitudes and climates.  

A study by the Lawrence Berkeley National Laboratory (LBNL) (W. Place et al., 

1984) tested the effects of roof aperture design on the energy performance of buildings 

and found that a combination of east-facing and west-facing glazing reduced energy cost 

more than a south-facing glazing [14]. Specifically, this study examined the daylighting 

performance of various orientations of roof apertures and then chose two roof lighting 

options in order to test their energy cost benefits using the BLAST building simulation 

program. In their conclusion, the authors stated the need for testing more design options, 

as they only tested a south-facing glazing and a combination of a east- and west-facing 

glazing. However, they also concluded that the total annual energy cost can lowered by a 

combination of east-facing and west-facing glazing.  

It is important to note that the test locations in these papers were in the U.S. in 

high-latitude locations. The results might vary in a low-latitude, hot and humid climate, 

since there is no heating period. In the LBNL study, the south-facing glazing was 

chosen, because it admitted more light in the winter than in summer. This criterion will 

be less important in hot and humid climates, as heat is not needed at any time of year.  
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A study by R. Cabus and F. Pereira (1996) has proved that the energy 

performance of a daylighting system differs based on location and weather conditions. 

Their study tested the performance of toplighting systems, including a skylight, 

clerestory, and roof monitor, along with their associated heat gains for locations in the 

tropics (at latitude 0º) [12]. By using the ratio of light output to heat gain (SSLE), the 

authors showed that the skylight has the lowest SSLE ratio among the three options 

tested.  

The test in this paper, however, used only clear sky conditions. Thus, the 

optimum system for overcast sky was not examined. In addition, visual comfort 

parameters were not analyzed, because the emphasis was on energy performance rather 

than visual performance. With the use of the same glazing area for all cases, it can be 

predicted that the skylight will perform the poorest on visual performance. This is due to 

the fact that the skylight sees more of the sun than the other cases, which are vertical 

openings.  

A study by V. Garcia-Hansen et al. (2002) analyzed both the visual and energy 

performance of three toplighting systems: skylights, clerestories, and monitors. The test 

location in the study was at latitude 35°S in Argentina [15]. 

The conclusion of this study was that, for thermal aspects, the systems that could 

save the most energy are clerestories, monitors and skylights, respectively. This paper 

also suggests that skylights should be used for locations with predominantly overcast sky 

conditions but not for locations with heat gain problems. For predominant clear sky 

conditions, the authors recommended clerestories. For visual and thermal performance, 

 



 13

however, the monitor rooflight is the most efficient and is also suggested for use under 

variable sky conditions. In this study, a physical scale model with no glazing was used 

for the lighting analysis. As a result, the authors suggested that further study with 

translucent glazing is needed.  

The test cases for this study, however, would be more comparable if they were 

thermally comparable cases. In keeping thermal performance constant across the test 

cases, visual performance could have been analyzed more efficiently. 

E. J. Dewey and P. J. Littlefair (1998) also discussed lighting performance, but 

again not the thermal performance, of different rooflight systems [16]. The objective of 

their study was to analyze the lighting performance, in terms of the uniformity of 

illuminance level, of six toplighting systems, including skylight, clerestory, and roof 

monitor systems. By testing different spacing-to-height ratios for each toplighting 

system, the authors examined which system gave the most flexibility in meeting CIBSE 

uniformity criteria. This study used a physical scale model with a replaceable roof to test 

the various toplighting designs. The authors concluded that the roof monitor system 

provides better uniformity than other systems, since it had the largest spacing-to-height 

ratio that still met the uniformity criteria. Still, this study is for lighting performance 

only. A thermal test was not included, and, therefore, the systems are not comparable 

thermally. In addition, the test was done under overcast sky conditions, the predominant 

sky type of the United Kingdom. Because of this, the results might be different if tested 

under other sky types and at other latitudes.  

 

 



 14

2.2.2. Toplighting Potential in Thailand 

For Thailand, no studies have been conducted on toplighting performance in 

terms of thermal and lighting aspects. Toplighting uses in the country are similar to those 

in other locations, that is, for commercial buildings, industrial buildings, or in the top 

floor of office buildings. In general, its uses are very limited.  

The Thai sky has a lot of potential for daylighting applications due to the high 

daylight availability. According to a study by S. Chirarattananon et al. (2002), during 

office hours (8:00am-16:00pm), global, beam, and diffuse illuminance are typically at 

more than 20 Klux [17]. Only a 2.5% daylight factor is needed then for the interior 

illuminance to reach 500 lux, which is the recommended illuminance level for office use 

[18]. Moreover, the study found that the differences of the illuminance availability 

between each month are small, as compared with those of locations far from the equator. 

The efficacy of daylight is also high at about 105-115 lumen/watt [19].  

The sky type of Bangkok, as studied by S. Chirarattananon et al. (2003), is 40% 

cloudy sky, 40% intermediate, and 20% clear sky [19]. Accordingly, the optimum 

system for this location should perform well in both overcast and clear sky conditions, 

without adding excessive heat gains to the space.  
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2.3. Summary of the Literature Review 

 The literature review provided an overview of the research on daylighting design. 

The discussion in the literature review can be summarized as follows: 

- The benefits of daylighting are that it has a better visual quality and luminous 

efficacy than general electric lights. It also provides views to the outside 

environment and increases the occupant’s satisfaction and productivity. 

- One of the most pronounced benefits of daylight is that it helps save energy 

from the use of electric lighting and has the potential to reduce the energy 

used for heating and cooling. 

- Two simple daylighting strategies are sidelighting and toplighting. 

- Some studies have been conducted to test the performance of toplighting in 

terms of thermal and lighting performance. However, no test has been 

conducted for hot and humid climates. The results could be different for this 

climate, due to the lack of a heating period. 

- The majority of studies failed to analyze both thermal and lighting 

performance. Therefore, the total system performance cannot be ascertained. 

- Thailand, which is in a hot and humid climate, has a high potential for 

daylighting because of daylight availability. However, heat gain is a major 

concern.  
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CHAPTER III 

RESEARCH METHODOLOGY 

 

This chapter describes the methodology used in the current research study, 

including the development of toplighting prototypes, the thermal performance 

methodology, and the lighting performance methodology. Figure 3.1 summarizes the 

methodologies used in this study.  

3.1. The Development of Toplighting Prototypes 

3.1.1. Base Case Building Descriptions 

 A prototypical base case building was created to test various toplighting options 

in terms of thermal and lighting performance. The base case building used is comparable 

in size to a small industrial building, a convenience store or an art gallery. It has a floor 

area of 375 sq m. (4,100 sq ft). The dimensions of the space were 15.00 m (50 ft) wide 

by 25.00 m (82 ft) deep by 4.50 m (14.8 ft) floor-to-ceiling height (Fig. 3.2). The 

construction materials chosen are those available in Thailand. More details about the 

materials and construction of the building are provided later in this chapter.  

3.1.2. Toplighting System Variations 

Using the base case building, a comparison between the three simple toplighting 

systems is made. The selected systems, skylight, lightscoop, and roof monitor, are 

generally found in Thailand. In addition, their performance has been studied for latitude 

35°N [9]. Figure 3.3 shows a cross section for each of these three systems.  
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Fig. 3.1   Research methodology 
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Fig. 3.2  Prototype building dimension 

 

 

 

 
Fig. 3.3   Cross sections of toplighting systems  

 

 

 
3.1.3. Development of Single Unit Toplighting Prototypes 

In order to compare the performance of each toplighting prototype, each case has 

to be thermally comparable. Equal glazing areas are not appropriate for this kind of test, 

since, if equal glazing areas are employed, one could easily predict that the skylight 
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prototype will have the worst performance. It sees the whole hemisphere of the sky 

dome and hence will receive more heat gain as compared with the other systems. 

The average cooling load will be used as a parameter to determine the thermal 

performance of each toplighting prototype and whether it could be considered thermally 

comparable. Since the cooling load is the energy used to take out the heat stored in the 

building, it is a good performance parameter for the development of thermally 

comparable prototypes. 

3.1.4. Prototypes Design 

 The prototype development methods are given in more detail in Appendix B.  

Developed Prototypes 

 The glazing dimensions for each prototype, which yield similar cooling loads, 

were 0.15m for the skylight, 0.95m for the lightscoop, and 0.55m for both sides of the 

roof monitor looking towards the north and south (with a length of 12.00m along the 

center line of the space).  The difference without shading devices is that, after the 

shading devices are installed, the roof monitor can have more glazing area but the 

glazing area of the skylight had to be reduced. With the shading installed, a roof monitor 

has the largest glazing area as compared with the other prototypes. This calculation and 

test is based on the lightscoop glazing height which remains the same since it is a 

reasonable height for an actual building. 
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The developed prototypes, which will be used in all the simulation runs in this 

study, are presented in Figure 3.4. The section of the prototypes is given in Figure 3.5. 

The glazing area comparison of each prototype is presented in Figure 3.6. The design of 

the shading devices for each prototype is presented later in this section after the initial 

cooling load test results. 

Cooling Load Test for Each Prototype 

In the initial tests of the three toplighting prototypes, the average cooling load of 

each case was similar, with a difference of less than 2%. This verified that all the 

prototypes are comparable thermally. From the data presented, the average cooling load 

of the skylight, lightscoop, and roof monitor is about 5.8 kW per month. The thermal 

performance of each case in terms of average monthly cooling load is presented in 

Figure 3.7. More details about the results are given in Chapter IV, as the goal of the 

initial test was simply to verify that the systems are comparable in terms of thermal 

performance. EnergyPlus inputs can be found in Appendix C. 
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Fig. 3.4  Roof plan and perspective view of single unit prototypes; skylight, lightscoop, and 
roof monitor  
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Fig. 3.5   Sections of single unit prototypes 
 
 
 
 

Fig. 3.6  Glazing area comparison of single unit prototypes 
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Cooling Load Comparison: Single Unit Toplighting
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Fig. 3.7 Single unit prototypes: initial test of cooling load 
 

 

3.1.5. Series of Apertures Design 

A series of apertures with a ratio of spacing to height of 1.5 to 1 were tested first. 

According to E. J. Dewey and P. J. Littlefair (1998), a 1.5 to 1 ratio in a flat skylight and 

vertical sawtooth can yield daylight uniformity, meeting the uniformity criteria of 

CIBSE [16]. Even though the test cases in the current study are not exactly of the same 

geometry as the prototypes in Dewey and Littlefair, their ratio is reasonable and will be 

tested first. However, IESNA suggests that, for the toplighting system, the rule of thumb 

is a spacing-to-height ratio of 1 to 1 [8]. Therefore, this ratio will be tested as well. A 

plan view of the 1.5 to 1 spacing-to-height ratio is shown in Figure 3.8 and the section in 

Figure 3.9. Figure 3.10 presents each prototype’s plan and perspective for this ratio. Plan 

view of the 1 to 1 ratio is shown in Figure 3.11 and the section in Figure 3.12. Each 

prototype’s plan and perspective for the 1 to 1 ratio is given in Figure 3.13. 
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Fig. 3.8  Roof  plans of 1.5 to 1 spacing-to-height ratio prototypes showing glazing 

position 
 

 

 

Fig. 3.9  Sections of 1.5 to 1 spacing-to-height ratio prototypes 
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Fig. 3.10  Roof plan and perspective view of 1.5 to 1 spacing-to-height prototypes; skylight, 

lightscoop, and roof monitor 
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Fig. 3.11  Roof plans of 1 to 1 spacing-to-height ratio prototypes showing glazing 

position 
 

 

 

Fig. 3.12  Sections of 1 to 1 spacing-to-height ratio prototypes 
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Fig. 3.13  Roof plan and perspective view of 1 to 1 spacing-to-height prototypes; skylight, 

lightscoop, and roof monitor 
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3.2. Thermal Performance Methodology 

 The thermal performances of all the cases were tested using EnergyPlus. The 

analyses of thermal performance are based on the results of EnergyPlus simulations. All 

the prototypes used the same materials and a similar construction style, so the only 

difference was in the design of the toplighting system.  

3.2.1. Instrumentation: EnergyPlus 

EnergyPlus is a building thermal simulation program created by the Lawrence 

Berkeley National Laboratory (LBNL) with the support of the U.S. Department of 

Energy. It is a fully integrated building and HVAC simulation program, which is based 

on the best features and capabilities of two other building energy simulation programs, 

DOE-2 and BLAST. The input and output of EnergyPlus are ASCII text files, and the 

validity of the program as a reliable building simulation engine has been tested [20]. 

This study uses version 1.2.1 of EnergyPlus to simulate the thermal performance of the 

prototypes to see the energy efficiency potential in each toplighting system. EnergyPlus 

was initially going to be used to simulate the illuminance value of the developed 

prototypes to compare the results with RADIANCE. The problem occurred with this 

version of EnergyPlus when working on the illuminance calculation. As a result, the 

illuminance value simulation was not completed.  

3.2.2. EnergyPlus Input Parameters 

The thermal input files for EnergyPlus in this study were initially created with 

the Ecotect program and adjusted to the selected design parameters before running 

EnergyPlus. However, the EnergyPlus input files (.idf) created from Ecotect had many 
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errors and needed additional adjustments after being exported. The input files created 

later for this thesis are manually input into idf files or using IDF Editor rather than 

relying on Ecotect.  

The following details the parameters taken into consideration for the inputs into 

EnergyPlus. 

Weather Data 

The weather file of Bangkok used in the simulation was downloaded from the 

EnergyPlus website. It can be accessed at http://www.eere.energy.gov/buildings/  

energyplus/weatherdata.html. 

Ground Temperatures 

 The ground temperature inputs were derived from the program slab.exe, which is 

provided with EnergyPlus. 

Purchased Air Parameters  

 Purchased air parameters were placed into the EnergyPlus input files in order to 

estimate the cooling load needed to cool the building to the cooling temperature set 

point. The simulated space did not include any HVAC systems, because the primary 

research objective is to analyze the effect that each daylighting system has on the 

thermal performance of the building. Therefore, the purchased air concept in EnergyPlus 

was used. Purchased air is a fictitious simple system that can be used in EnergyPlus to 

derive the heating and cooling loads [21]. It is a supply of hot and cold air that maintains 

the interior set point temperature. 
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Cooling Setpoint Schedule  

 The cooling setpoint is set at 25°C at all time. 

Electric Lighting 

 Electric lighting and energy savings from the use of daylighting are not included 

because the lightscoop and roof monitor with shading are complex fenestration systems 

and EnergyPlus needs the data of the bi-directional transmittance distribution function in 

order to use the DELight object to calculate the energy savings [21]. With the time limits 

of this study, this test could not be completed. 

 EnergyPlus input parameters are presented in Tables 3.1-3.3 and Figures 3.14-

3.16.  

 

Table 3.1 
EnergyPlus input: LOCATION 
Parameters Value 
Latitude (deg) 13.7
Longitude (deg) 100.5
TimeZone (hr) 7
Elevation (m) 10

 
 
 
 
Table 3.2 
EnergyPlus input: GROUNDTEMPERATURE 

Month 
Ground Temp 
(C) Month 

Ground Temp 
(C) 

January 24.27 July 24.26
February 24.23 August 24.27
March 24.22 September 24.32
April 24.18 October 24.38
May 24.17 November 24.36
June 24.23 December 24.26
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Table 3.3 
EnergyPlus input: materials and construction 
Building 
Elements Material User Name Materials Construction Name Source 

Wall HF-A6 FINISH BRICK_TH 
DOE2.1E 
materials 

 HF-B2 
INSULATION 
1IN   

 HF-C4 
COMMON 
BRICK 4IN   

 AL21 Air Layer 3/4 in   

 HF-C4 
COMMON 
BRICK 4IN   

 HF-E1 3/4IN PLAS-3/4IN GYPS  
     
Ceiling 
and roof HF-C10 

CONCRETE 
HW 8IN ASHI-38 

DOE2.1E 
construction 

 HF-E4 
CEILING AIR 
SPACE   

 HF-E5 
ACOUSTIC 
TILE   

     

Floor 
ConcSlab_OnGround-
0 Finish ConcSlab_OnGround Ecotect 

 
ConcSlab_OnGround-
1 Concrete Slab   

     
Glazing 
(Low-E) E178-4.CIG Low-E glazing Asahi_Low-E Window5 
 AIR 12.7MM Air space   

  CLEAR_6.DAT 
clear glazing 
layer      
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SCHEDULE for people, lights, and equipments: weekdays
(off weekends and holidays)

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour of day

Fig. 3.14  EnergyPlus input: simplified SCHEDULE for people, lights, and equipments 
 

 

Cooling Availability Schedule1: weekdays
(off weekends)

0
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1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour of Day

Fig. 3.15  EnergyPlus input: cooling availability schedule1: cooling not available nights 
and weekends 
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Cooling Availability Schedule2: on all time
(including weekends)

0
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0.4
0.6
0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour of Day

Fig. 3.16  EnergyPlus input: cooling availability schedule2: cooling available 24 hours 
 

 

3.2.3. Thermal Analysis Variables 

 The output variables requested from EnergyPlus and their descriptions are as 

follows: 

1. Purchased Air Total Cooling Rate (watt) is the total (both sensible and latent) 

energy needed to remove heat from the outside and return air streams. This can be called 

the cooling load of a system. The difference between Purchased Air Sensible Cooling 

Rate and Purchased Air Total Cooling Rate gives the amount of energy needed for 

moisture removal. This is the total cooling load.  

2. Purchased Air Sensible Cooling Rate (watt) is the rate that energy is removed 

from the outside and return air streams to lower the temperature to the interior set point 

temperature. It ignores the energy needed for moisture removal (latent cooling). This is 

the sensible cooling load.   

 



 34

3. Zone Window Heat Loss (watt) is the sum of the heat flows into a space from all 

the windows in a zone when the sum is negative. 

4. Zone Window Heat Gain (watt) is the sum of the heat flows into a space from all 

the windows in a zone when the sum is positive.  

5.  Mean Air Temperature (°C) is the average temperature within a thermal zone at a 

specified time step. Since EnergyPlus uses the zone heat balance to calculate the heat 

transfer, there is only one temperature within one thermal zone. Separate EnergyPlus 

input files have to be created to get this variable by excluding the purchase air input 

parameters. The EnergyPlus input files are provided in Appendix A.  

3.3. Lighting Performance Methodology 

 The lighting performance test was done using a physical scale model and 

RADIANCE. The physical scale model tests were done to compare the results with the 

outputs from RADIANCE and to estimate the discrepancy resulting from the 

RADIANCE calculation. RADIANCE is used for detailed lighting calculations and 

scene rendering. 

 The prototypes were tested by physical scale model and RADIANCE a single 

and series of: skylight, lightscoop, and roof monitor with no glazing (using a special 

illum material in RADIANCE which has 100 % visible transmittance).  

 The lighting performance parameters for the RADIANCE simulations will be 

discussed later in this section. The prototypes tested were a single unit and series of units 

of a skylight with diffuse glazing, a lightscoop, and a roof monitor with typical low-E 

glazing.  A diffuse skylight was used instead of typical low-E glazing, because, with a 
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clear glazed skylight, direct sun can penetrate the space directly. This, in turn, can cause 

the interior illuminance at peak points to be very high, and hence the lighting 

performance could not be compared to the lightscoop and roof monitor, which have 

shading devices. Diffuse glazing in the skylight prototype helps diffuse the direct 

sunlight that enters the space and make the cases more comparable in terms of their 

lighting performance.  This diffuse glazing is assumed to have the same thermal 

performance as the base case skylight. and also same visible transmittance as the typical 

low-E glazing used for other cases which is 76.1 percent.  

3.3.1. Overcast, Intermediate, and Clear Sky Test Conditions 

 The tests of the physical scale model and RADIANCE were done under overcast 

and clear sky conditions. Only the test for lighting performance using RADIANCE was 

done under all three sky conditions; that is, the sky types found in Bangkok, Thailand.  

For intermediate and clear sky conditions, the tested dates and times are summer 

solstice (June 21), equinoxes (March 21/September 21), and winter solstice (December 

21) at 9:00am, 12:00pm, and 3:00pm solar time. The test dates and times are based on 

LBNL’s paper on skylight systems [22]. The equinoxes were added to see the variation 

of the lighting performance throughout the year.  

3.3.2. Instrumentation: RADIANCE 

RADIANCE 

 RADIANCE is an advanced physically based rendering and simulation engine 

for lighting and daylighting. It was created by The Window and Daylighting Program at 

LBNL and employs a backward ray-tracing method to calculate the lighting.  
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RADIANCE is chosen for this study, because it has the ability to model a 

geometrically complex environment and precisely simulate light behavior within a space 

with numerical results and sophisticated rendered images [23]. It has been tested for 

validity under real sky conditions and is able to predict interior light levels with a high 

degree of accuracy [23]. 

 This study will use RADIANCE to predict the interior illuminance level for 

different toplighting systems and also to generate images for each variation. 

 Two versions of RADIANCE are used in this study. The first is Desktop 

Radiance 2.0 Beta which is based on an older UNIX version. The second is RADIANCE 

version 3.6, the latest version available from LBNL, which runs in a UNIX environment. 

Desktop Radiance is used for generating the models because the models can be easily 

generated using an AutoCAD interface. However, there are only 2 releases of AutoCAD 

that can be used with Desktop Radiance and those are release 14 and AutoCAD 2000. 

This study uses AutoCAD release 14. 

The UNIX version of the program is used for detailed lighting calculation 

because the simulation parameters can be adjusted manually and the scripting can be 

used to speed up the calculation process. This is not possible in Desktop Radiance. This 

study uses Cygwin, a UNIX emulator for Windows environments, to run RADIANCE. 

The compiled zip file of RADIANCE version 3.6 for use in Cygwin can be downloaded 

at http://www.dream.unipa.it/dream/pub/dot/anselmo/radiance/cygwin/.   
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3.3.3. RADIANCE Input Parameters 

 The geometry of each prototype is generated using AutoCAD command 3D face 

within Desktop Radiance. The materials and glazing are then assigned to each surface 

and the light sensors are placed within the model to do the initial runs. If Desktop 

Radiance runs without any errors, it will create an octree file which is located within the 

project folder for the individual case. This octree file can then be used to run the UNIX 

version to speed up the process. 

Some of the important input parameters for RADIANCE are provided in Tables 

3.4 and 3.5. For the turbidity factor input, the value is obtained from www.helioclim.net. 

For the rtrace input parameters, the values used are a compromise between the 

calculation time and accuracy of lighting analyses. The test dates and times are June 21, 

March 21, September 21, and December 21, at 9:00am, 12:00pm, and 3:00pm solar time. 

A conversion has to be performed since RADIANCE uses local time. The sky input file, 

which contains the information on date and time, can be specified as solar time if it is 

manually input. This method is used with the UNIX version of RADIANCE.  In Desktop 

Radiance, the time cannot be entered as solar time. Therefore, the local time has to be 

calculated. Since the method employed in this study is to get the octree file from 

Desktop Radiance and run the calculation in UNIX, the time conversion has to be made 

in order have a correct input for Desktop Radiance. The formula for converting between 

local time and solar time is Tlocal = Tsolar + ((Longitude - Longituderef) * 4). The local 

time used in this thesis is calculated using a solar position calculator (available from 

http://www.squ1.com). Local time data is presented in Table 3.6. 
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Table 3.4 
Desktop Radiance input: location 
Parameter Input 
Location Bangkok, Thailand 
Latitude 13.7 
Longitude 100.5 
Turbidity 4.5 
Standard Meridian 105 

 
 

 
Table 3.5 
RADIANCE input: rtrace parameters 
Parameter Description Value
ab ambient bounce 5
aa ambient accuracy 0.2
ad ambient division 1024
as ambient super-samples 64
ar ambient resolution 128

 

 
 
 
Table 3.6 
RADIANCE input: local time 
Date/ Solar Time 9:00am 12:00pm 3:00pm

21-Jun 9:20am 12:20pm 3:20pm
21-Mar 9:26am 12:26pm 3:26pm
21-Dec 9:16am 12:16pm 3:16pm

 

 

Glazing Input for EnergyPlus and RADIANCE Using LBNL’s WINDOW5 and Optics5 

Programs 

WINDOW5 and Optics5 were used to input the glazing parameters into 

EnergyPlus and RADIANCE. WINDOW5 and Optics5 are distributed by LBNL and are 

based on the glazing database of the National Fenestration Rating Council (NFRC). 
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WINDOW5 calculates window thermal performance indices. The given variables can be 

used as an input to EnergyPlus. Optics5 calculates the optical data that the glazing layer 

generates and can be exported to the Desktop Radiance glazing library.  

The glazing selected for the test cases are based on the low-E glazing from Thai-

Asahi Glass Company, a glazing manufacturer in Thailand. The data provided by the 

manufacturer’s website [24,25] does not cover all the parameters needed for WINDOW5 

and Optics5. As a result, glazing layers were selected from the program database in 

order to obtain the closest match to the company’s glazing. 

The optical and thermal data in Tables 3.7 and 3.8 were calculated from the two 

programs and used as inputs into EnergyPlus and RADIANCE. The glazing is a double 

pane with 12 mm air gap in the center, low-E glazing on the outer pane, and a visible 

transmittance of 76%. More detailed information on the thermal and optical properties of 

the glazing system is provided in Appendix E. This diffuse glazing had to be manually 

generated since is not included in the glazing database of WINDOW5 and Optics5. 

Currently, there is no method for calculating the spectral characteristics of diffuse 

glazing. 
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Table 3.7 
Summary of thermal performance of glazing from WINDOW5 
Parameters Value 
Tilt 90 
Glazings 2 
KEFF 0.0328 
Uvalue 1.75 
SHGCc 0.57 
SCc 0.65 
Vtc 0.76 
RHG 426.04 

 
 
 
 
Table 3.8 
Optical properties for glazing system from Optics5 
Layer #1 #2 System 

Filename E178-4.CIG 
CLEAR_6.D
AT Ngao_try1 

Solar, T 0.607 0.771 0.489
Solar, Rf 0.194 0.070 0.226
Solar, Rb 0.253 0.070 0.208
Photopic, T 0.860 0.884 0.763
Photopic, 
Rf 0.054 0.080 0.113
Photopic, 
Rb 0.048 0.080 0.118
EmitF 0.840 0.840 0.840
EmitB 0.083 0.840 0.840

 

 

3.3.4. Instrumentation: Physical Scale Model 

For lighting analysis, a scale model can be used to test the lighting performance 

of an actual building due to the physical properties of light, which penetrate and reflect 

in a scale model as they would in a real building [2]. A model can be used to assess both 

the qualitative and quantitative performance of a daylighting system. A scale model test 

can be performed with an overcast or clear sky and can be done with actual daylight or 
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in a daylighting laboratory. For clear sky conditions, the model has to be tilted to match 

the reference days of the tested latitude. By using a sundial, the model can be tilted to 

match the date and time for the tested location. This study examined the lighting 

performance of toplighting systems at latitude 13.7°N. Therefore, the sundial used in this 

thesis was set for latitude 13.7°N. This study uses a physical scale model and compares 

these results with the results from RADIANCE using actual sky. 

3.3.5. Construction of a Physical Scale Model and Measurement Instruments 

 A physical scale model was constructed at a scale of 1:40 for lighting tests. A 

replaceable roof was used to test various toplighting options. Pictures of the scale model 

are provided in Figures 3.17 and 3.18. It was constructed of opaque board on the outside 

and crescent board on the inside. Details of the material reflectance are presented in 

Appendix D. 

Measurement Instruments 

 Two illuminance meters were used for the light measurements of the scale 

model. A cosine corrected Konica Minolta Illuminance Meter model T-10M (Fig. 3.19) 

was used for the measurements inside the model. This meter can measure the 

illuminance level at ranges from 0.01-299,900 lux (0.001-29,990 footcandles). It has a 

mini receptor head which makes it very convenient to use with the reference points in 

the model. When taking measurements inside the scale model, the sensor is locked into 

the constructed base, which is 1.50m high in true scale (Fig. 3.20).  The horizontal 

illuminance measurements are taken along the center line of the model. 
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 Another illuminance meter was used for measuring the exterior illuminance 

value of the scale model. This meter was a Konica Minolta Illuminance Meter model T-

10 with a standard sensor head (Fig. 3.21). It has the same specifications as the model T-

10M. 

 A luminance meter, a Minolta LS-100, was used along with Kodak Gray Card to 

take the luminance measurement of the crescent board paper when calculating the 

reflectance value. The picture of the luminance meter is presented in Fig. 3.21 which is 

adapted from the manufacturer’s website at konicaminolta.com.  

 

 

   

Fig. 3.17   Exterior view of the scale model 
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Fig. 3.18   Exterior view of the scale model with the replaceable roof 
 
 
 

 

Fig. 3.19  An illuminance meter Konica Minolta T-10M 
 

 

   

Fig. 3.20  The base of the light sensor and connection 
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Fig. 3.21  An illuminance meter Konica Minolta T-10 and a luminance meter Minolta 

LS-100 
 

 

Reflectance Values of Materials Used in RADIANCE and the Physical Scale Model 

Each toplighting system was tested for visual performance by comparing 

RADIANCE with the scale model. The material reflectance is based on LBNL’s study of 

daylighting [26].  

The reflectance value in RADIANCE was generated to match those of the 

physical scale model (see Table 3.9). A table of reflectance values of crescent board, the 

material used in constructing the physical scale model, is provided by LBNL for some 

colors [2]. For colors with no reflectance values, the luminance meter and the Kodak 

gray and white cards were used for testing the reflectance value of each material. 

The scale model materials and reflectance values are presented in Table 3.10. 

Details on the reflectance measurements of the crescent board are provided in Appendix 

F. 
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Table 3.9 
Reflectance values used in this thesis and reference 
Building 
Components 

LBNL 
paper RADIANCE Scale Model 

floor 21% 20.10% 20.10% 
walls 44% 44% 44% 
ceiling  76% 75% 75% 
  
 
 
 
Table 3.10 
Scale model materials and reflectance values 

Crescent Board 
color Building elements 

Reflectance 
Value 

reflectances 
provided by 
LBNL/measured 

Light Gray 916 walls 0.44 measured 
French Gray 
962A 

ceiling and roof 
components 0.75 LBNL 

Ivy Green 919A floor 0.201 LBNL 
 

 
Sensor Locations for RADIANCE and Scale Model Tests 
 
 Sensor locations for the different tests are given in Figures 3.22-3.24. Seven 

points between RADIANCE and the scale model were compared. For the illuminance 

level analysis in RADIANCE, 13 points of the middle grid sensor are used. For the 

RADIANCE illuminance uniformity analysis, rectangular reference grids (1m x 1m) are 

used. 
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Fig. 3.22 Sensor locations for comparison of a physical scale model and RADIANCE 

 
 
 
 

 
Fig. 3.23 Sensor locations for RADIANCE: illuminance level and daylight factor 

analysis 

 



 47

 

 
 

Fig. 3.24 Sensor locations for RADIANCE: uniformity analysis 
 
 

3.3.6. Lighting Analysis Variables 

The variables which this thesis uses to assess the lighting performance of each 

toplighting prototype are as follows: 

1. Illuminance value (Lux) 

Illuminance value is the visible energy (light) incident on a surface, measured in 

lux. IESNA has made recommendations for the illuminance level for various tasks and 

building types [18]. However, since the prototype building is not assigned any building 

type, the illuminance values are mostly analyzed for comparison between the 

performances of each of the toplighting prototype.  
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2. Daylight factor level (%) 

Daylight factor is the ratio of interior illuminance level to exterior illuminance 

level. This parameter is used in the overcast sky condition.  

3. Light distribution and uniformity 

The light distribution and uniformity can be described as the relative illuminance 

at different points in space. If the light level differs too much in a space, it may cause 

eye fatigue.  

For the uniformity of light distribution, the CIBSE code for interior lighting [27] 

is used as a standard to test the performance of each design. Other studies of toplighting 

have also used CIBSE parameters to test roof light uniformity [16].  

In CIBSE code, the uniformity of illuminance is measured using the ratio of 

minimum illuminance to average illuminance, which should be more than 0.8. 

Another parameter is the diversity of illuminance or the ratio of the maximum to 

minimum illuminance level of the area 0.5m off the wall perimeter. This ratio should not 

exceed 5 to 1. The diversity of illuminance is considered a more relaxed parameter.  

This study will use the diversity of illuminance parameters as the primary 

measurements of light uniformity, since the model does not take in account people or 

equipment. These standards are based primarily on horizontal illuminance levels. 

4. Glare  

Glare is produced by excessive brightness relative to the adaptation of the eye 

[18] and can be caused by occupants looking directly at a light source or when the light 

source is simply in their field of view (i.e., direct glare). Glare can also be caused by 

 



 49

surfaces that reflect bright areas into the field of view. This is known as reflected glare 

or veiling reflection. Control of glare can be achieved in various ways, such as with the 

use of shading devices or in the design of daylighting systems to hide the source of light 

from the occupant’s field of view.  

 The luminance ratio is calculated to assess the presence of glare. This is the ratio 

between task and its surroundings, and recommendations for brightness ratios have been 

given by Stein and Reynolds [28]. As no tasks are defined in this study, a ratio of 20 to 1 

for fenestration and adjacent surfaces and of 40 to 1 for anywhere within the field of 

view will be used. 
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CHAPTER IV 

THERMAL PERFORMANCE EVALUATION 

  

After the development of the prototype cases and the heat gains tests for each 

system to ensure that all the cases are thermally comparable, each toplighting system is 

tested for its thermal performance using EnergyPlus. The variables tested for are total 

cooling load, heat gain, heat loss, and interior temperature.   

4.1. Single Toplighting Prototypes Analysis 

The prototypes are a building with a single unit skylight, lightscoop, or roof 

monitor. For a picture of each case as generated from the input files of EnergyPlus see 

Fig. 3.4 of Chapter III. 

4.1.1. Total Cooling Load Comparison 

 From the initial testing, the single unit prototypes proved to be comparable 

thermally. They yielded a similar total cooling load all year and had a difference of less 

than 2%. The cooling load comparison chart for all the cases is divided into 2 parts. 

The first chart uses a cooling availability schedule of 8:00am-5:00pm on weekdays and 

off during weekends, which is typical for office or industrial buildings. The second 

chart gives the total cooling load of the prototypes with a cooling availability schedule 

for building like a museum or an art gallery, where the air conditioning system has to 

be turned on at all time to preserve valuable artworks. 

Figs. 4.1 and 4.2 present the comparison charts. An average cooling load per 

month for the first cooling availability schedule is about 5,700 Watt (5.7 kW). For the 
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second scenario, the average cooling load per month is about 8,000 watt (8kW). 

Similar cooling loads can be achieved through the prototypes, because the heat stored 

in the building has similar characteristics.  

In these results, the difference between the cooling loads of the two schedules is 

about 140%. The second scenario has a higher cooling load but a similar trend.  

 

Cooling Load Comparison: Single Unit Toplighting
cooling available weekdays 8:00am-5:00pm
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Fig. 4.1 Single unit toplighting: cooling load comparison, cooling available weekdays 
from 8:00am-5:00pm 
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Cooling Load Comparison: Single Unit Toplighting
cooling available at all time
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Fig. 4.2 Single unit toplighting: cooling load comparison, cooling available at all time 
 

 
 
Hourly cooling load results when cooling is always available are presented as a 

reference to the characteristics of heat gain in the prototype building, which, from the 

results, each case represents similar trend. The charts for the first scenario give the 

character of the cooling load, which reflects the heat gain behavior of the building.  

Comparison charts are presented in Figs. 4.3 and 4.4 for two extreme days of 

the year: average hottest (April 30) and average coldest (January 25). It should to be 

noted that these results do not reflect internal gains from people and equipment. 

Therefore, these results reflect the loads from the surface gains only. The results with 

internal gains, where cooling load reflects the dissipation of heat stored in the building 

from surface gains, people, and equipment, are given in Figs. 4.5 and 4.6.  
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Hourly Cooling Load Comparison: Apr 30 (hottest day)
without internal gains

0

2000

4000

6000

8000

10000

12000

1 3 5 7 9 11 13 15 17 19 21 23

Hour of Day

C
oo

lin
g 

Lo
ad

 (W
at

t)

Skylight Lightscoop Roof Monitor
 

Fig. 4.3 Single unit toplighting: hourly cooling load comparison, Apr 30, without 
internal gains, when cooling is always available 

 

 

Hourly Cooling Load Comparison: Jan 25 (coldest day)
without internal gains
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Fig. 4.4 Single unit toplighting: hourly cooling load comparison, Jan 25, without 

internal gains, when cooling is always available 
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Hourly Cooling Load Comparison: Apr 30 (hottest day)
with internal gains
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Fig. 4.5 Single unit toplighting: hourly cooling load comparison, Apr 30, with internal 
gains, when cooling is always available 

 

 

 

Hourly Cooling Load Comparison: Jan 25 (coldest day)
with internal gains
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Fig. 4.6 Single unit toplighting: hourly cooling load comparison, Jan 25, with internal 
gains, when cooling is always available 
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 From the charts, similar characters for both the hottest and coldest day can be 

seen in hourly cooling load without internal gains. In both, the cooling load decreases 

during morning time, increases in the afternoon, and begins to decrease again at night 

starting at about 7:00pm. This indicates that the thermal mass of the building stores 

heat in morning and releases heat in the afternoon. By 7:00pm the heat begins to be 

released from the building, and only by 9:00am the next morning is it fully released.  

 In the winter, internal gains result in an increase of cooling load at about two 

times the cooling load without internal gains. In the summer, the internal loads do not 

seriously affect the cooling load. This indicates that surface gains occur in the summer.  

4.1.2. Sensible and Total Cooling Load Comparison 

Monthly sensible cooling load is plotted compared to the total cooling load of 

each case in order to analyze the amount of energy required for moisture removal. Figs. 

4.7-4.9 present the results from each of the toplighting designs for a cooling 

availability of 8:00am-5:00pm (typical thermal input files).  

From the results, the cooling energy necessary for moisture removal represents 

about one-third of the total cooling energy needed to cool the building to the 

temperature set point of 25°C (77°F). The difference between sensible and total cooling 

load increases in March through June, which are the summer months in Thailand.  

Maximum discrepancy occurs in May and June, and the minimum discrepancy during 

winter in December, which corresponds to the time of minimum relative humidity. 
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These results emphasize the importance of latent cooling energy in a hot and 

humid climate. However, as the units of aperture increase in each of the toplighting 

designs, the difference in cooling load might become greater. 

  

Single Unit Skylight: Sensible and Total Cooling Load
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Fig. 4.7 Single unit skylight: sensible versus total cooling load comparison 
 

 
 



 57

Single Unit Lightscoop: Sensible and Total Cooling Load
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Fig. 4.8 Single unit lightscoop: sensible versus total cooling load comparison 
 

 

 

Single Unit Roof Monitor: Sensible and Total Cooling Load
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Fig. 4.9 Single unit roof monitor: sensible versus total cooling load comparison 
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4.1.3. Window Heat Gain and Loss Comparison 

 Monthly average window heat gain and loss charts are presented in Figs. 4.10 

and 4.11. It can be seen that all the prototypes have a similar behavior in window heat 

gain. The skylight, even though it has less heat gain than other systems, also has less 

heat loss. Therefore, the overall average cooling loads of all the systems are similar. 

 Hourly heat gain and loss charts are plotted in order to compare the thermal 

character of each of the single unit prototypes. The heat loss amount is insignificant as 

compared with the amount of heat gain entering the space. Hourly heat gain and loss 

data are plotted for two extreme days: the average hottest (April 30) and the average 

coldest (January 25). This is done to compare the heat gain characteristics of the 

apertures. The hourly heat gain and loss comparison charts are given in Figs. 4.12-4.15.  

 As seen in Figs. 4.12-4.15, the heat gain and loss of the three prototypes are 

similar, with more heat gain during summer and more heat loss in winter. In summer, 

the heat gain seen in the skylight could result from the position of the sun, as the 

skylight has no shading device installed. The sun can then directly enter the space and 

thereby introduce more heat gain during daytime. The lightscoop and roof monitor 

introduce more heat gain than the skylight in winter, but they also have more heat loss. 

In winter, when the sun hits the building at an oblique angle, the skylight, which has 

the least glazing area, provides less heat gain and loss than the other systems.  

All the systems yield a similar amount of cooling load, since the amount of heat 

stored in the building for each is similar. 
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Single Unit Toplighting: Average Zone Window 
Heat Gain (W)

0.00

500.00

1000.00

1500.00

1 2 3 4 5 6 7 8 9 10 11 12

Month

H
ea

t G
ai

n 
(W

at
t)

Skylight Lightscoop Roof Monitor  
Fig. 4.10 Single unit toplighting: average monthly zone window heat gain 
 

 

 

Single Unit Toplighting: Average Zone Window 
Heat Loss (W)
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Fig. 4.11 Single unit toplighting: average monthly zone window heat loss 
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Single Unit: Hourly Window Heat Gain Comparison, Apr 30
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Fig. 4.12 Single unit toplighting: hourly window heat gain, Apr 30 
 

 

Single Unit: Hourly Window Heat Loss Comparison, Apr 30
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Fig. 4.13 Single unit toplighting: hourly window heat loss, Apr 30 
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Single Unit: Hourly Window Heat Gain Comparison, Jan 25
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Fig. 4.14 Single unit toplighting: hourly window heat gain, Jan 25 
 

 

 

Single Unit: Hourly Window Heat Loss Comparison, Jan 25
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Fig. 4.15 Single unit toplighting: hourly window heat loss, Jan 25 
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4.1.4. Exterior and Interior Temperature Comparison 

The indoor and outdoor temperatures are plotted by month in order to analyze 

the differences between each system. The results are similar in all the cases. It should 

be noted, however, that, to get the interior temperature data, the input files do not 

include any systems. More details concerning the input files used to obtain the interior 

temperature are provided in Chapter III.  

A comparison chart for the outdoor and indoor temperatures from each 

toplighting system is given in Fig. 4.16. In general, the indoor temperature is higher 

than the outdoor temperature during the day, but the ranges between these two values 

are quite constant throughout the day. In addition, the indoor temperatures of each case 

are similar and fluctuate according to the outdoor temperatures.  
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Fig. 4.16 Single unit toplighting: monthly average temperature comparison 
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Hourly temperature comparison plots are made for two extreme days: average 

hottest (April 30) and average coldest (January 25). These are presented in Figs. 4.17 

and 4.18.  

From these charts, it can be seen that the hourly interior temperatures, in all the 

cases, are similar and are constant throughout the day. On the hottest day, from 

9:00am-5:00pm, the hourly interior temperatures are lower than the exterior dry bulb 

temperature. However, at night, the interior temperature is higher than the exterior. 

During working hours, the interior temperature is almost constant at 36°C (97°F), 

while the outdoor temperature reaches 38°C (100.4°F) in the afternoon.  

To remedy this situation, the windows could be opened at night to help release 

the heat stored in the building during daytime. Even though the exterior temperature is 

not within a comfort zone, it is still lower than the interior would be if the windows 

were closed. For the coldest day, the interior temperature is also constant at about 

29°C-30°C (84.2-86°F). This is close to a comfort zone, but still higher than the 

exterior temperature which ranges from 15°C (59°F) to 27°C (80°F). In the winter 

time, which lasts about 2 months, the windows could be opened all day to allow natural 

ventilation to cool the building.  

However, a test for natural ventilation was not conducted. The parameters for 

reliable and accurate testing of the effects of natural ventilation are complex and are 

beyond the scope of this study.  (Complex parameters have to be input to allow for 

reliable and accurate results in testing the effect of natural ventilation by the use of 

COMIS in EnergyPlus).  
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Single Unit: Hourly Temperature Comparison, 
Apr 30 (hottest day)
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Fig. 4.17 Single unit toplighting: hourly average temperature comparison on April 30 

(hottest day) 
 

 

Single Unit: Hourly Temperature Comparison, 
Jan 25 (coldest day)
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Fig. 4.18 Single unit toplighting: hourly average temperature comparison on Jan 25 

(coldest day) 
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4.2. Toplighting Prototypes with a 1.5 to 1 Spacing-to-Height Ratio Analysis 

The thermal performance of each 1.5 to 1 spacing-to-height ratio case is tested 

in EnergyPlus with a methodology as describe in Chapter III. The picture of each case 

is shown in Chapter III (Fig. 3.10). The 1.5 to 1 spacing-to-height prototype is 

comprised of 4 units per each toplighting system.  

4.2.1. Total Cooling Load Comparison 

Total cooling load of each case is close to each other less than 1 percent for 

typical cooling availability schedule (from 8:00am-5:00pm); therefore, these three 

cases are comparable in terms of their thermal performance. For the cooling 

availability schedule of 24 hours, the difference between total cooling loads of each 

prototype is 3 %. Each prototype yields the average yearly total cooling load at about 

7-8 kW for the cooling availability schedule from 8:00am-5:00pm, and 15-17 kW for 

cases with cooling available at all time. Monthly total cooling load data of each 

prototype is shown in Figs. 4.19-4.20 for cooling availability schedule of 8:00am-

5:00pm and 24 hours, respectively. 

As can be seen from the charts, the discrepancy between the cooling loads of 

each prototype increases when the availability schedule is set to 24 hours. 
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Cooling Load Comparison: 1.5 to 1 Series of Toplighting
cooling available weekdays 8:00am-5:00pm
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Fig. 4.19  1.5 to 1 toplighting unit: cooling load comparison, cooling available 

weekdays from 8:00am-5:00pm 
 

 

Cooling Load Comparison: 1.5 to 1 Series of Toplighting
cooling available at all time
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Fig. 4.20  1.5 to 1 toplighting unit: cooling load comparison, cooling available at all 

time 
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Hourly cooling loads results when cooling is always available are presented as 

a reference to the characteristics of heat gain in the prototype building, which, from the 

results, each case represents similar trend. Figs. 4.21-4.22 represent the hourly cooling 

load of the building without internal gains and Figs. 4.23-4.24 are the hourly cooling 

load of the building with internal gains. 

For the cooling load without internal gains, the cooling load increases in the 

morning and reaches the maximum late afternoon about 6pm and then begins to 

decrease. This applies for both the hottest and coldest day.  

For cooling load with internal gains, the average total cooling load in summer is 

about similar to the cases without internal gains. In summer, the cooling load begins to 

increase more during late afternoon hours and continues to be almost stable, then, starts 

to decrease in late evening at about 7pm. The cooling load for summer reaches the 

minimum during morning hours. For winter hours, the average total cooling loads of 

the cases with internal gains are higher than the cases without internal gains.  
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Hourly Cooling Load Comparison: Apr 30 (hottest day)
without internal gains
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Fig. 4.21  1.5 to 1 toplighting unit: hourly cooling load comparison, Apr 30, without 
internal gains, when cooling is always available 

 

 

 

Hourly Cooling Load Comparison: Jan 25 (coldest day)
without internal gains
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Fig. 4.22  1.5 to 1 toplighting unit: hourly cooling load comparison, Jan 25, without 
internal gains, when cooling is always available 
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Hourly Cooling Load Comparison: Apr 30 (hottest day)
with internal gains
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Fig. 4.23  1.5 to 1 toplighting unit: hourly cooling load comparison, Apr 30, with 
internal gains, when cooling is always available 

 

 

 

Hourly Cooling Load Comparison: Jan 25 (coldest day)
with internal gains
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Fig. 4.24  1.5 to 1 toplighting unit: hourly cooling load comparison, Jan 25, with 
internal gains, when cooling is always available 
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4.2.2. Sensible and Total Cooling Load Comparison 

 Monthly sensible cooling load is plotted compared to total cooling load of each 

case in order to analyze the amount of energy required for moisture removal. Figs. 

4.25-4.27 present the results from the 1.5 to 1 spacing-to-height toplighting cases with 

cooling availability from 8:00am-5:00pm (typical thermal input files).  

From the results, it can be determined that the sensible cooling load still 

represents about one-third of the total cooling load and is following the same trend as 

single unit toplighting results. The highest discrepancy still in summer of May and 

June, and the lowest occurs in December.  

 

 

1.5 to 1 Spacing-to-Height Skylight: 
Sensible and Total Cooling Load
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Fig. 4.25 Skylight with a 1.5 to 1 spacing-to-height ratio: sensible and total cooling 
load comparison, cooling available from 8:00am-5:00pm 
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1.5 to 1 Spacing-to-Height Lightscoop: 
Sensible and Total Cooling Load
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Fig. 4.26 Lightscoop with a 1.5 to 1 spacing-to-height ratio: sensible and total cooling 
load comparison, cooling available from 8:00am-5:00pm 

 

 

1.5 to 1 Spacing-to-Height Roof Monitor: 
Sensible and Total Cooling Load
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Fig. 4.27 Roof monitor with a 1.5 to 1 spacing-to-height ratio: sensible and total 
cooling load comparison, cooling available from 8:00am-5:00pm 
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4.2.3. Window Heat Gain and Loss Comparison 

 Monthly average window heat gain and loss charts are presented in Figs. 4.28-

4.29. The skylight has less heat gain than other prototypes but also less heat loss, 

resulted in similar amount of cooling load as discussed previously. 

Hourly heat gain and loss charts are plotted to compare the thermal character 

between each single unit prototypes as a reference. The charts for hourly heat gain and 

loss for two extreme days: April 30 which is the hottest day and January 25 which is 

the coldest day are plotted and shown in Figs. 4.30-4.33.  

 From the data, it can be seen that the heat gains and losses for each case is 

similar and following the same trend, with the skylight prototype having higher heat 

gain in the summer and lower heat gain in winter, which is from the effect of the 

position of the sun entering the space. The lightscoop and roof monitor prototypes 

yield very close values and trends for both heat gain and loss, possibly because both 

cases have shading devices installed.  
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1.5 to 1 Toplighting: Average Zone Window Heat 
Gain (W)
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Fig. 4.28  1.5 to 1 toplighting unit: average zone window heat gain 
 

 

 

1.5 to 1 Toplighting: Average Zone Window Heat 
Loss (W)
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Fig. 4.29  1.5 to 1 toplighting unit: average zone window heat loss 
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Hourly Window Heat Gain Comparison, Apr 30
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Fig. 4.30  1.5 to 1 toplighting unit: hourly window heat gain, Apr 30 
 

 

Hourly Window Heat Loss Comparison, Apr 30
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Fig. 4.31  1.5 to 1 toplighting unit: hourly window heat loss, Apr 30 
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Hourly Window Heat Gain Comparison, Jan 25
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Fig. 4.32  1.5 to 1 toplighting unit: hourly window heat gain, Jan 25 
 

 

Hourly Window Heat Loss Comparison, Jan 25
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Fig. 4.33  1.5 to 1 toplighting unit: hourly window heat loss, Jan 25 
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4.2.4. Exterior and Interior Temperature Comparison 

 The average interior temperature of each case is very similar at about 4-5°C (7-

9F) higher than the exterior and fluctuates according to the exterior temperature. The 

indoor and outdoor temperatures are plotted monthly to analyze the difference between 

each system with a 1.5 to 1 spacing-to-height ratio. A comparison chart for outdoor and 

indoor temperature from each 1.5 to 1 spacing-to-height ratio toplighting system is 

illustrated in Fig. 4.34.  

 From the chart, it can be seen that the building with three different toplighting 

cases have the similar trend and values for interior temperature throughout the year. 

The interior temperature of each case fluctuates following the exterior temperature. 

 

 

Temperature Comparison: 1.5 to 1 Series of Toplighting
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Fig. 4.34  1.5 to 1 toplighting unit: monthly average temperature comparison 
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Hourly temperature comparison between each case on hottest day (April 30) 

and coldest day (January 25) are presented in Figs. 4.35-4.36.  

All cases have similar values of interior temperature on each day which is 

generally higher than exterior dry bulb temperature. In summer, the interior 

temperature reaches 36°C (96F) when the exterior is at 30°C (86F). Still, from the 

thermal mass of the building, the interior temperature does not fluctuate following the 

exterior but remains quite constant throughout the day at around 36°C (96F). In winter, 

where the exterior dry bulb temperatures are generally lower than 25°C (77F), the 

interior temperature are constant around 29-30°C (84.2-86F); 4-5 degrees higher than 

the exterior. Therefore, in winter, opening of windows to allow for natural ventilation 

might be a useful climate responsive method for this climate to reduce the interior 

temperature because the exterior temperature is within the comfort zone, unlike in 

summer. Still, the exterior temperature that is within the comfort zone (24-28°C) 

occurs only about 2 months per year or less.  
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1.5 to 1 Prototype: Hourly Temperature Comparison, 
Apr 30 (hottest day)
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Fig. 4.35  1.5 to 1 toplighting unit: hourly average temperature comparison on April 30 

(hottest day) 
 

 

 

1.5 to 1 Prototype: Hourly Temperature Comparison, 
Jan 25 (coldest day)

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0

1 3 5 7 9 11 13 15 17 19 21 23

Hour of Day

Te
m

pe
ra

tu
re

 (C
)

Environment:Outdoor Dry Bulb [C](Hourly)
Skylight:Mean Air Temperature[C](Hourly) 
Lightscoop:Mean Air Temperature[C](Hourly) 
Roof Monitor:Mean Air Temperature[C](Hourly) 

 
Fig. 4.36  1.5 to 1 toplighting unit: hourly average temperature comparison on Jan 25 

(coldest day) 
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4.3. Toplighting Prototypes with a 1 to 1 Spacing-to-Height Ratio Analysis 

4.3.1. Total Cooling Load Comparison 

The average monthly cooling load comparison charts are presented in Figs. 

4.37-4.38, for typical cooling schedule, and for cooling availability of 24 hours, 

respectively.   

The cooling load of each case is in a close range for typical cooling schedule 

from 8:00am-5:00pm but more discrepancy occurs when cooling is available 24 hours. 

It can be seen that, the average cooling load per year of each case is around 6.2 kW and 

still differs less than 5 % (for typical cooling schedule of 8:00am-5:00pm files), which 

is considered to be thermally comparable. For cooling availability schedule of 24 

hours, the cooling load between each cases differ at 7.6 %, which is 5 % higher than 

the 1.5 to 1 spacing to height units (which have 4 units of apertures). The average 

monthly total cooling load is at about 8.7 kW. For both cooling schedule, it can be seen 

that the most cooling load is generated in April, May, and June, which is summer time 

for this climate. 

The pictures of the units with a 1 to 1 spacing-to-height ratio are presented in 

Chapter III (Fig. 3.19), with each case having 6 units of the developed prototype.  
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Cooling Load Comparison: 1 to 1 Series of Toplighting
cooling available weekdays 8:00am-5:00pm
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Fig. 4.37  1 to 1 toplighting unit: cooling load comparison, cooling available weekdays 
from 8:00am-5:00pm 

 

 

Cooling Load Comparison: 1 to 1 Series of Toplighting
cooling available at all time
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Fig. 4.38  1 to 1 toplighting unit: cooling load comparison, cooling available at all time 
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Hourly cooling load results when cooling is always available are presented as a 

reference to the characteristics of heat gain in the prototype building, which, from the 

results, each case represents similar trend. Figs. 4.39-4.40 are the hourly cooling load 

without internal gains and Figs. 4.41-4.42 are the hourly cooling load with internal 

gains. 

Hourly cooling load of each case is similar for both hottest and coldest days for 

the cases with and without internal gains. The results are similar to the results from 

single unit and 1.5 to 1 series of prototypes, with more cooling load occur in the 

afternoon and less in the morning. The overall cooling load increases from a 1.5 to1 

series a little, but all trends are similar.   

 

 

Hourly Cooling Load Comparison: Apr 30 (hottest day)
without internal gains
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Fig. 4.39  1 to 1 toplighting unit: hourly cooling load comparison, Apr 30, without 
internal gains, when cooling load is always available 
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Hourly Cooling Load Comparison: Jan 25 (coldest day)
without internal gains
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Fig. 4.40  1 to 1 toplighting unit: hourly cooling load comparison, Jan 25, without 
internal gains, when cooling load is always available 

 

 

 

Hourly Cooling Load Comparison: Apr 30 (hottest day)
with internal gains
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Fig. 4.41 1 to 1 toplighting unit: hourly cooling load comparison, Apr 30, with internal 
gains, when cooling load is always available 
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Hourly Cooling Load Comparison: Jan 25 (coldest day)
with internal gains
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Fig. 4.42  1 to 1 toplighting unit: hourly cooling load comparison, Jan 25, with internal 
gains, when cooling load is always available 

 

 

4.3.2. Sensible and Total Cooling Load Comparison 

 Monthly sensible cooling load is plotted compared to total cooling load of each 

case to analyze the amount of energy required for moisture removal. The results 

presented in Figs. 4.43-4.45 are from the 1 to 1 spacing-to-height toplighting cases 

with cooling availability from 8:00am-5:00pm (which are typical thermal input files).  

 From the charts, it can be seen that latent cooling energy still represents about 

one-third of the total cooling energy, with the most discrepancy in May and June, and 

the least in December. This emphasizes the need for moisture removal of this hot and 

humid climate. The data for sensible and total cooling load is following the same trend 

for all the cases. 
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1 to 1 Spacing-to-Height Skylight: 
Sensible and Total Cooling Load
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Fig. 4.43 Skylight with a 1 to 1 spacing-to-height ratio: sensible and total cooling load 
comparison, cooling available from 8:00am-5:00pm 

 

 

 

1 to 1 Spacing-to-Height Lightscoop: 
Sensible and Total Cooling Load

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12

Month

C
oo

lin
g 

Lo
ad

 (W
at

t)

Sensible Cooling Load (Watt) Total Cooling Load (Watt)
 

Fig. 4.44 Lightscoop with a 1 to 1 spacing-to-height ratio: sensible and total cooling 
load comparison, cooling available from 8:00am-5:00pm 
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1 to 1 Spacing-to-Height Roof Monitor: 
Sensible and Total Cooling Load
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Fig. 4.45 Roof Monitor with a 1 to 1 spacing-to-height ratio: sensible and total cooling 
load comparison, cooling available from 8:00am-5:00pm 

 

 

4.3.3. Window Heat Gain and Loss Comparison 

 Monthly average window heat gain and loss charts are presented in Figs. 4.46-

4.47. It can be seen from the charts that the trends are very similar to those of a 1.5 to 1 

toplighting prototypes, with the skylight having lower heat gain and lower heat loss. In 

summary, it could be said that, this trend in heat gain and loss results in similar cooling 

loads for all the cases. 

 Hourly heat gain and loss charts are plotted to compare the thermal character 

between each single unit prototypes as a reference. The charts for hourly heat gain and 

loss for two extreme days: April 30 which is the hottest day and Jan 25 which is the 

coldest day are plotted and shown in Figs. 4.48-4.51.  
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 From the data, it can be seen that all the heat gains and losses character for each 

case is still similar and having the same trend, with the skylight case having higher heat 

gain in the summer. Heat gain from skylight reaches at about 5,500 watt on April 30 

while lightscoop and roof monitor cases have about 4,000 watt of heat gain amount. 

However, the heat loss of lightscoop and roof monitor cases for both summer and 

winter are more than skylight which resulted in similar amount of average cooling load 

as presented earlier in this section. The lightscoop and roof monitor cases yield similar 

amounts of heat gain and loss for both April 30 and January 25.  
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Fig. 4.46  1 to 1 toplighting unit: average zone window heat gain 
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1 to 1 Toplighting: Average Zone Window Heat 
Loss (W)
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Fig. 4.47  1 to 1 toplighting unit: average zone window heat loss 
 

 

Hourly Window Heat Gain Comparison, Apr 30
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Fig. 4.48  1 to 1 toplighting unit: hourly window heat gain, Apr 30 
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Hourly Window Heat Loss Comparison, Apr 30
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Fig. 4.49 1 to 1 toplighting unit: hourly window heat loss, Apr 30 
 

 

Hourly Window Heat Gain Comparison, Jan 25
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Fig. 4.50  1 to 1 toplighting unit: hourly window heat gain, Jan 25 
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Hourly Window Heat Loss Comparison, Jan 25
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Fig. 4.51  1 to 1 toplighting unit: hourly window heat loss, Jan 25 
 

 

4.3.4. Exterior and Interior Temperature Comparison 

The average interior temperature of each case is very similar at about 4-5°C (7-

9F) higher than the exterior and fluctuates according to the exterior temperature, 

similar to those from single and 1.5 to 1 spacing-to-height ratio toplighting units. The 

indoor and outdoor temperatures are plotted monthly to analyze the difference between 

each system with a 1 to 1 spacing-to-height ratio. Comparison chart for outdoor and 

indoor temperature from each 1 to 1 spacing-to-height ratio toplighting system is 

illustrated in Fig. 4.52. 

The overall trend of the interior temperature is constant throughout the year; 

fluctuates following the exterior temperature by having a higher temperature at about 

5°C. All the cases have a very close interior temperature throughout the year. The 
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indoor temperature of a 1 to 1 series ranges from about 31°C (87.8F) to 36°C (96.8F) 

in April, which is the hottest month.  

 

Temperature Comparison: 1 to 1 Series of Toplighting
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Fig. 4.52  1 to 1 toplighting unit: monthly average temperature comparison 
 

 
Hourly temperature comparison between each case on the hottest day (Apr 30) 

and coldest day (Jan 25) are presented in Figs. 4.53-4.54.  

All the cases have similar values of interior temperature on each day which is 

mostly higher than exterior dry bulb temperature except in the summer afternoon. The 

indoor temperature on the hottest day is mostly constant at around 36-38°C (97-100F) 

while for coldest day, the temperature is around 29-30°C (84.2-86F).  The indoor 

temperature decreases in the morning hours, increases during the afternoon and reaches 

the maximum during late afternoon hours for both the hottest and coldest days. The 

same technique, natural ventilation, which is recommended as in the previous section 
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for single toplighting unit and 1.5 to 1 spacing-to-height series could help lower indoor 

temperature.  

 

1 to 1 Series: Hourly Temperature Comparison, 
Apr 30 (hottest day)
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Fig. 4.53  1 to 1 toplighting unit: hourly average temperature comparison on April 30 

(hottest day) 
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1 to 1 Series: Hourly Temperature Comparison, 
Jan 25 (coldest day)
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Fig. 4.54  1 to 1 toplighting unit: hourly average temperature comparison on Jan 25 

(coldest day) 
 

 

4.4. Cooling Load Analysis between a Single and Series of Units 

 The analysis of total cooling load, when the glazing area increases from a single 

unit to series of units, is provided in order to study the impact of daylight on the 

thermal performance of the building. The cooling load comparison charts when the 

number of units increases from 1 to 4, and then again to 6, are given in Figs. 4.55 and 

4.56 for both cooling availability schedules.  

The increased amount of daylight (a result of the increased glazing area) 

entering the space does not affect the cooling load much. As the number of units 

increases from 1 to 4 in the first cooling scenario, the cooling load increases 4%, 5%, 

and 2% for the skylight, lightscoop, and roof monitor, respectively. With 6 units, the 

average cooling load increases 4%, 7%, and 3% for the skylight, lightscoop, and roof 



 93

monitor, respectively. When the 6-unit prototypes (with a 1 to 1 spacing-to-height 

ratio) are compared with the 4-unit prototypes (with a 1.5 to 1 spacing-to-height ratio) 

in the first cooling scenario, the glazing area increases 150% but the cooling load 

increases only 3%, 5%, and 1% for the skylight, lightscoop, and roof monitor, 

respectively. For the second cooling scenario, the increases are 3%, 8%, and 1% for the 

skylight, lightscoop, and roof monitor, respectively.  

This is significant proof that toplighting can be efficiently utilized in buildings 

in hot and humid climates, if proper design considerations are made. 
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Fig. 4.55 Average cooling load comparison between single, 4-unit, and 6-unit 
prototypes, when cooling is available from 8:00am-5:00pm 
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Average Cooling Load Comparison
cooling available at all time
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Fig. 4.56 Average cooling load comparison between single, 4-unit, and 6-unit 
prototypes, when cooling is available at all time 

 

 

4.5. Summary on Thermal Performance Evaluation   

 In the tests of the single units and the series of units, each toplighting prototype 

yields a similar amount of cooling load per month. This indicates that they are 

thermally comparable. Therefore, these prototypes can then be tested for lighting 

performance.  

 Increasing the number of units to 4 and again to 6 results in an increase in the 

cooling load around 11%. For the single toplighting unit (with a typical schedule), the 

average cooling load per month is about 5.7 kW in each case. For a 1.5 to 1 spacing-to-

height series, the average cooling load per month is about 6 kW. For a 1 to 1 series of 

toplighting units, the average cooling load per month is 6.2 kW. Both of these cooling 

loads are for a typical schedule. 
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 For the indoor average temperature, the results indicate that the indoor 

temperature of each case is very similar and fluctuates according to the outdoor 

temperature at a range of 5°C. Single unit prototypes and series of prototypes perform 

similarly in terms of indoor temperature when the windows are closed. Summer 

average indoor temperature is about 36°C (96.8°F), while winter average indoor 

temperature is about 30°C (86°F). It is recommended that natural ventilation be tested 

as a way of decreasing the indoor temperature when the outdoor temperature is within a 

comfort zone.  

 The overall heat gains and losses from the different toplighting prototypes 

resulted in similar trends. Higher values were seen as the number of units increased 

from 1 to 4 units (1.5 to 1 spacing-to-height) and from 1 to 6 units (1 to 1 spacing-to-

height). The skylight introduced more window heat gains in the summer than the other 

cases but had less heat loss in both winter and summer.  

 Alternate building materials to decrease in the indoor temperature and the 

reduce the cooling load were not conducted in this study because the objective was 

simply to have the cases be thermally comparable.  

If thermal performance is less of a priority in the design consideration and if a 

difference in thermal performance of 5-10% is acceptable, then, the decision whether to 

use a 4-unit series or a 6-unit can be based on the lighting performance of each system. 

The lighting performance of each system is discussed in the subsequent chapter.  
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CHAPTER V 

LIGHTING PERFORMANCE EVALUATION 

  

After the development of the prototypical cases and heat gain test of each 

system to ensure that all the systems are thermally comparable, each toplighting system 

is then tested for its thermal performance using EnergyPlus. Each system is tested for 

the variables described in Chapter III: illuminance level, illuminance distribution, and 

uniformity. 

5.1. Comparison between a Physical Scale Model Measurement and RADIANCE 

Simulation 

 Illuminance measurements are taken for the physical scale model in order to 

compare them with the RADIANCE results and develop a context for any 

discrepancies that may occur. The tests are done for overcast and clear sky conditions 

using real sky in College Station, TX. The measurement method was described 

previously in Chapter III and more details can be found in Appendix D. For the 

overcast sky, a daylight factor comparison is made, while for the clear sky, an 

illuminance comparison is made.  

Comparisons between the physical scale model measurements and RADIANCE 

are done for each single-unit prototype: skylight, lightscoop, and roof monitor without 

any glazing (using a special illum glazing in RADIANCE). 
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5.1.1. Overcast Sky Test Results  

The tests show that, in the overcast sky condition, the daylight factor results 

from the physical scale model and from RADIANCE are similar. The scale model 

measurements are slightly higher than the daylight factor generated from RADIANCE, 

with an overall discrepancy of about 10%. It appears then that RADIANCE, for the test 

location of latitude 13.7°N under overcast sky, might underestimate the daylight factor 

value and that the real overcast sky in Thailand might generate a daylight factor value 

10% greater. 

For the single unit prototypes, the scale model measurements yield a higher 

daylight factor value than the results from RADIANCE but within a closed range. The 

average discrepancy is 27%, 8%, and 7% for the skylight, lightscoop, and roof monitor, 

respectively. However, as can be seen from the chart, the values of the scale model and 

RADIANCE are very close and have the same pattern of distribution.  

For the 1.5 to 1 spacing-to-height prototypes, the scale model measurements are 

close to the values from RADIANCE but yield higher daylight factor values. The 

average discrepancy is 4.7%, 4.9%, and 14% for the skylight, lightscoop, and roof 

monitor, respectively. However, as can be seen from the chart, the values of the scale 

model and RADIANCE are very close and still have the same pattern of distribution.  

For the 1 to 1 spacing-to-height prototypes, the scale model measurements are 

again close to the values from RADIANCE but also yield increased daylight factor 

values. The average discrepancy is 12%, 10%, and 20% for the skylight, lightscoop, 

and roof monitor, respectively. However, the chart demonstrates again that the values 
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of the scale model and RADIANCE are very close and have the same pattern of 

distribution.  

Some possible causes of the discrepancy could be the following: 

- The overcast sky tested is real sky and not CIE overcast sky as in the sky model 

used in the RADIANCE calculations. 

- The real sky tested is in College Station, TX which might have different 

characteristics as compared with the overcast sky in Bangkok, Thailand. 

- The measurements were taken on the roof of the Langford Architecture 

Building where there are obstructions from surrounding buildings. This is 

different from the conditions modeled in RADIANCE where there are no 

building obstructions.  

5.1.2. Clear Sky Test Results 

The results show that, for the clear sky condition, the illuminance values from 

the physical scale model and from RADIANCE are similar, with the scale model 

measurements being slightly higher than the illuminance values generated from 

RADIANCE. The overall discrepancy is about 20%.  

It appears that RADIANCE, for the tested location of latitude 13.7°N in a clear 

sky condition, might underestimate the illuminance value by about 20%. This figure 

increases to as much as 30% during afternoons in the winter. Moreover, the actual clear 

sky in Thailand might produce more illuminance value than calculated in RADIANCE. 
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For the clear sky test, horizontal exterior illuminance (HEI) is measured as a 

reference to the interior horizontal illuminance value. The value as generated from the 

sky file in RADIANCE is calculated for comparison and is presented in Table 5.1. 

 
 
Table 5.1 Horizontal exterior illuminance (HEI) level generated from RADIANCE 
Date/Time 9:00am 12:00pm 3:00pm 
Jun 21 82622 103934 61986 
Mar21 79576 99505 56653 
Dec 21 63373 79556 40989 

 

 

 The charts and detailed analyses of the comparison for each prototype between 

the scale model measurements and RADIANCE are presented in Appendix F. 

Some possible causes of the discrepancy in clear sky conditions include the 

following: 

- The clear sky tested is real sky and not CIE clear sky as used in the sky model 

for RADIANCE calculations. 

- The real sky tested is in College Station, TX which might have different 

characteristics as compared with clear sky in Bangkok, Thailand. 

- The measurements were taken on the roof of the Langford Architecture 

Building where there are obstructions from surrounding buildings. This is 

different from the conditions modeled in RADIANCE where there are no 

building obstructions. 

- The test is done by tilting the model to match the date and time of Bangkok’s 

latitude. As a result, some discrepancies might occur from tilting the model. 
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The apertures in the model do not see the whole sky but only some parts of the 

ground and the surrounding buildings. In the results, the time with the greatest 

discrepancy is December 21, which is also the time of the greatest tilting of the 

model. 

5.2. Single Toplighting Prototypes Analysis 

5.2.1. Daylight Factor, Illuminance Level, and Daylight Distribution Analysis 

 The daylight factor comparison is used for overcast sky conditions and the 

illuminance level comparison for clear sky conditions. Both of these parameters are 

analyzed for light level and distribution. The methods for obtaining these values are 

presented in Chapter III (in the lighting performance methodology section). The tests 

for intermediate sky are used as a reference to identify the percentage that the light 

level decreases from clear sky conditions. Intermediate sky tests are done only at solar 

noon on all the solstices.  

 The daylight factor comparison chart for the single unit toplighting prototypes 

is presented in Figure 5.1. The illuminance level comparisons for clear sky conditions 

are presented in Figures 5.2-5.4. Intermediate sky results are presented in Figures 5.5-

5.7. The prototypes analyzed are single-unit diffuse skylight, lightscoop, and roof 

monitor. A normal skylight is not included since direct sun could penetrate into the 

space causing the peak illuminance levels to be much higher than in the other 

prototypes and hence incomparable (see Chapter III). 
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Fig. 5.1 Single unit toplighting: daylight factor comparison, overcast sky (Horizontal 
Exterior Illuminance from RADIANCE is 18478 lux) 
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Fig. 5.2  Single unit toplighting: illuminance level comparison, clear sky, June 21 
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Fig. 5.3  Single unit toplighting: illuminance level comparison, clear sky, March 21 
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Fig. 5.4  Single unit toplighting: illuminance level comparison, clear sky, December 21 
 



 105

 

 

                     
Fig. 5.5 Single unit toplighting: illuminance level comparison, intermediate sky,  

June 21 
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Fig. 5.6  Single unit toplighting: illuminance level comparison, intermediate sky, 

March 21 
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Fig. 5.7  Single unit toplighting: illuminance level comparison, intermediate sky, 

December 21 
 



 108

Overcast Sky: Daylight Factor Analysis 

 For the daylight factor, the lightscoop yields a higher daylight factor than the 

diffuse skylight or roof monitor. The lightscoop obtains a maximum daylight factor 

level of about 2.5%, while the diffuse skylight gives a maximum daylight factor of 

about 1.5%. The maximum daylight factor difference between these two systems is 

about 30%.  

Overcast Sky: Light Distribution Analysis  

 From the chart, it can be seen that, for a single unit, the distribution of light is 

not very good. There are peaks around the center of the room and minimum points at 

the perimeter, resulting in uneven light distribution and possible eye fatigue.  

However, no conclusions can be drawn from this chart alone, since better light 

distribution can be achieved through a series of units, which will be analyzed later in 

this chapter. 

Clear Sky: Illuminance Level Analysis 

 For clear sky conditions, the diffuse skylight yields a higher maximum 

illuminance value than the lightscoop or roof monitor in most of the tested solar 

conditions. However, at the summer solstice, the lightscoop yields a higher illuminance 

level.  

The diffuse skylight’s illuminance levels do not vary much seasonally but 

change throughout the day. For example, at solar noon on the summer solstice, the 

maximum illuminance level ranges from 800-1,700 lux.  
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The lightscoop prototype yields a lower maximum illuminance value than the 

diffuse skylight, except at the summer solstice, when its maximum reaches 2,000 lux. 

For the lightscoop, the illuminance level is higher in summer and lower in winter. At 

the equinox, the illuminance value is higher than in the winter but not by much. Even 

though the lightscoop yields generally a higher illuminance level than a roof monitor, 

in the winter, the illuminance level of the lightscoop is generally lower than that of the 

roof monitor.   

The single roof monitor, in general, yields lower illuminance values than the 

other systems. Even though it has more glazing area, the illuminance values do not 

vary much throughout the year compared to other systems. This could be because it has 

a glazing for both north and south orientations.  

Clear Sky: Light Distribution Analysis 

 For the light distribution in clear sky conditions, the roof monitor gives a more 

even light distribution than the other systems during the year. The lightscoop yields a 

more uniformly distributed light than the diffuse skylight. 

 In sum, a single diffuse skylight yields a greater illuminance level in clear sky 

conditions. A lightscoop yields a higher daylight factor level than other systems, when 

the thermal performance is equal.   

However, with the diffuse skylight prototype, the maximum light level occurs 

under the opening and is much higher here than at other points. The distribution, as 

analyzed from the single middle grid, is worse than a lightscoop system, which yields a 

lower maximum illuminance level, but whose curve is flatter, indicating better 
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distribution. Therefore, in terms of daylight factor and illuminance levels, the 

performance of the single lightscoop prototype is better than the other systems.  

Intermediate Sky: Illuminance Level Analysis 

 In general, the illuminance levels of all the prototypes are lower in intermediate 

sky conditions than in clear sky conditions. The levels are up to 50% less and do not 

vary much throughout the year. The lightscoop and roof monitor prototypes yield 

higher illuminance levels than the diffuse skylight prototype at summer solstice. At 

other times, the illuminance levels of each prototype are similar. Moreover, the 

difference between the illuminance level of each case is not as apparent as in clear sky 

conditions.  

Intermediate Sky: Light Distribution Analysis 

 Even though no conclusion can be made at this point for the intermediate 

conditions, since the tested sensor locations are located in a single row along the center 

of the room, it can be seen that the roof monitor has a flatter curve than the other 

prototypes in summer. At other times, the lightscoop and roof monitor have similar 

distributions. The single diffuse skylight prototype has a distinguished peak in the 

center of the room under the opening, just as in clear sky conditions.  

5.2.2. Illuminance Uniformity Analysis 

 The sensor locations are set in a rectangular grid of 1m x 1m (see Chapter III 

section 3.3.5) to allow RADIANCE to calculate the horizontal illuminance level in the 

building. The contour plots of horizontal illuminance levels in a reference grid of each 

prototype are analyzed to visualize the range and discrepancy of illuminance levels that 



 111

each system yields. The parameters for analyzing the illuminance uniformity are 

illuminance gradient (or diversity of illuminance in CIBSE code) and uniformity of 

illuminance. For the illuminance gradient (the ratio of maximum to minimum 

illuminance), a lower value indicates better uniformity, while for uniformity of 

illuminance (the ratio of minimum to average illuminance), a higher value indicates 

better uniformity. The illuminance gradient is the primary parameter in the analysis, 

since it is the more relaxed parameter. Therefore, it is suitable for a space without any 

furniture, as in the prototype building in this study. 

  The illuminance gradient values are presented in Table 5.2, and uniformity of 

illuminance values are presented in Table 5.3. 

 The horizontal illuminance contours of single unit toplighting prototypes are 

illustrated in Fig. 5.8 for overcast sky conditions. Figs. 5.9-5.11 give the values for 

each case during clear sky conditions. Intermediate sky results are presented in Figs. 

5.12-5.14 for each case at different solar position in all the solstices.  
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Fig. 5.8 Single unit toplighting: illuminance contour on plan, overcast sky 
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Fig. 5.9  Single diffuse skylight: illuminance contour on plan, clear sky 
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Fig. 5.10  Single lightscoop: illuminance contour on plan, clear sky 
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Fig. 5.11 Single roof monitor: illuminance contour on plan, clear sky 
  



 116

Fig. 5.12 Single diffuse skylight: illuminance contour on plan, intermediate sky 
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Fig. 5.13 Single lightscoop: illuminance contour on plan, intermediate sky 
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Fig. 5.14  Single roof monitor: illuminance contour on plan, intermediate sky 
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Table 5.2. Single unit toplighting: illuminance gradient comparison 

  
Diffuse 
Skylight Lightscoop Roof Monitor 

Overcast Sky 457 301 111 
Clear Sky    
Jun21, 9:00am 450 358 162 
Jun21, 12:00pm 408 314 159 
Jun21, 3:00pm 565 299 149 
Mar21, 9:00am 375 329 102 
Mar21, 12:00pm 378 312 127 
Mar21, 3:00pm 396 287 100 
Dec21, 9:00am 339 288 95 
Dec21, 12:00pm 350 316 148 
Dec21, 3:00pm 398 272 96 
Intermediate Sky    
Jun21, 9:00am 450 313 134 
Jun21, 12:00pm 374 418 167 
Jun21, 3:00pm 438 261 119 
Mar21, 9:00am 451 326 127 
Mar21, 12:00pm 380 399 130 
Mar21, 3:00pm 438 301 116 
Dec21, 9:00am 404 324 132 
Dec21, 12:00pm 420 353 87 
Dec21, 3:00pm 469 284 105 

 Illuminance gradient is the ratio of maximum to minimum illuminance of each case; lower 
value indicates better uniformity 
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Table 5.3. Single unit toplighting: uniformity of illuminance comparison 
Time/Case Diffuse Skylight Lightscoop Roof Monitor 
Overcast 0.02 0.02 0.04 
Clear Sky    
Jun21, 9:00am 0.02 0.02 0.03 
Jun21, 12:00pm 0.02 0.02 0.03 
Jun21, 3:00pm 0.02 0.02 0.03 
Mar21, 9:00am 0.02 0.02 0.04 
Mar21, 12:00pm 0.02 0.02 0.03 
Mar21, 3:00pm 0.02 0.02 0.04 
Dec21, 9:00am 0.03 0.02 0.04 
Dec21, 12:00pm 0.02 0.02 0.03 
Dec21, 3:00pm 0.02 0.02 0.04 
Intermediate Sky    
Jun21, 9:00am 0.02 0.02 0.03 
Jun21, 12:00pm 0.02 0.01 0.03 
Jun21, 3:00pm 0.04 0.03 0.04 
Mar21, 9:00am 0.02 0.02 0.03 
Mar21, 12:00pm 0.02 0.01 0.03 
Mar21, 3:00pm 0.02 0.02 0.04 
Dec21, 9:00am 0.02 0.02 0.03 
Dec21, 12:00pm 0.02 0.01 0.05 
Dec21, 3:00pm 0.02 0.02 0.03 

Uniformity of illuminance ratio is the ratio of minimum to average illuminance of each case; 
higher value indicates better uniformity 
 

 

 

From the illuminance contour charts and the tables presented, it can be seen that 

the single roof monitor yields a more uniformly distributed light in both overcast and 

clear sky conditions. A single roof monitor system yields the lowest values for the 

illuminance gradient, with less than half of other systems’ values. In addition, it yields 

higher values for the uniformity of illuminance, even though the values are not much 

different. 
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Overcast Sky Condition: Distribution and Uniformity Analysis 

 In the overcast sky condition, the roof monitor provides better light distribution 

throughout the room, even though it yields a lower illuminance value. The lightscoop 

spreads more light than the skylight system but less than the roof monitor. For the 

diffuse skylight, the light is distributed mostly under the opening in the center of the 

room. With the lightscoop and roof monitor prototypes, the light concentration shifts a 

little from the area directly under the opening.  

It can be seen from the chart that a roof monitor distributes light to up to half 

the area of the space. This results from the glazing, which captures light from both the 

north and south. The lightscoop prototype, which has only the glazing facing north, is 

able to distribute light to about one-third of the area of the space, while the two 

skylight systems can only distribute light to about a quarter of the space. 

The illuminance gradient ratio of the roof monitor is the lowest, less than half 

the value of other prototypes. The lightscoop performs second best. As seen in Table 

5.2, in overcast sky conditions, the illuminance gradient values are 457, 301, and 111, 

for a single diffuse skylight, lightscoop, and roof monitor, respectively.  

On the uniformity of illuminance ratio, the roof monitor still outperforms the other 

systems. The uniformity of illuminance ratios for diffuse skylight, lightscoop, and roof 

monitor, are 0.02, 0.02, and 0.04, respectively. Still, the recommended value for the 

uniformity of illuminance is more than 0.8. Therefore, the values for all the systems are 

within a closed range. As a result, this parameter should not be the primary parameter 

to determine the best-performing system. 
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 In conclusion, it can be said that, in the overcast sky condition, the roof monitor 

gives better light distribution and uniformity than other systems, with the lightscoop 

performing second best. 

Clear Sky Condition: Distribution and Uniformity Analysis

 In clear sky conditions, the single roof monitor once again performs better than 

the other prototypes on the tested days.  

 From the illuminance contour charts (Figs. 5.9-5.11), it can be seen that, for the 

diffuse skylight prototype in clear sky conditions, the light distribution is concentrated 

around the central area right under the aperture. The light does not spread to more than 

one-third of the space, even though it yields a higher illuminance value. The 

distributions of light do not vary at different times of the year, as the light level simply 

decreases from summer to winter. In sum, the light from the diffuse skylight is not 

uniformly distributed, since all the light is concentrated in the area under the opening.  

 For the lightscoop prototype, the distribution patterns also do not vary during 

the year. The lightscoop spreads light to about one-third of the space area under the 

aperture. Better uniformity is achieved in winter due to the lower light level. Still, the 

light is more uniformly distributed than in the diffuse skylight system. With the 

lightscoop, light spreads more to the perimeter of the room and is not concentrated 

directly under the aperture. 

 The roof monitor’s light distribution patterns vary throughout the year, 

spreading more light to the south area of the room in summer and more to the north of 

the room in winter. This is because it has two sides of glazing, and, hence, it is able to 
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capture more light in all seasons. Light is distributed more than in the case of the 

lightscoop, with the light spread more evenly to the room perimeter than in other the 

cases. The area lit by this single unit is up to half the space area.  

 From the horizontal illuminance contour charts, it can be seen that the prototype 

that performs best in terms of illuminance distribution and uniformity is the single roof 

monitor. The lightscoop prototype performs second best.     

From the illuminance gradient ratio table (Table 5.2), the roof monitor yields 

half the illuminance gradient ratio of the lightscoop. The lightscoop yields higher 

values than the roof monitor, but lower values than the skylights prototype. These 

results correspond to the horizontal illuminance contour chart. For the roof monitor 

prototype, a lower illuminance gradient ratio is seen at the equinox and in winter. For 

the other cases, the gradient ratios are close throughout the year.  

In the uniformity of illuminance table (Table 5.3), the roof monitor still 

performs better than the other systems. The diffuse skylight, normal skylight, and 

lightscoop have ranges of values lower than the roof monitor.  

Intermediate Sky Condition: Distribution and Uniformity Analysis

 For intermediate sky conditions, the roof monitor prototype still performs better 

than other systems across all the tested times by distributing light more evenly.  

 From the illuminance contour charts, it can be seen that, for the diffuse skylight 

prototype, the light distribution is still mostly concentrated in the central area right 

under the aperture. For the lightscoop and the roof monitor, the light is distributed 

more to the perimeter of the space. The lightscoop prototype still has a light 
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distribution pattern similar to its performance under clear sky but with lower 

illuminance values. However, the difference between the clear and intermediate sky is 

that, in summer morning and afternoon, the light distribution is greater than at noon. 

This could result from light reflecting off the clouds and entering the space. For the 

roof monitor prototype, the light distribution is similar throughout the year under 

intermediate sky conditions. This is different than under clear sky conditions, where 

the light distribution changes throughout the year.  

 From the illuminance gradient ratio table (Table 5.2), it can be seen that a 

single roof monitor yields a lower value for the illuminance gradient in all the tested 

dates and times under intermediate sky conditions—usually by more than 50%. In the 

uniformity of illuminance table (Table 5.3), the roof monitor still yields a higher value 

than the other cases, just as in the clear sky condition. Still, this ratio is input only as a 

reference, since the simulated space does not have any interior furniture and also, all 

the cases yield close value of this ratio.  

 In conclusion, under variable sky conditions, the roof monitor performs better 

than the other prototypes in terms of light distribution and uniformity.  
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5.3. Toplighting Prototypes with a 1.5 to 1 Spacing-to-Height Ratio Analysis 

5.3.1. Daylight Factor and Illuminance Level Analysis 

 The daylight factor comparison chart of single unit toplighting prototypes is 

presented in Fig. 5.15. The prototypes analyzed are the diffuse skylight, lightscoop, and 

roof monitor designs. The illuminance level comparison for a clear sky charts is 

presented from Fig. 5.16 to Fig. 5.18. Intermediate sky results are presented in Figs. 

5.19-5.21. 

 

Fig. 5.15  1.5 to 1 toplighting: daylight factor comparison, overcast sky (Horizontal 
Exterior Illuminance from RADIANCE is 18478 lux) 
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Fig. 5.16  1.5 to 1 toplighting: illuminance level comparison, clear sky, June 21 
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Fig. 5.17  1.5 to 1 toplighting: illuminance level comparison, clear sky, March 21 
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Fig. 5.18  1.5 to 1 toplighting: illuminance level comparison, clear sky, December 21 
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Fig. 5.19  1.5 to 1 toplighting: illuminance level comparison, intermediate sky,  
June 21 



 130

 

 

                    
 

Fig. 5.20  1.5 to 1 toplighting: illuminance level comparison, intermediate sky,   
March 21 
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Fig. 5.21  1.5 to 1 toplighting: illuminance level comparison, intermediate sky, 
December 21 
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Overcast Sky: Daylight Factor Analysis 

 For the daylight factor level, the lightscoop yields a higher daylight factor level 

than other prototypes, by having roof monitor and diffuse skylight yield less maximum 

daylight factor, respectively. The diffuse skylight prototype has the lowest minimum 

points than other systems.  

The 1.5 to 1 spacing-to-height lightscoop system yields maximum daylight 

factor level of nearly 4 % while diffuse skylight, which gives least maximum daylight 

factor level at 1.5 %; these two systems have a range of maximum daylight factor 

difference of about 40 %. The roof monitor prototype also has a maximum daylight 

factor less than lightscoop at a range of about 20 %.  

Overcast Sky: Light Distribution Analysis  

 From the chart, it can be seen that, for the 1.5 to 1 spacing-to-height ratio, the 

distribution is greatly improved from a single unit, since more of daylight apertures are 

installed. Roof monitor and lightscoop systems seem to have a similar light distribution 

than diffuse skylight system, since the range between maximum and minimum points 

are closer than those of diffuse skylight. In the case of a diffuse skylight system, it can 

be seen that the system causes pools of light, by having more difference between the 

maximum and minimum point, which might affect the visual comfort. 

Clear Sky: Illuminance Level Analysis 

 For the clear sky conditions, it can be seen that the lightscoop prototype yields 

higher illuminance level then other systems at most of the tested dates and times, 
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except in winter. The diffuse skylight prototype mostly yields lower illuminance value 

than the lightscoop and roof monitor prototypes.   

The illuminance levels of the diffuse skylight prototype vary seasonally by 

having higher illuminance value in summer and decreasing values in summer. The light 

level also changes throughout the day more than lightscoop and roof monitor.  

For the lightscoop prototype, the illuminance value reaches its maximum in 

summer solstice at solar noon at about 2,000 lux. For lightscoop, the illuminance level 

is higher in summer and is lower in winter. The illuminance levels range from 500 lux 

in winter and up to 2,000 in summer. The overall diurnal range is at about 500 lux. 

Even though the lightscoop prototype yields generally higher illuminance levels than 

the roof monitor, in winter, the illuminance levels the lightscoop prototype are lower 

than the roof monitor.   

The roof monitor, in general, yields lower illuminance value than other 

systems, still, the illuminance value do not vary much throughout the year compared to 

other systems; this could be because it has a glazing for both north and south 

orientation. In winter, the illuminance levels of the roof monitor are higher than other 

prototypes.  

Clear Sky: Light Distribution Analysis 

 For the light distribution in clear sky condition, as can be visually derived from 

the chart, roof monitor and lightscoop prototypes seem to perform similarly by having 

a more even light distribution than diffuse skylight system throughout the year. More 

detailed analysis between these two systems on daylight distribution and uniformity 
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will be given in the next section. The diffuse skylight prototype has a wider range of 

illuminance value, which could cause the light distribution to be worse than lightscoop 

and roof monitor.  

Intermediate Sky: Illuminance Level Analysis 

 In general, the illuminance levels of all the prototypes are lower than those of 

the clear sky condition up to 50 % and do not vary much throughout the year. The 

lightscoop prototype yields higher illuminance values than other prototypes in summer 

but similar illuminance levels to the roof monitor in equinox. The illuminance levels of 

the roof monitor are higher than other prototypes in winter. This could be because 

diffuse skylight is the horizontal glazing but lightscoop and roof monitor has vertical 

glazing which, in partly cloudy condition, some light might bounce off the cloud and 

enter the vertical glazing.  

There is not much difference in the illuminance value between 3 prototypes; in 

general, they all yield similar illuminance value at about 500 lux.  

Intermediate Sky: Light Distribution Analysis 

 Even though no conclusion can be made at this point since the tested sensor 

locations are located in a single row along the center of the room, it can be seen that the 

roof monitor and lightscoop prototypes have flatter curves than the diffuse skylight. 

The single diffuse skylight prototype still has a distinguished peak in the center under 

the opening, same as in clear sky condition but not as evident. 

 In summation, for the 1.5 to 1 spacing-to-height ratio prototypes, the lightscoop 

prototype yields higher illuminance level in most of the tested solar conditions and the 
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roof monitor prototype yields higher illuminance level in winter. The diffuse skylight 

prototype yields lower illuminance level than other prototypes. The light distribution of 

the lightscoop and the roof monitor prototypes are similar, with flatter curves than that 

of the diffuse skylight prototype.   

5.3.2. Illuminance Uniformity Analysis 

 Horizontal illuminance contour comparison of 1.5 to 1 spacing-to-height 

toplighting prototypes are illustrated in Fig. 5.22 for overcast sky condition and in Figs. 

5.23-5.25 for each case in the clear sky condition at different solar positions. 

Intermediate sky results are presented in Figs. 5.26-5.28 for each case at different solar 

position in all the solstices.  

 Table for illuminance gradient value is presented in Table 5.4 and uniformity of 

illuminance value is presented in Table 5.5. 

 Evaluation of the light distribution and uniformity of each case in different sky 

conditions are discussed later on in this section. 
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Fig. 5.22  1.5 to 1 toplighting: illuminance contour on plan, overcast sky 
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Fig. 5.23  1.5 to 1 diffuse skylight: illuminance contour on plan, clear sky 
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Fig. 5.24  1.5 to 1 lightscoop: illuminance contour on plan, clear sky 
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Fig. 5.25  1.5 to 1 roof monitor: illuminance contour on plan, clear sky 
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Fig. 5.26  1.5 to 1 diffuse skylight: illuminance contour on plan, intermediate sky 
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Fig. 5.27  1.5 to 1 lightscoop: illuminance contour on plan, intermediate sky 
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Fig. 5.28  1.5 to 1 roof monitor: illuminance contour on plan, intermediate sky 
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Table 5.4  1.5 to 1 spacing-to-height ratio toplighting: illuminance gradient comparison 
  Diffuse Skylight Lightscoop Roof Monitor 
Overcast Sky 13 8 4 
Clear Sky    
Jun21, 9:00am 11 6 4 
Jun21, 12:00pm 15 6 5 
Jun21, 3:00pm 13 6 5 
Mar21, 9:00am 12 7 3 
Mar21, 12:00pm 13 7 3 
Mar21, 3:00pm 10 7 3 
Dec21, 9:00am 12 7 3 
Dec21, 12:00pm 15 8 4 
Dec21, 3:00pm 13 10 3 
Intermediate Sky    
Jun21, 9:00am 13 7 5 
Jun21, 12:00pm 14 8 5 
Jun21, 3:00pm 12 6 5 
Mar21, 9:00am 10 7 4 
Mar21, 12:00pm 11 7 3 
Mar21, 3:00pm 10 6 4 
Dec21, 9:00am 12 7 4 
Dec21, 12:00pm 12 7 3 
Dec21, 3:00pm 13 9 4 

Illuminance gradient is the ratio of maximum to minimum illuminance of each case; lower 
value indicates better uniformity 
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Table 5.4 1.5 to 1 spacing-to-height ratio toplighting: uniformity of illuminance 
comparison 
Time/Case Diffuse Skylight Lightscoop Roof Monitor 
Overcast 0.18 0.23 0.35 
Clear Sky    
Jun21, 9:00am 0.20 0.29 0.35 
Jun21, 12:00pm 0.16 0.28 0.34 
Jun21, 3:00pm 0.18 0.30 0.32 
Mar21, 9:00am 0.16 0.26 0.44 
Mar21, 12:00pm 0.18 0.26 0.46 
Mar21, 3:00pm 0.22 0.26 0.44 
Dec21, 9:00am 0.19 0.25 0.45 
Dec21, 12:00pm 0.15 0.25 0.38 
Dec21, 3:00pm 0.19 0.25 0.47 
Intermediate Sky    
Jun21, 9:00am 0.17 0.25 0.31 
Jun21, 12:00pm 0.16 0.24 0.34 
Jun21, 3:00pm 0.19 0.26 0.33 
Mar21, 9:00am 0.22 0.24 0.38 
Mar21, 12:00pm 0.20 0.25 0.43 
Mar21, 3:00pm 0.21 0.25 0.37 
Dec21, 9:00am 0.17 0.23 0.41 
Dec21, 12:00pm 0.19 0.23 0.45 
Dec21, 3:00pm 0.18 0.24 0.41 

Uniformity of illuminance ratio is the ratio of minimum to average illuminance of each case; 
higher value indicates better uniformity 
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Overcast Sky Condition: Distribution and Uniformity Analysis 

 In the overcast sky conditions, the roof monitor provides more even light 

distribution throughout the room even though it yields a lower illuminance value. The 

lightscoop distribution is close to the roof monitor prototype but the light distribution is 

more uneven, as can be seen from the chart. The contours are closed together than are 

the case with the roof monitor. For the diffuse skylight prototype, light distributes 

mostly under the apertures in the while for lightscoop and roof monitor, light 

concentration shifts a little from the area directly under the opening into the south side 

of the room. Also, the lights from the lightscoop and the roof monitor reach the 

perimeter of the room more than from a diffuse skylight prototype, indicating better 

light distribution.   

The illuminance gradient ratio of roof monitor is the lowest, which is about half 

the values of other prototypes. The lightscoop performs second best. From table 5.3, in 

the overcast sky condition, the illuminance gradient values of each case with the 

spacing-to-height ratio of 1.5 to 1 are 13, 8, and 4, for the diffuse skylight, lightscoop, 

and roof monitor, respectively. It can also be noted that the illuminance gradient ratio 

of the prototypes with spacing-to-height ratio of 1.5 to 1 (or 4-unit prototypes) has 

decreased from the single unit value of more than 30 times. This indicates that better 

lighting performance can be achieved with the series of units. 

For the uniformity of illuminance ratio, the roof monitor still performs better by 

having the highest value. The uniformity of illuminance ratios for the diffuse skylight, 

lightscoop, and roof monitor, are 0.18, 0.23, and 0.35, respectively. From these values, 
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it can be analyzed that the roof monitor prototype still performs better in terms of 

illuminance uniformity, while the lightscoop performs second best. It can also be seen 

that this value have increased more than 5 times for diffuse skylight and 7 times for 

lightscoop and roof monitor cases, from the single unit prototypes.  

 To summarize, it can be said that, in the overcast sky conditions, the roof 

monitor prototype gives better light distribution and uniformity than other systems, 

with the lightscoop prototype performing second-best. 

Clear Sky Condition: Distribution and Uniformity Analysis

 In clear sky conditions, the single roof monitor still performs better than other 

prototypes in all the tested representative days.  

 From the illuminance contour charts (Figs. 5.23-5.25), it can be seen that, for 

the diffuse skylight in clear sky condition, the light distribution is concentrated around 

the central areas right under the apertures. The light does not spread into the room 

perimeter as much as other prototypes, even though it yields high illuminance value. 

The distribution pattern is similar all year but the light level decreases in winter time.  

 For the lightscoop prototype, the distribution patterns also do not vary during 

the year and better uniformity is achieved in winter due to less light level than in 

summer. The light distribution patterns of lightscoop still have some pools of light but 

are not as evident as in the case of diffuse skylight since light which spreads more into 

the room perimeter.  

 The light distribution patterns of a 1.5 to 1 spacing-to-height roof monitor vary 

a little throughout the year from spreading more light to the south area of the room in 
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summer and more to the north of the room in winter. Light is distributed better than in 

the case of lightscoop because the contours are farther apart than in the case of 

lightscoop, even though it gives lower illuminance value. However, in general, the 

light distribution performance is still close to that of a 1.5 to 1 spacing-to-height 

lightscoop system.  

 From the horizontal illuminance contour charts, it can be summarized that the 

prototype that performs best in terms of illuminance distribution and uniformity is the 

roof monitor, with the lightscoop performing second-best.      

From Table 5.3, the illuminance gradient ratio, the roof monitor prototype 

yields the lowest value than other systems in all the tested date and time, with a range 

from 3-5. From these results, it can be seen that the roof monitor system can meet and 

in some dates even exceed the standard set by CIBSE Code which is set at 5 for the 

maximum. Therefore, in a case of the roof monitor prototype, the spacing-to-height 

ratio might be increased and can still meet the standard. The values generated also 

correspond to the horizontal illuminance contour charts analysis. For the roof monitor 

prototype, the illuminance gradient ratio decreases from summer to winter. The value 

does not vary much throughout the day, except for winter, that the illuminance gradient 

value reaches 3 in equinox and winter.  

From Table 5.4, the illuminance uniformity ratio, the roof monitor prototype 

still performs better than other prototypes, by yielding more uniformity ratio than other 

cases. Lightscoop gives about 0.10 less than a roof monitor. Still, all the values cannot 

meet the criteria set by CIBSE which is recommended at more than 0.80 yet. However, 
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since the simulated space does not have any interior furniture, this parameter is not 

analyzed as a primary factor as the illuminance gradient. In general, the performance 

that can be analyzed from this parameter is the same as from illuminance gradient 

parameter as discussed earlier.   

Intermediate Sky Condition: Distribution and Uniformity Analysis

 For intermediate sky conditions, the roof monitor system still performs better 

than other prototypes in all the tested times by distributing light more evenly.  

 From the illuminance contour charts (Figs. 5.26-5.28), it can be seen that, for 

the diffuse skylight prototype, the light distribution is still mostly concentrated in the 

central area right under the aperture, while for lightscoop and roof monitor, the light is 

distributed more to the perimeter of the space. In the case of lightscoop and roof 

monitor, there are some parts of the room to the north side in the corner that is darker 

than other parts but in the case of skylight, the light distribution decreases greatly 

farther away from the area under the aperture. The distribution for diffuse skylight has 

similar pattern throughout the year, but with more illuminance level at noon time. 

Lightscoop still has the light distribution pattern similar to its performance 

under clear sky, which the distribution pattern remains quite constant under different 

solstices. However, the difference is that the illuminance level at noon in general is 

lower than morning and afternoon under intermediate sky. This could be because of 

partly cloudy sky which cloud could reflect light into the interior space when the sun is 

not overhead like at noon.  
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For the roof monitor, the light distribution is similar throughout the year with 

the intermediate sky condition, unlike in clear sky, which the light distribution changes 

throughout the year. The illuminance level is higher in summer and lower in winter. 

Also, the illuminance value in summer and equinox, it can be seen from the chart that, 

the illuminance value at noon is a little lower than at 9:00am and 3:00pm, which is the 

same behavior as in the case of lightscoop which is discussed previously.  

 From the illuminance gradient ratio table (Table 5.4), it can be seen that the 

single roof monitor prototype still yields less value of illuminance gradient in all the 

tested dates and times under intermediate sky than other cases, with the values range 

from 3-5. The diffuse skylight prototype’s gradient ratios range from 10-13, which are 

of close values to its performance under clear sky conditions. The lightscoop prototype 

has the illuminance gradient values range from 6-9, which is higher than clear sky’s 

values which range from 6-8 (except in winter afternoon), pointing out worse 

performance under intermediate sky condition than under clear sky condition. Same 

conclusion can be made to the roof monitor prototype. Even the illuminance gradient 

values both range from 3-5 but under clear sky condition, the lower values are achieved 

more in clear sky. 

In the uniformity of illuminance table (Table 5.5), the roof monitor prototype 

still yields more ratio than other cases, reaching at about 0.30-0.40 while other cases 

have the ratio range from 0.20-0.30. Still, this ratio is input as a reference since the 

simulated space does not have any interior furniture. 
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In summation, the light distribution pattern of each prototype is similar to those 

under clear sky condition by having similar ratio of illuminance gradient and 

uniformity, with the difference in illuminance level much lower than under clear sky 

condition, at more than 50 percent. 

5.2.3. Glare Analysis 

 Glare analysis method has been discussed in Chapter III Methodology which is 

to use the luminance ratio to analyze the fisheye view rendering of the scene from each 

prototype. Renderings of the scene and the luminance of each reference points from 

each toplighting prototype with a 1.5 to 1 spacing-to-height ratio are presented in Figs. 

5.29-5.31. The renderings are done for the day which there could be more presence of 

glare: June 21, at solar noon. 

 The fisheye view used in this analysis is when the observer is standing in the 

center and 4.00m from the back of the room. The position of the observer can be 

noticed in the offending angle picture.  
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                                                                                                                                       (a) 

                           
                                                                  (b)                                                                 (c) 
 

      
                                                                 (d)                                                                  (e) 
 

Fig. 5.29  1.5 to 1 diffuse skylight: glare analysis pictures from RADIANCE           
(a) section showing offending angle  (b) luminance at reference points in the room      

(c) luminance ratio  (d) iso-contour rendering  (e) falsecolor rendering 
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                                                                                                                                       (a) 

                             
                                                                  (b)                                                                 (c) 
 

       
                                                                 (d)                                                                  (e) 
 

Fig. 5.30  1.5 to 1 lightscoop: glare analysis pictures from RADIANCE              
(a) section showing offending angle  (b) luminance at reference points in the room      

(c) luminance ratio  (d) iso-contour rendering  (e) falsecolor rendering 
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                                                                                                                                       (a) 

                            
                                                               (b)                                                                    (c) 
 

      
                                                               (d)                                                                    (e) 
 

Fig. 5.31  1.5 to 1 roof monitor: glare analysis pictures from RADIANCE 
(a) section showing offending angle  (b) luminance at reference points in the room      

(c) luminance ratio  (d) iso-contour rendering  (e) falsecolor rendering 
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From Figs. 5.29-5.31, it can be seen that, all the cases have a chance of glare on 

clear day of the summer solstice at noon which are caused from the glazing in the field 

of view of the observer.  

The diffuse skylight prototype, even though it has less glazing area which 

makes the offending angle less than other cases, still, the luminance of the aperture is 

too high compared to the adjacent surfaces around it. The luminance ratio exceeds 1 to 

20 and for the aperture and the adjacent surfaces and exceeds 1 to 40 in the field of 

view. The average luminance at the glazing in the field of view is at 4,500 cd/m2 which 

is very high compared to other surfaces which the luminance levels are not higher than 

100 cd/m2. The luminance ratio between the glazing and the adjacent ceiling surface is 

1:214. 

For the lightscoop prototype, the luminance at the glazing is reduced from the 

case of diffuse skylight but is still the cause of glare under summer solstice at noon. 

From the section shown, it can be seen that the offending angles of lightscoop has 

caused more probability of glare than in the case of diffuse skylight, even though the 

luminance ratio in the field of view is lower. The luminance ratio, however, still 

exceeds 1 to 40 and 1 to 20. Although the luminance values of the surfaces range from 

52-106 cd/m2, the luminance ratio of the surface and the glazing is 1:125. Even with 

the shading devices, the viewer can still see the glazing, which can cause glare by the 

its excessive brightness.  

The roof monitor prototype performs similarly to the lightscoop, having similar 

luminance ratio in the field of view and between the glazing and adjacent surfaces, 
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which are still higher than the recommended; 1:198. The offending angles of the roof 

monitor are the same as the lightscoop since the width of the light well is the same at 

1.00m. The luminance of the surfaces in the space ranges from 32-56 cd/m2 but the 

luminance of the glazing in the field of view is at about 6,350 cd/m2.  

The solutions to help reduce glare problem could be to change the geometry of 

the toplighting systems; lift up the glazing to be out of the field of view or change the 

geometry of the light well to create the cut off angle, preventing the viewer from seeing 

the glazing.  

To summarize the lighting performance of the 1.5 to 1 spacing-to-height 

prototypes, it can be seen that, the overall performance is superior to those of the single 

unit toplighting prototype. Each system yields higher illuminance value and better light 

distribution and uniformity. It can be seen from the illuminance gradient table that the 

values have decreased more than half of the values derived from the single unit 

toplighting prototype. Therefore, series of toplighting units are better than single 

toplighting unit for all the tested prototypes since it could improve the lighting 

performance of each toplighting prototype.   
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5.4. Toplighting Prototypes with a 1 to 1 Spacing-to-Height Ratio Analysis 

5.4.1. Daylight Factor and Illuminance Level Analysis 

 The daylight factor comparison chart of single unit toplighting prototypes is 

presented in Fig. 5.32. The prototypes analyzed are diffuse skylight, lightscoop, and 

roof monitor. The illuminance level comparison for clear sky charts are presented from 

Fig. 5.33 to Fig. 5.35. Intermediate sky results are presented in Figs. 5.36-5.38. 

 

Fig. 5.32  1 to 1 toplighting: daylight factor comparison, overcast sky (Horizontal 
Exterior Illuminance from RADIANCE is 18478 lux) 
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Fig. 5.33  1 to 1 toplighting: illuminance level comparison, clear sky, June 21 
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Fig. 5.34  1 to 1 toplighting: illuminance level comparison, clear sky, March 21 
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Fig. 5.35  1 to 1 toplighting: illuminance level comparison, clear sky, December 21 
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Fig. 5.36  1 to 1 toplighting: illuminance level comparison, intermediate sky, June 21 
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Fig. 5.37  1 to 1 toplighting: illuminance level comparison, intermediate sky,  
March 21 
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Fig. 5.38  1 to 1 toplighting: illuminance level comparison, intermediate sky, 
December 21 
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Overcast Sky: Daylight Factor Analysis 

 For the daylight factor level, lightscoop prototype yields a higher daylight 

factor level than the other prototypes. The roof monitor and diffuse skylight yield a 

lower maximum daylight factor, respectively. From the chart, it can be seen that, even 

though the lightscoop yields a higher daylight factor than the roof monitor, still, the 

curves are close. The diffuse skylight prototype has the lowest illuminance values. 

The 1 to 1 spacing-to-height lightscoop prototype yields maximum daylight 

factor level of 5 % while diffuse skylight, which gives least maximum daylight factor 

level at 2.5 %; these two prototypes have a range of maximum daylight factor 

difference of 34 %. The roof monitor also has a maximum daylight factor less than 

lightscoop at a range of 25 %. In general, daylight factor values are more than in the 

1.5 to 1 spacing-to-height prototypes at about 0.5 %. 

Overcast Sky: Light Distribution Analysis  

 From the chart, it can be seen that, for a 1 to 1 spacing-to-height ratio, the 

distribution is improved from a single unit and a 1.5 to 1 spacing-to-height prototype, 

since more of daylight apertures are installed. Even though only 2 units are added from 

the 1.5 to 1 spacing-to-height prototype, the distribution is better. The roof monitor and 

lightscoop prototypes have similar light distribution pattern than the diffuse skylight 

prototype. In the case of the diffuse skylight, it can be seen that the system causes 

pools of light, by having more difference between the maximum and minimum point 

under each opening, which might affect the visual comfort. 
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Clear Sky: Illuminance Level Analysis 

 For clear sky conditions, the diffuse skylight prototype yields a higher 

maximum illuminance value than the lightscoop or roof monitor in all the tested solar 

conditions; reaching up to 3,000 lux at summer noon. The lightscoop and roof monitor 

yield closer illuminance value than for the diffuse skylight prototype; still, the diffuse 

skylight has closer illuminance level to other prototypes in equinox and winter. 

The diffuse skylight’s illuminance levels are mostly lower than other 

prototypes. The illuminance levels vary seasonally by having more illuminance value 

in summer and decreasing in summer. The maximum illuminance level in summer is at 

about 2,200 lux and in winter at about 600 lux. 

The illuminance value of the lightscoop prototype reaches its maximum in 

summer solstice at solar noon at nearly 3,000 lux. For the lightscoop, the illuminance 

level is higher in summer and is lower in winter, with the difference between the 

maximum illuminance level of summer and winter at 1,100 lux. Even though the 

lightscoop prototype yields generally higher illuminance level than the roof monitor, 

still, in winter, the illuminance level of the lightscoop prototype is lower than the roof 

monitor. This is the same as in the case of a 1.5 to 1 spacing-to-height prototype.   

The roof monitor prototype, in general, yields lower illuminance value than the 

lightscoop prototype, still, the illuminance value does not vary much throughout the 

year compared to other prototypes. However, the illuminance levels are higher than 

other prototypes in winter.  
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Clear Sky: Light Distribution Analysis 

 For the light distribution in the clear sky conditions, as can be visually derived 

from the charts, the roof monitor and lightscoop prototypes perform similarly by 

having a more even light distribution than the diffuse skylight throughout the year. 

More detailed analysis between these two systems on daylight distribution and 

uniformity will be given in the next section. The diffuse skylight prototype, has a wider 

range of illuminance value, which causes the light distribution to be worse than 

lightscoop and roof monitor.  

 In sum, the lightscoop prototype still yields higher illuminance level in clear 

sky condition and higher daylight factor in overcast condition when the thermal 

performance is equal. The roof monitor prototype has higher illuminance level in 

winter and visually better light distribution. 

Intermediate Sky: Illuminance Level Analysis 

 In general, the illuminance levels of all the prototypes are lower than those of 

clear sky condition at more than 50 % and the illuminance level is quite constant 

throughout the year. The illuminance of lightscoop is higher than other prototypes in 

summer. In equinox, the lightscoop and roof monitor prototypes have similar 

illuminance values, which are higher than the diffuse skylight. In winter, the roof 

monitor yields higher illuminance level than other prototypes.  
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Intermediate Sky: Light Distribution Analysis

 The light distributions of all the prototypes, as can be seen from the charts, are 

better than under clear sky conditions because the curves are flatter and more constant. 

Different performance between each prototype cannot be clearly distinguished using 

the line chart as presented since all the lines seem to have similar distribution. 

Therefore, the distributions have to be analyzed using the contour charts for rectangular 

reference grid. 

5.4.2. Illuminance Uniformity Analysis 

 Horizontal illuminance contour comparison of 1.5 to 1 spacing-to-height 

toplighting prototypes are illustrated in Fig. 5.39 for the overcast sky conditions and in 

Figs. 5.40-5.42 for each case in clear sky condition at different solar positions.  

The intermediate sky results are presented in Figs. 5.43-5.45 for each case at 

different solar positions in all the solstices.  

 The illuminance gradient values are presented in Table 5.6 and the uniformity 

of illuminance value is presented in Table 5.7. As described earlier in Chapter III, that 

the primary parameter for analyzing the uniformity of the illuminance is the 

illuminance gradient (or illuminance diversity as referred by CIBSE term).  

 Evaluation of the light distribution and uniformity of each case in different sky 

conditions are discussed later on in this section. 
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Fig. 5.39  1 to 1 toplighting: illuminance contour on plan, overcast sky 
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Fig. 5.40  1 to 1 diffuse skylight: illuminance contour on plan, clear sky 
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Fig. 5.41  1 to 1 lightscoop: illuminance contour on plan, clear sky 
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Fig. 5.42  1 to 1 roof monitor: illuminance contour on plan, clear sky 
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Fig. 5.43 1 to 1 diffuse skylight: illuminance contour on plan, intermediate sky 
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Fig. 5.44  1 to 1 lightscoop: illuminance contour on plan, intermediate sky 
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Fig. 5.45  1 to 1 roof monitor: illuminance contour on plan, intermediate sky 
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Table 5.6 1 to 1 spacing-to-height ratio toplighting: illuminance gradient comparison 
  Diffuse Skylight Lightscoop Roof Monitor 
Overcast Sky 7 7 5 
Clear Sky    
Jun21, 9:00am 6 5 4 
Jun21, 12:00pm 8 5 4 
Jun21, 3:00pm 9 5 4 
Mar21, 9:00am 5 7 4 
Mar21, 12:00pm 8 7 3 
Mar21, 3:00pm 7 6 4 
Dec21, 9:00am 8 6 3 
Dec21, 12:00pm 7 7 4 
Dec21, 3:00pm 8 6 3 
Intermediate Sky    
Jun21, 9:00am 8 6 4 
Jun21, 12:00pm 7 7 5 
Jun21, 3:00pm 7 6 5 
Mar21, 9:00am 7 7 4 
Mar21, 12:00pm 8 7 4 
Mar21, 3:00pm 5 7 5 
Dec21, 9:00am 7 7 4 
Dec21, 12:00pm 6 7 4 
Dec21, 3:00pm 8 7 4 

Illuminance gradient is the ratio of maximum to minimum illuminance of each case; lower 
value indicates better uniformity 
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Table 5.7 1 to 1 spacing-to-height ratio toplighting: uniformity of illuminance 
comparison 
Time/Case Diffuse Skylight Lightscoop Roof Monitor 
Overcast 0.29 0.21 0.29 
Clear Sky    
Jun21, 9:00am 0.33 0.28 0.34 
Jun21, 12:00pm 0.22 0.27 0.35 
Jun21, 3:00pm 0.22 0.30 0.34 
Mar21, 9:00am 0.34 0.23 0.39 
Mar21, 12:00pm 0.24 0.22 0.41 
Mar21, 3:00pm 0.28 0.25 0.39 
Dec21, 9:00am 0.23 0.24 0.42 
Dec21, 12:00pm 0.28 0.22 0.41 
Dec21, 3:00pm 0.23 0.26 0.44 
Intermediate Sky    
Jun21, 9:00am 0.26 0.25 0.33 
Jun21, 12:00pm 0.27 0.24 0.33 
Jun21, 3:00pm 0.27 0.26 0.30 
Mar21, 9:00am 0.25 0.22 0.36 
Mar21, 12:00pm 0.24 0.20 0.40 
Mar21, 3:00pm 0.33 0.23 0.34 
Dec21, 9:00am 0.29 0.21 0.42 
Dec21, 12:00pm 0.32 0.21 0.40 
Dec21, 3:00pm 0.27 0.23 0.39 

Uniformity of illuminance ratio is the ratio of minimum to average illuminance of each case; 
higher value indicates better uniformity 
 

 
Overcast Sky Condition: Distribution and Uniformity Analysis 
 
 In the overcast sky condition, the roof monitor prototype provides better light 

distribution throughout the room even though it yields less illuminance value than the 

lightscoop. The lightscoop’s distribution is close to the roof monitor prototype but the 

light distribution is not as even, as can be seen from the chart that the contours are 

closed together than with a case of the roof monitor. For the diffuse skylight, light is 

distributed mostly under the apertures in the while for the lightscoop or roof monitor, 

light concentration shifts a little from the area directly under the opening into the south 

side of the room. Also, light from the lightscoop and roof monitor reaches the 
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perimeter of the room more than from the diffuse skylight prototype, indicating better 

light distribution.   

The illuminance gradient ratio of the roof monitor is the lowest, with the 

lightscoop prototype performing second best. From the tables, in the overcast sky 

conditions, the illuminance gradient values of each case with the spacing-to-height 

ratio of 1 to 1 are 7, 7, and 5, for the diffuse skylight, lightscoop, and roof monitor, 

respectively. Compared to the illuminance gradient values of the 1.5 to 1 spacing-to-

height ratio, these values are lower for all the prototypes. (The illuminance gradient 

value for the 1.5 to 1 spacing-to-height ratio prototypes are 13, 8, and 4, for the diffuse 

skylight, lightscoop, and roof monitor, respectively.) 

For the uniformity of illuminance ratio, the roof monitor prototype still 

performs better by having the highest values. The uniformity of illuminance ratios for 

the diffuse skylight, lightscoop, and roof monitor, are 0.18, 0.23, and 0.35, 

respectively. From these values, it can be analyzed that the roof monitor prototype still 

performs better in terms of illuminance uniformity and the lightscoop performing 

second best.  

 To summarize, it can be said that, in overcast sky conditions, the roof monitor 

gives better light distribution and uniformity than other prototypes, with the lightscoop 

performing second-best. 

Clear Sky Condition: Distribution and Uniformity Analysis

 For the clear sky conditions, the single roof monitor still performs better than 

other prototypes in all the tested representative days by distributing light more 
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uniformly. From the illuminance contour charts (Figs. 5.40-5.42), it can be seen that, 

for the diffuse skylight, in clear sky conditions, the light distribution concentrates 

around the areas right under the apertures and does not spread into the room perimeter 

as much as other prototypes. The distribution pattern is similar all year but the light 

level decreases in winter time.  

 For the lightscoop prototype, the distribution patterns also do not vary much by 

the time of year and better uniformity is achieved in winter due to lower light level 

than in summer. The light distribution patterns of the lightscoop still have some pools 

of light but not as evident as in the case of the diffuse skylight prototype since light 

spreads more into the room perimeter.  

 The light distribution patterns of the 1 to 1 spacing-to-height roof monitor vary 

a little throughout the year by spreading more light to the south area of the room in 

summer and more to the north of the room in winter. Light is distributed better than in 

the case of lightscoop because the contours are farther apart than in the case of the 

lightscoop prototype, even though it gives lower illuminance value most of the time. 

However, in general, the light distribution performance is still close to that of a 1.5 to 1 

spacing-to-height lightscoop prototype.  

 From the horizontal illuminance contour charts, it can be summarized that the 

system that performs best in terms of illuminance distribution and uniformity is the 

roof monitor prototype, with the lightscoop performing second-best.      

From the illuminance gradient ratio table (Table 5.6), the roof monitor yields 

the least value than other prototypes in all the tested date and time, which range from 
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3-5. From the results, it can be seen that the roof monitor prototype can meet and in 

some dates even exceed the standard set by CIBSE Code which is set at 5 at maximum. 

Therefore, in a case of the roof monitor, the spacing-to-height ratio might be increased 

and can still meet the standard. The values generated also correspond to the horizontal 

illuminance contour charts analysis.  

For the uniformity of illuminance table (Table 5.7), the roof monitor still 

performs better than other prototypes, by yielding higher uniformity ratio than other 

cases. Lightscoop gives about 0.10 less than a roof monitor. Still, all the values cannot 

meet the criteria set by CIBSE which is recommended at more than 0.80 yet. However, 

since the simulated space does not have any interior furniture, this parameter is not 

analyzed as a primary factor as the illuminance gradient. In general, the performance 

that can be analyzed from this parameter is the same as from illuminance gradient 

parameter as discussed earlier.   

When comparing the illuminance diversity ratio between overcast and clear sky 

condition, all the systems performs better in clear sky condition.  

Intermediate Sky Condition: Distribution and Uniformity Analysis

 For intermediate sky conditions, the roof monitor prototype still performs better 

than other systems in all the tested times by distributing light more evenly.  

 From the illuminance contour charts (Figs. 5.43-5.45) , for the diffuse skylight 

prototype, the light distribution is still mostly concentrated in the central area right 

under the aperture, while for lightscoop and roof monitor, the light are distributed more 

to the perimeter of the space. This is the same as in the case of 1.5 to 1 spacing-to-
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height ratio prototypes. The distribution for diffuse skylight has similar pattern 

throughout the year, but with more illuminance level at noon time. 

The lightscoop prototype still has the light distribution pattern similar to its 

performance under clear sky, which the distribution pattern remains quite constant 

under different solstices but the overall illuminance values are much lower. Still, the 

difference is that the illuminance level at noon in general is lower than morning and 

afternoon under intermediate sky in summer. Also, more variability of light can be 

noticed if compared to the case of a 1.5 to 1 spacing-to-height ratio prototype. This 

could be because of higher illuminance level is achieved though more units of glazing.  

The roof monitor prototype still has similar light distribution patterns 

throughout the year and the patterns do not vary much. Comparing to the distribution 

of the 1.5 to 1 spacing-to-height ratio prototypes, it can be seen that the distribution of 

the 1 to 1 spacing-to-height ratio prototype has more variability of light that can be 

noticed. This could be because the 6-unit yields more illuminance level than a 4-unit 

prototype. Therefore, no conclusions can be drawn from analyzing only the contour 

charts. The illuminance gradient has to be analyzed. Still, it can be noticed that the roof 

monitor still has better uniformity than other prototypes.  

From the illuminance gradient ratio table (Table 5.6), it can be seen that the 

roof monitor prototype still yields less value of illuminance gradient in all the tested 

date and time under intermediate sky than other cases; with the values range from 4-5.  

The diffuse skylight’s gradient ratios are mostly from 5-8, which are similar to 

the performance under clear sky conditions. Still, for the case of the diffuse skylight, 
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there are times of year that the illuminance gradient peaks to 14 at summer solstice at 

3:00pm.  

The lightscoop prototype has the illuminance gradient values range from 6-7, 

which are generally higher than the values under clear sky which range from 5-7, 

pointing out worse performance under intermediate sky condition than under clear sky 

condition. Still, the illuminance gradient under intermediate sky condition of a 1 to 1 

spacing-to-height lightscoop is better than of a 1.5 to 1 spacing-to-height which has the 

illuminance gradient ranges from 6-9. The results point out that, for the lightscoop 

prototype, decreasing the pacing-to-height ratio to 1 to 1 can help nullify the 

uniformity problem that occurs with a 1.5 to 1 prototype by bringing the illuminance 

gradient ratio under clear sky and intermediate sky to a narrower range of 5-7 while in 

a 1.5 to 1 spacing-to-height ratio, this value ranges from 6-10 under both sky 

conditions. 

For the roof monitor prototype, the illuminance gradient ratios are also higher 

under intermediate sky condition than under clear sky condition, which the values 

range from 4-5 under intermediate sky and 3-4 under clear sky condition. Comparing 

to the performance of a 1.5 to 1 spacing-to-height ratio prototype, the illuminance 

gradient ratios of a 1 to 1 spacing-to-height ratio prototype under intermediate sky are 

similar to a 1.5 to 1 spacing-to-height ratio prototype.  

In the uniformity of illuminance table (Table 5.7), the roof monitor prototype 

still yields more ratio than other cases, reaching at about 0.30-0.40. In general, these 

values are similar to the values under the clear sky conditions for all the cases. 
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For the diffuse skylight prototype, the uniformity of illuminance values are 

higher with a 1 to 1 spacing-to-height ratio than in a 1.5 to 1 spacing-to-height ratio. 

For the lightscoop, the ratios are about the same as for a 1.5 to 1 spacing-to-height ratio 

prototype. For the roof monitor, these ratios are similar to its performance with a 1.5 to 

1 spacing-to-height ratio prototype which the values range from 0.30-0.40 also.  

To summarize the distribution and uniformity of all the systems, the roof 

monitor prototype gives better light distribution and uniformity than other systems 

under variable sky conditions as tested for the entire spacing-to-height ratio tested. The 

diffuse skylight and lightscoop prototypes perform better with decreased spacing-to-

height ratio but roof monitor prototype developed has its optimum spacing-to-height 

ratio at 1.5 to 1. Comparing between the diffuse skylight and lightscoop prototypes, 

under variable sky conditions, the lightscoop performs better than diffuse skylight. 

Only under intermediate sky conditions that the diffuse skylight with a 1 to 1 spacing-

to-height ratio performs similarly to the lightscoop in terms of light distribution and 

uniformity. 

5.4.3. Glare Analysis 

 Renderings and the luminance of each reference points from each toplighting 

prototype with a 1.5 to 1 spacing-to-height ratio are presented in Figs. 5.46-5.48. 
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                                                                                                                                       (a) 
 

                                
                                                               (b)                                                                    (c) 
 

      
                                                               (d)                                                                    (e) 
 

Fig. 5.46  1 to 1 diffuse skylight: glare analysis pictures from RADIANCE            
(a) section showing offending angle  (b) luminance at reference points in the room      

(c) luminance ratio  (d) iso-contour rendering  (e) falsecolor rendering 
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                                                                                                                                       (a) 
 

                                
                                                               (b)                                                                    (c) 
 

        
                                                               (d)                                                                    (e) 
 

Fig. 5.47  1 to 1 lightscoop: glare analysis pictures from RADIANCE                 
(a) section showing offending angle  (b) luminance at reference points in the room      

(c) luminance ratio  (d) iso-contour rendering  (e) falsecolor rendering 
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                                                                                                                                       (a) 
 

                                
                                                               (b)                                                                    (c) 
 

       
                                                               (d)                                                                    (e) 
 

Fig. 5.48  1 to 1 roof monitor: glare analysis pictures from RADIANCE               
(a) section analyzing offending angle  (b) luminance at reference points in the room      

(c) luminance ratio  (d) iso-contour rendering  (e) falsecolor rendering 
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 The position of the observer is the same as mentioned in the previous section 

which is at the center and 4.00m from the back of the room. 

From Figs. 5.46-5.48, it can be seen that, all the prototypes with a 1 to 1 

spacing-to-height ratio have the probability of causing glare on clear summer solstice at 

solar noon, by having higher luminance ratio than the recommended ratio of 1 to 40 in 

the observer’s field of view.  

 The diffuse skylight prototype, even with diffuse glazing, still has higher 

luminance ratio than other cases, same as for the 1.5 to 1 spacing-to-height ratio 

prototype. The offending angle section has shown that it has narrower angles than the 

lightscoop or roof monitor prototypes. Still, from the luminance of at 5,700 cd/m2, the 

luminance ratio between the glazing and the adjacent ceiling surface is 154, which is 

still higher than 1:20 or 1:40. 

 For the lightscoop prototype, the luminance ratio is similar to the case of 1.5 to 

1 spacing-to-height ratio prototype, having the luminance at the glazing in the field of 

view at 6,300 cd/m2. It can be noticed that, the luminance at the toplighting system is 

high at the glazing but is reduced only the parts covered by the shading devices are 

seen (in the orange spot), which is at 2,500 cd/m2; (but this point is present in the 

fisheye projection only but not in the observer’s field of view).  The overall luminance 

at the room surfaces is at about 60-90 cd/m2 which is higher than in the case of 1.5 to 1 

spacing-to-height ratio prototype. The luminance ratio of the glazing and the adjacent 

surface is at about 1 to 98. From the iso-contour and the falsecolor images presented 

(in Figs. 5.47d, 5.47e), the luminance contrast can be clearly noticed.   
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 The roof monitor prototype with a spacing-to-height ratio of 1 to 1 performs 

similarly to the lightscoop in terms of glare by having close luminance ratio which is 

still higher than 1 to 40. However, the luminance ratio between the adjacent surface 

and the glazing is higher than in the case of lightscoop; at 1:134.  This is because the 

luminance at the ceiling of the roof monitor prototype is lower than the lightscoop. 

 To summarize, all the prototypes with the spacing-to-height ratio of 1 to 1 have 

the chance of glare because the glazing is in the observer’s field of view. The solution 

could be to lift the system off the occupant’s field of view or to design the light well to 

make the cut off angle to block the glazing from the occupant’s field of view. Also, the 

tested date and time is for most chance of glare; if test the different date/time and view 

angle, glare might be lower. 

5.5. Summary on Lighting Performance Evaluation 

5.5.1. Summary on Daylight Factor and Illuminance Level 

- Under overcast conditions, the lightscoop prototype gives higher daylight 

factor values than the other systems.  

- Under the clear sky and intermediate sky conditions, the lightscoop 

prototype has a higher illuminance level than the other prototypes in 

summer, while the diffuse skylight prototype has a higher illuminance level 

at all other times. 

- Under intermediate sky conditions, all the prototypes perform similarly in 

terms of illuminance level. Still, the overall illuminance values of all the 

prototypes are less than half the values under clear sky conditions.  
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- In general, the roof monitor yields a lower illuminance value than the other 

prototypes. 

5.5.2. Summary on Illuminance Distribution and Uniformity 

- All the prototypes perform better in terms of light distribution and 

uniformity when increased from single unit to multi-unit prototypes. 

- The reduction of the spacing-to-height ratio from 1.5 to 1 to 1 to 1 (or the 

addition of units of aperture from 4 to 6 units) increases the uniformity for 

all the prototypes, except for the roof monitor, which performs similarly in 

terms of the light distribution and uniformity for both spacing-to-height 

ratios.  

- The roof monitor prototype performs better than the other prototypes in 

terms of light distribution and uniformity under all sky conditions, as a 

greater spacing-to-height ratio can be used to achieve the same level of 

illuminance gradient ratio. 

5.5.3. Summary on Glare Analysis 

- For all the prototypes under clear sky on the summer solstice at solar noon, 

there is a chance of glare because of the glazing area is exposed to the 

observer’s field of view.  

- Chances of glare under overcast and intermediate sky conditions are not 

observed due to the time limits. The results might be different from under 

the clear sky condition. 
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- The luminance ratio exceeds 1 to 40, which is the recommended maximum 

luminance ratio. Therefore, some adjustments to the design have to be done 

to alleviate this problem. 

- By lifting the toplighting system off the observer’s field of view or creating 

a cut off angle, the presence of glare can be reduced. 

- The tested view angle is the critical angle; therefore, for different view 

angles and other dates and times, the luminance ratio might be lower.   
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

 

 From the results of the study, it could be concluded that, when all the developed 

prototypes have performed similarly in terms of the thermal performance by having 

similar amounts of the cooling load, the overall performance of the roof monitor 

prototype is the better than other prototypes. Under variable sky conditions, the roof 

monitor has better illuminance uniformity and distribution than other systems, with 

adequate illuminance level (at mostly higher than 500 lux). 

6.1. Conclusions about the Thermal Performance of the Prototypes 

Shading has proved to be very significant for the design of toplighting in a 

climate like that of Bangkok, Thailand. From the prototypes, it can be seen that the 

installation of shading devices has effectively helped to reduce the total cooling loads.  

All the prototypes have proved to be thermally comparable by yielding similar 

average cooling loads during the year. When all the prototypes yield similar cooling 

loads, the prototype with the largest glazing area is the roof monitor, followed by the 

lightscoop, and then the diffuse skylight. Increasing the glazing area does not affect the 

total cooling load to a great extent. Moving from a single unit prototype to one of 6 

units, the average total cooling load increased less than 15%, even with a cooling 

schedule of 24 hours.  

As a result, allowing daylight into the interior spaces via toplighting should not 

be dismissed as a design option in this climate. However, designers should consider their 
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design priorities regarding increased cooling loads and the reduction of electric lighting 

energy use. 

6.2. Conclusions about the Lighting Performance of the Prototypes 

The overall performance of the roof monitor prototype bests the other prototypes 

under variable sky conditions. Yielding better uniformity and distribution than other 

systems, despite a lower illuminance level, the roof monitor prototype can be considered 

as outperforming the other prototypes. The diffuse skylight prototype, even though it 

yields a higher illuminance level than the other prototypes during most of the year, has 

poor lighting performance in terms of light distribution and uniformity. The presence of 

glare is problematic in all of the toplighting prototypes.  

These conclusions are made based on the performance of the developed 

prototypes only and can be applied only to toplighting systems with a similar geometry. 

Hence, these results cannot be generalized to all skylight, lightscoop, or roof monitor 

designs. Different designs will result in different performance. 

6.3. Design Guidelines on Toplighting in Hot and Humid Climates 

For hot and humid climates with variable sky conditions similar to Bangkok, 

Thailand, roof monitor systems are recommended, as the lighting performance of roof 

monitors is better than lightscoops and skylights (given similar thermal performance). 

The lightscoop design could also be used as an effective strategy. However, 

electric lighting in dark spots or design adjustments will have to be made to improve its 

lighting performance in terms of distribution and uniformity. In addition, the lightscoop 
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system, given similar thermal performance, has less glazing area than the roof monitor 

system, which could reduce the money spent on glazing. 

The diffuse skylight is not recommended for use in hot and humid climates, 

because its lighting performance is worse than the lightscoop and the roof monitor. 

However, if a skylight is preferred for design reasons, a spacing-to-height ratio of 1 to 1 

or less should be used but with the expense of additional costs for glazing, construction, 

and cooling loads etc.  

Glare will be a concern of any toplighting system in this climate. Given the 

daylight availability, glare could occur even with vertical toplighting systems like the 

lightscoop or roof monitor. Therefore, the designer should test the geometry of the 

system in order to hide the glazing from the occupant’s field of view and test the use of 

splay wells or interior louvers. 

6.4 Recommendations for Future Studies 

 Concerning aspects of thermal performance, more studies should be done to test 

the effect of natural ventilation on interior temperatures. This should be undertaken, 

because daylighting systems can contribute, not just to lighting of a building, but to its 

thermal comfort as well.  

 Concerning aspects of lighting performance, more studies should be done to test 

the effects of various geometries and shapes of toplighting systems on lighting 

performance. For example, lightscoop geometry could have some effects on light 

distribution and uniformity, which could help improve its lighting performance, while 

 



 192

maintaining the same glazing area. In addition, the integration of electric lighting into 

each toplighting prototype should be studied for cost benefits and energy efficiency.  

 Concerning glare, this study used a height of 1.50m, which is equal to the view 

of a standing person. More studies should be done testing the presence of glare for a 

sitting person. Moreover, additional glare design strategies could be tested, such as the 

addition of light baffles to the toplighting prototype, which could reduce the luminance 

of the ceiling in the field of view.     

 More studies of the thermal and lighting performance of toplighting systems 

should be conducted at latitudes other than that of Bangkok, Thailand. This will increase 

the amount and type of available results and allow for comparisons between locations. In 

addition, more studies should be done on the feasibility of implementing these 

prototypes in Thailand, utilizing feedback from Thai architects. 
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APPENDIX A 

GLOSSARY 

 

 
 This part of the appendix gives the description of the terms used in this thesis. 
 
 
Daylighting:  
the use of the sky or the sun as the source of light 
 
Toplighting:  
the use of the ceiling or roof part of the building to bring daylight into the interior space 
 
Illuminance:  
the amount of light incident on a surface, measured in Lux 
 
Luminance:  
the amount of light reflected off a surface, measured in candela/m2 (which is the same as 
Nits)  

 
Cooling load:  
the total energy needed to remove heat from the space 
 
Heating Load 
the total energy needed to heat the space to the temperature setpoint 
 
Heat gains:  
the amount of heat entering the space through building surfaces, equipments, or people, 
etc  
 
Heat losses: 
the amount of heat leaving the space through building surfaces, equipments, or people, 
etc  
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APPENDIX B 

DEVELOPMENT OF PROTOTYPES 

 

Using the solar intensity and solar heat gain factors (SHGF) data from 1989 and 1993 

ASHRAE Fundamentals Handbook [20,21] of latitude 8°N and 16°N, the ratio between 

horizontal glazing and vertical looking north and south were generated. The 1993 ASHRAE 

handbook which is in SI units does not have the data for latitude 8°N, therefore, the data from 

the handbook in 1989 which is in IP units are converted to SI units. The data of latitude 13.7°N 

(use 14°N for ease of the calculation) were linearly interpolated from the 2 latitudes described 

previously as suggested from the handbook. The data are presented in Table B1. 

 
 
Table B1 
Interpolate value of solar heat gain factors for latitude 14°N 
Interpolate Value of Solar Heat Gain Factors for Latitude 14°N (SI 
Units) 

Daily Total (W/m2) N S HOR 
Jan 741 4693 5523 
Feb 790 3732 5976 
Mar 871 2230 6458 
Apr 1105 1242 6613 
May 1778 1021 6504 
Jun 2520 1027 6356 
Jul 2561 1039 6304 

Aug 1869 1058 6372 
Sep 1175 1280 6424 
Oct 903 2196 6282 
Nov 806 3641 5883 
Dec 745 4650 5498 

Total 15865 27811 74190 
N: north orientation; S: south orientation; HOR: horizontal orientation 

 

This data is not the actual heat gains from the daylighting systems but could be used to 

help in the estimation of the glazing area of each toplighting system which leads to the creation 
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of the prototypes. From the data, the ratio of solar heat gain factors of apertures looking to the 

north: south: horizontal at latitude 14N is 15865: 27811: 74190 or 1: 1.75: 4.68.  

To simplify this ratio for developing the glazing area for each prototype, ratio 1: 2: 5 

will first be tested and adjust until the cooling load from each prototypes is similar (within 5 

percent). EnergyPlus software was used for the calculation of the average cooling load.  

Initial Tests for Apertures before Shading Installation 

After the test from EnergyPlus, the dimension of each prototype is presented in Figures 

B1 and B2 for skylight, lightscoop, and roof monitor systems which are the cases with the 

similar cooling loads.  

The initial cooling load test result is presented in Fig. B3. The glazing area comparison 

for the prototypes without shading is illustrated in Figure B4. More details of EnergyPlus input 

files are provided in Appendix C: EnergyPlus Input. 

From the data presented, the average cooling load of each case differs less than 1 

percent and hence can be considered thermally comparable. The monthly average total cooling 

load of skylight, lightscoop, and roof monitor are 7261, 7320, and 7277 Watts, respectively, 

indicating less than 1 percent difference.  

As presented, the ratio of the glazing area for each toplighting system, skylight 

performs worst since its system with a 0.25m width has the same cooling load as a lightscoop 

with a 0.95m height glazing, and a roof monitor with a 0.55m glazing looking north and 0.20m 

looking south (exclude frame height).  

However, the toplighting systems designed should be able to prevent the interior 

spaces from direct sun, and the shading devices should be implemented. With the shading 

devices in use, the heat gain would be less than those presented above and same as the cooling 
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load.  Therefore, the prototypes must be simulated again after the installation of the shading 

devices to identify the difference in cooling load that the shading devices have.  

 

 
Fig. B1   Floor plan for single unit systems without shading devices 

 

 

Fig. B2   Section of toplighting systems for single unit systems without shading devices 
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Fig. B3 Cooling load comparison of single unit toplighting prototypes without shading devices 
 

 

Fig. B4  Glazing area comparison for single unit systems without shading devices 
 
 
 

The shading devices are designed for a lightscoop and a roof monitor cases to create 

more logical prototypes with shadings. After the proper shading devices are designed and 
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installed, the predicted amount of cooling load is tested for each case to ensure that they are 

comparable. This resulted in the change of the glazing area for each toplighting prototypical 

case since, after the shading devices are installed, the heat gains would be reduced from the 

cases without shading and so is the cooling load. The results of the test are covered in Chapter 

III Methodology.  

Shading Device Design for Lightscoop and Roof Monitor 

The shading devices are designed to prevent direct sun from entering the interior 

spaces at average office hours which is from 9:00am – 5:00 pm.  

The sun chart for latitude 13.7N is presented in Fig. B5. As seen from the sun chart, 

during summer, the sun will be on the north side of the building, therefore, the shading device 

has to be designed for both the north and the south side glazing. For skylights, the diffuse 

glazing could be used to prevent direct sun from coming in. In this study, for comparison, same 

glazing type which is low-E glazing will be use for all cases but the diffuse low-E glazing will 

be added only to the base case skylight to test the difference between these 2 glazing types. 

Ecotect is the software used in this thesis to test that no sun patches enter the interior space 

during the specified hours. 
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Fig. B5  Sun chart of latitude 13.7°N 
 

 

Lightscoop Shading Devices Design

The lightscoop unit is located at the center of the prototype building with a ceiling void 

width of 1.00m (Fig. 3.9). For the aperture looking north, the overhang width is 0.28m and the 

vertical fin’s dimension is 0.37m in depth and 1.43 in height. The vertical fins are spaced 

1.00m apart. The shading devices dimension and the shading mask overlay on the sun chart 

pictures for a lightscoop unit are in Figs. B6-B7.  
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Fig. B6  Lightscoop: shading devices dimension  
 

 

 

Fig. B7  Lightscoop: shading mask overlay  
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Roof Monitor Shading Devices Design 

The roof monitor unit is located at the center of the prototype building with a ceiling 

void width of 1.00m. For the aperture looking north, the overhang width is 0.17m and the 

vertical fin’s dimension is 0.37m in depth and 1.43 in height. The vertical fins are spaced 

1.00m apart. For the aperture looking south, the overhang width is 0.72m and the vertical fin’s 

dimension is 0.72m in depth and 0.95m in height. The vertical fins are spaced 1.00m apart. The 

shading mask overlay on the sun chart and the shading devices dimension for a roof monitor 

are in Figs. B8-B11. 

 

 

 

Fig. B8  Roof Monitor: north shading devices dimension 
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Fig. B9  Roof monitor: north shading devices shading mask overlay 
 

 

 

Fig. B10  Roof monitor: south shading devices dimension 
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Fig. B11  Roof monitor: south shading mask overlay 
 
 

From the results of the cooling load tests, it can be seen that, after the shading devices 

are installed, the cooling loads from each toplighting system have reduced significantly, about 

40 percent for lightscoop cases with the same glazing area, thus emphasizing the importance of 

the shading devices for the hot and humid climates where heat gains are critical design issues.   

As can be seen from the data presented, the comparable size of skylight to other 

systems is very small; in this case, the glazing width is only 0.15m. The skylight unit width of 

0.15m is very low and not a reasonable size for construction, therefore, skylight will be 

evaluated only as a base case test and not aiming for real construction. 
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APPENDIX C  

ENERGYPLUS INPUT FILES 

 
 
 The selected input file for simulating the thermal performance in EnergyPlus is provided 

in the following. The prototype selected is single lightscoop prototype. The input file is created 

manually and edited with IDF Editor.  

 The first file is without the system to get the interior temperature and the second input 

file is the same as the first except for the system part which purchased air 

has been added to get the total cooling load.  

EnergyPlus Input File without the System 
!-Generator IDFEditor 1.13 
 
!-NOTE: All comments with '!-' are ignored by the IDFEditor and are generated automatically. 
!-      Use '!' comments if they need to be retained when using the IDFEditor. 
 
!-   ===========  ALL OBJECTS IN CLASS: VERSION =========== 
! DATE: Jan 26 13:10:17 2005 
! SYSTEM: NO 
! INTERNAL GAINS: YES 
! TEST FOR HOURLY HEAT GAINS/LOSSES AND INT TEMPERATURE 
VERSION, 
    1.2;                     !- Version Identifier 
!-   ===========  ALL OBJECTS IN CLASS: BUILDING =========== 
BUILDING, 
    [NoName],                !- Building Name 
    0.00000,                 !- North Axis {deg} 
    City,                    !- Terrain 
    0.05000,                 !- Loads Convergence Tolerance Value {W} 
    0.50000,                 !- Temperature Convergence Tolerance Value {deltaC} 
    FullExterior,            !- Solar Distribution 
    25;                      !- Maximum Number of Warmup Days 
!-   ===========  ALL OBJECTS IN CLASS: TIMESTEP IN HOUR =========== 
TIMESTEP IN HOUR, 
    1;                       !- Time Step in Hour 
!-   ===========  ALL OBJECTS IN CLASS: INSIDE CONVECTION ALGORITHM  
INSIDE CONVECTION ALGORITHM, 
    Detailed;                !- InsideConvectionValue 
!-   ===========  ALL OBJECTS IN CLASS: OUTSIDE CONVECTION ALGORITHM  
OUTSIDE CONVECTION ALGORITHM, 
    Simple;                  !- OutsideConvectionValue 
!-   ===========  ALL OBJECTS IN CLASS: SOLUTION ALGORITHM =========== 
SOLUTION ALGORITHM, 
    CTF;                     !- SolutionAlgo 
!-   ===========  ALL OBJECTS IN CLASS: SHADOWING CALCULATIONS  
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SHADOWING CALCULATIONS, 
    14;                      !- Period_for_calculations 
!-   ===========  ALL OBJECTS IN CLASS: AIRFLOW MODEL =========== 
Airflow Model, 
    Simple;                  !- AirFlowModelValue 
!-   ===========  ALL OBJECTS IN CLASS: RUN CONTROL =========== 
RUN CONTROL, 
    No,                      !- Do the zone sizing calculation 
    No,                      !- Do the system sizing calculation 
    No,                      !- Do the plant sizing calculation 
    No,                      !- Do the design day simulations 
    Yes;                     !- Do the weather file simulation 
!-   ===========  ALL OBJECTS IN CLASS: RUNPERIOD =========== 
RunPeriod, 
    1,                       !- Begin Month 
    1,                       !- Begin Day Of Month 
    12,                      !- End Month 
    31,                      !- End Day Of Month 
    UseWeatherFile,          !- Day Of Week For Start Day 
    Yes,                     !- Use WeatherFile Holidays/Special Days 
    Yes,                     !- Use WeatherFile DaylightSavingPeriod 
    Yes,                     !- Apply Weekend Holiday Rule 
    Yes,                     !- Use WeatherFile Rain Indicators 
    Yes;                     !- Use WeatherFile Snow Indicators 
!-   ===========  ALL OBJECTS IN CLASS: LOCATION =========== 
Location, 
    BANGhourt.dat ,          !- LocationName 
    13.7,                    !- Latitude {deg} 
    100.5,                   !- Longitude {deg} 
    7.00000,                 !- TimeZone {hr} 
    10.00000;                !- Elevation {m} 
!-   ===========  ALL OBJECTS IN CLASS: GROUNDTEMPERATURES =========== 
GroundTemperatures, 
    24.27,                   !- January Ground Temperature {C} 
    24.23,                   !- February Ground Temperature {C} 
    24.22,                   !- March Ground Temperature {C} 
    24.18,                   !- April Ground Temperature {C} 
    24.17,                   !- May Ground Temperature {C} 
    24.23,                   !- June Ground Temperature {C} 
    24.26,                   !- July Ground Temperature {C} 
    24.27,                   !- August Ground Temperature {C} 
    24.32,                   !- September Ground Temperature {C} 
    24.38,                   !- October Ground Temperature {C} 
    24.36,                   !- November Ground Temperature {C} 
    24.26;                   !- December Ground Temperature {C} 
!-   ===========  ALL OBJECTS IN CLASS: MATERIAL:REGULAR =========== 
! WALL 
! FINISH 
MATERIAL:REGULAR, 
    HF-A6,                   !- Name 
    MediumSmooth,            !- Roughness 
    1.2700000E-02,           !- Thickness {m} 
    0.4151000    ,           !- Conductivity {W/m-K} 
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    1249.000    ,            !- Density {kg/m3} 
    1088.000    ,            !- Specific Heat {J/kg-K} 
    0.9000000    ,           !- Absorptance:Thermal 
    0.5000000    ,           !- Absorptance:Solar 
    0.5000000    ;           !- Absorptance:Visible 
! INSULATION 1IN 
MATERIAL:REGULAR, 
    HF-B2,                   !- Name 
    VeryRough,               !- Roughness 
    2.5300000E-02,           !- Thickness {m} 
    4.3200001E-02,           !- Conductivity {W/m-K} 
    32.00000    ,            !- Density {kg/m3} 
    837.0000    ,            !- Specific Heat {J/kg-K} 
    0.9000000    ,           !- Absorptance:Thermal 
    0.5000000    ,           !- Absorptance:Solar 
    0.5000000    ;           !- Absorptance:Visible 
! COMMON BRICK 4IN 
MATERIAL:REGULAR, 
    HF-C4,                   !- Name 
    Rough,                   !- Roughness 
    0.1016000    ,           !- Thickness {m} 
    0.7264000    ,           !- Conductivity {W/m-K} 
    1922.000    ,            !- Density {kg/m3} 
    837.0000    ,            !- Specific Heat {J/kg-K} 
    0.9000000    ,           !- Absorptance:Thermal 
    0.7600000    ,           !- Absorptance:Solar 
    0.7600000    ;           !- Absorptance:Visible 
! 3/4IN PLAS-3/4IN GYPS 
MATERIAL:REGULAR, 
    HF-E1,                   !- Name 
    Smooth,                  !- Roughness 
    1.9099999E-02,           !- Thickness {m} 
    0.7264000    ,           !- Conductivity {W/m-K} 
    1602.000    ,            !- Density {kg/m3} 
    837.0000    ,            !- Specific Heat {J/kg-K} 
    0.9000000    ,           !- Absorptance:Thermal 
    0.9200000    ,           !- Absorptance:Solar 
    0.9200000    ;           !- Absorptance:Visible 
! CEILING AND ROOF 
! CONCRETE HW 8IN 
MATERIAL:REGULAR, 
    HF-C10,                  !- Name 
MediumRough,             !- Roughness 
    0.2033000    ,           !- Thickness {m} 
    1.729600    ,            !- Conductivity {W/m-K} 
    2243.000    ,            !- Density {kg/m3} 
    837.0000    ,            !- Specific Heat {J/kg-K} 
    0.9000000    ,           !- Absorptance:Thermal 
    0.6500000    ,           !- Absorptance:Solar 
    0.6500000    ;           !- Absorptance:Visible 
! ACOUSTIC TILE 
MATERIAL:REGULAR, 
    HF-E5,                   !- Name 
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    MediumSmooth,            !- Roughness 
    1.9099999E-02,           !- Thickness {m} 
    6.0500000E-02,           !- Conductivity {W/m-K} 
    481.0000    ,            !- Density {kg/m3} 
    837.0000    ,            !- Specific Heat {J/kg-K} 
    0.9000000    ,           !- Absorptance:Thermal 
    0.3200000    ,           !- Absorptance:Solar 
    0.3200000    ;           !- Absorptance:Visible 
! CONC SLAB ON GROUND (AS FROM ECOTECT) 
MATERIAL:REGULAR, 
    ConcSlab_OnGround-0,     !- Name 
    Rough,                   !- Roughness 
    1.50000,                 !- Thickness {m} 
    0.83680,                 !- Conductivity {W/m-K} 
    1300.00000,              !- Density {kg/m3} 
    1046.00000,              !- Specific Heat {J/kg-K} 
    0.90000,                 !- Absorptance:Thermal 
    0.93000,                 !- Absorptance:Solar 
    0.93000;                 !- Absorptance:Visible 
MATERIAL:REGULAR, 
    ConcSlab_OnGround-1,     !- Name 
    Rough,                   !- Roughness 
    0.10000,                 !- Thickness {m} 
    0.75300,                 !- Conductivity {W/m-K} 
    3800.00000,              !- Density {kg/m3} 
    656.90002,               !- Specific Heat {J/kg-K} 
    0.90000,                 !- Absorptance:Thermal 
    0.93000,                 !- Absorptance:Solar 
    0.93000;                 !- Absorptance:Visible 
!-   ===========  ALL OBJECTS IN CLASS: MATERIAL:AIR =========== 
! Air Layer 3/4 in to 4 ines Vertical Walls 
MATERIAL:AIR, 
    AL21,                    !- Name 
    0.1570000    ;           !- Thermal Resistance {m2-K/W} 
! CEILING AIR SPACE 
MATERIAL:AIR, 
    HF-E4,                   !- Name 
   0.1762000    ;           !- Thermal Resistance {m2-K/W} 
!-   ===========  ALL OBJECTS IN CLASS: MATERIAL:WINDOWGLASS  
! GLAZING (LOW-E) Data from Window5 program in glazing system library named Ngao_try1 
!  Name            Th   Ts   Rfs  Rbs  Tv   Rfv  Rbv Tir Ef  Eb Con 
! ID 2007 
MATERIAL:WINDOWGLASS, 
    E178-4.CIG,              !- Name 
    SpectralAverage,         !- Optical Data Type 
    ,                        !- Name of Window Glass Spectral Data Set 
    .0041,                   !- Thickness {m} 
    .607,                    !- Solar Transmittance at Normal Incidence 
    .194,                    !- Solar Reflectance at Normal Incidence: Front Side 
    .253,                    !- Solar Reflectance at Normal Incidence: Back Side 
    .860,                    !- Visible Transmittance at Normal Incidence 
    .054,                    !- Visible Reflectance at Normal Incidence: Front Side 
    .048,                    !- Visible Reflectance at Normal Incidence: Back Side 
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    .0,                      !- IR Transmittance at Normal Incidence 
    .840,                    !- IR Hemispherical Emissivity: Front Side 
    .083,                    !- IR Hemispherical Emissivity: Back Side 
    1;                       !- Conductivity {W/m-K} 
! ID 103 
MATERIAL:WINDOWGLASS, 
    CLEAR_6.DAT,             !- Name 
    SpectralAverage,         !- Optical Data Type 
    ,                        !- Name of Window Glass Spectral Data Set 
    .0057,                   !- Thickness {m} 
    .771,                    !- Solar Transmittance at Normal Incidence 
    .070,                    !- Solar Reflectance at Normal Incidence: Front Side 
    .070,                    !- Solar Reflectance at Normal Incidence: Back Side 
    .884,                    !- Visible Transmittance at Normal Incidence 
    .080,                    !- Visible Reflectance at Normal Incidence: Front Side 
    .080,                    !- Visible Reflectance at Normal Incidence: Back Side 
    .0,                      !- IR Transmittance at Normal Incidence 
    .84,                     !- IR Hemispherical Emissivity: Front Side 
    .84,                     !- IR Hemispherical Emissivity: Back Side 
    1;                       !- Conductivity {W/m-K} 
!-   ===========  ALL OBJECTS IN CLASS: MATERIAL:WINDOWGAS =========== 
MATERIAL:WINDOWGAS, 
    AIR 12.7MM,              !- Name 
    Air    ,                 !- Gas Type 
    .0127  ;                 !- Thickness {m} 
!-   ===========  ALL OBJECTS IN CLASS: CONSTRUCTION =========== 
CONSTRUCTION, 
    BRICK_TH,                !- Name 
! FINISH 
    HF-A6,                   !- Outside Layer 
! INSULATION 1IN 
    HF-B2,                   !- Layer #2 
! COMMON BRICK 4IN 
    HF-C4,                   !- Layer #3 
! Air Layer 3/4 in to 4 ines Vertical Walls 
    AL21,                    !- Layer #4 
! COMMON BRICK 4IN 
    HF-C4,                   !- Layer #5 
! 3/4IN PLAS-3/4IN GYPS 
    HF-E1;                   !- Layer #6 
CONSTRUCTION, 
    ASHI-38,                 !- Name 
! CONCRETE HW 8IN 
    HF-C10,                  !- Outside Layer 
! CEILING AIR SPACE 
    HF-E4,                   !- Layer #2 
! ACOUSTIC TILE 
    HF-E5;                   !- Layer #3 
CONSTRUCTION, 
    ConcSlab_OnGround,       !- Name 
    ConcSlab_OnGround-0,     !- Outside Layer 
    ConcSlab_OnGround-1;     !- Layer #2 
! 2634  U=1.751 SC= .654  SHGC=.568  Rel. Ht. gain=426 w/m2 TVIS=.763 Keff=.0328w/m-K 
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CONSTRUCTION, 
    Asahi_Low-E,             !- Name 
    E178-4.CIG,              !- Outside Layer 
    AIR 12.7MM,              !- Layer #2 
    CLEAR_6.DAT;             !- Layer #3 
!-   ===========  ALL OBJECTS IN CLASS: ZONE =========== 
ZONE, 
    Zone_1,                  !- Zone Name 
    0.00000,                 !- Relative North (to building) {deg} 
    0.0,                     !- X Origin {m} 
    0.0,                     !- Y Origin {m} 
    0.0,                     !- Z Origin {m} 
    1,                       !- Type 
    1.0,                     !- Multiplier 
    4.50000,                 !- Ceiling Height {m} 
    1687.50000;              !- Volume {m3} 
!-   ===========  ALL OBJECTS IN CLASS: SURFACEGEOMETRY =========== 
SurfaceGeometry, 
    UpperLeftCorner,         !- SurfaceStartingPosition 
    CounterClockWise,        !- VertexEntry 
    WorldCoordinateSystem;   !- SurfaceGeometryKey 
!-   ===========  ALL OBJECTS IN CLASS: SURFACE:HEATTRANSFER =========== 
Surface:HeatTransfer, 
    Obj:0000,                !- User Supplied Surface Name 
    FLOOR,                   !- Surface Type 
    ConcSlab_OnGround,       !- Construction Name of the Surface 
    Zone_1,                  !- InsideFaceEnvironment 
    Ground,                  !- OutsideFaceEnvironment 
    ,                        !- OutsideFaceEnvironment Object 
    NoSun,                   !- Sun Exposure 
    NoWind,                  !- Wind Exposure 
    1.00000,                 !- View Factor to Ground 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    0.00000,                 !- Vertex 1 X-coordinate {m} 
    0.00000,                 !- Vertex 1 Y-coordinate {m} 
    0.00000,                 !- Vertex 1 Z-coordinate {m} 
    0.00000,                 !- Vertex 2 X-coordinate {m} 
    25.00000,                !- Vertex 2 Y-coordinate {m} 
    0.00000,                 !- Vertex 2 Z-coordinate {m} 
    15.00000,                !- Vertex 3 X-coordinate {m} 
    25.00000,                !- Vertex 3 Y-coordinate {m} 
    0.00000,                 !- Vertex 3 Z-coordinate {m} 
    15.00000,                !- Vertex 4 X-coordinate {m} 
    0.00000,                 !- Vertex 4 Y-coordinate {m} 
    0.00000;                 !- Vertex 4 Z-coordinate {m} 
Surface:HeatTransfer, 
    Obj:0001,                !- User Supplied Surface Name 
    WALL,                    !- Surface Type 
    BRICK_TH,                !- Construction Name of the Surface 
    Zone_1,                  !- InsideFaceEnvironment 
    ExteriorEnvironment,     !- OutsideFaceEnvironment 
    ,                        !- OutsideFaceEnvironment Object 
    SunExposed,              !- Sun Exposure 
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    WindExposed,             !- Wind Exposure 
    0.50000,                 !- View Factor to Ground 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    0.00000,                 !- Vertex 1 X-coordinate {m} 
    25.00000,                !- Vertex 1 Y-coordinate {m} 
 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
    0.00000,                 !- Vertex 2 X-coordinate {m} 
    25.00000,                !- Vertex 2 Y-coordinate {m} 
    0.00000,                 !- Vertex 2 Z-coordinate {m} 
    0.00000,                 !- Vertex 3 X-coordinate {m} 
    0.00000,                 !- Vertex 3 Y-coordinate {m} 
    0.00000,                 !- Vertex 3 Z-coordinate {m} 
    0.00000,                 !- Vertex 4 X-coordinate {m} 
    0.00000,                 !- Vertex 4 Y-coordinate {m} 
    4.50000;                 !- Vertex 4 Z-coordinate {m} 
Surface:HeatTransfer, 
    Obj:0002,                !- User Supplied Surface Name 
    WALL,                    !- Surface Type 
    BRICK_TH,                !- Construction Name of the Surface 
    Zone_1,                  !- InsideFaceEnvironment 
    ExteriorEnvironment,     !- OutsideFaceEnvironment 
    ,                        !- OutsideFaceEnvironment Object 
    SunExposed,              !- Sun Exposure 
    WindExposed,             !- Wind Exposure 
    0.50000,                 !- View Factor to Ground 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    15.00000,                !- Vertex 1 X-coordinate {m} 
    25.00000,                !- Vertex 1 Y-coordinate {m} 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
    15.00000,                !- Vertex 2 X-coordinate {m} 
    25.00000,                !- Vertex 2 Y-coordinate {m} 
    0.00000,                 !- Vertex 2 Z-coordinate {m} 
    0.00000,                 !- Vertex 3 X-coordinate {m} 
    25.00000,                !- Vertex 3 Y-coordinate {m} 
    0.00000,                 !- Vertex 3 Z-coordinate {m} 
    0.00000,                 !- Vertex 4 X-coordinate {m} 
    25.00000,                !- Vertex 4 Y-coordinate {m} 
    4.50000;                 !- Vertex 4 Z-coordinate {m} 
Surface:HeatTransfer, 
    Obj:0003,                !- User Supplied Surface Name 
    WALL,                    !- Surface Type 
    BRICK_TH,                !- Construction Name of the Surface 
    Zone_1,                  !- InsideFaceEnvironment 
    ExteriorEnvironment,     !- OutsideFaceEnvironment 
    ,                        !- OutsideFaceEnvironment Object 
    SunExposed,              !- Sun Exposure 
    WindExposed,             !- Wind Exposure 
    0.50000,                 !- View Factor to Ground 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    15.00000,                !- Vertex 1 X-coordinate {m} 
    0.00000,                 !- Vertex 1 Y-coordinate {m} 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
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    15.00000,                !- Vertex 2 X-coordinate {m} 
    0.00000,                 !- Vertex 2 Y-coordinate {m} 
    0.00000,                 !- Vertex 2 Z-coordinate {m} 
    15.00000,                !- Vertex 3 X-coordinate {m} 
    25.00000,                !- Vertex 3 Y-coordinate {m} 
    0.00000,                 !- Vertex 3 Z-coordinate {m} 
    15.00000,                !- Vertex 4 X-coordinate {m} 
    25.00000,                !- Vertex 4 Y-coordinate {m} 
    4.50000;                 !- Vertex 4 Z-coordinate {m} 
Surface:HeatTransfer, 
    Obj:0004,                !- User Supplied Surface Name 
    WALL,                    !- Surface Type 
    BRICK_TH,                !- Construction Name of the Surface 
    Zone_1,                  !- InsideFaceEnvironment 
    ExteriorEnvironment,     !- OutsideFaceEnvironment 
    ,                        !- OutsideFaceEnvironment Object 
    SunExposed,              !- Sun Exposure 
    WindExposed,             !- Wind Exposure 
    0.50000,                 !- View Factor to Ground 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    0.00000,                 !- Vertex 1 X-coordinate {m} 
    0.00000,                 !- Vertex 1 Y-coordinate {m} 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
    0.00000,                 !- Vertex 2 X-coordinate {m} 
    0.00000,                 !- Vertex 2 Y-coordinate {m} 
    0.00000,                 !- Vertex 2 Z-coordinate {m} 
    15.00000,                !- Vertex 3 X-coordinate {m} 
    0.00000,                 !- Vertex 3 Y-coordinate {m} 
    0.00000,                 !- Vertex 3 Z-coordinate {m} 
    15.00000,                !- Vertex 4 X-coordinate {m} 
    0.00000,                 !- Vertex 4 Y-coordinate {m} 
    4.50000;                 !- Vertex 4 Z-coordinate {m} 
Surface:HeatTransfer, 
    Obj:0005,                !- User Supplied Surface Name 
    WALL,                    !- Surface Type 
    ASHI-38,                 !- Construction Name of the Surface 
    Zone_1,                  !- InsideFaceEnvironment 
    ExteriorEnvironment,     !- OutsideFaceEnvironment 
    ,                        !- OutsideFaceEnvironment Object 
    SunExposed,              !- Sun Exposure 
    WindExposed,             !- Wind Exposure 
    0.50000,                 !- View Factor to Ground 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    13.5,                    !- Vertex 1 X-coordinate {m} 
    13.0,                    !- Vertex 1 Y-coordinate {m} 
    5.5,                     !- Vertex 1 Z-coordinate {m} 
    13.5,                    !- Vertex 2 X-coordinate {m} 
    13.0,                    !- Vertex 2 Y-coordinate {m} 
    4.5,                     !- Vertex 2 Z-coordinate {m} 
    1.5,                     !- Vertex 3 X-coordinate {m} 
    13.0,                    !- Vertex 3 Y-coordinate {m} 
    4.5,                     !- Vertex 3 Z-coordinate {m} 
    1.5,                     !- Vertex 4 X-coordinate {m} 
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    13.0,                    !- Vertex 4 Y-coordinate {m} 
    5.5;                     !- Vertex 4 Z-coordinate {m} 
Surface:HeatTransfer, 
    Obj:0006,                !- User Supplied Surface Name 
    CEILING,                 !- Surface Type 
    ASHI-38,                 !- Construction Name of the Surface 
    Zone_1,                  !- InsideFaceEnvironment 
    ExteriorEnvironment,     !- OutsideFaceEnvironment 
    ,                        !- OutsideFaceEnvironment Object 
    SunExposed,              !- Sun Exposure 
    WindExposed,             !- Wind Exposure 
    0.75000,                 !- View Factor to Ground 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    1.5,                     !- Vertex 1 X-coordinate {m} 
    13.0,                    !- Vertex 1 Y-coordinate {m} 
    5.5,                     !- Vertex 1 Z-coordinate {m} 
    1.5,                     !- Vertex 2 X-coordinate {m} 
    12.0,                    !- Vertex 2 Y-coordinate {m} 
    4.5,                     !- Vertex 2 Z-coordinate {m} 
    13.5,                    !- Vertex 3 X-coordinate {m} 
    12.0,                    !- Vertex 3 Y-coordinate {m} 
    4.5,                     !- Vertex 3 Z-coordinate {m} 
    13.5,                    !- Vertex 4 X-coordinate {m} 
    13.0,                    !- Vertex 4 Y-coordinate {m} 
    5.5;                     !- Vertex 4 Z-coordinate {m} 
Surface:HeatTransfer, 
    Obj:0007,                !- User Supplied Surface Name 
    WALL,                    !- Surface Type 
    ASHI-38,                 !- Construction Name of the Surface 
    Zone_1,                  !- InsideFaceEnvironment 
    ExteriorEnvironment,     !- OutsideFaceEnvironment 
    ,                        !- OutsideFaceEnvironment Object 
    SunExposed,              !- Sun Exposure 
    WindExposed,             !- Wind Exposure 
    0.50000,                 !- View Factor to Ground 
    3,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    1.5,                     !- Vertex 1 X-coordinate {m} 
    13.0,                    !- Vertex 1 Y-coordinate {m} 
    5.5,                     !- Vertex 1 Z-coordinate {m} 
    1.5,                     !- Vertex 2 X-coordinate {m} 
    13.0,                    !- Vertex 2 Y-coordinate {m} 
    4.5,                     !- Vertex 2 Z-coordinate {m} 
    1.5,                     !- Vertex 3 X-coordinate {m} 
    12.0,                    !- Vertex 3 Y-coordinate {m} 
    4.5;                     !- Vertex 3 Z-coordinate {m} 
Surface:HeatTransfer, 
    Obj:0008,                !- User Supplied Surface Name 
    WALL,                    !- Surface Type 
    ASHI-38,                 !- Construction Name of the Surface 
    Zone_1,                  !- InsideFaceEnvironment 
    ExteriorEnvironment,     !- OutsideFaceEnvironment 
    ,                        !- OutsideFaceEnvironment Object 
    SunExposed,              !- Sun Exposure 
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    WindExposed,             !- Wind Exposure 
    0.50000,                 !- View Factor to Ground 
    3,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    13.5,                    !- Vertex 1 X-coordinate {m} 
    13.0,                    !- Vertex 1 Y-coordinate {m} 
    5.5,                     !- Vertex 1 Z-coordinate {m} 
    13.5,                    !- Vertex 2 X-coordinate {m} 
    12.0,                    !- Vertex 2 Y-coordinate {m} 
    4.5,                     !- Vertex 2 Z-coordinate {m} 
    13.5,                    !- Vertex 3 X-coordinate {m} 
    13.0,                    !- Vertex 3 Y-coordinate {m} 
    4.5;                     !- Vertex 3 Z-coordinate {m} 
Surface:HeatTransfer, 
    Obj:0010,                !- User Supplied Surface Name 
    CEILING,                 !- Surface Type 
    ASHI-38,                 !- Construction Name of the Surface 
    Zone_1,                  !- InsideFaceEnvironment 
    ExteriorEnvironment,     !- OutsideFaceEnvironment 
    ,                        !- OutsideFaceEnvironment Object 
    SunExposed,              !- Sun Exposure 
    WindExposed,             !- Wind Exposure 
    0.00000,                 !- View Factor to Ground 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    0.00000,                 !- Vertex 1 X-coordinate {m} 
    25.00000,                !- Vertex 1 Y-coordinate {m} 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
    0.00000,                 !- Vertex 2 X-coordinate {m} 
    13.00000,                !- Vertex 2 Y-coordinate {m} 
    4.50000,                 !- Vertex 2 Z-coordinate {m} 
    15.00000,                !- Vertex 3 X-coordinate {m} 
    13.00000,                !- Vertex 3 Y-coordinate {m} 
    4.50000,                 !- Vertex 3 Z-coordinate {m} 
    15.00000,                !- Vertex 4 X-coordinate {m} 
    25.00000,                !- Vertex 4 Y-coordinate {m} 
    4.50000;                 !- Vertex 4 Z-coordinate {m} 
Surface:HeatTransfer, 
    Obj:0011,                !- User Supplied Surface Name 
    CEILING,                 !- Surface Type 
    ASHI-38,                 !- Construction Name of the Surface 
    Zone_1,                  !- InsideFaceEnvironment 
    ExteriorEnvironment,     !- OutsideFaceEnvironment 
    ,                        !- OutsideFaceEnvironment Object 
    SunExposed,              !- Sun Exposure 
    WindExposed,             !- Wind Exposure 
    0.00000,                 !- View Factor to Ground 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    0.00000,                 !- Vertex 1 X-coordinate {m} 
    12.00000,                !- Vertex 1 Y-coordinate {m} 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
    0.00000,                 !- Vertex 2 X-coordinate {m} 
    0.00000,                 !- Vertex 2 Y-coordinate {m} 
    4.50000,                 !- Vertex 2 Z-coordinate {m} 
    15.00000,                !- Vertex 3 X-coordinate {m} 
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    0.00000,                 !- Vertex 3 Y-coordinate {m} 
    4.50000,                 !- Vertex 3 Z-coordinate {m} 
    15.00000,                !- Vertex 4 X-coordinate {m} 
    12.00000,                !- Vertex 4 Y-coordinate {m} 
    4.50000;                 !- Vertex 4 Z-coordinate {m} 
Surface:HeatTransfer, 
    Obj:0012,                !- User Supplied Surface Name 
    CEILING,                 !- Surface Type 
    ASHI-38,                 !- Construction Name of the Surface 
    Zone_1,                  !- InsideFaceEnvironment 
    ExteriorEnvironment,     !- OutsideFaceEnvironment 
    ,                        !- OutsideFaceEnvironment Object 
    SunExposed,              !- Sun Exposure 
    WindExposed,             !- Wind Exposure 
    0.00000,                 !- View Factor to Ground 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    0.00000,                 !- Vertex 1 X-coordinate {m} 
    13.00000,                !- Vertex 1 Y-coordinate {m} 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
    0.00000,                 !- Vertex 2 X-coordinate {m} 
    12.00000,                !- Vertex 2 Y-coordinate {m} 
    4.50000,                 !- Vertex 2 Z-coordinate {m} 
    1.50000,                 !- Vertex 3 X-coordinate {m} 
    12.00000,                !- Vertex 3 Y-coordinate {m} 
    4.50000,                 !- Vertex 3 Z-coordinate {m} 
    1.50000,                 !- Vertex 4 X-coordinate {m} 
    13.00000,                !- Vertex 4 Y-coordinate {m} 
    4.50000;                 !- Vertex 4 Z-coordinate {m} 
Surface:HeatTransfer, 
    Obj:0013,                !- User Supplied Surface Name 
    CEILING,                 !- Surface Type 
    ASHI-38,                 !- Construction Name of the Surface 
    Zone_1,                  !- InsideFaceEnvironment 
    ExteriorEnvironment,     !- OutsideFaceEnvironment 
    ,                        !- OutsideFaceEnvironment Object 
    SunExposed,              !- Sun Exposure 
    WindExposed,             !- Wind Exposure 
    0.00000,                 !- View Factor to Ground 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    13.50000,                !- Vertex 1 X-coordinate {m} 
    13.00000,                !- Vertex 1 Y-coordinate {m} 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
    13.50000,                !- Vertex 2 X-coordinate {m} 
    12.00000,                !- Vertex 2 Y-coordinate {m} 
    4.50000,                 !- Vertex 2 Z-coordinate {m} 
    15.00000,                !- Vertex 3 X-coordinate {m} 
    12.00000,                !- Vertex 3 Y-coordinate {m} 
    4.50000,                 !- Vertex 3 Z-coordinate {m} 
    15.00000,                !- Vertex 4 X-coordinate {m} 
    13.00000,                !- Vertex 4 Y-coordinate {m} 
    4.50000;                 !- Vertex 4 Z-coordinate {m} 
!-   ===========  ALL OBJECTS IN CLASS: SURFACE:HEATTRANSFER:SUB  
Surface:HeatTransfer:Sub, 
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    WIN_1,                   !- User Supplied Surface Name 
    WINDOW,                  !- Surface Type 
    Asahi_Low-E,             !- Construction Name of the Surface 
    Obj:0005,                !- Base Surface Name 
    ,                        !- OutsideFaceEnvironment Object 
    0.50000,                 !- View Factor to Ground 
    ,                        !- Name of shading control 
    ,                        !- WindowFrameAndDivider Name 
    1.00000,                 !- Multiplier 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    13.47500,                !- Vertex 1 X-coordinate {m} 
    13.00000,                !- Vertex 1 Y-coordinate {m} 
    5.47500,                 !- Vertex 1 Z-coordinate {m} 
    13.47500,                !- Vertex 2 X-coordinate {m} 
    13.00000,                !- Vertex 2 Y-coordinate {m} 
    4.52500,                 !- Vertex 2 Z-coordinate {m} 
    1.52500,                 !- Vertex 3 X-coordinate {m} 
    13.00000,                !- Vertex 3 Y-coordinate {m} 
    4.52500,                 !- Vertex 3 Z-coordinate {m} 
    1.52500,                 !- Vertex 4 X-coordinate {m} 
    13.00000,                !- Vertex 4 Y-coordinate {m} 
    5.47500;                 !- Vertex 4 Z-coordinate {m} 
!-   ===========  ALL OBJECTS IN CLASS: SURFACE:SHADING:ATTACHED  
Surface:Shading:Attached, 
    Overhang1,               !- User Supplied Surface Name 
    Obj:0005,                !- Base Surface Name 
    SHADE-1,                 !- TransSchedShadowSurf 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    13.5,                    !- Vertex 1 X-coordinate {m} 
    13.0,                    !- Vertex 1 Y-coordinate {m} 
    5.5,                     !- Vertex 1 Z-coordinate {m} 
    1.5,                     !- Vertex 2 X-coordinate {m} 
    13.0,                    !- Vertex 2 Y-coordinate {m} 
    5.5,                     !- Vertex 2 Z-coordinate {m} 
    1.5,                     !- Vertex 3 X-coordinate {m} 
    13.28,                   !- Vertex 3 Y-coordinate {m} 
    5.5,                     !- Vertex 3 Z-coordinate {m} 
    13.5,                    !- Vertex 4 X-coordinate {m} 
    13.28,                   !- Vertex 4 Y-coordinate {m} 
    5.5;                     !- Vertex 4 Z-coordinate {m} 
Surface:Shading:Attached, 
    FIN_1,                   !- User Supplied Surface Name 
    Obj:0005,                !- Base Surface Name 
    SHADE-1,                 !- TransSchedShadowSurf 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    13.50000,                !- Vertex 1 X-coordinate {m} 
    13.37000,                !- Vertex 1 Y-coordinate {m} 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
    13.50000,                !- Vertex 2 X-coordinate {m} 
    13.37000,                !- Vertex 2 Y-coordinate {m} 
    5.93000,                 !- Vertex 2 Z-coordinate {m} 
    13.50000,                !- Vertex 3 X-coordinate {m} 
    13.00000,                !- Vertex 3 Y-coordinate {m} 
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    5.93000,                 !- Vertex 3 Z-coordinate {m} 
    13.50000,                !- Vertex 4 X-coordinate {m} 
    13.00000,                !- Vertex 4 Y-coordinate {m} 
    4.50000;                 !- Vertex 4 Z-coordinate {m} 
Surface:Shading:Attached, 
    FIN_2,                   !- User Supplied Surface Name 
    Obj:0005,                !- Base Surface Name 
    SHADE-1,                 !- TransSchedShadowSurf 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    12.50000,                !- Vertex 1 X-coordinate {m} 
    13.37000,                !- Vertex 1 Y-coordinate {m} 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
    12.50000,                !- Vertex 2 X-coordinate {m} 
    13.37000,                !- Vertex 2 Y-coordinate {m} 
    5.93000,                 !- Vertex 2 Z-coordinate {m} 
    12.50000,                !- Vertex 3 X-coordinate {m} 
    13.00000,                !- Vertex 3 Y-coordinate {m} 
    5.93000,                 !- Vertex 3 Z-coordinate {m} 
    12.50000,                !- Vertex 4 X-coordinate {m} 
    13.00000,                !- Vertex 4 Y-coordinate {m} 
    4.50000;                 !- Vertex 4 Z-coordinate {m} 
 
Surface:Shading:Attached, 
    FIN_3,                   !- User Supplied Surface Name 
    Obj:0005,                !- Base Surface Name 
    SHADE-1,                 !- TransSchedShadowSurf 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    11.50000,                !- Vertex 1 X-coordinate {m} 
    13.37000,                !- Vertex 1 Y-coordinate {m} 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
    11.50000,                !- Vertex 2 X-coordinate {m} 
    13.37000,                !- Vertex 2 Y-coordinate {m} 
    5.93000,                 !- Vertex 2 Z-coordinate {m} 
    11.50000,                !- Vertex 3 X-coordinate {m} 
    13.00000,                !- Vertex 3 Y-coordinate {m} 
    5.93000,                 !- Vertex 3 Z-coordinate {m} 
    11.50000,                !- Vertex 4 X-coordinate {m} 
    13.00000,                !- Vertex 4 Y-coordinate {m} 
    4.50000;                 !- Vertex 4 Z-coordinate {m} 
Surface:Shading:Attached, 
    FIN_4,                   !- User Supplied Surface Name 
    Obj:0005,                !- Base Surface Name 
    SHADE-1,                 !- TransSchedShadowSurf 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    10.50000,                !- Vertex 1 X-coordinate {m} 
    13.37000,                !- Vertex 1 Y-coordinate {m} 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
    10.50000,                !- Vertex 2 X-coordinate {m} 
    13.37000,                !- Vertex 2 Y-coordinate {m} 
    5.93000,                 !- Vertex 2 Z-coordinate {m} 
    10.50000,                !- Vertex 3 X-coordinate {m} 
    13.00000,                !- Vertex 3 Y-coordinate {m} 
    5.93000,                 !- Vertex 3 Z-coordinate {m} 
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    10.50000,                !- Vertex 4 X-coordinate {m} 
    13.00000,                !- Vertex 4 Y-coordinate {m} 
    4.50000;                 !- Vertex 4 Z-coordinate {m} 
Surface:Shading:Attached, 
    FIN_5,                   !- User Supplied Surface Name 
    Obj:0005,                !- Base Surface Name 
    SHADE-1,                 !- TransSchedShadowSurf 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    9.50000,                 !- Vertex 1 X-coordinate {m} 
    13.37000,                !- Vertex 1 Y-coordinate {m} 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
    9.50000,                 !- Vertex 2 X-coordinate {m} 
    13.37000,                !- Vertex 2 Y-coordinate {m} 
    5.93000,                 !- Vertex 2 Z-coordinate {m} 
    9.50000,                 !- Vertex 3 X-coordinate {m} 
    13.00000,                !- Vertex 3 Y-coordinate {m} 
    5.93000,                 !- Vertex 3 Z-coordinate {m} 
    9.50000,                 !- Vertex 4 X-coordinate {m} 
    13.00000,                !- Vertex 4 Y-coordinate {m} 
    4.50000;                 !- Vertex 4 Z-coordinate {m} 
Surface:Shading:Attached, 
    FIN_6,                   !- User Supplied Surface Name 
    Obj:0005,                !- Base Surface Name 
    SHADE-1,                 !- TransSchedShadowSurf 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    8.50000,                 !- Vertex 1 X-coordinate {m} 
    13.37000,                !- Vertex 1 Y-coordinate {m} 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
    8.50000,                 !- Vertex 2 X-coordinate {m} 
    13.37000,                !- Vertex 2 Y-coordinate {m} 
    5.93000,                 !- Vertex 2 Z-coordinate {m} 
    8.50000,                 !- Vertex 3 X-coordinate {m} 
    13.00000,                !- Vertex 3 Y-coordinate {m} 
    5.93000,                 !- Vertex 3 Z-coordinate {m} 
    8.50000,                 !- Vertex 4 X-coordinate {m} 
    13.00000,                !- Vertex 4 Y-coordinate {m} 
    4.50000;                 !- Vertex 4 Z-coordinate {m} 
Surface:Shading:Attached, 
    FIN_7,                   !- User Supplied Surface Name 
    Obj:0005,                !- Base Surface Name 
    SHADE-1,                 !- TransSchedShadowSurf 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    7.50000,                 !- Vertex 1 X-coordinate {m} 
    13.37000,                !- Vertex 1 Y-coordinate {m} 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
    7.50000,                 !- Vertex 2 X-coordinate {m} 
    13.37000,                !- Vertex 2 Y-coordinate {m} 
    5.93000,                 !- Vertex 2 Z-coordinate {m} 
    7.50000,                 !- Vertex 3 X-coordinate {m} 
    13.00000,                !- Vertex 3 Y-coordinate {m} 
    5.93000,                 !- Vertex 3 Z-coordinate {m} 
    7.50000,                 !- Vertex 4 X-coordinate {m} 
    13.00000,                !- Vertex 4 Y-coordinate {m} 
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    4.50000;                 !- Vertex 4 Z-coordinate {m} 
Surface:Shading:Attached, 
    FIN_8,                   !- User Supplied Surface Name 
    Obj:0005,                !- Base Surface Name 
    SHADE-1,                 !- TransSchedShadowSurf 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    6.50000,                 !- Vertex 1 X-coordinate {m} 
    13.37000,                !- Vertex 1 Y-coordinate {m} 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
    6.50000,                 !- Vertex 2 X-coordinate {m} 
    13.37000,                !- Vertex 2 Y-coordinate {m} 
    5.93000,                 !- Vertex 2 Z-coordinate {m} 
    6.50000,                 !- Vertex 3 X-coordinate {m} 
    13.00000,                !- Vertex 3 Y-coordinate {m} 
    5.93000,                 !- Vertex 3 Z-coordinate {m} 
    6.50000,                 !- Vertex 4 X-coordinate {m} 
    13.00000,                !- Vertex 4 Y-coordinate {m} 
    4.50000;                 !- Vertex 4 Z-coordinate {m} 
Surface:Shading:Attached, 
    FIN_9,                   !- User Supplied Surface Name 
    Obj:0005,                !- Base Surface Name 
    SHADE-1,                 !- TransSchedShadowSurf 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    5.50000,                 !- Vertex 1 X-coordinate {m} 
    13.37000,                !- Vertex 1 Y-coordinate {m} 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
    5.50000,                 !- Vertex 2 X-coordinate {m} 
    13.37000,                !- Vertex 2 Y-coordinate {m} 
    5.93000,                 !- Vertex 2 Z-coordinate {m} 
    5.50000,                 !- Vertex 3 X-coordinate {m} 
    13.00000,                !- Vertex 3 Y-coordinate {m} 
    5.93000,                 !- Vertex 3 Z-coordinate {m} 
    5.50000,                 !- Vertex 4 X-coordinate {m} 
    13.00000,                !- Vertex 4 Y-coordinate {m} 
    4.50000;                 !- Vertex 4 Z-coordinate {m} 
Surface:Shading:Attached, 
    FIN_10,                  !- User Supplied Surface Name 
    Obj:0005,                !- Base Surface Name 
    SHADE-1,                 !- TransSchedShadowSurf 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    4.50000,                 !- Vertex 1 X-coordinate {m} 
    13.37000,                !- Vertex 1 Y-coordinate {m} 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
    4.50000,                 !- Vertex 2 X-coordinate {m} 
    13.37000,                !- Vertex 2 Y-coordinate {m} 
    5.93000,                 !- Vertex 2 Z-coordinate {m} 
    4.50000,                 !- Vertex 3 X-coordinate {m} 
    13.00000,                !- Vertex 3 Y-coordinate {m} 
    5.93000,                 !- Vertex 3 Z-coordinate {m} 
    4.50000,                 !- Vertex 4 X-coordinate {m} 
    13.00000,                !- Vertex 4 Y-coordinate {m} 
    4.50000;                 !- Vertex 4 Z-coordinate {m} 
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Surface:Shading:Attached, 
    FIN_11,                  !- User Supplied Surface Name 
    Obj:0005,                !- Base Surface Name 
    SHADE-1,                 !- TransSchedShadowSurf 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    3.50000,                 !- Vertex 1 X-coordinate {m} 
    13.37000,                !- Vertex 1 Y-coordinate {m} 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
    3.50000,                 !- Vertex 2 X-coordinate {m} 
    13.37000,                !- Vertex 2 Y-coordinate {m} 
    5.93000,                 !- Vertex 2 Z-coordinate {m} 
    3.50000,                 !- Vertex 3 X-coordinate {m} 
    13.00000,                !- Vertex 3 Y-coordinate {m} 
    5.93000,                 !- Vertex 3 Z-coordinate {m} 
    3.50000,                 !- Vertex 4 X-coordinate {m} 
    13.00000,                !- Vertex 4 Y-coordinate {m} 
    4.50000;                 !- Vertex 4 Z-coordinate {m} 
Surface:Shading:Attached, 
    FIN_12,                  !- User Supplied Surface Name 
    Obj:0005,                !- Base Surface Name 
    SHADE-1,                 !- TransSchedShadowSurf 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    2.50000,                 !- Vertex 1 X-coordinate {m} 
    13.37000,                !- Vertex 1 Y-coordinate {m} 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
    2.50000,                 !- Vertex 2 X-coordinate {m} 
    13.37000,                !- Vertex 2 Y-coordinate {m} 
    5.93000,                 !- Vertex 2 Z-coordinate {m} 
    2.50000,                 !- Vertex 3 X-coordinate {m} 
    13.00000,                !- Vertex 3 Y-coordinate {m} 
    5.93000,                 !- Vertex 3 Z-coordinate {m} 
    2.50000,                 !- Vertex 4 X-coordinate {m} 
    13.00000,                !- Vertex 4 Y-coordinate {m} 
    4.50000;                 !- Vertex 4 Z-coordinate {m} 
Surface:Shading:Attached, 
    FIN_13,                  !- User Supplied Surface Name 
    Obj:0005,                !- Base Surface Name 
    SHADE-1,                 !- TransSchedShadowSurf 
    4,                       !- Number of Surface Vertex Groups -- Number of (X,Y,Z) groups in this surface 
    1.50000,                 !- Vertex 1 X-coordinate {m} 
    13.37000,                !- Vertex 1 Y-coordinate {m} 
    4.50000,                 !- Vertex 1 Z-coordinate {m} 
    1.50000,                 !- Vertex 2 X-coordinate {m} 
    13.37000,                !- Vertex 2 Y-coordinate {m} 
    5.93000,                 !- Vertex 2 Z-coordinate {m} 
    1.50000,                 !- Vertex 3 X-coordinate {m} 
    13.00000,                !- Vertex 3 Y-coordinate {m} 
    5.93000,                 !- Vertex 3 Z-coordinate {m} 
    1.50000,                 !- Vertex 4 X-coordinate {m} 
    13.00000,                !- Vertex 4 Y-coordinate {m} 
    4.50000;                 !- Vertex 4 Z-coordinate {m} 
!-   ===========  ALL OBJECTS IN CLASS: SCHEDULETYPE =========== 
ScheduleType, 
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    Fraction,                !- ScheduleType Name 
    0.0:1.0,                 !- range 
    Continuous;              !- Numeric Type 
ScheduleType, 
    Real,                    !- ScheduleType Name 
    0:500,                   !- range 
    DISCRETE;                !- Numeric Type 
ScheduleType, 
    shading,                 !- ScheduleType Name 
    0.0:1.0,                 !- range 
    Continuous;              !- Numeric Type 
!-   ===========  ALL OBJECTS IN CLASS: DAYSCHEDULE =========== 
DAYSCHEDULE, 
    OC-1,                    !- Name 
    Fraction,                !- ScheduleType 
    0.0,                     !- Hour 1 
    0.0,                     !- Hour 2 
    0.0,                     !- Hour 3 
    0.0,                     !- Hour 4 
    0.0,                     !- Hour 5 
    0.0,                     !- Hour 6 
    0.0,                     !- Hour 7 
    0.0,                     !- Hour 8 
    1.0,                     !- Hour 9 
    1.0,                     !- Hour 10 
    1.0,                     !- Hour 11 
    0.8,                     !- Hour 12 
    0.4,                     !- Hour 13 
    0.8,                     !- Hour 14 
    1.0,                     !- Hour 15 
    1.0,                     !- Hour 16 
    1.0,                     !- Hour 17 
    1.0,                     !- Hour 18 
    0.5,                     !- Hour 19 
    0.1,                     !- Hour 20 
    0.1,                     !- Hour 21 
    0.0,                     !- Hour 22 
    0.0,                     !- Hour 23 
    0.0;                     !- Hour 24 
DAYSCHEDULE, 
    OC-2,                    !- Name 
    Fraction,                !- ScheduleType 
    0.0,                     !- Hour 1 
    0.0,                     !- Hour 2 
    0.0,                     !- Hour 3 
    0.0,                     !- Hour 4 
    0.0,                     !- Hour 5 
    0.0,                     !- Hour 6 
    0.0,                     !- Hour 7 
    0.0,                     !- Hour 8 
    0.0,                     !- Hour 9 
    0.0,                     !- Hour 10 
    0.0,                     !- Hour 11 
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    0.0,                     !- Hour 12 
    0.0,                     !- Hour 13 
    0.0,                     !- Hour 14 
    0.0,                     !- Hour 15 
    0.0,                     !- Hour 16 
    0.0,                     !- Hour 17 
    0.0,                     !- Hour 18 
    0.0,                     !- Hour 19 
    0.0,                     !- Hour 20 
    0.0,                     !- Hour 21 
    0.0,                     !- Hour 22 
    0.0,                     !- Hour 23 
    0.0;                     !- Hour 24 
DAYSCHEDULE, 
    SHADE,                   !- Name 
    Fraction,                !- ScheduleType 
    0.0,                     !- Hour 1 
    0.0,                     !- Hour 2 
    0.0,                     !- Hour 3 
    0.0,                     !- Hour 4 
    0.0,                     !- Hour 5 
    0.0,                     !- Hour 6 
    0.0,                     !- Hour 7 
    0.0,                     !- Hour 8 
    0.0,                     !- Hour 9 
    0.0,                     !- Hour 10 
    0.0,                     !- Hour 11 
    0.0,                     !- Hour 12 
    0.0,                     !- Hour 13 
    0.0,                     !- Hour 14 
    0.0,                     !- Hour 15 
    0.0,                     !- Hour 16 
    0.0,                     !- Hour 17 
    0.0,                     !- Hour 18 
    0.0,                     !- Hour 19 
    0.0,                     !- Hour 20 
    0.0,                     !- Hour 21 
    0.0,                     !- Hour 22 
    0.0,                     !- Hour 23 
    0.0;                     !- Hour 24 
DAYSCHEDULE, 
    ACT,                     !- Name 
    Real,                    !- ScheduleType 
    100,                     !- Hour 1 
    100,                     !- Hour 2 
    100,                     !- Hour 3 
    100,                     !- Hour 4 
    100,                     !- Hour 5 
    100,                     !- Hour 6 
    100,                     !- Hour 7 
    100,                     !- Hour 8 
    100,                     !- Hour 9 
    100,                     !- Hour 10 
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    100,                     !- Hour 11 
    100,                     !- Hour 12 
    100,                     !- Hour 13 
    100,                     !- Hour 14 
    100,                     !- Hour 15 
    100,                     !- Hour 16 
    100,                     !- Hour 17 
    100,                     !- Hour 18 
    100,                     !- Hour 19 
    100,                     !- Hour 20 
    100,                     !- Hour 21 
    100,                     !- Hour 22 
    100,                     !- Hour 23 
    100;                     !- Hour 24 
!-   ===========  ALL OBJECTS IN CLASS: WEEKSCHEDULE =========== 
WEEKSCHEDULE, 
    OC-WEEK,                 !- Name 
    OC-2,                    !- Sunday DAYSCHEDULE Name 
    OC-1,                    !- Monday DAYSCHEDULE Name 
    OC-1,                    !- Tuesday DAYSCHEDULE Name 
    OC-1,                    !- Wednesday DAYSCHEDULE Name 
    OC-1,                    !- Thursday DAYSCHEDULE Name 
    OC-1,                    !- Friday DAYSCHEDULE Name 
    OC-2,                    !- Saturday DAYSCHEDULE Name 
    OC-2,                    !- Holiday DAYSCHEDULE Name 
    OC-1,                    !- SummerDesignDay DAYSCHEDULE Name 
    OC-2,                    !- WinterDesignDay DAYSCHEDULE Name 
    OC-1,                    !- CustomDay1 DAYSCHEDULE Name 
    OC-1;                    !- CustomDay2 DAYSCHEDULE Name 
WEEKSCHEDULE, 
    SHADE-WEEK,              !- Name 
    SHADE,                   !- Sunday DAYSCHEDULE Name 
    SHADE,                   !- Monday DAYSCHEDULE Name 
    SHADE,                   !- Tuesday DAYSCHEDULE Name 
    SHADE,                   !- Wednesday DAYSCHEDULE Name 
    SHADE,                   !- Thursday DAYSCHEDULE Name 
    SHADE,                   !- Friday DAYSCHEDULE Name 
    SHADE,                   !- Saturday DAYSCHEDULE Name 
    SHADE,                   !- Holiday DAYSCHEDULE Name 
    SHADE,                   !- SummerDesignDay DAYSCHEDULE Name 
    SHADE,                   !- WinterDesignDay DAYSCHEDULE Name 
    SHADE,                   !- CustomDay1 DAYSCHEDULE Name 
    SHADE;                   !- CustomDay2 DAYSCHEDULE Name 
WEEKSCHEDULE, 
    ACT-WEEK,                !- Name 
    ACT,                     !- Sunday DAYSCHEDULE Name 
    ACT,                     !- Monday DAYSCHEDULE Name 
    ACT,                     !- Tuesday DAYSCHEDULE Name 
    ACT,                     !- Wednesday DAYSCHEDULE Name 
    ACT,                     !- Thursday DAYSCHEDULE Name 
    ACT,                     !- Friday DAYSCHEDULE Name 
    ACT,                     !- Saturday DAYSCHEDULE Name 
    ACT,                     !- Holiday DAYSCHEDULE Name 
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    ACT,                     !- SummerDesignDay DAYSCHEDULE Name 
    ACT,                     !- WinterDesignDay DAYSCHEDULE Name 
    ACT,                     !- CustomDay1 DAYSCHEDULE Name 
    ACT;                     !- CustomDay2 DAYSCHEDULE Name 
!-   ===========  ALL OBJECTS IN CLASS: SCHEDULE =========== 
SCHEDULE, 
    OCCUPY-1,                !- Name 
    Fraction,                !- ScheduleType 
    OC-WEEK,                 !- Name of WEEKSCHEDULE 1 
    1,                       !- Start Month 1 
    1,                       !- Start Day 1 
    12,                      !- End Month 1 
    31;                      !- End Day 1 
SCHEDULE, 
    SHADE-1,                 !- Name 
    Fraction,                !- ScheduleType 
    SHADE-WEEK,              !- Name of WEEKSCHEDULE 1 
    1,                       !- Start Month 1 
    1,                       !- Start Day 1 
    12,                      !- End Month 1 
    31;                      !- End Day 1 
SCHEDULE, 
    ACT1,                    !- Name 
    Real,                    !- ScheduleType 
    ACT-WEEK,                !- Name of WEEKSCHEDULE 1 
    1,                       !- Start Month 1 
    1,                       !- Start Day 1 
    12,                      !- End Month 1 
    31;                      !- End Day 1 
!-   ===========  ALL OBJECTS IN CLASS: PEOPLE =========== 
PEOPLE, 
    Zone_1,                  !- Zone Name 
    30,                      !- Number of People 
    OCCUPY-1,                !- Number of People SCHEDULE Name (real--fraction) 
    .2,                      !- Fraction Radiant 
    ACT1;                    !- Activity level SCHEDULE Name (units W/person, real) 
!-   ===========  ALL OBJECTS IN CLASS: ELECTRIC EQUIPMENT =========== 
ELECTRIC EQUIPMENT, 
    Zone_1,                  !- Zone Name 
    OCCUPY-1,                !- SCHEDULE Name 
    12.00000,                !- Design Level {W} 
    0.58333,                 !- Fraction Latent 
    0.30000,                 !- Fraction Radiant 
    0.00000,                 !- Fraction Lost 
    ;                        !- End-Use Category 
!-   ===========  ALL OBJECTS IN CLASS: INFILTRATION =========== 
INFILTRATION, 
    Zone_1,                  !- Zone Name 
    OCCUPY-1,                !- SCHEDULE Name 
    0.23438,                 !- Design Volume Flow Rate {m3/s} 
    0.6060000,               !- Constant Term Coefficient 
    0.0363599,               !- Temperature Term Coefficient 
    0.1177165,               !- Velocity Term Coefficient 
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    0.0000000;               !- Velocity Squared Term Coefficient 
!-   ===========  ALL OBJECTS IN CLASS: REPORT VARIABLE =========== 
Report Variable, 
    *,                       !- Key_Value 
    outdoor dry bulb,        !- Variable_Name 
    hourly;                  !- Reporting_Frequency 
Report Variable, 
    *,                       !- Key_Value 
    mean air temperature,    !- Variable_Name 
    hourly;                  !- Reporting_Frequency 
Report Variable, 
    *,                       !- Key_Value 
    Zone Window Heat Gain,   !- Variable_Name 
    hourly;                  !- Reporting_Frequency 
Report Variable, 
    *,                       !- Key_Value 
    Zone Window Heat Loss,   !- Variable_Name 
    hourly;                  !- Reporting_Frequency 
!-   ===========  ALL OBJECTS IN CLASS: REPORT =========== 
Report, 
    variable dictionary;     !- Type_of_Report 
Report, 
    surfaces,                !- Type_of_Report 
    details;                 !- Name_of_Report 
 

EnergyPlus Input File with Purchased Air 
 
!-   ===========  ALL OBJECTS IN CLASS: SIZING PARAMETERS =========== 
SIZING PARAMETERS, 
    1.0,                     !- sizing factor 
    2;                       !- time steps in averaging window 
!-   ===========  ALL OBJECTS IN CLASS: ZONE SIZING =========== 
ZONE SIZING, 
    Zone_1,                  !- Name of a zone 
    13.,                     !- Zone cooling design supply air temperature {C} 
    50.,                     !- Zone heating design supply air temperature {C} 
    0.008,                   !- Zone cooling design supply air humidity ratio {kg-H2O/kg-air} 
    0.008,                   !- Zone heating design supply air humidity ratio {kg-H2O/kg-air} 
    flow/person,             !- outside air method 
    0.00944,                 !- outside air flow per person {m3/s} 
    0.0,                     !- outside air flow {m3/s} 
    0.0,                     !- zone sizing factor 
    design day,              !- cooling design air flow method 
    0,                       !- cooling design air flow rate {m3/s} 
    design day,              !- heating design air flow method 
    0;                       !- heating design air flow rate {m3/s} 
!-   ===========  ALL OBJECTS IN CLASS: NODE LIST =========== 
NODE LIST, 
    Zone1Inlets,             !- Node List Name 
    NODE_1;                  !- Node_ID_1 
!-   ===========  ALL OBJECTS IN CLASS: CONTROLLED ZONE EQUIP CONFIGURATION  
CONTROLLED ZONE EQUIP CONFIGURATION, 
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    Zone_1,                  !- Zone Name 
    Zone1Equipment,          !- List Name: Zone Equipment 
    Zone1Inlets,             !- Node List or Node Name: Zone Air Inlet Node(s) 
    ,                        !- Node List or Node Name: Zone Air Exhaust Node(s) 
    NODE_2,                  !- Zone Air Node Name 
    NODE_3;                  !- Zone Return Air Node Name 
!-   ===========  ALL OBJECTS IN CLASS: ZONE EQUIPMENT LIST =========== 
ZONE EQUIPMENT LIST, 
    Zone1Equipment,          !- Name 
    PURCHASED AIR,           !- KEY--Zone Equipment Type 1 
    Zone1Air,                !- Type Name 1 
    1,                       !- Cooling Priority 
    1;                       !- Heating Priority 
!-   ===========  ALL OBJECTS IN CLASS: PURCHASED AIR =========== 
PURCHASED AIR, 
    Zone1Air,                !- Purchased Air Name 
    NODE_1,                  !- Zone Supply Air Node Name 
    50,                      !- Heating Supply Air Temp {C} 
    13,                      !- Cooling Supply Air Temp {C} 
    0.009,                   !- Heating Supply Air Humidity Ratio {kg-H2O/kg-air} 
    0.009,                   !- Cooling Supply Air Humidity Ratio {kg-H2O/kg-air} 
    NO LIMIT,                !- heating limit 
    autosize,                !- Maximum heating air flow rate {m3/s} 
    NO LIMIT,                !- cooling limit 
    autosize,                !- Maximum cooling air flow rate {m3/s} 
    NO OUTSIDE AIR,          !- outside air 
    autosize,                !- Outside air flow rate {m3/s} 
    HeatingAvailSched,       !- heating availability schedule 
    CoolingAvailSched;       !- cooling availability schedule 
!-   ===========  ALL OBJECTS IN CLASS: ZONE CONTROL:THERMOSTATIC =========== 
 
ZONE CONTROL:THERMOSTATIC, 
    Zone 1 Thermostat,       !- Thermostat Name 
    Zone_1,                  !- Zone Name 
    Zone Control Type Sched, !- Control Type SCHEDULE Name 
    SINGLE COOLING SETPOINT, !- Control Type #1 
    Cooling Setpoint with SB;!- Control Type Name #1 
!-   ===========  ALL OBJECTS IN CLASS: SINGLE COOLING SETPOINT =========== 
 
SINGLE COOLING SETPOINT, 
    Cooling Setpoint with SB,!- Name 
    Cooling Setpoints;       !- Setpoint Temperature SCHEDULE Name 
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APPENDIX D 

LIGHTING PERFORMANCE METHODOLOGY DETAILS 

 

Illuminance Test Results Comparison between Desktop Radiance and UNIX Version 

The following test was performed to ensure that Desktop Radiance and the UNIX 

version yield same results using identical calculation parameters. The details are as follows. 

The input files are generated and run within Desktop Radiance and run in there 

compared to the same octree files which run in the UNIX version of RADIANCE. Some rtrace 

parameters have to be modified in order to compare between these 2 versions since Desktop 

Radiance has set different rtrace parameters than in UNIX version.  

The file for lightscoop single unit is generated to compare the results between the two 

programs. The adjusted parameter in Desktop Radiance is the ambient bounces; 5 is used as 

suggested from Rendering with Radiance book for accurate numerical results test. Other 

parameters are adjusted to follow Desktop Radiance settings. The test results are presented in 

Table D1. The results are very similar between these two programs and are considered equal.  

 
Table D1 
Illuminance level comparison between Desktop Radiance and UNIX version 
X Y Z DR UNIX 

7.5 24.5 0.80 3.05 3.05 
7.5 22.5 0.80 4.55 4.55 
7.5 20.5 0.80 6.41 6.41 
7.5 18.5 0.80 12.77 12.77 
7.5 16.5 0.80 41.22 41.23 
7.5 14.5 0.80 106.77 106.77 
7.5 12.5 0.80 210.33 210.33 
7.5 10.5 0.80 292.11 292.12 
7.5 8.5 0.80 362.64 362.65 
7.5 6.5 0.80 142.79 142.80 
7.5 4.5 0.80 53.00 53.00 
7.5 2.5 0.80 22.67 22.67 
7.5 0.5 0.80 11.70 11.70 



 230

Desktop Radiance Daylight Factor Test Results 

 Daylight factor calculation within Desktop Radiance is problematic since it seems to 

give a lower value than it should be.  

In an effort to identify the problems or discrepancies which result in those values, the 

test is done by the method in the following. For Desktop Radiance, the daylight factor values 

can be obtained from the program directly but in UNIX, the equation for calculating it has to be 

specified and the global illuminance value has to be known before specifying the equation. 

This value (global illuminance value used for a specific sky that the user input in the program) 

can be obtained when Desktop Radiance is running in a DOS window. For the test case, the 

parameters used to generate a sky in Desktop Radiance are as follows: 

Latitude: 13.7 N 

Longitude: 100.5 

Turbidity: 4.5 

Standard Meridian: 105 

 The global illuminance value employed by Desktop Radiance for its daylight factor 

calculation as seen in DOS window is 39,000 lux. However, when using the same sky 

description file (rad file) and ask for the global illuminance value in UNIX version, the value is 

different. The rtrace command used to calculate the global illuminance value is: 

$ rtrace –w –h –I+ -ab 1 (octree file of sky description file) < \ 

(reference point location file) | \ 

rcalc –e ‘$1=($1*0.265+$2*0.670+$3*0.065)*179’ 

  The calculation returns the value 18478 lux which is nearly half of that produced by 

Desktop Radiance. If this number is to be used when specifying the equation for calculating the 

daylight factor, the results would turn out to be more reasonable than the output directly 
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calculated from Desktop Radiance even though the sky rad file is the same. The results are 

presented in Table D2.  

 

Table D2 
Daylight factor comparison between Desktop Radiance and UNIX version when using default 
global horizontal illuminance value 
DF directly from DR DF from UNIX 
0.00 0.02 
0.00 0.02 
0.00 0.03 
0.00 0.07 
0.00 0.22 
0.00 0.58 
0.00 1.14 
0.01 1.58 
0.01 1.96 
0.00 0.77 
0.00 0.29 
0.00 0.12 
0.00 0.06 

   

 

  Another solution is to set a sensor outside of the model and ask for illuminance level 

which, the value that Desktop Radiance gives is the exterior illuminance level. Then, the user 

could manually calculate the daylight factor level by dividing the interior illuminance value by 

this number.  

From this solution, when the outside sensor is located up over the roof at height 7.00m, 

the illuminance value that the program returns is 18496 lux, which is close to the number from 

UNIX which is 18478 lux. This exterior illuminance value generated by Desktop Radiance 

varies from locations and heights of the sensor but is still very close to the number generated 

by UNIX.  

 Therefore, if daylight factor simulation is needed, two options are avaialble to resolve 

the problem.  
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If Desktop Radiance is still a preferred method of creating the input files; the first 

option is that the input file can still be generated within Desktop Radiance but the daylight 

factor calculation has to be done within UNIX environment or the global horizontal 

illuminance value has to be calculated by setting another sensor outside the modeled space and 

manually calculate the daylight factor.  

The second option is that one could use Desktop Radiance to calculate the interior 

illuminance value at reference point locations but then get the exterior illuminance value 

calculated from UNIX version by using the sky description file generated from Desktop 

Radiance and let UNIX run the calculation of daylight factor. 

Scale Model Material Reflectance Measurements 

For the crescent board that has not been measured in terms of the reflectance value, the 

luminance meter is used along with a gray card to get the reflectance value.  A Kodak gray card 

has the known reflectance of 0.18 and a white card 0.90. The equations used for calculating the 

reflectance is: 

R1
s = Rg Ls / Lg               (1) 

R2
s = Rw Ls / Lw               (2) 

where R1
s and R2

s are the reflectance value of sample as calculated from the equations; Rg the 

reflectance of gray card; Ls the luminance of sample; Lg the luminance of gray card; Rw the 

reflectance of white card; Lw the luminance of white card. Then, the average of R1
s and R2

s is 

used as the material reflectance. 

 The crescent board that was tested is color Light Gray 916. The measurements and 

calculation is provided in Table D3. 
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Table D3 
Reflectance measurement of Crescent Board Light Gray 916 

Sample: Light 
Gray 916 Lg Lw Ls 

R from 
grey 
card 

R from 
white 
card 

Average 
R Rs  

1st 
measurement 73.08 348.3 177.7 0.44 0.46 0.45 
2nd 
measurement 82.05 346.9 177.6 0.39 0.46 0.43 0.44 
Lg: Luminance value of gray card; Lw: Luminance value of white card; Ls: Luminance value 
of sample; R: reflectance value; Rs: reflectance of sample. 

    

 



 234

APPENDIX E 

GLAZING PROPERTIES 

 

Glazing Thermal and Optical Properties from WINDOW5 
 
 Details of glazing system as modeled in this thesis are presented in Table E1-E5. 
 
 
Table E1 
ID 1 
Name Ngao_try1 
Tilt 90 
Glazings 2 
KEFF 0.0328 
Uvalue 1.75 
SHGCc 0.57 
SCc 0.65 
Vtc 0.76 
RHG 426.04 

 
 
 
Table E2 
Environmental Conditions: 1 NFRC 100-2001 
    Tout Tin WndSpd Wnd Dir Solar Tsky Esky 
    (C) (C) (m/s)   (W/m2) (C)   
Uvalue  -18 21 5.5 Windward 0 -18 1
Solar   32 24 2.8 Windward 783 32 1

 
 
 
Table E3 
Temperature Distribution (degrees C) 
Glass   Winter       Summer
  out in out in 
Layer1 -15.7 -15.4 39.1 39.3
Layer2 11.1 11.5 34 33.8

 
 
 
 
 
 
 

 



 

Table E4 
Glass and gas data for glazing system Ngao_try1
ID Name D(mm) Tsol Rsol1 Rsol2 Tvis1 Rvis1 Rvis2 Tir Emis1 Emis2 Keff 
Outside             

2007 E178-4.CIG 4.1 0.607 0.194 0.253 0.86 0.054 0.048 0 0.84 0.083 1
 1 Air 12.7          0.033

103 CLEAR_6.DAT 5.7 0.771 0.07 0.07 0.884 0.08 0.08 0 0.84 0.84 1
Inside                         
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Table E5 
Optical Properties for Glazing System '1 Ngao_try1' 
Angle 0 10 20 30 40 50 60 70 80 90 Hemis
            
Vtc  0.763 0.767 0.757 0.743 0.723 0.684 0.597 0.433 0.2 0 0.636 
Rf   0.113 0.106 0.103 0.106 0.119 0.144 0.194 0.302 0.534 0.999 0.174 
Rb  0.118 0.112 0.111 0.115 0.129 0.158 0.222 0.366 0.633 1 0.198 
            
Tsol  0.489 0.492 0.484 0.473 0.459 0.432 0.376 0.271 0.123 0 0.403 
Rf    0.226 0.22 0.217 0.22 0.23 0.25 0.287 0.375 0.577 0.999 0.273 
Rb    0.208 0.203 0.201 0.202 0.208 0.225 0.266 0.366 0.576 1 0.255 
            
Abs1  0.206 0.208 0.218 0.225 0.228 0.234 0.256 0.284 0.252 0.001 0.236 
Abs2  0.08 0.08 0.081 0.082 0.083 0.084 0.081 0.07 0.048 0 0.078 
            
SHGCc 0.568 0.572 0.565 0.556 0.543 0.517 0.461 0.35 0.182 0 0.484 
            
Tdw-K 0 382          
Tdw-
ISO 0 601          
Tuv 0 208                   
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Radiance Input (rad File) of Glazing Material Created by Optics5 
 
# 
# FileName= Ngao_try1.usr 
# Product Name=  
# NFRC ID= 30000 
# Manufacturer Name= User 
# Glazing Type= Glazing system 
# Coated Side= Neither 
# Transmittance= 0.761 
# Front Reflectance= 0.114 
# Back Reflectance= 0.118 
# Thickness(mm)= 21.775 
# Appearance=  
# 
 
void  glass       Ngao_try1_glass 
0 
0 
3     0.796     0.846     0.799 
void  BRTDfunc    Ngao_try1_front 
10 
      0.100     0.117     0.134 
      0.731     0.776     0.733 
      0 0 0 
      . 
0 
9 0 0 0 0 0 0 0 0 0 
 
void  BRTDfunc    Ngao_try1_back 
10 
      0.110     0.120     0.126 
      0.731     0.776     0.733 
      0 0 0 
      . 
0 
9 0 0 0 0 0 0 0 0 0 
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APPENDIX F 

SCALE MODEL AND RADIANCE COMPARISON 

 

Overcast Sky Test Results 

Overcast test result for single unit prototypes is presented in Fig. F1. For the 

results of a 1.5 to 1 spacing-to-height and a 1 to 1 spacing-to-height, the results are 

presented in Figs. F2-F3, respectively. 

Clear Sky Test Results  

Single Unit Prototype Results 

Single Unit Skylight 

 The results from the scale model measurement and from RADIANCE are similar 

and are following the same trend. Single unit skylight illuminance comparison results are 

presented in Fig. F4. There are more discrepancies in Dec 21, at 12:00pm and 3:00pm. 

The average discrepancy is at 16.7 percent. All of the horizontal exterior illuminance as 

measured from the tilted model is higher than the value calculated from RADIANCE. 

This might be the cause of the discrepancy since the illuminance distribution between 

the scale model and RADIANCE are similar. 

Single Unit Lightscoop 

 The illuminance distribution of lightscoop under clear sky condition between a 

scale model measurement and RADIANCE is very similar in pattern for all the tested 

date and time, while having some discrepancy with mostly the scale model yields higher 

illuminance value. Single unit lightscoop illuminance comparison results are presented 
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in Fig. F5. From the chart, it can be seen that the trends in two lines of illuminance value 

under clear sky condition of the single unit lightscoop are very close to each other with 

the average discrepancy of 21.2 percent. Maximum discrepancy is seen in winter solstice 

(Dec 21) at 3:00pm at 32 percent, which could be the result of the model tilt. The 

horizontal exterior illuminance as measured from the tilted model is higher than the 

calculated value from RADIANCE in all the tested dates and times.  

Single Unit Roof Monitor 

 The illuminance distribution of the single roof monitor under clear sky condition 

between a scale model and RADIANCE has shown similar results in the illuminance 

level and the light distribution, with the average range of 20.6 percent. Single unit roof 

monitor illuminance comparison results are presented in Fig. F6. The illuminance value 

discrepancy ranges from 2-25 percent, with more discrepancy at 3:00pm at all the dates 

tested which is at about 20 percent.  

 In sum, for single unit toplighting prototypes, the average discrepancy for all the 

cases is at 19 percent.  
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Single Skylight: Daylight Factor Comparison 
Overcast Sky
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Single Lightscoop: Daylight Factor Comparison

Overcast Sky
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Single Roof Monitor: Daylight Factor Comparison

Overcast Sky
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Fig. F1 Single unit prototype: DF comparison of model and RADIANCE, overcast sky 
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1.5 to1 Skylight: Daylight Factor Comparison
Overcast Sky
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1.5 to 1 Lightscoop: Daylight Factor Comparison

Overcast Sky
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1.5 to 1 Roof Monitor: Daylight Factor Comparison

Overcast Sky
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Fig. F2  1.5 to 1 Prototype: DF comparison of model and RADIANCE, overcast sky 
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1 to 1 Skylight: Daylight Factor Comparison
Overcast Sky
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1 to 1 Lightscoop: Daylight Factor Comparison
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Fig. F3  1 to 1 Prototype: DF comparison of model and RADIANCE, overcast sky 
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Fig. F4  Single unit skylight: illuminance comparison of scale model and RADIANCE,  clear sky condition 
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 244Fig. F5 Single unit lightscoop: illuminance comparison of scale model and RADIANCE, clear sky condition 
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Fig. F6 Single unit roof monitor: illuminance comparison of scale model and RADIANCE, clear sky condition 
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5.1.2.2.  Prototype with a 1.5 to 1 Spacing-to-Height Results 

1.5 to 1 Skylight 

 The illuminance comparison between a scale model measurement and 

RADIANCE results under clear sky for a 1.5 to 1 skylight is similar, with the average 

discrepancy of 20.9 percent. The result is shown in Fig. F7. The time at the largest 

discrepancy is at the summer solstice at 3:00pm with an average discrepancy of 43 

percent. For other times in summer solstice and equinox, RADIANCE results represent 

similar values to those measured from the scale model.  

1.5 to 1 Lightscoop 

 The illuminance results between a scale model and RADIANCE are close to one 

another with an average of 12.4 percent discrepancy. The result of a 1.5 to 1 lightscoop 

illuminance comparison is shown in Fig. F8. Most of the discrepancy ranges within 10 

percent except in equinox and winter solstice at 3:00pm which has the average 

discrepancy at about 20 percent.  

1.5 to 1 Roof Monitor 

 From the illuminance comparison between a scale model and RADIANCE for a 

1.5 to 1 roof monitor, the results of the distribution are similar, within the average range 

of 15 percent. The result of a 1.5 to 1 roof monitor illuminance comparison is shown in 

Fig. F9. The date with most discrepancy is in winter solstice at 3:00pm with the 

discrepancy of 33 percent. Other times have less discrepancy of less than 20 percent 

except on equinox at 3:00pm which has 24 percent discrepancy. Still, the overall results 

are close.  
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5.1.2.3. Prototype with a 1 to 1 Spacing-to-Height Results 

1 to 1 Skylight

 The overall discrepancy of skylight illuminance value from a scale model and 

RADIANCE are close, with an average discrepancy of 20.6 percent. From the results 

shown in Fig. F10, it can be seen that the trend in the illuminance distribution is very 

similar for the scale model measurement and RADIANCE. The discrepancy percentages 

of most of the date and time tested are less than 20 percent, except at the summer 

solstice, equinox, and winter solstice at 3:00pm. 

1 to 1 Lightscoop

 The illuminance level between a scale model measurements and RADIANCE 

results are similar, having an average discrepancy of 16.7 percent.  The illuminance 

chart comparison is shown in Fig. F11. It can be seen from the chart that, the overall 

illuminance level between the two are very close to each other and the distribution is 

very similar. The average maximum discrepancy occurs in equinox at 3:00pm which is 

31 percent. Most of the time, the illuminance discrepancies between the scale model and 

RADIANCE are less than 20 percent. The scale model results are mostly higher than 

RADIANCE.  

1 to 1 Roof Monitor   

The illuminance level between a scale model measurements and RADIANCE 

results are similar, having an average discrepancy of 17.3 percent.  The illuminance 

chart comparison for a 1 to 1 roof monitor is shown in Fig. F12. Overall values and 

distribution between a scale model and RADIANCE are similar.  
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Fig. F7  1.5 to 1 skylight: illuminance comparison of scale model and RADIANCE, clear sky condition 
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Fig. F8  1.5 to 1 lightscoop: illuminance comparison of scale model and RADIANCE, clear sky condition 
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Fig. F9  1.5 to 1 roof monitor: illuminance comparison of scale model and RADIANCE, clear sky condition 
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 251Fig. F10  1 to 1 skylight: illuminance comparison of scale model and RADIANCE, clear sky condition 
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 252Fig. F11  1 to 1 lightscoop: illuminance comparison of scale model and RADIANCE, clear sky condition 
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RAD_illum Model_illum  253Fig. F12  1 to 1 roof monitor: illuminance comparison of scale model and RADIANCE, clear sky condition 
 

 



 254

APPENDIX G 

RADIANCE SCRIPTS 

 

Example of RADIANCE Script File and Commands Used in this Thesis 

Rtrace Script to Calculate the Horizontal Illuminance Level  
 
#! /bin/bash 
rtrace -w -h -I+ -ab 5 -aa 0.2 -ad 1024 -as 64 -ar 128 \ 
oc_illum.oct < recgrid_150_1x1.pts | rcalc -e '$1=179*(.265*$1+.670*$2+.065*$3)' \ 
> oc_150_1x1.dat 
 
For Rendering Falsecolor Images over Floor Plan 
 
#! /bin/bash 
 
# all commands (after running oconv) for render of illuminance and luminance 
# contour lines pict file and convert to tif files 
 
# script file for rpict to render scene file: luminance 
 
rpict -vf planview.vf -ab 5 -aa 0.2 -ad 1024 -ds 0.2 -as 512 -ar 128 -x 1200 -y 1600 
octree/oc.oct  \ 
> pic/oc_plan.pic 
 
# script file for rpict to render scene file: illuminance 
 
rpict -vf planview.vf -ab 5 -aa 0.2 -ad 1024 -ds 0.2 -as 512 -ar 128 -x 1200 -y 1600 -i 
octree/oc.oct  \ 
> pic/oc_plani.pic 
 
# falsecolor: contour line on floor plan script 
 
falsecolor -i pic/oc_plani.pic -p pic/oc_plan.pic -cl -n 5 -s 1500 -l lux > pic/oc_ct.pic 
 
# falsecolor: falsecolor on floor plan script 
 
falsecolor -i pic/oc_plani.pic -p pic/oc_plan.pic  -n 5 -s 1500 -l lux > pic/oc_fls.pic 
 
# ra_tiff for all the pict file 
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ra_tiff pic/oc_ct.pic pic/oc_ct.tif 
 
ra_tiff pic/oc_fls.pic pic/oc_fls.tif 
 
Commands for Rendering Perspective Views 

rad jun12.rif 

Rif File Example (jun12.rif) 

OCTREE= octree/jun12_p.oct 

PICTURE= pic/jun12_p 

view= fisheye3 -vf fisheye3.vf 

ZONE= 

UP= Z 

RESOLUTION= 1200 1200 

QUALITY= H 

PENUMBRAS= T 

INDIRECT= 5 

DETAIL= M 

VARIABILITY= H 

render= -av 0 0 0 

Fisheye View File (fisheye3.vf) 

rview -vta -vp 7.5 4 1.5 -vd 0 1 0 -vu 0 0 1 -vh 180 -vv 180 -vo 0 -va 0 -vs 0 -vl 0 
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APPENDIX H 

BANGKOK WEATHER SUMMARY 

 

Bangkok Weather Chart 

 As discussed in Chapter I, Bangkok, Thailand is located in a hot and humid 

climate location at latitude 13.7N. 

 Fig. H1 represents average Bangkok weather as generated from the Weather Tool 

from the EPW weather file of Bangkok available from EnergyPlus website. The pink 

straight band represents the thermal temperature comfort zone which is at about 25-28C. 

The light blue band is the maximum, minimum, and average temperature range of each 

month. The blue line is direct solar and the blue dotted line is diffuse solar average of 

each month.  

Bangkok Sky Type 

 As in Chapter II, from the study by S. Chirarattananon et al., the sky types of 

Bangkok [17], Thailand are overcast, clear, and intermediate conditions. Fig. H2 

graphically summarizes these sky types. 

 

 

 

 



 

Fig. H1 Monthly diurnal averages of Bangkok, Thailand 
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Fig. H2  Bangkok sky types 
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