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ABSTRACT 

Fast History Matching of Finite-Difference Model, Compressible and Three-Phase Flow 

Using Streamline-Derived Sensitivities. (August 2005) 

Hao Cheng, B.S., Xi’an Petroleum Institute, China; 

Ph.D., University of Petroleum, Beijing, China 

Chair of Advisory Committee: Dr. Akhil Datta-Gupta 

 

Reconciling high-resolution geologic models to field production history is still a very 

time-consuming procedure. Recently streamline-based assisted and automatic history 

matching techniques, especially production data integration by “travel-time matching,” 

have shown great potential in this regard. But no systematic study was done to examine 

the merits of travel-time matching compared to more traditional amplitude matching for 

field-scale application. Besides, most applications were limited to two-phase water-oil 

flow because current streamline models are limited in their ability to incorporate highly 

compressible flow in a rigorous and computationally efficient manner.  

The purpose of this work is fourfold. First, we quantitatively investigated the 

nonlinearities in the inverse problems related to travel time, generalized travel time, and 

amplitude matching during production data integration and their impact on the solution 

and its convergence. Results show that the commonly used amplitude inversion can be 

orders of magnitude more nonlinear compared to the travel-time inversion. Both the 

travel-time and generalized travel time inversion (GTTI) are shown to be more robust 

and exhibit superior convergence characteristics.  

Second, the streamline-based assisted history matching was enhanced in two 

important aspects that significantly improve its efficiency and effectiveness. We utilize 

streamline-derived analytic sensitivities to determine the location and magnitude of the 

changes to improve the history match, and we use the iterative GTTI for model updating. 

Our approach leads to significant savings in time and manpower. 
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Third, a novel approach to history matching finite-difference models that combines 

the efficiency of analytical sensitivity computation of the streamline models with the 

versatility of finite-difference simulation was developed. Use of finite-difference 

simulation can account for complex physics. 

Finally, we developed an approach to history matching three-phase flow using a 

novel compressible streamline formulation and streamline-derived analytic sensitivities. 

Streamline models were generalized to account for compressible flow by introducing a 

relative density of total fluids along streamlines and a density-dependent source term in 

the saturation equation. The analytical sensitivities are calculated based on the rigorous 

streamline formulation. 

The power and utility of our approaches have been demonstrated using both 

synthetic and field examples. 
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CHAPTER I 

INTRODUCTION AND STUDY OBJECTIVES  

 

Reconciling geologic models to dynamic data such as multiphase production history is 

still by far the most time-consuming aspect of the workflow for both geoscientists and 

engineers. Although significant advancements have been made in this area over the last 

decade, current industry practice still involves iterative trial and error methods and often 

utilizes arbitrary permeability multipliers that can result in geologically unrealistic 

discontinuities in reservoir properties. Such manual history matching is time-consuming, 

manpower intensive and highly subjective in nature. This makes model assessment very 

difficult. The situation is further complicated by compressible and three-phase flow. This 

chapter presents the motivation and objectives of the research in this dissertation. 

 

 

1.1 Introduction 

 

Geological models derived from static data alone often fail to reproduce the production 

history of a reservoir. Reconciling geologic models to the dynamic response of the 

reservoir is critical to building reliable reservoir models. This process is referred as 

“history matching.” 

 

1.1.1 Static vs. Dynamic Data 

Geostatistical reservoir models are widely used to model the heterogeneity of reservoir 

petrophysical properties, such as permeability and porosity. These geostatistical 

reservoir models are usually upscaled from fine-scale geologic/geocellular models to 

                                                 
This dissertation follows the style and format of the SPE Journal. 
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coarser reservoir simulation models for field development studies and performance 

predictions. 

It is imperative that geostatistical reservoir models incorporate as much available, 

site-specific information as possible in order to reduce the uncertainty in the subsurface 

characterization. Available information on reservoir heterogeneity can be broadly 

categorized into two major types: static and dynamic. Static data are time-invariant 

direct or indirect measurements of reservoir properties, such as core measurements, well 

logs, and seismic data. These data can, relatively easily, be integrated into geostatistical 

models using the traditional geostatistical algorithms.1 Dynamic data are the time 

dependent measurements of flow responses that are related to the reservoir properties 

through the flow equations, such as pressure, flow rate, fractional flow rate, saturation or 

tracer responses. Integration of dynamic data generally leads to an inverse problem.2-3 

 

1.1.2 History Matching Workflow Overview 

There are many possibilities for choosing parameters for history matching. These 

include porosity, permeability, fluid properties, relative permeabilites or boundary 

conditions such as fluid contacts, aquifer strength, fault transmissibilities etc. The 

reservoir response can be water-cut data, pressure measurements, tracer response, 4-D 

seismic etc. The key parameters in history matching are not always apparent. Also, the 

parameter and data uncertainties are often unknown and the constraints on the 

parameters are not well-defined. All these make field scale history matching a 

challenging and time consuming task. Modern history matching follows a hierarchical 

workflow to account for uncertainties at various scales. To start with, generally a 

geologic model screening is carried out to identify the impact of large-scale features 

such as structures, fluid contacts, reservoir architecture/stratigraphy and boundary 

conditions on the production response. This step consists of performing flow simulations 

through a suite of realizations representing large-scale subsurface uncertainties. The 

outcome of this step is a selected set of realizations for detailed history matching by 

changing spatially varying properties such as permeability, porosity or facies 
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distribution. This step involves localized changes and is typically the most time-

consuming aspect of the workflow. Fortunately, streamline models are most 

advantageous at this stage because of the unique information content in the streamlines 

and sensitivities. Finally, history matching also involves adjusting physical property 

models such as relative permeabilities and fluid properties. Because typically there are 

only a few parameters involved here, we can conveniently examine their significance 

using experimental design. This dissertation mainly focuses on changing of spatially 

varying properties, in particular permeability for history matching finite-difference or 

streamline models using streamline-derived sensitivities. 

 

1.1.3 Assisted History Matching  

Traditionally, history matching is performed manually on the upscaled reservoir model 

and frequently uses local or regional multipliers to reservoir properties. By adjusting the 

regions and multipliers, a history match could be achieved using mostly trial and error. 

The trial-and-error involves considerable subjective judgment and personal bias and 

most importantly may create artificial discontinuities inside the reservoir, potentially 

destroying the correlation built into the initial geologic model. 

A more systematic approach to history matching, called Assisted History Matching 

(AHM), utilizes unique information-content in streamlines in terms of injector-producer 

relationship to facilitate history matching.4-6 The AHM is also a manual approach. 

However, changes to the model can be limited to the streamlines contributing to the 

production history of the well of interest and the amount of changes can be computed 

using some simple semi-analytical methods. The approach is a significant improvement 

over the traditional manual history matching but still could be time consuming, 

particularly when there are a large number of wells. This is complicated by the coupled 

nature of the flow equations which makes matching individual wells difficult without 

impacting other wells also. Finally, if we limit changes along streamlines only, it can 

introduce ‘tube like’ artifacts into the geologic model. 
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1.1.4 Automatic History Matching  

Geostatistically-based automatic history matching (production data integration) has been 

an active area of research and a number of techniques have been reported in the literature 

in the past decade. The main goal here is to match well production data by modifying the 

initial model in such a way that it preserves the underlying geostatistical features built 

into the initial model. Yeh7 and Wen et al.8 provided a review of these inverse 

techniques. Both finite difference and streamline fluid flow modeling can be used in 

automated history matching.9 Typically, an inverse technique is needed for production 

data integration, and requires multiple solutions of the flow equations within a nonlinear 

optimization procedure.10-12 And this brings a hurdle to the practical applications. 

Streamline based inverse techniques have shown great potential in this regard13-18 and 

they only require a single solution of the flow equations per minimization iteration.13-14 

The sensitivities of production data with respect to reservoir properties can be computed 

analytically using a single forward simulation. This renders substantial time-saving. For 

automatic history matching, there are many aspects which need to be addressed here, 

including different matching approaches, minimization techniques, sensitivity 

calculation, streamline versus finite-difference modeling, compressible and three-phase 

flow issues.  

 

Matching Approach: Travel Time vs. Amplitude Matching. In recent years several 

techniques have been developed for integrating production data into reservoir 

models.5,10,12,13,15,18-27 The theoretical basis of these techniques is generally rooted in the 

least-squares inversion theory that attempts to minimize the difference between the 

observed production data and the model predictions. This can be referred to as 

“amplitude” matching. The production data can be water-cut observations, tracer 

response, or pressure history at the wells. It is well known that such inverse problems are 

typically ill-posed and can result in nonunique and unstable solutions. Proper 

incorporation of static data in the form of a prior model can partially alleviate the 

problem. However, there are additional outstanding challenges that have deterred the 
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routine integration of production data into reservoir models. The relationship between 

the production response and reservoir properties can be highly nonlinear. The 

nonlinearity can result in multiple local minima in the misfit function. This can cause the 

solution to converge to a local minimum, leading to an inadequate history match. All 

these can make it difficult to obtain a meaningful estimate of the parameter field, 

particularly if the initial model is far from the solution. Another approach is “travel-time 

matching” that is analogous to seismic tomography. Instead of matching the production 

data directly, the observed data and model predictions are first “lined up” at the 

breakthrough time. This is typically followed by a conventional amplitude match, 

whereby the difference between the observed and calculated production response is 

minimized. A major part of the production data misfit reduction occurs during the travel-

time inversion, and most of the large-scale features of heterogeneity are resolved at this 

stage.19,21,22 A more efficient approach is “generalized travel-time” inversion.9 The 

generalized travel-time inversion ensures matching of the entire production response 

rather than just the breakthrough times and at the same time retains most of the desirable 

properties of the travel-time inversion. The concept follows from wave-equation travel-

time tomography and is very general, robust, and computationally efficient.26,28 The 

generalized travel-time inversion has been utilized to extend the streamline-based 

production data integration methods to changing field conditions involving rate changes 

and infill drilling. 

The advantages of the travel-time inversion compared to amplitude inversion mainly 

stems from its quasilinear properties. The advantages of travel-time inversion are well-

documented in the context of seismic inversion.28 However, no systematic study has 

been done to examine the benefits of travel-time inversion for production-data 

integration in terms of nonlinearity and convergence properties. Characterizing the 

degree of nonlinearity can be as important as finding the solutions to the inverse problem 

itself. However, quantitative measures of nonlinearity for the inverse problems related to 

production data integration have not been adequately addressed. 
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Minimization Techniques. Integration of dynamic data typically requires a least-

square based minimization to match the observed and calculated production response. 

There are several approaches to such minimization and these can be broadly classified 

into three categories: gradient-based methods, sensitivity-based methods and derivative-

free methods. The derivative-free approaches such as simulated annealing or genetic 

algorithms require numerous flow simulations and can be computationally prohibitive 

for field-scale applications.20 Gradient-based methods have been widely used for 

automatic history matching, although the convergence rates of these methods are 

typically slower than the sensitivity-based methods such as the Gauss-Newton or the 

LSQR method.13,19,23,25 An integral part of the sensitivity-based methods is the 

computation of sensitivity coefficients. These sensitivities are simply partial derivatives 

that define the change in production response because of a small change in reservoir 

parameters. 

 

Sensitivity. There are several approaches to calculating sensitivity coefficients and 

these generally fall into one of the three categories: perturbation method, direct method 

and adjoint state methods.7 Conceptually, the perturbation approach is the simplest and 

requires the fewest changes in an existing code. Sensitivities are estimated by simply 

perturbing the model parameters one at a time by a small amount and then computing the 

corresponding production response. Such an approach requires (N+1) forward 

simulations where N is the number of parameters. Obviously, this can be 

computationally prohibitive for reservoir models with many parameters. In the direct or 

sensitivity equation method,7 the flow and transport equations are differentiated to obtain 

expressions for the sensitivity coefficients. Because there is one equation for each 

parameter, this approach can require the same amount of work. A variation of this 

method, called the gradient simulator method,29 utilizes the discretized version of the 

flow equations and takes advantage of the fact that the coefficient matrix remains 

unchanged for all the parameters and needs to be decomposed only once. Thus, 

sensitivity computation for each parameter now requires a matrix-vector 
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multiplication.12,19 This method can also be computationally expensive for large number 

of parameters.Finally, the adjoint state method requires derivation and solution of adjoint 

equations that can be significantly smaller in number compared to the sensitivity 

equations. The adjoint equations are obtained by minimizing the production data misfit 

with flow equations as constraint and can be quite cumbersome for multiphase flow 

applications.30 Furthermore, the number of adjoint solutions will generally depend on the 

amount of production data and thus, length of the production history. 

 

Streamline vs. Finite-Difference. With the streamline method, the sensitivities can 

be computed analytically using a single flow simulation.13,26 Because the sensitivity 

calculations involve evaluation of 1-D integrals along streamlines, the method scales 

very well with respect to model size or the number of parameters. Although the 

streamline models have been extremely successful in bridging the gap between geologic 

modeling and flow simulation, they are currently limited in their ability to incorporate 

complex physical processes and cross-streamline mechanisms in a computationally 

efficient manner.13 Thus, an efficient and robust approach to production data integration 

using finite-difference models will be particularly useful in characterizing reservoirs 

dominated by mechanisms such as compressibility and gravity effects, transverse 

dispersion and other complex physical mechanisms.  

Since streamline models are limited in their ability to incorporate highly 

compressible flow and cross-streamline mechanisms in a rigorous and computationally 

efficient manner, most of the streamline-based history matching applications have been 

limited to two-phase water-oil flow. 

 

 

1.2 Objectives 

 

From the above section, several problems in reservoir characterization raised, including 

quantification of measure of nonlinearity for travel-time and amplitude matching, 
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enhancement of assisted history matching approach, history matching finite-difference 

models, and history matching compressible, three-phase flow. Thus the objectives of this 

research are as follows. 

 

1.2.1 Nonlinearity Quantification 

We discuss the mathematical foundation for the measure of nonlinearity and its 

implications on the production-data integration. We quantitatively investigate the extent 

of nonlinearity in travel-time inversion and amplitude inversion. We illustrate our results 

using both synthetic and field applications. 

 

1.2.2 Assisted vs. Automatic History Matching 

We enhance the streamline-based assisted history matching in two important aspects that 

can significantly improve its efficiency and effectiveness. First, we utilize streamline-

derived analytic sensitivities to determine the spatial distribution and magnitude of the 

changes needed to improve the history-match. These sensitivities are then incorporated 

into an optimization algorithm to update the reservoir model during flow simulation. 

Secondly, a “generalized travel-time inversion (GTTI)”24,26 is used for inverse modeling. 

The GTTI is robust because of its quasi-linear properties31 resulting in rapid 

convergence even if the prior model is far from the solution. We demonstrate our 

approach using two field examples with over 100 wells and more than 30 years of 

production history. 

 

1.2.3 History Matching Finite-Difference Models 

We propose a novel approach to history matching finite-difference models that combines 

the advantage of the streamline models with the versatility of finite-difference 

simulation. We first generate streamlines using the velocity field derived from a finite-

difference simulator. The streamlines are then used to compute the parameter 

sensitivities for updating the reservoir model. The updated model is then used in the 

finite-difference simulation to predict reservoir performance and the process is repeated 
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until a satisfactory history match is obtained. For history matching, we use ‘a 

generalized travel-time inversion’ that is shown to be extremely robust because of its 

quasi-linear properties and converges in only a few iterations. We illustrate the power 

and practical feasibility of the method using synthetic and field examples. 

 

1.2.4 History Matching Compressible, Three-Phase Flow 

We generalize streamline models to compressible flow using a rigorous formulation 

while retaining most its computational advantages. Our new formulation is based on 

three major elements and requires only minor modifications to existing streamline 

models. We introduce a relative density for the total fluids along the streamlines and 

incorporate a density-dependent source term in the saturation equation that accounts for 

the pressure effects during saturation calculations for compressible flow. We can history 

match three-phase flow using the rigorous streamline flow simulation. In addition, 

history matching three-phase flow using finite-difference flow simulation and 

streamline-based sensitivity is another option. The analytic sensitivities are calculated 

along the streamlines using the rigorous compressible streamline formulation. A 

synthetic example is used to illustrate the procedure, and a field-scale example is shown 

to validate this method. 
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CHAPTER II 

TRAVEL-TIME VS. AMPLITUDE MATCHING FOR 

PRODUCTION DATA INTEGRATION*   

 

The traditional approach to reconciling geologic models to production data involves an 

“amplitude matching,” that is, matching the production history directly. These include 

water-cut, tracer concentration, and pressure history at the wells. It is well known that 

such amplitude matching results in a highly nonlinear inverse problem and difficulties in 

convergence, often leading to an inadequate history match. The nonlinearity can also 

aggravate the problem of nonuniqueness and instability of the solution. Recently, 

production data integration by “travel-time matching” has shown great promise for 

practical field applications. In this approach, the observed data and model predictions are 

lined up at some reference time such as the breakthrough or “first arrival” time. Further 

extensions have included amplitude information by a “generalized travel-time” 

inversion. Although the benefits of travel-time inversion are well documented in the 

context of seismic inversion, no systematic study has been done to examine its merits for 

field-scale history matching. 

In this chapter, we quantitatively investigate the nonlinearities in the inverse 

problems related to travel time, generalized travel time, and amplitude matching during 

production data integration and their impact on the solution and its convergence. In our 

previous works, we speculated on the quasilinear nature of the travel-time inversion 

without quantifying it. Our results here show, for the first time, that the commonly used 

                                                 
*Part of this chapter is reprinted with permission from “A Comparison of Travel-Time 
and Amplitude Matching for Field-Scale Production Data Integration: Sensitivity, Non-
Linearity and Practical Implications” by Cheng, H., Datta-Gupta, A., and He, Z., 2003. 
paper SPE 84570 presented at the 2003 SPE Annual Technical Conference and 
Exhibition , Denver, CO, October 5-8. Copyright 2003 by the Society of Petroleum 
Engineers.  
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amplitude inversion can be orders of magnitude more nonlinear compared to the travel-

time inversion. We also examine the resulting implications in field-scale history 

matching. The travel-time inversion is shown to be more robust and exhibits superior 

convergence characteristics. The travel-time sensitivities are more uniform between the 

wells compared to the amplitude sensitivities that tend to be localized near the wells. 

This prevents overcorrection near the wells. 

We have demonstrated our results using a field application involving a multiwell, 

multitracer interwell tracer injection study in the McCleskey sandstone of the Ranger 

field, Texas. Starting with a prior geologic model, the traditional amplitude matching 

could not reproduce the field tracer response which was characterized by multiple peaks. 

Both travel time and generalized travel time exhibited better convergence properties and 

could match the tracer response at the wells with realistic changes to the geologic model.  

 

 

2.1 Introduction 
 
Geological models derived from static data alone often fail to reproduce the production 

history of a reservoir. Reconciling geologic models to the dynamic response of the 

reservoir is critical to building reliable reservoir models. In recent years several 

techniques have been developed for integrating production data into reservoir 

models.5,10,12,13,15,18-27 The theoretical basis of these techniques is generally rooted in the 

least-squares inversion theory that attempts to minimize the difference between the 

observed production data and the model predictions. This can be referred to as 

“amplitude” matching. The production data can be water-cut observations, tracer 

response, or pressure history at the wells. It is well known that such inverse problems are 

typically ill-posed and can result in nonunique and unstable solutions. Proper 

incorporation of static data in the form of a prior model can partially alleviate the 

problem. However, there are additional outstanding challenges that have deterred the 

routine integration of production data into reservoir models. The relationship between 

the production response and reservoir properties can be highly nonlinear. The 
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nonlinearity can result in multiple local minima in the misfit function. This can cause the 

solution to converge to a local minimum, leading to an inadequate history match. All 

these can make it difficult to obtain a meaningful estimate of the parameter field, 

particularly if the initial model is far from the solution. 

Recently, streamline-based methods have shown significant potential for 

incorporating dynamic data into high-resolution reservoir models.5,10,12,13,15,18-27 A unique 

feature of the streamline-based production data integration has been the concept of a 

“travel-time match” that is analogous to seismic tomography. Instead of matching the 

production data directly, the observed data and model predictions are first “lined up” at 

the breakthrough time. This is typically followed by a conventional amplitude match, 

whereby the difference between the observed and calculated production response is 

minimized. A major part of the production data misfit reduction occurs during the travel-

time inversion, and most of the large-scale features of heterogeneity are resolved at this 

stage.13,21,22  

The concept of travel-time inversion is not limited to streamline models. Recently, it 

has been extended for application to finite-difference models through a “generalized 

travel-time” inversion.24 The generalized travel-time inversion ensures matching of the 

entire production response rather than just the breakthrough times and at the same time 

retains most of the desirable properties of the travel-time inversion. The concept follows 

from wave-equation travel-time tomography and is very general, robust, and 

computationally efficient.26,28 The generalized travel-time inversion has been utilized to 

extend the streamline-based production data integration methods to changing field 

conditions involving rate changes and infill drilling. 

The advantages of the travel-time inversion compared to amplitude inversion mainly 

stems from its quasilinear properties. The advantages of travel-time inversion are well-

documented in the context of seismic inversion.28 However, no systematic study has 

been done to examine the benefits of travel-time inversion for production-data 

integration in terms of nonlinearity and convergence properties. Characterizing the 

degree of nonlinearity can be as important as finding the solutions to the inverse problem 
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itself. However, quantitative measures of nonlinearity for the inverse problems related to 

production data integration have not been adequately addressed. 

In this chapter, we discuss the mathematical foundation for the measure of 

nonlinearity and its implications on the production-data integration. We quantitatively 

investigate the extent of nonlinearity in travel-time inversion and amplitude inversion. In 

particular, we show that the nonlinearity in travel-time inversion is orders of magnitude 

smaller than that of the amplitude inversion. This leads to better convergence properties 

and a robust method for production-data integration. We illustrate our results using both 

synthetic and field applications. The field application is from the McCleskey sandstone, 

the Ranger field, Texas, and involves a multiwell, multitracer interwell tracer injection 

study. The results clearly demonstrate the benefits of travel-time inversion for field-scale 

production-data integration. In particular, the generalized travel-time inversion appears 

to outperform both travel-time and amplitude inversion in reconciling the geologic 

model to the field-tracer response. 

 

 

2.2 Background and Approach 
 
2.2.1 Travel-Time Inversion, Amplitude Inversion, and Generalized Travel-Time 

Inversion 

Travel-time inversion attempts to match the observed data and model predictions at 

some reference time, for example, the breakthrough time or the peak arrival time. Thus, 

we are lining up the production response along the time axis. Fig. 2.1a illustrates the 

travel-time inversion. On the other hand, the amplitude inversion attempts to match the 

production response directly. This is illustrated in Fig. 2.1b, wherein we match the 

observed tracer concentration and model predictions at the producing well. Creatively, 

we can combine the travel-time inversion and amplitude inversion into one step while 

retaining most of the desirable features of a travel-time inversion. This is the 

“generalized travel-time inversion” and follows from the work of Luo and Schuster28 in 

the context of wave-equation travel-time tomography. 
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Figure 2.1 Illustration of (a) travel-time inversion, (b) amplitude inversion, (c) generalized travel-
time inversion, and (d) best time shift. 
 

 

A generalized travel-time or travel-time shift is computed by systematically shifting 

the computed production response toward the observed data until the cross-correlation 

between the two is maximized. The approach is illustrated in Figs. 2.1c and 2.1d. It 

preserves the robustness of a travel-time inversion and improves computational 

efficiency by representing the production data misfit at a well in terms of a single travel-
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time shift. It can be shown to reduce to the more traditional least-squared misfit 

functional as we approach the solution.26 

The advantages of travel-time inversion are well documented in the geophysics 

literature. For example, Luo and Schuster28 pointed out that travel-time inversion is 

quasilinear as opposed to amplitude inversion, which can be highly nonlinear. Amplitude 

inversion typically works well when the prior model is close to the solution. This was 

the rationale behind our previously proposed two-step approach to production data 

integration: travel-time match followed by amplitude match.13,21 In this chapter, we will 

quantitatively investigate the relative merits of the different methods in terms of 

nonlinearity and convergence properties. 

 

2.2.2 Measures of Nonlinearity  

Characterizing and assessing the nonlinearity in the parameter estimation problem is 

critical to designing efficient and robust approaches to production data integration. There 

are several methods for quantifying the degree of nonlinearity in inverse problems. In 

this paper, we will use the measure proposed by Bates and Watts32 to examine the 

nonlinearities in travel-time and amplitude inversion. Grimstad and Mannseth33,34 

applied this measure to examine the relationship between nonlinearity, scale, and 

sensitivity in parameter-estimation problems. If F represents an outcome, for example, 

the tracer response, then the nonlinearity measure is defined as κ=||Fkk||/||Fk||2, where Fk 

is the vector of the first-order derivatives with respect to the parameter vector k, that is, 

the sensitivity vector, and Fkk is the vector of second-order derivatives. This measure is 

based on the geometric concept of curvature and κ represents the inverse of a radius of 

the circle that best approximates the outcome locus F in the direction of Fk at k. 

Smoother and more linear outcome will have smaller curvature (larger radius) and thus a 

smaller measure of nonlinearity, as illustrated in Fig. 2.2. 

In our application, we evaluate κ=||Fkk||/||Fk||2 for every iteration during inversion. 

In addition, for amplitude inversion, we compute the measure for different observations 

and choose the maximum. The details of the computations, including the derivative 
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calculations for travel-time, amplitude, and generalized travel-time will be discussed 

later. In the following section, we first illustrate the approach using a synthetic example. 

 

 

Fk

kk

k

F
F

r
2

1
=

κ
=

outcome planeLocus
Fk

kk

k

F
F

r
2

1
=

κ
=

outcome planeLocus

 
 

Figure 2.2 Geometric meaning of the measure of nonlinearity. 
 

 

 
 

Figure 2.3 Synthetic permeability distribution for the 9-spot case. 
 

 

2.2.3 Nonlinearity Measure in Production-Data Integration: A Simple Illustration 

This example involves integration of tracer response in a heterogeneous nine-spot 

pattern, as shown in Fig. 2.3. The mesh size is 21×21. The reference permeability 

distribution consists of a low-permeability trend toward the north and a high-

permeability trend toward the south. The tracer responses from the eight producers in the 

nine-spot pattern are shown in Fig. 2.4a. Also superimposed in Fig. 2.4a are the tracer 

30   40    50      60    70
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responses corresponding to our initial model, a homogeneous permeability field that is 

conditioned at the well locations. 
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Figure 2.4 Tracer response (a) for uniform initial permeability, (b) after peak arrival-time 
inversion, (c) after generalized travel-time inversion, and (d) after direct amplitude inversion. 
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We compare the relative performance of travel-time, amplitude, and generalized 

travel-time inversion and also the nonlinearities inherent in these approaches. Fig. 2.4b 

shows the tracer concentration matches after travel-time inversion. All the peak times are 

now in agreement, although there are some discrepancies in the details of the tracer 

responses. Fig. 2.4c shows the tracer concentration matches after generalized travel-time 

inversion. Not only the peak arrival-times but also the amplitudes are matched much 

better compared to the travel-time inversion. Fig. 2.4d shows the tracer-responses match 

after the amplitude inversion. Although the matches are quite good for most wells, they 

are unsatisfactory for Wells 2 and 7. Incidentally, these are the two wells that exhibited 

maximum discrepancy based on the initial model.  

Fig. 2.5 shows the convergence behavior for the three methods. Both travel-time and 

generalized travel-time inversion reproduce the arrival times perfectly. The generalized 

travel-time further reduces the tracer concentration misfit. In contrast, direct amplitude 

match shows high arrival-time misfit and is unable to reproduce the tracer response at 

two wells. Fig. 2.6a is the estimated permeability field after travel-time match. When 

comparing it to Fig. 2.3, we can identify the low-permeability areas and some of the 

moderate-to-high-permeability areas, although the high-permeability area is not well 

reproduced. Fig. 2.6b shows the permeability field derived by generalized travel-time 

inversion. It reproduces not only the low-permeability area but also the high-

permeability regions. Fig. 2.6c shows the estimated permeability field after the 

amplitude inversion. Clearly, the results show signs of instability because of the high 

nonlinearity as discussed in the next section. 
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Figure 2.5 Travel-time and tracer concentration misfit for (a) travel-time, (b) generalized travel-
time, and (c) amplitude inversion. 
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Figure 2.6 Estimated permeability distribution for the 9-spot case (a) after travel-time inversion, 
(b) after generalized travel-time inversion, and (c) after amplitude inversion. 

 

 

 

Fig. 2.7 shows the measure of nonlinearity for the three approaches. We can see that 

both the travel-time and the generalized travel-time exhibit the same degrees of 

nonlinearity. In contrast, the amplitude inversion is three to four orders of magnitude 

more nonlinear than the travel-time inversion. This is partly the reason for the failure of 

the amplitude inversion when the initial model is far from the solution. The generalized 

travel-time inversion appears to retain most of the desirable features of a travel-time 

inversion while obtaining an adequate amplitude match. 
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Figure 2.7 Measure of nonlinearity for (a) travel-time inversion, (b) generalized travel-time 
inversion, and (c) amplitude inversion. 
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2.3 Mathematical Formulation: Sensitivity Computations and Measures of 

Nonlinearity 
 
We now discuss the mathematical details related to sensitivity computation and measure 

of nonlinearity for travel-time, generalized travel-time, and amplitude inversion. 

Although the approach is generally applicable, we will use a streamline simulator here 

because of the advantages in sensitivity computations. The sensitivities quantify change 

in production response because of a small change in reservoir properties. They are an 

integral part of most inverse modeling methods. We also need the sensitivities to 

quantify nonlinearities in the various inverse methods examined in this study. Several 

approaches can be used to compute sensitivity coefficients of model parameters. Most of 

these methods fall into one of the three categories: perturbation method, direct method, 

and adjoint state method7,30,35 and can be computationally demanding, particularly for 

large-scale field applications. However, for streamline models, it is possible to 

analytically derive a relationship between perturbations in reservoir properties, such as 

permeability or porosity, and changes in observations such as water-cut and tracer 

response. Streamline-based sensitivity computation is very fast and involves quantities 

computed by a single streamline simulation. Hence, we will limit our discussion to 

streamline models only. 

We use the theory of Bates and Watts32 to measure the nonlinearity in production-

data integration. Bates and Watts32 separate the nonlinearity measures into parameter-

effect curvature and intrinsic curvature; thus, they decompose the second-order 

derivative Fkk into one component parallel to the tangent plane defined by Fk for all 

directions and another component normal to that plane. Here, we do not separate the 

intrinsic curvature and parameter effect curvature; neither do we consider the direction 

in the parameter space, because it is not practical to do so for our problem. However, the 

theory we applied is essentially the same as that of Bates and Watts.32 
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2.3.1 Sensitivity and Nonlinearity of Travel-Time 

Streamline methods decouple flow and transport by a coordinate transformation from the 

physical space to the time-of-flight along streamlines36. The time-of-flight is defined as 

 ( )s x dr,
ψ

τ = ∫   (2.1) 

where the integral is along the streamline trajectory, Ψ, and s is the slowness defined as 

the reciprocal of the interstitial velocity, 
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The first-order derivative of slowness with respect to permeability is 
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and the second-order derivative of slowness is 
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If we assume that the streamlines do not shift because of small perturbations in 

reservoir properties, we can then relate the change in travel time δτ  to the change in 

slowness by 
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The travel-time sensitivity along a single streamline at a producer with respect to 

permeability for a gridblock at location x is given by integrating Eq. 2.3 from the inlet to 

the outlet of the streamline Ψ  within the gridblock: 

 ∫ 
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The overall travel-time sensitivity is then obtained by summing the sensitivities over all 

streamlines contributing to the arrival time of a particular concentration (for example, 

the peak concentration): 
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The second-order derivative of travel time along a single streamline is obtained by 

integrating Eq. 2.4, 
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and then integrating over all streamlines contributing to a producer, 
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The components of the tangent vector Fk and acceleration vector Fkk can now be 

obtained from Eqs. 2.7 and 2.9: 
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The 2-norms are used to calculate the vector norms, 
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Now we can calculate the nonlinearity measure of travel-time inversion κtt according to 

the theory of Bates and Watts32 by 
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2.3.2 Sensitivity and Nonlinearity of Amplitude 

Tracer transport can be described by the following convection-diffusion equation, 

 
( , ) ( ) ( , ) ( , )C x t D x C x t u C x ttφ  

  
∂ =∇⋅ ⋅∇ − ⋅∇∂ .  (2.15) 

Ignoring the dispersion term, Eq. 2.15 can be rewritten as  

 
( , ) ( , ) 0C x t u C x ttφ ∂ + ⋅∇ =∂ .  (2.16) 

Applying a transformation to the time-of-flight coordinate, the tracer transport equation 

along a streamline can be expressed as36 

 
( , ) ( , ) 0C t C t
t
τ τ

τ
∂ ∂+ =∂ ∂ .  (2.17) 

For a unit-impulse concentration at (τ, t) = (0,0), the solution is36 

 ( ))(),( xttxC τδ −= ,  (2.18) 

where δ is the Dirac-delta function. If the input is C0, then 

 )(),( 0 τ−= tCtxC .  (2.19) 

Summing the contributions of all streamlines reaching a producer, we get the tracer 

response at a producer as 

 ∫ −=
ψ

ψτ
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dtCtC )()( 0 .  (2.20) 

From Eq. 2.19, tracer response at the producer along a single streamline is  

 
0( ) ( )C t C t s x dr

Ψ

 
= − 

 
∫

,   (2.21) 

where we have used the definition of time of flight from Eq. 2.1.  

Now, consider a small perturbation in reservoir properties, say permeability. The 

resulting changes in slowness and concentrations can be written as 

 
0( ) ( ) ( )s x s x s xδ= + ;  (2.22) 

 
0( ) ( ) ( )C t C t C tδ= + ,  (2.23) 
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where s0 and C0 are initial slowness distribution in the reservoir and the associated tracer 

response, respectively. Applying Eqs. 2.21 and 2.22, the change in concentration 

response can be expressed as 

 0
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( ) ( ) ( )

         ( ) ( ) ( ) )

C t C t C t

C t s x s x dr C t s x dr
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δ
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.  (2.24) 

Using a Taylor series expansion and assuming 
0Ψ=Ψ (stationary streamlines), we get 
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Hence the perturbation in C(t) and s(x) are related by 
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The tracer-concentration sensitivity along a single streamline Ψ is then 
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The second-order derivative of the tracer concentration with respect to permeability 

is 
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As before, we need to sum over all streamlines reaching a producer to get the final first-

order and second-order derivatives of the concentration response at the producer. 

Now, we need to evaluate the tangent vector Fk, the acceleration vector Fkk, and 

measure of nonlinearity κ at different observation times. The vectors and norms are 

expressed as follows: 
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By definition, the measure of nonlinearity at observation time ti is  

 2)()()( ikikki ttt FF=κ  (2.33) 

The final measure of nonlinearity for amplitude inversion κam is given by the maximum 

over all observed data, 

 1 2max ( ), ( ), , ( )oam nt t tκ κ κ κ 
 = L

.  (2.34) 
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2.3.3 Sensitivity and Nonlinearity of Generalized Travel Time  

In generalized travel-time inversion, we define the misfit between the calculated and 

observed tracer concentrations in terms of the following correlation function26,28: 

 
∫

+
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A
txCdtxf ),(),(),( ττ

,  (2.35) 

where A is the maximum amplitude of tracer concentration and τ is the shift time 

between calculated and observed tracer concentrations. We seek a τ that shifts the 

calculated tracer response so that it best matches the observed tracer response.  

The criterion for the “best” match is defined as the travel-time residual ∆τ  that 

maximizes the correlation function above, that is, 

 ]},[|),(max{),( TTxfxf −∈=∆ τττ ,  (2.36) 

where T is the estimated maximum travel-time difference between the observed and 

calculated tracer responses. Therefore, the derivative of ),( τxf  with respect to τ  should 

be zero at ∆τ unless the maximum is at an endpoint T or –T, 
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Note that 1/ =∂∂ τt  in this derivation. Eq. 2.37 is the function that is used to compute the 

sensitivity of the generalized travel time.  

Using Eq. 2.37 and the rule for the derivative of an implicit function, we get 
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Taking the derivatives of 
τ∆f&  with respect to k(x) and ∆τ, we have 
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and  
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In the previous derivation, we have applied the relationship 1=
∂
∂

=
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Substitution of Eqs. 2.39 through 2.41 into Eq. 2.38 gives  
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The second-order derivative of generalized travel-time with respect to permeability is 

then 
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where 2

2

k∂

τ∂  is calculated by Eq. 2.8. 

Finally, to calculate measures of nonlinearity, the components of the tangent vector 

Fk and acceleration vector Fkk are obtained from Eqs. 2.42 and 2.43 as follows: 
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The 2-norms of the vectors are calculated by 
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The measure of nonlinearity for the generalized travel-time inversion is evaluated using 

Eqs. 2.46 and 2.47: 

 2
kkkgt FF=κ . (2.48) 

 

2.3.4 Sensitivity Computations: A ¼ Five-Spot Example 

We illustrate sensitivity computations for the three methods using the tracer response in 

a heterogeneous quarter five-spot pattern (Fig. 2.8). Fig. 2.9a is the sensitivity 

distribution for the peak travel-time, and Fig. 2.9b is the sensitivity distribution for the 

generalized travel-time. Figs. 2.10a through 10c show the sensitivity distribution for the 

amplitude before, at, and after peak time, respectively. From Figs. 2.9 and 2.10, we can 

see that the sensitivity distribution between the wells for travel-time inversion is more 

uniform than that for amplitude inversion. Also, the magnitude of the amplitude 

sensitivity is much smaller than that of the travel-time sensitivity. This smaller 

sensitivity contributes to the high nonlinearity of amplitude inversion, because the 
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nonlinearity is evaluated by ||Fkk||/||Fk||2, where Fk is the sensitivity vector. Such 

relationship between nonlinearity and sensitivity for inverse modeling has also been 

observed by Grimstad and Mannseth.33,34 
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Figure 2.8 Tracer response for a ¼ five-spot heterogeneous case. 
 
 
 
 

            
                                         a                                                           b 
 

Figure 2.9 Sensitivity for (a) travel-time and (b) generalized travel-time inversion. 
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                   a                                                b                                                    c  
 
Figure 2.10 Sensitivity distribution for amplitude inversion (a) before peak time, (b) at peak time, 
and (c) after peak time. 
 

 
 

2.4 Data Inversion 

 

Our goal is to reconcile high-resolution geologic models to field-production history, for 

example tracer response. This typically involves the solution of an underdetermined 

inverse problem. The mathematical formulation behind such streamline-based inverse 

problems has been discussed elsewhere.13,21,22 Briefly, in our approach we start with a 

prior static model that already incorporates geologic, well-log, and seismic data. We then 

minimize a penalized misfit function consisting of the following three terms: 

 RLRRSd δβδβδδ 21 ++− .  (2.49) 

In Eq. 2.49, δd is the vector of data residuals at the wells, while S is the sensitivity 

matrix containing the sensitivities of the observed data with respect to the reservoir 

parameters. Also, δR corresponds to the change in the reservoir property, and L is a 

second-spatial-difference operator. The first term ensures that the difference between the 

observed and calculated production response is minimized. The second term, called a 

norm constraint, penalizes deviations from the initial model. This helps preserve 

geologic realism because our initial or prior model already incorporates available 

geologic and static information related to the reservoir. Finally, the third term, a 

roughness penalty, simply recognizes the fact that production data are an integrated 
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response and are thus best suited to resolve large-scale structures rather than small-scale 

property variations. 

The minimum in Eq. 2.49 can be obtained by an iterative least-squares solution to the 

augmented linear system 
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The weights β1 and β2 determine the relative strengths of the prior model and the 

roughness term. The selection of these weights can be somewhat subjective, although 

there are guidelines in the literature.37 In general, the inversion results will be sensitive 

to the choice of these weights. 

In Eq. 2.50, δd is replaced by δτ for travel-time inversion, δC for amplitude 

inversion, and δ∆τ for generalized travel-time inversion. The sensitivity matrix S is also 

replaced by the corresponding expression. 

Note that one of the major advantages of travel-time and the generalized travel-time 

approach is that the size of the sensitivity matrix S is dependent only on the number of 

wells regardless of the number of data points. This leads to considerable savings in 

computation time. We use an iterative sparse matrix solver, LSQR, for solving this 

augmented linear system efficiently.38 The LSQR algorithm is well suited for highly ill-

conditioned systems and has been widely used for large-scale tomographic problems in 

seismology. 

 

 

2.5 Applications 

 

2.5.1 A Two-Phase Example With Infill Drilling 

So far, we have focused on single-phase tracer flow. We now consider a two-phase 

waterflood example with changing streamlines.26 The flood pattern is a nine-spot. We 

start with one central injector and four side producers. Four corner-producers are 
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introduced at 300 days. Pressure and streamlines are updated every 100 days. Fig. 2.11a 

shows the reference permeability and the well pattern. The reference permeability is the 

same as the one used for the tracer example. The water-cut responses from the eight 

producers are shown in Fig. 2.12a. Also superimposed in Fig. 2.12a are the water-cut 

responses from the initial model, a homogeneous permeability field conditioned at the 

well locations. 

 

 

 
a 
 

   
                                     b                                      c                                           d  
 
Figure 2.11 A two-phase example with infill drilling: (a) reference permeability model, triangle for 
infill wells in the mid-term of production, (b) estimated permeability by travel-time inversion, (c) 
estimated permeability by generalized travel-time inversion, and (d) estimated permeability by 
amplitude inversion. 
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Figure 2.12 Water-cut response (a) for uniform initial permeability, (b) after peak arrival-time 
inversion, (c) after generalized travel-time inversion, and (d) after direct amplitude inversion. 
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Figs. 2.12b through 2.12d show the water-cut match by travel-time inversion, 

generalized travel-time inversion, and amplitude inversion, respectively. Clearly, the 

match by generalized travel-time inversion is the best, followed by travel-time inversion. 

Amplitude match did not work for Well 8.  

Fig. 2.11b is the estimated permeability field after travel-time match. On comparing 

with Fig. 2.11a, we can see that the low-permeability areas are reproduced well; 

however, the high-permeability contrast to the south is not detected properly. Fig. 2.11c 

shows the permeability field derived by generalized travel-time inversion. It reproduces 

not only the low-permeability areas but also the high-permeability regions. Fig. 2.11d 

shows the estimated permeability field after the amplitude inversion. Clearly, the results 

show signs of instability, as discussed before. 

Fig. 2.13 shows the measure of nonlinearity for the three approaches. We can see 

that both the travel-time and the generalized travel-time have a similar magnitude of 

nonlinearity. In contrast, the amplitude inversion is three to four orders of magnitude 

more nonlinear than the travel-time inversion. This is partly the reason for the failure of 

the amplitude inversion. Our experience with amplitude inversion indicates that the 

results tend to be more sensitive to the choice of inversion parameters ( 21, ββ  in Eq. 

2.49). For homogeneous or smooth starting models, we can obtain a reasonable solution 

by careful choice of inversion parameters. But for models with significant heterogeneity, 

especially for field applications, direct amplitude inversion often fails.  
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Figure 2.13 Measure of nonlinearity for the two-phase, infill example: (a) travel-time inversion, 
(b) generalized travel-time inversion, and (c) amplitude inversion. 
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2.5.2 Field Application: The Ranger Field, Texas 

A multiwell, mulitracer, interwell tracer injection study was carried out in the 

McCleskey sandstone of the Ranger field, Texas. The first description of this data set 

was published by Lichtenberger.40 The dataset was also described later by Allison et al.41 

The 320-acre area of interest includes 13 producers and four injectors, injecting seven 

different tracers. The seven tracers injected included five conservative tracers consisting 

of four decaying (Tritium, Cobalt-57, Cobalt-58, and Cobalt-60), one chemical (sodium 

thiocyanate, NaSCN), and two partitioning tracers (tertiary butyl alcohol, TBA, and 

isopropyl alcohol, IPA).  

All tracers were injected in small slugs on the same day except for TBA, which was 

injected in a small slug 20 days later. Tracer sampling continued for 826 days after 

injection of the first set of tracers. The tracer injection pattern is shown in Fig. 2.14. 

Detailed information for injection locations and the amounts of each tracer injected can 

be found elsewhere.41,42  
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Figure 2.14 Tracer injection pattern: the Ranger field case. 
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Figure 2.15 NaSCN tracer response for the initial permeability field at Well 40, Well 37, and 
Well 39. 
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We can use the conservative tracers (Tritium and NaSCN) to obtain permeability 

distribution in the study area. However, the Tritium response may be affected by a 

chromatographic delay because of tritium exchange with immobile hydrogen.40 We 

selected NaSCN as the conservative tracer for permeability inversion. Totally, 5,655 lbs 

of NaSCN was injected into Well 38 and four wells (Wells 19, 37, 39, and 40) showed 

tracer response as indicated in Fig. 2.14. The observed tracer responses in Wells 37, 39, 

and 40 are shown in Fig. 2.15, along with the calculated response from the initial 

permeability model. The data from Well 19 was not used because of its low production 

rate (<20 B/D).  

 

Choice of an Initial Model. During inverse modeling, a proper selection of the initial 

model can be critical to ensure a plausible solution. Such an initial model should 

incorporate all available prior information. For our simulation studies, we use a 31×45×6 

grid which corresponds to 100×100-foot gridblocks areally, and 2 to 4-foot gridblocks 

vertically. A total of 141 core samples were available for analysis. We did not have well- 

and depth-specific data, but rather a summary of the core data for all wells. The core 

data indicated a fair degree of permeability heterogeneity in the reservoir but only slight 

variation in porosity. For the initial model, we used a uniform value of porosity and a 

heterogeneous permeability field generated using Sequential Gaussian Simulation1 based 

on well data (Fig. 2.16). We assume that yx kk = , xz kk 1.0=  and only xk is altered during 

inversion. 
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Figure 2.16 Initial permeability distribution for the Ranger field case. 

 

 

Estimating Permeability. We matched the NaSCN data to obtain the permeability 

distribution ( xk ) in the study area using the three different approaches: travel-time 

inversion, generalized travel-time inversion, and amplitude inversion. Fig. 2.15 shows 

the NaSCN responses from a streamline simulator using the initial permeability field. 

Also, superimposed are the observed NaSCN concentrations. Clearly, there is a large 

difference between the calculated and observed NaSCN response. Fig. 2.17 shows the 

NaSCN concentration match after travel-time inversion. The peak arrival times are now 

in agreement with the observed data. The tracer concentration amplitudes show 

improvement but the overall match is still not satisfactory. Fig. 2.18 is the NaSCN 

concentration match after the generalized travel-time inversion. From Fig. 2.18, we can 

see that not only are the peak-arrival times well matched, but the calculated 

concentration amplitudes are also in close agreement with the observed data. This shows 

that generalized travel-time inversion is an effective one-step inversion process. Fig. 

2.19 displays the NaSCN concentration match after direct amplitude inversion. Clearly, 

the calculated responses have changed very little from the initial responses. The results 

indicate that amplitude inversion may not be as effective as the travel-time inversion, 

particularly when the initial model is far from the solution. Generalized travel-time 

inversion stands out as the best among the three inversion methods.  
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Figure 2.17 NaSCN tracer response after travel-time inversion at Well 40, Well 37, and Well 39. 
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Figure 2.18 NaSCN tracer response after generalized travel-time inversion at Well 40, Well 37, 
and Well 39. 
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Figure 2.19 NaSCN tracer response after direct amplitude inversion at Well 40, Well 37, and 
Well 39. 
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Fig. 2.20 summarizes nonlinearity for the three inversion methods. The measure of 

nonlinearity for the field example is given by the maximum amongst the three producers. 

Amplitude inversion displays the highest measure of nonlinearity, approximately 200 to 

250, while travel-time inversion is quasilinear, with a nonlinearity of approximately 0.2 

to 0.4. The generalized travel-time inversion is between these two cases in terms of 

nonlinearity measure. However, it is one order of magnitude larger than the travel-time 

inversion, while two orders of magnitude smaller than that of the amplitude inversion.  

Generalized travel-time inversion keeps most of the favorable features of travel-time 

inversion and has a much better tracer-concentration amplitude match than travel-time 

inversion. The severe nonlinearity of the amplitude inversion is partly responsible for its 

poor performance for the field case. 

Fig. 2.21 shows the permeability fields derived by travel-time inversion and 

generalized travel-time inversion. Fig. 2.22 shows the permeability change after travel-

time inversion and generalized travel-time inversion. In Fig. 2.23, we show that there is 

a general agreement between our final model and the permeability distribution reported 

by Allison et al.41 by a manual history matching of the tracer data. The most significant 

change by Allison et al. was introduction of a high-permeability streak in the original 

permeability model between Wells 38 and 40. Our results from generalized travel-time 

inversion also indicate the presence of higher permeability between Wells 38 and 40 in 

the corresponding layer (Fig. 2.23) However, our results did not require the additional 

changes near the boundary obtained by Allison et al. 
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Figure 2.20 Measure of nonlinearity for travel-time inversion, generalized travel-time inversion, 
and amplitude inversion. 
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a                                                                                  b 

 
Figure 2.21 Derived permeability field after NaSCN concentration match by (a)generalized 
travel-time inversion and (b) travel-time inversion. 
 
 
 
 

 
a                                                                                  b 

 
Figure 2.22 Permeability change after (a) generalized travel-time match and (b) travel-time 
match. 
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                                 a                                                                  b 
 
Figure 2.23 (a) Permeability multipliers from the manual history match in Layer 3, by Allison et 
al., and (b) permeability change from generalized travel-time inversion in the corresponding 
layer. 
 

 

 

2.6 Chapter Summary 

 
We have presented three approaches to production-data integration and examined their 

relative merits using quantitative measures of nonlinearity. These are travel-time, 

generalized travel-time, and the commonly used amplitude inversion. The travel-time 

inversion of production data is robust and computationally efficient. Unlike conventional 

amplitude matching that can be highly nonlinear, the travel-time inversion has 

quasilinear properties. This makes the method particularly attractive for field-scale 

applications where the prior geologic model might be far from the solution. The 

generalized travel-time inversion appears to retain most of the desirable features of the 

travel-time inversion and also accomplishes the amplitude match. Some specific findings 

from this study can be summarized as follows: 

1. We have quantitatively investigated the nonlinearities associated with travel-time 
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and amplitude inversion for production data integration. The nonlinearity is 

expressed in terms of a simple and intuitive geometric measure of curvature as 

proposed by Bates and Watts16 and later used by Grimstad and Mannseth.17 

2. The nonlinearity in travel-time inversion is found to be orders of magnitude smaller 

than the conventional amplitude inversion. As a result, the travel-time inversion has 

better convergence properties and is less likely to be trapped in local minimum. 

3. Travel-time sensitivity is more uniform between the wells. In contrast, the amplitude 

sensitivity can be localized near the wells. The higher magnitude of the travel-time 

sensitivity also contributes to its quasilinearity and improved convergence properties. 

4. The generalized travel-time inversion effectively combines travel time and amplitude 

inversion while retaining most of the desirable properties of the travel-time 

inversion. For the field example studied here, the generalized travel-time inversion 

outperformed both travel-time and amplitude inversion.  
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CHAPTER III 

ASSISTED VS. AUTOMATIC HISTORY MATCHING USING 

STREAMLINE MODELS*  

 

Reconciling high-resolution geologic models to production history is a very time-

consuming aspect in reservoir modeling. Current practice still involves a tedious history-

matching process that is highly subjective and often employs ad-hoc property 

multipliers. Recently streamline models have shown significant promise in improving 

the history matching process. In particular, the streamline-based ‘assisted history-

matching’ utilizes the streamline trajectories to identify and limit changes only to the 

regions contributing to the well production history. It is now a well-established 

procedure and has been applied successfully to numerous field cases.  

In this chapter, we enhance the streamline-based assisted history matching in two 

important aspects that can significantly improve its efficiency and effectiveness. First, 

we utilize streamline-derived analytic sensitivities to determine the spatial distribution 

and magnitude of the changes needed to improve the history match. Second, we use a 

‘generalized travel time inversion (GTTI)’ for model updating via an iterative 

minimization procedure. Using this approach, we can account for the full coupling of the 

streamlines rather than changing individual or bundles of streamlines at a time. The 

approach is more akin to automatic history matching; however, by intervening at every 

step in the iterative model updating, we can retain control over the process as in assisted 

history matching. Our approach leads to significant savings in time and manpower 

during field-scale history matching. 

                                                 
*Part of this chapter is reprinted with permission from “Field Experiences With Assisted 
and Automatic History Matching Using Streamline Models” by Cheng, H., Wen, X.-H., 
Datta-Gupta, A., and Milliken, W.J., 2004. paper SPE 89857 presented at the 2004 SPE 
Annual Technical Conference and Exhibition, Houston, September 26–29. Copyright 
2004 by the Society of Petroleum Engineers.  
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We demonstrate the power of our method using two field examples with model sizes 

ranging from 105 to 106 grid blocks and with over one hundred wells. The reservoir 

models include faults, aquifer support and several horizontal/high angle wells. History 

matching was performed using both assisted history matching and the GTTI. Whereas 

the general trends in permeability changes were similar for both the methods, the GTTI 

seemed to significantly improve the water cut history matching on a well-by-well basis 

within a few iterations. Our experience indicates that the GTTI can also be used very 

effectively to improve the quality of history match derived from the assisted history 

matching. The changes to the reservoir model from GTTI were found reasonable with no 

artificial discontinuities or apparent loss of geologic realism. 

 
 

3.1 Introduction 

 

Traditionally, history matching is performed manually on the upscaled reservoir model 

and frequently uses local or regional multipliers to reservoir properties. By adjusting the 

regions and multipliers, a history match could be achieved using mostly trial and error. 

The trial-and-error involves considerable subjective judgment and personal bias and 

most importantly may create artificial discontinuities inside the reservoir, potentially 

destroying the correlation built into the initial geologic model. 

A more systematic approach to history matching, called Assisted History Matching 

(AHM) uses streamlines to build upon and improve traditional history matching 

techniques.4-6 The AHM is also a manual approach. However, changes to the model can 

be limited to the streamlines contributing to the production history of the well of interest 

and the amount of changes can be computed using some simple semi-analytical methods. 

The approach is a significant improvement over the traditional manual history matching 

but still could be time consuming, particularly when there are a large number of wells. 

This is complicated by the coupled nature of the flow equations which makes matching 
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individual wells difficult without impacting other wells also. Finally, if we limit changes 

along streamlines only, it can introduce ‘tube like’ artifacts into the geologic model. 

Geostatistically-based automatic history matching (production data integration) has 

been an active area of research and a number of techniques have been reported in the 

literature in the past decade. The main goal here is to match well production data by 

modifying the initial model in such a way that it preserves the underlying geostatistical 

features built into the initial model. Yeh7 and Wen et al.8 provided a review of these 

inverse techniques. Both finite difference and streamline fluid flow modeling can be 

used in automated history matching.9 Typically, an inverse technique is needed for 

production data integration, and requires multiple solutions of the flow equations within 

a nonlinear optimization procedure.10-12 And this brings a hurdle to the practical 

applications. Streamline based inverse techniques have shown great potential in this 

regard13-18 and they only require a single solution of the flow equations per minimization 

iteration.13-14 The sensitivities of production data with respect to reservoir properties can 

be computed analytically using a single forward simulation. This renders substantial 

time-saving. 

Much of the ideas of AHM are actually embedded in the streamline-based sensitivity 

computations. The sensitivities define the relationship between reservoir properties and 

production response. Specifically, they quantify how, for example, the water-cut history 

at a well will change if we change permeability at any location in the reservoir model. 

Using the sensitivities, we can significantly speed-up the assisted history matching 

process and compute the amount of changes for reservoir properties through 

optimization. Instead of matching wells individually, we can handle the coupled problem 

directly and update the geologic model to match all the wells simultaneously. The 

approach is more akin to automatic history matching; however, by intervening at every 

step in the iterative model updating, we can retain control over the process as in assisted 

history matching. 

In this chapter, we enhance the streamline-based assisted history matching in two 

important aspects that can significantly improve its efficiency and effectiveness. First, 
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we utilize streamline-derived analytic sensitivities to determine the spatial distribution 

and magnitude of the changes needed to improve the history-match. These sensitivities 

are then incorporated into an optimization algorithm to update the reservoir model 

during flow simulation. Secondly, a “generalized travel-time inversion (GTTI)”24,26 is 

used for inverse modeling. The GTTI is robust because of its quasi-linear properties 

resulting in rapid convergence even if the prior model is far from the solution. We 

demonstrate our approach using two field examples with over 100 wells and more than 

30 years of production history.  

 
 
3.2 Background and Illustrative Examples 

 

3.2.1 Assisted History Matching 

Assisted history matching utilizes unique information-content in streamlines in terms of 

injector-producer relationship to facilitate history matching.4-5 The main steps in assisted 

history matching are: (i) Flow simulation to generate production response. Either 

streamline or finite-difference simulators can be used for this purpose; (ii) Streamline 

generation based on the finite-difference velocity field. This step is not necessary for 

streamline simulators as streamlines are already available; (iii) Use of streamlines to 

assign grid blocks or regions to each producer; (iv) Computing the mismatch between 

the observed and computed production response at each well using streamlines; (v) 

Updating grid block or region properties manually to improve the history match on a 

well-by-well basis. The use of streamlines leads to simple and unambiguous changes in 

the model. Also, the changes are minimized to preserve the geology. An outline of the 

procedure of assisted history matching is given in a flow chart in Fig. 3.1. 
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Figure 3.1 Flowchart for assisted history matching. 
 

 

 
Illustration of the Procedure. Fig. 3.2 shows a 2D reference permeability field 

(50×50 grid with cell size 10 feet × 10 feet) generated using Sequential Gaussian 

Simulation1 and the corresponding fractional-flow data at four producing wells in 5-spot 

pattern. The variogram of the reference field is spherical with range of 100 feet and 20 

feet in the direction of 45 degree and 135 degree, respectively. We generated an initial 

model using the same geostatistical method with the same histogram and variogram as 

for the reference field. The initial permeability and the water cut responses from the four 

corner wells are shown in Fig. 3.3. Note that this initial model visually is quite close to 

the reference model. The flow responses, however, are quite different from the reference 

model. Fig. 3.4 shows the streamlines for the initial model. Now in order to match the 

reference water cut, streamlines are used to help assigning cells to wells and grouping 

the cells. From streamlines, we know which cells to change to history match a particular 
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well. Besides, we know which streamlines contribute to early breakthrough (A), middle 

stage (B), and later stage (C) water cut. Streamline helps grouping cells that need to be 

modified. We can change cells covered by streamlines marked ‘A’ to match early 

breakthrough, and change those associated with ‘B’ and ‘C’ to match middle and later 

stage water cut. 

 

 

1

2

3

4

2000 2002 2004 2006

Time, Year

W
el

l N
o.

 
 

Figure 3.2 Reference permeability field and water cut responses. 
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Figure 3.3 Initial permeability field and water cut responses. 
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Figure 3.4 Illustration of streamline-based assisted history matching water-cut response. 
 

 

The assisted history matching can accelerate the history matching process 

significantly. However, the approach is still more or less manual and requires some trial 

and error. Individual well matching can sometimes deteriorate matches in other wells 

because of the coupled nature of the flow field. Finally, limiting the changes to 

streamlines can introduce artifacts in the geologic model unless the changes are kept to a 

minimum. Recently, a number of approaches have been reported to improve the 

efficiency of the AHM method. These include the use of tracer-like flow assumption to 

compute the modifications of reservoir properties within the well regions delineated by 

streamlines that can match multiple phase production history,17,43 and the integration of 

streamline information at different levels with geostatistics.16,44 These approaches, 

however, do not directly use the sensitivity coefficients derived from the streamline 
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simulation to quantify the changes. Therefore, the improvement in efficiency is marginal 

at best. 

 

3.2.2 Streamline-Based Automatic History Matching 

This approach utilizes streamline-derived sensitivities to update geologic models.9,13,14,26 

The major steps are: (i) Streamline-based flow simulation to compute production 

response at the wells; (ii) Quantification of the mismatch between observed and 

computed production response; (iii) Streamline-based analytic sensitivity computation of 

the production response with respect to reservoir parameters; (iv) Updating reservoir 

properties to match the production history via inverse modeling using streamline-derived 

sensitivities. An outline of the procedure of streamline-based automatic history matching 

is given in a flow chart in Fig. 3.5.  
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Figure 3.5 Flowchart for automatic history matching. 
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Illustration of the Procedure. To illustrate the procedure, we use the same synthetic 

example used for assisted history matching. We have used a commercial 3D streamline 

simulator, FrontSim51 (Version 2003a), for modeling two-phase flow in the reservoir. 

Production data misfit is represented by a ‘generalized travel time’ at each producing 

well. A “generalized travel time” or “travel-time shift” is computed by systematically 

shifting the computed production response towards the observed data until the cross-

correlation between the two curves is maximized.24,26 This is illustrated in Fig. 3.6 and is 

discussed further later. The sensitivities calculated for automatic history matching are 

shown in Fig. 3.7. These sensitivities are calculated along the streamlines analytically 

using time of flight and fractional flow information. Unlike assisted history matching, 

there is no need for manual intervention to look at the streamlines to determine where to 

change the models. Also, with the sensitivity information, we can apply different 

modifications determined from optimization to different locations. Figs. 3.7d and 7e 

show that sensitivities are calculated along the streamlines. The largest sensitivities in 

magnitude (dark-blue region) correspond to early breakthrough, and the medium (light-

blue to green) and small (yellow) sensitivities correspond to middle stage and later stage 

water cut. Also the whole region covered by the sensitivities will be changed 

systematically and automatically by generalized travel-time inversion. Fig. 3.8 shows 

that the water-cut responses are in good agreement with the reference, and the updated 

permeability model maintains the general features of the initial model. As desired, the 

permeability was increased around Well 2 while decreased around Well 3 to match the 

history (Fig. 3.9, also refer to Fig. 3.3 for the initial model). The decrease of objective 

function (shift time) with the iteration number, as well as the associated water-cut misfit, 

is shown in Fig. 3.10. The shift time objective function reduces from 670 days to 20 

days in 20 iterations, and it reduces quickly in the first few iterations.  
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Figure 3.6 Illustration of generalized travel time misfit, correlation function, and generalized 
travel time sensitivity calculation. 
 

 

 
a                                    b                                        c   

 

 
                                                 d                                                    e 
 
Figure 3.7 Generalized travel time sensitivities for (a) Well 1, (b) Well 2, (c) Well 3, (d) Well 4, 
and (e) streamlines associated with Well 4. 
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Figure 3.8 Updated permeability field and water cut matches. 
  
 
 

 
 

Figure 3.9 Permeability changes. 
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Figure 3.10 Misfit reduction. 
 

 

Multiple Realizations. An important advantage of the streamline-based inversion is 

its computational efficiency. This makes dynamic conditioning of multimillion-cell 

models feasible using the streamline approach. In addition, we are able to generate 

multiple realizations to assess uncertainty in performance forecasting, for example, using 

the randomized maximum likelihood method.45 Using multiple realizations and an 

ensemble average map, we can also reveal large-scale spatial trends common to all 

realizations. To illustrate this, we generated 100 initial models and history matched all of 

them to the reference production data in 4 wells using the streamline-based inversion. 

Initial realizations are generated by unconditional Gaussian simulation with the same 

histogram and variogram as for the reference field.  

The water-cut responses from all initial and updated realizations are shown in Figs. 

3.11 and 3.12. Clearly, after inversion, the calculated water-cut responses all moved 

much closer to the reference responses (Fig. 3.12). Note that in the randomized 

maximum likelihood method we match “realizations” of the observed production history 

rather than the history itself; hence, we see the spread in the water-cut responses in the 

updated models. For 100 realizations, it took only 150 minutes in a PC (Intel Xeon 3.06 

GHz processor). The mean and variance of the 100 realizations is shown in Fig. 3.13. 



 

 

62

The final ensemble mean field captured most of the low permeability region and some of 

the high permeability region (Fig. 3.13a), while the variance field (Fig. 3.13b) displays 

the uncertainty among the updated models. 

 

 

 
 

Figure 3.11 Water cuts of four producers from 100 initial realizations together with the results 
from the reference field (blue squares). 
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Figure 3.12 Water cuts of four producers from 100 updated realizations together with the results 
from the reference field (blue squares). 

 
 
 

 
                                  a                                                                     b 
 
Figure 3.13 (a) Ensemble mean of the 100 final estimated permeability fields and (b) uncertainty 
in terms of the variance. 
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3.3 Streamline-Based Automatic History Matching: Mathematical Formulation 

 
Several previous publications describe streamline-based sensitivity computations and 

generalized travel time inversion.9,13,14,18,26 In this section, we briefly outline the 

mathematical background behind the approach. 

 

3.3.1 Forward Modeling: Streamline Simulation 

Streamline simulators approximate 3D fluid flow calculations by a sum of 1D 

calculations along streamlines. The choice of streamline direction for 1D calculations 

makes the approach extremely effective for modeling convection-dominated flows in the 

reservoir.27 This is typically the case when heterogeneity is the predominant factor 

controlling oil recovery, for example in waterflooding. The streamline approach for 

modeling multidimensional, multiphase flow basically comprises of five major steps:21,47 

(i) Tracing streamlines in 3D based on a numerical solution of the pressure and velocity 

equations; (ii) Recasting the transport (saturation) equations in terms of streamline time 

of flight which is the travel time of a tracer along the streamline; (iii) Solution of the 

saturation equation along streamlines; (iv) Periodic updating of streamlines to account 

for changing field conditions such as infill drilling and rate changes; (v) Use of operator 

splitting to account for transverse fluxes such as gravity. 

The computational advantage of the streamline methods can be attributed to four 

principal reasons: (i) Streamlines may need to be updated only infrequently; (ii) The 

transport equations along streamlines can often be solved analytically; (iii) The 1D 

numerical solutions along streamlines are not constrained by the underlying grid stability 

criteria, thus allowing for larger timesteps; (iv) For displacements dominated by 

heterogeneity, the CPU time often scales nearly linearly with the number of gridblocks, 

making it the preferred method for fine-scale geologic simulations. Furthermore, the 

self-similarity of the solution along streamlines may allow us to compute the solution 

only once and map it to the time of interest. Other advantages are sub-grid resolution and 

reduced numerical artifacts such as artificial diffusion and grid orientation effects, since 
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the streamline grid used to solve the transport equations is effectively decoupled from 

the underlying static grid. 

 

3.3.2 Generalized Travel Time and Sensitivity Calculations 

As shown in Fig. 3.6, we define the generalized travel time as the optimal time shift 

t~∆  that maximizes the following correlation function: 
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where y is the flow responses we wish to match, e.g., water cut at producing wells, j is 

producer index and i is observation data index. The overall production data misfit can 

now be expressed in terms of a generalized travel-time misfit at all wells as ( )∑
=

∆
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with wN  being the total number of producing wells. Our objective is to minimize this 

generalized travel time misfit, and we need the sensitivities for minimization. 

 

Sensitivity Computations. In GTTI, we shift the entire fractional flow curve by a 

constant time. Thus, every data point in the fractional-flow curve has the same shift time, 

ttt ~
21 ∆=== Lδδ  (Fig. 6). So we can sum up and average the travel time sensitivities 

of all data points to obtain a rather simple expression for the sensitivity of the 

generalized travel time with respect to reservoir parameters m as follows26 
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It now reduces to the sensitivity of the arrival times at the producing well, mt ji ∂∂ /,
. 

These sensitivities can be easily obtained in terms of the sensitivities of the streamline 

time of flight,26 
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In the above expression, the fractional-flow derivatives are computed at the 

saturation of the outlet node of the streamline. The time-of-flight sensitivities can be 

obtained analytically in terms of simple integrals along streamline. For example, the 

time-of-flight sensitivity with respect to permeability will be given by13 
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where the integrals are evaluated along the streamline trajectory, and the ‘slowness’ 

which is the reciprocal of interstitial velocity, is given by 
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Note that the quantities in the sensitivity expressions are either contained in the 

initial reservoir model or are available after the forward simulation run.  

 

3.3.3 Data Integration 

Our goal is to reconcile high-resolution geologic models to field production history. This 

typically involves the solution of an underdetermined inverse problem. The 

mathematical formulation behind such streamline-based inverse problems has been 

discussed elsewhere.13,21 Both the deterministic and stochastic approaches have been 

used with equal success.49 In the deterministic approach pursued here, we start with a 

prior static model that already incorporates geologic, well log, and seismic data. We then 

minimize a penalized misfit function consisting of the following three terms, 

 
mLmmGt∆ δβδβδ 21

~ ++−
.  (3.6) 

In Eq. 3.6, t∆~ is the vector of generalized travel-time shift at the wells; G is the 

sensitivity matrix containing the sensitivities of the generalized travel time with respect 

to the reservoir parameters. Also, mδ correspond to the change in the reservoir property 
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and L is a second spatial difference operator that is a measure of roughness and is 

analogous to imposing a prior variogram or covariance constraint. The first term ensures 

that the difference between the observed and calculated production response is 

minimized. The second term, called a ‘norm constraint’, penalizes deviations from the 

initial model. This helps preserve geologic realism because our initial or prior model 

already incorporates available geologic and static information related to the reservoir. 

Finally, the third term, a roughness penalty, simply recognizes the fact that production 

data are an integrated response and are thus, best suited to resolve large-scale structures 

rather than small-scale property variations. The minimum in Eq. 3.6 can be obtained by 

an iterative least-squares solution to the augmented linear system 
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The weights β1 and β2 determine the relative strengths of the prior model and the 

roughness term. In general, the inversion results will be sensitive to the choice of these 

weights. 

When the data and the prior model statistics are specified, for example, the data 

errors and model parameter covariance (variogram), we can adopt a Bayesian 

formulation that leads to the minimization of the following function,  
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The minimum in Eq. 3.8 can be obtained by an iterative least-squares solution to the 

linear system49 
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where CD and CM are the data error covariance and the prior model parameter covariance 

respectively, and mp is the prior term. Eq. 3.9 represents a system of equations that is 

analogous to the deterministic formulation in Eq. 3.7. We use an iterative sparse matrix 
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solver, LSQR, for solving these augmented linear systems in Eqs. 3.7 and 3.9. The 

LSQR algorithm is well suited for highly ill-conditioned systems and has been widely 

used for large-scale tomographic problems in seismology.38 

It is important to realize that automatic history matching does not necessarily imply 

that the user has to lose control over the process. Instead, it is recommended that the user 

intervene after every iteration of the process to determine the plausibility of the changes 

and accept or reject or modify the changes. From this point of view, the only difference 

from assisted history matching is the use of the sensitivities and the non-linear 

optimization technique to determine the spatial location and the extent of changes to the 

prior model.  

 
 

3.4 Field Examples 

 
We now discuss applications of streamline-based assisted and automatic history 

matching to two field examples. We illustrate the use of automatic history matching both 

for conditioning static geologic models to production data and also as a “finisher/post-

processor” to assisted history matching to further improve the matches. 

 

3.4.1 Field Example 1 

The first model we studied is a cutout section from a large sandstone reservoir 

containing over 1.5 MMMSTB of oil.5 The reservoir is characterized by three principal 

depositional settings, incised channel fill, regional marine shale, and tidal delta complex. 

The sector we considered has an average porosity of 20% (Fig. 3.14) with median 

permeability of about 1000 md. The grid dimensions are 30×46×39 (53,820 cells). The 

model has two faults, an aquifer, and four different relative permeability zones. The oil 

is a 36º API gravity oil with a viscosity of 0.3 cp at reservoir conditions. The field has 

been produced for approximately 50 years by primary depletion and phased 

waterflooding. The simulation model starts at Year 1965 and ends at Year 2001. 



 

 

69

Recovery to Year 2001 is approximately 35% OOIP with a field-wide water cut of 

approximately 93%. Altogether there are 130 wells in the simulation and history 

matching process. Only water-cut history was used to update the permeability model.  
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Figure 3.14 Porosity distribution and well locations for field example 1. 
 

 

For automatic history matching, we will use two different starting models. In the first 

case, the initial model is up-scaled directly from the static fine-scale geostatistical model 

using flow-based upscaling method.50 This initial model was used in both assisted and 

automatic history matching. In the second case, the initial model is the updated 

permeability model after assisted history matching.5 Our goal in this second case is to 

use automatic history matching to further improve the results of assisted history 

matching. 

We choose horizontal permeability as our model parameter in the inversion. Vertical 

permeability is also changed during the inversion by preserving the ratio of horizontal 

and vertical permeability. Porosity in the model was not altered because its variation was 

relatively minor compared to permeability.  

 

Assisted vs. Automatic History Matching. Fig. 3.15 shows the field-wide water-cut 

performance for the initial geologic model, the updated model by automatic history 
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matching, as well as the result from assisted history matching. We can see that the initial 

model shows large deviations from the field production history. The results from 

automatic history matching exhibit significant improvement in the water-cut match. For 

this case, the matches from the automatic history matching appear to be better than that 

of assisted history matching, particularly in the early period. 

 

 

 
 

Figure 3.15 Field-wide water-cut performance for BBCK model. 
 

 

The water-cut match for a few typical wells from amongst the 130 wells is given in 

Fig. 3.16. For validation purposes, we matched only part of the history data for some 

wells and used the updated model to predict the production performance for the rest of 

the period. For example, for Well 128 we matched the data only to Year 1989. Clearly, 

the prediction for the rest of time period shows marked improvement compared to the 

initial model.  
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Figure 3.16 Comparison of water cut match by automatic and assisted history matching. 
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The permeability models before and after automatic history matching are shown in Fig. 

3.17. The inverted model has increased heterogeneity by increasing the permeability 

contrast and variance. In some areas, the permeabilities are increased and in other areas 

decreased. Overall, the final updated model by automatic history matching preserved 

most of the prior geologic features while improving the history match. 
 
 
 

  
(a) Overall model 

  
(b) Layer 3, decreased permeability 

 
(c) Layer 14, increased contrast and heterogeneity  

 
(d) Layer 21, increased permeability 
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Figure 3.17 Horizontal permeability distribution of initial static geologic model (left side of each 
group) and the final inverted model by automatic history matching starting from the initial static 
model. 
 



 

 

73

It should be noted that production data smoothing is an important step during 

generalized travel-time inversion with field data. The field production history data are 

frequently erratic with numerous fluctuations. Very often, the time step sizes used in the 

streamline simulation are larger than the intervals of observed data. Thus, the short-term 

fluctuations in the production data are not captured by simulation. We averaged the 

production data before inversion over pre-specified interval using the simulation time 

steps as guidelines. This helps the inversion to capture the general trend of the 

production history and not to be trapped by small details. Data smoothing also facilitates 

the calculation of the shift time during generalized travel-time calculations. 

As mentioned before, the automatic history matching using streamline-derived 

sensitivities is very computationally efficient. For this case, it took about 5 hours for 

IBM Regatta workstation for 8 inversion iterations and less than one week, including the 

setup time, for the entire history match. Assisted history matching for the same field case 

will generally take much longer, of the order of a few months depending upon the 

experience level of the user. 

 

Automatic History Matching as ‘Post Processor’ to Assisted History Matching. 

Here we utilize automatic history matching to further improve upon the geologic model 

derived from assisted history matching. The field-wide water-cut match after assisted 

history matching is already quite close to the history data (Fig. 3.18). After automatic 

history matching, it is further improved, particularly in the early time (see the enlarged 

figure of early time section on the right of Fig. 3.18). 
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Figure 3.18 Field-wide water-cut performancefor Example 1. 
 

 

 

For individual well-by-well water-cut matches, most wells show further significant 

improvement over assisted history matching (see Fig. 3.19 for some typical wells from 

130 wells). For example, the water cuts in some wells (e.g., Wells 50, 67) are shifted 

right to match the history, while some are shifted left (e.g., Wells 12, 89, 99) to match 

the history. The most significant improvement is observed for Well 99. For very few 

wells (3 wells), the water cut in the updated model is slightly worse than the initial 

model. After eight iterations, the objective function was reduced by half, and the water-

cut misfit was reduced by 20 to 30 percent. Each inversion iteration consists of one 

forward (FrontSim51) simulation (about 30 minutes) and one LSQR solution (about 8 

minutes). The entire history match process took about 5 hours for eight iterations in IBM 

Regatta workstation. 
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Figure 3.19 Automatic history matching improved water-cut match upon assisted history 
matching for most of 130 wells.  
 

 

 

Fig. 3.20 shows the permeability models before and after automatic history 

matching. From a visual inspection we see that most of the features in the initial model 

are preserved in the updated model. However, comparing on a layer-by-layer basis, we 

can find some detailed changes in the model. We show a number of layers where the 

main changes occur.  
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(a) Overall model 

 
(b) Layer 3, little change, most of the layers have little change 

 
(c) Layer 8, increased contrast 

 
(d) Layer 13, increased permeability along fault (also in Layer 11-22) 

 
(e) Layer 14, increased permeability 

 
(f) Layer 34, decreased permeability 

 
1                1 0             1 0 0              1 0 0 0             1 0 0 0 01                1 0             1 0 0              1 0 0 0             1 0 0 0 0  

Figure 3.20 Horizontal permeability distribution for assisted history matched model (left side of 
each group) and automatic history matched model starting from the assisted history matched 
model for Example 1.  
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Fig. 3.21 shows the permeability histogram for four different cases: (i) the initial 

static geologic model, (ii) the updated model via automatic history matching starting 

from the initial geologic model, (iii) the updated model via assisted history matching 

starting from the initial geologic model, and (iv) the updated model via automatic history 

matching starting from assisted history-matched model.  

 

 

 
                                           a                                                                          b 
 
 

 
                                           c                                                                          d 
 
Figure 3.21 Horizontal permeability histogram for (a)static geologic model, (b) final inverted 
model starting from static model, (c)assisted history matched model, and (d) final inverted model 
starting from assisted history matched model. 
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We can see from Fig. 3.21 that the automatic history matching leads to a similar 

permeability statistics regardless of whether we started from the initial model or the 

updated model after assisted history matching. We can see that the low permeability at 

the initial geological model have been removed, indicating the need to increase 

permeability at the low permeability regions to match the production data. Interestingly, 

the histograms of the permeability models from assisted history matching and automatic 

history matching show very similar features. This further demonstrates that the similarity 

in principle between the streamline-based assisted and automatic history matching. 

 

3.4.2 Field Example 2 

This second example is a geologically complex sandstone reservoir consisting of several 

different facies. The reservoir lies between an underlying shale and an overlying shallow 

marine shale-siltstone. The reservoir itself is a structural trap (Fig. 3.22). The erratic 

distribution of sandstones and intervening shales indicate that the depositional 

environment was transitional and most likely associated with or part of a deltaic 

environment. The simulation model has 156 wells, 200×65×40 grid blocks (520,000 

cells), and 28 years of production history.5 Among the 156 wells, 83 producers which 

had significant water-cut response were used for production data integration purpose. 

There are inactive cells in the model (dark blue area in Fig. 3.22), and aquifer support 

was modeled by large porosity values along the periphery. Five different relative 

permeability zones are used. The reservoir was under primary depletion for an extended 

period of time, followed by peripheral water-injection. 
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Figure 3.22 Initial static geologic model for Example 2. 
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Figure 3.23 Water cut match by automatic history matching for 20 typical wells among 83 wells 
for Example 2.  
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The water-cut responses from the initial permeability model significantly deviate 

from the history. After 10 iterations by automatic history matching, most of the wells 

exhibit a much better history match. Some typical wells are shown in Fig. 3.23. After 

inversion, both shift-time misfit and water-cut misfit were reduced by about half (Fig. 

3.24).  
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Figure 3.24 Water cut and shift time misfit reduction for Example 2 by automatic history 
matching. 
 

 

Fig. 3.25 compares the permeability before and after the history match. For most of 

the 40 layers, the changes are hard to discern by visual comparison (Fig. 3.25c). This is 

primarily because the streamline-based sensitivities help target the changes to regions of 

maximum impact. Although some layers show obvious change, the general trend of the 

static geologic model is retained. We can see that in some areas, permeabilities are 

reduced (e.g., Fig. 3.25a), while for some regions, permeabilities are increased (e.g., Fig. 

3.25b). We also observed that some high permeability channels are created (e.g., Figs. 3. 

25b,d), while some low permeability barriers are formed (e.g., Fig. 3.25d). It is 

reasonable for automatic history matching to form high permeability channel and low 

permeability barrier for a deltaic depositional environment.  
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(a) Layer 6: decreased permeability 

 

 
(b) Layer 12: high permeability channel 

 

 
(c) Layer 37: little change 

 

 
(d) Layer 38: increased permeability at periphery and low permeability barrier 

X

Y

X

Y

 
 

Figure 3.25 Horizontal permeability distribution before (left side of each group) and after 
automatic history matching for Example 2. 

 
 

 

Also from the histogram comparison (Fig. 3.26), we can see that the heterogeneity is 

increased in the updated model. This is reasonable considering the erratic distribution of 

sandstones and intervening shales and the depositional environment. Both the low values 

and the high values are further extended, and the artifacts from high permeability cut-off 

in the initial model seem to have disappeared in the updated model. 
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For this example, it took about 17 hours for IBM Regatta workstation with 10 inversion 

iterations and less than one week including the setup time for the entire history matching 

process. 

 

 

 
 
Figure 3.26 Horizontal permeability histogram before(left) and after(right) automatic history 
matching for Example 2. 
 

 

3.5 Chapter Summary 

 

In this chapter we highlight the similarities between streamline-based assisted and 

automatic history matching. We enhance the streamline-based assisted history matching 

in two important aspects that can significantly improve its efficiency and effectiveness. 

First, we utilize streamline-derived analytic sensitivities to relate the changes in reservoir 

properties to the production response. These sensitivities can be computed analytically 

and contain much more information than that used in the assisted history matching. 

Second, we utilize the sensitivities in an optimization procedure to determine the spatial 

distribution and magnitude of the changes in reservoir parameters needed to improve the 

history-match. By intervening at each iteration during the optimization process, we can 

retain control over the history matching process as in assisted history matching. This 

allows us to accept, reject, or modify changes during the automatic history matching 
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process. We have demonstrated the power and utility of our approach using two large 

field examples. Some specific conclusions of this chapter can be summarized as follows:  

1. Use of streamline-derived sensitivities can significantly improve the efficiency of 

assisted history matching. In particular, the sensitivities can be utilized to directly 

obtain the changes in reservoir properties necessary to improve the history match in a 

more objective way. This eliminates the time-consuming and subjective manual 

adjustment of parameters in the assisted history matching process. By intervening at 

every stage of the iterative process, we can retain control over the history matching 

process to preserve plausibility and geologic realism. 

2. Streamline-based sensitivities and inversion allow us to take into account the full 

coupling of the streamlines in the reservoir rather than changing individual wells or 

streamline bundles at a time. This not only significantly increases the efficiency, but 

also preserves geologic continuity and minimizes the chances of introducing non-

physical artifacts during the history matching process.  

3. The power and utility of streamline-based inversion is demonstrated using two field 

examples with model sizes ranging from 105 to 106 grid blocks and with over one 

hundred wells. In both the cases, the streamline-based automatic history matching 

led to better individual well matches as well as field-wide matches compared to 

assisted history matching and with no apparent loss of geologic realism. We have 

shown that the automatic history matching can be used both for conditioning 

geologic models and also to further improve the models derived from the assisted 

history matching. 

4. The use of sensitivities during assisted history matching can lead to significant 

savings in computation time and manpower. For the field examples presented here, 

the automatic history matching took days compared to months for assisted history 

matching. This makes it possible to generate multiple history-matched models to 

perform uncertainty analysis. 
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CHAPTER IV 

HISTORY MATCHING OF FINITE-DIFFERENCE MODELS 

USING STREAMLINE-DERIVED SENSITIVITIES*   

 

We propose a novel approach to history matching finite-difference models that combines 

the advantage of the streamline models with the versatility of finite-difference 

simulation. Current streamline models are limited in their ability to incorporate complex 

physical processes and cross-streamline mechanisms in a computationally efficient 

manner. A unique feature of streamline models is their ability to efficiently compute the 

sensitivity of the production data with respect to reservoir parameters using a single flow 

simulation. These sensitivities define the relationship between changes in production 

response because of small changes in reservoir parameters and thus, form the basis for 

many history matching algorithms. In our approach, we utilize the streamline-derived 

sensitivities to facilitate history matching during finite-difference simulation. First, the 

velocity field from the finite-difference model is used to compute streamline trajectories, 

time of flight and parameter sensitivities. The sensitivities are then utilized in an 

inversion algorithm to update the reservoir model during finite-difference simulation.  

The use of finite-difference model allows us to account for detailed process physics 

and compressibility effects. Although the streamline-derived sensitivities are only 

approximate, they do not seem to noticeably impact the quality of the match or 

efficiency of the approach. For history matching, we use ‘a generalized travel-time 

inversion’ that is shown to be extremely robust because of its quasi-linear properties and 

converges in only a few iterations. The approach is very fast and avoids much of the 

                                                 
*Part of this chapter is reprinted with permission from “Fast History Matching of Finite-
Difference Models Using Streamline-Derived Sensitivities” by Cheng, H., Khargoria, 
A., He, Z., and Datta-Gupta, A., 2004. Paper SPE 89447 presented at the SPE/DOE 
fourteenth symposium on Improved Oil Recovery, Tulsa, OK, April 17-21, 2004. 
Copyright 2004 by the Society of Petroleum Engineers.  
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subjective judgments and time-consuming trial-and-errors associated with manual 

history matching. We demonstrate the power and utility of our approach using a 

synthetic example and two field examples. The first one is from a CO2 pilot area in the 

Goldsmith San Andreas Unit, a dolomite formation in west Texas with over 20 years of 

waterflood production history. The second example is from a giant middle-eastern 

reservoir and involves history matching a multimillion cell geologic model with 16 

injectors and 70 producers. The final model preserved all of the prior geologic 

constraints while matching 30 years of production history.  

 

 

4.1 Introduction 

 

Recently, the streamline approach has provided an extremely efficient means for 

computing parameter sensitivities. With the streamline method, the sensitivities can be 

computed analytically using a single flow simulation.13,26 Because the sensitivity 

calculations involve evaluation of 1-D integrals along streamlines, the method scales 

very well with respect to model size or the number of parameters. Although the 

streamline models have been extremely successful in bridging the gap between geologic 

modeling and flow simulation, they are currently limited in their ability to incorporate 

complex physical processes and cross-streamline mechanisms in a computationally 

efficient manner.27 Thus, an efficient and robust approach to production data integration 

using finite-difference models will be particularly useful in characterizing reservoirs 

dominated by mechanisms such as compressibility and gravity effects, transverse 

dispersion and other complex physical mechanisms.  

In this chapter we propose a novel approach to history matching finite-difference 

models that combines the advantage of the streamline models with the versatility of 

finite-difference simulation. We first generate streamlines using the velocity field 

derived from a finite-difference simulator. The streamlines are then used to compute the 

parameter sensitivities for updating the reservoir model. The updated model is then used 
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in the finite-difference simulation to predict reservoir performance and the process is 

repeated until a satisfactory history match is obtained. For history matching, we use ‘a 

generalized travel-time inversion’ that is shown to be extremely robust because of its 

quasi-linear properties and converges in only a few iterations. The approach is very fast 

and avoids much of the subjective judgments and time-consuming trial-and-errors 

associated with manual history matching. It is based upon proven techniques from 

geophysical inversion and is designed to preserve geologic realism during history 

matching. We have illustrated the power and practical feasibility of the method using 

synthetic and field examples. 

 

 

4.2 Approach  
 

An outline of the procedure in our proposed approach is given in a flow chart in Fig. 4.1. 

Briefly, the major steps are as follows: 

 

4.2.1 Flow Simulation Using Finite-Difference Simulator 

We have utilized a commercial finite-difference simulator (viz. ECLIPSE52) for 

modeling fluid flow in the reservoir. The two-phase black oil model used here is 

completely general and includes comprehensive physical mechanisms such as 

compressibility, gravity effects and other cross-streamline fluxes such as mobility 

effects, rate changes, infill drilling etc. 
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Output 
Reservoir 
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Saturation Distribution 

From Simulation Output at 
Specified Time Intervals 
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Data Misfit Calculation via 
Generalized Travel-Time  

Compute Streamline-Based
Sensitivities

Derive Reservoir Property 
Change via Inversion

Update Reservoir Model

Yes 

No 

 
 

Figure 4.1 Flowchart for history matching finite-difference models using streamline-derived 
sensitivities. 
 

 

 

4.2.2 Generalized Travel-Time Computations 

Production data misfit is represented by a ‘generalized travel-time’ at each producing 

well. The ‘generalized travel-time’ is computed by systematically shifting the computed 

production response towards the observed data until the cross-correlation between the 



 

 

88

two is maximized. This is illustrated in Fig. 4.2 and is discussed further later. By 

defining a generalized travel time, we effectively reduce the data mismatch at a well into 

a single ‘travel time shift’ and thus, are able to retain many of the desirable properties of 

travel time inversion.19 

 

 

 

 
                                        a                                                                           b     
 
Figure 4.2 Illustration of generalized travel-time inversion: (a) history-matching by systematically 
shifting the calculated water-cut to the observed history, (b) best shift-time which maximizes the 
correlation function. 
 

 

 

4.2.3 Streamline-Based Sensitivity Computations 

The fluid fluxes obtained from the finite-difference simulator are utilized to trace 

streamline trajectories and calculate time of flight. These calculations can account for 

complex geology and faulted systems.53,54 The time of flight is then utilized to compute 

the sensitivity of the generalized travel-time with respect to reservoir parameters as 

discussed later. Note that the sensitivity computations require a single flow simulation 

regardless of the number of parameters. 
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4.2.4 Model Updating via Generalized Travel-Time Inversion 

This step involves computing the changes in the model parameters via a least-squared 

minimization technique that utilizes the streamline-derived sensitivity coefficients. 

Additional constraints are imposed to penalize deviation from a prior model to preserve 

geologic realism and also, to restrict permeability changes to large-scale trends 

consistent with the low resolution of the production data.13 

Note that the streamline-based sensitivity computations are completely general and 

can account for changing conditions such as infill drilling and rate changes via 

streamline updating. However, these sensitivities are only approximations in the 

presence of compressibility and cross-streamline mechanisms. A basic premise of our 

approach is that these approximate sensitivities are adequate for inverse modeling. All 

our results indicate that this is a reasonable assumption. We store the pressure and flux 

information from finite-difference simulation for each streamline update for the entire 

simulation run. Thus, only one finite-difference simulation is required for each model 

update. The process is repeated until a satisfactory history match is obtained. 

 

4.2.5 Illustration of the Procedure: A Synthetic Example 

Before discussing the mathematical formulation we will first illustrate the procedure 

using a simple example. This involves history matching water-cut response from a 5-

spot pattern with infill drilling. Fig. 4.3a shows the reference permeability field and well 

locations. The mesh size used is 21×21×1. The reference permeability distribution 

consists of a low-permeability trend towards north and a high-permeability trend towards 

south. Four infill wells (Wells 5-8) were introduced at 600 days of production. The 

water-cut responses from ECLIPSE for the eight producers using the reference 

permeability field are shown in Fig. 4.4. We treat this as the observed data. Next, 

starting from a homogeneous initial permeability model (Fig. 4.3b) we match the water-

cut response via the generalized travel-time inversion. The permeability for each grid 

block is treated as an adjustable parameter for this example (a total of 441 parameters). 

The initial and final water-cut matches are shown in Figs. 4.4a and 4.4b. The final 
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permeability distribution is shown in Fig. 4.3c. Clearly, the final permeability model 

captured the large-scale trend of the reference permeability field. The permeability 

multipliers resulting from the history matching are shown in Fig. 4.3d. The production 

data integration process is very efficient and takes only a few iterations to converge (Fig. 

4.5). The CPU time required for this case is less than 4 minutes for 16 iterations in a PC 

(Intel Xeon 3.06 GHz Processor). 

 
 

 
                            a                                                              b                                   

 
                          c                                                                d  
 
Figure 4.3 Permeability distribution for the synthetic 9-spot case: (a) reference permeability field, 
(b) homogeneous initial permeability, (c) final permeability distribution after inversion, and (d) 
permeability multiplier obtained from history matching. 
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Figure 4.4 Water-cut match for the synthetic 9-spot case by (a) initial homogeneous permeability 
model and (b) final inverted permeability model.  
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Figure 4.5 Travel-time and water-cut misfit reduction for the synthetic example. 

 
 

 

 



 

 

92

4.3 Mathematical Background: Generalized Travel-Time Inversion and Sensitivity 

Computations 

 

In this section we discuss the mathematical details related to streamline-based sensitivity 

computations and generalized travel-time inversion. Much of the work has been 

presented in our earlier papers.13,26 We provide a summary for completeness. 

 

4.3.1 Streamline-Based Sensitivity Calculation 

The sensitivity calculations assume two-phase incompressible flow. However, we utilize 

these sensitivities for model updating during black-oil finite-difference simulation. The 

basic premise here is that the approximate sensitivities, for most purposes, are adequate 

for inverse modeling. 

Two-phase incompressible flow equation in the streamline time of flight coordinate 

is given by Eq. 4.1. 

 0=
∂
∂

+
∂

∂
τ
ww f

t
S . (4.1) 

In Eq. 4.1, the time of flight can be defined in terms of ‘slowness’, s(x) 

 ∫=
ψ

τ drs )(x , (4.2) 

and the ‘slowness’ which is the reciprocal of interstitial velocity, is given by 
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We assume that streamlines do not shift significantly because of small perturbations 

in reservoir properties. For steady velocity fields, this assumption is strictly valid for 

porosity and quite satisfactory for permeability changes.36 We can now compute the 

sensitivity of fractional flow to reservoir parameters through a variation in the streamline 

time of flight as follows: 

 δτ
τ

δ
∂
∂

= w
w

ff . (4.4) 

The change in the time of flight can be expressed in terms of the slowness change as 
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 ∫=
ψ

δδτ drs )(x . (4.5) 

Now, the slowness is a composite response and its variation can be related to 

changes in reservoir properties as follows 
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where the partial derivatives are 
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The time of flight sensitivities can be obtained analytically in terms of simple 

integrals along streamline. For example, the time of flight sensitivity with respect to 

permeability will be given by36 
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where the integrals are evaluated along the streamline trajectory. It is to be noted that the 

quantities in the sensitivity expressions are either contained in the initial reservoir model 

or are produced by a single simulation run. 

 

4.3.2 Data Misfit and the Concept of a Generalized Travel-Time 

Production data integration typically involves the minimization of a least squares 

functional representing the difference between the observed data and the calculated 

response from a simulator. Additional constraints are imposed via a prior geologic model 

to ensure ‘plausibility’ of the solution to the inverse problem.10,12,13,21-23,26,27,56,57. 

Production data misfit is most commonly represented as follows 
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In the above equation, )( ij ty  denotes the production data for well j at time ti, Nw and 

Ndj stand for the number of production wells and the number of observed data at each 

well, respectively and ijw represent the data weights. We refer to the minimization in Eq. 

10 as an ‘amplitude matching’. It is well known that such minimization leads to a highly 

non-linear inverse problem.24 The solution to the inverse problem, in general, will be 

non-unique, can be unstable and often converges to a local minimum. On the other hand, 

a travel-time inversion whereby the observed and computed production responses are 

lined-up at the breakthrough time has quasi-linear properties.31 As a result, the 

minimization is more robust and is relatively insensitive to the choice of the initial 

model. 

By defining a generalized travel-time, we effectively accomplish an ‘amplitude 

matching’ while preserving most of the benefits of a travel-time inversion. In this 

approach, we seek an optimal time-shift at each well to minimize the production data 

misfit at the well. This is illustrated in Fig. 2a where the calculated water-cut response is 

systematically shifted in small time increments towards the observed response, and the 

data misfit is computed for each time increment. Taking well j as an example, the 

optimal shift will be given by the ∆tj that minimizes the misfit function, 
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Or, alternatively maximizes the coefficient of determination given by the following 
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Thus, we define the generalized travel-time as the ‘optimal’ time-shift 
jt~∆ that 

maximizes the )(2
jtR ∆  as shown in Fig. 4.2b. It is important to point out that the 

computation of the optimal time-shift does not require any additional flow simulations. It 

is carried out as a post-processing at each well after the calculated production response is 

derived using a flow simulation. The overall production data misfit can now be 

expressed in terms of a generalized travel-time misfit at all wells as follows  
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4.3.3 Sensitivity of the Generalized Travel-Time 

Let m represent the vector of reservoir parameters. Now, consider a small perturbation in 

reservoir properties, mδ , such that it results in a time-shift jtδ  for the entire computed 

production response at well j, that is, every data point of well j has a common time-shift 

(Fig. 4.6). We then have the following relationship for the observed times 
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Figure 4.6 Illustration of generalized travel-time sensitivity computation using the same shift-time 
for every data points. 

 

 

Summing Eq. 4.14 over all the data points, we can arrive at the following simple 

expression for the sensitivity of the travel-time shift with respect to the reservoir 

parameter, m, which represents a component of the vector m. 
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Also, based on the definition of the generalized travel-time, we have the following 
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The negative sign in Eq. 4.16 reflects the sign convention adopted for defining the 

generalized travel-time shift which is considered negative if the computed response is to 

the right of the observed data as shown in Fig. 2a. For example, the travel-time will 

decrease if permeability increases; however, the ‘travel-time shift’ will increase. 

Combining Eqs. 4.14-16, we obtain a rather simple expression for the sensitivity of 

the generalized travel-time with respect to reservoir parameters as follows 
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It now remains to calculate to the sensitivity of the arrival times at the producing 

well, mt ji ∂∂ /, . These sensitivities can be easily obtained in terms of the sensitivities of 

the streamline time of flight, and the result is as follows: 
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In the above expression, the fractional flow derivatives are computed at the 

saturation of the outlet node of the streamline. The time of flight sensitivities can be 

obtained analytically as in Eq. 4.9. 

There are some important practical issues that are worth mentioning here. First, 

changing field conditions such as infill drilling and rate changes are accounted for by 

streamline updating. Second, by utilizing a finite-difference simulators, we are no longer 

constrained by the limitations of streamline simulation. Third, for wells with no 
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calculated breakthrough response, the application of generalized travel-time concept is 

not so obvious although the basic idea remains the same. The shift-time is taken as the 

difference between the observed breakthrough time and the last observation time. 

Finally, it is better to shift the calculated curve relative to the observed curve if 

calculated curve has more non-zero water-cut points than the observed curve; and vice-

versa.  

 

 

4.4 Data Integration 

 

Our goal is to reconcile high-resolution geologic models to field production history. This 

typically involves the solution of an underdetermined inverse problem. In the 

deterministic approach pursued here, we start with a prior static model that already 

incorporates geologic, well log, and seismic data. We then minimize a penalized misfit 

function consisting of the following three terms, 

 RLRRSt∆ δβδβδ 21
~ ++− .  (4.19) 

An alternative formulation based on the Bayesian inverse theory is given by Vega et 

al.49 In Eq. 4.19, t∆~ is the vector of generalized travel time shift at the wells, S is the 

sensitivity matrix containing the sensitivities of the generalized travel time with respect 

to the reservoir parameters. Also, Rδ correspond to the change in the reservoir property 

and L is a second spatial difference operator. The first term ensures that the difference 

between the observed and calculated production response is minimized. The second 

term, called a ‘norm constraint’, penalizes deviations from the initial model.  This helps 

preserve geologic realism because our initial or prior model already incorporates 

available geologic and static information related to the reservoir. Finally, the third term, 

a roughness penalty, simply recognizes the fact that production data are an integrated 

response and are thus, best suited to resolve large-scale structures rather than small-scale 

property variations. 



 

 

98

The minimum in Eq. 4.19 can be obtained by an iterative least-squares solution to 

the augmented linear system 
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The weights β1 and β2 determine the relative strengths of the prior model and the 

roughness term. The selection of these weights can be somewhat subjective although 

there are guidelines in the literature.37 In general, the inversion results will be sensitive 

to the choice of these weights.  

Note that one of the major advantages of the generalized travel-time approach is that 

the size of the sensitivity matrix S is dependent only on the number of wells regardless 

of the number of data points. This leads to considerable savings in computation time. We 

use an iterative sparse matrix solver, LSQR, for solving this augmented linear system 

efficiently.38 The LSQR algorithm is well suited for highly ill-conditioned systems and 

has been widely used for large-scale tomographic problems in seismology.39 

 

 

4.5 Field Applications 

 

In this section, we discuss application of the history matching algorithm to two field 

examples. The first one is from the Goldsmith San Andreas Unit, a dolomite formation 

in West Texas. We match 20 years of waterflood production history. The second field 

example is from a giant middle-eastern reservoir with 16 injectors and 70 producers. A 

total of 30 years of production history with detailed rate, infill well and re-perforation 

schedule were matched. Compressibility, gravity effects and aquifer support were 

included during the finite-difference simulation. 
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4.5.1 Goldsmith Case 

This example includes a CO2 pilot project area (Fig. 4.7) in the Goldsmith San Andres 

Unit (GSAU) in west Texas. The pilot area (Fig. 4.8) consists of nine inverted 5-spot 

patterns covering around 320 acres with average thickness of 100ft and has over 50 

years of production history prior to CO2 project initiation in Dec. 1996.  

 

 
Figure 4.7 CO2 pilot project site, Goldsmith field. 
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Figure 4.8 Well configuration of the study area. 
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We performed a history matching for 20 years of waterflood prior to the initiation of 

CO2 injection. Because of the practical difficulties in establishing correct boundary 

conditions for the pilot area, extra wells located outside the pilot area were included in 

this study. The extended study area included 11 water injectors and 31 producers. 

Among the producers within the study area, 9 wells showed significant water-cut 

response before the initiation of the CO2 injection and are used for history matching. The 

detailed production rates and the well schedule including infill drilling, well conversions 

and well shut-in can be found elsewhere.12 The study area is discretized into 58×53×10 

mesh or a total of 30,740 grid cells. The porosity field was obtained by a Sequential 

Gaussian Co-simulation using well and seismic data. These porosities were not altered 

during history matching. The initial permeability field was generated based on the 

porosity-permeability transform (Fig. 4.9a). By altering the permeability during 

inversion, we effectively altered the porosity-permeability transform which was 

considered ‘soft’ information for this carbonate reservoir.  

We history matched 20 years of production responses for the 9 producers for the 

period May 1968 to December 1989. The final permeability field and the resulting 

permeability multipliers are shown in Figs. 4.9b and 4.9c. The permeability multipliers 

range from 0.05 to 20, a rather wide interval. However, the changes are restricted to 

small regions determined by the sensitivity calculations. 

 

 



 

 

101

   
                                                a                                              b 
 

 
c 
 
 

Figure 4.9 Permeability distribution for Goldsmith case: (a) initial permeability field generated via 
a cloud transform based on the porosity-permeability relationship, (b) final permeability field from 
history matching, and (c) permeability multiplier generated from history matching. 
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Fig. 4.10 shows the water-cut match before and after inversion. Although the initial 

match was already reasonable for several wells, the matches were further improved by 

the generalized travel-time inversion. For example, the matches for Well 4, 7, and 9 are 

significantly improved. Fig. 4.11 shows the misfit versus the number of iterations during 

the inversion. In 9 iterations, the arrival-time misfit is reduced by over 70 percent and 

the water-cut misfit is reduced by one-third. Fig. 4.12 shows misfit of arrival time at 0.2 

fractional water cut. For this field example with 31 producers, 11 injectors and 20 years 

of history matching, the computation time requirement was about 100 minutes in a PC 

(Intel Xeon 3.06 GHz Processor). 
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Figure 4.10 Water-cut matching for Goldsmith case: (a) initial water-cut match and (b) final 
water-cut match obtained from history matching. 
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Figure 4.11 Misfit reduction for Goldsmith case. 
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Figure 4.12 Arrival-time comparison for Goldsmith case. 
 

 

 

4.5.2 A Giant Middle-Eastern Field Example 

The reservoir under consideration is located in the middle-east and ranks 22nd largest in 

the world. It is a carbonate reservoir with a large north-south anticline measuring 25 km 

by 15 km and contains extra light crude at an average depth of 8000ft. The field has been 

under waterflood for the last 30 years. A detailed history matching of the water flood 

production response using streamline models was presented by Qassab et al.29 Here we 

repeat the exercise using a commercial finite-difference simulator and the generalized 

travel-time inversion.  

The initial geologic model was created based on well log derived porosity, facies 

information and 3-D seismic data. From the facies based porosity model, 3-D 
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permeability distributions were generated using appropriate core based porosity-

permeability transforms. The fine-scale geologic model contained about 1 million cells. 

We utilized an upscaled model for production data integration. We performed a vertical 

upscaling of the geologic model to 13 layers based on the geologic markers. Cross-

sections of the detailed geologic model and the corresponding upscaled model for both 

porosity and permeability distributions in the reservoir and the detailed upscaling 

methods can be found elsewhere.55 The grid size for the upscaled model is 74×100×13. 

The initial water saturation in the simulation model was obtained using facies-based J-

curves and capillary-gravity equilibrium conditions. Gravity effects were included in the 

simulation model and had a significant impact on the results, especially on the water-cut 

responses because of water-slumping. In addition, it was important to include fluid 

compressibility and aquifer influx to obtain a pressure history consistent with the field 

observations.  

Production data smoothing is an important step during generalized travel-time 

inversion with field data. The field production history data are frequently erratic with 

large-scale fluctuations. Very often the time step sizes in simulation are larger than the 

intervals of observation data. Thus, the fluctuations within short time intervals in the 

production data are not captured by simulation. We suggest averaging (smoothing) the 

production data before inversion over pre-specified interval using the simulation time 

steps as guidelines. This helps the inversion capture the general trend of the production 

history and not be trapped by small details. Data smoothing also facilitates the 

calculation of the shift-time during generalized travel-time calculations. 

 

Production Data Integration. Out of the 70 producers in the field (Fig. 4.13), 48 

wells had water-cut response. Starting with the upscaled model, the grid block 

permeabilities were changed via the generalized travel-time inversion to match the 

water-cut histories at the 48 producers. Fig. 4.14 compares the initial permeability field 

with the final permeability field derived after inversion. From a visual examination, it is 

difficult to discern any differences. This is partly a consequence of the ‘norm’ constraint 
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(Eq. 4.19) during the inversion that attempts to preserve the initial geologic model. Also, 

the streamline-based sensitivities help target the changes to regions of maximum impact. 

Fig. 4.15 shows the permeability multipliers resulting from history matching and 

indicates the regions where permeabilities have been altered during inversion. In general, 

permeabilities increased at the northern higher elevation with higher quality reservoir 

facies. No permeability enhancements were observed in the lower interval that 

represents low quality reservoir. These changes are consistent with those observed by 

Qassab et al.55 and were found to be geologically realistic. Fig. 4.16 shows the misfit 

reduction during the inversion. In 9 iterations, the arrival-time misfit has been reduced 

by half and the water-cut misfit has been reduced by almost one quarter. Fig. 4.17a 

compares the observed and calculated water arrival-times at 0.1 fractional water-cut 

using the initial static model. After 9 iterations of generalized travel-time inversion, the 

corresponding arrival-times are shown in Fig. 4.17b. There is a significant reduction in 

the scatter indicating a close match between the observed and calculated water 

breakthrough times. The entire history matching took about 9 hours in a PC (Intel Xeon 

3.06 GHz Processor). 
 

 
 

Producers
Injectors

 
Figure 4.13 Well location map for the giant middle-eastern case. Dotted lines denote simulation 
area (from SPE 84079). 
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Figure 4.14 Initial upscaled permeability field (left) and final upscaled permeability field (right) 
after production data integration for the middle-eastern case. 

 
 
 

 
Figure 4.15 Permeability multiplier. 
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Figure 4.16 Misfit reduction for the middle-eastern case. 
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                                    a. Initial                                                              b. Final   

Figure 4.17 Arrival-time match for the giant middle-eastern case. 
 
 
 

The water-cut match has significantly improved for most wells. Some examples of 

these matches are shown in Fig. 4.18. Specifically, the generalized travel-time inversion 

can match the water-cut history for wells with no calculated initial breakthroughs (Wells 

A, D, F, L, R, V, and X), wells with high initial water-cut (Wells J, Z, W, K, and Y), and 

wells with low initial water-cut and late breakthroughs (Wells M, P, G, E, and S). 

Generalized travel-time inversion improved the match even though the breakthrough-

time is already matched (Wells Z and Y). Finally, the match in Well F shows its ability 

to match non-monotonic production history. 
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Figure 4.18 Examples of the water-cut match after history matching for the giant middle-eastern 
case. 
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The saturation distribution in the field at the end of the simulation is shown in Fig. 

4.19. The water encroachment patterns and the unswept areas indicated by the 

simulation were found to be consistent with the field surveillance data.55 The simulation 

model also shows evidence of water override as observed in field surveillance data. 

 

 

             
Figure 4.19 Saturation profile at 10290 days by final updated permeability. Water override is 
shown from the east-west cross section view. 
 

 

Statistics After Inversion. We examined the impact of production data integration on 

the permeability distribution by comparing the statistics of the initial and the final 

permeability fields. As indicated in Fig. 4.20, the histograms of both the models are 

almost identical in terms of the median and the upper and the lower quantiles of 

permeability. In other words, the shape of the distribution has essentially remained 

unchanged. The mean permeability, however, is slightly higher after history matching. 

This is primarily because integration of production data has resulted in flow channels 

and preferential flow paths with higher permeabilities. As a result, the heterogeneity has 

increased in terms of standard deviation and coefficient of variation. 
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Figure 4.20 Histogram of the initial permeability and the final updated permeability for the giant 
middle-eastern case. 
 

 

4.6 Chapter Summary 

 

We have proposed a novel approach to history matching finite-difference models that 

combines the advantage of the streamline models with the versatility of finite-difference 

simulation. Streamline-based sensitivity calculations are shown to be adequate for finite-

difference simulation with more comprehensive physical mechanisms. We have 

demonstrated the power and utility of our approach using both synthetic and field 

examples.  
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Some specific conclusions from this study can be summarized as follows: 

1. A fast history matching approach for finite-difference models is proposed. The new 

approach combines the versatility of finite-difference simulation with the efficiency 

of streamline simulation. Use of finite-difference simulation allows us to account for 

detailed physics including compressibility and gravity effects and also cross-

streamline mechanisms. 

2. A key aspect of our proposed method is the use of streamline-based sensitivity 

during history matching finite-difference models. Although these sensitivities are 

approximate, they seem to be adequate for most purposes and do not significantly 

impact the quality of the match or the efficiency of the approach.  

3. The generalized travel-time inversion for history matching is extremely robust 

because of its quasi-linear properties. It is computationally efficient, converges 

rapidly and is designed to preserve geologic realism during history matching. It also 

eliminates much of the time-consuming trial-and-error associated with manual 

history matching.  

4. We have demonstrated the power and utility of our proposed approach using both 

synthetic and field examples. A full field application from a giant middle-eastern 

field with over 80 wells and 30 years of production history convincingly establishes 

the practical feasibility of the approach. The entire history matching for this field 

took 9 hours in a PC indicating the potential for cost savings in terms of time and 

manpower.  
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CHAPTER V 

HISTORY MATCHING THREE-PHASE FLOW USING 

STREAMLINE MODELS 

 

Reconciling high-resolution geologic models to field production history is still by far the 

most time-consuming aspect of the workflow for both geoscientists and engineers. 

Recently streamline-based assisted and automatic history matching techniques have 

shown great potential in this regard and several field applications have demonstrated the 

practical feasibility of the approach. However, most of these applications have been 

limited to two-phase water-oil flow because current streamline models are limited in 

their ability to incorporate highly compressible flow and cross-streamline mechanisms in 

a rigorous and computationally efficient manner. 

In this chapter we propose an approach to history matching three-phase flow using a 

novel compressible streamline formulation and streamline-derived analytic sensitivities. 

We first generalize streamline models to account for compressible flow by introducing a 

relative density of total fluids along streamlines. This density term rigorously captures 

changes in total fluid volume with pressure and is easily traced along the streamlines. A 

density-dependent source term in the saturation equation accounts for the pressure effect 

during saturation calculations. Our approach preserves the 1-D nature of the saturation 

equation and all the associated advantages of the streamline approach with only minor 

modifications to existing streamline models. Second, we analytically compute parameter 

sensitivities that define the relationship between the reservoir properties and the 

production response, viz. water-cut and gas-oil ratio. These sensitivities are critical to 

history matching and streamline models allow us to compute them efficiently using a 

single flow simulation. Finally, for history matching we use ‘a generalized travel-time 

inversion’ that is shown to be extremely robust because of its quasi-linear properties and 

converges in only a few iterations. The approach is very fast and avoids much of the 
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subjective judgments and time-consuming trial-and-errors associated with manual 

history matching.  

We demonstrate the power and utility of our approach using both synthetic and field 

examples. The synthetic cases include matching of water cut and gas oil ratios from a 9-

spot pattern and are used to validate the method. The field-scale example is SPE ninth 

comparative example and consists 25 producers, 1 injector and aquifer influx. Starting 

with a prior geologic model, we integrate water-cut and GOR history using the 

generalized travel time inversion. Our approach takes only a few hours in a PC for the 

entire history matching without any apparent loss in geologic realism. 

 

 

5.1 Introduction  

 

In Chapter I we have already reviewed the minimization techniques and sensitivity 

calculation methods, here I will just mention the adjoint state method since recently it 

has been applied to history match three-phase flow.58,59 The adjoint state method 

requires derivation and solution of adjoint equations that can be significantly smaller in 

number compared to the sensitivity equations. The adjoint equations are obtained by 

minimizing the production data misfit with flow equations as constraint and can be quite 

cumbersome for multiphase flow applications. Furthermore, the number of adjoint 

solutions will generally depend on the amount of production data and thus, length of the 

production history. And this restricts the application to small or synthetic cases.58,59 

Although the streamline models have been extremely successful in bridging the gap 

between geologic modeling and flow simulation, they are currently limited in their 

ability to incorporate complex physical processes and cross-streamline mechanisms in a 

computationally efficient manner.27 However, most of the applications have been limited 

to two-phase water-oil flow14,15,22,26,45 because current streamline models are limited in 

their ability to incorporate highly compressible flow and cross-streamline mechanisms in 

a rigorous and computationally efficient manner. 
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Here for the first time we generalize streamline models to compressible flow using a 

rigorous formulation while retaining most its computational advantages. Our new 

formulation is based on three major elements and requires only minor modifications to 

existing streamline models. First, we introduce a relative density for the total fluids 

along the streamlines. This density captures the changes in the fluid volume with 

pressure and can be conveniently and efficiently traced along streamlines. Second, we 

incorporate a density-dependent source term in the saturation equation that accounts for 

the pressure effects during saturation calculations for compressible flow. Third, the 

relative density, the fluid volume, time-of-flight information are used to incorporate 

cross-streamline effects via pressure updates and remapping of saturations. Our proposed 

approach preserves the 1-D nature of the saturation calculations and all the associated 

advantages of the streamline approach. The saturation calculations are fully decoupled 

from the underlying grid and can be carried out using large time steps without grid-based 

stability limits. 

We can history match three-phase flow using the rigorous streamline flow 

simulation. In addition, history matching three-phase flow using finite-difference flow 

simulation and streamline-based sensitivity is another option based on our vigorous 

streamline formulations. In order to get the sensitivities for three-phase flow, first, the 

velocity field from the finite-difference model is used to compute streamline trajectories 

and time of flight. Then the analytic sensitivities are calculated along the streamlines 

using a rigorous compressible streamline formulation. Our new rigorous compressible 

streamline sensitivity formulation is based on three elements as described above. The 

rigorous flow equation is used to derive water cut and gas/oil ratio sensitivities along the 

streamlines. Then, the relative density, the fluid volume, time-of-flight, and fractional 

flow information are used to map the streamline sensitivities to the cell sensitivities 

which are then utilized in an inversion algorithm to update the reservoir model during 

finite-difference simulation. For history matching, we use ‘a generalized travel-time 

inversion’ that is shown to be extremely robust because of its quasi-linear properties and 

converges in only a few iterations. 
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In this chapter, first a synthetic example is used to illustrate the procedure. Then the 

streamline formulations for compressible and three-phase flow are described. 

Comparison of incompressible and compressible streamline simulation will be shown. 

Then I will discuss analytical water-cut and gas/oil ratio sensitivity calculations for 

compressible and three-phase flow. A field-scale example is shown to validate this 

method. 

 

 

5.2 Background and Illustration 

 

Before going to the rigorous streamline mathematical formulations, a brief review of the 

production data integration procedure will be given and an illustrative example will be 

shown. 

Streamline-based automatic history matching utilizes streamline-derived sensitivities 

to update geologic models. The major steps are: (i) Flow simulation to compute 

production response at the wells, either by commercial finite-difference simulators 

which can handle compressible and three-phase flow or by rigorous streamline 

simulation; (ii) Quantification of the mismatch between observed and computed 

production response; (iii) Streamline-based analytic sensitivity computation of the 

production response (water-cut and gas/oil ratio) with respect to reservoir parameters; 

(iv) Updating reservoir properties to match the production history via inverse modeling. 

 

5.2.1 Synthetic Example  

The synthetic case involves three-phase flow and includes matching water-cut and GOR 

from a 9-spot pattern starting with a homogeneous permeability distribution (Fig.5.1a). 

The mesh size used is 21×21×1. The reference permeability distribution consists of a 

low-permeability trend towards north and a high-permeability trend towards south. The 

water-cut and GOR simulation responses from the reference permeability field are 

shown in Figs. 5.2 and 5.3. We treat this as the observed data. Next, starting from a 
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homogeneous initial permeability model we jointly match the water-cut and GOR 

response via the generalized travel-time inversion. The permeability for each grid block 

is treated as an adjustable parameter for this example (a total of 441 parameters). The 

comparison of initial and final updated water-cut matches is shown in Fig. 5.2, and that 

of GOR is in Fig. 5.3. The final permeability distribution is shown in Fig. 5.1b. Clearly, 

the final permeability model captured the large-scale trend of the reference permeability 

field. The production data integration process is very efficient and takes only a few 

iterations to converge (Fig. 5.4). The CPU time required for this case is less than 10 

minutes for 10 iterations in a PC (Intel Xeon 3.06 GHz Processor). 
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                 (a) reference permeability                         (b) final permeability 
 
Figure 5.1 History matching 3-phase finite-difference model for a nine-spot heterogeneous case. 
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Figure 5.2 History matching 3-phase finite-difference model for a nine-spot heterogeneous case: 
water-cut match. 
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Figure 5.3 History matching 3-phase finite-difference model for a nine-spot heterogeneous case: 
gas/oil ratio match. 
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Figure 5.4 History matching 3-phase finite-difference model for a nine-spot heterogeneous case: 
objective function reduction, water cut and GOR shift-time misfit reduction, and water cut and 
GOR amplitude misfit reduction. 
 

 

 

5.3 Mathematical Formulation 

 

5.3.1 Compressible Streamline Simulation 

Before going to sensitivity calculations, let’s first examine the formulations for 

compressible and three-phase streamline simulation. Although streamline-based history 

matching techniques have shown great potential, most of the applications have been 

limited to two-phase water-oil flow because current streamline models are limited in 

their ability to incorporate highly compressible flow and cross-streamline mechanisms in 

a rigorous and computationally efficient manner. In the following sections, I will show 

how to rigorously extend streamline simulations to compressible and 3-phase flow. 
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Relative Density for Compressible Flow. From Bear (1972),60 the mass conservation 

equation is  

 
( ) 0=

∂
∂

+⋅∇
t

u ρρ
 (5.1a) 

For steady state flow, although the divergence of volumetric flux of compressible 

fluid flow is not zero, the divergence of mass flux of that is going to be zero as follows, 

 ( ) 0=⋅∇ uρ . (5.1b) 

Between pressure updating we can treat the flow as steady state. 

If we expand it, 

 ( ) 0=⋅∇+∇⋅=⋅∇ uuu ρρρ  (5.2) 

Suppose we give ]Constant[cu =⋅∇ , the equation above will be, 

 0=+∇⋅ cu ρρ  (5.3) 

Introducing the time of flight equation, 
τ

φ
∂
∂

=∇⋅u , 
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τ
ρφρρ

 (5.4) 

Now the gradient of density is converted from three dimensional (x,y,z) coordinate to 

one dimensional (τ) coordinate by introducing the time of flight. 

By using the above equation, we are able to trace the density from Injector to 

Producer as the example below, 

 )exp(ln 12
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ρ τ
∆−=→∆−=→∂−=
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∂
∫∫

∆ cccc p

p
 (5.5) 

The initial density ρ is starting from the unity at the injector. 

The equation above simply shows that the density will vary with the divergence of 

flux (c, flux out minus flux in for x, y, z directions), porosity (φ) and the difference of (τ) 

within the particular interval along a streamline. If we have incompressible fluid flow 

which is simply c = 0, then the density will keep the initial unity value till the producer.  
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Mass Conservation Equation for Compressible Fluid Flow With Density-

Dependent Source Term. The next question will be how we use the coordinate 

transformation. Mass conservation equation for compressible fluid flow will be given as 

follows, 
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Again introducing the time of flight equation, 
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We can think the right hand term as the source term because of compressibility such 

as the expansion of the fluid. It is important to emphasize that we could transform the 

coordinate of the density from three dimensional to one dimensional along streamline.  

By using the coordinate transform equation of the density, 
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The divergence of the total flux is transformed into the time of flight. By using this 

coordinate transformation, saturation equation will be 
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Then we are able to solve the equation only along the streamline and we don’t need 

to go back to the grid block coordinate which means we don’t require operator splitting 

for this equation. 

The discretization of the equation is as follows, 



 

 

122

 

n

iw

w

n

iw

w

n

iw

w

n

w

w

n

w

w

B
fc

B
f

B
f

B
S

B
S

t φτ
−=














−

∆
+














−

∆
+−

+

2
1

2
1

1
11

 (5.12) 

 












 ⋅∆
−














−

∆
∆

−×=
+−

++

n

iw

w

n

iw

w

n

iw

w

n

w

wn
w

n
w B

fct
B
f

B
ft

B
SBS

φτ
2

1
2

1

11

 (5.13) 

In detail, 

 
n
wi

n
wi

n

w

w

B
S

B
S

=
 (5.14) 

 
( )n

wi
n
wi

n
i

n

iw

w

BB
f

B
f

1
2

1 5.0 −−
+×

=

 (5.15a) 

 
( )n

wi
n
wi

n
i

n

iw

w

BB
f

B
f

1

1

2
1 5.0 +

+

+
+×

=

 (5.15b) 

 

Saturation Remapping. There is still one more step to take. The relative density, the 

fluid volume, time-of-flight information are used to incorporate cross-streamline effects 

via pressure updates and remapping of saturations. The new flow rate that a streamline 

carries at the location we investigate will be  

 Ψ
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. (5.16a) 

Now the volumetric flux depends on the position along the streamline. When we are 

mapping from streamline segments to grid-block properties, we need to take into account 

the new q with compressibility. 

The saturation in one grid block will be calculated using streamline segment 

saturation, streamline flow rate and streamline segment time of flight as follows  
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where the streamline fluid volumetric rate is calculated by Eq. 5.16a. 

We now illustrate the calculations using waterflooding in a ¼-spot pattern under 

black oil conditions and compare the results with incompressible flow. Fig. 5.5 shows 

the pressure distribution for a two-phase flow black oil case. The initial pressure is set at 

3000 psi and the producer is bottomhole pressure constrained at 1000 psi. The 

divergence of flux computed for each grid block is shown in Fig. 5.6 and a contour of 

the streamline time of flight is shown in Fig. 5.7.   

 

 
 

Figure 5.5 Pressure(psia) distribution for a ¼-five spot pattern, two-phase compressible flow. 
 
 
 

 
 

Figure 5.6 Total net flux distribution for a ¼-five spot pattern, two-phase compressible flow. 
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Figure 5.7 Streamline time-of-flight distribution for a ¼-five spot pattern, two-phase 
compressible flow. 

 
   

 

We now calculate the effective densities along streamlines using Eq. 5.5. A contour 

of the ‘local’ changes in relative density is shown Fig. 5.8 and a value less than unity 

indicates expansion of the fluid. Note that these changes are a function of fluid 

compressibility, porosity and time of flight. The relatively low values at the stagnant 

corners reflect the large cell time of flight there.  

 

 

 

 
 
Figure 5.8 ‘Local’ relative density distribution for a ¼-five spot pattern, two-phase compressible 

flow. 
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The accumulated relative densities along streamlines are contoured in Fig. 5.9 and 

resemble the time of flight distribution. In fact, we can view the relative densities as 

scale factors for time of flight, ‘accelerating’ or ‘retarding’ the particle transport along 

streamlines. The oil rate at the producing well for the compressible streamline 

calculations is shown in Fig. 5.10. For comparison purposes, we have also shown the 

close correspondence with the results from finite difference calculations. The impact of 

fluid compressibility can also be easily seen in this figure. 

                 
Figure 5.9 Accumulative relative density distribution (right side shows relative density traced 

along streamlines). 
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Figure 5.10 Comparison of oil rate at the producer. 
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In next case, we increased bottomhole pressure to 2500 psi. Average reservoir 

pressure is kept above initial reservoir pressure and fluid is under compression in most 

of the reservoir area. Fig. 5.11 shows the tracing of relative density along the streamline. 

The contour of the relative density is shown in Fig. 5.12. For compression case, 

divergence of flux is negative and relative density is greater than 1. Fig. 5.13 shows the 

oil production rate vs. time using compressible streamline formulation and commercial 

finite difference simulator. For comparison purpose we also show the results from the 

commercial streamline simulator. The improvement from the new formulation is quite 

obvious here. 

 

 
Figure 5.11 Tracing relative density along streamlines for a compression case. 

 

 

 
Figure 5.12 Contour plot of relative density for a compression case. 
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Figure 5.13 Oil production rate vs. time for a compression case. 

 

 

 

5.3.2 Streamline Formulation for Three-Phase Flow 

The mass conservation equation for gas is give by the same procedure, 
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By eliminating φ, 
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Eq. 5.22 can be discretized and solved along streamlines using finite-difference as 

discussed for two-phase flow. Because of the high gas mobility, the three-phase flow 

equations need to be solved implicitly along streamlines.  

An example using the new formulation is given below. We simulated water injection 

in a quarter five-spot pattern for three-phase flow. A homogeneous permeability model 

represented by 25×25 grid cells was used. The initial solution GOR is 1.27 Mscf/STB. 

Initial reservoir pressure is 3005 psi, which is a little bit higher than the bubble-point 

pressure, 3000 psi. There is no free gas at the initial state. The producer is bottomhole 

pressure constrained at 2500 psi, and the injector is rate constrained at 250 B/d. As the 

pressure drops, solution gas comes out from oil phase and accumulates to mobile free 

gas. Fig. 5.14 shows the oil production rate, Fig. 5.15 shows the gas production rate, and 

Fig. 5.16 shows the water-cut. Our results match commercial finite-difference simulator. 
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Figure 5.14 Oil production rate for a three-phase case. 
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Figure 5.15 Gas production rate for a three-phase case. 
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Figure 5.16 Water-cut curve for a three-phase case. 

 

 

5.3.3 Sensitivity Calculation for Compressible and Three-Phase Flow 

This section discusses the sensitivity calculation based on the rigorous streamline 

formulations. 

 

Watercut Sensitivity. The component conservation equation for water is shown in 

Eq. 5.9. From Eq. 5.9, 

 w

w

w

w

w

w

B
fc

B
f

B
S

t φτ
−








∂
∂

−=







∂
∂

 (5.23) 



 

 

130

w

w

B
S  is function of m and t. The implicit differentiation of 

m

t

∂

∂  will be 

 












































∂

∂

∂

∂
⋅

∂

∂

−=

∂

∂

∂

∂

−=
∂

∂

wB
wS

t

wB
wS

m

wB
wS

t

wB
wS

m

m

t τ

τ

 (5.24) 

 φτ

τ
τ

c
B
f

B
f

w

w

w

w

wB
wS

m

m

t

+







∂
∂









∂
∂

∂

∂

=
∂

∂

 (5.25) 

or 

 τ
ρ

ρτ

τ
τ

∂
∂

−







∂
∂









∂
∂

∂

∂

=
∂

∂

1

w

w

w

w

B
f

B
f

wB
wS

m

m

t

 (5.26) 

For incompressible flow, c=0, Bw is constant and Eq. 5.25 reduces to our previous 

sensitivity formulation Eq. 4.18. 

 

Gas/Oil Ratio Sensitivity. The component conservation equation for gas is shown in 

Eq. 5.19. Let’s define 
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If we assume that the streamlines do not shift because of small perturbations in 

reservoir properties, changes in gS ′  (gas saturation, including the solution gas in oil 

phase) at the outlet node of a streamline can be expressed as ),( mtSS gg ′=′ , so 
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We can now combine Eq. 5.30 with Eq. 5.28 in order to obtain the following 

expression for travel time sensitivity in terms of the streamline time of flight, 
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We can get fluxes and saturation from Eclipse, then trace streamlines and map block 

properties to streamline coordinate properties and obtain the 
τ∂
⋅∂ )(  values at the 

streamline outlet nodes. If we use compressible streamline simulation, these values are 

already available along the streamlines. 

Now let’s discuss the parameters relevant to Eq. 5.32. 

The fractional flow of water, oil, and gas is calculated by 
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The default kro model is given according to Eclipse,61 
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Since Stone’s second model62,63 (modified) is commonly used in industry, it is also 

provided as an option: 
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where gµ is the dry gas viscosity, and oµ is the live oil (with dissolved gas) viscosity. 

Fluid viscosity, solution GOR, and formation volume factors are functions of pressure. 
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Production GOR (the ratio of produced gas to produced oil) is 
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If P>Pb, for undersaturated reservoir, production GOR is contributed by Rs only. 

Reexamining Eq. 5.32, we see that the travel-time sensitivity for production GOR is 

valid for situations where there is free gas and/or solution gas. 
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5.4 Sensitivity Verification 

In order to verify the travel-time sensitivity in Eqs. 5.25 and 5.32 we compared our 

results with sensitivities obtained by numerical perturbation. For this purpose, we 

simulated water injection in a quarter five-spot pattern for three-phase flow. A 

homogeneous permeability model represented by 21×21 grid cells was used for this 

comparison. The initial solution GOR is 1.27 Mscf/STB. The reservoir was produced by 

a production/injection ratio of 1.25 starting with the bubble-point pressure. As the 

pressure drops, solution gas comes out from oil phase and accumulates to mobile free 

gas. We perturbed every grid block permeability by 5%, one grid block at a time and 

numerically computed the partial derivative of the arrival time of a fixed watercut and 

GOR with respect to permeability. Fig. 5.17 shows the results for watercut of 0.47, and 

Fig. 5.18 shows the result for GOR of 4 Mscf/STB. Clearly, we obtain a good agreement 

between analytical travel time sensitivities calculated from Eqs. 5.25 and 5.32 and 

numerical travel time sensitivities. The locations of the negative and positive 

sensitivities are in close agreement. The shape of the watercut analytical sensitivity is a 

little bit different from the perturbation sensitivity since the analytical sensitivities are 

calculated along the streamlines thus the shape is in accordance with the streamline 

trajectory. The differences are also because of the approximations inherent in the 

analytical computations, particularly the assumption that the streamlines do not shift 

because of small perturbation in reservoir properties.  Nevertheless, as we will see later, 

the streamline-based sensitivities are adequate for history matching purposes under a 

wide variety of conditions. 
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Figure 5.17 Comparison of numerical and analytical sensitivity in a ¼-five spot pattern at water 
cut of 0.47. 
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Figure 5.18 Comparison of numerical and analytical sensitivity in a ¼-five spot pattern at GOR 
of 4 Mscf/STB. 

 

 

5.5 Field-Scale Example 

 

In this section I demonstrate the feasibility of the approach for field studies by 

application to a large-scale 3-D example. As mentioned before, streamlines and time of 

flight are used to compute the sensitivity of the production data with respect to reservoir 

parameters as described in the mathematical formulation section. In this field example, 

watercut and GOR were matched jointly to update the reservoir permeability model. 
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5.5.1 Model Description 

Ninth SPE benchmark problem64 was used to validate the methodology. The SPE ninth 

problem studies a bottom waterflooding in a dipping reservoir with natural water 

encroachment from an aquifer. The reservoir (Fig. 5. 19) is represented by a 24×25×15 

mesh system with conventional rectangular coordinates. The dimensions of the grid 

blocks are 300 feet in both the X- and Y- directions. Cell (1,1,1) is at a depth of 9000 

feet subsea at the center of the cell top. The remaining cells dip in the X-direction at an 

angle of 10 degrees. Values of porosity and thickness can be found in Ref. 64. The total 

thickness from Layers 1 to 13 is 209 feet (16 feet per layer in average), and Layer 14 and 

15 has a thickness of 50 and 100 feet respectively. 

 

 

 

 
 

Figure 5.19 Initial oil saturation for the reservoir. 
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Solution gas/oil ratio and gas formation volume factor are shown in Fig. 5.20. 

Relative permeabilities are shown in Fig. 5.21. Modified Stone’s second model was used 

to compute oil relative permeability.  
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Figure 5.20 Solution gas/oil ratio and gas formation volume factor curves. 
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Figure 5.21 Relative permeability curves. 

 

 

The initial oil phase pressure at 9035 feet subsea is 3600 psia which is the bubble-

point pressure. The oil/water contact is 9950 feet subsea. There is no free gas initially in 

the reservoir. After 900 days of production, there is plenty of free gas (Fig. 5.22). 
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Figure 5.22 Gas saturation distribution at the end of simulation time (900 days). 
 
 
 

The permeability field used by the original SPE ninth problem was generated 

geostatistically on a cell by cell basis. The permeability is log-normally distributed with 

a mean of 108 md, a minimum of 0.003 md and a maximum of 10054 md. The 

correlation length in the X-direction is about 6 grid blocks, and there is no correlation in 

the Y- and Z- directions. For validation purpose, this permeability field was used as a 

true or reference model to generate production history by running flow simulation. 

A total of 1 water injector (I1) and 25 producers (named as P2 to P26) were included 

in the reservoir. The injector was completed from layers 11 through 15. In the original 

SPE9 problem, all producers were completed in layers 2, 3, and 4 only. For validation 

purpose, all producers except produces 9, 17, 23, and 26 were changed to be completed 

in layers 1 to 13. Producers 9, 17, 23, and 26 are completed in layers 1 to 5 so that wells 

will not be perforated in the water leg. The water injector was injecting at a maximum 



 

 

138

bottomhole pressure of 4500 psia at a reference depth of 9110 feet subsea, and the 

producers were producing with a constant reservoir volume rate of 1800 RB/D and 

minimum flowing bottomhole pressure of 1000 psia. 

 

5.5.2 Production Data Integration 

To generate an initial permeability model to start with, the permeability values at the 

well blocks are regarded as known hard data. Analysis of the variogram indicated a 

correlation length of about 2100 feet (7 grids) in the X-direction and about 2 grids in the 

Y-direction (Fig. 5.23). No correlation in the Z-direction was found. Using these 

variogram parameters, the condition data at well locations, and the histogram of the hard 

data, sequential Gaussian simulation was used to generate 10 realizations of the 

permeability model. One model was randomly picked up as the initial model. 
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Figure 5.23 Semi-variogram for the permeability known at the well locations (about 600 and 
2100 feet range in the X- and Y- directions respectively). 

 

 

In 5 iterations, all misfit indexes dropped obviously, including the objective function 

(GOR and water cut total shift time misfit), GOR shift time misfit, water-cut shift-time 

misfit, GOR amplitude misfit, and water-cut amplitude misfit (Fig. 5.24).  
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Figure 5.24 Shift time and amplitude misfit reduction for joint watercut and GOR matching for 
SPE9 problem. 

 

 

 

The reference, initial, and final matched production GOR are shown in Fig. 5.25. 

Most of the wells gained a satisfactory match.  
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Figure 5.25 Production GOR match for all the 25 producers (named from PROD2 to PROD26) 
for SPE9 problem. 
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Figure 5.25 Continued. 

 

 

Although only five wells showed obvious water breakthrough by the true reference 

model, all the wells were used in the production data integration. By the initial 

permeability model, only two wells showed significant water breakthrough. After joint 

integration of GOR and water cut data, all five wells showed significant water 

breakthrough, although the amplitude match is not perfect (Fig. 5.26). 
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Figure 5.26 Watercut match for wells showing observed breakthrough for SPE9 problem. 
 

 

Fig. 5.27 compared the initial permeability model, the true (reference) model, and 

the derived (updated) model. The scale is logarithmic. As mentioned before, minimum is 

0.003 md and maximum is 10054 md. It is hard to tell the difference between the derived 

and the initial model by visual comparison. But still they are detailed changes. For 

example, the permeability in Layer 3 was reduced to be closer to the true model. We can 

conclude from the comparison that the geologic realism of the initial model is retained in 

the final derived model. 
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Figure 5.27 Initial, derived (updated), and true (reference) permeability model comparison for 
SPE9 problem. 
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It is hard to discern the changes made to the initial model since the method is 

designed to preserve the initial geologic realism. But if we compare the “true-initial” 

permeability difference and the “derived-initial” permeability difference (Fig. 5.28), we 

find that the derived model made most of the needed changes, especially the close 

agreement in the areas where permeability needs to be reduced. There is some 

discrepancy in the areas where there are very few streamlines (Fig. 5.29) since there is 

not enough information to guide the change (for example, near the boundary or in the 

areas where there is no well), or in the areas near the aquifer (the area far from Y-axis, 

also refer to Fig. 5.19) since the streamline time-of-flight is extremely large and was not 

used in the sensitivities. The agreement in the areas where permeability needs to be 

reduced (dark areas) is very satisfactory.  

 

 

 
 
Figure 5.28 Comparison of the “derived-initial” permeability difference and the “true-initial” 
permeability difference (All 15 layers are shown). 
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Figure 5.28 Continued. 
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     a. at the beginning of the simulation                     b. at the end of the simulation 
 

Figure 5.29 Streamline and time-of-flight distribution. 
 

 

For this field case, it took about 50 minutes in 5 iterations to get a good history 

match running at a computer with 1.5 GHz Pentium 4 processor. 

This field-scale example shows that the methodology is working and the approach is 

very efficient.  

 

 

5.6 Chapter Summary 

 

An approach to history matching three-phase flow using a novel compressible streamline 

formulation and streamline-derived analytic sensitivities was developed. Streamline 

models were generalized to account for compressible flow by introducing a relative 

density of total fluids along streamlines. A density-dependent source term in the 

saturation equation accounts for the pressure effect during saturation calculations.  

Parameter sensitivities that define the relationship between the reservoir properties 

and the production response, viz. water cut and gas-oil ratio, were analytically 

computed. This calculation is very efficient. Also the analytical sensitivities were 

verified by comparing with the perturbation sensitivity. 
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Generalized travel-time inversion is extremely robust and converges in only a few 

iterations for joint inversion of water cut and gas-oil ratio.  

The power and utility of the approach were demonstrated using both synthetic and 

field-scale examples. The synthetic case includes matching of water cut and gas oil 

ratios from a 9-spot pattern and is used to validate the method. The field-scale example 

is modified SPE ninth comparative example and consists 25 producers, 1 injector and 

aquifer influx. Starting with a prior geologic model, water-cut and GOR history were 

integrated using the generalized travel time inversion. The approach took less than one 

hour in a PC for the entire history matching without any apparent loss in geologic 

realism. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

 

In this work, I have quantified the degree of non-linearity for amplitude inversion, 

travel-time inversion, and generalized travel-time inversion; developed approaches to 

history matching streamline models using generalized travel time inversion which can be 

applied to large real field cases; developed approaches to fast history matching finite-

difference models which can be applied to large real field cases; and developed approach 

to efficient history matching compressible, three-phase flow production data. The power 

and utility of these techniques have been demonstrated using synthetic and field 

applications. 

 

 

6.1 Conclusions 

 

Some specific conclusions can be made from this work: 

 

1. We have quantitatively investigated the non-linearities associated with travel time 

and amplitude inversion for production data integration. The non-linearity is 

expressed in terms of a simple and intuitive geometric measure of curvature as 

proposed by Bates and Watts and later used by Grimstad and Mannseth. 

2. The non-linearity in travel time inversion is found to be orders of magnitude smaller 

than the conventional amplitude inversion. As a result, the travel time inversion has 

better convergence properties and is less likely to be trapped in local minimum. 

3. Travel time sensitivity is more uniform between the wells. In contrast, the amplitude 

sensitivity can be localized near the wells. The higher magnitude of the travel time 

sensitivity also contributes to its quasilinearity and improved convergence properties. 
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4. The generalized travel time inversion effectively combines travel time and amplitude 

inversion while retaining most of the desirable properties of the travel time inversion. 

For the field example studied here, the generalized travel time inversion 

outperformed both travel time and amplitude inversion.  

5. Use of streamline-derived sensitivities can significantly improve the efficiency of 

assisted history matching. In particular, the sensitivities can be utilized to directly 

obtain the changes in reservoir properties necessary to improve the history match in a 

more objective way. This eliminates the time-consuming and subjective manual 

adjustment of parameters in the assisted history matching process. By intervening at 

every stage of the iterative process, we can retain control over the history matching 

process to preserve plausibility and geologic realism. 

6. Streamline-based sensitivities and inversion allow us to take into account the full 

coupling of the streamlines in the reservoir rather than changing individual wells or 

streamline bundles at a time. This not only significantly increases the efficiency, but 

also preserves geologic continuity and minimizes the chances of introducing non-

physical artifacts during the history matching process.  

7. The power and utility of streamline-based inversion is demonstrated using two field 

examples with model sizes ranging from 105 to 106 grid blocks and with over one 

hundred wells. In both the cases, the streamline-based automatic history matching 

led to better individual well matches as well as field-wide matches compared to 

assisted history matching and with no apparent loss of geologic realism. We have 

shown that the automatic history matching can be used both for conditioning 

geologic models and also to further improve the models derived from the assisted 

history matching. 

8. The use of sensitivities during assisted history matching can lead to significant 

savings in computation time and manpower. For the field examples presented here, 

the automatic history matching took days compared to months for assisted history 

matching. This makes it possible to generate multiple history-matched models to 

perform uncertainty analysis. 
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9. A fast history matching approach for finite-difference models is proposed. The new 

approach combines the versatility of finite-difference simulation with the efficiency 

of streamline simulation. Use of finite-difference simulation allows us to account for 

detailed physics including compressibility and gravity effects and also cross-

streamline mechanisms. 

10. A key aspect of our proposed method is the use of streamline-based sensitivity 

during history matching finite-difference models. Although these sensitivities are 

approximate, they seem to be adequate for most purposes and do not significantly 

impact the quality of the match or the efficiency of the approach.  

11. We have demonstrated the power and utility of our proposed approach using both 

synthetic and field examples. A full field application from a giant middle-eastern 

field with over 80 wells and 30 years of production history convincingly establishes 

the practical feasibility of the approach. The entire history matching for this field 

took 9 hours in a PC indicating the potential for cost savings in terms of time and 

manpower. 

12. An approach to history matching three-phase flow using a novel compressible 

streamline formulation and streamline-derived analytic sensitivities was developed. 

Streamline models were generalized to account for compressible flow by introducing 

a relative density of total fluids along streamlines. A density-dependent source term 

in the saturation equation accounts for the pressure effect during saturation 

calculations.  

13. We analytically computed parameter sensitivities that define the relationship 

between the reservoir properties and the production response, viz. water-cut and gas-

oil ratio. This calculation is very efficient. Also we verified the analytical 

sensitivities by comparing with the perturbation sensitivity. 

14. Generalized travel-time inversion is extremely robust and converges in only a few 

iterations for joint inversion of watercut and gas-oil ratio.  

15. We demonstrate the power and utility of our approach using both synthetic and field-

scale examples. The synthetic cases include matching of water cut and gas oil ratios 
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from a 9-spot pattern and are used to validate the method. The field-scale example is 

SPE ninth comparative example and consists 25 producers, 1 injector and aquifer 

influx. Starting with a prior geologic model, we integrate water-cut and GOR history 

using the generalized travel time inversion. Our approach takes less than one hour in 

a PC for the entire history matching without any apparent loss in geologic realism. 

 

 

6.2 Recommendations 

 

Our experience with amplitude inversion indicates that the results tend to be more 

sensitive to the choice of inversion parameters. For homogeneous or smooth starting 

models, we can obtain a reasonable solution by careful choice of inversion parameters. 

We have cases where amplitude inversion works when starting with a smooth model. 

Further investigation is needed to explore the success possibility of amplitude inversion.  

Generalized travel-time inversion succeeded for integration of non-monotonic tracer 

response. One reason is that the tracer response shapes calculated from different 

geologic models are more or less similar (bell shape with a peak or peaks), thus this 

helps getting a correct shift time. Another reason might reside in the sensitivity 

formulation. We have tried to apply the same sensitivity formulation (Luo and 

Schuster’s formulation) to integrate non-monotonic water cut data but did not get very 

positive result. One reason is that water cut responses in real life is erratic and have 

multiple up-and-downs. We still need to investigate how to better match this kind of 

water cut responses, maybe by incorporating Luo and Schuster’s formulation, or by 

master-point amplitude inversion to reduce the degree of non-linearity. 

Currently, the gas/oil ratio shift time is calculated from the amplitude difference and 

the tangent of the observed gas/oil ratio if the response is flat and causes difficulty for 

shift time calculation. It is recommended to investigate other ways to get a correct shift 

time. 
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Gas/oil ratio response is very sensitive to three-phase relative permeability and PVT 

properties. We should also investigate the GOR sensitivity to relative permeability and 

PVT properties. 

 

 



 

 

153

NOMENCLATURE 

 

A = maximum amplitude of tracer concentration 

Bg = gas formation volume factor 

Bo = oil formation volume factor 

Bw = water formation volume factor 

c = divergence of flux 

Cc  = calculated tracer concentration 

Co  = observed tracer concentration 

CD  = data error covariance 

CM  = prior model parameter covariance  

d = data vector 

D = dispersion coefficient 

Fk  = tangent vector 

Fkk = acceleration vector 

fg = fractional flow of gas 

fo = fractional flow of oil 

fw = fractional flow of water 

G = sensitivity matrix 

GOR = production gas/oil ratio 

I = identity matrix 

J  = misfit function 

k = permeability 

krg = gas phase relative permeability 

kro = oil phase relative permeability 

krw = water phase relative permeability 

krog = oil relative permeability in gas/oil saturation function 

krow = oil relative permeability in water/oil saturation function 

krocw = krow at connate water saturation 
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L = spatial difference operator 

m = reservoir parameter 

m  = reservoir parameter vector 

mp  = prior reservoir model parameter 

nb = number of grid blocks 

no = number of dynamic data observations 

Ndj = number of dynamic data observations of jth well 

Nw  = number of wells 

P = pressure 

Pb = bubble point pressure 

q = streamline flow rate 

Qg = gas production rate 

Qg,free = free gas production rate 

Qo = oil production rate 

R = reservoir parameter vector 

Rs = solution gas/oil ratio 

R2  = coefficient of determination  

s = slowness 

S = sensitivity matrix 

Sg  = gas saturation 

So  = oil saturation 

Sw  = water saturation 

Swco  = connate water saturation 

t = time 

∆t  = travel-time shift 

t~∆  = generalized travel-time 

u = Darcy velocity 

v = Interstitial velocity 
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yobs  = observed response 
obsy  = averaged observed response 

ycal  = calculated response 

β1  = weighting factor for the prior model 

β2  = weighting factor for the roughness term 

κam = measure of nonlinearity for amplitude inversion 

κgt = measure of nonlinearity for generalized travel-time inversion   

κtt = measure of nonlinearity for travel-time inversion 

ρ = relative density 

τ = time of flight 

∆τ = generalized travel-time or travel-time shift 

µg = gas viscosity 

µo = oil viscosity 

µw = water viscosity 

λrt  = total relative mobility 

φ = porosity 

Ψ = streamline trajectory 
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