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ABSTRACT

Fast History Matching of Finite-Difference Model, Compressible and Three-Phase Flow
Using Streamline-Derived Sensitivities. (August 2005)
Hao Cheng, B.S., Xi’an Petroleum Institute, China;
Ph.D., University of Petroleum, Beijing, China

Chair of Advisory Committee: Dr. Akhil Datta-Gupta

Reconciling high-resolution geologic models to field production history is still a very
time-consuming procedure. Recently streamline-based assisted and automatic history
matching techniques, especially production data integration by “travel-time matching,”
have shown great potential in this regard. But no systematic study was done to examine
the merits of travel-time matching compared to more traditional amplitude matching for
field-scale application. Besides, most applications were limited to two-phase water-oil
flow because current streamline models are limited in their ability to incorporate highly
compressible flow in a rigorous and computationally efficient manner.

The purpose of this work is fourfold. First, we quantitatively investigated the
nonlinearities in the inverse problems related to travel time, generalized travel time, and
amplitude matching during production data integration and their impact on the solution
and its convergence. Results show that the commonly used amplitude inversion can be
orders of magnitude more nonlinear compared to the travel-time inversion. Both the
travel-time and generalized travel time inversion (GTTI) are shown to be more robust
and exhibit superior convergence characteristics.

Second, the streamline-based assisted history matching was enhanced in two
important aspects that significantly improve its efficiency and effectiveness. We utilize
streamline-derived analytic sensitivities to determine the location and magnitude of the
changes to improve the history match, and we use the iterative GTTI for model updating.

Our approach leads to significant savings in time and manpower.
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Third, a novel approach to history matching finite-difference models that combines
the efficiency of analytical sensitivity computation of the streamline models with the
versatility of finite-difference simulation was developed. Use of finite-difference
simulation can account for complex physics.

Finally, we developed an approach to history matching three-phase flow using a
novel compressible streamline formulation and streamline-derived analytic sensitivities.
Streamline models were generalized to account for compressible flow by introducing a
relative density of total fluids along streamlines and a density-dependent source term in
the saturation equation. The analytical sensitivities are calculated based on the rigorous
streamline formulation.

The power and utility of our approaches have been demonstrated using both

synthetic and field examples.
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CHAPTER I

INTRODUCTION AND STUDY OBJECTIVES

Reconciling geologic models to dynamic data such as multiphase production history is
still by far the most time-consuming aspect of the workflow for both geoscientists and
engineers. Although significant advancements have been made in this area over the last
decade, current industry practice still involves iterative trial and error methods and often
utilizes arbitrary permeability multipliers that can result in geologically unrealistic
discontinuities in reservoir properties. Such manual history matching is time-consuming,
manpower intensive and highly subjective in nature. This makes model assessment very
difficult. The situation is further complicated by compressible and three-phase flow. This

chapter presents the motivation and objectives of the research in this dissertation.

1.1 Introduction

Geological models derived from static data alone often fail to reproduce the production
history of a reservoir. Reconciling geologic models to the dynamic response of the
reservoir is critical to building reliable reservoir models. This process is referred as

“history matching.”

1.1.1 Static vs. Dynamic Data
Geostatistical reservoir models are widely used to model the heterogeneity of reservoir
petrophysical properties, such as permeability and porosity. These geostatistical

reservoir models are usually upscaled from fine-scale geologic/geocellular models to

This dissertation follows the style and format of the SPE Journal.



coarser reservoir simulation models for field development studies and performance
predictions.

It is imperative that geostatistical reservoir models incorporate as much available,
site-specific information as possible in order to reduce the uncertainty in the subsurface
characterization. Available information on reservoir heterogeneity can be broadly
categorized into two major types: static and dynamic. Static data are time-invariant
direct or indirect measurements of reservoir properties, such as core measurements, well
logs, and seismic data. These data can, relatively easily, be integrated into geostatistical
models using the traditional geostatistical algorithms." Dynamic data are the time
dependent measurements of flow responses that are related to the reservoir properties
through the flow equations, such as pressure, flow rate, fractional flow rate, saturation or

tracer responses. Integration of dynamic data generally leads to an inverse problem.*”

1.1.2 History Matching Workflow Overview

There are many possibilities for choosing parameters for history matching. These
include porosity, permeability, fluid properties, relative permeabilites or boundary
conditions such as fluid contacts, aquifer strength, fault transmissibilities etc. The
reservoir response can be water-cut data, pressure measurements, tracer response, 4-D
seismic etc. The key parameters in history matching are not always apparent. Also, the
parameter and data uncertainties are often unknown and the constraints on the
parameters are not well-defined. All these make field scale history matching a
challenging and time consuming task. Modern history matching follows a hierarchical
workflow to account for uncertainties at various scales. To start with, generally a
geologic model screening is carried out to identify the impact of large-scale features
such as structures, fluid contacts, reservoir architecture/stratigraphy and boundary
conditions on the production response. This step consists of performing flow simulations
through a suite of realizations representing large-scale subsurface uncertainties. The
outcome of this step is a selected set of realizations for detailed history matching by

changing spatially varying properties such as permeability, porosity or facies



distribution. This step involves localized changes and is typically the most time-
consuming aspect of the workflow. Fortunately, streamline models are most
advantageous at this stage because of the unique information content in the streamlines
and sensitivities. Finally, history matching also involves adjusting physical property
models such as relative permeabilities and fluid properties. Because typically there are
only a few parameters involved here, we can conveniently examine their significance
using experimental design. This dissertation mainly focuses on changing of spatially
varying properties, in particular permeability for history matching finite-difference or

streamline models using streamline-derived sensitivities.

1.1.3 Assisted History Matching

Traditionally, history matching is performed manually on the upscaled reservoir model
and frequently uses local or regional multipliers to reservoir properties. By adjusting the
regions and multipliers, a history match could be achieved using mostly trial and error.
The trial-and-error involves considerable subjective judgment and personal bias and
most importantly may create artificial discontinuities inside the reservoir, potentially
destroying the correlation built into the initial geologic model.

A more systematic approach to history matching, called Assisted History Matching
(AHM), utilizes unique information-content in streamlines in terms of injector-producer
relationship to facilitate history matching.*® The AHM is also a manual approach.
However, changes to the model can be limited to the streamlines contributing to the
production history of the well of interest and the amount of changes can be computed
using some simple semi-analytical methods. The approach is a significant improvement
over the traditional manual history matching but still could be time consuming,
particularly when there are a large number of wells. This is complicated by the coupled
nature of the flow equations which makes matching individual wells difficult without
impacting other wells also. Finally, if we limit changes along streamlines only, it can

introduce ‘tube like’ artifacts into the geologic model.



1.1.4 Automatic History Matching

Geostatistically-based automatic history matching (production data integration) has been
an active area of research and a number of techniques have been reported in the literature
in the past decade. The main goal here is to match well production data by modifying the
initial model in such a way that it preserves the underlying geostatistical features built
into the initial model. Yeh’ and Wen et al.® provided a review of these inverse
techniques. Both finite difference and streamline fluid flow modeling can be used in
automated history matching.” Typically, an inverse technique is needed for production
data integration, and requires multiple solutions of the flow equations within a nonlinear
optimization procedure.'®'* And this brings a hurdle to the practical applications.
Streamline based inverse techniques have shown great potential in this regard>'® and
they only require a single solution of the flow equations per minimization iteration."**
The sensitivities of production data with respect to reservoir properties can be computed
analytically using a single forward simulation. This renders substantial time-saving. For
automatic history matching, there are many aspects which need to be addressed here,
including different matching approaches, minimization techniques, sensitivity
calculation, streamline versus finite-difference modeling, compressible and three-phase

flow issues.

Matching Approach: Travel Time vs. Amplitude Matching. In recent years several
techniques have been developed for integrating production data into reservoir

5,10,12,13,15,18-27
models.” 7>

The theoretical basis of these techniques is generally rooted in the
least-squares inversion theory that attempts to minimize the difference between the
observed production data and the model predictions. This can be referred to as
“amplitude” matching. The production data can be water-cut observations, tracer
response, or pressure history at the wells. It is well known that such inverse problems are
typically ill-posed and can result in nonunique and unstable solutions. Proper

incorporation of static data in the form of a prior model can partially alleviate the

problem. However, there are additional outstanding challenges that have deterred the



routine integration of production data into reservoir models. The relationship between
the production response and reservoir properties can be highly nonlinear. The
nonlinearity can result in multiple local minima in the misfit function. This can cause the
solution to converge to a local minimum, leading to an inadequate history match. All
these can make it difficult to obtain a meaningful estimate of the parameter field,
particularly if the initial model is far from the solution. Another approach is “travel-time
matching” that is analogous to seismic tomography. Instead of matching the production
data directly, the observed data and model predictions are first “lined up” at the
breakthrough time. This is typically followed by a conventional amplitude match,
whereby the difference between the observed and calculated production response is
minimized. A major part of the production data misfit reduction occurs during the travel-
time inversion, and most of the large-scale features of heterogeneity are resolved at this
stage."”*'** A more efficient approach is “generalized travel-time” inversion.” The
generalized travel-time inversion ensures matching of the entire production response
rather than just the breakthrough times and at the same time retains most of the desirable
properties of the travel-time inversion. The concept follows from wave-equation travel-
time tomography and is very general, robust, and computationally efficient.***® The
generalized travel-time inversion has been utilized to extend the streamline-based
production data integration methods to changing field conditions involving rate changes
and infill drilling.

The advantages of the travel-time inversion compared to amplitude inversion mainly
stems from its quasilinear properties. The advantages of travel-time inversion are well-
documented in the context of seismic inversion.”® However, no systematic study has
been done to examine the benefits of travel-time inversion for production-data
integration in terms of nonlinearity and convergence properties. Characterizing the
degree of nonlinearity can be as important as finding the solutions to the inverse problem
itself. However, quantitative measures of nonlinearity for the inverse problems related to

production data integration have not been adequately addressed.



Minimization Techniques. Integration of dynamic data typically requires a least-
square based minimization to match the observed and calculated production response.
There are several approaches to such minimization and these can be broadly classified
into three categories: gradient-based methods, sensitivity-based methods and derivative-
free methods. The derivative-free approaches such as simulated annealing or genetic
algorithms require numerous flow simulations and can be computationally prohibitive
for field-scale applications.”” Gradient-based methods have been widely used for
automatic history matching, although the convergence rates of these methods are
typically slower than the sensitivity-based methods such as the Gauss-Newton or the
LSQR method.”"®** An integral part of the sensitivity-based methods is the
computation of sensitivity coefficients. These sensitivities are simply partial derivatives
that define the change in production response because of a small change in reservoir

parameters.

Sensitivity. There are several approaches to calculating sensitivity coefficients and
these generally fall into one of the three categories: perturbation method, direct method
and adjoint state methods.” Conceptually, the perturbation approach is the simplest and
requires the fewest changes in an existing code. Sensitivities are estimated by simply
perturbing the model parameters one at a time by a small amount and then computing the
corresponding production response. Such an approach requires (N+1) forward
simulations where N is the number of parameters. Obviously, this can be
computationally prohibitive for reservoir models with many parameters. In the direct or
sensitivity equation method,’ the flow and transport equations are differentiated to obtain
expressions for the sensitivity coefficients. Because there is one equation for each
parameter, this approach can require the same amount of work. A variation of this
method, called the gradient simulator method,” utilizes the discretized version of the
flow equations and takes advantage of the fact that the coefficient matrix remains
unchanged for all the parameters and needs to be decomposed only once. Thus,

sensitivity computation for each parameter now requires a matrix-vector



multiplication.'*"

This method can also be computationally expensive for large number
of parameters.Finally, the adjoint state method requires derivation and solution of adjoint
equations that can be significantly smaller in number compared to the sensitivity
equations. The adjoint equations are obtained by minimizing the production data misfit
with flow equations as constraint and can be quite cumbersome for multiphase flow

applications.’® Furthermore, the number of adjoint solutions will generally depend on the

amount of production data and thus, length of the production history.

Streamline vs. Finite-Difference. With the streamline method, the sensitivities can
be computed analytically using a single flow simulation.'*® Because the sensitivity
calculations involve evaluation of 1-D integrals along streamlines, the method scales
very well with respect to model size or the number of parameters. Although the
streamline models have been extremely successful in bridging the gap between geologic
modeling and flow simulation, they are currently limited in their ability to incorporate
complex physical processes and cross-streamline mechanisms in a computationally
efficient manner.” Thus, an efficient and robust approach to production data integration
using finite-difference models will be particularly useful in characterizing reservoirs
dominated by mechanisms such as compressibility and gravity effects, transverse
dispersion and other complex physical mechanisms.

Since streamline models are limited in their ability to incorporate highly
compressible flow and cross-streamline mechanisms in a rigorous and computationally
efficient manner, most of the streamline-based history matching applications have been

limited to two-phase water-oil flow.

1.2 Objectives

From the above section, several problems in reservoir characterization raised, including

quantification of measure of nonlinearity for travel-time and amplitude matching,



enhancement of assisted history matching approach, history matching finite-difference
models, and history matching compressible, three-phase flow. Thus the objectives of this

research are as follows.

1.2.1 Nonlinearity Quantification

We discuss the mathematical foundation for the measure of nonlinearity and its
implications on the production-data integration. We quantitatively investigate the extent
of nonlinearity in travel-time inversion and amplitude inversion. We illustrate our results

using both synthetic and field applications.

1.2.2 Assisted vs. Automatic History Matching

We enhance the streamline-based assisted history matching in two important aspects that
can significantly improve its efficiency and effectiveness. First, we utilize streamline-
derived analytic sensitivities to determine the spatial distribution and magnitude of the
changes needed to improve the history-match. These sensitivities are then incorporated
into an optimization algorithm to update the reservoir model during flow simulation.

24,6 . : -
7”7+ is used for inverse modeling.

Secondly, a “generalized travel-time inversion (GTTI)
The GTTI is robust because of its quasi-linear properties’ resulting in rapid
convergence even if the prior model is far from the solution. We demonstrate our
approach using two field examples with over 100 wells and more than 30 years of

production history.

1.2.3 History Matching Finite-Difference Models

We propose a novel approach to history matching finite-difference models that combines
the advantage of the streamline models with the versatility of finite-difference
simulation. We first generate streamlines using the velocity field derived from a finite-
difference simulator. The streamlines are then used to compute the parameter
sensitivities for updating the reservoir model. The updated model is then used in the

finite-difference simulation to predict reservoir performance and the process is repeated



until a satisfactory history match is obtained. For history matching, we use ‘a
generalized travel-time inversion’ that is shown to be extremely robust because of its
quasi-linear properties and converges in only a few iterations. We illustrate the power

and practical feasibility of the method using synthetic and field examples.

1.2.4 History Matching Compressible, Three-Phase Flow

We generalize streamline models to compressible flow using a rigorous formulation
while retaining most its computational advantages. Our new formulation is based on
three major elements and requires only minor modifications to existing streamline
models. We introduce a relative density for the total fluids along the streamlines and
incorporate a density-dependent source term in the saturation equation that accounts for
the pressure effects during saturation calculations for compressible flow. We can history
match three-phase flow using the rigorous streamline flow simulation. In addition,
history matching three-phase flow using finite-difference flow simulation and
streamline-based sensitivity is another option. The analytic sensitivities are calculated
along the streamlines using the rigorous compressible streamline formulation. A
synthetic example is used to illustrate the procedure, and a field-scale example is shown

to validate this method.
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CHAPTER1II
TRAVEL-TIME VS. AMPLITUDE MATCHING FOR

PRODUCTION DATA INTEGRATION’

The traditional approach to reconciling geologic models to production data involves an
“amplitude matching,” that is, matching the production history directly. These include
water-cut, tracer concentration, and pressure history at the wells. It is well known that
such amplitude matching results in a highly nonlinear inverse problem and difficulties in
convergence, often leading to an inadequate history match. The nonlinearity can also
aggravate the problem of nonuniqueness and instability of the solution. Recently,
production data integration by “travel-time matching” has shown great promise for
practical field applications. In this approach, the observed data and model predictions are
lined up at some reference time such as the breakthrough or “first arrival” time. Further
extensions have included amplitude information by a “generalized travel-time”
inversion. Although the benefits of travel-time inversion are well documented in the
context of seismic inversion, no systematic study has been done to examine its merits for
field-scale history matching.

In this chapter, we quantitatively investigate the nonlinearities in the inverse
problems related to travel time, generalized travel time, and amplitude matching during
production data integration and their impact on the solution and its convergence. In our
previous works, we speculated on the quasilinear nature of the travel-time inversion

without quantifying it. Our results here show, for the first time, that the commonly used

*Part of this chapter is reprinted with permission from “A Comparison of Travel-Time
and Amplitude Matching for Field-Scale Production Data Integration: Sensitivity, Non-
Linearity and Practical Implications” by Cheng, H., Datta-Gupta, A., and He, Z., 2003.
paper SPE 84570 presented at the 2003 SPE Annual Technical Conference and
Exhibition , Denver, CO, October 5-8. Copyright 2003 by the Society of Petroleum
Engineers.
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amplitude inversion can be orders of magnitude more nonlinear compared to the travel-
time inversion. We also examine the resulting implications in field-scale history
matching. The travel-time inversion is shown to be more robust and exhibits superior
convergence characteristics. The travel-time sensitivities are more uniform between the
wells compared to the amplitude sensitivities that tend to be localized near the wells.
This prevents overcorrection near the wells.

We have demonstrated our results using a field application involving a multiwell,
multitracer interwell tracer injection study in the McCleskey sandstone of the Ranger
field, Texas. Starting with a prior geologic model, the traditional amplitude matching
could not reproduce the field tracer response which was characterized by multiple peaks.
Both travel time and generalized travel time exhibited better convergence properties and

could match the tracer response at the wells with realistic changes to the geologic model.

2.1 Introduction

Geological models derived from static data alone often fail to reproduce the production
history of a reservoir. Reconciling geologic models to the dynamic response of the
reservoir is critical to building reliable reservoir models. In recent years several
techniques have been developed for integrating production data into reservoir

SA0IZIIS1827 The theoretical basis of these techniques is generally rooted in the

models.
least-squares inversion theory that attempts to minimize the difference between the
observed production data and the model predictions. This can be referred to as
“amplitude” matching. The production data can be water-cut observations, tracer
response, or pressure history at the wells. It is well known that such inverse problems are
typically ill-posed and can result in nonunique and unstable solutions. Proper
incorporation of static data in the form of a prior model can partially alleviate the
problem. However, there are additional outstanding challenges that have deterred the

routine integration of production data into reservoir models. The relationship between

the production response and reservoir properties can be highly nonlinear. The
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nonlinearity can result in multiple local minima in the misfit function. This can cause the
solution to converge to a local minimum, leading to an inadequate history match. All
these can make it difficult to obtain a meaningful estimate of the parameter field,
particularly if the initial model is far from the solution.

Recently, streamline-based methods have shown significant potential for

5,10,12,13,15,18-27 A unique

incorporating dynamic data into high-resolution reservoir models.
feature of the streamline-based production data integration has been the concept of a
“travel-time match” that is analogous to seismic tomography. Instead of matching the
production data directly, the observed data and model predictions are first “lined up” at
the breakthrough time. This is typically followed by a conventional amplitude match,
whereby the difference between the observed and calculated production response is
minimized. A major part of the production data misfit reduction occurs during the travel-
time inversion, and most of the large-scale features of heterogeneity are resolved at this
stage, 132122

The concept of travel-time inversion is not limited to streamline models. Recently, it
has been extended for application to finite-difference models through a “generalized
travel-time” inversion.”* The generalized travel-time inversion ensures matching of the
entire production response rather than just the breakthrough times and at the same time
retains most of the desirable properties of the travel-time inversion. The concept follows
from wave-equation travel-time tomography and is very general, robust, and

computationally efficient.?*>*

The generalized travel-time inversion has been utilized to
extend the streamline-based production data integration methods to changing field
conditions involving rate changes and infill drilling.

The advantages of the travel-time inversion compared to amplitude inversion mainly
stems from its quasilinear properties. The advantages of travel-time inversion are well-
documented in the context of seismic inversion.”® However, no systematic study has
been done to examine the benefits of travel-time inversion for production-data

integration in terms of nonlinearity and convergence properties. Characterizing the

degree of nonlinearity can be as important as finding the solutions to the inverse problem
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itself. However, quantitative measures of nonlinearity for the inverse problems related to
production data integration have not been adequately addressed.

In this chapter, we discuss the mathematical foundation for the measure of
nonlinearity and its implications on the production-data integration. We quantitatively
investigate the extent of nonlinearity in travel-time inversion and amplitude inversion. In
particular, we show that the nonlinearity in travel-time inversion is orders of magnitude
smaller than that of the amplitude inversion. This leads to better convergence properties
and a robust method for production-data integration. We illustrate our results using both
synthetic and field applications. The field application is from the McCleskey sandstone,
the Ranger field, Texas, and involves a multiwell, multitracer interwell tracer injection
study. The results clearly demonstrate the benefits of travel-time inversion for field-scale
production-data integration. In particular, the generalized travel-time inversion appears
to outperform both travel-time and amplitude inversion in reconciling the geologic

model to the field-tracer response.

2.2 Background and Approach

2.2.1 Travel-Time Inversion, Amplitude Inversion, and Generalized Travel-Time
Inversion
Travel-time inversion attempts to match the observed data and model predictions at
some reference time, for example, the breakthrough time or the peak arrival time. Thus,
we are lining up the production response along the time axis. Fig. 2.1a illustrates the
travel-time inversion. On the other hand, the amplitude inversion attempts to match the
production response directly. This is illustrated in Fig. 2.1b, wherein we match the
observed tracer concentration and model predictions at the producing well. Creatively,
we can combine the travel-time inversion and amplitude inversion into one step while
retaining most of the desirable features of a travel-time inversion. This is the
“generalized travel-time inversion” and follows from the work of Luo and Schuster™ in

the context of wave-equation travel-time tomography.
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Figure 2.1 lllustration of (a) travel-time inversion, (b) amplitude inversion, (c) generalized travel-

time inversion, and (d) best time shift.

A generalized travel-time or travel-time shift is computed by systematically shifting

the computed production response toward the observed data until the cross-correlation

between the two is maximized. The approach is illustrated in Figs. 2.1c and 2.1d. It

preserves the robustness of a travel-time inversion and improves computational

efficiency by representing the production data misfit at a well in terms of a single travel-
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time shift. It can be shown to reduce to the more traditional least-squared misfit
functional as we approach the solution.*

The advantages of travel-time inversion are well documented in the geophysics
literature. For example, Luo and Schuster’® pointed out that travel-time inversion is
quasilinear as opposed to amplitude inversion, which can be highly nonlinear. Amplitude
inversion typically works well when the prior model is close to the solution. This was
the rationale behind our previously proposed two-step approach to production data
integration: travel-time match followed by amplitude match.'**' In this chapter, we will
quantitatively investigate the relative merits of the different methods in terms of

nonlinearity and convergence properties.

2.2.2 Measures of Nonlinearity
Characterizing and assessing the nonlinearity in the parameter estimation problem is
critical to designing efficient and robust approaches to production data integration. There
are several methods for quantifying the degree of nonlinearity in inverse problems. In
this paper, we will use the measure proposed by Bates and Watts®® to examine the
nonlinearities in travel-time and amplitude inversion. Grimstad and Mannseth®*
applied this measure to examine the relationship between nonlinearity, scale, and
sensitivity in parameter-estimation problems. If F' represents an outcome, for example,
the tracer response, then the nonlinearity measure is defined as &=||Fi||/||Ft||>, where Fy
is the vector of the first-order derivatives with respect to the parameter vector %, that is,
the sensitivity vector, and Fj is the vector of second-order derivatives. This measure is
based on the geometric concept of curvature and x represents the inverse of a radius of
the circle that best approximates the outcome locus F' in the direction of Fj at k.
Smoother and more linear outcome will have smaller curvature (larger radius) and thus a
smaller measure of nonlinearity, as illustrated in Fig. 2.2.

In our application, we evaluate x=||Fi]|/||Fi||* for every iteration during inversion.
In addition, for amplitude inversion, we compute the measure for different observations

and choose the maximum. The details of the computations, including the derivative
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calculations for travel-time, amplitude, and generalized travel-time will be discussed

later. In the following section, we first illustrate the approach using a synthetic example.

Fx

outcome Locus

\_/

Figure 2.2 Geometric meaning of the measure of nonlinearity.
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Figure 2.3 Synthetic permeability distribution for the 9-spot case.

2.2.3 Nonlinearity Measure in Production-Data Integration: A Simple Illustration

This example involves integration of tracer response in a heterogeneous nine-spot
pattern, as shown in Fig. 2.3. The mesh size is 21x21. The reference permeability
distribution consists of a low-permeability trend toward the north and a high-
permeability trend toward the south. The tracer responses from the eight producers in the

nine-spot pattern are shown in Fig. 2.4a. Also superimposed in Fig. 2.4a are the tracer
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responses corresponding to our initial model, a homogeneous permeability field that is

conditioned at the well locations.
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Figure 2.4 Tracer response (a) for uniform initial permeability, (b) after peak arrival-time
inversion, (c) after generalized travel-time inversion, and (d) after direct amplitude inversion.
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We compare the relative performance of travel-time, amplitude, and generalized
travel-time inversion and also the nonlinearities inherent in these approaches. Fig. 2.4b
shows the tracer concentration matches after travel-time inversion. All the peak times are
now in agreement, although there are some discrepancies in the details of the tracer
responses. Fig. 2.4c shows the tracer concentration matches after generalized travel-time
inversion. Not only the peak arrival-times but also the amplitudes are matched much
better compared to the travel-time inversion. Fig. 2.4d shows the tracer-responses match
after the amplitude inversion. Although the matches are quite good for most wells, they
are unsatisfactory for Wells 2 and 7. Incidentally, these are the two wells that exhibited
maximum discrepancy based on the initial model.

Fig. 2.5 shows the convergence behavior for the three methods. Both travel-time and
generalized travel-time inversion reproduce the arrival times perfectly. The generalized
travel-time further reduces the tracer concentration misfit. In contrast, direct amplitude
match shows high arrival-time misfit and is unable to reproduce the tracer response at
two wells. Fig. 2.6a is the estimated permeability field after travel-time match. When
comparing it to Fig. 2.3, we can identify the low-permeability areas and some of the
moderate-to-high-permeability areas, although the high-permeability area is not well
reproduced. Fig. 2.6b shows the permeability field derived by generalized travel-time
inversion. It reproduces not only the low-permeability area but also the high-
permeability regions. Fig. 2.6c shows the estimated permeability field after the
amplitude inversion. Clearly, the results show signs of instability because of the high

nonlinearity as discussed in the next section.
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Figure 2.6 Estimated permeability distribution for the 9-spot case (a) after travel-time inversion,
(b) after generalized travel-time inversion, and (c) after amplitude inversion.

Fig. 2.7 shows the measure of nonlinearity for the three approaches. We can see that
both the travel-time and the generalized travel-time exhibit the same degrees of
nonlinearity. In contrast, the amplitude inversion is three to four orders of magnitude
more nonlinear than the travel-time inversion. This is partly the reason for the failure of
the amplitude inversion when the initial model is far from the solution. The generalized
travel-time inversion appears to retain most of the desirable features of a travel-time

inversion while obtaining an adequate amplitude match.
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2.3 Mathematical Formulation: Sensitivity Computations and Measures of

Nonlinearity

We now discuss the mathematical details related to sensitivity computation and measure
of nonlinearity for travel-time, generalized travel-time, and amplitude inversion.
Although the approach is generally applicable, we will use a streamline simulator here
because of the advantages in sensitivity computations. The sensitivities quantify change
in production response because of a small change in reservoir properties. They are an
integral part of most inverse modeling methods. We also need the sensitivities to
quantify nonlinearities in the various inverse methods examined in this study. Several
approaches can be used to compute sensitivity coefficients of model parameters. Most of
these methods fall into one of the three categories: perturbation method, direct method,

and adjoint state method”?%

and can be computationally demanding, particularly for
large-scale field applications. However, for streamline models, it is possible to
analytically derive a relationship between perturbations in reservoir properties, such as
permeability or porosity, and changes in observations such as water-cut and tracer
response. Streamline-based sensitivity computation is very fast and involves quantities
computed by a single streamline simulation. Hence, we will limit our discussion to
streamline models only.

We use the theory of Bates and Watts*> to measure the nonlinearity in production-
data integration. Bates and Watts®” separate the nonlinearity measures into parameter-
effect curvature and intrinsic curvature; thus, they decompose the second-order
derivative Fy; into one component parallel to the tangent plane defined by Fj for all
directions and another component normal to that plane. Here, we do not separate the
intrinsic curvature and parameter effect curvature; neither do we consider the direction

in the parameter space, because it is not practical to do so for our problem. However, the

theory we applied is essentially the same as that of Bates and Watts.>
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2.3.1 Sensitivity and Nonlinearity of Travel-Time
Streamline methods decouple flow and transport by a coordinate transformation from the

physical space to the time-of-flight along streamlines’. The time-of-flight is defined as
T:J.S(X)dr, (21)
74
where the integral is along the streamline trajectory, % and s is the slowness defined as

the reciprocal of the interstitial velocity,

1 ¢
T W kA VP 22)

The first-order derivative of slowness with respect to permeability is

os s

S __2 2.3
ok k 23)
and the second-order derivative of slowness is
0’s s
hahap——— 2.4
ok* k* 24

If we assume that the streamlines do not shift because of small perturbations in
reservoir properties, we can then relate the change in travel time 6z to the change in

slowness by

5t = j S(x)dr

. ) . (2.5)
- i {— mak(x) + %é'gﬁ(x)}dr

The travel-time sensitivity along a single streamline at a producer with respect to
permeability for a gridblock at location x is given by integrating Eq. 2.3 from the inlet to
the outlet of the streamline ¥ within the gridblock:

82’(1//) _ aujlez{_ﬂ

hn k(x)}dr(t//) . (2.6)

inlet
The overall travel-time sensitivity is then obtained by summing the sensitivities over all
streamlines contributing to the arrival time of a particular concentration (for example,

the peak concentration):
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0t <« 0r(y)
ok(x) 2 Ok(x)

all y

(2.7)
The second-order derivative of travel time along a single streamline is obtained by
integrating Eq. 2.4,

82’[(!//) ~ outlet S(.X)
H(x) 3 K () ary)

, (2.8)
and then integrating over all streamlines contributing to a producer,
o’ o*t(y)
ok (x) ; ok (x) 29)

The components of the tangent vector F; and acceleration vector Fj; can now be

obtained from Egs. 2.7 and 2.9:

T
J IR (2.10)
ok, Ok, ok,
T
o’r 0%t o’r
F. = , Sy . 2.11
H [akf ok’ ékjbj @1
The 2-norms are used to calculate the vector norms,
" a 1/2
b T 2
Fl = il , 2.12
=[Sy e
" 82 1/2
b T,
F, |= — . 2.13
nl-[$E% ) @i

Now we can calculate the nonlinearity measure of travel-time inversion x; according to

the theory of Bates and Watts®” by

AT (2.14)
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2.3.2 Sensitivity and Nonlinearity of Amplitude

Tracer transport can be described by the following convection-diffusion equation,

0C(x,1) _y. . —u
9D v [ D)V ()| -u v (2.15)

Ignoring the dispersion term, Eq. 2.15 can be rewritten as

oC(x,t) , _
¢76t +u-VC(x,t) 0. (2.16)

Applying a transformation to the time-of-flight coordinate, the tracer transport equation

along a streamline can be expressed as™°
oC(z,1)  0C(z,1) _
or )

ot (2.17)
For a unit-impulse concentration at (7, 7) = (0,0), the solution is*®
C(x,t) = 5(1‘_2-()(:))’ (218)
where Jis the Dirac-delta function. If the input is Cy, then
Clx,0)=Cy(t—1) (2.19)

Summing the contributions of all streamlines reaching a producer, we get the tracer

response at a producer as

= [Ct-)dy . (2.20)

all v
From Eq. 2.19, tracer response at the producer along a single streamline is
C(t)=C, Lt - j S(x)er
¥ , (2.21)
where we have used the definition of time of flight from Eq. 2.1.
Now, consider a small perturbation in reservoir properties, say permeability. The

resulting changes in slowness and concentrations can be written as
s(x) =" (x) + Is(x) . (2.22)

C(t)=C"(¢)+5C(t) , (2.23)
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where s° and C? are initial slowness distribution in the reservoir and the associated tracer
response, respectively. Applying Egs. 2.21 and 2.22, the change in concentration
response can be expressed as

5C(t)=C(t)-C(¢)

=C, [t - I [so(x) + 5s(x)}drj -Gyl t—

v

I so(x)dr)J

o

(2.24)

Using a Taylor series expansion and assuming y, (stationary streamlines), we get

Co[t - j [So(x) + ds(x)]d ] = C{t - j s (x)dr — j dy(x)dr}

¥y

~ C{t - j so(x)dr] + [(r - j s° (x)dr — j &(x)drj

Yo Yo Yo

—[t— j so(x)drHC(;{t j s"(x)er . (2.25)

:C{t— j so(x)dr]— j d?(x)dr-C{t— j so(x)dr]

Yo Yo

Hence the perturbation in C(7) and s(x) are related by

5C(t) = -C| [z— j s (x)er j S5(x)dr

¥, 2.26
The tracer-concentration sensitivity along a single streamline W is then -
o G
——C! (r ~[s (x)er J1- ZE’C; : (2.27)
=— cg[t - lso(x)drj%

The second-order derivative of the tracer concentration with respect to permeability

1S
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82C(t)__ . o 0% s(x)
6k2(x)_ Co(t ls (x)drjiakz(x)dr

—- C(’)(t [s° (x)dr)j ks(g)

v v

' 0 azf(q’)
——C| - dr
[t ls o Ja" (O (2.28)

As before, we need to sum over all streamlines reaching a producer to get the final first-

order and second-order derivatives of the concentration response at the producer.
Now, we need to evaluate the tangent vector Fj, the acceleration vector Fj;, and
measure of nonlinearity x at different observation times. The vectors and norms are

expressed as follows:

F (tl_):(6C(ti)’8C(ti)’.._,6C(tl.)j | 2.29)
ok~ ok, ok,
F, ()= {62C(2ti) , azcgzi) s azcgt")] ; (2.30)
ok: ok ok’
|F, @) = [z(aca) J : 2.31)
. ). 1/2
|F )| = (/Z;( o J . (2.32)

By definition, the measure of nonlinearity at observation time ¢ is
w(t) = [ @)/ (2.33)

The final measure of nonlinearity for amplitude inversion &g, is given by the maximum

over all observed data,

Kam =Max| k(6 ),5(0,) -,k (6,) | (2.34)
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2.3.3 Sensitivity and Nonlinearity of Generalized Travel Time

In generalized travel-time inversion, we define the misfit between the calculated and

observed tracer concentrations in terms of the following correlation function***:
C(x,t+
feao)=] ar E Do iy )
4, , (2.35)

where A4 is the maximum amplitude of tracer concentration and 7 is the shift time
between calculated and observed tracer concentrations. We seek a 7 that shifts the
calculated tracer response so that it best matches the observed tracer response.
The criterion for the “best” match is defined as the travel-time residual Az that
maximizes the correlation function above, that is,
f(x,AT):max{f(x,r)\re[—T,T]}’ (2.36)
where T is the estimated maximum travel-time difference between the observed and

calculated tracer responses. Therefore, the derivative of f(x,7) with respect to 7 should

be zero at Az unless the maximum is at an endpoint 7 or —7,

L Of(x,7)
fAT - [ az_ ]T:A‘r

:ljdz 0+ AD), () O

A ot ot

:ljdtwc(t)c ~0
y ot _

(2.37)
Note that a/07- =1 1n this derivation. Eq. 2.37 is the function that is used to compute the
sensitivity of the generalized travel time.

Using Eq. 2.37 and the rule for the derivative of an implicit function, we get

o(f..)
OAT _ Ok(x)
Ok(x)  (fy.)
OAT (2.38)

Taking the derivatives of 7, with respect to k(x) and Az, we have
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ofy,) 1 I 4, 0C(+AT), 0C(),
ok(x) A ot Ok (x)
1 I 5, 0C@+AD), 0C(1), o ot
A ot ot 0t dk(x)
1 f 5 0Ct+AD), 0C(@), o1
A ot or ok(x) (2.39)

and

o j dt-E
OAT A (2.40)

9
where

oC(t+ A7), 6C(1) a[m]
— I+AT7), c ot
E=—=—""aar TCO:—GA;
_0C(t+A1), 0C(t). ot +C0) 02C(t+Ar1), ot
ot ot OAt ¢ or? OAT
_0C(+AD), 0C(0). , oy PCU+AT),
ol o TC0—7n , (2.41)

In the previous derivation, we have applied the relationship ai = o =1 at r=Ar.

AT OT

Substitution of Egs. 2.39 through 2.41 into Eq. 2.38 gives

OAT
Ok(x)
e
— X
I di oC(t gtAr)o a%(tz)c L0, 82C(ta ;rz Ar)o]'

(2.42)
The second-order derivative of generalized travel-time with respect to permeability is
then

O’AT
K2 (0)

0C(t+At), 0C(t), o>
C C(@), C
J‘ di (t gtA o G(tt )e 4 @), (fa ;FZA 7)o ] |

(2.43)
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2

where % is calculated by Eq. 2.8.

Finally, to calculate measures of nonlinearity, the components of the tangent vector

F and acceleration vector Fj; are obtained from Eqs. 2.42 and 2.43 as follows:

T
- 8AT’6Ar’m,6Ar . (2.44)
ok, ok, ok,
T
O’Ar O°Ar O*AT
_ gAar _ 2.45
H ( ok?  ok? ok, } (2:45)

The 2-norms of the vectors are calculated by

||Fk||=[2(%) j ; (2.46)

O’AT, v
ml-[ 3] o)

The measure of nonlinearity for the generalized travel-time inversion is evaluated using

Eqgs. 2.46 and 2.47:

k= Full/IF] (2.48)

2.3.4 Sensitivity Computations: A 4 Five-Spot Example

We illustrate sensitivity computations for the three methods using the tracer response in
a heterogeneous quarter five-spot pattern (Fig. 2.8). Fig. 2.9a is the sensitivity
distribution for the peak travel-time, and Fig. 2.9b is the sensitivity distribution for the
generalized travel-time. Figs. 2.10a through 10c show the sensitivity distribution for the
amplitude before, at, and after peak time, respectively. From Figs. 2.9 and 2.10, we can
see that the sensitivity distribution between the wells for travel-time inversion is more
uniform than that for amplitude inversion. Also, the magnitude of the amplitude
sensitivity is much smaller than that of the travel-time sensitivity. This smaller

sensitivity contributes to the high nonlinearity of amplitude inversion, because the
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nonlinearity is evaluated by ||Fu||/||Fi||>, where F is the sensitivity vector. Such
relationship between nonlinearity and sensitivity for inverse modeling has also been

observed by Grimstad and Mannseth.**~*
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Figure 2.8 Tracer response for a V4 five-spot heterogeneous case.
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Figure 2.9 Sensitivity for (a) travel-time and (b) generalized travel-time inversion.
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Figure 2.10 Sensitivity distribution for amplitude inversion (a) before peak time, (b) at peak time,
and (c) after peak time.

2.4 Data Inversion

Our goal is to reconcile high-resolution geologic models to field-production history, for
example tracer response. This typically involves the solution of an underdetermined
inverse problem. The mathematical formulation behind such streamline-based inverse
problems has been discussed elsewhere.'?'** Briefly, in our approach we start with a
prior static model that already incorporates geologic, well-log, and seismic data. We then

minimize a penalized misfit function consisting of the following three terms:
|lod — SSR|+ B[|oR| + B,||LoR] - (2.49)

In Eq. 2.49, od is the vector of data residuals at the wells, while § is the sensitivity
matrix containing the sensitivities of the observed data with respect to the reservoir
parameters. Also, OR corresponds to the change in the reservoir property, and L is a
second-spatial-difference operator. The first term ensures that the difference between the
observed and calculated production response is minimized. The second term, called a
norm constraint, penalizes deviations from the initial model. This helps preserve
geologic realism because our initial or prior model already incorporates available
geologic and static information related to the reservoir. Finally, the third term, a

roughness penalty, simply recognizes the fact that production data are an integrated
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response and are thus best suited to resolve large-scale structures rather than small-scale
property variations.
The minimum in Eq. 2.49 can be obtained by an iterative least-squares solution to the

augmented linear system

S &
BIR=|0 |. (2.50)
piL 0

The weights £ and £, determine the relative strengths of the prior model and the
roughness term. The selection of these weights can be somewhat subjective, although
there are guidelines in the literature.’” In general, the inversion results will be sensitive
to the choice of these weights.

In Eq. 2.50, &d is replaced by or for travel-time inversion, 6C for amplitude
inversion, and 0A7 for generalized travel-time inversion. The sensitivity matrix S is also
replaced by the corresponding expression.

Note that one of the major advantages of travel-time and the generalized travel-time
approach is that the size of the sensitivity matrix S is dependent only on the number of
wells regardless of the number of data points. This leads to considerable savings in
computation time. We use an iterative sparse matrix solver, LSQR, for solving this
augmented linear system efficiently.”® The LSQR algorithm is well suited for highly ill-
conditioned systems and has been widely used for large-scale tomographic problems in

seismology.

2.5 Applications

2.5.1 A Two-Phase Example With Infill Drilling
So far, we have focused on single-phase tracer flow. We now consider a two-phase
waterflood example with changing streamlines.”® The flood pattern is a nine-spot. We

start with one central injector and four side producers. Four corner-producers are
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introduced at 300 days. Pressure and streamlines are updated every 100 days. Fig. 2.11a
shows the reference permeability and the well pattern. The reference permeability is the
same as the one used for the tracer example. The water-cut responses from the eight
producers are shown in Fig. 2.12a. Also superimposed in Fig. 2.12a are the water-cut
responses from the initial model, a homogeneous permeability field conditioned at the

well locations.

BT ITTITTT [
30 40 50 60 70
a

C

Figure 2.11 A two-phase example with infill drilling: (a) reference permeability model, triangle for
infill wells in the mid-term of production, (b) estimated permeability by travel-time inversion, (c)
estimated permeability by generalized travel-time inversion, and (d) estimated permeability by
amplitude inversion.
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Figure 2.12 Water-cut response (a) for uniform initial permeability, (b) after peak arrival-time
inversion, (c) after generalized travel-time inversion, and (d) after direct amplitude inversion.



36

Figs. 2.12b through 2.12d show the water-cut match by travel-time inversion,
generalized travel-time inversion, and amplitude inversion, respectively. Clearly, the
match by generalized travel-time inversion is the best, followed by travel-time inversion.
Amplitude match did not work for Well 8.

Fig. 2.11b is the estimated permeability field after travel-time match. On comparing
with Fig. 2.11a, we can see that the low-permeability areas are reproduced well,
however, the high-permeability contrast to the south is not detected properly. Fig. 2.11c
shows the permeability field derived by generalized travel-time inversion. It reproduces
not only the low-permeability areas but also the high-permeability regions. Fig. 2.11d
shows the estimated permeability field after the amplitude inversion. Clearly, the results
show signs of instability, as discussed before.

Fig. 2.13 shows the measure of nonlinearity for the three approaches. We can see
that both the travel-time and the generalized travel-time have a similar magnitude of
nonlinearity. In contrast, the amplitude inversion is three to four orders of magnitude
more nonlinear than the travel-time inversion. This is partly the reason for the failure of
the amplitude inversion. Our experience with amplitude inversion indicates that the
results tend to be more sensitive to the choice of inversion parameters (5,5, in Eq.
2.49). For homogeneous or smooth starting models, we can obtain a reasonable solution
by careful choice of inversion parameters. But for models with significant heterogeneity,

especially for field applications, direct amplitude inversion often fails.
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Figure 2.13 Measure of nonlinearity for the two-phase, infill example: (a) travel-time inversion,
(b) generalized travel-time inversion, and (c¢) amplitude inversion.
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2.5.2 Field Application: The Ranger Field, Texas
A multiwell, mulitracer, interwell tracer injection study was carried out in the
McCleskey sandstone of the Ranger field, Texas. The first description of this data set
was published by Lichtenberger.* The dataset was also described later by Allison ez al.*!
The 320-acre area of interest includes 13 producers and four injectors, injecting seven
different tracers. The seven tracers injected included five conservative tracers consisting
of four decaying (Tritium, Cobalt-57, Cobalt-58, and Cobalt-60), one chemical (sodium
thiocyanate, NaSCN), and two partitioning tracers (tertiary butyl alcohol, TBA, and
isopropyl alcohol, IPA).

All tracers were injected in small slugs on the same day except for TBA, which was
injected in a small slug 20 days later. Tracer sampling continued for 826 days after

injection of the first set of tracers. The tracer injection pattern is shown in Fig. 2.14.

Detailed information for injection locations and the amounts of each tracer injected can

41,42
be found elsewhere.”
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Figure 2.14 Tracer injection pattern: the Ranger field case.
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Figure 2.15 NaSCN tracer response for the initial permeability field at Well 40, Well 37, and

Well 39.
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We can use the conservative tracers (Tritium and NaSCN) to obtain permeability
distribution in the study area. However, the Tritium response may be affected by a
chromatographic delay because of trititum exchange with immobile hydrogen.* We
selected NaSCN as the conservative tracer for permeability inversion. Totally, 5,655 1bs
of NaSCN was injected into Well 38 and four wells (Wells 19, 37, 39, and 40) showed
tracer response as indicated in Fig. 2.14. The observed tracer responses in Wells 37, 39,
and 40 are shown in Fig. 2.15, along with the calculated response from the initial
permeability model. The data from Well 19 was not used because of its low production

rate (<20 B/D).

Choice of an Initial Model. During inverse modeling, a proper selection of the initial
model can be critical to ensure a plausible solution. Such an initial model should
incorporate all available prior information. For our simulation studies, we use a 31x45x6
grid which corresponds to 100x100-foot gridblocks areally, and 2 to 4-foot gridblocks
vertically. A total of 141 core samples were available for analysis. We did not have well-
and depth-specific data, but rather a summary of the core data for all wells. The core
data indicated a fair degree of permeability heterogeneity in the reservoir but only slight
variation in porosity. For the initial model, we used a uniform value of porosity and a
heterogeneous permeability field generated using Sequential Gaussian Simulation' based

on well data (Fig. 2.16). We assume thatk, =k,, k. =0.1k, and only#, is altered during

inversion.



41

1500
1400
1300
1200
1100
1000
900
800
= 700

600
500
400
300
200
100

Figure 2.16 Initial permeability distribution for the Ranger field case.

Estimating Permeability. We matched the NaSCN data to obtain the permeability

distribution ( k. ) in the study area using the three different approaches: travel-time

inversion, generalized travel-time inversion, and amplitude inversion. Fig. 2.15 shows
the NaSCN responses from a streamline simulator using the initial permeability field.
Also, superimposed are the observed NaSCN concentrations. Clearly, there is a large
difference between the calculated and observed NaSCN response. Fig. 2.17 shows the
NaSCN concentration match after travel-time inversion. The peak arrival times are now
in agreement with the observed data. The tracer concentration amplitudes show
improvement but the overall match is still not satisfactory. Fig. 2.18 is the NaSCN
concentration match after the generalized travel-time inversion. From Fig. 2.18, we can
see that not only are the peak-arrival times well matched, but the calculated
concentration amplitudes are also in close agreement with the observed data. This shows
that generalized travel-time inversion is an effective one-step inversion process. Fig.
2.19 displays the NaSCN concentration match after direct amplitude inversion. Clearly,
the calculated responses have changed very little from the initial responses. The results
indicate that amplitude inversion may not be as effective as the travel-time inversion,
particularly when the initial model is far from the solution. Generalized travel-time

inversion stands out as the best among the three inversion methods.
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Figure 2.17 NaSCN tracer response after travel-time inversion at Well 40, Well 37, and Well 39.
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Figure 2.18 NaSCN tracer response after generalized travel-time inversion at Well 40, Well 37,

and Well 39.
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Figure 2.19 NaSCN tracer response after direct amplitude inversion at Well 40, Well 37, and

Well 39.
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Fig. 2.20 summarizes nonlinearity for the three inversion methods. The measure of
nonlinearity for the field example is given by the maximum amongst the three producers.
Amplitude inversion displays the highest measure of nonlinearity, approximately 200 to
250, while travel-time inversion is quasilinear, with a nonlinearity of approximately 0.2
to 0.4. The generalized travel-time inversion is between these two cases in terms of
nonlinearity measure. However, it is one order of magnitude larger than the travel-time
inversion, while two orders of magnitude smaller than that of the amplitude inversion.
Generalized travel-time inversion keeps most of the favorable features of travel-time
inversion and has a much better tracer-concentration amplitude match than travel-time
inversion. The severe nonlinearity of the amplitude inversion is partly responsible for its
poor performance for the field case.

Fig. 2.21 shows the permeability fields derived by travel-time inversion and
generalized travel-time inversion. Fig. 2.22 shows the permeability change after travel-
time inversion and generalized travel-time inversion. In Fig. 2.23, we show that there is
a general agreement between our final model and the permeability distribution reported
by Allison ef al.*' by a manual history matching of the tracer data. The most significant
change by Allison et al. was introduction of a high-permeability streak in the original
permeability model between Wells 38 and 40. Our results from generalized travel-time
inversion also indicate the presence of higher permeability between Wells 38 and 40 in
the corresponding layer (Fig. 2.23) However, our results did not require the additional

changes near the boundary obtained by Allison ef al.
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Figure 2.20 Measure of nonlinearity for travel-time inversion, generalized travel-time inversion,
and amplitude inversion.
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Figure 2.21 Derived permeability field after NaSCN concentration match by (a)generalized
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Figure 2.22 Permeability change after (a) generalized travel-time match and (b) travel-time
match.
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Figure 2.23 (a) Permeability multipliers from the manual history match in Layer 3, by Allison et
al., and (b) permeability change from generalized travel-time inversion in the corresponding
layer.

2.6 Chapter Summary

We have presented three approaches to production-data integration and examined their
relative merits using quantitative measures of nonlinearity. These are travel-time,
generalized travel-time, and the commonly used amplitude inversion. The travel-time
inversion of production data is robust and computationally efficient. Unlike conventional
amplitude matching that can be highly nonlinear, the travel-time inversion has
quasilinear properties. This makes the method particularly attractive for field-scale
applications where the prior geologic model might be far from the solution. The
generalized travel-time inversion appears to retain most of the desirable features of the
travel-time inversion and also accomplishes the amplitude match. Some specific findings
from this study can be summarized as follows:

1. We have quantitatively investigated the nonlinearities associated with travel-time
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and amplitude inversion for production data integration. The nonlinearity is
expressed in terms of a simple and intuitive geometric measure of curvature as
proposed by Bates and Watts'® and later used by Grimstad and Mannseth.'’

The nonlinearity in travel-time inversion is found to be orders of magnitude smaller
than the conventional amplitude inversion. As a result, the travel-time inversion has
better convergence properties and is less likely to be trapped in local minimum.
Travel-time sensitivity is more uniform between the wells. In contrast, the amplitude
sensitivity can be localized near the wells. The higher magnitude of the travel-time
sensitivity also contributes to its quasilinearity and improved convergence properties.
The generalized travel-time inversion effectively combines travel time and amplitude
inversion while retaining most of the desirable properties of the travel-time
inversion. For the field example studied here, the generalized travel-time inversion

outperformed both travel-time and amplitude inversion.
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CHAPTER III
ASSISTED VS. AUTOMATIC HISTORY MATCHING USING

STREAMLINE MODELS’

Reconciling high-resolution geologic models to production history is a very time-
consuming aspect in reservoir modeling. Current practice still involves a tedious history-
matching process that is highly subjective and often employs ad-hoc property
multipliers. Recently streamline models have shown significant promise in improving
the history matching process. In particular, the streamline-based ‘assisted history-
matching’ utilizes the streamline trajectories to identify and limit changes only to the
regions contributing to the well production history. It is now a well-established
procedure and has been applied successfully to numerous field cases.

In this chapter, we enhance the streamline-based assisted history matching in two
important aspects that can significantly improve its efficiency and effectiveness. First,
we utilize streamline-derived analytic sensitivities to determine the spatial distribution
and magnitude of the changes needed to improve the history match. Second, we use a
‘generalized travel time inversion (GTTI)’ for model updating via an iterative
minimization procedure. Using this approach, we can account for the full coupling of the
streamlines rather than changing individual or bundles of streamlines at a time. The
approach is more akin to automatic history matching; however, by intervening at every
step in the iterative model updating, we can retain control over the process as in assisted
history matching. Our approach leads to significant savings in time and manpower

during field-scale history matching.

*Part of this chapter is reprinted with permission from “Field Experiences With Assisted
and Automatic History Matching Using Streamline Models” by Cheng, H., Wen, X.-H.,
Datta-Gupta, A., and Milliken, W.J., 2004. paper SPE 89857 presented at the 2004 SPE
Annual Technical Conference and Exhibition, Houston, September 26—-29. Copyright
2004 by the Society of Petroleum Engineers.
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We demonstrate the power of our method using two field examples with model sizes
ranging from 10° to 10° grid blocks and with over one hundred wells. The reservoir
models include faults, aquifer support and several horizontal/high angle wells. History
matching was performed using both assisted history matching and the GTTI. Whereas
the general trends in permeability changes were similar for both the methods, the GTTI
seemed to significantly improve the water cut history matching on a well-by-well basis
within a few iterations. Our experience indicates that the GTTI can also be used very
effectively to improve the quality of history match derived from the assisted history
matching. The changes to the reservoir model from GTTI were found reasonable with no

artificial discontinuities or apparent loss of geologic realism.

3.1 Introduction

Traditionally, history matching is performed manually on the upscaled reservoir model
and frequently uses local or regional multipliers to reservoir properties. By adjusting the
regions and multipliers, a history match could be achieved using mostly trial and error.
The trial-and-error involves considerable subjective judgment and personal bias and
most importantly may create artificial discontinuities inside the reservoir, potentially
destroying the correlation built into the initial geologic model.

A more systematic approach to history matching, called Assisted History Matching
(AHM) uses streamlines to build upon and improve traditional history matching
techniques.*® The AHM is also a manual approach. However, changes to the model can
be limited to the streamlines contributing to the production history of the well of interest
and the amount of changes can be computed using some simple semi-analytical methods.
The approach is a significant improvement over the traditional manual history matching
but still could be time consuming, particularly when there are a large number of wells.

This is complicated by the coupled nature of the flow equations which makes matching
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individual wells difficult without impacting other wells also. Finally, if we limit changes
along streamlines only, it can introduce ‘tube like’ artifacts into the geologic model.
Geostatistically-based automatic history matching (production data integration) has
been an active area of research and a number of techniques have been reported in the
literature in the past decade. The main goal here is to match well production data by
modifying the initial model in such a way that it preserves the underlying geostatistical
features built into the initial model. Yeh’ and Wen ef al.® provided a review of these
inverse techniques. Both finite difference and streamline fluid flow modeling can be
used in automated history matching.” Typically, an inverse technique is needed for
production data integration, and requires multiple solutions of the flow equations within

10-12

a nonlinear optimization procedure. And this brings a hurdle to the practical

applications. Streamline based inverse techniques have shown great potential in this

13-18
d

regar and they only require a single solution of the flow equations per minimization

iteration. !> !

The sensitivities of production data with respect to reservoir properties can
be computed analytically using a single forward simulation. This renders substantial
time-saving.

Much of the ideas of AHM are actually embedded in the streamline-based sensitivity
computations. The sensitivities define the relationship between reservoir properties and
production response. Specifically, they quantify how, for example, the water-cut history
at a well will change if we change permeability at any location in the reservoir model.
Using the sensitivities, we can significantly speed-up the assisted history matching
process and compute the amount of changes for reservoir properties through
optimization. Instead of matching wells individually, we can handle the coupled problem
directly and update the geologic model to match all the wells simultaneously. The
approach is more akin to automatic history matching; however, by intervening at every
step in the iterative model updating, we can retain control over the process as in assisted
history matching.

In this chapter, we enhance the streamline-based assisted history matching in two

important aspects that can significantly improve its efficiency and effectiveness. First,
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we utilize streamline-derived analytic sensitivities to determine the spatial distribution
and magnitude of the changes needed to improve the history-match. These sensitivities
are then incorporated into an optimization algorithm to update the reservoir model
during flow simulation. Secondly, a “generalized travel-time inversion (GTTI)”***® is
used for inverse modeling. The GTTI is robust because of its quasi-linear properties
resulting in rapid convergence even if the prior model is far from the solution. We
demonstrate our approach using two field examples with over 100 wells and more than

30 years of production history.

3.2 Background and Illustrative Examples

3.2.1 Assisted History Matching

Assisted history matching utilizes unique information-content in streamlines in terms of
injector-producer relationship to facilitate history matching.*> The main steps in assisted
history matching are: (i) Flow simulation to generate production response. Either
streamline or finite-difference simulators can be used for this purpose; (ii) Streamline
generation based on the finite-difference velocity field. This step is not necessary for
streamline simulators as streamlines are already available; (iii) Use of streamlines to
assign grid blocks or regions to each producer; (iv) Computing the mismatch between
the observed and computed production response at each well using streamlines; (v)
Updating grid block or region properties manually to improve the history match on a
well-by-well basis. The use of streamlines leads to simple and unambiguous changes in
the model. Also, the changes are minimized to preserve the geology. An outline of the

procedure of assisted history matching is given in a flow chart in Fig. 3.1.
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Figure 3.1 Flowchart for assisted history matching.

Hllustration of the Procedure. Fig. 3.2 shows a 2D reference permeability field
(50%50 grid with cell size 10 feet x 10 feet) generated using Sequential Gaussian
Simulation' and the corresponding fractional-flow data at four producing wells in 5-spot
pattern. The variogram of the reference field is spherical with range of 100 feet and 20
feet in the direction of 45 degree and 135 degree, respectively. We generated an initial
model using the same geostatistical method with the same histogram and variogram as
for the reference field. The initial permeability and the water cut responses from the four
corner wells are shown in Fig. 3.3. Note that this initial model visually is quite close to
the reference model. The flow responses, however, are quite different from the reference
model. Fig. 3.4 shows the streamlines for the initial model. Now in order to match the
reference water cut, streamlines are used to help assigning cells to wells and grouping

the cells. From streamlines, we know which cells to change to history match a particular
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well. Besides, we know which streamlines contribute to early breakthrough (A), middle
stage (B), and later stage (C) water cut. Streamline helps grouping cells that need to be
modified. We can change cells covered by streamlines marked ‘A’ to match early

breakthrough, and change those associated with ‘B’ and ‘C’ to match middle and later

stage water cut.

2000 2002 2004 2006
Time, Year

Well No.
A Y

~

1 T T T 1
2000 2002 2004 2006
100 1000 10000 Time, Year

Figure 3.3 Initial permeability field and water cut responses.
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Figure 3.4 lllustration of streamline-based assisted history matching water-cut response.

The assisted history matching can accelerate the history matching process
significantly. However, the approach is still more or less manual and requires some trial
and error. Individual well matching can sometimes deteriorate matches in other wells
because of the coupled nature of the flow field. Finally, limiting the changes to
streamlines can introduce artifacts in the geologic model unless the changes are kept to a
minimum. Recently, a number of approaches have been reported to improve the
efficiency of the AHM method. These include the use of tracer-like flow assumption to
compute the modifications of reservoir properties within the well regions delineated by

17,43

streamlines that can match multiple phase production history, and the integration of

16,44

streamline information at different levels with geostatistics. These approaches,

however, do not directly use the sensitivity coefficients derived from the streamline
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simulation to quantify the changes. Therefore, the improvement in efficiency is marginal

at best.

3.2.2 Streamline-Based Automatic History Matching

This approach utilizes streamline-derived sensitivities to update geologic models.”'*!**®
The major steps are: (i) Streamline-based flow simulation to compute production
response at the wells; (ii) Quantification of the mismatch between observed and
computed production response; (iii) Streamline-based analytic sensitivity computation of
the production response with respect to reservoir parameters; (iv) Updating reservoir
properties to match the production history via inverse modeling using streamline-derived

sensitivities. An outline of the procedure of streamline-based automatic history matching

is given in a flow chart in Fig. 3.5.
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Figure 3.5 Flowchart for automatic history matching.
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Illustration of the Procedure. To illustrate the procedure, we use the same synthetic
example used for assisted history matching. We have used a commercial 3D streamline
simulator, FrontSim®' (Version 2003a), for modeling two-phase flow in the reservoir.
Production data misfit is represented by a ‘generalized travel time’ at each producing
well. A “generalized travel time” or “travel-time shift” is computed by systematically
shifting the computed production response towards the observed data until the cross-

correlation between the two curves is maximized.>**¢

This is illustrated in Fig. 3.6 and is
discussed further later. The sensitivities calculated for automatic history matching are
shown in Fig. 3.7. These sensitivities are calculated along the streamlines analytically
using time of flight and fractional flow information. Unlike assisted history matching,
there is no need for manual intervention to look at the streamlines to determine where to
change the models. Also, with the sensitivity information, we can apply different
modifications determined from optimization to different locations. Figs. 3.7d and 7e
show that sensitivities are calculated along the streamlines. The largest sensitivities in
magnitude (dark-blue region) correspond to early breakthrough, and the medium (light-
blue to green) and small (yellow) sensitivities correspond to middle stage and later stage
water cut. Also the whole region covered by the sensitivities will be changed
systematically and automatically by generalized travel-time inversion. Fig. 3.8 shows
that the water-cut responses are in good agreement with the reference, and the updated
permeability model maintains the general features of the initial model. As desired, the
permeability was increased around Well 2 while decreased around Well 3 to match the
history (Fig. 3.9, also refer to Fig. 3.3 for the initial model). The decrease of objective
function (shift time) with the iteration number, as well as the associated water-cut misfit,
is shown in Fig. 3.10. The shift time objective function reduces from 670 days to 20

days in 20 iterations, and it reduces quickly in the first few iterations.
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Figure 3.7 Generalized travel time sensitivities for (a) Well 1, (b) Well 2, (c) Well 3, (d) Well 4,
and (e) streamlines associated with Well 4.
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Multiple Realizations. An important advantage of the streamline-based inversion is
its computational efficiency. This makes dynamic conditioning of multimillion-cell
models feasible using the streamline approach. In addition, we are able to generate
multiple realizations to assess uncertainty in performance forecasting, for example, using
the randomized maximum likelihood method.”> Using multiple realizations and an
ensemble average map, we can also reveal large-scale spatial trends common to all
realizations. To illustrate this, we generated 100 initial models and history matched all of
them to the reference production data in 4 wells using the streamline-based inversion.
Initial realizations are generated by unconditional Gaussian simulation with the same
histogram and variogram as for the reference field.

The water-cut responses from all initial and updated realizations are shown in Figs.
3.11 and 3.12. Clearly, after inversion, the calculated water-cut responses all moved
much closer to the reference responses (Fig. 3.12). Note that in the randomized
maximum likelihood method we match “realizations” of the observed production history
rather than the history itself; hence, we see the spread in the water-cut responses in the
updated models. For 100 realizations, it took only 150 minutes in a PC (Intel Xeon 3.06

GHz processor). The mean and variance of the 100 realizations is shown in Fig. 3.13.
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The final ensemble mean field captured most of the low permeability region and some of

the high permeability region (Fig. 3.13a), while the variance field (Fig. 3.13b) displays

the uncertainty among the updated models.
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Figure 3.11 Water cuts of four producers from 100 initial realizations together with the results
from the reference field (blue squares).
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Figure 3.12 Water cuts of four producers from 100 updated realizations together with the results

from the reference field (blue squares).
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Figure 3.13 (a) Ensemble mean of the 100 final estimated permeability fields and (b) uncertainty
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3.3 Streamline-Based Automatic History Matching: Mathematical Formulation

Several previous publications describe streamline-based sensitivity computations and
generalized travel time inversion.”'*'*'®2® In this section, we briefly outline the

mathematical background behind the approach.

3.3.1 Forward Modeling: Streamline Simulation

Streamline simulators approximate 3D fluid flow calculations by a sum of 1D
calculations along streamlines. The choice of streamline direction for 1D calculations
makes the approach extremely effective for modeling convection-dominated flows in the
reservoir.”’ This is typically the case when heterogeneity is the predominant factor
controlling oil recovery, for example in waterflooding. The streamline approach for
modeling multidimensional, multiphase flow basically comprises of five major steps:*'*’
(1) Tracing streamlines in 3D based on a numerical solution of the pressure and velocity
equations; (i1) Recasting the transport (saturation) equations in terms of streamline time
of flight which is the travel time of a tracer along the streamline; (iii) Solution of the
saturation equation along streamlines; (iv) Periodic updating of streamlines to account
for changing field conditions such as infill drilling and rate changes; (v) Use of operator
splitting to account for transverse fluxes such as gravity.

The computational advantage of the streamline methods can be attributed to four
principal reasons: (i) Streamlines may need to be updated only infrequently; (ii) The
transport equations along streamlines can often be solved analytically; (iii) The 1D
numerical solutions along streamlines are not constrained by the underlying grid stability
criteria, thus allowing for larger timesteps; (iv) For displacements dominated by
heterogeneity, the CPU time often scales nearly linearly with the number of gridblocks,
making it the preferred method for fine-scale geologic simulations. Furthermore, the
self-similarity of the solution along streamlines may allow us to compute the solution
only once and map it to the time of interest. Other advantages are sub-grid resolution and

reduced numerical artifacts such as artificial diffusion and grid orientation effects, since
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the streamline grid used to solve the transport equations is effectively decoupled from

the underlying static grid.

3.3.2 Generalized Travel Time and Sensitivity Calculations
As shown in Fig. 3.6, we define the generalized travel time as the optimal time shift

Af that maximizes the following correlation function:
obs ca 2

_ Z[yjb (ti +Atj)_yj l(ti)]
> ) - v |

where y is the flow responses we wish to match, e.g., water cut at producing wells, j is

: (3.1)

R*(At;)= 1

producer index and i is observation data index. The overall production data misfit can

N,
now be expressed in terms of a generalized travel-time misfit at all wells as Z(At/ )2 ,
=

with N being the total number of producing wells. Our objective is to minimize this

generalized travel time misfit, and we need the sensitivities for minimization.

Sensitivity Computations. In GTTI, we shift the entire fractional flow curve by a
constant time. Thus, every data point in the fractional-flow curve has the same shift time,
&, =odt, =---=Af (Fig. 6). So we can sum up and average the travel time sensitivities
of all data points to obtain a rather simple expression for the sensitivity of the

. . . . 2
generalized travel time with respect to reservoir parameters m as follows™

N .
dj
OAT ) (azl. j/am)
L= : (3.2)
om N

It now reduces to the sensitivity of the arrival times at the producing well, o, /om -

These sensitivities can be easily obtained in terms of the sensitivities of the streamline

time of flight,*
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(3.3)

In the above expression, the fractional-flow derivatives are computed at the
saturation of the outlet node of the streamline. The time-of-flight sensitivities can be
obtained analytically in terms of simple integrals along streamline. For example, the
time-of-flight sensitivity with respect to permeability will be given by

or 6s(x)dx__ s(x)dx

ok(x) J ak(x)  k(x)

, (34)
where the integrals are evaluated along the streamline trajectory, and the ‘slowness’

which is the reciprocal of interstitial velocity, is given by

_ P(x)
s(x) = pynt et (3.5)

Note that the quantities in the sensitivity expressions are either contained in the

initial reservoir model or are available after the forward simulation run.

3.3.3 Data Integration

Our goal is to reconcile high-resolution geologic models to field production history. This
typically involves the solution of an underdetermined inverse problem. The
mathematical formulation behind such streamline-based inverse problems has been
discussed elsewhere.”?' Both the deterministic and stochastic approaches have been
used with equal success.” In the deterministic approach pursued here, we start with a
prior static model that already incorporates geologic, well log, and seismic data. We then

minimize a penalized misfit function consisting of the following three terms,

|47 ~ Gm| + | om] + . | L.om] (3.6)

In Eq. 3.6, 47 is the vector of generalized travel-time shift at the wells; G is the
sensitivity matrix containing the sensitivities of the generalized travel time with respect

to the reservoir parameters. Also, dm correspond to the change in the reservoir property
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and L is a second spatial difference operator that is a measure of roughness and is
analogous to imposing a prior variogram or covariance constraint. The first term ensures
that the difference between the observed and calculated production response is
minimized. The second term, called a ‘norm constraint’, penalizes deviations from the
initial model. This helps preserve geologic realism because our initial or prior model
already incorporates available geologic and static information related to the reservoir.
Finally, the third term, a roughness penalty, simply recognizes the fact that production
data are an integrated response and are thus, best suited to resolve large-scale structures
rather than small-scale property variations. The minimum in Eq. 3.6 can be obtained by

an iterative least-squares solution to the augmented linear system

G At
BI |om=| 0
B, L 0

(3.7)
The weights £ and £, determine the relative strengths of the prior model and the
roughness term. In general, the inversion results will be sensitive to the choice of these
weights.
When the data and the prior model statistics are specified, for example, the data
errors and model parameter covariance (variogram), we can adopt a Bayesian

formulation that leads to the minimization of the following function,
1 _ 1T ~T ol o~
E(m—mp)'CMl(m—mp)+§[At]rCDl[At]. (3.8)

The minimum in Eq. 3.8 can be obtained by an iterative least-squares solution to the
linear system®
_ _1 ~
C,G C,2(47)

om=

C;l% C;I%(mp _m)

(3.9
where Cp and C), are the data error covariance and the prior model parameter covariance
respectively, and m,, is the prior term. Eq. 3.9 represents a system of equations that is

analogous to the deterministic formulation in Eq. 3.7. We use an iterative sparse matrix
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solver, LSQR, for solving these augmented linear systems in Eqs. 3.7 and 3.9. The
LSQR algorithm is well suited for highly ill-conditioned systems and has been widely
used for large-scale tomographic problems in seismology.®

It is important to realize that automatic history matching does not necessarily imply
that the user has to lose control over the process. Instead, it is recommended that the user
intervene after every iteration of the process to determine the plausibility of the changes
and accept or reject or modify the changes. From this point of view, the only difference
from assisted history matching is the use of the sensitivities and the non-linear
optimization technique to determine the spatial location and the extent of changes to the

prior model.

3.4 Field Examples

We now discuss applications of streamline-based assisted and automatic history
matching to two field examples. We illustrate the use of automatic history matching both
for conditioning static geologic models to production data and also as a “finisher/post-

processor” to assisted history matching to further improve the matches.

3.4.1 Field Example 1

The first model we studied is a cutout section from a large sandstone reservoir
containing over 1.5 MMMSTB of oil.” The reservoir is characterized by three principal
depositional settings, incised channel fill, regional marine shale, and tidal delta complex.
The sector we considered has an average porosity of 20% (Fig. 3.14) with median
permeability of about 1000 md. The grid dimensions are 30x46x39 (53,820 cells). The
model has two faults, an aquifer, and four different relative permeability zones. The oil
is a 36° API gravity oil with a viscosity of 0.3 cp at reservoir conditions. The field has
been produced for approximately 50 years by primary depletion and phased
waterflooding. The simulation model starts at Year 1965 and ends at Year 2001.
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Recovery to Year 2001 is approximately 35% OOIP with a field-wide water cut of
approximately 93%. Altogether there are 130 wells in the simulation and history

matching process. Only water-cut history was used to update the permeability model.

[ |
0.0 0.1 0.2 0.3 0.4

Figure 3.14 Porosity distribution and well locations for field example 1.

For automatic history matching, we will use two different starting models. In the first
case, the initial model is up-scaled directly from the static fine-scale geostatistical model
using flow-based upscaling method.” This initial model was used in both assisted and
automatic history matching. In the second case, the initial model is the updated
permeability model after assisted history matching.” Our goal in this second case is to
use automatic history matching to further improve the results of assisted history
matching.

We choose horizontal permeability as our model parameter in the inversion. Vertical
permeability is also changed during the inversion by preserving the ratio of horizontal
and vertical permeability. Porosity in the model was not altered because its variation was

relatively minor compared to permeability.

Assisted vs. Automatic History Matching. Fig. 3.15 shows the field-wide water-cut

performance for the initial geologic model, the updated model by automatic history
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matching, as well as the result from assisted history matching. We can see that the initial
model shows large deviations from the field production history. The results from
automatic history matching exhibit significant improvement in the water-cut match. For
this case, the matches from the automatic history matching appear to be better than that

of assisted history matching, particularly in the early period.
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Figure 3.15 Field-wide water-cut performance for BBCK model.

The water-cut match for a few typical wells from amongst the 130 wells is given in
Fig. 3.16. For validation purposes, we matched only part of the history data for some
wells and used the updated model to predict the production performance for the rest of
the period. For example, for Well 128 we matched the data only to Year 1989. Clearly,
the prediction for the rest of time period shows marked improvement compared to the

initial model.
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Figure 3.16 Comparison of water cut match by automatic and assisted history matching.
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The permeability models before and after automatic history matching are shown in Fig.
3.17. The inverted model has increased heterogeneity by increasing the permeability
contrast and variance. In some areas, the permeabilities are increased and in other areas
decreased. Overall, the final updated model by automatic history matching preserved

most of the prior geologic features while improving the history match.
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(a) Overall model

XY XYy

b) Layer 3, decreased permeability
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(c) Layer 14, increased contrast and heterogeneity

(d) Layer 21, increased permeability
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Figure 3.17 Horizontal permeability distribution of initial static geologic model (left side of each
group) and the final inverted model by automatic history matching starting from the initial static
model.
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It should be noted that production data smoothing is an important step during
generalized travel-time inversion with field data. The field production history data are
frequently erratic with numerous fluctuations. Very often, the time step sizes used in the
streamline simulation are larger than the intervals of observed data. Thus, the short-term
fluctuations in the production data are not captured by simulation. We averaged the
production data before inversion over pre-specified interval using the simulation time
steps as guidelines. This helps the inversion to capture the general trend of the
production history and not to be trapped by small details. Data smoothing also facilitates
the calculation of the shift time during generalized travel-time calculations.

As mentioned before, the automatic history matching using streamline-derived
sensitivities is very computationally efficient. For this case, it took about 5 hours for
IBM Regatta workstation for 8 inversion iterations and less than one week, including the
setup time, for the entire history match. Assisted history matching for the same field case
will generally take much longer, of the order of a few months depending upon the

experience level of the user.

Automatic History Matching as ‘Post Processor’ to Assisted History Matching.
Here we utilize automatic history matching to further improve upon the geologic model
derived from assisted history matching. The field-wide water-cut match after assisted
history matching is already quite close to the history data (Fig. 3.18). After automatic
history matching, it is further improved, particularly in the early time (see the enlarged

figure of early time section on the right of Fig. 3.18).
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Figure 3.18 Field-wide water-cut performancefor Example 1.

For individual well-by-well water-cut matches, most wells show further significant
improvement over assisted history matching (see Fig. 3.19 for some typical wells from
130 wells). For example, the water cuts in some wells (e.g., Wells 50, 67) are shifted
right to match the history, while some are shifted left (e.g., Wells 12, 89, 99) to match
the history. The most significant improvement is observed for Well 99. For very few
wells (3 wells), the water cut in the updated model is slightly worse than the initial
model. After eight iterations, the objective function was reduced by half, and the water-
cut misfit was reduced by 20 to 30 percent. Each inversion iteration consists of one
forward (FrontSim’") simulation (about 30 minutes) and one LSQR solution (about 8
minutes). The entire history match process took about 5 hours for eight iterations in IBM

Regatta workstation.
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Figure 3.19 Automatic history

matching for most of 130 wells.

matching improved water-cut match upon assisted history

Fig. 3.20 shows the permeability models before and after automatic history

matching. From a visual inspection we see that most of the features in the initial model

are preserved in the updated model. However, comparing on a layer-by-layer basis, we

can find some detailed changes in the model. We show a number of layers where the

main changes occur.
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Figure 3.20 Horizontal permeability distribution for assisted history matched model (left side of
each group) and automatic history matched model starting from the assisted history matched
model for Example 1.
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Fig. 3.21 shows the permeability histogram for four different cases: (i) the initial
static geologic model, (ii) the updated model via automatic history matching starting
from the initial geologic model, (iii) the updated model via assisted history matching
starting from the initial geologic model, and (iv) the updated model via automatic history

matching starting from assisted history-matched model.
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Figure 3.21 Horizontal permeability histogram for (a)static geologic model, (b) final inverted
model starting from static model, (c)assisted history matched model, and (d) final inverted model
starting from assisted history matched model.
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We can see from Fig. 3.21 that the automatic history matching leads to a similar
permeability statistics regardless of whether we started from the initial model or the
updated model after assisted history matching. We can see that the low permeability at
the initial geological model have been removed, indicating the need to increase
permeability at the low permeability regions to match the production data. Interestingly,
the histograms of the permeability models from assisted history matching and automatic
history matching show very similar features. This further demonstrates that the similarity

in principle between the streamline-based assisted and automatic history matching.

3.4.2 Field Example 2

This second example is a geologically complex sandstone reservoir consisting of several
different facies. The reservoir lies between an underlying shale and an overlying shallow
marine shale-siltstone. The reservoir itself is a structural trap (Fig. 3.22). The erratic
distribution of sandstones and intervening shales indicate that the depositional
environment was transitional and most likely associated with or part of a deltaic
environment. The simulation model has 156 wells, 200x65%40 grid blocks (520,000
cells), and 28 years of production history.” Among the 156 wells, 83 producers which
had significant water-cut response were used for production data integration purpose.
There are inactive cells in the model (dark blue area in Fig. 3.22), and aquifer support
was modeled by large porosity values along the periphery. Five different relative
permeability zones are used. The reservoir was under primary depletion for an extended

period of time, followed by peripheral water-injection.

permeability 10 100 1000

Figure 3.22 Initial static geologic model for Example 2.
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Figure 3.23 Water cut match by automatic history matching for 20 typical wells among 83 wells
for Example 2.



80

The water-cut responses from the initial permeability model significantly deviate
from the history. After 10 iterations by automatic history matching, most of the wells
exhibit a much better history match. Some typical wells are shown in Fig. 3.23. After
inversion, both shift-time misfit and water-cut misfit were reduced by about half (Fig.
3.24).

100% 100%
80% -+
= 60% - =
£ s0% §
:1': 40% . g
E ¢ Water-cut misfit S
F 209 M Travel-time misfit
0% \ \ \ \ 0%
0 2 4 6 8 10
Iteration No.

Figure 3.24 Water cut and shift time misfit reduction for Example 2 by automatic history
matching.

Fig. 3.25 compares the permeability before and after the history match. For most of
the 40 layers, the changes are hard to discern by visual comparison (Fig. 3.25c). This is
primarily because the streamline-based sensitivities help target the changes to regions of
maximum impact. Although some layers show obvious change, the general trend of the
static geologic model is retained. We can see that in some areas, permeabilities are
reduced (e.g., Fig. 3.25a), while for some regions, permeabilities are increased (e.g., Fig.
3.25b). We also observed that some high permeability channels are created (e.g., Figs. 3.
25b,d), while some low permeability barriers are formed (e.g., Fig. 3.25d). It is
reasonable for automatic history matching to form high permeability channel and low

permeability barrier for a deltaic depositional environment.
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(d) Layer 38: increased permeability at periphery and low permeability barrier
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Figure 3.25 Horizontal permeability distribution before (left side of each group) and after
automatic history matching for Example 2.

Also from the histogram comparison (Fig. 3.26), we can see that the heterogeneity is
increased in the updated model. This is reasonable considering the erratic distribution of
sandstones and intervening shales and the depositional environment. Both the low values
and the high values are further extended, and the artifacts from high permeability cut-off

in the initial model seem to have disappeared in the updated model.
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For this example, it took about 17 hours for IBM Regatta workstation with 10 inversion
iterations and less than one week including the setup time for the entire history matching

process.
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Figure 3.26 Horizontal permeability histogram before(left) and after(right) automatic history
matching for Example 2.

3.5 Chapter Summary

In this chapter we highlight the similarities between streamline-based assisted and
automatic history matching. We enhance the streamline-based assisted history matching
in two important aspects that can significantly improve its efficiency and effectiveness.
First, we utilize streamline-derived analytic sensitivities to relate the changes in reservoir
properties to the production response. These sensitivities can be computed analytically
and contain much more information than that used in the assisted history matching.
Second, we utilize the sensitivities in an optimization procedure to determine the spatial
distribution and magnitude of the changes in reservoir parameters needed to improve the
history-match. By intervening at each iteration during the optimization process, we can
retain control over the history matching process as in assisted history matching. This

allows us to accept, reject, or modify changes during the automatic history matching
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process. We have demonstrated the power and utility of our approach using two large

field examples. Some specific conclusions of this chapter can be summarized as follows:

1.

Use of streamline-derived sensitivities can significantly improve the efficiency of
assisted history matching. In particular, the sensitivities can be utilized to directly
obtain the changes in reservoir properties necessary to improve the history match in a
more objective way. This eliminates the time-consuming and subjective manual
adjustment of parameters in the assisted history matching process. By intervening at
every stage of the iterative process, we can retain control over the history matching
process to preserve plausibility and geologic realism.

Streamline-based sensitivities and inversion allow us to take into account the full
coupling of the streamlines in the reservoir rather than changing individual wells or
streamline bundles at a time. This not only significantly increases the efficiency, but
also preserves geologic continuity and minimizes the chances of introducing non-
physical artifacts during the history matching process.

The power and utility of streamline-based inversion is demonstrated using two field
examples with model sizes ranging from 10° to 10° grid blocks and with over one
hundred wells. In both the cases, the streamline-based automatic history matching
led to better individual well matches as well as field-wide matches compared to
assisted history matching and with no apparent loss of geologic realism. We have
shown that the automatic history matching can be used both for conditioning
geologic models and also to further improve the models derived from the assisted
history matching.

The use of sensitivities during assisted history matching can lead to significant
savings in computation time and manpower. For the field examples presented here,
the automatic history matching took days compared to months for assisted history
matching. This makes it possible to generate multiple history-matched models to

perform uncertainty analysis.
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CHAPTER IV
HISTORY MATCHING OF FINITE-DIFFERENCE MODELS

USING STREAMLINE-DERIVED SENSITIVITIES’

We propose a novel approach to history matching finite-difference models that combines
the advantage of the streamline models with the versatility of finite-difference
simulation. Current streamline models are limited in their ability to incorporate complex
physical processes and cross-streamline mechanisms in a computationally efficient
manner. A unique feature of streamline models is their ability to efficiently compute the
sensitivity of the production data with respect to reservoir parameters using a single flow
simulation. These sensitivities define the relationship between changes in production
response because of small changes in reservoir parameters and thus, form the basis for
many history matching algorithms. In our approach, we utilize the streamline-derived
sensitivities to facilitate history matching during finite-difference simulation. First, the
velocity field from the finite-difference model is used to compute streamline trajectories,
time of flight and parameter sensitivities. The sensitivities are then utilized in an
inversion algorithm to update the reservoir model during finite-difference simulation.
The use of finite-difference model allows us to account for detailed process physics
and compressibility effects. Although the streamline-derived sensitivities are only
approximate, they do not seem to noticeably impact the quality of the match or
efficiency of the approach. For history matching, we use ‘a generalized travel-time
inversion’ that is shown to be extremely robust because of its quasi-linear properties and

converges in only a few iterations. The approach is very fast and avoids much of the

*Part of this chapter is reprinted with permission from “Fast History Matching of Finite-
Difference Models Using Streamline-Derived Sensitivities” by Cheng, H., Khargoria,
A., He, Z., and Datta-Gupta, A., 2004. Paper SPE 89447 presented at the SPE/DOE
fourteenth symposium on Improved Oil Recovery, Tulsa, OK, April 17-21, 2004.
Copyright 2004 by the Society of Petroleum Engineers.
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subjective judgments and time-consuming trial-and-errors associated with manual
history matching. We demonstrate the power and utility of our approach using a
synthetic example and two field examples. The first one is from a CO, pilot area in the
Goldsmith San Andreas Unit, a dolomite formation in west Texas with over 20 years of
waterflood production history. The second example is from a giant middle-eastern
reservoir and involves history matching a multimillion cell geologic model with 16
injectors and 70 producers. The final model preserved all of the prior geologic

constraints while matching 30 years of production history.

4.1 Introduction

Recently, the streamline approach has provided an extremely efficient means for
computing parameter sensitivities. With the streamline method, the sensitivities can be
computed analytically using a single flow simulation."*** Because the sensitivity
calculations involve evaluation of 1-D integrals along streamlines, the method scales
very well with respect to model size or the number of parameters. Although the
streamline models have been extremely successful in bridging the gap between geologic
modeling and flow simulation, they are currently limited in their ability to incorporate
complex physical processes and cross-streamline mechanisms in a computationally
efficient manner.”” Thus, an efficient and robust approach to production data integration
using finite-difference models will be particularly useful in characterizing reservoirs
dominated by mechanisms such as compressibility and gravity effects, transverse
dispersion and other complex physical mechanisms.

In this chapter we propose a novel approach to history matching finite-difference
models that combines the advantage of the streamline models with the versatility of
finite-difference simulation. We first generate streamlines using the velocity field
derived from a finite-difference simulator. The streamlines are then used to compute the

parameter sensitivities for updating the reservoir model. The updated model is then used
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in the finite-difference simulation to predict reservoir performance and the process is
repeated until a satisfactory history match is obtained. For history matching, we use ‘a
generalized travel-time inversion’ that is shown to be extremely robust because of its
quasi-linear properties and converges in only a few iterations. The approach is very fast
and avoids much of the subjective judgments and time-consuming trial-and-errors
associated with manual history matching. It is based upon proven techniques from
geophysical inversion and is designed to preserve geologic realism during history
matching. We have illustrated the power and practical feasibility of the method using

synthetic and field examples.

4.2 Approach

An outline of the procedure in our proposed approach is given in a flow chart in Fig. 4.1.

Briefly, the major steps are as follows:

4.2.1 Flow Simulation Using Finite-Difference Simulator

We have utilized a commercial finite-difference simulator (viz. ECLIPSE’®) for
modeling fluid flow in the reservoir. The two-phase black oil model used here is
completely general and includes comprehensive physical mechanisms such as
compressibility, gravity effects and other cross-streamline fluxes such as mobility

effects, rate changes, infill drilling etc.
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Figure 4.1 Flowchart for history matching finite-difference models using streamline-derived
sensitivities.

4.2.2 Generalized Travel-Time Computations
Production data misfit is represented by a ‘generalized travel-time’ at each producing
well. The ‘generalized travel-time’ is computed by systematically shifting the computed

production response towards the observed data until the cross-correlation between the
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two is maximized. This is illustrated in Fig. 4.2 and is discussed further later. By
defining a generalized travel time, we effectively reduce the data mismatch at a well into
a single ‘travel time shift’ and thus, are able to retain many of the desirable properties of

travel time inversion.'”
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Figure 4.2 lllustration of generalized travel-time inversion: (a) history-matching by systematically
shifting the calculated water-cut to the observed history, (b) best shift-time which maximizes the
correlation function.

4.2.3 Streamline-Based Sensitivity Computations
The fluid fluxes obtained from the finite-difference simulator are utilized to trace
streamline trajectories and calculate time of flight. These calculations can account for

complex geology and faulted systems.”*

The time of flight is then utilized to compute
the sensitivity of the generalized travel-time with respect to reservoir parameters as
discussed later. Note that the sensitivity computations require a single flow simulation

regardless of the number of parameters.
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4.2.4 Model Updating via Generalized Travel-Time Inversion

This step involves computing the changes in the model parameters via a least-squared
minimization technique that utilizes the streamline-derived sensitivity coefficients.
Additional constraints are imposed to penalize deviation from a prior model to preserve
geologic realism and also, to restrict permeability changes to large-scale trends
consistent with the low resolution of the production data."

Note that the streamline-based sensitivity computations are completely general and
can account for changing conditions such as infill drilling and rate changes via
streamline updating. However, these sensitivities are only approximations in the
presence of compressibility and cross-streamline mechanisms. A basic premise of our
approach is that these approximate sensitivities are adequate for inverse modeling. All
our results indicate that this is a reasonable assumption. We store the pressure and flux
information from finite-difference simulation for each streamline update for the entire
simulation run. Thus, only one finite-difference simulation is required for each model

update. The process is repeated until a satisfactory history match is obtained.

4.2.5 Illustration of the Procedure: A Synthetic Example

Before discussing the mathematical formulation we will first illustrate the procedure
using a simple example. This involves history matching water-cut response from a 5-
spot pattern with infill drilling. Fig. 4.3a shows the reference permeability field and well
locations. The mesh size used is 21x21x1. The reference permeability distribution
consists of a low-permeability trend towards north and a high-permeability trend towards
south. Four infill wells (Wells 5-8) were introduced at 600 days of production. The
water-cut responses from ECLIPSE for the eight producers using the reference
permeability field are shown in Fig. 4.4. We treat this as the observed data. Next,
starting from a homogeneous initial permeability model (Fig. 4.3b) we match the water-
cut response via the generalized travel-time inversion. The permeability for each grid
block is treated as an adjustable parameter for this example (a total of 441 parameters).

The initial and final water-cut matches are shown in Figs. 4.4a and 4.4b. The final
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permeability distribution is shown in Fig. 4.3c. Clearly, the final permeability model
captured the large-scale trend of the reference permeability field. The permeability
multipliers resulting from the history matching are shown in Fig. 4.3d. The production
data integration process is very efficient and takes only a few iterations to converge (Fig.
4.5). The CPU time required for this case is less than 4 minutes for 16 iterations in a PC
(Intel Xeon 3.06 GHz Processor).
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Figure 4.3 Permeability distribution for the synthetic 9-spot case: (a) reference permeability field,
(b) homogeneous initial permeability, (c) final permeability distribution after inversion, and (d)
permeability multiplier obtained from history matching.
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Figure 4.4 Water-cut match for the synthetic 9-spot case by (a) initial homogeneous permeability
model and (b) final inverted permeability model.
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Figure 4.5 Travel-time and water-cut misfit reduction for the synthetic example.
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4.3 Mathematical Background: Generalized Travel-Time Inversion and Sensitivity

Computations

In this section we discuss the mathematical details related to streamline-based sensitivity
computations and generalized travel-time inversion. Much of the work has been

. . 13,26
presented in our earlier papers. ™

We provide a summary for completeness.
4.3.1 Streamline-Based Sensitivity Calculation
The sensitivity calculations assume two-phase incompressible flow. However, we utilize
these sensitivities for model updating during black-oil finite-difference simulation. The
basic premise here is that the approximate sensitivities, for most purposes, are adequate
for inverse modeling.

Two-phase incompressible flow equation in the streamline time of flight coordinate

is given by Eq. 4.1.

., 9, “n
o 0t
In Eq. 4.1, the time of flight can be defined in terms of ‘slowness’, s(x)
r= j s(x)dr, (4.2)
v
and the ‘slowness’ which is the reciprocal of interstitial velocity, is given by
s(x)= P . (4.3)
A,k (x)VP(x)|

We assume that streamlines do not shift significantly because of small perturbations
in reservoir properties. For steady velocity fields, this assumption is strictly valid for
porosity and quite satisfactory for permeability changes.’® We can now compute the
sensitivity of fractional flow to reservoir parameters through a variation in the streamline

time of flight as follows:

5, = e (4.4)
or

The change in the time of flight can be expressed in terms of the slowness change as
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o = [ &(x)dr. (4.5)

Now, the slowness is a composite response and its variation can be related to

changes in reservoir properties as follows

55(x) = %) 5 (x) + 52(;) SH(x) (4.6)
where the partial derivatives are
o500 —4(x)  __s(x) 47

ok AK(VP  k(x)’

Os(x) _ 1 _s(x)
o Ak(x)|VP| @(x)

(4.8)

The time of flight sensitivities can be obtained analytically in terms of simple
integrals along streamline. For example, the time of flight sensitivity with respect to

permeability will be given by™°

ot _ _[ 8S(x)dx _ _J‘ s(x) »
Ok(x) 3 Ok(x) s k(x) (4.9)

where the integrals are evaluated along the streamline trajectory. It is to be noted that the
quantities in the sensitivity expressions are either contained in the initial reservoir model

or are produced by a single simulation run.

4.3.2 Data Misfit and the Concept of a Generalized Travel-Time

Production data integration typically involves the minimization of a least squares
functional representing the difference between the observed data and the calculated
response from a simulator. Additional constraints are imposed via a prior geologic model
to ensure ‘plausibility’ of the solution to the inverse problem.'®!'®!32!-23:2627.36.57
Production data misfit is most commonly represented as follows

ca. oDs 2 . .
S w, (@) -y @) for i=1--,N,, j=1--,N,. (4.10)

i=

J,=

N, Ny
—

J
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In the above equation, y,(¢;) denotes the production data for well j at time #, N,, and

Ny; stand for the number of production wells and the number of observed data at each

well, respectively and w, represent the data weights. We refer to the minimization in Eq.

10 as an ‘amplitude matching’. It is well known that such minimization leads to a highly
non-linear inverse problem.24 The solution to the inverse problem, in general, will be
non-unique, can be unstable and often converges to a local minimum. On the other hand,
a travel-time inversion whereby the observed and computed production responses are
lined-up at the breakthrough time has quasi-linear properties.’’ As a result, the
minimization is more robust and is relatively insensitive to the choice of the initial
model.

By defining a generalized travel-time, we effectively accomplish an ‘amplitude
matching’ while preserving most of the benefits of a travel-time inversion. In this
approach, we seek an optimal time-shift at each well to minimize the production data
misfit at the well. This is illustrated in Fig. 2a where the calculated water-cut response is
systematically shifted in small time increments towards the observed response, and the
data misfit is computed for each time increment. Taking well j as an example, the
optimal shift will be given by the A¢ that minimizes the misfit function,

Ndj

T=3 [+ an) -y ()] = ran). 4.11)

Or, alternatively maximizes the coefficient of determination given by the following

R*(At)= 1 - S+ an) - v @)f _
] 2 ly.?bs ) - y" JZ

Thus, we define the generalized travel-time as the ‘optimal’ time-shift A7, that

(4.12)

maximizes the R*(At;) as shown in Fig. 4.2b. It is important to point out that the

computation of the optimal time-shift does not require any additional flow simulations. It
is carried out as a post-processing at each well after the calculated production response is
derived using a flow simulation. The overall production data misfit can now be

expressed in terms of a generalized travel-time misfit at all wells as follows
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Ez%(Ath)z. (4.13)

4.3.3 Sensitivity of the Generalized Travel-Time
Let m represent the vector of reservoir parameters. Now, consider a small perturbation in

reservoir properties, om , such that it results in a time-shift o¢; for the entire computed

production response at well j, that is, every data point of well j has a common time-shift

(Fig. 4.6). We then have the following relationship for the observed times

((ty sty ;)

o, ]
o, =8, =| =L | om,
' " om

(4.14)

oty ]
3, =y, =| =L | om.

© [Initial Calculated Water-cut
O  Shifted Water-cut
——ae— Observed Water-cut

A
>

t

Figure 4.6 lllustration of generalized travel-time sensitivity computation using the same shift-time

for every data points.

Summing Eq. 4.14 over all the data points, we can arrive at the following simple

expression for the sensitivity of the travel-time shift with respect to the reservoir

parameter, m, which represents a component of the vector m.
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Ny

ot Z (ati,j / Gm)

A - — 4.15
om Ndj ( )

Also, based on the definition of the generalized travel-time, we have the following
OAt, _ % .
om om

(4.16)

The negative sign in Eq. 4.16 reflects the sign convention adopted for defining the
generalized travel-time shift which is considered negative if the computed response is to
the right of the observed data as shown in Fig. 2a. For example, the travel-time will
decrease if permeability increases; however, the ‘travel-time shift’ will increase.

Combining Eqgs. 4.14-16, we obtain a rather simple expression for the sensitivity of

the generalized travel-time with respect to reservoir parameters as follows

N .

- dj
OAt 2 (atij /am)

A . (4.17)
om N

It now remains to calculate to the sensitivity of the arrival times at the producing

well, ¢, ;/Om . These sensitivities can be easily obtained in terms of the sensitivities of

the streamline time of flight, and the result is as follows:

or
o om (4.18)
om Oy

38y,

In the above expression, the fractional flow derivatives are computed at the
saturation of the outlet node of the streamline. The time of flight sensitivities can be
obtained analytically as in Eq. 4.9.

There are some important practical issues that are worth mentioning here. First,
changing field conditions such as infill drilling and rate changes are accounted for by
streamline updating. Second, by utilizing a finite-difference simulators, we are no longer

constrained by the limitations of streamline simulation. Third, for wells with no
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calculated breakthrough response, the application of generalized travel-time concept is
not so obvious although the basic idea remains the same. The shift-time is taken as the
difference between the observed breakthrough time and the last observation time.
Finally, it is better to shift the calculated curve relative to the observed curve if
calculated curve has more non-zero water-cut points than the observed curve; and vice-

versa.

4.4 Data Integration

Our goal is to reconcile high-resolution geologic models to field production history. This
typically involves the solution of an underdetermined inverse problem. In the
deterministic approach pursued here, we start with a prior static model that already
incorporates geologic, well log, and seismic data. We then minimize a penalized misfit
function consisting of the following three terms,
|47 - S5R|+ 8, |oR] + B, | LR . (4.19)
An alternative formulation based on the Bayesian inverse theory is given by Vega et
al.* In Eq. 4.19, A7 is the vector of generalized travel time shift at the wells, S is the
sensitivity matrix containing the sensitivities of the generalized travel time with respect
to the reservoir parameters. Also, oR correspond to the change in the reservoir property
and L is a second spatial difference operator. The first term ensures that the difference
between the observed and calculated production response is minimized. The second
term, called a ‘norm constraint’, penalizes deviations from the initial model. This helps
preserve geologic realism because our initial or prior model already incorporates
available geologic and static information related to the reservoir. Finally, the third term,
a roughness penalty, simply recognizes the fact that production data are an integrated
response and are thus, best suited to resolve large-scale structures rather than small-scale

property variations.
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The minimum in Eq. 4.19 can be obtained by an iterative least-squares solution to

the augmented linear system

S ATt
BI|OR=| 0 |. (4.20)
B,L 0

The weights f; and f, determine the relative strengths of the prior model and the
roughness term. The selection of these weights can be somewhat subjective although
there are guidelines in the literature.’” In general, the inversion results will be sensitive
to the choice of these weights.

Note that one of the major advantages of the generalized travel-time approach is that
the size of the sensitivity matrix S is dependent only on the number of wells regardless
of the number of data points. This leads to considerable savings in computation time. We
use an iterative sparse matrix solver, LSQR, for solving this augmented linear system
efficiently.”® The LSQR algorithm is well suited for highly ill-conditioned systems and

has been widely used for large-scale tomographic problems in seismology.*’

4.5 Field Applications

In this section, we discuss application of the history matching algorithm to two field
examples. The first one is from the Goldsmith San Andreas Unit, a dolomite formation
in West Texas. We match 20 years of waterflood production history. The second field
example is from a giant middle-eastern reservoir with 16 injectors and 70 producers. A
total of 30 years of production history with detailed rate, infill well and re-perforation
schedule were matched. Compressibility, gravity effects and aquifer support were

included during the finite-difference simulation.
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4.5.1 Goldsmith Case

This example includes a CO; pilot project area (Fig. 4.7) in the Goldsmith San Andres
Unit (GSAU) in west Texas. The pilot area (Fig. 4.8) consists of nine inverted 5-spot
patterns covering around 320 acres with average thickness of 100ft and has over 50

years of production history prior to CO, project initiation in Dec. 1996.

"
nt _Law
i
ant
LY
padt
ac*)'j
Y

[

L
e =

|
@
P
cn
1Y TLES
T
O

-5
o

7]
-t
aan

&a
all

b 429WC

41

o o 1320WC o d
®

38

37

3 ® 347 354 445 .

31 b 362WC
29 355WC ®

2 447WC <]

| Olnjector |

7

B ; :

s | @ Producer |
3 ® |

3

1

012345678 91011121314151617181920212223242526272829303132333435363738394041424344 454647484950 515253 5455565758

Figure 4.8 Well configuration of the study area.
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We performed a history matching for 20 years of waterflood prior to the initiation of
CO; injection. Because of the practical difficulties in establishing correct boundary
conditions for the pilot area, extra wells located outside the pilot area were included in
this study. The extended study area included 11 water injectors and 31 producers.
Among the producers within the study area, 9 wells showed significant water-cut
response before the initiation of the CO, injection and are used for history matching. The
detailed production rates and the well schedule including infill drilling, well conversions
and well shut-in can be found elsewhere.'” The study area is discretized into 58x53x10
mesh or a total of 30,740 grid cells. The porosity field was obtained by a Sequential
Gaussian Co-simulation using well and seismic data. These porosities were not altered
during history matching. The initial permeability field was generated based on the
porosity-permeability transform (Fig. 4.9a). By altering the permeability during
inversion, we effectively altered the porosity-permeability transform which was
considered ‘soft’ information for this carbonate reservoir.

We history matched 20 years of production responses for the 9 producers for the
period May 1968 to December 1989. The final permeability field and the resulting
permeability multipliers are shown in Figs. 4.9b and 4.9c. The permeability multipliers
range from 0.05 to 20, a rather wide interval. However, the changes are restricted to

small regions determined by the sensitivity calculations.



101

—=NNO
=N BOUORO

F4
w L= ~l (=) o B w N

COOO=NaNWNHMON=O
S NWONNORO=ROUNIONO

-
o

-

multiplier

10.00
3.07

(o)}
N
N

z
© O N o o B w N

OO OO ==
UNO) O I 00N~ NI
ORI~ — ~IW O

—
o

Figure 4.9 Permeability distribution for Goldsmith case: (a) initial permeability field generated via
a cloud transform based on the porosity-permeability relationship, (b) final permeability field from
history matching, and (c) permeability multiplier generated from history matching.
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Fig. 4.10 shows the water-cut match before and after inversion. Although the initial
match was already reasonable for several wells, the matches were further improved by
the generalized travel-time inversion. For example, the matches for Well 4, 7, and 9 are
significantly improved. Fig. 4.11 shows the misfit versus the number of iterations during
the inversion. In 9 iterations, the arrival-time misfit is reduced by over 70 percent and
the water-cut misfit is reduced by one-third. Fig. 4.12 shows misfit of arrival time at 0.2
fractional water cut. For this field example with 31 producers, 11 injectors and 20 years
of history matching, the computation time requirement was about 100 minutes in a PC

(Intel Xeon 3.06 GHz Processor).

— histor - historY
- model result ——mode| result

Well No.
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Time, days Time, days
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Figure 4.10 Water-cut matching for Goldsmith case: (a) initial water-cut match and (b) final
water-cut match obtained from history matching.
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Figure 4.12 Arrival-time comparison for Goldsmith case.

4.5.2 A Giant Middle-Eastern Field Example
The reservoir under consideration is located in the middle-east and ranks 22" largest in
the world. It is a carbonate reservoir with a large north-south anticline measuring 25 km
by 15 km and contains extra light crude at an average depth of 8000ft. The field has been
under waterflood for the last 30 years. A detailed history matching of the water flood
production response using streamline models was presented by Qassab et al.”’ Here we
repeat the exercise using a commercial finite-difference simulator and the generalized
travel-time inversion.

The initial geologic model was created based on well log derived porosity, facies

information and 3-D seismic data. From the facies based porosity model, 3-D
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permeability distributions were generated using appropriate core based porosity-
permeability transforms. The fine-scale geologic model contained about 1 million cells.
We utilized an upscaled model for production data integration. We performed a vertical
upscaling of the geologic model to 13 layers based on the geologic markers. Cross-
sections of the detailed geologic model and the corresponding upscaled model for both
porosity and permeability distributions in the reservoir and the detailed upscaling
methods can be found elsewhere.”® The grid size for the upscaled model is 74x100%13.
The initial water saturation in the simulation model was obtained using facies-based J-
curves and capillary-gravity equilibrium conditions. Gravity effects were included in the
simulation model and had a significant impact on the results, especially on the water-cut
responses because of water-slumping. In addition, it was important to include fluid
compressibility and aquifer influx to obtain a pressure history consistent with the field
observations.

Production data smoothing is an important step during generalized travel-time
inversion with field data. The field production history data are frequently erratic with
large-scale fluctuations. Very often the time step sizes in simulation are larger than the
intervals of observation data. Thus, the fluctuations within short time intervals in the
production data are not captured by simulation. We suggest averaging (smoothing) the
production data before inversion over pre-specified interval using the simulation time
steps as guidelines. This helps the inversion capture the general trend of the production
history and not be trapped by small details. Data smoothing also facilitates the

calculation of the shift-time during generalized travel-time calculations.

Production Data Integration. Out of the 70 producers in the field (Fig. 4.13), 48
wells had water-cut response. Starting with the upscaled model, the grid block
permeabilities were changed via the generalized travel-time inversion to match the
water-cut histories at the 48 producers. Fig. 4.14 compares the initial permeability field
with the final permeability field derived after inversion. From a visual examination, it is

difficult to discern any differences. This is partly a consequence of the ‘norm’ constraint
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(Eq. 4.19) during the inversion that attempts to preserve the initial geologic model. Also,
the streamline-based sensitivities help target the changes to regions of maximum impact.
Fig. 4.15 shows the permeability multipliers resulting from history matching and
indicates the regions where permeabilities have been altered during inversion. In general,
permeabilities increased at the northern higher elevation with higher quality reservoir
facies. No permeability enhancements were observed in the lower interval that
represents low quality reservoir. These changes are consistent with those observed by

Qassab et al.”

and were found to be geologically realistic. Fig. 4.16 shows the misfit
reduction during the inversion. In 9 iterations, the arrival-time misfit has been reduced
by half and the water-cut misfit has been reduced by almost one quarter. Fig. 4.17a
compares the observed and calculated water arrival-times at 0.1 fractional water-cut
using the initial static model. After 9 iterations of generalized travel-time inversion, the
corresponding arrival-times are shown in Fig. 4.17b. There is a significant reduction in
the scatter indicating a close match between the observed and calculated water

breakthrough times. The entire history matching took about 9 hours in a PC (Intel Xeon
3.06 GHz Processor).

'Illllllllll‘i..-‘et -

Figure 4.13 Well location map for the giant middle-eastern case. Dotted lines denote simulation
area (from SPE 84079).
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Figure 4.14 Initial upscaled permeability field (left) and final upscaled permeability field (right)
after production data integration for the middle-eastern case.
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Figure 4.17 Arrival-time match for the giant middle-eastern case.

The water-cut match has significantly improved for most wells. Some examples of

these matches are shown in Fig. 4.18. Specifically, the generalized travel-time inversion

can match the water-cut history for wells with no calculated initial breakthroughs (Wells
A, D, F,L, R, V, and X), wells with high initial water-cut (Wells J, Z, W, K, and Y), and
wells with low initial water-cut and late breakthroughs (Wells M, P, G, E, and S).

Generalized travel-time inversion improved the match even though the breakthrough-

time is already matched (Wells Z and Y). Finally, the match in Well F shows its ability

to match non-monotonic production history.



108

1 Well A 1 Well D 1 Well J
5 + History 5 5
o ——Initial 123 0 Q
2 —Final 2 2 £
= = =
0 e 0 0
0 5000 10000 0 5000 0 5000
Time, days Time, days Time, days
1 Well M 1 Well P 1 Well Z
=1 =1 =1
o o o
g g g
© © ©
= = =
0 0 0
0 5000 0 5000 0 5000
Time, days Time, days Time, days
1 Well G 1 Well F 1 Well L
=1 = 5
o o O
g g g
© © o
- __/ g /\ o
0 e 0 aretel 0 B e
0 5000 10000 0 5000 10000 0 5000 10000
Time, days Time, days Time, days
1 Well R 1 Well W 1 Well K
= — Initial o .
3 Final oo g £
© = FInai
= . o = =
*
0 ottt 0 0 ‘ ;
0 5000 10000 0 5000 10000 0 5000 10000
Time, days Time, days Time, days
1 Well O 1 Well E 1 Well S
=1 =1 5
© © RN Q
2 2 2 .
< o * ®© oo
s s . s . j[
0 0 a ‘ ; 0 A ;
0 5000 0 5000 10000 0 5000 10000
Time, days Time, days Time, days
1 Well V 1 Well X 1 Well Y
3 ot 3 3 + History
§ R § E —+= |nitial
© ® © — Final
z z z '
0 - Vet 0 - 0 -
0 5000 10000 0 5000 10000 0 5000
Time, days Time, days Time, days

Figure 4.18 Examples of the water-cut match after history matching for the giant middle-eastern
case.
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The saturation distribution in the field at the end of the simulation is shown in Fig.
4.19. The water encroachment patterns and the unswept areas indicated by the
simulation were found to be consistent with the field surveillance data.” The simulation

model also shows evidence of water override as observed in field surveillance data.

o L o o n o e

Figure 4.19 Saturation profile at 10290 days by final updated permeability. Water override is
shown from the east-west cross section view.

Statistics After Inversion. We examined the impact of production data integration on
the permeability distribution by comparing the statistics of the initial and the final
permeability fields. As indicated in Fig. 4.20, the histograms of both the models are
almost identical in terms of the median and the upper and the lower quantiles of
permeability. In other words, the shape of the distribution has essentially remained
unchanged. The mean permeability, however, is slightly higher after history matching.
This is primarily because integration of production data has resulted in flow channels
and preferential flow paths with higher permeabilities. As a result, the heterogeneity has

increased in terms of standard deviation and coefficient of variation.
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Figure 4.20 Histogram of the initial permeability and the final updated permeability for the giant
middle-eastern case.

4.6 Chapter Summary

We have proposed a novel approach to history matching finite-difference models that
combines the advantage of the streamline models with the versatility of finite-difference
simulation. Streamline-based sensitivity calculations are shown to be adequate for finite-
difference simulation with more comprehensive physical mechanisms. We have
demonstrated the power and utility of our approach using both synthetic and field

examples.
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Some specific conclusions from this study can be summarized as follows:

A fast history matching approach for finite-difference models is proposed. The new
approach combines the versatility of finite-difference simulation with the efficiency
of streamline simulation. Use of finite-difference simulation allows us to account for
detailed physics including compressibility and gravity effects and also cross-
streamline mechanisms.

. A key aspect of our proposed method is the use of streamline-based sensitivity
during history matching finite-difference models. Although these sensitivities are
approximate, they seem to be adequate for most purposes and do not significantly
impact the quality of the match or the efficiency of the approach.

The generalized travel-time inversion for history matching is extremely robust
because of its quasi-linear properties. It is computationally efficient, converges
rapidly and is designed to preserve geologic realism during history matching. It also
eliminates much of the time-consuming trial-and-error associated with manual
history matching.

We have demonstrated the power and utility of our proposed approach using both
synthetic and field examples. A full field application from a giant middle-eastern
field with over 80 wells and 30 years of production history convincingly establishes
the practical feasibility of the approach. The entire history matching for this field
took 9 hours in a PC indicating the potential for cost savings in terms of time and

manpower.
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CHAPTER V
HISTORY MATCHING THREE-PHASE FLOW USING

STREAMLINE MODELS

Reconciling high-resolution geologic models to field production history is still by far the
most time-consuming aspect of the workflow for both geoscientists and engineers.
Recently streamline-based assisted and automatic history matching techniques have
shown great potential in this regard and several field applications have demonstrated the
practical feasibility of the approach. However, most of these applications have been
limited to two-phase water-oil flow because current streamline models are limited in
their ability to incorporate highly compressible flow and cross-streamline mechanisms in
a rigorous and computationally efficient manner.

In this chapter we propose an approach to history matching three-phase flow using a
novel compressible streamline formulation and streamline-derived analytic sensitivities.
We first generalize streamline models to account for compressible flow by introducing a
relative density of total fluids along streamlines. This density term rigorously captures
changes in total fluid volume with pressure and is easily traced along the streamlines. A
density-dependent source term in the saturation equation accounts for the pressure effect
during saturation calculations. Our approach preserves the 1-D nature of the saturation
equation and all the associated advantages of the streamline approach with only minor
modifications to existing streamline models. Second, we analytically compute parameter
sensitivities that define the relationship between the reservoir properties and the
production response, viz. water-cut and gas-oil ratio. These sensitivities are critical to
history matching and streamline models allow us to compute them efficiently using a
single flow simulation. Finally, for history matching we use ‘a generalized travel-time
inversion’ that is shown to be extremely robust because of its quasi-linear properties and

converges in only a few iterations. The approach is very fast and avoids much of the
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subjective judgments and time-consuming trial-and-errors associated with manual
history matching.

We demonstrate the power and utility of our approach using both synthetic and field
examples. The synthetic cases include matching of water cut and gas oil ratios from a 9-
spot pattern and are used to validate the method. The field-scale example is SPE ninth
comparative example and consists 25 producers, 1 injector and aquifer influx. Starting
with a prior geologic model, we integrate water-cut and GOR history using the
generalized travel time inversion. Our approach takes only a few hours in a PC for the

entire history matching without any apparent loss in geologic realism.

5.1 Introduction

In Chapter I we have already reviewed the minimization techniques and sensitivity
calculation methods, here I will just mention the adjoint state method since recently it
has been applied to history match three-phase flow.”™’ The adjoint state method
requires derivation and solution of adjoint equations that can be significantly smaller in
number compared to the sensitivity equations. The adjoint equations are obtained by
minimizing the production data misfit with flow equations as constraint and can be quite
cumbersome for multiphase flow applications. Furthermore, the number of adjoint
solutions will generally depend on the amount of production data and thus, length of the
production history. And this restricts the application to small or synthetic cases.”™’
Although the streamline models have been extremely successful in bridging the gap
between geologic modeling and flow simulation, they are currently limited in their
ability to incorporate complex physical processes and cross-streamline mechanisms in a
computationally efficient manner.”” However, most of the applications have been limited
to two-phase water-oil flow'*'**?** because current streamline models are limited in

their ability to incorporate highly compressible flow and cross-streamline mechanisms in

a rigorous and computationally efficient manner.
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Here for the first time we generalize streamline models to compressible flow using a
rigorous formulation while retaining most its computational advantages. Our new
formulation is based on three major elements and requires only minor modifications to
existing streamline models. First, we introduce a relative density for the total fluids
along the streamlines. This density captures the changes in the fluid volume with
pressure and can be conveniently and efficiently traced along streamlines. Second, we
incorporate a density-dependent source term in the saturation equation that accounts for
the pressure effects during saturation calculations for compressible flow. Third, the
relative density, the fluid volume, time-of-flight information are used to incorporate
cross-streamline effects via pressure updates and remapping of saturations. Our proposed
approach preserves the 1-D nature of the saturation calculations and all the associated
advantages of the streamline approach. The saturation calculations are fully decoupled
from the underlying grid and can be carried out using large time steps without grid-based
stability limits.

We can history match three-phase flow using the rigorous streamline flow
simulation. In addition, history matching three-phase flow using finite-difference flow
simulation and streamline-based sensitivity is another option based on our vigorous
streamline formulations. In order to get the sensitivities for three-phase flow, first, the
velocity field from the finite-difference model is used to compute streamline trajectories
and time of flight. Then the analytic sensitivities are calculated along the streamlines
using a rigorous compressible streamline formulation. Our new rigorous compressible
streamline sensitivity formulation is based on three elements as described above. The
rigorous flow equation is used to derive water cut and gas/oil ratio sensitivities along the
streamlines. Then, the relative density, the fluid volume, time-of-flight, and fractional
flow information are used to map the streamline sensitivities to the cell sensitivities
which are then utilized in an inversion algorithm to update the reservoir model during
finite-difference simulation. For history matching, we use ‘a generalized travel-time
inversion’ that is shown to be extremely robust because of its quasi-linear properties and

converges in only a few iterations.
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In this chapter, first a synthetic example is used to illustrate the procedure. Then the
streamline formulations for compressible and three-phase flow are described.
Comparison of incompressible and compressible streamline simulation will be shown.
Then I will discuss analytical water-cut and gas/oil ratio sensitivity calculations for
compressible and three-phase flow. A field-scale example is shown to validate this

method.

5.2 Background and Illustration

Before going to the rigorous streamline mathematical formulations, a brief review of the
production data integration procedure will be given and an illustrative example will be
shown.

Streamline-based automatic history matching utilizes streamline-derived sensitivities
to update geologic models. The major steps are: (i) Flow simulation to compute
production response at the wells, either by commercial finite-difference simulators
which can handle compressible and three-phase flow or by rigorous streamline
simulation; (ii) Quantification of the mismatch between observed and computed
production response; (iii) Streamline-based analytic sensitivity computation of the
production response (water-cut and gas/oil ratio) with respect to reservoir parameters;

(iv) Updating reservoir properties to match the production history via inverse modeling.

5.2.1 Synthetic Example

The synthetic case involves three-phase flow and includes matching water-cut and GOR
from a 9-spot pattern starting with a homogeneous permeability distribution (Fig.5.1a).
The mesh size used is 21x21x1. The reference permeability distribution consists of a
low-permeability trend towards north and a high-permeability trend towards south. The
water-cut and GOR simulation responses from the reference permeability field are

shown in Figs. 5.2 and 5.3. We treat this as the observed data. Next, starting from a
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homogeneous initial permeability model we jointly match the water-cut and GOR
response via the generalized travel-time inversion. The permeability for each grid block
is treated as an adjustable parameter for this example (a total of 441 parameters). The
comparison of initial and final updated water-cut matches is shown in Fig. 5.2, and that
of GOR is in Fig. 5.3. The final permeability distribution is shown in Fig. 5.1b. Clearly,
the final permeability model captured the large-scale trend of the reference permeability
field. The production data integration process is very efficient and takes only a few
iterations to converge (Fig. 5.4). The CPU time required for this case is less than 10

minutes for 10 iterations in a PC (Intel Xeon 3.06 GHz Processor).

(a) reference permeability (b) final permeability

Figure 5.1 History matching 3-phase finite-difference model for a nine-spot heterogeneous case.
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Figure 5.2 History matching 3-phase finite-difference model for a nine-spot heterogeneous case:

water-cut match.
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Figure 5.3 History matching 3-phase finite-difference model for a nine-spot heterogeneous case:

gas/oil ratio match.
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Figure 5.4 History matching 3-phase finite-difference model for a nine-spot heterogeneous case:
objective function reduction, water cut and GOR shift-time misfit reduction, and water cut and
GOR amplitude misfit reduction.

5.3 Mathematical Formulation

5.3.1 Compressible Streamline Simulation

Before going to sensitivity calculations, let’s first examine the formulations for
compressible and three-phase streamline simulation. Although streamline-based history
matching techniques have shown great potential, most of the applications have been
limited to two-phase water-oil flow because current streamline models are limited in
their ability to incorporate highly compressible flow and cross-streamline mechanisms in
a rigorous and computationally efficient manner. In the following sections, I will show

how to rigorously extend streamline simulations to compressible and 3-phase flow.
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Relative Density for Compressible Flow. From Bear (1972),” the mass conservation
equation is
V-(ou)+ 2 ~0
ot (5.1a)
For steady state flow, although the divergence of volumetric flux of compressible

fluid flow is not zero, the divergence of mass flux of that is going to be zero as follows,
V- (pu)=0, (5.1b)
Between pressure updating we can treat the flow as steady state.

If we expand it,

V-(pu)=u-Vp+pV-u=0 (5.2)
Suppose we give V -u =c[Constant], the equation above will be,

u-Vp+pc=0 (5.3)
Introducing the time of flight equation, u -V = ¢% ,

u-Vp+pc:¢a—p+pc=O
ot 5.4)

Now the gradient of density is converted from three dimensional (x,y,z) coordinate to
one dimensional (t) coordinate by introducing the time of flight.

By using the above equation, we are able to trace the density from Injector to
Producer as the example below,

%O = —287 - j-:%o = —% OATOZ' - ln’% = —%Az’ - p, =P exp(—%Ar) (5.5

The initial density p is starting from the unity at the injector.

The equation above simply shows that the density will vary with the divergence of
flux (¢, flux out minus flux in for x, y, z directions), porosity (@) and the difference of (7)
within the particular interval along a streamline. If we have incompressible fluid flow

which is simply ¢ = 0, then the density will keep the initial unity value till the producer.
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Mass Conservation Equation for Compressible Fluid Flow With Density-
Dependent Source Term. The next question will be how we use the coordinate
transformation. Mass conservation equation for compressible fluid flow will be given as
follows,

O Su |y utt |
125 ) 5o 5o

w

¢ﬁ S +&V-u[+u,-v S =0
ot\B,) B B

w

w

w

(5.7)

Again introducing the time of flight equation, u-V = ¢6i ,and V-u =c[Constant],
T

IEANEIANNA
¢81[BWJ+¢87(BWJ B C (5.8)

(8., (L) cf
ot\ B, or\ B, ¢ B, 59)

We can think the right hand term as the source term because of compressibility such

as the expansion of the fluid. It is important to emphasize that we could transform the
coordinate of the density from three dimensional to one dimensional along streamline.

By using the coordinate transform equation of the density,
_+pc:0_)c:——— (510)
T

The divergence of the total flux is transformed into the time of flight. By using this
coordinate transformation, saturation equation will be
Q(S_Ji(f_J el 113

ot\B,) oOr\B, ¢B, pB, ot (5.11)
Then we are able to solve the equation only along the streamline and we don’t need
to go back to the grid block coordinate which means we don’t require operator splitting

for this equation.

The discretization of the equation is as follows,
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L Sw n+l _&n +L &n fw n B c fw n
At| B, B, At| B, 1 B, "y @ B, ;
2 2 (5.12)
S£+1:B:}+1X % _% gw _% _At 02‘47
w 4 w z—% w i+% ¢ wl; (513)
In detail,
B Bu (5.14)
AT s
Bl 0.5x(B" +B".,) .15
Ll
B, 0.5x(B". +B".,,) 5.150)

Saturation Remapping. There is still one more step to take. The relative density, the
fluid volume, time-of-flight information are used to incorporate cross-streamline effects
via pressure updates and remapping of saturations. The new flow rate that a streamline

carries at the location we investigate will be

9w = 9oy p&=%w L
Piv Piv (5.16a)
Now the volumetric flux depends on the position along the streamline. When we are
mapping from streamline segments to grid-block properties, we need to take into account
the new ¢ with compressibility.
The saturation in one grid block will be calculated using streamline segment

saturation, streamline flow rate and streamline segment time of flight as follows
ZSN‘ G 'ATN
S =

_ ¥
l Z%\{f ATy
¥

(5.16b)

b
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where the streamline fluid volumetric rate is calculated by Eq. 5.16a.

We now illustrate the calculations using waterflooding in a Y4-spot pattern under
black oil conditions and compare the results with incompressible flow. Fig. 5.5 shows
the pressure distribution for a two-phase flow black oil case. The initial pressure is set at
3000 psi and the producer is bottomhole pressure constrained at 1000 psi. The
divergence of flux computed for each grid block is shown in Fig. 5.6 and a contour of

the streamline time of flight is shown in Fig. 5.7.

Figure 5.5 Pressure(psia) distribution for a Y-five spot pattern, two-phase compressible flow.

Figure 5.6 Total net flux distribution for a V4-five spot pattern, two-phase compressible flow.
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Figure 5.7 Streamline time-of-flight distribution for a “a-five spot pattern, two-phase
compressible flow.

We now calculate the effective densities along streamlines using Eq. 5.5. A contour
of the ‘local’ changes in relative density is shown Fig. 5.8 and a value less than unity
indicates expansion of the fluid. Note that these changes are a function of fluid
compressibility, porosity and time of flight. The relatively low values at the stagnant

corners reflect the large cell time of flight there.

Figure 5.8 ‘Local’ relative density distribution for a Ya-five spot pattern, two-phase compressible
flow.
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The accumulated relative densities along streamlines are contoured in Fig. 5.9 and
resemble the time of flight distribution. In fact, we can view the relative densities as
scale factors for time of flight, ‘accelerating’ or ‘retarding’ the particle transport along
streamlines. The oil rate at the producing well for the compressible streamline
calculations is shown in Fig. 5.10. For comparison purposes, we have also shown the
close correspondence with the results from finite difference calculations. The impact of

fluid compressibility can also be easily seen in this figure.

Rysueq enpeiey

Figure 5.9 Accumulative relative density distribution (right side shows relative density traced
along streamlines).
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—x— Streamline Incompressible

—e— Finite Difference Compressible
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0 T T T T
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Figure 5.10 Comparison of oil rate at the producer.
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In next case, we increased bottomhole pressure to 2500 psi. Average reservoir
pressure is kept above initial reservoir pressure and fluid is under compression in most
of the reservoir area. Fig. 5.11 shows the tracing of relative density along the streamline.
The contour of the relative density is shown in Fig. 5.12. For compression case,
divergence of flux is negative and relative density is greater than 1. Fig. 5.13 shows the
oil production rate vs. time using compressible streamline formulation and commercial
finite difference simulator. For comparison purpose we also show the results from the

commercial streamline simulator. The improvement from the new formulation is quite

obvious here.
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Figure 5.12 Contour plot of relative density for a compression case.
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Figure 5.13 Oil production rate vs. time for a compression case.

5.3.2 Streamline Formulation for Three-Phase Flow

The mass conservation equation for gas is give by the same procedure,

R
+V-(u,£—g+u LJ:O

S
¢§ _g+M
ot\ B B

g o

B, B,

S
¢2 _g+M +¢
o\ B, B,

or

S
¢g _g+% +
o\ B, B,

By eliminating ¢,

S
¢2 _g+% +(
ot

B

g

¢

i{£+&]:{£+ﬁ]@_p
ot

"B

g o

B

o g o

£+ﬁ]v-ut +u, -V(£+ﬁ]20
B B

or\ B, B B, B
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(5.17)

(5.18)

(5.19)

(5.20)
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o g o

Q{S_S_RJQ[Lf_RJ[Lf_RJ_
ot\B, B, ) or\B, B B, B, )¢ (5.21)

or

o\ B, B, or\ B, B B B, |por

o 4

0 (S_S_RJi(Lf_RJ(Lf_R]Lﬁ_P

(5.22)
Eq. 5.22 can be discretized and solved along streamlines using finite-difference as
discussed for two-phase flow. Because of the high gas mobility, the three-phase flow
equations need to be solved implicitly along streamlines.

An example using the new formulation is given below. We simulated water injection
in a quarter five-spot pattern for three-phase flow. A homogeneous permeability model
represented by 25%25 grid cells was used. The initial solution GOR is 1.27 Mscf/STB.
Initial reservoir pressure is 3005 psi, which is a little bit higher than the bubble-point
pressure, 3000 psi. There is no free gas at the initial state. The producer is bottomhole
pressure constrained at 2500 psi, and the injector is rate constrained at 250 B/d. As the
pressure drops, solution gas comes out from oil phase and accumulates to mobile free
gas. Fig. 5.14 shows the oil production rate, Fig. 5.15 shows the gas production rate, and

Fig. 5.16 shows the water-cut. Our results match commercial finite-difference simulator.
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Figure 5.14 Oil production rate for a three-phase case.



129

1000
900

800 1 —s— Compressible
700 A Streamline

—e— Commercial FD

600 -
500 -
400 -
300 4
200 4
100 4

Gas Production Rate, Mscf/d

0 1000 2000 3000 4000
Time, days

Figure 5.15 Gas production rate for a three-phase case.
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Figure 5.16 Water-cut curve for a three-phase case.

5.3.3 Sensitivity Calculation for Compressible and Three-Phase Flow
This section discusses the sensitivity calculation based on the rigorous streamline

formulations.

Watercut Sensitivity. The component conservation equation for water is shown in
Eq. 5.9. From Eq. 5.9,

o(S\__a(L) et
ot\B, ) or\B, ) ¢B, (5.23)
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B—W is function of m and t. The implicit differentiation of aa—[ will be
w m

a(SWJ ot 5[SW]
o om Bw __Gm or Bw

om 6@} 6(%]
ot BW ot Bw

(5.24)
or 05y
at_ om OT By,
om 8(fwj+fwc
or\B,) B, ¢ (5.25)
or
or 05y
o om Ot \ B,
on o f,)_flop
or\B,) B,6 por (5.26)

For incompressible flow, ¢=0, B,, is constant and Eq. 5.25 reduces to our previous

sensitivity formulation Eq. 4.18.

Gas/Oil Ratio Sensitivity. The component conservation equation for gas is shown in

S
Eq. 5.19. Let’s define S|, :B_g+%’ then

g o

ﬂi{if_R] fo SR

:_(_g+ )_
o or\B, B, B, B, ¢ (527)
oS’
_g:_i £+ﬂ _(£+ﬂ)£
& or\B, B, ) B, B, ¢ (528)

If we assume that the streamlines do not shift because of small perturbations in

reservoir properties, changes in S, (gas saturation, including the solution gas in oil

phase) at the outlet node of a streamline can be expressed as S, =S (¢,m), s0
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os’ oS r
55! =8 &+—g{ﬁ} Sm (5.29)
<" o or Lom

The implicit differentiation of ;—t will be
m

6S"g 6S:g ﬂ

ﬁ __Om ___0r Om
om 8S"g 6S’g
ot ot

(5.30)
We can now combine Eq. 5.30 with Eq. 5.28 in order to obtain the following

expression for travel time sensitivity in terms of the streamline time of flight,

or 5,

o _ om Ot
8m_a(fz+m}(f;+ﬂ&)c

ot\B, B, ) B, B4 (531)

aa(SSRJ

ot om dt\ B, B,
6m_a[fg+m}(fg+m)c

or Bg Bo Bg Bo ¢ (532)

We can get fluxes and saturation from Eclipse, then trace streamlines and map block

. . : : : o(-
properties to streamline coordinate properties and obtain the % values at the
T

streamline outlet nodes. If we use compressible streamline simulation, these values are
already available along the streamlines.
Now let’s discuss the parameters relevant to Eq. 5.32.

The fractional flow of water, oil, and gas is calculated by

k k

rw g
_ ll’lw _ ’ng —1_ _
fw_kr k 9];7_kr k k Jandﬁ)_l fw f:g' (5'33)
7g+ﬂ+ﬂ 7g+ﬂ+ﬂ
He H, H, He M, H,

The default k., model is given according to Eclipse,’'
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Since Stone’s second mode (modified) is commonly used in industry, it is also

provided as an option:

k
k,=k {(M_'_k”j(&_kkﬁ]_k -k }
ro rocw k w k rg w rg
rocw rocw , (5 .3 5)

where i, is the dry gas viscosity, and g, is the live oil (with dissolved gas) viscosity.

Fluid viscosity, solution GOR, and formation volume factors are functions of pressure.

= 4, (P) (5.36a)
_ { #,(P)  (P>F)

° 4, (R(P) (P<P) (5.36b)
My, = i, (P) (5.36¢)
R, =R (P) (5.36d)
B, =B,(P) (5.36¢)
B, = B,(P) (5.36f)
B, = B,(P) (5:369)

Production GOR (the ratio of produced gas to produced oil) is

% = Qg,free +RSQD — ngfré’é’ +R = krgluoBo +R

GOR = . .
Qo Qo Qo kro/ung . (537)

If P>Py, for undersaturated reservoir, production GOR is contributed by R, only.
Reexamining Eq. 5.32, we see that the travel-time sensitivity for production GOR is

valid for situations where there is free gas and/or solution gas.
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5.4 Sensitivity Verification

In order to verify the travel-time sensitivity in Egs. 5.25 and 5.32 we compared our
results with sensitivities obtained by numerical perturbation. For this purpose, we
simulated water injection in a quarter five-spot pattern for three-phase flow. A
homogeneous permeability model represented by 21x21 grid cells was used for this
comparison. The initial solution GOR is 1.27 Mscf/STB. The reservoir was produced by
a production/injection ratio of 1.25 starting with the bubble-point pressure. As the
pressure drops, solution gas comes out from oil phase and accumulates to mobile free
gas. We perturbed every grid block permeability by 5%, one grid block at a time and
numerically computed the partial derivative of the arrival time of a fixed watercut and
GOR with respect to permeability. Fig. 5.17 shows the results for watercut of 0.47, and
Fig. 5.18 shows the result for GOR of 4 Mscf/STB. Clearly, we obtain a good agreement
between analytical travel time sensitivities calculated from Egs. 5.25 and 5.32 and
numerical travel time sensitivities. The locations of the negative and positive
sensitivities are in close agreement. The shape of the watercut analytical sensitivity is a
little bit different from the perturbation sensitivity since the analytical sensitivities are
calculated along the streamlines thus the shape is in accordance with the streamline
trajectory. The differences are also because of the approximations inherent in the
analytical computations, particularly the assumption that the streamlines do not shift
because of small perturbation in reservoir properties. Nevertheless, as we will see later,
the streamline-based sensitivities are adequate for history matching purposes under a

wide variety of conditions.
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Figure 5.17 Comparison of numerical and analytical sensitivity in a Vs-five spot pattern at water
cut of 0.47.
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Figure 5.18 Comparison of numerical and analytical sensitivity in a Vs-five spot pattern at GOR
of 4 Mscf/STB.

5.5 Field-Scale Example

In this section I demonstrate the feasibility of the approach for field studies by
application to a large-scale 3-D example. As mentioned before, streamlines and time of
flight are used to compute the sensitivity of the production data with respect to reservoir
parameters as described in the mathematical formulation section. In this field example,

watercut and GOR were matched jointly to update the reservoir permeability model.
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5.5.1 Model Description

Ninth SPE benchmark problem® was used to validate the methodology. The SPE ninth
problem studies a bottom waterflooding in a dipping reservoir with natural water
encroachment from an aquifer. The reservoir (Fig. 5. 19) is represented by a 24x25x15
mesh system with conventional rectangular coordinates. The dimensions of the grid
blocks are 300 feet in both the X- and Y- directions. Cell (1,1,1) is at a depth of 9000
feet subsea at the center of the cell top. The remaining cells dip in the X-direction at an
angle of 10 degrees. Values of porosity and thickness can be found in Ref. 64. The total
thickness from Layers 1 to 13 is 209 feet (16 feet per layer in average), and Layer 14 and
15 has a thickness of 50 and 100 feet respectively.

OilSat

— [ ‘ﬂ | !
0.08400 0.27523 0.40646 0.65760 0.84802

Figure 5.19 Initial oil saturation for the reservoir.
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Solution gas/oil ratio and gas formation volume factor are shown in Fig. 5.20.

Relative permeabilities are shown in Fig. 5.21. Modified Stone’s second model was used

to compute oil relative permeability.
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Figure 5.20 Solution gas/oil ratio and gas formation volume factor curves.
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Figure 5.21 Relative permeability curves.

The initial oil phase pressure at 9035 feet subsea is 3600 psia which is the bubble-

point pressure. The oil/water contact is 9950 feet subsea. There is no free gas initially in

the reservoir. After 900 days of production, there is plenty of free gas (Fig. 5.22).



137

GasSat

I [ q
0.doo 0.047 0.do4 0.140 0.187 0.234 0.281

Figure 5.22 Gas saturation distribution at the end of simulation time (900 days).

The permeability field used by the original SPE ninth problem was generated
geostatistically on a cell by cell basis. The permeability is log-normally distributed with
a mean of 108 md, a minimum of 0.003 md and a maximum of 10054 md. The
correlation length in the X-direction is about 6 grid blocks, and there is no correlation in
the Y- and Z- directions. For validation purpose, this permeability field was used as a
true or reference model to generate production history by running flow simulation.

A total of 1 water injector (I1) and 25 producers (named as P2 to P26) were included
in the reservoir. The injector was completed from layers 11 through 15. In the original
SPE9 problem, all producers were completed in layers 2, 3, and 4 only. For validation
purpose, all producers except produces 9, 17, 23, and 26 were changed to be completed
in layers 1 to 13. Producers 9, 17, 23, and 26 are completed in layers 1 to 5 so that wells

will not be perforated in the water leg. The water injector was injecting at a maximum
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bottomhole pressure of 4500 psia at a reference depth of 9110 feet subsea, and the
producers were producing with a constant reservoir volume rate of 1800 RB/D and

minimum flowing bottomhole pressure of 1000 psia.

5.5.2 Production Data Integration

To generate an initial permeability model to start with, the permeability values at the
well blocks are regarded as known hard data. Analysis of the variogram indicated a
correlation length of about 2100 feet (7 grids) in the X-direction and about 2 grids in the
Y-direction (Fig. 5.23). No correlation in the Z-direction was found. Using these
variogram parameters, the condition data at well locations, and the histogram of the hard
data, sequential Gaussian simulation was used to generate 10 realizations of the

permeability model. One model was randomly picked up as the initial model.

1.4 H —>X-direction
—/— Y-direction

Normalized Variance
N
Il

0 600 1200 1800 2400 3000
Distance, feet

Figure 5.23 Semi-variogram for the permeability known at the well locations (about 600 and
2100 feet range in the X- and Y- directions respectively).

In 5 iterations, all misfit indexes dropped obviously, including the objective function
(GOR and water cut total shift time misfit), GOR shift time misfit, water-cut shift-time
misfit, GOR amplitude misfit, and water-cut amplitude misfit (Fig. 5.24).
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Figure 5.24 Shift time and amplitude misfit reduction for joint watercut and GOR matching for
SPE9 problem.

The reference, initial, and final matched production GOR are shown in Fig. 5.25.

Most of the wells gained a satisfactory match.



140

PROD4
10 PROD2 5 PROD3 5 .
o . :‘\’efelrence o . Fefelrence o _'_ In?tiglrence
— — Initial — — Initia . _ .
% —— Updated 5 —— Updated 5 Updated vos
% % g
2] e 2] 2]
= = =
o o o
o o o -/ ~=1
O O O
0 1
0 Time, days 900 0 Time, days 900 0 Time, days 900
6 PROD5 5 PROD6 9 PROD7
+ Reference o + Reference + Reference
o — — Initial . . — — Initial . — — Initial o
~ —— Updated - —— Updated = —— Updated o
Y @ @
© o ©
12} (2] 12}
= = =
o 4 o 1
(o] o @]
O] o O]
1 1 1]
0 Time, days 900 0 Time, days 900/ O Time, days 900
6 PRODS8 6 PROD9 6 PROD10
+ Reference + Reference + Reference
0 — — |Initial — — Initial o — — Initial
[ —— Updated /@ —— Updated = —— Updated
@ . Q @
= = =
' ~— ||l |
o o g o -
O] O] O]
1 1 1
0 Time, days 900 0 Time, days 900|| O Time, days 900,
5 PROD11 5 PROD12 5 PROD13
+ Reference + Reference + Reference .
— — Initial . — — Initial . — — Initial R
E —— Updated ¢ o —— Updated = —— Updated .
2 2 2
o ['q o
(] o]
3 3 3
1 1 1
0 Time, days 900 0 Time, days 900 0 Time, days 900
6 PROD14 5 PROD15 5 PROD16
+ Reference o’ s Reference ‘e + Reference
. — — Initial . — — Initial @ — — Initial
= —— Updated et [ —— Updated = —— Updated
@ @ @
k3] k3] ©
(2] 2] n
= = =
['4 o o
(@] o - ] (o)
O] O O]
1 1 1
0 Time, days 900 0 Time, days 900 0 Time, days 900

Figure 5.25 Production GOR match for all the 25 producers (named from PROD2 to PROD26)

for SPE9 problem.
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Figure 5.25 Continued.

Although only five wells showed obvious water breakthrough by the true reference

model, all the wells were used in the production data integration. By the initial

permeability model, only two wells showed significant water breakthrough. After joint

integration of GOR and water cut data, all five wells showed significant water

breakthrough, although the amplitude match is not perfect (Fig. 5.26).
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Figure 5.26 Watercut match for wells showing observed breakthrough for SPE9 problem.

Fig. 5.27 compared the initial permeability model, the true (reference) model, and
the derived (updated) model. The scale is logarithmic. As mentioned before, minimum is
0.003 md and maximum is 10054 md. It is hard to tell the difference between the derived
and the initial model by visual comparison. But still they are detailed changes. For
example, the permeability in Layer 3 was reduced to be closer to the true model. We can

conclude from the comparison that the geologic realism of the initial model is retained in

the final derived model.



143

Derived Permeability, md True F’ermeility, md

1

Figure 5.27 Initial, derived (updated), and true (reference) permeability model comparison for
SPE9 problem.
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It is hard to discern the changes made to the initial model since the method is
designed to preserve the initial geologic realism. But if we compare the “true-initial”
permeability difference and the “derived-initial” permeability difference (Fig. 5.28), we
find that the derived model made most of the needed changes, especially the close
agreement in the areas where permeability needs to be reduced. There is some
discrepancy in the areas where there are very few streamlines (Fig. 5.29) since there is
not enough information to guide the change (for example, near the boundary or in the
areas where there is no well), or in the areas near the aquifer (the area far from Y-axis,
also refer to Fig. 5.19) since the streamline time-of-flight is extremely large and was not
used in the sensitivities. The agreement in the areas where permeability needs to be

reduced (dark areas) is very satisfactory.

'Derived-Initial' Permeability Difference, md
300 1 i

Y?\X

Figure 5.28 Comparison of the “derived-initial” permeability difference and the “true-initial’
permeability difference (All 15 layers are shown).
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'Derived-Initial' Permeability Difference, mc\l{
300

Figure 5.28 Continued.
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Figure 5.29 Streamline and time-of-flight distribution.

For this field case, it took about 50 minutes in 5 iterations to get a good history
match running at a computer with 1.5 GHz Pentium 4 processor.
This field-scale example shows that the methodology is working and the approach is

very efficient.

5.6 Chapter Summary

An approach to history matching three-phase flow using a novel compressible streamline
formulation and streamline-derived analytic sensitivities was developed. Streamline
models were generalized to account for compressible flow by introducing a relative
density of total fluids along streamlines. A density-dependent source term in the
saturation equation accounts for the pressure effect during saturation calculations.
Parameter sensitivities that define the relationship between the reservoir properties
and the production response, viz. water cut and gas-oil ratio, were analytically
computed. This calculation is very efficient. Also the analytical sensitivities were

verified by comparing with the perturbation sensitivity.
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Generalized travel-time inversion is extremely robust and converges in only a few
iterations for joint inversion of water cut and gas-oil ratio.

The power and utility of the approach were demonstrated using both synthetic and
field-scale examples. The synthetic case includes matching of water cut and gas oil
ratios from a 9-spot pattern and is used to validate the method. The field-scale example
is modified SPE ninth comparative example and consists 25 producers, 1 injector and
aquifer influx. Starting with a prior geologic model, water-cut and GOR history were
integrated using the generalized travel time inversion. The approach took less than one
hour in a PC for the entire history matching without any apparent loss in geologic

realism.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

In this work, I have quantified the degree of non-linearity for amplitude inversion,
travel-time inversion, and generalized travel-time inversion; developed approaches to
history matching streamline models using generalized travel time inversion which can be
applied to large real field cases; developed approaches to fast history matching finite-
difference models which can be applied to large real field cases; and developed approach
to efficient history matching compressible, three-phase flow production data. The power
and utility of these techniques have been demonstrated using synthetic and field

applications.

6.1 Conclusions

Some specific conclusions can be made from this work:

1. We have quantitatively investigated the non-linearities associated with travel time
and amplitude inversion for production data integration. The non-linearity is
expressed in terms of a simple and intuitive geometric measure of curvature as
proposed by Bates and Watts and later used by Grimstad and Mannseth.

2. The non-linearity in travel time inversion is found to be orders of magnitude smaller
than the conventional amplitude inversion. As a result, the travel time inversion has
better convergence properties and is less likely to be trapped in local minimum.

3. Travel time sensitivity is more uniform between the wells. In contrast, the amplitude
sensitivity can be localized near the wells. The higher magnitude of the travel time

sensitivity also contributes to its quasilinearity and improved convergence properties.
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The generalized travel time inversion effectively combines travel time and amplitude
inversion while retaining most of the desirable properties of the travel time inversion.
For the field example studied here, the generalized travel time inversion
outperformed both travel time and amplitude inversion.

Use of streamline-derived sensitivities can significantly improve the efficiency of
assisted history matching. In particular, the sensitivities can be utilized to directly
obtain the changes in reservoir properties necessary to improve the history match in a
more objective way. This eliminates the time-consuming and subjective manual
adjustment of parameters in the assisted history matching process. By intervening at
every stage of the iterative process, we can retain control over the history matching
process to preserve plausibility and geologic realism.

Streamline-based sensitivities and inversion allow us to take into account the full
coupling of the streamlines in the reservoir rather than changing individual wells or
streamline bundles at a time. This not only significantly increases the efficiency, but
also preserves geologic continuity and minimizes the chances of introducing non-
physical artifacts during the history matching process.

The power and utility of streamline-based inversion is demonstrated using two field
examples with model sizes ranging from 10° to 10° grid blocks and with over one
hundred wells. In both the cases, the streamline-based automatic history matching
led to better individual well matches as well as field-wide matches compared to
assisted history matching and with no apparent loss of geologic realism. We have
shown that the automatic history matching can be used both for conditioning
geologic models and also to further improve the models derived from the assisted
history matching.

The use of sensitivities during assisted history matching can lead to significant
savings in computation time and manpower. For the field examples presented here,
the automatic history matching took days compared to months for assisted history
matching. This makes it possible to generate multiple history-matched models to

perform uncertainty analysis.
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A fast history matching approach for finite-difference models is proposed. The new
approach combines the versatility of finite-difference simulation with the efficiency
of streamline simulation. Use of finite-difference simulation allows us to account for
detailed physics including compressibility and gravity effects and also cross-
streamline mechanisms.

A key aspect of our proposed method is the use of streamline-based sensitivity
during history matching finite-difference models. Although these sensitivities are
approximate, they seem to be adequate for most purposes and do not significantly
impact the quality of the match or the efficiency of the approach.

We have demonstrated the power and utility of our proposed approach using both
synthetic and field examples. A full field application from a giant middle-eastern
field with over 80 wells and 30 years of production history convincingly establishes
the practical feasibility of the approach. The entire history matching for this field
took 9 hours in a PC indicating the potential for cost savings in terms of time and
manpower.

An approach to history matching three-phase flow using a novel compressible
streamline formulation and streamline-derived analytic sensitivities was developed.
Streamline models were generalized to account for compressible flow by introducing
a relative density of total fluids along streamlines. A density-dependent source term
in the saturation equation accounts for the pressure effect during saturation
calculations.

We analytically computed parameter sensitivities that define the relationship
between the reservoir properties and the production response, viz. water-cut and gas-
oil ratio. This calculation is very efficient. Also we verified the analytical
sensitivities by comparing with the perturbation sensitivity.

Generalized travel-time inversion is extremely robust and converges in only a few
iterations for joint inversion of watercut and gas-oil ratio.

We demonstrate the power and utility of our approach using both synthetic and field-

scale examples. The synthetic cases include matching of water cut and gas oil ratios
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from a 9-spot pattern and are used to validate the method. The field-scale example is
SPE ninth comparative example and consists 25 producers, 1 injector and aquifer
influx. Starting with a prior geologic model, we integrate water-cut and GOR history
using the generalized travel time inversion. Our approach takes less than one hour in

a PC for the entire history matching without any apparent loss in geologic realism.

6.2 Recommendations

Our experience with amplitude inversion indicates that the results tend to be more
sensitive to the choice of inversion parameters. For homogeneous or smooth starting
models, we can obtain a reasonable solution by careful choice of inversion parameters.
We have cases where amplitude inversion works when starting with a smooth model.
Further investigation is needed to explore the success possibility of amplitude inversion.

Generalized travel-time inversion succeeded for integration of non-monotonic tracer
response. One reason is that the tracer response shapes calculated from different
geologic models are more or less similar (bell shape with a peak or peaks), thus this
helps getting a correct shift time. Another reason might reside in the sensitivity
formulation. We have tried to apply the same sensitivity formulation (Luo and
Schuster’s formulation) to integrate non-monotonic water cut data but did not get very
positive result. One reason is that water cut responses in real life is erratic and have
multiple up-and-downs. We still need to investigate how to better match this kind of
water cut responses, maybe by incorporating Luo and Schuster’s formulation, or by
master-point amplitude inversion to reduce the degree of non-linearity.

Currently, the gas/oil ratio shift time is calculated from the amplitude difference and
the tangent of the observed gas/oil ratio if the response is flat and causes difficulty for
shift time calculation. It is recommended to investigate other ways to get a correct shift

time.
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Gas/oil ratio response is very sensitive to three-phase relative permeability and PVT
properties. We should also investigate the GOR sensitivity to relative permeability and

PVT properties.



SRR

[

Fy
Je
Jo
S

GOR

S
égé@

b
S
2

tan
3
3
=

NOMENCLATURE

= maximum amplitude of tracer concentration
= gas formation volume factor

= oil formation volume factor

= water formation volume factor

= divergence of flux

= calculated tracer concentration

= observed tracer concentration

= data error covariance

= prior model parameter covariance

= data vector

= dispersion coefficient

= tangent vector

= acceleration vector

= fractional flow of gas

= fractional flow of oil

= fractional flow of water

= sensitivity matrix

= production gas/oil ratio

= identity matrix

= misfit function

= permeability

= gas phase relative permeability

= oil phase relative permeability

= water phase relative permeability

= oil relative permeability in gas/oil saturation function
= oil relative permeability in water/oil saturation function

= k0w at connate water saturation
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L = spatial difference operator

m = reservoir parameter

m = reservoir parameter vector

m, = prior reservoir model parameter

np = number of grid blocks

n, = number of dynamic data observations
Ny =number of dynamic data observations of jth well
N,y = number of wells

P = pressure

Py = bubble point pressure

q = streamline flow rate

O, = gas production rate

Qg e = free gas production rate

0, = oil production rate

R = reservoir parameter vector
R = solution gas/oil ratio

R’ = coefficient of determination
s = slowness

S = sensitivity matrix

Sq = gas saturation

S, = o1l saturation

Shw = water saturation

Sweo = connate water saturation

t = time

At = travel-time shift

AT = generalized travel-time

u = Darcy velocity

v = Interstitial velocity
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= observed response

= averaged observed response

= calculated response

= weighting factor for the prior model

= weighting factor for the roughness term

= measure of nonlinearity for amplitude inversion
= measure of nonlinearity for generalized travel-time inversion
= measure of nonlinearity for travel-time inversion
= relative density

= time of flight

= generalized travel-time or travel-time shift

= gas viscosity

= oil viscosity

= water viscosity

= total relative mobility

= porosity

= streamline trajectory
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