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ABSTRACT 
 

Multi-Area Power System State Estimation Utilizing Boundary 
 

Measurements and Phasor Measurement Units (PMUs). (August 2006) 
 

Matthew A. Freeman, B.S., Texas A&M University 
 

Chair of Advisory Committee:  Dr. Ali Abur 
 
 

The objective of this thesis is to prove the validity of a multi-area state estimator and 

investigate the advantages it provides over a serial state estimator.  This is done 

utilizing the IEEE 118 Bus Test System as a sample system. 

 
This thesis investigates the benefits that stem from utilizing a multi-area state 

estimator instead of a serial state estimator.  These benefits are largely in the form of 

increased accuracy and decreased processing time.  First, the theory behind power 

system state estimation is explained for a simple serial estimator.  Then the thesis 

shows how conventional measurements and newer, more accurate PMU 

measurements work within the framework of weighted least squares estimation.  

Next, the multi-area state estimator is examined closely and the additional 

measurements provided by PMUs are used to increase accuracy and computational 

efficiency.  Finally, the multi-area state estimator is tested for accuracy, its ability to 

detect bad data, and computation time.   
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CHAPTER I 

INTRODUCTION 

 

1.1  Modern Power Systems 

The society that we live in depends on electricity.  Electricity allows for instant 

communication across the globe, climatizes our buildings, and has let us extend our 

life span by more than 40 years [1].  It is the job of the power system engineers to 

ensure that this electricity is ready and available whenever it is required.  These 

engineers have many tools at their disposal, and use everything from load forecasting 

to state estimation to ensure there is power at the flick of a switch.   

 
Recently though, the power grid has become deregulated.  In place of a large block of 

generators, transformers, and transmission lines owned and operated by a single 

company, there exists now a slapdash amalgamation of smaller companies each filling 

their own niche.  This segmentation of the power grid has made the power system 

engineer’s job much more complex.  To complete the state estimation of the power 

grid, information must be gathered from many smaller, and often competing, 

companies.  These companies may also utilize different algorithms and standards for  

their state estimators, and may feel reluctant to share this information with their 

competitors.  These facts coupled with the massive size of the modern power system 

________________________ 
This thesis follows the style and format of IEEE Transactions on Power Systems.
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has made time efficient, numerically accurate state estimation difficult.   

 
1.2  Multi-Area State Estimation
A new trend power system state estimation has emerged to combat these difficulties.  

This new approach, known as parallel or multi-area state estimation, involves 

breaking the problem down into two steps.  The first step produces only the solution 

for subsystems, or individual areas, within the power grid.  Once complete, the data 

from the individual areas feeds into the second step to create a single coordinated 

solution for the entire power system.  This multi-area approach has been addressed in 

[2]-[3]. 

 

This thesis will demonstrate by example and simulation such an approach when 

applied to a sample power system.  The IEEE 118 Bus Test System, divided into five 

different areas, shall serve as the sample system.  The results produced by the multi-

area state estimator will be compared with those of a standard single level, or serial 

state estimator and checked for accuracy, bad data detection, and time savings. 

 

The particular algorithm used in this thesis was developed in [4].  In addition to 

conventional measurements such as bus power injections, line power flows, bus 

voltage and line current magnitudes, it also relies on the use of synchronized phasor 

measurement units (PMUs).  These measurements allow for both the magnitude as 

well as the phase angle of bus voltages to be observed synchronized in time via the 
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Global Positioning System (GPS) technology.   In this thesis, we will consider the use 

of few PMUs as measurement devices in different areas in order to facilitate 

synchronization of area slack bus voltage estimates. 

 

1.3  Thesis Contribution   

The contribution of this thesis will primarily be the application of a multi-area state 

estimation algorithm to sample power system.  The multi-area technique will be 

explained and demonstrated on the IEEE 118 bus test system. 

 

1.4  Thesis Organization

This thesis is organized into five chapters.  In Chapter I, the current state of state 

estimation will be presented along with its challenges and some proposed solutions.  

Chapter II will deal with the nature of the state estimation problem and an algorithm 

will be developed taking into account the types of measurements, conventional or 

PMU, the issues involved with bad data and observability, and issues which appear 

with a multi-area approach.  Chapter III will go deeper into the multi area solution 

and an algorithm will be developed and will address the issues raised in Chapter II.  

Chapter IV will present the results of this algorithm when applied to the IEEE sample 

system.  Chapter V will summarize this thesis and point out work that still needs to be 

done in this field. 
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CHAPTER II 

SERIAL STATE ESTIMATION 

 

2.1  Weighted Least Squares Estimation

Simply put, state estimation is a technique used to capture the real-time operating 

conditions, or system states, of a power system.  This technique has been extensively 

documented in [5]-[7].   In a system of  busses, there will be ( )12 −NN  system states.  

This will account for a voltage magnitude state variable at every bus and a voltage 

angle state variable at every bus but one.  The uncounted bus angle is assumed to be 

zero and the bus is considered the reference, or slack bus of the system.  The state 

vector will be organized such that the voltage magnitudes will be listed first, followed 

by the voltage phase angles as shown below. 

 

( )NNVVVx θθθ LL 3221=  

 

The state estimator takes the measurements received from the power system and uses 

them to estimate the system states.  As it is an estimate, there will be some nominal 

errors associated with each measurement.  This mathematical relationship is 

expressed below. 

 

exhz += )(  
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   is the measurement vector [ m
T zzzz ,,, 21 L= ]

]( ) ( ) ( )[ xhxhxhh n
T ,,, 21 L=  is the non-linear function relating the states to  

  the measurements 

  is the measurement error vector [ ]m
T eeee ,,, 21 L=

 

The errors are assumed to be independent and uncorrelated with a zero mean.  

Furthermore, they are assumed to have a Gaussian (Normal) distribution. The 

covariance matrix associated with the errors will be a diagonal matrix R  with the 

variance of the measurements as its entries. 

 

{ } mieE i ,,2,10 L==  

 

{ } jimjmieeE ji ≠=== ,,2,1,,2,10 LL  

 

( ) { } { }22
2

2
1 ,,, m

T diagReeEeCov σσσ L==⋅=  

 

In this thesis, weighted least squares (WLS) estimation will be applied to the above 

equations in order to extract the state quantities, bus voltages and angles, from the 
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measured values, power flows, injections and PMU measurements.  WLS estimation 

seeks to minimize the weighted sum of the squares of the measurement errors.   

 

This minimization will occur when the following objective function is minimized. 

 

( ) ( )( ) ( )[ ] ( )[ ]∑
=

− −−=−=
m

i

T

ii

ii xhzRxhzR
xhzxJ

1

1
2

  

 

To minimize the above function, we simply set its first derivative with respect to x  

equal to zero, as shown below. 

 

( ) ( ) ( )[ ] ( )[ ] 01 =−⋅⋅−=
∂

∂
= − xhzRxH

x
xJxg T  

 

( ) ( )
x
xhxH

∂
∂

=  

 

We can apply the Gauss-Newton method to solve the above equation as shown below. 

  

  ( )[ ] ( )kkkk xgxGxx ⋅−= −
+

1
1

 

Above,  is the iteration index and  kxk is the state vector at iteration .  The matrix 

 is called the gain matrix and is shown below. 

k

( )xG
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( ) ( ) ( )[ ] ( )k
T

k
k

k xHRxH
x
xgxG ⋅⋅=

∂
∂

= −1  

 

( ) ( )[ ] ( )[ ]k
T

kk xhzRxHxg −⋅⋅−= −1  

 

The gain matrix is typically rather sparse and decomposed into its triangular factors.  

For every iteration, forward and backward substitutions are used to solve the 

following linear equations. 

 

( )[ ] ( )[ ] ( )[ ] ( )[ ] k
T

kk
T

kk zRxHxhzRxHxxG Δ⋅⋅=−⋅⋅=Δ −−
+

11
1  

 

  kkk xxx −=Δ ++ 11

 

These iterations will continue until one of two conditions are met.  The first 

condition would be the maximum number of allowable iterations is exceeded while 

the second condition would be that the change in state variables has fallen within an 

acceptable range. 

 

ε<Δ kxmax  
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A popular initial condition for state estimation is the flat start.  This condition sets the 

voltages of all the busses equal to 1 p.u. with no phase change among the busses. 

 

 

2.2  Treatment of Conventional Measurements 

The five types of conventional measurements used in power system state estimation 

are real and reactive line power flows,  real and reactive bus power injections, and the 

bus voltage magnitudes.  In order to use these measurements in the state estimator, 

we must first develop a mathematical model for the measurements.  To do this, 

consider the pi model of a transmission line which connects two busses i  and , as 

shown in Figure 1.  The series admittance between bus i  and will be defined as 

 

j

j

ijij jbg + while the shunt admittance between any particular bus x  and the ground 

will be defined as .  The admittance matrix Y will be composed of  

entries, with the entry 

sxsx jbg + ji ⋅

ijijij jBGY += .   

 

iBus jBus
ijg ijb

sjsj jbg +sisi jbg +

 
Figure 1.  Conventional Measurement Transmission Line Model 
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Developing the equations for the power injection at bus i  yields: 

 

( )∑
∈

+=
N

Nj
ijijijijjii

i

BGVVP θθ sincos  

 

( )∑
∈

−=
N

Nj
ijijijijjii

i

BGVVQ θθ cossin  

 

 

For a real power injection, the Jacobian matrix components are shown below. 
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−+=
∂
∂ N

j
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V
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( )ijijijiji
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∂
∂  

 

( )∑
=
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∂
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( )ijijijijji
j

i BGVVP θθ
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∂
∂
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For a reactive power injection, the H matrix components would take the following 

form. 

 

( )∑
=

−−=
∂
∂ N

j
iiiijijijijj

i

i BVBGV
V
Q

1

2cossin θθ  

 

( )ijijijiji
j

i BGV
V
Q θθ cossin −=

∂
∂  

 

( )∑
=

−+=
∂
∂ N

j
iiiijijijijji

i

i GVBGVVQ
1

2sincos θθ
θ

 

 

( )ijijijijji
j

i BGVVQ
θθ

θ
sinsin −−=

∂
∂

 

 

Similarly, the real and reactive power flows between busses i and j can be represented 

in the terms of the state variables in the following manner. 

 

( ) ( )ijijijijjiijsiiij bgVVggVP θθ sincos2 +⋅⋅−+⋅=  

 

( ) ( )ijijijijjiijsiiij bgVVbbVQ θθ cossin2 −⋅⋅−+⋅−=  

 

For a real power flow, the Jacobian matrix components are shown below. 
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( ) ( )siijiijijijijj
i

ij ggVbgV
V
P

+++−−=
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∂
2sincos θθ  

 

( )ijijijiji
j

ij bgV
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∂
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For a reactive power flow, the components take the following form. 

 

( ) ( )siijiijijijijj
i

ij bbVbgV
V
Q

+−−−=
∂

∂
2cossin θθ  

 

( )ijijijiji
j

ij bgV
V
Q

θθ cossin −−=
∂

∂
 

 

( )ijijijijji
i

ij bgVV
Q

θθ
θ

sincos +−=
∂

∂
 

 

2.3  Treatment of Phasor Measurement Units 

Phasor Measurement Units (PMUs) have several advantages over conventional 

measurements.  Whereas a conventional measurement only has the ability to measure 
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the magnitude of a voltage, PMUs have the ability to measure the magnitude and 

phase angle of the bus voltages and the line currents in a system.  Additionally, these 

measurements are  synchronized with respect to time through the use of the GPS 

network.  Additionally, the PMU has a smaller measurement variance which leads to 

smaller errors in the estimated state and a quicker convergence.   

 
ijijij jDCI +=

ijijij YYy θ∠−=−=

iBus jBus

sisisishunt YYy θ∠== sjsjsjshunt YYy θ∠==

 
Figure 2.  PMU Transmission Line Model 

 

Consider the pi model of the transmission line connecting busses i  and  shown 

Figure 2.  This connection has a series admittance of  and a shunt admittance of 

shunt admittance of .  The equations describing the rectangular components of the 

complex current flowing through the branch can be derived as. 

j

y

sy

 

( ) ( ) ( )ijiijiijjijjsiisiiij YVYVYVC θδθδθδ +−+++= coscoscos  

 

( ) ( ) ( )ijiijiijjijjsiisiiij YVYVYVD θδθδθδ +−+++= sinsinsin  
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When the Jacobian H matrix is formed, the following derivatives of Cij and Dij are 

used.  

 

( ) ( )ijiijsiisi
i

ij YY
V
C

θδθδ +−+=
∂

∂
coscos  

 

( )ijjij
j

ij Y
V
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θδ +=
∂

∂
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∂
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When we employ PMUs in a power system, the measurement vector is augmented.  

Instead of containing only the voltage magnitude, power flows, and power injections 

provided by conventional measurements, it will also include the phase shifts and the 

real and reactive current flows throughout the system.  The augmented measurement 

vector will take on the following form. 

 

( )TT
ij

T
ij

TTT
flo

T
flo

T
inj

T
inj DCVQPQPz δ=  

 

 

2.4  Bad Data Processing 

State estimators of all varieties are susceptible to the problem of bad data corruption.  

This bad data can come from many sources including a malfunctioning measurement 

device, a noisy communication channel, or even a failure in the communication 

channel.  Whatever the source of the bad data, it will serve to bias the state estimator, 

causing it to return inaccurate results.  One way of detecting the presence of bad data 

is using the  test.  This test looks at the measurement vector   in an effort to 

determine the presence of faulty data.  A second test involves the inspection of the 

normalized residuals to determine specifically which measurement is malfunctioning. 

2χ z
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The  test may be looked at as having three separate steps.  First, the state estimator 

must be run in order to obtain an estimate of the power systems state, .  Once this 

state estimate has been calculated, the system’s objective function must be developed.  

The objective function is of the following form. 

2χ

x̂

 

( ) ( )( ) ∑∑
=

−

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

m

i
iii

m

i ii

ii eR
R

xhzxJ
1

21

1

2

 

 

At this point, we can assume that all the error terms, , will be random variables 

which are independent and approximately normally distributed in the following 

manner. 

ie

 

( )( ) ( )iiiii RNxhze ,0~ˆ−=  

 

Now we are able to normalize the errors and obtain a new function . ( )xu

 

( )
ii

ii
i R

xhzu −
=  

 

( )xuOnce we have formulated the function , we enter the third part of the test.  Now 

we must compute the  test statistic with ( )nm −2χ  degrees of freedom, where  is m
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the total number of measurements in the system and  is the number of states of the 

system.  The false alarm rate 

n

α  is then selected and a  table is consulted.  If the 

value of the objective function

2χ

( )xJ ˆ  is greater than the  value, then we should 

suspect to have at least one piece of bad data in our measurement set.  Should the 

value of the objective function be less than the  value, this is a good indication that 

all measurements are functioning properly. 

2χ

2χ

 

There are two main shortcomings of this test.  First of all, this is a cumulative test.  

This means that some of the outlying data points may be lost in the average, making 

this test less than perfect.  Secondly, this test simply indicates the presence of bad data 

in our measurement set.  The  test does not have the ability to single out the 

individual pieces of offending data, but merely says that they exist.  

2χ

 

In order to find which specific measurement is incorrect, we must rely on another 

algorithm.  This thesis will employ normalized residual testing in order to find the 

problematic measurements.  In this technique, inspection of the normalized values of 

the residuals will point out which measurement is bad.  

 

In order to use normalized residual testing, we must first define a matrix called the 

hat matrix, K .   
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11 −−= RHHGK T  

 

ẑΔK zΔIt is known as the hat matrix because the multiplication of  and  results in , 

in other words, the hat matrix simply puts a hat on zΔ K.  With this  matrix, we are 

now able to develop the residual sensitivity matrix, , in the following manner. S

 

zKzzzr Δ−Δ=Δ−Δ= ˆ  

 

( )KIzr −Δ=  

 

( )( exHKIr +Δ−= )  

 

( )eKIxKHxHr −+Δ−Δ=  

 

( ) SeeKIr =−=  

 

RSince the covariance matrix for  is assumed to be known as e , the above equation 

can be used to derive the covariance matrix for the residual vector  as follows: r

 

( )iii xhzr ˆ−=  

 

( ) TSRSrVar =  
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It can be shown that  is equal to by substituting  with its expanded 

definition and simplifying terms.  Hence: 

TSRS SR S

 

( ) iiiii SRrVar Ω==  

 

( )iii Nr Ω,0~  

 

We can normalize the residuals in the same manner that we normalized the errors to 

produce .   ( )xu

 

ii

iN
i

rr
Ω

=  

 

( )1,0~ Nr N
i  

 

Now that the residual values have been normalized, they may be compared to some 

statistically reasonable value set by the observer based on the desired false alarm rate.  

A threshold of 3.0 is used in this thesis.  Any residuals exceeding this threshold are 

suspect and should be treated. 

 

The elimination of all bad data from a measurement set may be accomplished in the 

following manner.  Once the normalized residuals have been calculated, the largest 
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residual will correspond to the erroneous measurement.  Instead of removing this 

measurement from the vector, we are able to correct it using the following algorithm. 

 

BAD
i

ii

iBAD
i

GOOD
i rZZ

Ω
−=

2σ
 

 

( )BAD
i

BAD
i

BAD
i xHZr ˆ−=  

 

In the above equations,  and  correspond to the corrected and initial, 

suspect value of the normalized residual for measurement i .  By replacing  with 

, the bad data treatment algorithm is complete for the largest normalized 

residual of the group.  The procedure may then be repeated until all normalized 

residuals fall beneath the threshold set by the user.   

GOOD
iZ BAD

iZ

BAD
iZ

GOOD
iZ

 

While this is a very useful technique for the discovery and elimination of bad data, it 

too has its shortfalls.  This test has problems if the measurement scheme of the system 

is not robust.  If there is a single piece of bad data, this algorithm will be unable to 

correct it if the faulty data is from a critical measurement.  A critical measurement is a 

measurement which must be present in the system for the system to remain 

observable.   
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When there are multiple pieces of bad data, there are two issues.  The first issue is 

concerned with the presence of a critical pair or k-tuple.  These items are similar to 

critical measurements in the fact that if all the component measurements are 

removed, the system will become unobservable.  There is also the issue of multiple 

interacting errors.  Conforming interacting errors in particular pose a problem for this 

algorithm since it is possible for the conforming erroneous measurements to have 

smaller residuals than the measurements which are indeed free of gross errors.  

 

This chapter has looked into the basics of weighted least squares state estimation as 

applied to electrical power systems.  It has addressed the treatment of both 

conventional measurements and PMUs and given two  tests for the detection and 

treatment of bad data.  The next chapter will look at the process of multi-area state 

estimation. 
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CHAPTER III 

MULTI-AREA STATE ESTIMATION 

 

3.1  Introduction 

As the electrical power networks of the world continue to grow ever larger, there has 

been an increasing demand for a highly robust, computationally efficient state 

estimation algorithm.  Initially, this goal was pursued by taking advantage of the 

innately sparse structure of the state estimation matrices.  New algorithms were 

developed to deal with large, sparse matrices and the state estimators kept pace with 

the power grids for a time.  Unfortunately, the gains provided by sparse matrix 

manipulation were limited, and eventually the size of the power networks required a 

new advance in state estimation algorithms.   

 

This new advance came in the form of parallel processing.  Instead of being limited to 

a single serial processor, the parallel state estimators break the large system down into 

smaller sub-systems which are solved simultaneously on multiple processors.  The 

state estimation results from these individual areas are then sent to a second 

coordinating processor where they are combined into a single solution for the entire 

system.   
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3.2  Multi-Area State Estimation

In any individual area in multi-area state estimation, there are three types of busses: 

internal, boundary, and external.  Bus  of area   is considered to be internal if all of 

its neighboring busses also belong to area .  Bus  of area i   is a boundary bus if at 

least one of its neighbors belongs to an area other than i .  Finally, bus  will be an 

external bus of area   if it belongs to another area but has at least one connection to a 

boundary bus in area i .  Any line running between two boundary busses of different 

areas, thus connecting the two areas, is known as a tie line.  These four items are 

illustrated in the Figure 3 with busses 21, 22, and 23 being internal, boundary, and 

external busses to Area 1.  There is a tie line running between busses 22 and 23 and 

another between 32 and 113. 
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Figure 3.  Multi-Area Bus Types 

 

Since its inception, there have been many specific algorithms developed to carry out 

this parallel state estimation, some of the more successful ones have been detailed in 

[8]-[13].  In most cases, the first level state estimation is identical.  The large system is 
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broken down into smaller, more manageable areas and the standard state estimation 

algorithm is applied, as was shown in Chapter II.  There is a great deal of confusion 

though about what to do from that point.  Most of this confusion concerns what to do 

with the boundary measurements.  Some algorithms insert a non-existent bus in 

between the boundary busses on tie lines [14].  Other methods based on the work in 

[15] break the system down into non-overlapping systems and then apply the model 

coordination method to come to a solution.  More recently though, the work done in 

[4] and [16] has developed the algorithm which will be used in this thesis. 

 

In [16] the author first decomposes the system into a group of overlapping 

subsystems.  This is accomplished by including the boundary busses and external 

busses in both areas which they are associated with.  Once the first stage of state 

estimation is complete, the state vectors for each area are organized in the following 

manner. 
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For each area , the components of the state vector  are organized by bus type.  In 

the equation above,  is the state vector composed of the voltage magnitude and 

phase angles at the boundary busses,  is the state vector composed of the voltage 
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magnitude and phase angles at the internal busses, and  is the state vector 

composed of the voltage magnitude and phase angles at the external busses.  In each 

area, the phase angle of the slack bus will be removed from the appropriate vector. 

Text
ix

 

Once this first stage is complete, the estimation coordination must begin.  The 

coordinating estimator is not only responsible for the coordinating of the individual 

area results, but must also carry out bad data detection and correction for the 

boundary measurements.  The states used in this coordinating estimator include not 

only the states computed for each individual area, but also include the synchronized 

voltage phasors for the slack bus in each area.  This state vector is defined in the 

following manner. 
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The voltage angle of the slack bus in each area measured with respect to the voltage 

angle of the slack bus in the first area is listed as .  The global reference bus among 

the individual area slack busses was chosen at random to be the slack bus in the first 

iu
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area, and could easily be any of the slack busses in the system.  In this case, the  

vector would start with  and exclude the appropriate entry containing the slack 

reference bus. 

Tu

1u

 

At the second level of state estimation, the coordinating estimator will utilize a 

measurement vector with the following composition. 
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In the above measurement vector, is the vector of boundary measurements,  is 

the vector of synchronized phasor measurements, and  and  are the vectors of 

boundary and external state variables as  estimated by the individual areas.  This 

vector of states will then be treated as pseudo-measurements by the coordinating 

estimator.  This leads us to the measurement model which will be used by the second 

level state estimator shown below. 
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The covariance of these estimated measurements are obtained from the covariance 

matrix of the area from which they come.  This covariance matrix is actually the 

inverse of the gain matrix of the area, as shown below. 

 

( ) ( )( )zRHHRHx TTT 111covˆcov −−−=  

 

( ) ( )zRHGx T 11covˆcov −−=  

 

( ) ( ) ( )( )TTT RHGzRHGx 1111 covˆcov −−−−=  

 

( ) ( ) ( )( )TTTT RHHRHRRHGx 11111ˆcov −−−−−=  

 

( ) ( ) ( ) ( )( )TTTTT HRHRHRRHGx 11111ˆcov −−−−−=  

 

( ) ( ) ( ) 11111ˆcov −−−−−= TT HRHHRRRHGx  

 

( ) ( ) 111ˆcov −−−= TT HRRHGx  

 

( ) 1ˆcov −=Gx  

 

Once the coordinating estimator has reached a WLS solution for the entire area, 

residual testing may then take place, and any faulty measurements will be 
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normalized.  While this is an excellent procedure since it does not require the sharing 

of data between the areas, it can be improved upon still. 

 

In [4], the author points out that the above technique simply uses the PMUs to 

measure the synchronized voltage angles among the areas and suggests the following.  

PMUs have the ability to measure the real and reactive current phasors.  In fact, a 

single PMU may measure a bus voltage phasor and multiple current phasors 

simultaneously.  As the measurements taken from PMUs have smaller variance than 

conventional measurements, the estimated state would benefit from the inclusion of 

these additional PMU current measurements. 

 

The first level of state estimation with PMUs would follow the algorithm outlined in 

Chapter II.  Once the states of the individual areas have been estimated though, the 

second level algorithm needs to be changed in order to accommodate the additional 

measurements provided by the PMUs.  The new measurement vector of the second 

level state estimator will be of the following form. 

 

[ ]TextbT
pmu

T
us

TT

xxzzz ˆˆ=  

 

[ ]TT
D

T
C

TT
vpmu zzzzz θ=  

 



28 

[ ]TextbT
D

T
C

TT
v

T
us

TT

xxzzzzzz ˆˆθ=  

 

Above,  is the measurement vector from a PMU.  The overall measurement 

vector, , will contain twelve different types of measurements, four from 

conventional measurements, four from PMU measurements, and four pseudo-

measurements from the first level of estimation.  These twelve measurement types are 

detailed below. 

PMUz
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Table 1.  Multi-Area Measurement Types and Sources 

Source Measurement 

Real power flow 

Reactive power flow 

Real power injection 
Conventional 

Reactive power injection 

Voltage magnitude 

Voltage phase angle 

Real Current 
PMU 

Reactive Current 

Boundary bus voltage magnitude 

Boundary bus voltage phase angle 

External bus voltage magnitude 
Estimated 

External bus voltage phase angle 
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 At this coordination level, the state vector contains the states from the boundary 

busses, as well as the states from the busses supporting a PMU and its neighboring 

busses.   
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Including this additional information does indeed increase the performance of the 

state estimator as shown in [4]. 

 

This chapter has laid out the basic theory behind multi-area state estimation, 

including the terminology, measurement types and measurement vector composition.  

In the following chapter, this algorithm will be tested and verified on the IEEE 118 

bus test system.  Its results shall not only be checked for accuracy with a standard 

state estimator, but its ability to detect bad data will also be put to the test. 
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CHAPTER IV 

SIMULATION RESULTS 

 

4.1  118 Bus Area Geography 

Before the test system is fed into the estimator, it must first be broken down into 

individual areas.  The division of these areas do not play an important role in the 

second level solution, so the formation of the areas is subject to only one stipulation, 

the individual areas must be observable.  If an individual area is unobservable, the 

first level state estimator will be unable to converge for that area.  This will lead to 

missing information for the second level estimator, again causing a non-converging 

error.  I chose to break the system down into five areas.  Table 2 details the bus 

composition of each area in the IEEE 118 bus test system.  Figure 4 shows the IEEE 

118 Bus Test System.  In the system diagram, the slack busses for each area are shown 

in blue.  The arrows branching off of the slack busses indicate a complex current 

measurement, provided by the PMU at that bus. 
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Table 2.  118 Bus System Area Composition 

Area      1 2 3 4 5

Internal Busses 20 16 22 14 4 

Boundary Busses 6 11 5 11 9 

External Busses 7 9 6 10 13 

Total Busses 26 27 27 25 13 

Slack Bus No. 3 27 103 35 47 



32 

Fi
gu

re
 4

.  
IE

EE
 1

18
 B

us
 T

es
t S

ys
te

m
 

 



33 

4.2  Measurement Vector Composition 
 
In order to create the measurements used by the state estimators in this thesis, a 

power flow analysis was first run on the integrated system.  The resulting currents 

and power flows were then perturbed by a small amount to simulate the variance 

found in actual measurements.  The different types of measurements were subjected 

to different amounts of perturbation, as detailed in Table 3.  Notice that the standard 

deviation of all the PMU measurements is significantly smaller than the standard 

deviation of the conventional measurements.  This reflects the increased precision of 

the newer PMUs over the conventional measurement devices.   

Table 3.  Measurement Standard Deviation 

Measurement Type Standard 
Deviation 

Conventional Power Injection 0.01 

Conventional Power Flow 0.008 

PMU Real Current 0.000001 

PMU Reactive Current 0.000001 

PMU Voltage Magnitude 0.000001 

PMU Voltage Angle 0.000001 

 

In the serial estimator and the individual area estimators, the boundary busses 

received a real and reactive power injection measurement pair.  All branches received 

at least one real and reactive power flow measurement pair, and if the branch was 

associated with a boundary bus, it received a second real and reactive power flow 
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measurement pair.  Finally, the slack busses in each area received a PMU voltage 

magnitude measurement. 

 

For the multi-area estimator, the power injection measurement pairs were assigned in 

the same manner.  At this level, only the branches associated with a boundary bus 

receive power flow measurement pairs, and these branches receive two measurement 

pairs.  The slack bus within each area is given a voltage magnitude and angle 

measurement from the PMU located at that bus.  Any boundary bus or external bus 

will receive a voltage magnitude and angle pseudo-measurement from the first level 

state estimation.  Finally, the real and reactive current flows from the slack busses in 

each area was also included in the second level measurement vector.  Table 4 

summarizes the measurement make up of the various estimators. 

Table 4.  Measurement Vector Composition per Estimator 

Individual Area 
Estimator  

     
Serial

1 2 3 4 5
Multi-Area 

Injection Pairs 42 6 11 5 11 9 42 

Flow Pairs 252 74 77 84 77 46 206 

Slack Voltage Phasor 5 1 1 1 1 1 5 

Boundary Voltage Phasor 0 0 0 0 0 0 42 

External Voltage Phasor 0 0 0 0 0 0 42 
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4.3  Accuracy Verification 

Now that we have defined our systems and measurement vectors, we are able to begin 

simulation.  This first round of simulation will be simply to determine if the accuracy 

of the multi-area of the state estimator is on par with that of the serial estimator.  

Figures 5 and 6 show the voltage magnitude and angle difference between the given 

solution and the serial estimator, as well as the given solution and the multi-area 

estimator. 
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Figure 5.  Voltage Magnitude Difference Comparison 
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Phase Angle Difference from Given Solution
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Figure 6.  Phase Angle Difference Comparison 

 

While Figures 5 and 6 may be a little confusing, their pertinent statistics are 

summarized in the Table 5 below. 

Table 5.  Estimator Accuracy Statistics 

Estimator  Serial Estimator Multi-Area Estimator

Mean Voltage Difference -0.00033 -0.00038 

Mean Angle Difference (°) 0.00004 -0.00362 

Voltage Difference Standard Deviation 0.00055 0.00067 

Angle Difference Standard Deviation (°) 0.04909 0.04318 

Max Voltage Difference 0.0018 0.0037 

Max Angle Difference (°) 0.22286 0.13645 
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 It can be seen that the difference between the serial estimator and the multi-state 

estimator is minimal.  This verifies that the multi-state estimator does function 

correctly given ideal conditions.  The next step is to verify the multi-state estimator’s 

ability to detect bad data. 

 

4.4  Bad Data Detection 

As pointed out in Chapter II, the state estimators use a  test to detect the presence 

of bad data and then an investigation of the normalized residual values will point out 

the specific measurement which is returning the bad data.   

2χ

 

For the  test, the objective function of the system must be compared to a threshold 

value.  This value is determined by setting a false alarm probability, 

2χ

α  and the 

degrees of freedom for the system, given by ( )( )12 −− Nm , where  is the total 

number of measurements in the area and  is the number of busses in the area.  

When the value of any normalized residual exceeds 3.0, this indicates the 

measurement associated with that residual is returning bad data.  Table 6 lays out the 

data and thresholds used for bad data detection with for the serial, individual area, 

and multi-area state estimators. 

m

N
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Table 6.  Bad Data Detection per Estimator 

Individual Area 
Estimator  

    

Multi-
Area Serial

1 2 3 4 5

Measurements 593 161 177 179 177 111 680 

Busses 118 26 27 27 25 13 118 

Degrees of Freedom 356 108 122 124 126 84 443 

False Alarm Rate 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Chi-squared Value 421.00 145.10 161.25 163.55 165.84 117.06 515.17 

Objective Function 348.43 93.22 105.99 112.17 126.08 57.41 481.69 

Largest Normalized Residual 0.301 0.278 0.242 0.250 0.281 0.276 0.403 

 

As can be seen above, the largest normalized residuals for each of the estimators is 

well below the 3.0 threshold, indicating all the data is within reason.  This fact is 

further confirmed since the objective function of each of the areas is well below the 

chi-squared value as determined by the degrees of freedom and the false alarm rate.   

 

To test the multi-area estimator’s ability to detect bad data, let us force a bad power 

injection measurement at Bus 19 in Area 1.  By changing the computed measurement 

value from -0.46304 to -1, we will be able to see if the estimators are able to first 

detect and then isolate the bad data using both the  and normalized residual tests.  2χ
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Table 7 shows the results of this faulty measurement on the test statistics of the 

system. 

Table 7.  Bad Data Detected per Estimator 

Individual Area 
Estimator  

     
Serial

1 2 3 4 5

Multi-
Area 

Chi-squared Value 421.00 145.10 161.25 163.55 165.84 117.06 515.17 

Objective Function 1575.90 1233.20 126.38 109.30 98.92 48.62 1935.50

Largest Normalized Residual 3.512 3.381 0.295 0.275 0.312 0.253 3.650 

 

 It can be seen that the multi-area estimator does indeed have the ability to detect bad 

data.  This is evident in the fact that the objective function of the system is greater 

than the chi-squared test statistic.  The only measurement residual which was larger 

than the allowed threshold of 3.0 was the residual which corresponded to the power 

injection measurement at Bus 19. 

 

4.5  CPU Time Savings 

Now that this thesis has shown the multi-area state estimator to be accurate and 

robust, we are able to examine the possible time savings which come from a parallel 

processing scheme.  The large scale of modern utility power systems were a driving 

force behind the development of multi-area state estimators.  Unfortunately, any time 

savings seen on the IEEE 118 Bus Test System will be minimal at best due to its small 

size, but the time savings will increase as the systems grow larger. 
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In order to determine the time savings offered by the multi-area state estimator, the 

CPU clock will first record the time required for the serial state estimator to 

converge.  Then, the CPU clock will record the time required for each of the 

individual area state estimators to converge.  Of these five times, the longest time will 

be added to the time required for the coordination level state estimator to converge.  

The CPU clock will begin timing at the start of the state estimation algorithm and will 

stop once the largest normalized residual has been calculated.  This removes any 

extraneous cycles required for reading in data files or calculating measurements 

which may skew the results.  Table 8 holds the various times taken by each of the 

estimators. 

Table 8.  Time Savings of Multi-Area Estimation 

Estimator Base Time Total Time 

Serial 0.7711 0.7711 

Area 1 0.2403 

Area 2 0.1803 

Area 3 0.1702 

Area 4 0.1502 

Area 5 0.1001 

Multi Area 0.7411 

0.9814 
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Unfortunately, on such a small scale the time savings of running a multi-area state 

estimator are not apparent.  When dealing with utility power systems which contain 

thousands of busses and branches, one could expect a very real time savings. 

 

This chapter has shown that the accuracy of the multi-area state estimator is on par 

with that of a standard state estimator.  The multi-area state estimator also is able to 

use the same tests as a serial estimator to detect bad data received from its 

measurements.  Finally, an attempt was made to examine the time savings of multi-

area state estimation, but the scale of the system was too small for a determination to 

be made. 
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CHAPTER V 

CONCLUSION 

 

5.1  Summary 

Chapter II was a study in the theory of power system state estimation.  The objective 

of state estimation is to describe the real time operation of a power system in terms of 

the systems states, bus voltage magnitude and phase angle.  To do this, the state 

estimator relies on various measurements taken from the power system, including 

power injections, power flows, and PMU measurements.  The power system 

measurements were modeled as the sum of a non-linear function relating the error 

measurements to the system states and a random variable representing error.  

Weighted least squares estimation was then used to minimize the sum of the square of 

the error.  The mathematical equations related to the use of conventional and PMU 

measurements in WLS estimation were derived and examined.  Finally, the issue of 

bad data processing was explored.  There were two types of bad data treatments used 

in this thesis.  The chi-squared test was the first method and is only used to tell if 

there is at least one bad measurement in the measurement vector.  In order to 

determine which specific measurement is bad, one needs to use the normalized 

residual test. 

 



43 

Chapter III took the state estimation algorithm developed in Chapter II and attempted 

to make it faster.  To do this, the idea of a multi-area state estimator was discussed.  In 

a multi-area state estimator, the single large power system is broken down into 

smaller areas.  These individual areas each run their own state estimation algorithm 

simultaneously and then pass the results to a second level coordinating estimator.  

This second level estimation pieces the information from the first level to create a 

single state vector for the entire system.  The use of PMUs is vital at this coordination 

level, and the use of their measurements was discussed.  

 

Chapter IV was simply a verification of the validity of the multi-area state estimator 

developed in Chapter III.  In order to verify the accuracy of multi-area state 

estimator, the IEEE 118 Bus Test System was first run through a serial state estimator.  

This state vector and the state vector given as the solution were used as a baseline to 

compare the performance of the multi-area state estimator.  Then the IEEE 118 Bus 

Test System was broken down into five areas in preparation for the multi-area state 

estimator.  The measurement scheme of the multi-area state estimator was once again 

explained, and then the multi-area state vector was compared to the baseline.  It was 

shown that the performance of the multi-area state estimator was comparable to the 

performance of the serial state estimator in terms of accuracy.  The next test was to 

see if the multi-area state estimator would be able to detect bad measurement data.  

This was done by perturbing the measurement vector and in every case, the multi-



44 

area state estimator detected the bad data with both the  test and the normalized 

residual test.  Finally, the time savings stemming from the use of the multi-area state 

estimator were investigated.  Unfortunately, the size of the test system was such that 

the gains were unobservable. 

2χ

 

5.2  Future Work 

While this thesis was successful in verifying the accuracy of the multi-area state 

estimator, it was unable to see any time savings due to the implementation of said 

estimator.  It has been said many times throughout this thesis that the shortened 

computation time was the impetus for the development of multi-area state estimation, 

and as such, this deserves further study.  The next logical step would be to increase 

the size of the system and look for the promised reduction in computation time.  
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